30 research outputs found

    Development of the application of speciation in chemistry

    Full text link

    Depth profiling studies of multilayer films with a C 60 þ ion source

    No full text
    Abstract A newly developed C 60 þ primary ion beam source for time-of-flight secondary ion mass spectrometry has been employed for depth profiling analysis of organic and inorganic multilayer films. In particular, the C 60 þ ion beam is used in the dc mode to sputter the surface for depth profiling while spectra are taken both with Ga þ 15 keV and C 60 þ 20 keV projectiles between sputtering cycles. From C 60 þ bombardment of Langmuir-Blodgett films of barium arachidate, we find that cluster beams increase the secondary ion yields and ion formation efficiencies compared to monoatomic projectiles. For a 15-layer film, a barium arachidate fragment ion at m/z ¼ 208:9 was monitored as a function of C 60 þ dose to determine that the sputtering rate is about 1.54 nm/s and that the film interface position can be determined with a depth resolution of 16 nm. For comparison purposes, a depth resolution of 8.7 nm was measured for a sample consisting of 66 nm of Ni and 53 nm of Cr on Si(1 0 0) at a C 60 þ beam energy of 20 keV. The neutral atom yield was monitored via laser postionization to avoid matrix effects. These experiments show great promise for the use of C 60 þ for depth profiling studies of multilayer targets.

    Gel Formulation Containing Mixed Surfactant and Lipids Associating with Carboplatin

    No full text
    The interaction of amphiphilic molecules such as lipids and surfactants with the hydrophilic drug carboplatin was investigated to identify suitable self-assembling components for a potential gel-based delivery formulation. 1H-NMR Studies in sodium bis(2-ethylhexyl) sulfosuccinate (aerosol-OT, AOT)-based reverse micelles show that carboplatin associates and at least partially penetrates the surfactant interface. Langmuir monolayers formed by dipalmitoyl(phosphatidyl)choline are penetrated by carboplatin. Carboplatin was found to also penetrate the more rigid monolayers containing cholesterol. A combined mixed surfactant gel formulation containing carboplatin and cholesterol for lymphatic tissue targeting was investigated for the intracavitary treatment of cancer. This formulation consists of a blend of the surfactants lecithin and AOT (1?:?3 ratio), an oil phase of isopropyl myristate, and an aqueous component. The phases of the system were defined within a pseudo-ternary phase diagram. At low oil content, this formulation produces a gel-like system over a wide range of H2O content. The carboplatin release from the formulation displays a prolonged discharge with a rate three to five times slower than that of the control. Rheological properties of the formulation exhibit pseudoplastic behavior. Microemulsion and Langmuir monolayer studies support the interactions between carboplatin and amphiphilic components used in this formulation. To target delivery of carboplatin, two formulations containing cholesterol were characterized. These two formulations with cholesterol showed that, although cholesterol does little to alter the phases in the pseudo-ternary system or to increase the initial release of the drug, it contributes significantly to the structure of the formulation under physiological temperature, as well as increases the rate of steady-state discharge of carboplatin

    Structure Dependence of Pyridine and Benzene Derivatives on Interactions with Model Membranes

    No full text
    Pyridine-based small-molecule drugs, vitamins, and cofactors are vital for many cellular processes, but little is known about their interactions with membrane interfaces. These specific membrane interactions of these small molecules or ions can assist in diffusion across membranes or reach a membrane-bound target. This study explores how minor differences in small molecules (isoniazid, benzhydrazide, isonicotinamide, nicotinamide, picolinamide, and benzamide) can affect their interactions with model membranes. Langmuir monolayer studies of dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylethanolamine (DPPE), in the presence of the molecules listed, show that isoniazid and isonicotinamide affect the DPPE monolayer at lower concentrations than the DPPC monolayer, demonstrating a preference for one phospholipid over the other. The Langmuir monolayer studies also suggest that nitrogen content and stereochemistry of the small molecule can affect the phospholipid monolayers differently. To determine the molecular interactions of the simple N-containing aromatic pyridines with a membrane-like interface, <sup>1</sup>H one-dimensional NMR and <sup>1</sup>H–<sup>1</sup>H two-dimensional NMR techniques were utilized to obtain information about the position and orientation of the molecules of interest within aerosol-OT (AOT) reverse micelles. These studies show that all six of the molecules reside near the AOT sulfonate headgroups and ester linkages in similar positions, but nicotinamide and picolinamide tilt at the water–AOT interface to varying degrees. Combined, these studies demonstrate that small structural changes of small N-containing molecules can affect their specific interactions with membrane-like interfaces and specificity toward different membrane components
    corecore