451 research outputs found

    Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers

    Get PDF
    International audienceThe ability to precisely control the thermal conductivity (κ) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of κ of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low κ are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as ∼15 nm. Single-barrier thermal resistances between 2 and 4×10−9 m2 K W−1 were attained, resulting in a room-temperature κ down to about 0.9 W m−1 K−1, in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green’s function simulations

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue

    Get PDF
    The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality

    A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces

    Get PDF
    This paper presents a new concept of feature for freeform surface machining that defines the changes in feature status during real manufacturing situations which have not been sufficiently addressed by current international standards and previous research in feature technology. These changes are multi-perspective, including (i) changes in depth-of-cut: the geometry of a feature in the depth-of-cut direction changes during different machining operations such as roughing, semi-finishing and finishing; (ii) changes across the surface: a surface may be divided into different machining regions (effectively sub-features) for the selection of appropriate manufacturing methods for each region such as different cutting tools, parameters, set-ups or machine tools; and (iii) changes in resources or manufacturing capabilities may require the re-planning of depth-of-cuts, division of machining regions and manufacturing operations (machines, tools, set-ups and parameters). Adding the above dynamic information to the part information models in current CAD systems (which only represent the final state of parts) would significantly improve the accuracy, efficiency and timeliness of manufacturing planning and optimisation, especially for the integrated NC machining planning for complex freeform surfaces. A case study in an aircraft manufacturing company will be included in this paper

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore