92 research outputs found
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Gene Set Enrichment Analysis Identifies LIF as a Negative Regulator of Human Th2 Cell Differentiation
In this study we show that IL-4 is crucial during reinforcement window of human Th2 differentiation for optimal Th2 development. We have also shown here that during this stage, IL-4 helps in cellular decision-making process of differentiation versus proliferation. We have combined computational and experimental methods to analyze Th2 transcription network to name novel players of the process of Th2 differentiation. Here we report that LIF through STAT3 negatively regulates Th2 differentiation. This approach can be generalized to analyze “omics” data to identify key regulatory modules
Factors Associated with the Performance of a Blood-Based Interferon-γ Release Assay in Diagnosing Tuberculosis
Background: Indeterminate results are a recognised limitation of interferon-γ release assays (IGRA) in the diagnosis of latent tuberculosis (TB) infection (LTBI) and TB disease, especially in children. We investigated whether age and common co-morbidities were associated with IGRA performance in an unselected cohort of resettled refugees. Methods: A retrospective cross-sectional study of refugees presenting for their post-resettlement health assessment during 2006 and 2007. Refugees were investigated for prevalent infectious diseases, including TB, and for common nutritional deficiencies and haematological abnormalities as part of standard clinical screening protocols. Tuberculosis screening was performed by IGRA; QuantiFERON-TB Gold in 2006 and QuantiFERON-TBGold In-Tube in 2007. Results: Complete data were available on 1130 refugees, of whom 573 (51%) were children less than 17 years and 1041 (92%) were from sub-Saharan Africa. All individuals were HIV negative. A definitive IGRA result was obtained in 1004 (89%) refugees, 264 (26%) of which were positive; 256 (97%) had LTBI and 8 (3%) had TB disease. An indeterminate IGRA result was obtained in 126 (11%) refugees (all failed positive mitogen control). In multivariate analysis, younger age (linear OR = 0.93 [95% CI 0.91-0.95],
Biribi: disciplining and punishing in the French empire
This article discusses the infamous Bataillons d’Afrique to which French former criminals were sent to complete their duty of military service. The ‘Bat d’Af’ were created to prevent the young male bourgeoisie from having to mix with these ‘undesirables’ and ‘reprobates’, and they were stationed well away from the mainland in France’s North African colonies. This article discusses themes such as discipline, punishment, torture, homosexuality, interracial power relations, and delinquent ‘cultures’ in this imperial context
Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche
Preconceptional Folate Supplementation and the Risk of Spontaneous Preterm Birth: A Cohort Study
In an analysis of a cohort of pregnant women, Radek Bukowski and colleagues describe an association between taking folic acid supplements and a reduction in the risk of preterm birth
Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data
International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars
All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8
Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs
We report results from searches for anisotropic stochastic gravitational-wave
backgrounds using data from the first three observing runs of the Advanced LIGO
and Advanced Virgo detectors. For the first time, we include Virgo data in our
analysis and run our search with a new efficient pipeline called {\tt PyStoch}
on data folded over one sidereal day. We use gravitational-wave radiometry
(broadband and narrow band) to produce sky maps of stochastic
gravitational-wave backgrounds and to search for gravitational waves from point
sources. A spherical harmonic decomposition method is employed to look for
gravitational-wave emission from spatially-extended sources. Neither technique
found evidence of gravitational-wave signals. Hence we derive 95\%
confidence-level upper limit sky maps on the gravitational-wave energy flux
from broadband point sources, ranging from and on the
(normalized) gravitational-wave energy density spectrum from extended sources,
ranging from , depending on direction () and spectral index
(). These limits improve upon previous limits by factors of . We also set 95\% confidence level upper limits on the frequency-dependent
strain amplitudes of quasimonochromatic gravitational waves coming from three
interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best
upper limits range from a factor of
improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure
Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data
We present a directed search for continuous gravitational wave (CW) signals
emitted by spinning neutron stars located in the inner parsecs of the Galactic
Center (GC). Compelling evidence for the presence of a numerous population of
neutron stars has been reported in the literature, turning this region into a
very interesting place to look for CWs. In this search, data from the full O3
LIGO--Virgo run in the detector frequency band have been
used. No significant detection was found and 95 confidence level upper
limits on the signal strain amplitude were computed, over the full search band,
with the deepest limit of about at .
These results are significantly more constraining than those reported in
previous searches. We use these limits to put constraints on the fiducial
neutron star ellipticity and r-mode amplitude. These limits can be also
translated into constraints in the black hole mass -- boson mass plane for a
hypothetical population of boson clouds around spinning black holes located in
the GC.Comment: 25 pages, 5 figure
- …