107 research outputs found

    Phase Stability, Chemical Bonds, And Gap Bowing Of Inx Ga1-x N Alloys: Comparison Between Cubic And Wurtzite Structures

    Get PDF
    Thermodynamic, structural, and electronic properties of wurtzite Inx Ga1-x N alloys are studied by combining first-principles total energy calculations with the generalized quasichemical approach, and compared to previous results for the zinc-blende structure. Results for bond-lengths, second-nearest- neighbors distances, and bowing parameter are presented. We observed that the wurtzite results are not significantly different from the ones obtained previously for the zinc-blende structure. The calculated phase diagram of the alloy shows a broad and asymmetric miscibility gap as in the zinc-blende case, with a similar range for the growth temperatures, although with a higher critical temperature. We found a value of 1.44 eV for the gap bowing parameter giving support to the recent smaller band gap bowing findings. We emphasize that other theoretical results may suffer from incomplete sets of atomic configurations to properly describe the alloy properties, and experimental findings. Moreover one must take into account a broad composition range in order to obtain reliable results. © 2006 The American Physical Society.744Nakamura, S., Fasol, G., (1997) The Blue Laser Diode-GaN Based Light Emitters and Lasers, , Springer, BerlinAmbacher, O., (1998) J. Phys. D, 31, p. 2653. , JPAPBE 0022-3727 10.1088/0022-3727/31/20/001Pearton, S.J., Zolper, J.C., Shul, R.J., Ren, F., (1999) J. Appl. Phys., 86, p. 1. , JAPIAU 0021-8979 10.1063/1.371145Kung, P., Razeghi, M., (2000) Opto-Electron. Rev., 8, p. 201. , OELREM 1230-3402Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R., (2001) J. Appl. Phys., 89, p. 5815. , JAPIAU 0021-8979 10.1063/1.1368156Vurgaftman, I., Meyer, J.R., (2003) J. Appl. Phys., 94, p. 3675. , JAPIAU 0021-8979 10.1063/1.1600519(2004) Optoelectronic Devices: III-Nitrides, , edited by M. Razeghi and M. Henini (Elsevier, Oxford(1991) Data in Science and Technology: Semiconductors, , edited by O. Madelung (Springer-Verlag, BerlinWu, J., Walukiewicz, W., Yu, K.M., Ager III, J.W., Haller, E.E., Lu, H., Schaff, W.J., Nanishi, Y., (2002) Appl. Phys. Lett., 80, p. 3967. , APPLAB 0003-6951 10.1063/1.1482786Davydov, V.Y., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmüller, J., Graul, J., (2002) Phys. Status Solidi B, 229, p. 1. , PSSBBD. 0370-1972. 10.1002/1521-3951(200202)229:33.0.CO;2-OO'Donnell, K.P., Fernandez-Torrente, I., Edwards, P.R., Martin, R.W., (2004) J. Cryst. Growth, 269, p. 100. , JCRGAE 0022-0248 10.1016/j.jcrysgro.2004.05.040Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E., (2002) Appl. Phys. Lett., 81, p. 1246. , APPLAB 0003-6951 10.1063/1.1499753Inushima, T., Mamutin, V.V., Vekshin, V.A., Ivanov, S.V., Sakon, T., Motokawa, M., Ohoya, S., (2001) J. Cryst. Growth, 227, p. 481. , JCRGAE 0022-0248 10.1016/S0022-0248(01)00747-3Bechstedt, F., Furthmüller, J., Ferhat, M., Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Davydov, V.Y., Goldhahn, R., (2003) Phys. Status Solidi a, 195, p. 628. , PSSABA. 0031-8965. 10.1002/pssa.200306164Walukiewicz, W., Li, S.X., Wu, J., Yu, K.M., Ager III, J.W., Haller, E.E., Lu, H., Schaff, W.J., (2004) J. Cryst. Growth, 269, p. 119. , JCRGAE 0022-0248 10.1016/j.jcrysgro.2004.05.041Wu, J., Walukiewicz, W., Yu, K.M., Shan, W., Ager III, J.W., Haller, E.E., Lu, H., Kurtz, S., (2003) J. Appl. Phys., 94, p. 6477. , JAPIAU 0021-8979 10.1063/1.1618353McCluskey, M.D., De Walle, C.G.V., Romano, L.T., Krusor, B.S., Johnson, N.M., (2003) J. Appl. Phys., 93, p. 4340. , JAPIAU 0021-8979 10.1063/1.1560563Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T., Henneberger, F., (1996) Phys. Rev. B, 54, p. 8381. , PRBMDO 0163-1829 10.1103/PhysRevB.54.R8381Okumura, H., Hamaguchi, H., Koizumi, T., Balakrishnan, K., Ishida, Y., Arita, M., Chichibu, S., Yoshida, S., (1998) J. Cryst. Growth, 189-190, p. 390. , JCRGAE 0022-0248Tabata, A., Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Kharchenko, A., Frey, T., As, D.J., Bechstedt, F., (2002) Appl. Phys. Lett., 80, p. 769. , APPLAB. 0003-6951. 10.1063/1.1436270Van Schilfgaarde, M., Sher, A., Chen, A.-B., (1997) J. Cryst. Growth, 178, p. 8. , JCRGAE 0022-0248 10.1016/S0022-0248(97)00073-0Yeh, C.Y., Lu, Z.W., Froyen, S., Zunger, A., (1992) Phys. Rev. B, 46, p. 10086. , PRBMDO 0163-1829 10.1103/PhysRevB.46.10086Yeh, C.Y., Wei, S.H., Zunger, A., (1994) Phys. Rev. B, 50, p. 2715. , PRBMDO 0163-1829 10.1103/PhysRevB.50.2715Wang, S.Q., Ye, H.Q., (2002) J. Phys.: Condens. Matter, 14, p. 9579. , JCOMEL 0953-8984 10.1088/0953-8984/14/41/313Ito, T., Kangawa, Y., (2002) J. Cryst. Growth, 235, p. 149. , JCRGAE 0022-0248 10.1016/S0022-0248(01)01902-9McMahon, M.I., Nelmes, R.J., (2005) Phys. Rev. Lett., 95, p. 215505. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.215505McCluskey, M.D., De Walle, C.G.V., Master, C.P., Romano, L.T., Johnson, N.M., (1998) Appl. Phys. Lett., 72, p. 2725. , APPLAB 0003-6951 10.1063/1.121072Saito, T., Arakawa, Y., (1999) Phys. Rev. B, 60, p. 1701. , PRBMDO 0163-1829 10.1103/PhysRevB.60.1701Mattila, T., Zunger, A., (1999) J. Appl. Phys., 85, p. 160. , JAPIAU 0021-8979 10.1063/1.369463Goano, M., Bellotti, E., Ghillino, E., Garetto, C., Ghione, G., Brennan, K.F., (2000) J. Appl. Phys., 88, p. 6476. , JAPIAU 0021-8979 10.1063/1.1309047Bellaiche, L., Wei, S.-H., Zunger, A., (1997) Phys. Rev. B, 56, p. 13872. , PRBMDO 0163-1829 10.1103/PhysRevB.56.13872Bellaiche, L., Mattila, T., Wang, L.-W., Wei, S.-H., Zunger, A., (1999) Appl. Phys. Lett., 74, p. 1842. , APPLAB 0003-6951 10.1063/1.123687Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Leite, J.R., Bechstedt, F., (2000) Phys. Rev. B, 62, p. 2475. , PRBMDO. 0163-1829. 10.1103/PhysRevB.62.2475Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Leite, J.R., Bechstedt, F., (2001) Phys. Rev. B, 63, p. 085204. , PRBMDO. 0163-1829. 10.1103/PhysRevB.63.085204Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Furthmüller, J., Bechstedt, F., (2002) J. Appl. Phys., 92, p. 7109. , JAPIAU. 0021-8979. 10.1063/1.1518136Marques, M., Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Furthmüller, J., Bechstedt, F., (2003) Appl. Phys. Lett., 83, p. 890. , APPLAB. 0003-6951. 10.1063/1.1597986Teles, L.K., Ferreira, L.G., Scolfaro, L.M.R., Leite, J.R., (2004) Phys. Rev. B, 69, p. 245317. , PRBMDO 0163-1829 10.1103/PhysRevB.69.245317Teles, L.K., Ferreira, L.G., Leite, J.R., Scolfaro, L.M.R., Kharchenko, A., Husberg, O., As, D.J., Lischka, K., (2003) Appl. Phys. Lett., 82, p. 4274. , APPLAB 0003-6951 10.1063/1.1583854Ho, I., Stringfellow, G.B., (1996) Appl. Phys. Lett., 69, p. 2701. , APPLAB 0003-6951 10.1063/1.117683Chen, A.B., Sher, A., (1995) Semiconductor Alloys, , Plenum, New YorkSher, A., Van Schilfgaarde, M., Chen, A.-B., Chen, W., (1987) Phys. Rev. B, 36, p. 4279. , PRBMDO 0163-1829 10.1103/PhysRevB.36.4279Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. 864. , PRVBAK 0096-8269 10.1103/PhysRev.136.B864Kohn, W., Sham, L.J., (1965) Phys. Rev., 140, p. 1133. , PRVAAH 0096-8250 10.1103/PhysRev.140.A1133Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558. , PRBMDO 0163-1829 10.1103/PhysRevB.47.558Kresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, p. 15. , CMMSEM. 0927-0256. 10.1016/0927-0256(96)00008-0Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892. , PRBMDO 0163-1829 10.1103/PhysRevB.41.7892Stepanov, S., Wang, W.N., Yavich, B.S., Bougrov, V., Rebane, Y.T., Shreter, Y.G., (2001) MRS Internet J. Nitride Semicond. Res., 6, p. 6. , MIJNF7 1092-5783Nakamura, S., (1997) Solid State Commun., 102, p. 237. , SSCOA4 0038-1098 10.1016/S0038-1098(96)00722-3Vegard, L., (1921) Z. Phys., 5, p. 17. , ZEPYAA 0044-3328 10.1007/BF01349680Ferhat, M., Bechstedt, F., (2002) Phys. Rev. B, 65, p. 075213. , PRBMDO 0163-1829 10.1103/PhysRevB.65.075213Liou, B.-T., Lin, C.-Y., Yen, S.-H., Kuo, Y.-K., (2005) Opt. Commun., 249, p. 217. , OPCOB8 0030-4018Jeffs, N.J., Blant, A.V., Cheng, T.S., Foxon, C.T., Bailey, C., Harrison, P.G., Mosselmans, J.F.W., Dent, A.J., (1998) Wide-Bandgap Semiconductors for High Power, High Frequency and High Temperature, 512, p. 519. , edited by S. Den Baars, M. S. Shur, J. Palmour, and M. Spencer, MRS Symposia Proceedings Vol. Materials Research Society, PittsburghDoppalapudi, D., Basu, S.N., Ludwig Jr., K.F., Moustakas, T.D., (1998) J. Appl. Phys., 84, p. 1389. , JAPIAU 0021-8979 10.1063/1.368251O'Donnell, K.P., Martin, R.W., Middleton, P.G., (1999) Phys. Rev. Lett., 82, p. 237. , PRLTAO 0031-9007 10.1103/PhysRevLett.82.237Westmeyer, A., Mahajan, S., (2001) Phys. Status Solidi B, 228, p. 161. , PSSBBD 0370-1972 10.1002/1521-3951(200111)228:13. 0.CO;2-2Ponce, F.A., Srinivasan, S., Bell, A., Geng, L., Liu, R., Cai, M.S.J., Omiya, H., Tanaka, S., (2003) Phys. Status Solidi B, 240, p. 273. , PSSBBD 0370-1972 10.1002/pssb.200303527Singh, R., Doppalapudi, D., Moustakas, T.D., Romano, L.T., (1997) Appl. Phys. Lett., 70, p. 1089. , APPLAB 0003-6951 10.1063/1.118493Takayama, T., Yuri, M., Itoh, K., Baba, T., Harris Jr., J.S., (2000) J. Appl. Phys., 88, p. 1104. , JAPIAU 0021-8979 10.1063/1.373783Sökeland, F., Rohlfing, M., Krüger, P., Pollmann, J., (2003) Phys. Rev. B, 68, p. 075203. , PRBMDO. 0163-1829. 10.1103/PhysRevB.68.075203Wu, J., Walukiewicz, W., Yu, K.M., Ager III, J.W., Haller, E.E., Lu, H., Schaff, W.J., (2002) Appl. Phys. Lett., 80, p. 4741. , APPLAB 0003-6951 10.1063/1.1489481Pereira, S., Correia, M.R., Monteiro, T., Pereira, E., Alves, E., Sequeira, A.D., Franco, N., (2001) Appl. Phys. Lett., 78, p. 2137. , APPLAB 0003-6951 10.1063/1.1358368Shan, W., Walukiewicz, W., Haller, E.E., Little, B.D., Song, J.J., McCluskey, M.D., Johnson, N.M., Stall, R.A., (1998) J. Appl. Phys., 84, p. 4452. , JAPIAU 0021-8979 10.1063/1.368669Davydov, V.Y., Klochikhin, A.A., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmüller, J., Harima, H., Graul, J., (2002) Phys. Status Solidi B, 230, p. 4. , PSSBBD. 0370-1972. 10.1002/1521-3951(200204)230:23.0.CO;2-ZTakeuchi, T., Takeuchi, H., Sota, S., Sokai, H., Amano, H., Akasaki, I., (1997) Jpn. J. Appl. Phys., Part 2, 36, p. 177. , JAPLD8 0021-4922 10.1143/JJAP.36.L177Scholz, F., Off, J., Sohmer, A., Syganow, V., Dornen, A., Ambacher, O., (1998) J. Cryst. Growth, 189, p. 8. , JCRGAE 0022-0248 10.1016/S0022-0248(98)00146-8Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., Akasaki, I., (1998) Appl. Phys. Lett., 73, p. 1994. , APPLAB 0003-6951 10.1063/1.122346Klochikhin, A., Reznitsky, A., Tenishev, L., Permogorov, S., Lundin, W., Usikov, A., Sorokin, S., Klingshirn, C., (2001) Exciton Localization by Clusters in Diluted Bulk InGaN and Two-Dimensional ZnCdSe Solid Solutions, p. 554. , Nanostructures: Physics and Technology (Ioffe Institute, St. PetersburgKim, M., Cho, J., Lee, I., Park, S., (1999) Phys. Status Solidi a, 176, p. 269. , PSSABA 0031-8965 10.1002/(SICI)1521-396X(199911)176:13.0.CO;2-2O'Donnell, K.P., Mosselmans, J.F.W., Martins, R.W., Pereira, S., White, M.E., (2001) J. Phys.: Condens. Matter, 13, p. 6977. , JCOMEL 0953-8984 10.1088/0953-8984/13/32/30

    Local Isoelectronic Reactivity of Solid Surfaces

    Full text link
    The quantity w^N(r) = ( 1/ k^2 T_el)[partial n(r, T_el) / partial T_el]_(v(r),N) is introduced as a convenient measure of the local isoelectronic reactivity of surfaces. It characterizes the local polarizability of the surface and it can be calculated easily. The quantity w^N(r) supplements the charge transfer reactivity measured e.g. by the local softness to which it is closely related. We demonstrate the applicability and virtues of the function w^N(r) for the example of hydrogen dissociation and adsorption on Pd(100).Comment: RevTeX, 13 pages, 3 figures, to appear in Phys. Rev. Let

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Combined measurement of the Higgs boson mass from the H → γγ and H → ZZ∗ → 4ℓ decay channels with the ATLAS detector using √s = 7, 8, and 13 TeV pp collision data

    Get PDF
    A measurement of the mass of the Higgs boson combining the H → Z Z ∗ → 4 ℓ and H → γ γ decay channels is presented. The result is based on 140     fb − 1 of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11 ± 0.09 ( stat ) ± 0.06 ( syst ) = 125.11 ± 0.11     GeV . This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Performance and calibration of quark/gluon-jet taggers using 140 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s = 13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points
    corecore