816 research outputs found

    Determination of the light exposure on the photodiodes of a new instrumented baffle for the Virgo input mode cleaner end-mirror

    Get PDF
    As part of the upgrade program of the Advanced Virgo interferometer, the installation of new instrumented baffles surrounding the main test masses is foreseen. As a demonstrator, and to validate the technology, the existing baffle in the area of the input mode cleaner end-mirror will be first replaced by a baffle equipped with photodiodes. This paper presents detailed simulations of the light distribution on the input mode cleaner baffle, with the aim to determine the light exposure of the photodiodes under different scenarios of the interferometer operation.Comment: 9 pages and 8 figure

    Determination of the light exposure on the photodiodes of a new instrumented baffle for the Virgo input mode cleaner end-mirror

    Get PDF
    As part of the upgrade program of the advanced Virgo interferometer, the installation of new instrumented baffles surrounding the main test masses is foreseen. As a demonstrator, and to validate the technology, the existing baffle in the area of the input mode cleaner end-mirror will be first replaced by a baffle equipped with photodiodes. This paper presents detailed simulations of the light distribution on the input mode cleaner baffle. They served to validate the proposed layout of the sensors in the baffle, and determine the light exposure of the photodiodes under different scenarios of the interferometer operations, in order to define mitigation strategies for preserving the detector integrity

    Measurement of the Stray Light in the Advanced Virgo Input Mode Cleaner Cavity using an instrumented baffle

    Full text link
    A new instrumented baffle was installed in Spring 2021 at Virgo surrounding the suspended mirror in the input mode cleaner triangular cavity. It serves as a demonstrator of the technology designed to instrument the baffles in the main arms in the near future. We present, for the first time, results on the measured scattered light distribution inside the cavity as determined by the new device using data collected between May and July 2021, with Virgo in commissioning phase and operating with an input laser power in the cavity of 28.5~W. The sensitivity of the baffle is discussed and the data is compared to scattered light simulations.Comment: 4 pages, 5 figures, 1 tabl

    An instrumented baffle for the Advanced Virgo Input Mode Cleaner End Mirror

    Get PDF
    A novel instrumented baffle surrounding the suspended end mirror in the input mode cleaner cavity of the Virgo interferometer was installed in spring 2021. Since then, the device has been regularly operated in the experiment and the obtained results indicate a good agreement with simulations of the stray light inside the optical cavity. The baffle will operate in the upcoming O4 observation run, serving as a demonstrator of the technology designed to instrument the baffles in front of the main mirrors in time for O5. In this paper we present a detailed description of the baffle design, including mechanics, front-end electronics, data acquisition, as well as optical and vacuum tests, calibration and installation procedures, and performance results.Comment: 12 pages, 21 figures, 3 tables, to be submitted to PR

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    Get PDF
    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009 and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25 solar masses; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90%-confidence rate upper limits of the binary coalescence of binary neutron star, neutron star- black hole and binary black hole systems are 1.3 x 10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the publication, go to: . Also see the announcement for this paper on ligo.org at: <http://www.ligo.org/science/Publication-S6CBCLowMass/index.php

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U
    corecore