2,492 research outputs found

    Experimental study of a liquid Xenon PET prototype module

    Get PDF
    A detector using liquid Xenon in the scintillation mode is studied for Positron Emission Tomography (PET). The specific design aims at taking full advantage of the liquid Xenon properties. It does feature a promising insensitive to any parallax effect. This work reports on the performances of the first LXe prototype module, equipped with a position sensitive PMT operating in the VUV range (178 nm).Comment: Proc. of the 7th International Workshops on Radiation Imaging Detectors (IWORID-7), Grenoble, France 4-7 July 200

    Bounds on the Higgs-Boson Mass in the Presence of Non-Standard Interactions

    Get PDF
    The triviality and vacuum stability bounds on the Higgs-boson mass are revisited in the presence of new interactions parameterized in a model-independent way by an effective lagrangian. When the scale of new physics is below 50 TeV the triviality bound is unchanged but the stability lower bound is increased by 40-60 GeV. Should the Higgs-boson mass be close to its current lower experimental limit, this leads to the possibility of new physics at the scale of a few TeV, even for modest values of the effective lagrangian parameters.Comment: 5 pages, 2 figures, RevTex, submitted to PR

    Two-Loop Results for M_W in the Standard Model and the MSSM

    Get PDF
    Recent higher-order results for the prediction of the W-boson mass, M_W, within the Standard Model are reviewed and an estimate of the remaining theoretical uncertainties of the electroweak precision observables is given. An updated version of a simple numerical parameterisation of the result for M_W is presented. Furthermore, leading electroweak two-loop contributions to the precision observables within the MSSM are discussed.Comment: 6 pages, Proceedings contribution to RADCOR 2002 - Loops & Legs 2002, Kloster Banz, Germany, Sept. 200

    The QCD/SM Working Group: Summary Report

    Full text link
    This Report documents the results obtained by the Working Group on Quantum ChromoDynamics and the Standard Model for the Workshop ``Physics at TeV Colliders'', Les Houches, France, 21 May - 1 June 2001. The account of uncertainties in Parton Distribution Functions is reviewed. Progresses in the description of multiparton final states at Next-to-Leading Order and the extension of calculations for precision QCD observables beyond this order are summarized. Various issues concerning the relevance of resummation for observables at TeV colliders is examined. Improvements to algorithms of jet reconstruction are discussed and predictions for diphoton and photon pi-zero production at the LHC are made for kinematic variables of interest regarding searches for a Higgs boson decaying into two photons. Finally, several improvements implemented in Monte-Carlo event generators are documented

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Measurement of the relative rate of prompt χc0, χc1 and χc2 production at √s=7TeV

    Get PDF
    Prompt production of charmonium χc0, χc1 and χc2 mesons is studied using proton-proton collisions at the LHC at a centre-of-mass energy of √s=7TeV. The χc mesons are identified through their decay to J/ψγ, with J/ψ→μ+mu− using photons that converted in the detector. A data sample, corresponding to an integrated luminosity of 1.0fb−1 collected by the LHCb detector, is used to measure the relative prompt production rate of χc1 and χc2 in the rapidity range 2.0<y<4.5 as a function of the J/ψ transverse momentum from 3 to 20 GeV/c. First evidence for χc0 meson production at a hadron collider is also presented
    • …
    corecore