443 research outputs found

    Comparison of the internalization efficiency of LDL and transferrin receptors on L2C guinea pig lymphocytes

    Get PDF
    AbstractWe demonstrate that L2C lymphocytes have about 10-times more receptors for transferrin (TO than healthy lymphocytes, as has been shown in the case of LDL receptors. The dissociation constant is the same in the two cell types (about 4 × 10−7 M). In contrast to LDL, Tf enters L2C lymphocytes with very rapid kinetics. It is shown by cross-reaction that each receptor is internalized independently of the other

    Modeling ultra-high frequency radiation emission in PIC codes

    Get PDF
    From the mysterious?ray bursts, which can be studied through the spatiotemporal structure of the radiation we receive, to the creation of sources of x-rays capable of probing nanoscale structures, radiation emission by relativistic charges is a key research field in plasma physics.The processes behind radiation emission in plasmas result from strongly non-linear many body interactions which involve relativistic effects, so they are best modeled through Particle-In-Cell (PIC) simulations. However, capturing this radiation directly in PIC simulations is very challenging due to the large disparity between the temporal and spatial scales associated with such phenomena. Current algorithms only describe radiation processes in the Fourier space (e.g.JRAD [1]), missing the spatiotemporal features of the emitted radiation, which is crucial to many fields, such as super-resolution microscopy [2] and astrophysics [3].info:eu-repo/semantics/publishedVersio

    RaDiO: An efficient spatiotemporal radiation diagnostic for particle-in-cell codes

    Get PDF
    This work describes a novel radiation algorithm designed to capture the three-dimensional, space-time resolved electromagnetic field structure emitted by large ensembles of charged particles. The algorithm retains the full set of degrees of freedom that characterize electromagnetic waves by employing the Liénard-Wiechert fields to retrieve radiation emission. Emitted electric and magnetic fields are deposited in a virtual detector using a temporal interpolation scheme. This feature is essential to accurately predict field amplitudes and preserve the continuous character of radiation emission, even though particle dynamics is known only in a discrete set of temporal steps. Our algorithm retains and accurately captures, by design, full spatial and temporal coherence effects. We demonstrate that our numerical approach recovers well known theoretical radiated spectra in standard scenarios of radiation emission. We show that the algorithm is computationally efficient by computing the full spatiotemporal radiation features of High Harmonic Generation through a plasma mirror in a Particle-In-Cell (PIC) simulation.info:eu-repo/semantics/publishedVersio

    Antipersistent binary time series

    Full text link
    Completely antipersistent binary time series are sequences in which every time that an NN-bit string μ\mu appears, the sequence is continued with a different bit than at the last occurrence of μ\mu. This dynamics is phrased in terms of a walk on a DeBruijn graph, and properties of transients and cycles are studied. The predictability of the generated time series for an observer who sees a longer or shorter time window is investigated also for sequences that are not completely antipersistent.Comment: 6 pages, 6 figure

    Cardiac-Specific Expression of the Tetracycline Transactivator Confers Increased Heart Function and Survival Following Ischemia Reperfusion Injury

    Get PDF
    Mice expressing the tetracycline transactivator (tTA) transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA) are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury

    Artificial Intelligence, Machine Learning and Modeling for Understanding the Oceans and Climate Change

    Get PDF
    International audienceThe ongoing transformation of climate and biodiversity will have a drastic impact on almost all forms of life in the ocean with further consequences on food security, ecosystem services in coastal and inland communities. Despite these impacts, scientific data and infrastructures are still lacking to understand and quantify the consequences of these perturbations on the marine ecosystem. Understanding this phenomenon is not only an urgent but also a scientifically demanding task. Consequently, it is a problem that must be addressed with a tific cohort approach, where multi-disciplinary teams collaborate to bring the best of different scientific areas. In this proposal paper, we describe our newly launched four-years project focusedon developing new artificial intelligence, machine learning, and mathematical modeling tools to contribute to the understanding of the structure, functioning, and underlying mechanisms and dynamics of the global ocean symbiome and its relation with climate change. These actions should enable the understanding of our oceans and predict and mitigate the consequences of climate and biodiversity changes

    Involvement of regional lymph nodes after penetration of Schistosoma mansoni cercariae in naive and infected mice

    Full text link
    The parotid lymph nodes of naive and previously infected Balb/c mice were studied after, respectively, infection and re-infection with cercariae of Schistosoma mansoni via the ears. Schistosomula were able to pass through the lymph node by following the lymph flow or by penetrating the veins of the medullary cords. The number of nodal mast cells was higher from day 2 to 6 of primary infection; and from day 5 to 11 of re-infection. The amount of degranulating mast cells was significantly higher at day 4 of infection and at day 1 of re-infection. Eosinophils characterized the nodal inflammatory processes observed after day 5 in both primarily-infected and re-infected mice. However, only in the latter the eosinophils were able to adhere to the larval surface. In primarily-infected mice, no intranodal larva presented signs of degeneration. In contrast, in re-infected animals, some degenerating larvae were found inside eosinophilic infiltrates. The eosinophils reached the nodal tissue by migrating through the high endothelial venules and their collecting veins

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Staphylococcal Panton-Valentine Leucocidin as a Major Virulence Factor Associated to Furuncles

    Get PDF
    Panton-Valentine Leucocidin (PVL), one of the β-barrel pore-forming staphylococcal leucotoxins, is known to be associated to furuncles and some severe community pneumonia. However, it is still uncertain how many other virulence factors are also associated to furuncles and what the risk factors of furuncles are in immuno-compromised status of patients, especially the HIV (+) patients. In this paper, we use antigen immunoprecipitation and multiplex PCR approach to determine the presence of 19 toxins, 8 adhesion factors and the PFGE profiles associated to furuncles in three independent patient study groups of S. aureus (SA) isolates collected from the Cayenne General Hospital (French Guiana). The patient groups were made of: 16 isolates from HIV (−) patients, 9 from HIV (+) patients suffering from furuncles, and 30 control isolates from patients with diverse secondary infected dermatitis. Our data reveals that the majority (96%) of SA strains isolated from HIV patient-derived furuncles significantly produced PVL (p<10−7), whereas only 10% of SA strains produced this toxin in secondary infected dermatosis. A high prevalence of LukE-LukD-producing isolates (56 to 78%) was recorded in patient groups. Genes encoding clumping factor B, collagen- and laminin-binding proteins (clfB, cna, lbp, respectively) were markedly frequent (30 to 55%), without being associated to a specific group. Pulse field gel electrophoresis evidenced 24 overall pulsotypes, whereas the 25 PVL-producing isolates were distributed into 15 non clonal fingerprints. These pulsotypes were not specific PVL-producing isolates. PVL appears to be the major virulence factor associated to furuncles in Europe and in South America regardless of the immune status of the HIV patients

    Cardiomyopathy and Response to Enzyme Replacement Therapy in a Male Mouse Model for Fabry Disease

    Get PDF
    Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3–4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose
    corecore