49 research outputs found

    Downregulation of GRK5 hampers the migration of breast cancer cells

    Get PDF
    Sunitinib is a multispecific kinase inhibitor and one of its targets is the kinase GRK5, which is regulating a multitude of G protein-coupled receptors (GPCRs). In this study we demonstrate that a decreased GRK5 expression induced by knock-down experiments or sunitinib treatment hampers the migration of cancer cell lines. A proteomic analysis revealed many pathways related to cell migration which were down regulated upon the GRK5 knock-down. Furthermore, we found in MDA-MB-231 breast cancer cells that the inhibition of migration is mediated by the GPCR gastrin releasing peptide receptor (GRPR) leading to a reduced expression of migration regulating downstream targets like CDC42 and ROCK1. An in silico Kaplan Meier analysis revealed that GRK5 and GRPR overexpression reduces the distant metastasis free survival in triple-negative breast cancer (TNBC) patients. Thus, we suggest a novel anti-migratory effect of impaired GRK5 expression which induces a negative feedback loop on GRPR signalling

    Inducible microRNA-200c decreases motility of breast cancer cells and reduces filamin A

    Get PDF
    Cancer progression and metastases are frequently related to changes of cell motility. Amongst others, the microRNA-200c (miR-200c) was shown to maintain the epithelial state of cells and to hamper migration. Here, we describe two miR-200c inducible breast cancer cell lines, derived from miR-200c knock-out MCF7 cells as well as from the miR-200c-negative MDA-MB-231 cells and report on the emerging phenotypic effects after miR-200s induction. The induction of miR-200c expression seems to effect a rapid reduction of cell motility, as determined by 1D microlane migration assays. Sustained expression of miR200c leads to a changed morphology and reveals a novel mechanism by which miR- 200c interferes with cytoskeletal components. We find that filamin A expression is attenuated by miRNA-200c induced downregulation of the transcription factors c-Jun and MRTF/SRF. This potentially novel pathway that is independent of the prominent ZEB axis could lead to a broader understanding of the role that miR200c plays in cancer metastasis

    The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling

    Get PDF
    NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling.These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone

    Fundamentals of FGF19 & FGF21 Action In Vitro and In Vivo

    Get PDF
    Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of βKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance

    Targeting FGFR4 Inhibits Hepatocellular Carcinoma in Preclinical Mouse Models

    Get PDF
    The fibroblast growth factor (FGF)-FGF receptor (FGFR) signaling system plays critical roles in a variety of normal developmental and physiological processes. It is also well documented that dysregulation of FGF-FGFR signaling may have important roles in tumor development and progression. The FGFR4–FGF19 signaling axis has been implicated in the development of hepatocellular carcinomas (HCCs) in mice, and potentially in humans. In this study, we demonstrate that FGFR4 is required for hepatocarcinogenesis; the progeny of FGF19 transgenic mice, which have previously been shown to develop HCCs, bred with FGFR4 knockout mice fail to develop liver tumors. To further test the importance of FGFR4 in HCC, we developed a blocking anti-FGFR4 monoclonal antibody (LD1). LD1 inhibited: 1) FGF1 and FGF19 binding to FGFR4, 2) FGFR4–mediated signaling, colony formation, and proliferation in vitro, and 3) tumor growth in a preclinical model of liver cancer in vivo. Finally, we show that FGFR4 expression is elevated in several types of cancer, including liver cancer, as compared to normal tissues. These findings suggest a modulatory role for FGFR4 in the development and progression of hepatocellular carcinoma and that FGFR4 may be an important and novel therapeutic target in treating this disease

    Machine learning and data mining frameworks for predicting drug response in cancer:An overview and a novel <i>in silico</i> screening process based on association rule mining

    Get PDF

    "Functional Genomics": Analyse antiapoptotischer Signalwege in Krebszellen

    No full text
    corecore