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ABSTRACT 

 

A major challenge in cancer treatment is predicting the clinical response to anti-cancer drugs on 

a personalized basis. The success of such a task largely depends on the ability to develop 

computational resources that integrate big “omic” data into effective drug-response models. 

Machine learning is both an expanding and an evolving computational field that holds promise to 

cover such needs. Here we provide a focused overview of: 1) the various supervised and 

unsupervised algorithms used specifically in drug response prediction applications, 2) the 

strategies employed to develop these algorithms into applicable models, 3) data resources that 

are fed into these frameworks and 4) pitfalls and challenges to maximize model performance. In 

this context we also describe a novel in silico screening process, based on Association Rule 

Mining, for identifying genes as candidate drivers of drug response and compare it with relevant 

data mining frameworks, for which we generated a web application freely available at: 

https://compbio.nyumc.org/drugs/. This pipeline explores with high efficiency large sample-

spaces, while is able to detect low frequency events and evaluate statistical significance even in 

the multidimensional space, presenting the results in the form of easily interpretable rules. We 

conclude with future prospects and challenges of applying machine learning based drug response 

prediction in precision medicine. 
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Abbreviations list 

Molecular terms 

ARHGDIB: Rho GDP dissociation inhibitor beta 

BCL2: BCL2 Apoptosis Regulator 

BRCA1: Breast cancer type 1 Susceptibility Protein 

BRAF: B-Raf proto-oncogene, Serine/Threonine Kinase 

CCND3: Cyclin D3 

CD151: Tetraspanin-24 

CDC6: Cell cycle division 6 

CDKN2A: Cyclin dependent kinase inhibitor 2A 

CTCF: 11-zinc finger protein or CCCTC-binding factor 

DDR: DNA damage response 

EGFR: Epidermal growth factor receptor 

EMT: Epithelial to mesenchymal transition 

ERK: Extracellular regulated kinase 

FLT3: Fms related tyrosine kinase 3 

GHRH: Growth hormone-releasing hormone 

GMIP: GEM interacting protein 

ID1: Inhibitor of DNA binding 1 
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KRAS: Kirsten rat sarcoma proto-oncogene 

LYL1: Lymphoblastic leukemia associated hematopoiesis regulator 1 

MAGI3: Membrane-Associated Guanylate Kinase 3 

MAPK: Mitogen-activated protein kinase 

MAP2K3: Mitogen-activated protein kinase kinase 3 

MDM2: Mouse double minute 2 

MDR1: Multidrug resistance 1 

MEK: Mitogen-activated protein kinase kinase 

MLL2: KMT2D - Histone-Lysine N-Methyltransferase MLL2 

mTOR: mechanistic target of rapamycin kinase 

MYC: MYC Proto-Oncogene, BHLH Transcription Factor 

NPTN: Neuroplastin 

NQO1: NAD(P)H dehydrogenase 1 

NSCLC: Non-small cell lung cancer 

PARP: Poly(ADP-ribose) polymerase 

PDIA3: ERp57/PDIA3: Protein disulfide isomerase family 

PI3K: Phosphoinositide 3-kinase 

PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase 

POF1B: Premature Ovarian Failure Protein 1B 

PTEN: Phosphatase and tensin homolog 
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REV7: MAD2L2 - Mitotic Arrest Deficient 2 Like 2 

SAMSN1: SAM domain, SH3 domain and nuclear localization signals 1 

SCLC: Small cell lung cancer 

SHLD1-3: Shieldin complex subunit 1-3 

SMAD3: Mothers Against Decapentaplegic Homolog 3 

TKI: Tyrosine Kinase Inhibitor 

TP53: Tumor Protein p53 

ZCCHC7: Zinc finger CCHC-type containing 7 

ZNF22: Zinc finger protein 22 

Statistical, machine learning and cell lines databases terms 

ACC: Accuracy 

ANOVA: Analysis of variance 

ARM: Association Rule Mining 

AUC: Area under the ROC curve 

BATTLE: Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination 

BEMKL: Bayesian efficient multiple kernel learning 

CCLE: Cancer Cell Line Encyclopedia 

CCLP: Cosmic Cell Line Project 

CNV: Copy Number Variations 

CTRP: Cancer Therapeutic Response Portal 
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cwKBMF: component-wise Kernelized Bayesian matrix factorization 

DLNN: Deep Learning Neural Networks 

DREAM: Dialogue on Reverse Engineering Assessment and Methods 

FDR: False Discovery Rate 

FN: False Negative 

FNR: False Negative Rate 

FOR: False Omission Rate 

FP: False Positive 

FPR: False positive rate 

GBMS: Gradient Boosting machines 

GDSC: Genomics of Drug Sensitivity in Cancer 

KF-CV: k-fold cross-validations 

KNN: K-nearest neighbors 

LOBICO: Logic Optimization for Binary Input to Continuous Output 

MCDA: Multi-criteria decision analysis 

MKL: Multiple Kernel Learning 

Mut: Mutations 

NCI-60: National Cancer Institute drug screening panel 

NPV: Negative Predictive Value 

PCA: Principal Component Analysis 
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PPV: Positive Predictive Value 

SNE: Stochastic Neighbor Embeding 

RMSE: Root Mean Square Error 

STREAM: Scalable-Time Ridge Estimator by Averaging of Models 

SVM: Support Vector Machines 

TCGA: The Cancer Genome Atlas 

TCPA: The Cancer Proteome Atlas 

TN: True Negative 

TP: True Positive 

TNR: True Negative Rate 

TPR: True Positive Rate 
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1. Introduction: Τhe urge for “big data” analyzers in precision medicine 

    Predicting the clinical response to therapeutic agents is a major challenge in cancer treatment. 

Traditional features such as, histopathological characteristics of tumors, although always useful, 

have reached their limit and are unable to solely guide “precise” therapeutic solutions.   

The advent of multiple high-throughput platforms producing “οmics” data has provided to the 

biomedical community, over the last decade, a huge molecular repository of data (big data) – for 

terms in bold see Table 1 for machine learning terminology that is continuously expanding and promises to pave 

the way to precision medicine approaches. Such information merged with detailed clinical 

records, including response to therapy, will enable scientists to dissect the molecular events that 

are known to drive carcinogenesis and alter major downstream processes, such as gene 

expression (Halazonetis et al., 2008; Negrini et al., 2010; Galanos et al., 2018; Alexandrov et 

al., 2013; Zhang et al., 2016). Ultimately, molecular disease signatures are anticipated to be 

delivered and matched with the most effective therapeutic interventions.  

     The only efficient means to exploit the multi-dimensionality of the generated large data sets 

and to achieve the goal of predicting drug responses are computational technologies (Figure 1). 

Presently, in silico tools have propelled a widespread effort to effectively translate the growing 

wealth of high-throughput profiling data into clinically meaningful, personalised treatment 

strategies required by precision medicine (van't Veer and Bernards, 2008; Ali and Aittokallio, 

2019; Azuaje F, 2017). However, the computational prediction of drug responses in cancer 

involves significant research challenges and questions including: i) which data set 

should be selected, ii) which computational setting is suitable for application, iii) are the 
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produced models valid to all types of cancer or a specific one, and iv) how is the 

efficacy of the models evaluated and validated. Herein, we address these critical 

questions by: i) presenting and discussing current trends in machine learning and data 

mining methodologies related to drug response (Table 1, Figures 1, 2) and ii) 

suggesting means to increase their competence. Finally, we present a novel in silico 

screening process that is based on an unsupervised data mining method called 

Association Rule Mining– for terms in bold and italics see Table 2 for description of computational algorithms 

(ARM)*-see Abbreviations table that is capable of generating simple rules linking a specific 

gene(s) status with drug response.   

 

2. The tools it takes to grasp valuable clinical information  

2a. The overall in silico strategy: The standard scheme to develop a computational model for 

predicting biological outcomes includes three key steps (Figures 1-3): i) opting the data set, ii) 

selecting the algorithm and training it to develop a prediction model, and iii) testing it in 

unseen data sets (Figure 3, and for terminology see Table 1). In the first step the desired data 

set(s) is selected and pre-processed. The latter includes feature selection, normalization, when 

more than one data set is combined, and filtering of noise or irrelevant information. Choosing 

the proper features is a pivotal stage for algorithms to be effective in classification, regression 

and pattern recognition (see paragraph 2b). The second step involves the training phase that 

aims in building the fittest model for drug response prediction. There is a wide range of 

computational approaches that are used to process the data sets (Figures 1, 2). A list and a brief 

description of the most commonly applied ones is presented in Table 2. Basically, they are 

divided into supervised and unsupervised learning techniques (Figure 1, Table 2). Although 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

the former methods are the most widely used, it is notable that the latter ones can provide the 

ground for generating prediction models, as they carry out fundamental tasks, such as 

clustering and sample stratification data, prior to the implementation of supervised learning 

(Zhao et al., 2014; Azuaje F, 2017; Byers et al., 2013; Moghaddas Gholami et al., 2013), as 

well as provide critical insights and knowledge extraction. Actually, unsupervised clustering 

represented the basis for traditional analytical strategies trying to identify efficient treatments in 

distinct patient sub-clusters (Hoadley et al., 2014, Campbell et al., 2017), or alternatively 

starting from treatment response clustering and then moving into the molecular context that 

could explain drug behaviour (Pemovska et al. 2013; Tyner et al. 2013; Frismantas et al. 

2017; Andersson et al. 2018). The third step, also termed independent evaluation, is the 

decisive one as it will test if the candidate model, after training, can accurately predict response 

on unseen settings either experimental ones such as, cell lines, xenografts or animal models, or 

preferably in clinical samples.  

      In the following subsections each step will be discussed in more detail, including 

comparison of methodologies, pointing out potential weak spots that need to be improved in the 

future to maximize the predictive power of these artificial intelligence-based frameworks 

(Figures 1, 2).  

2b. Data resources and categories of input data: A proficient prediction model largely depends 

on the “quantity and quality” of the input data. With the term “quality” we refer mainly to 

normalization and the source of the data. Normalization is an essential process when different 

data sets are merged ensuring that bias during the analysis is avoided, and includes operations 

such as, matching, batch effect removal and data imputation (when data are missing in one 

or more of the data sets) (Hastie et al., 2001). Ideally, to develop promising drug prediction 
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models the origin of the data should be clinical derived material and to a large extent success 

has been hindered by the lack of such reliable sources. Nevertheless, despite the fact that 

individual cancer cell lines do not reflect the complexity of clinical cancer tissues with fidelity 

(Weinstein, 2012), when compiled in large panels, it appears that they are able to recapitulate 

the genomic diversity of human cancers (Iorio et al., 2016). These panels can be readily utilised 

as platforms upon which expert systems for the prediction of pharmacological response may be 

developed. Currently the most significant resources of input data for drug response studies are 

publically available cell line repositories that include dose response data for a large number of 

compounds. Particularly, the Cancer Cell Line Encyclopedia (CCLE)*, the Genomics of Drug 

Sensitivity in Cancer (GDSC)* project and the National Cancer Institute drug screening panel 

(NCI-60)* are the most widely used panels as they offer: i) baseline data (i.e molecular features 

from untreated samples) containing mutation, gene copy number, gene expression, and in the 

case of NCI-60 protein data information, and ii) various measurements of drug sensitivity in a 

large number of compounds (Table 3). Notably, NCI-60 has information for more than 1500 

compounds, but in only 59 cell lines from 9 tissues, which makes CCLE and GDSC much more 

popular as they have data for more that 1000 cell lines derived from 15 and 36 cancer types, 

respectively (Table 3). Finally another unique resource that needs to be mentioned is the 

AstraZeneca-Sanger DREAM* challenge drug-synergy dataset that contains 910 pairwise 

combinations of 118 drugs tested on 85 cell lines whose ‘omic’ profiling is available through 

GDSC (Table 3).   

     Another important issue in developing an efficient prediction model is the type of data used 

(feature selection). In general, in most models the input information consists mainly of single-

nucleotide mutations, copy number variations, gene expression and of course the performance 
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to the therapeutic agent(s)/scheme (Jang et al., 2014; Costello et al., 2014; Daemen et al., 

2013; Geeleher et al., 2014). Comparative analyses until now have demonstrated that in most 

cases gene expression determines the most powerful predictive features. On the other hand, 

integrated approaches, combining various “omic” modalities only marginally affect drug 

response (Jang et al., 2014; Costello et al., 2014). However, there are exceptions in this 

general tendency suggesting that more studies are required including combination of genomic, 

transcriptomic, epigenomic and proteomic profiles as data types (Moghaddas Gholami et a., 

2013; Corte´s-Ciriano et al., 2016; Mendenet et al., 2013; Fey et al., 2015; Zhang et al., 

2015; Niepel et al., 2013). Recently, simulations of signalling pathway activity has become the 

focus of investigation in prognostic models providing promising results (Fey et al., 2015); thus 

exemplifying that apart from developing novel computational methodologies, blending of 

different data types could help overcome study constrains.  

2c. Computational techniques and selection of prediction models: The machine learning  

algorithms used to building drug response prediction models are mainly based on 

supervised learning techniques, although, as mentioned above, in many cases 

unsupervised methods provide the basis for the former (Moghaddas Gholami et a., 2013; 

Byers et al., 2013; Nicolau et al., 2011) (Table 2, Figures 1, 2).The methods 

presented in Table 2 can be broadly grouped in supervised and unsupervised learning 

methods. Linear, Ridge, Lasso and Elastic Net regression are examples of linear 

supervised learning, while kernel-based support vector machines, decision-

trees/random-forests and artificial neural networks (shallow and deep) are examples 

of non-linear supervised learning (Table 2). Principle Components Analysis (PCA)* 

and t-SNE* (Table 2) are characteristic examples of linear and non-linear 
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dimensionality reduction techniques, respectively, which fall under unsupervised 

learning, along with clustering methodologies such as k-means, hierarchical and k-

nearest-neighbor clustering (Table 2).  

    Although, all methods have pros and cons (Table 2) and no single approach can 

consistently surpass others on different settings, it appears that regression models tend 

to perform better when applied in diverse data sets (Stransky et al., 2015; Jang et al., 

2014). Nonetheless, the ascertainment that no “true winner” exists has led to the development 

of different model building strategies. Ensembling different techniques and learning 

frameworks have emerged as a promising approach (a process termed ensemble learning – see 

Table 2). A characteristic example is the DREAM7 Challenge setup which utilized the Bayesian 

efficient multiple kernel learning (BEMKL)* method that leveraged four machine-learning 

principles: i) kernelized regression, ii) multi-view learning, iii) multi-task learning, and iv) 

Bayesian inference (Costello et al., 2014). Particularly, Kernel regression gave mainly the 

advantage to capture non-linear relationships between the selected features and drug response, 

multivew learning integrated heterogeneous input data (views), even various representations of 

the same data set, into a single model, multitask learning shared information across all drugs 

implying simultaneous modelling, and finally Bayesian inference handled uncertainty from 

small sample size. Overall, BEMKL demonstrated improved predictive performance as depicted 

by the significant increase of signal-to-noise ratio (Costello et al., 2014). A variation of 

BEMKL is component-wise MKL (cwKBMF)* which has the ability to identify groups of 

output variables and apply MKL providing supplementary information regarding the biological 

and structural characteristics of the drugs. In this manner it further refines the use of prior 

knowledge for various subsets, such as pathway information, thus enabling one the link the 
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target to the drug’s mechanism of action (Ali and Aittokallio, 2019, Ammad-ud-din et al., 

2016). The STREAM* algorithm that combines Bayesian inference with Ridge regression is 

another paradigm of integrated approach trained and tested on public data (Neto et al., 2014) 

whereas, improved prediction was reported when Elastic net was combined with Principle 

Component Analysis (Park et al., 2014). Network-based data representations is a 

noteworthy method in which similarity networks among cell lines and between drugs 

are built independently, based on their expression and structural correlations, 

respectively. Subsequently, the two networks are integrated by linking the components 

of the first (cell lines) with the corresponding items (drugs) of the second producing a 

weighted model that reported drug response predictions (Fey et al., 2015; Zhang et al., 

2015; Wang et al., 2014). It is apparent that the list of methodologies will grow as long 

as the “philosopher’s stone” of machine learning has yet to be invented. It is possible 

that the key to this challenge lies in artificial neural networks (Table 2) as discussed in 

section 3.  

     Once the desired computational algorithm is selected, it must be trained to the input 

data (Figure 3). During training, fine tuning of the algorithm parameters will lead to 

the model with optimal performance. The most widely used method in order to optimize 

the model parameters, without over-fitting, is k-fold cross-validation (KF-CV)* (Stone 

M., 1974). According to KF-CV the data item set is divided in k subsets and the k-1 

ones are used for training, while the model is evaluated in the kth item set. The process 

is iterated until all subsets are trained. Subsequently, the trained model is evaluated 

applying various metrics of performance, depending on the type modelling (regression 

vs classification) (Table 4). Recently, the power for drug response prediction was 
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shown to be further boosted by a process termed transfer learning (TL). TL is a way 

of incorporating supporting information among different cell lines. In principal, training 

data include expression profiles and drug responses of tissue-specific cell material (cell-

lines/samples) as well as material of related origin (tissue-type), while only expression 

status is required for the testing samples (Turki et al., 2018).  For confusion avoidance 

it must be noted that the term Transfer Learning is also used in machine learning with 

Artificial Neural Networks where the model weights trained in one subdomain are 

transferred to another. This procedure has been shown to reduce training time and 

increase predictive accuracy (Weiss et al., 2016).  

2d. Testing the prediction models:  The ultimate goal of training is to build a model 

that fits to data beyond the ones utilized for developing the model (Figure 3). The best 

way to test the latter it is to implement it to blind data sets (Figure 3), preferentially 

clinical panels as the final objective of the whole workflow is to deliver tools that could 

help towards identifying tailored therapies for individual cancer patients (precision and 

personalized oncology) (see following sub-section 2e). In case a fully trained model 

fails to generalise then we are dealing with overfitting of the model (Dietterich T., 

1995). Overfitting corresponds to an analysis that is adapted too close or exactly to a 

specific data set (the training data set) and falls short to predict additional data reliably, 

a.k.a fails to generalise. On the other end, there is underfitting when an in silico 

pipeline is unable to capture the underlying structure of a particular data set. In 

machine learning these conditions are termed overtraining and undertraining, 

respectively (Dietterich T., 1995). Especially, overfitting represents a crucial topic in 

the machine learning community and a number of factors appear to be responsible, 
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with the amount and diversity (number of features >> samples) of the training data 

being the most important. The discrepancy in model performance in testing vs 

training steps is mathematically reflected by cost functions (Mehta et al., 2019) and 

the aim is to minimize as much as possible the cost effect. This is achieved by a 

process called regularization that intends to reduce the variance by increasing the 

bias in a step-wise manner. In simple words, regularization, which among others can 

be achieved with L1 (Lasso) or L2 (Ridge) penalisation, in combination with KF-CV 

schemes optimizes the parameters of the model and delivers the best model for 

eventual clinical validation.  

2e. Clinical applications and challenges to be met: At the clinical level, research has 

been hampered mostly by the lack of large clinical cohorts that include both detailed 

“omic” data, especially genomic and transcriptomic profiles and responses to 

therapeutic agents. Most of the training-testing scenarios, as mentioned, are based on 

publicly available cell-line data resources (Table 5). Although the worth of cancer cell 

lines in everyday cancer research cannot be questioned, particularly in data mining 

procedures, as they offer a rapidly available set to screen (see section 4), their ability to 

develop drug prediction models for direct clinical use poses certain challenges 

(Caponigro and Sellers, 2011; Ross and Wilson, 2011). The most important one is 

that cancers are heterogeneous in nature and molecular matching with a cell line is not 

feasible, leading to leak of information during the in silico analysis (Hanahan and 

Weinberg, 2000; Hanahan and Weinberg, 2011; Turajlic etal., 2019). It has been 

suggested and shown that this hurdle can be circumvented by acquiring fresh patient 

material, keeping it under short-term culture; thus capturing better tumor heterogeneity 
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and the genomic/transcriptomic profile of the primary tumor site (Tentler et al., 2012; 

Day et al, 2015). Another important issue it that cell lines lack the influence of the 

tumor microenvironment (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 

2011). The tumor-microenvironment interplay determines not only cancer development 

but in certain ways also response to treatment (Wu and Dai, 2017).  

     As a result of these constrains there is a pressing need to evaluate the in silico 

technology that is constantly developed in “real patients”. In this vein, there are a 

number of studies that have implemented this approach testing machine learning 

models in patient-derived data from clinical trials or other patient cohorts The most 

prominent ones are subsequently presented and discussed (see also Table 5). Geeleher et 

al. (Geeleher et al., 2014) trained models (Ridge Regression – Table 2) on gene expression data 

and drug responses from the Cancer Genome Project that is a subset of the GDSC, and tested 

them independently on publicly available data (TCGA*) (Table 3) from clinical trials in 

myeloma and non-small-cell lung cancers (NSCLC)*. Another group following a breast cancer 

cell-line based training approach but applying other algorithms (Support Vector Machine and 

Random Forest – Table 2) tested the built model in independent patient-derived data from 

TCGA (Daemen et al., 2013). On both occasions, the cell-line trained models predicted the 

therapeutic response, including relapse-free survival. The Biomarker-integrated Approaches of 

Targeted Therapy for Lung Cancer Elimination (BATTLE)* study represents an important 

patient data source to evaluate (Kim et al., 2011) and discover consequential links between 

molecular markers and drug response. Based on this data resource, Byers and colleagues 

applying hierarchical clustering and principal component analysis (Table 2) identified a 76-

gene expression signature that could distinguish non-small cell lung cancer samples with and 
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without EMT (epithelial to mesenchymal transition)* features, demonstrating resistance of the 

former to EGFR* inhibitors and how to overcome it (Byers et al., 2013). Likewise, using the 

BATTLE trial study Blumenschein et al, developed a gene expression signature of sorafenib 

efficacy (Blumenschein et al., 2013). Implementing an elastic net model (Table 2) in B-cell 

lymphoma cell lines with available gene expression datasets, Falgreen and collaborators 

generated a resistance gene signature in diffuse large B-cell lymphoma patients treated with 

CHO (Cyclophosphamide, Doxorubicin and Vincristine) (Falgreen et al., 2015). In colorectal 

cancer, Guinney et al., showed the prospective clinical utility of modelling specific cancer 

phenotypes and molecular traits. Specifically, training an elastic net model (Table 2) on a large 

series of colorectal cancer tissues according to their K-ras phenotype they were able to predict 

resistance to cetuximab, an anti-EGFR antibody used in K-ras wild-type colorectal cancer 

patients (Guinney et al., 2014). Using an iterative rule-based approach Chen et al., 

(Chen et al., 2015) revealed in ovarian cancer a 61-transcript expression signature for 

predicting patient’s response (poor vs good survival groups) to platinum-taxane 

chemotherapy. Notably, when the expression signature was combined with BRCA1/2* 

mutation status, a traditional prognostic marker for ovarian and breast cancer, patient 

stratification was further improved. The latter signifies the importance of combining 

molecular features, in certain cases.  

     Overall, the encouraging results of these studies render essential: i) the formulation 

of large patient-derived data-bases that will include apart from traditional clinical 

information detailed molecular high-throughput profiles and ii) a “methodological road 

map” that will guide the scientific community (basic researchers, bioinformaticians and 

clinician) in selecting the “best tool” for the “right question”.       
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3. Deep Learning neural networks (DLNN): an emerging “key player” 

    A new promising player with increased performance in the “arena” of machine learning is 

neural networks (Table 2). Particularly, its advanced form, Deep Learning neural networks 

(DLNN)*, have the ability to “understand” complexity and multidimensionality, while have been 

effectively applied in various fields (e.g. image analysis, text mining, etc.) with increased 

classification accuracy compared to classical computational methods (Figure 4a) 

(Schmidhuber, 2015). DLNN is based on the modelling of high-level neural networks in flexible, 

multilayer systems of connected and interacting neurons, which perform numerous data 

abstractions and transformations (LeCun et al., 2015) (Figure 4b).  

    The basic unit in the model (Figure 4c) is the neuron, a biologically inspired model of the 

human neuron. In humans, the varying strengths of the neurons’ output signals travel along the 

synaptic junctions and are then aggregated as input for a connected neuron’s activation. In the 

DLNN models, the weighted combination (α = Σn
i=1 wixi + b) of input signals is aggregated, and 

then an output signal f(α) transmitted by the connected neuron. The function f represents the 

nonlinear activation function used throughout the network and the bias b represents the neuron’s 

activation threshold. Multi-layer, feed-forward neural networks consist of many layers of 

interconnected neuron units (Figure 4b-c), starting with an input layer to match the feature space, 

followed by multiple (hidden) layers of nonlinearity, and ending with a linear classification layer 

to match the output space. The inputs and outputs of the model’s units follow the basic logic of 

the single neuron described above. Bias units are included in each non-output layer of the 

network. The weights linking neurons and biases with other neurons fully determine the output 

of the entire network. Learning occurs when these weights are adapted to minimize the error on 
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the labelled training data. More specifically, for each training example j, the objective is to 

minimize the loss function, L(W, B | j). After the completion of the Test-set prediction, the 

classification performance is measured by calculating the Area Under the Curve (AUC)* of the 

ROC-curve, Youden’s Index, Sensitivity, Specificity, Accuracy (ACC)*, Positive and Negative 

Predictive Values (PPV and NPV)* and False Positive Rate (FPR)* of the prediction (Table 4).  

In a recent surge of interest, DLNN has been effectively applied to extract features from 

various large and complex data sets, including predicting drug-target interactions (Wang et al., 

2014b), drug toxicity in the liver (Xu et al., 2015), pharmacological properties of drugs (Aliper 

et al., 2016) and automated diagnosis of histopathology slides (Coudray et al., 2018), among 

others. Altogether, studies using the DLNN architecture demonstrate its suitability for the 

analysis of complex biological data, as it can automatically construct complex features and 

allows for multi-task learning (Bengio et al., 2013). One of the main shortcomings of DLNNs 

apart from the computationally intensive long training times required, is their tendency to overfit 

due to the huge number of available model weights through fully connecting multiple hidden 

layers. This problem was however effectively addressed by a regularisation technique called 

dropout (Hinton et al., 2012). Dropout reduces overfitting by omitting a random percentage of 

the feature detectors on each training round, thus allowing the successful generalisation of the 

DLNN.  

    To the best of our knowledge and at the time of preparation of this review, there is only one 

report applying Deep Learning for response to therapy in clinical settings, namely Chiu and 

collaborators (Chiu et al., 2019) who applied deep learning models to predict drug response in 

9059 tumors of 33 cancer types from TCGA. The authors identified as effective, drugs that are 

known to be potent in specific cancers, such as EGFR inhibitors in non-small cell lung cancer, as 
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well as novel drugs for a specific type of cancer, such as vinorelbine for TTN-mutated tumors. 

Notably, the authors of the aforementioned study used a type of DLNN called autoencoder. 

Autoencoders are unsupervised DLNNs that are trained to reconstruct their input (Table 2) 

(Hinton et al., 1994). In order for the networks to do so, they learn the most meaningful 

structures and relationships among the input features by compressing the information through a 

bottleneck hidden layer in the middle of the hidden layer stack that forces the network to discard 

all unnecessary information. These kind of networks have a wide range of applications, namely: 

(i) Dimensionality reduction, where the neurons of the bottleneck layers are used as non-linear 

multi-dimensional principal components (Taghanaki et al., 2017), 

(ii) Compression, where the structure learned is stored as the compressed version of the original 

information (Tan and Eswaran, 2011), 

(iii) Missing value imputation, where the intricate relationships of the input features that were 

learned were used to impute missing values (Talwar et al., 2018), 

(iv) Denoising, where the structure learned was used to reconstruct the input without the noise 

which was discarded during the learning process (Creswell and Bharath, 2019). 

    Interestingly, Rampášek and collaborators demonstrated the use of deep autoencoders to 

integrate drug response information along with gene expression perturbation for building more 

effective predictive models of drug response in cell lines (Rampášek et al., 2019). 

 

4. A novel in silico screening process based on Association Rule Mining (ARM study)  

    Given their molecular profiling data, both large cell-line panels (CCLE and GDSC) have been 

utilized in attempts to identify biomarkers for predicting drug response of specific cancer cell-

lines (Barretina et al., 2012; Garnett et al., 2012). Previous efforts to define biomarkers of 
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drug response primarily employ general linear models, penalized linear modelling techniques, 

to identify cooperative interactions among multiple genes and transcripts across the genome and 

define response signatures for each drug (Forbes et al., 2015). While efficient, these algorithms 

suffer certain limitations since when used for feature selection, as described in previous studies 

(Barretina et al., 2012; Garnett et al., 2012), the derived results are simple associations 

between a single gene and drug response. If, however, one wishes to explore the relevance of a 

more complex feature-space relationship (two or three-way interactions among simple features in 

all possible combinations) to the drug response, the process is convoluted. This is primarily due 

to the fact that these algorithms fall-short in automatically evaluating all possible combinations 

including multi-way interactions of a large number of features against a response variable 

without further implementation. Furthermore, multi-feature models generated by such algorithms 

are difficult to interpret in terms of biological relevance. When utilised as a classifier to predict 

whether a sample will be resistant or sensitive to a drug, given its molecular profile, the general 

linear algorithms do not perform optimally. This is due to the fact that at the core of these 

algorithms lays linear regression, as opposed to non-linear classifiers, such as Random-Forests 

and Kernel-based models. The later have been shown to outperform the general linear 

algorithms in the task of actually predicting drug response, as demonstrated in a recent proof of 

concept study on a panel of 53 breast cancer cell lines evaluated for pharmacological response 

against 28 anti-cancer drugs (Iorio et al., 2016).  

    A promising methodology used by large businesses that overcomes the primary limitations of 

the general linear models for feature selection, yet capable of analysing enormous volume of 

transaction data to discover all possible associations between the data features is the Association 

Rule Mining (ARM) (Table 2, Figure 5). Previous studies moved along the same lines to 
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produce easily interpretable logical rules out of similar pharmacogenomic datasets (Iorio et al., 

2016; Masica and Karchin, 2013). Within this context we developed a resource of rules linking 

candidate genes as cancer drivers to drug response using this in silico methodology. The reason 

is that association rule mining provides an efficient big-data ready framework that is able to 

evaluate a huge sample space of associations among features including multi-way interactions 

with more than 30 different objective measures (Tan et al., 2004). Additionally, the output of the 

algorithm comes in the form of easily interpretable rules, making knowledge extraction and 

meta-analysis a more straightforward process.  

    First, a comprehensive dataset was constructed using the GDSC and Cosmic Cell line project 

(CCLP) databases (Figure 5a). This task was achieved by merging data from the CCLP and 

GDSC. GDSC was used (Garnett et al., 2012) as a drug response data source for 251 

therapeutic compounds, which provided IC50 values for each compound, as well as information 

on tissue origin. Information on total gene mRNA expression, number of DNA copies and 

mutational status was obtained from the Cosmic Cell line project (CCLP) (Forbes et al., 2015). 

CCLP was preferred over CCLE as a data source since it provides profiles on 1,074 cancer cell 

lines and is not limited to the mutational status of only 1,600 genes, as is the case with CCLE. 

GDSC contains dose response data for the 1,001 CCLP cell lines only and therefore only those 

were used in our analysis. Although NCI-60 contains the largest number of therapeutic 

compounds tested for pharmacologic activity, it was excluded as a data source, as the number of 

cell lines presented is very small compared to the other resources used. A summary of the 

compiled pharmacogenomics dataset is presented in Supplementary Figure 1. 

    Applying the Apriori algorithm (Agrawal et al., 1993) significant associations from all of the 

possible combinations of the features from the main dataset (tissue of origin, gene expression, 
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mutation status, CNV plus drug response) were extracted, in order to generate a large rule-set, 

containing all tissue-to-gene, tissue-to-drug, gene-to-gene, gene-to-drug and drug-to-drug 

associations. The main bottleneck in the application of association rule mining is the 

computationally intensive requirements. While this will likely improve as computing power 

increases, due to hardware limitations in the currently presented resource we maintained only the 

tissue-to-drug, gene-to-drug and drug-to-drug associations for the present study. Gene-to-gene 

associations, which constitute an enormous RAM intensive rule-set, were discarded. Details and 

metrics of the Apriori algorithm can be found in Figures 5 and 6. The basic interest metrics, 

available by the arules R package, and utilised were support, confidence and lift. Support is the 

frequency of the rule occurrence in the total dataset, while confidence is the frequency of rule 

occurrence in the cases of the dataset fulfilling the left hand side of the rule and lift is the factor 

by which, the co-occurrence of A and B exceeds the expected probability of A and B co-

occurring, had they been independent. Relationships between confidence and support metrics 

(for top 10,000 one-way and 100,000 two-way rules) are visualized in the scatterplots in 

Supplementary Figure 2. To select significant non-random rules by controlling the false 

positive rate (FPR)*, a randomization approach was applied based on running the Apriori 

algorithm on a permuted version of the initially employed dataset (see “Association Rule 

Mining: Apriori Algorithm / Dynamic Thresholding” in Supportive material section). At 

5% FPR, 1,326,251 1-way rules were identified: 2,124 of them where tissue to drug, 989,163 

gene-expression to drug, 110,442 gene-CNV* to drug and 224,522 gene-mutation to drug 

(Supplementary File 1, “one_way_rule_count”). All identified rules are available online via an 

interactive Rshiny application: https://compbio.nyumc.org/drugs/ (Supplementary File 2). 

Representative outputs from the web application, confirming prior-knowledge, are presented in 
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Figure 7 and Supplementary Figure 3. The user can search for a tissue, gene or drug of interest, 

filter using different metrics and visualize the results and download the data. The biological 

relevance of the rules generated was examined both computationally (based on prior knowledge) 

and experimentally, as demonstrated in the following sections. 

 

4a. Rule verification based on prior knowledge 

    To explore the potential biological relevance of our statistically significant association rules, 

we examined whether: (1) known predictors of drug response are present in our rule set, and, (2) 

drugs and their targets are present together in sensitivity-associated rules if the target(s) are 

mutated and/or over-expressed. 

 

MAPK and PI3K signalling pathway 

    Initially, we followed an unbiased approach, where we performed k-means clustering (see 

“Association Rule Mining – Apriori Algorithm” in Supportive material section) of the 1000 

rules with the largest support (k=50) for drug sensitivity associated with: (a) the ERK/MAPK* 

signalling, and, (b) the PI3K* signalling (Supplementary File 1: “1-way rules” and 

Supplementary File 3: “Drugs”). First, the clustering of the top rules associated with 

ERK/MAPK signalling revealed that mutated BRAF* (known to be essential to ERK/MAPK 

signalling (McCain, 2013)) was present among the top 50 cluster centres (Figure 8a). 

Additionally, this clustering revealed that the melanoma cell lines are expected to be highly 

sensitive to BRAF and MEK* inhibitors, a prediction that can be verified in the literature with 

studies showing that combined BRAF and MEK inhibition is one of the most effective 

treatments for melanomas (Figure 8a) (Long et al., 2014). The half maximal inhibitory 
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concentration (IC50) values of the drugs included in this group indicate increased sensitivity for 

melanoma cell lines and for cell lines carrying mutated BRAF as compared to the total dataset 

(p-value < 0.05) (Figure 8b). Second, the clustering of the top rules associated with PI3K 

signalling revealed the presence of mutated PTEN among the top 50 cluster centres (Figure 9a). 

PTEN* is a direct PIK3CA* suppressor (Carracedo and Pandolfi, 2008) that is frequently 

mutated in cancer with loss-of-function mutations (Rodriguez-Escudero et al., 2011), which in 

turn leads to increased PIK3CA activity. Notably, mutated PIK3CA was also present in the 

mutated-PTEN cluster (Figure 9b, right panel). Given that both, PTEN and PIK3CA, belong to 

the same pathway, the fact that the onco-suppressor (PTEN) is deactivated at the same time that 

the oncogene (PIK3CA) is further activated by hot-spot gain-of-function mutations can be 

conceptualized as a variation of the Knudson double-hit hypothesis (Knudson, 1971). IC50 

heatmaps (Figure 9c, right panel) indicate that cell lines with PIK3CA mutations are 

significantly more responsive (p-value < 0.01) to inhibitors targeting the PI3K pathway 

compared to cell lines with wild-type PIK3CA, which seem to be resistant to the same inhibitors. 

These observations confirm that clustering of significant rules can provide relevant insights 

regarding the molecules that are related to responsiveness to certain classes of drugs.  

 

Multiple drug response, p53 and PARPi resistance 

    To further validate our models, we also looked for specific genes known to be implicated in 

drug resistance and/or sensitivity. We observed that the ABCB1 gene that encodes the Multidrug-

Resistance-1 (MDR1)* protein, was found in our rule set to be linked with resistance to multiple 

drugs when it is over-expressed (55 out of 57 drugs), while when suppressed it is linked with 

sensitivity (7 out of 9 drugs) (Supplementary File 1: “1-way rules”). In addition, our rules 
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indicate that EGFR over-expression and suppression are significantly associated with Lapatinib 

sensitivity and resistance, respectively, which is in agreement with previous findings 

demonstrating that EGFR expression can efficiently affect response to this tyrosine kinase 

inhibitor (TKI)* (Rusnak et al., 2007) (Supplementary  File 1: “1-way rules”). Moreover, we 

observed that known predictors of drug response are highly ranked in our rule set. For example, 

suppressed NAD(P)H dehydrogenase 1 (NQO1)* and over-expressed MDM2, a p53 inhibitor, 

which are known predictors of sensitivity for the drugs 17-AAG (Tanespimycin) and Nutlin-3, 

respectively (Kelland et al., 1999; Muller et al., 2007), are present in our rule-set with lift 

values 4 and 4.06, respectively, which are in the top 25% quantile of lift values in our list of 

significant 1-way rules (Supplementary File 1: “1-way rules”). Of note, three recent reports 

demonstrating that inactivation of genes encoding subunits of the shieldin complex (REV7, 

SHLD1-3)* cause resistance to poly(ADP-ribose) polymerase inhibition (PARPi)* in BRCA1-

deficient cells and tumours (Mirman et al., 2018; Noordermeer et al, 2018; Dev et al., 2018), 

were also confirmed by the Apriori data mining process (Supplementary File 1: “1-way rules”; 

Figure 7 and Supplementary Figure 3). In addition, and within the same context, we identified 

in the literature a list of 96 genes whose status was experimentally linked with PARPi (Figure 10; 

Supplementary File 1). We queried our database to identify rules associating these 96 genes 

with all PARP inhibitors enlisted. We found a total of 166 rules describing associations of 71/96 

(74%) genes with PARP inhibitors. Specifically, we spotted 24 rules with gene mutations, 13 

rules with gene copy-number variations (CNVs) and 129 rules with gene-expression 

(Supplementary File 1, “PARPi”). To exclude the possibility that the observed matches were 

due to chance alone, we performed a Monte-Carlo simulation taking into account all relevant 

parameters (see Supplementary Materials, section 2.5). We demonstrated (Figure 10) that the 
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number of the reported matches could not have been observed randomly (p-value = 

0.008766261), highlighting the effectiveness of the data mining process applied.   

 

Drug response in small-cell lung cancer  

    The following two examples indicate how the association rules, when allowing for interactions 

(2-way), can be used to gain further insight in the molecular mechanisms of drug resistance in 

Small-Cell Lung Cancer (SCLC)* and identify potential points of intervention. 

    The 1-way rules indicate a large pattern of multi-drug resistance (93 drugs) involving SCLC 

(Supplementary File 1: “1-way rules”). SCLC accounts for approximately 15% of all lung 

cancer cases (Planchard and Le Pechoux, 2011). It is considered one of the most aggressive 

malignancies mainly due to the rapid development of multi-drug resistance (Yeh et al., 2005), 

which is in agreement with our finding. The 2-way rules (Supplementary File 1: “2-way 

rules”), indicate that the Growth hormone-releasing hormone (GHRH)* over-expression greatly 

increases the lift-value (hence statistical significance) to 39 of the above drugs, suggesting it may 

be involved in multi-drug resistance mechanisms. It is known that inhibition of GHRH activity 

using antagonists yields high anti-tumour activity by impending cell proliferation (Kiaris et al., 

2000; Popovics et al., 2017). Furthermore, GHRH activity has been linked to drug-resistance in 

triple negative breast cancer (Perez et al., 2014). Herein, by including interactions in association 

rule mining we were able to infer that GHRH antagonists could be potentially used in 

combination with specific chemotherapeutic agents for the effective treatment of SCLC. This is 

further supported by the fact that in preclinical models monotherapy with novel GHRH 

antagonists resulted in significant suppression of SCLC and NSCLC tumor growth (Wang et al., 

2018). 
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    In a separate example, with the 1-way rules (Supplementary File 1: “1-way rules”), we 

observed statistically significant resistance to Obatoclax-Mesylate, a BCL*-family inhibitor, with 

a lift-value of 2.47 in 22 out of 66 SCLC cell lines (33.3%). With the 2-way rules 

(Supplementary File 1: “2-way rules”), we noted that SMAD3* down-regulation greatly 

increases the lift-value to 4.77, since resistance to Obatoclax-Mesylate is observed in 9 out of 14 

SCLC cell lines under-expressing SMAD3 (64.3%). SMAD3 is known to promote apoptosis 

through transcriptional inhibition of BCL-2 (Yang et al., 2006). SCLC cell lines under-

expressing SMAD3 clearly possess increased levels of BCL-2, which correlates well with the 

phenotype of resistance to a BCL-2 inhibitor, such as Obatoclax-Mesylate. In this example, 

association rule mining precisely elucidated a specific mechanism of resistance of SCLC tumors 

to BCL-family inhibitors, by highlighting a unique molecule that presents high mechanistic 

relevance to BCL-inhibition.   

 

4b. Rule Experimental Validation 

Drug-specific target selection and experimental validation 

    The generated 1-way rule-set consists of 1,326,251 statistically significant rules 

(Supplementary File 1: “1-way rules”) as selected by the Dynamic Thresholding procedure. In 

order to ascertain that our rule-set consists of meaningful rules in an unbiased and systematic 

way, we devised a systematic 4-step rule-based gene-selection algorithm (Supplementary 

Figure 4b1; “Validation procedure” in Supportive material section) to identify novel 

therapeutic targets and then we proceeded with their experimental validation. Particularly this 

algorithm associates gene expression with drug resistance patterns across a big number of 

diverse drugs and is designed to narrow down the long list of more than 16,000 genes to one with 
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only few selected candidates, the silencing of which should increase the efficacy of a specifically 

applied treatment. Using this algorithm 128 rules corresponding to 128 genes per drug were 

identified on average, summing to a total of 30,639 rules (Supplementary File 3: 

“si_t_resistance_genes_all_drugs”). We applied the algorithm on all available drugs 

(Supplementary File 3: “t_resistance_genes_all_drugs”), but in order to provide a practical 

application we focused on the efficacy enhancement of Doxorubicin (Supplementary File 3: 

“DoxoTargetsSelectionResGenes”). The experimental validation of the algorithm was designed 

to monitor whether Doxorubicin treatment in combination with the silencing of each identified 

target resulted in a synergistic increase in efficacy across four cancer cell lines, namely A549 

(lung carcinoma), NCI-H1299 (lung carcinoma derived from metastatic site), MCF7 (breast 

adenocarcinoma derived from metastatic site) and Saos-2 (osteosarcoma). Our algorithm selected 

72 out of 16445 total genes available from our initial dataset (Supplementary File 3: 

“DoxoTargetsSelectionResGenes”). We randomly chose five targets from the list, for 

experimental validation, namely MAGI3*, POF1B*, PDIA3*, CD151* and NPTN*, none of which 

are specifically connected with Doxorubicin efficacy in the biomedical literature 

(Supplementary File 3: “DoxoTargetsSelectionResGenes”). As predicted by our algorithm, in 

all cases siRNA treatment led to a significant sensitization of the examined cells to Doxorubicin 

(Supplementary Figure 4a, 4b1, 4b2i-ii, 4c1, 4d2; Supplementary File 3: 

“Doxorubicin_IC50”; Supplementary Materials). Decreased soft agar colony formation 

further supported these findings (Supplementary Figure 4e1). Potential mechanistic insights 

underlying these results are proposed in Table 6. As a negative control, we reversed the 

algorithm for all drugs to select genes that upon silencing should decrease efficacy of 

Doxorubicin (Supplementary File 3: “si_t_sensitivityGenes_all_durgs”). We randomly chose 
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again 5 targets from the list for experimental validation namely TP53*, CTCF*, CCND3*, 

ARHBD1B* and ZCCHC7* (Supplementary File 3: “DoxoTargetsSelectionSensGenes”). In 

accordance to our predictions, siRNA treatments led to a significant increase in resistance to 

Doxorubicin (Supplementary Figure 4a, 4b1, 4b3i-ii, 4c2, 4d3, 4e2; Supplementary File 3: 

“Doxorubicin_IC50”; Supplementary Materials). Presumable underlying mechanisms of 

increased resistance are proposed in Table 7.  

 

ID1 as a biomarker of response to PI3K-targeted therapies 

    After demonstrating that rule-clustering delivers relevant results, we present an example of 

how the rules can be used to gain novel insights on biomarker discovery for drug response. The 

PI3K signalling pathway rule clustering, links the suppression of the ID1* gene to sensitivity to 

10 out of 16 drugs targeting the PI3K pathway with high lift and support values (Figure 9a). 

Inhibitor of DNA binding 1 (ID1) is a transcription regulator, widely reported as linked to 

tumour metastasis when over-expressed (Eisfeld et al., 2017; Jin et al., 2016) and known to 

activate the PI3K pathway (Li et al., 2012), while inhibition of ID1 expression suppresses cancer 

invasion and progression (Murase et al., 2016; Tominaga et al., 2016). IC50 heatmaps (Figure 

9b,c; left panel) indicate that cell lines under-expressing ID1 are significantly more responsive 

to inhibitors targeting the PI3K pathway compared to cell lines over-expressing ID1 (p < 0.01). 

These results imply that apart from being used as a therapeutic target per se, ID1 could be 

utilised as a predictive biomarker for response to PI3K-targeted therapies, as its expression 

seems to distinguish sensitive from resistant cell lines more efficiently than the actual PIK3CA 

mutation status (Figure 9b,c; right panel; Figure 11a). Within this context, we recently 

demonstrated that chronic expression of the tumor-suppressor p21WAF/Cip1, in a p53-deficient 
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environment, exhibited an oncogenic behaviour, by “escaping” from the antitumor barrier of 

senescence and generating aggressive and chemo-resistant clones (Figure 11b) (Galanos et al., 

2016). In line with the above observations, ID1 was found up-regulated in these cells (Galanos 

et al., 2016). To experimentally validate the in silico prediction, we interrogated the sensitivity of 

the p21WAF/Cip1 “escaped” clones for two PI3K inhibitors, namely CAL-101 and ZSTK474 from 

our panel (Figure 9a; Figure 11a), before and after ID1 silencing. As shown in Figure 11c (left 

panel), the “escaped” p21WAF/Cip1 cells showed IC50 values of 0.141 μM and 1.26 μM for CAL-

101 and ZSTK474, respectively. Concurrent silencing of ID1 with administration of each 

inhibitor significantly reduced the corresponding IC50 values and decreased colony formation 

(Figure 11c right panel), suggesting that inhibition of ID1 confers to PI3K chemo- sensitivity in 

accordance with the in silico model (Figure 9; Figure 11a).  

    Moreover, in the ID1 rule-cluster, over-expression of 4 other genes was found to be highly 

related with sensitivity to PI3K-pathway inhibitors, namely ZNF22*, GMIP*, LYL1* and 

SAMSN1* (Figure 9b, left panel). Interestingly, LYL1 (Lymphoblastic Leukemia Associated 

Hematopoiesis Regulator 1) is known to be implicated in the development of leukemia (Meng et 

al., 2005) and lymphoma (Zhong et al., 2007), both representing promising target groups for 

anti-PI3K/mTOR* agents (Bertacchini et al., 2015; Blachly and Baiocchi, 2014). SAMSN1 

(SAM Domain, SH3 Domain And Nuclear Localization Signals 1) is an intriguing case since it 

appears to act as a tumour suppressor in certain malignancies such as multiple myeloma (Noll et 

al., 2014), gastric cancer (Kanda et al., 2016), lung cancer (Yamada et al., 2008) and 

hepatocellular carcinoma (Sueoka et al., 2015), whereas its over-expression has been associated 

with poor survival in glioblastoma multiforme (Yan et al., 2013), a malignancy where drug 

resistance represents a major challenge (Haar et al., 2012). Its detection in the rule-set concurs 
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with recent developments suggesting that targeting the PI3K pathway could be a potential 

therapeutic option to overcome drug resistance in glioblastoma multiforme (Sami and Karsy, 

2013).   

 

CDC6 overexpression as an indicator of resistance to MAPK pathway inhibitors  

    Among the results extracted from the Apriori data mining process we noticed three rules that 

drew our attention as they were related with the role of deregulated replication licensing in 

cancer, one of the main research fields of our group (Karakaidos et al, 2004; Bartkova et al., 

2006; Liontos et al., 2007; Sideridou et al., 2011; Petrakis et al., 2016; Galanos et al., 2016). 

They linked CDC6 (Cell division cycle 6)* overexpression (termed oncogenic CDC6) with 

resistance to MAPK (Mitogen-Activated Protein Kinase) inhibition (Figure 12a). In most cases, 

this type of resistance is associated with mutations that either render the MAPK pathway 

insensitive to treatment or reactivate alternative components of the signaling route bypassing the 

inhibitory block (Logue and Morrison, 2012; Pritchard and Hayward, 2013; Varmus et al., 

2016) (Figure 12b). We and others have shown that CDC6 is deregulated in many types of 

cancer from their earliest stages and is an indicator of poor prognosis (Karakaidos et al, 2004; 

Bartkova et al., 2006; Liontos et al., 2007; Sideridou et al., 2011; Petrakis et al., 2016; 

Galanos et al., 2016) (Supplementary Figure 5a). According to the oncogene-induced DNA 

damage model for cancer development (Halazonetis et al., 2008), oncogenic CDC6 fuels 

genomic instability by causing replication stress and DNA damage (Liontos et al., 2007; 

Gorgoulis et al., 2018; Petrakis et al., 2016; Sideridou et al., 2011; Galanos et al., 2016; 

Galanos et al., 2018; Komseli et al., 2018). As DNA damage accumulates the DDR (DNA 

Damage Response)* and the error-free repair pathways are overwhelmed leading, due to selective 
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pressure, to inactivation or exhaustion of vital DDR/R (DDR and Repair) components. 

Consequently, there is a shift to error-prone repair that leads to escape from the anti-tumor 

barriers of senescence and apoptosis, by generating a landscape of mutations that promote cancer 

development (Halazonetis et al., 2008; Galanos et al., 2016; Galanos et al., 2018; Gorgoulis 

et al., 2018). As CDC6 functions downstream of the RAS-RAF-MEK1/2-ERK1/2 pathway 

(Lunn et al., 2010; Liu et al., 2010; Steckel et al., 2012; Di Micco et al., 2006; Sideridou et 

al., 2011; Hills & Diffley 2014; Petrakis et al., 2016) and mutational activation of the MAPK 

signalling is a prominent feature of many cancer types (Fang and Richardson, 2005; Dhillon et 

al., 2007; Kim and Choi, 2010; Logue and Morrison, 2012; Pritchard and Hayward, 2013), 

we postulated that the aforementioned rules (Figure 12a) possibly reflect one way of how 

oncogenic CDC6 promotes cancer development. In particular, tumors with high levels of CDC6 

would at some point select to rewire cellular signalling to another pathway, parallel to MAPK 

cascade that does not comprise RAF and MEK1/2*, thus rending these tumors unresponsive to 

MEK1/2 inhibitors, such as Trametinib or RDEA119. In other words, it is most unlikely that a 

RAF or MEK1/2 inhibitor would be effective when a downstream effector of this pathway is 

overexpressed and active. From cancer biology perspective activation of a parallel pathway 

would exert an additive tumor promoting effect phenocopying the activation of the RAS-RAF-

MEK1/2-ERK1/2 pathway, as suggested in colon cancer (Hanahan and Weinberg, 2010). 

    To test this hypothesis we employed a CDC6-inducible normal cellular model that 

recapitulates in relatively short period all stages of cancer development (Komseli et al., 2018) 

(Figure 12c). Briefly, and in accordance to our model (Halazonetis et al., 2008), chronic CDC6 

expression triggered the anti-tumor barrier of senescence (precancerous stage) that was 

eventually overridden leading to the emergence of aggressive clones (cancerous stage) (Figure 
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12c) (Komseli et al., 2018). We performed three biological replicates of this cancer evolution 

experiment and examined by WGS (whole genome sequencing) means the genetic alterations 

acquired. Interestingly, and in accordance to our assumption, among the alterations found, all 

three clones harbored an R55T amino-acid substitution located in codon 55 of MAP2K3 

(Mitogen-Activated Protein Kinase Kinase 3) (Figure 12d). This is a key component of the 

stress/cytokines-induced p38 MAPK pathway located upstream of its end-effector, the p38 

kinase (Cuadrado and Nebreda, 2010). It acts in parallel with the RAS-RAF-MEK1/2-ERK1/2 

signaling route and has a significant role in cell proliferation and malignant transformation 

(Cuadrado and Nebreda, 2010; Baldari et al., 2015) (Figure 12b). This mutation has been 

also reported in colorectal cancer 

(https://hive.biochemistry.gwu.edu/biomuta/proteinview/P46734) and potentially affects the 

structure and function of MAP2K3 (see details in Supplementary Figure 5b). Of note, as we 

previously showed the activated p38 pathway promotes colon cancer progression (Gupta et al., 

2014). A strong indication that this mutation is associated with activation of the MAPK p38 

pathway is the increased phosphorylation levels of its downstream effector p38 in the escaped-

from-senescence aggressive clones (Figure 12e). Within the same line and in support to the rules, 

the escaped-from-senescence cells harboring high levels of CDC6 were significantly more 

resistant to the MEK1/2 inhibitor PD98059 than the non-induced (OFF) cells with very low 

CDC6 levels (Figure 12f; Supplementary Figure 5c). 

 

5. Comparison of ARM study with other frameworks 

    We compared our rules with the respective ones identified in various databases, namely GDSC 

(Genomics of Drug Sensitivity in Cancer) (Iorio et al., 2016), CCLE (Cancer Cell Line 
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Encyclopedia) (Barretina et al., 2012) and CTRP (Cancer Therapeutic Response Portal) 

(Seashore-Ludlow et al., 2015) (see Supplementary Materials, Supplementary File 1).  

GDSC-Genomics of Drug Sensitivity in Cancer 

    ANOVA: i) Mutations: Iorio et al., (Iorio et al., 2016) identified 268 one-way mutated gene-

to-drug relationships, of which 82 were matched with our one-way rules (overlap 34.75%). 

Interestingly, for genes bearing clinical relevance such as BRAF, EGFR, PTEN, TP53, FLT3*, 

KRAS and PIK3CA, the overlap of our one-way rules with Iorio et al., was: 92.31%, 60.00%, 

100.00%, 30.77%, 33.33%, 83.33% and 100.00%, respectively (Supplementary File 1 "Mut 

Clinically Relevant Iorio V", Figure 13) (Sethi et al., 2013). ii) Copy number variations: They 

(Iorio et al., 2016) identified 10,201 gain/losses related to drug responses, of which 827 were 

also present in our rules (overlap 8.11%). iii) Gene expression: 5361 drug response interaction 

were identified, 1089 of which were also identified by our pipeline (overlap 20.3%).  

    LOBICO: Regarding the comparison of our rules with the multiple relationship models 

generated by Iorio et al., through LOBICO (Iorio et al., 2016), we identified 114 out of a total 

of 1112 LOBICO models that could be compared with our one-way rules, of which 38 were 

present in our rule-set (overlap 33.33%), and 2 rules that could be compared with our two-way 

rules, namely “CDKN2A-loss AND MYC-gain => EpothiloneB-Sensitivity” and “CDKN2A-

loss AND MLL2-mutation=>SB52334-Sensitivity”. Although loss of CDKN2A is connected 

with EpothiloneB and SB52334 Sensitivity in our two-way rule-set (Supplementary File 1 

“two-way rules”), MYC-gain and MLL2-mutation were not identified. It must be noted that the 

1112 LOBICO models contain multiple genes combined together through the logic operators 

AND, OR and NOT which are then connected to a specific drug response. As a result, this 

scheme produces rules that cannot be directly compared to our rule-set. Therefore, no statistical 
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conclusion may be drawn due to the low number of compatible rules extracted. 

CCLE-Cancer Cell Line Encyclopedia 

     Data were drawn from CCLE as follows (Stransky et al., 2015). i) Mutations: 421 mutation-

drug response interactions were identified in the CCLE data-set, with 14 being in common with 

our rules (overlap 3.3%). ii) Copy number variations: From the 103 identified copy number 

variation-drug response interactions, 4 were also found in our rules (overlap 3.9%). iii) Gene 

expression: Finally 7382 gene-expression to drug response interaction where identified, 1000 of 

which were in common with the current study (overlap 13.55%) (Supplementary File 1). 

CTRP-Cancer Therapeutic Response Portal* 

    Seashore-Ludlow et al., was utilized as the CTRP data-source (Seashore-Ludlow et al., 2015). 

The particular analysis was performed at a level connecting gene mutations to drug-cluster wide 

response, the common element of the cluster being the molecular target. An in-house R-script 

(see Supplementary Materials section 2.4) was utilised to subset the CTRP dataset to our 

collection of drugs and identify relevant rules from our dataset. From the 10829 gene mutation to 

drug cluster response interactions, 1811 were represented in our rules (overlap 16.72%).   

 

6. Perspectives and future challenges 

    Hitherto, the degrees of overlap that the various in silico settings demonstrate (Figure 13), 

suggest the necessity of applying multiple analytical techniques to maximize information 

retrieval. Moreover, although all in silico pipelines suffer to certain extent from false positive and 

negative outcomes it is possible that several, at first glance, contradictory results could simply 

reflect a U-shaped curve drug response or behaviour (Figure 14). In other words, deviation from 

optimal activity, either too little or too much has the same impact. A characteristic example is 
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mTOR1, where both, low and high activity, lead to insulin resistance (Laplante and Sabatini, 

2012). The complexity of biological processes is indeed evident in everyday clinical practice. 

For example, not all patients with EGFR mutations respond to treatment with EGFR TKIs 

(Tyrosine Kinase Inhibitors) (Zhong et al., 2017). On the other hand, a subset of patients with 

wild type EGFR also responds to EGFR TKIs (Ulivi et al., 2015; Xu et al., 2016; Koinis et al., 

2018). Likewise, vemurafenib-resistant melanomas that depend on the drug to proliferate can 

become re-sensitized following a "drug holiday period” (Das-Thakur et al., 2013, Schreuer et 

al., 2017). 

     Among the other methods described the screening pipeline based on ARM’s could be 

effectively applied in the future in Biomarker-Guided Adaptive Clinical Trial Designs (Antoniou 

et al., 2016). Patient’s molecular profile can be obtained and compared against the extracted 

from ARM’s gene-drug response rules. These results can form the basis to design appropriate 

sophisticated target gene interventions. Initially they could be tested on patient-derived primary 

2D and 3D cancer cell cultures (Das et al., 2015) and/or on xenograft models (Siolas and 

Hannon, 2013). The most effective schemes could be applied in clinical trials, constant 

monitoring for administration of personalised dosing and use of circulating tumour cell assays 

and ctDNA for early detection of the emergence of resistance (Palmirotta et al., 2018). 

Moreover, the pharmacogenetic databases could be further expanded by increasing the number of 

cancer cell lines, including patient-derived cell lines, as well as by increasing the number of 

therapeutic genes analysed by the system. Additionally, integration of other layers of “omics” 

information, including meta-genomics, proteomics, phospho-proteomics, interactomics and 

metabolomics will further enhance the applicability of this method, eventually increasing the 

power of the presented in silico process. Last but not least, the algorithm may be implemented in 
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a wider expert decision support system (artificially intelligence based) to assist oncologists in 

predicting drug response and selecting the best drug candidates for precision based therapy.  
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FIGURE LEGENDS 

 

Figure 1. The landscape of computer sciences: its “russian-doll”-like organization and its 

relationship with big data. For terminology explanation and further reading see Table 1 and 

accompanying references. 

 

Figure 2. Machine learning algorithms comprise an extensive “universe” of application 

models (reproduced with permission from Dr Jason Brownlee: 

https://machinelearningmastery.com/faq/single-faq/how-do-i-reference-or-cite-a-book-or-blog-

post). For a highlight on the most prominent machine learning applications and their pros and 

cons, see Table 2.  

 

Figure 3. Key steps for building in silico models for drug response. These models comprise 

three steps: i) opting the input data set, ii) selecting the appropriate algorithm (see Table 2 and 

Figure 2 for a highlight on machine learning algorithms) and training it to build a prediction 

model, and iii) testing of the algorithm in unseen data sets. Resources of big input data can be 

from cell lines, animal model or clinical cohorts and type of information include o variety of 

“omics” or clinical data such as gene copy numbers, gene expression, gene mutations, epigenetic 

changes, protein expression, pharmacological responses, survival and others. 

 

Figure 4. Neural Network Architecture. (a) Comparison of prediction performance of Deep 

Neural Networks, an advanced form of neural networks, against other learning algorithms in 

relation to continuously increasing amount of “big-data” [reproduced with permission from Dr 
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Andrew Y. Ng (https://medium.com/syncedreview/andrew-ng-offers-ai-for-everyone-

eac04877773d; https://medium.com/syncedreview/andrew-ng-warns-of-centralized-ai-power-

47a44a 462c8)]. (b) The organization of neurons in multi-layered networks. (c) The single 

neuron as a unit. 

 

Figure 5. Schematic representation of the study design and bioinformatics pipeline. (a) 

Dataset: the full data set was constructed using the GDSC and CCLP databases (see also 

Supplemental Figure 1). (b) Model construction: Association Rule Mining (ARM) was used to 

generate testable hypotheses of genes associated with sensitivity or resistance to specific drugs 

(left panel). (c) Validation: our models were validated computationally and in a variety of in vitro 

experimental settings.  

 

Figure 6. Association Rule Mining (ARM) basic interest metrics. There are three basic 

metrics to describe the power and significance of the rules generated by ARM. Rules are in the 

form of A => B. The feature A is considered to be the Left Hand Side (LHS) of the rule while the 

feature B the Right Hand Side (RHS). Support is the frequency of the rule occurrence in the total 

dataset.Confidence is the frequency of rule occurrence in the cases of the dataset fulfilling the 

left hand side of the rule. Lift is the factor by which, the co-occurrence of A and B exceeds the 

expected probability of A and B co-occurring, had they been independent. Details are presented 

in Supplemental Materials section. 

 

Figure 7. Representative output from the interactive Rshiny web application: 

https://compbio.nyumc.org/drugs/, confirming prior-knowledge on the Shieldin-PARPi 
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association. 

 

Figure 8. Unbiased k-means cluster of top significant rules associated with the ERK-

MARPK signalling pathway. (a) Group-wise Association Rules visualization by k-means 

clustering k=50 of the 1000 1-way rules with the largest support, for the sensitivity state of drugs 

targeting the ERK-MAPK signalling pathway. (b) IC50 heatmaps of drugs targeting the ERK-

MAPK signalling pathway for melanoma versus non-melanoma cell lines and for cell lines 

carrying mutated versus wild-type BRAF.  

 

Figure 9. Unbiased k-means cluster of top significant rules associated with the PI3K 

signalling pathway. (a) Group-wise Association Rules visualization by k-means clustering k=50 

of the 1000 1-way rules with the largest support, for the sensitivity state of drugs targeting the 

PI3K signalling pathway. (b) Zoom-ins of the ID1 and PTEN clusters presented in section-a. (c) 

IC50 heatmaps of drugs targeting the PI3K signalling pathway for cell lines over versus under-

expressing ID1 and for cell lines carrying wild-type versus mutated PIK3CA.  

 

Figure 10. Association Rules related to genes associated with PARP inhibitors response. 

Application of the current pipeline on information recall from 96 literature-derived and 

experimentally verified genes associated with response to PARP inhibitors; Monte Carlo 

simulation analysis for randomness evaluation. 

 

Figure 11. Validation of ID1 as a biomarker for responsiveness to PI3K-targeted therapies. 

(a) Apriori data mining process generated rules linking ID1 suppression with PI3K 
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chemosensitivity. (b) Sustained expression of p21WAF/Cip1 in Li-Fraumeni p53-deficient cells has 

tumor promoting ability (Galanos et al., 2016). Upon prolonged p21WAF/Cip1 expression the 

antitumor barrier of senescence is “bypassed”, generating “escaped” clones with aggressive and 

chemo-resistant features along with high ID1 expression levels (Galanos et al., 2016). 

Morphological features and senescence detection using SenTraGorTM, a novel staining marker 

(Evangelou et al., 2017), in induced and escaped Li-Fraumeni-p21WAF/Cip1 Tet-ON cells (Scale 

bar: 20 μm). (c) Combined PI3K inhibition and ID1 silencing decreased drug resistance of Li-

Fraumeni p21WAF/Cip1 escaped cells. Drug response curves for the PI3K inhibitors CAL-101 and 

ZSTK474 in the escaped Li-Fraumeni- p21WAF/Cip1 cells, before and after ID1 genetic silencing, 

and soft agar colony formation assay. Increased sensitivity is denoted by the left pointing red 

arrow showing leftward shift of dose response curve. ID1 siRNA targeting efficiency was 

verified by quantitative real time-RT-PCR and immunoblot analysis. (see details in 

Supplementary Materials section) DOX: doxocyclin, * denotes p < 0.05 

 

Figure 12. CDC6 overexpression as an indicator of resistance to MAPK pathway inhibitors. 

(a) The Apriori data mining process generated three rules linking CDC6 overexpression with 

resistance to MAPK (Mitogen-Activated Protein Kinase) inhibition. (b) Resistance to inhibitors 

is based on mutations that either render the MAPK pathway insensitive to treatment or reactivate 

alternative components of the signaling route bypassing the inhibitory block. (c) A CDC6-

inducible normal cellular model that recapitulates all stages of cancer development (Komseli et 

al., 2018). (d) Whole genome sequencing analysis in escaped versus OFF HBEC-CDC6 Tet-OFF 

cells (human bronchial epithelial cells) from three independent biological replicates 

demonstrated acquisition of p.R55T (c.G164C) mutation in exon 3 of MAP2K3. (e) Immunoblot 
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(IB) analysis of total and phosphorylated p38 MAPK in non-induced, one day induced and 

escaped HBEC-CDC6 Tet-OFF cells. (f) Histogram depicting the significantly increased 

resistance (p < 0.05) of escaped (Esc) from senescence HBEC-CDC6 cells, with high levels of 

CDC6, to the MEK1/2 inhibitor PD98059, relatively to the non-induced (OFF) cells with very 

low CDC6 levels (see IB in panel c). Non-induced (OFF) and Esc HBEC-CDC6 cells were 

incubated for 24h with 25μΜ PD98059. (see details in Supplementary Materials section) * 

denotes p  <  0.05 

 

Figure 13. Overlap of Association Rules with other frameworks. Overlap of Association 

Rules of the current study with GDSC, CCLE and CTRP. 

 

Figure 14. U-shaped curve demonstrating drug response or behaviour. 

 

Supplementary Figure legends 

Supplementary Figure 1. Description of full data set and summary of main data matrix. (a) 

Tissue of origin of the 1001 cell lines of the data-set. (b) Summary of the main data matrix 

containing tissue of origin, mutation status, gene expression, copy number variation and drug 

response information for the 1001 cancer cell lines (see “Data Availability” in Supportive 

material section). (c) Description of each data type used, including source, number of features 

and levels. 

 

Supplementary Figure 2. Relationships between metrics obtained through association rule 

mining. (a) Scatter plots presenting relation between confidence and support for 10,000 1-way 
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rules based on top support, confidence and lift. (b) Scatter plots presenting relation between 

confidence and support for 100,000 2-way rules based on top support, confidence and lift. 

 

Supplementary Figure 3. Representative output from the interactive Rshiny web 

application: https://compbio.nyumc.org/drugs/, confirming prior-knowledge on the 

Shieldin-PARPi association. 

 

Supplementary Figure 4. Validation of novel predicted gene-targets, identified by the ARM 

pipeline, that affect sensitivity or resistance to Doxorubicin.  

4a. Scheme and timeline of experiments. (a1) Experimental workflow of siRNA silencing and 

drug treatment. Timelines for (a2) dose response curve generation and (a3) soft agar colony 

formation following treatments with corresponding drugs and siRNAs (see details in 

Supplementary Materials section).  

4b. Experimental validation of novel predicted gene-targets, identified by the ARM pipeline, 

that affect sensitivity (2) or resistance (3) to Doxorubicin. (b1) Schematic representation of 

the gene selection algorithm. From the total of 1.326.251 found rules, 989.163 gene expression 

associated ones were employed.  (b2) Fold changes in IC50 levels, determined from dose 

response curves performed with MTT-assay (Supplementary File 3 - Doxorubicin_IC50), for 

the cell lines A549, H1299, MCF7 and Saos-2 treated with Doxorubicin in combination with 

silencing of MAGI3, POF1B, PDIA3, CD151 and NPTN (genes conferring sensitivity) relative to 

the IC50 levels of the cells when treated with the drug alone, and drug plus control siRNA (Ctl 

siRNA) (2i). Cell viability of A549, H1299, MCF7 and Saos-2 cells treated with: 1) Ctl siRNA, 2) 

POF1B, MAGI3, PDIA3, CD151 and NPTN siRNA, respectively, 3) Ctl siRNA plus Doxorubicin, 
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and 4) gene silencing plus Doxorubicin (2ii). (b3) Fold changes in IC50 levels, determined from 

dose response curves performed with MTT-assay (Supplementary File 3 - Doxorubicin_IC50), 

for the cell lines A549, H1299, MCF7 and Saos-2 treated with Doxorubicin in combination with 

silencing of TP53, CTCF, CCND3, ARHGDIB and ZCCHC7 (genes conferring resistance) 

relative to the IC50 levels of the cells when treated with the drug alone, and drug plus Ctl siRNA 

(3i). Cell viability of A549, H1299, MCF7 and Saos-2 cells treated with: 1) Ctl siRNA, 2) TP53, 

CTCF, CCND3, ARHGDIB ZCCHC7 siRNA, respectively, 3) Ctl siRNA plus Doxorubicin, and 4) 

gene silencing plus Doxorubicin (3ii). Note: H1299 and Saos-2 cell lines were not treated with 

si-TP53 because they are TP53-null.   

4c. Efficacy of genetic silencing in A549, H1299, MCF7 and Saos2 cells of genes conferring 

sensitivity (1) or resistance (2) to Doxorubicin treatment (see Supplementary Figure 4b). (1) 

Real time, quantitative (RT-)PCR analysis of POF1B, MAGI3, PDIA3, CD151 and NPTN mRNA 

expression levels before and after RNA silencing in A549, H1299, MCF7 and Saos-2 cells, and 

representative immunoblot analyses in A549 cells. (2) Real time, quantitative (RT-)PCR analysis 

of TP53, CTCF, CCND3, ARHGDIB and ZCCHC7 mRNA expression levels before and after 

RNA silencing in A549, H1299, MCF7 and Saos-2 cells, and representative immunoblot 

analyses in A549 cells. Note: H1299 and Saos-2 cell lines were not treated with si-TP53 because 

they are TP53-null.  

4d. Doxorubicin (Dox) dose response curves in the A549, NCI-H1299, MCF7 and Saos-2 

cells. (1) Dose response curves in the A549, NCI-H1299, MCF7 and Saos-2 cell lines after 

treatment with Doxorubicin (Dox) alone or with control siRNAs cells to estimate the 

corresponding IC50 values. (2) Representative confirmatory dose response curves after silencing 

each gene (MAGI3, POF1B, PDIA3, CD151, NPTN) that confers sensitivity in selected cell lines. 
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Increased sensitivity is denoted by the left pointing red arrow showing leftward shift of dose 

response curve. (3) Representative confirmatory dose response curves after silencing each gene 

(TP53, CTCF, CCND3, ARHBD1B and ZCCHC7) that confers resistance in selected cell lines. 

Increased resistance is depicted by the right pointing red arrow showing rightward shift of dose 

response curve. Note: H1299 and Saos-2 cell lines were not treated with si-TP53 because they 

are TP53-null.  

4e. Soft agar colony formation assays in the A549, NCI-H1299, MCF7 and Saos-2 cell lines 

after treatment with Doxorubicin (Dox) alone or with siRNAs against (1) genes conferring 

sensitivity MAGI3, POF1B, PDIA3, CD151, NPTN, (see Supplementary Figure 4b) and (2) 

genes conferring resistance TP53, CTCF, CCND3, ARHBD1B, ZCCHC7 (see Supplementary 

Figure 4b). Note: H1299 and Saos-2 cell lines were not treated with si-TP53 because they are 

TP53-null. * denotes p < 0.05, ctl-siRNA: control siRNA (see details in Supplementary 

Materials section) 

 

Supplementary Figure 5. (a.) CDC6 overexpression is a poor prognostic factor in common 

human malignancies. Log-rank (Mantel-Cox) survival analyses, with Bonferroni correction, 

were performed to assess the association of CDC6 overexpression with survival of patients in 

four common human malignancies (lung, pancreatic and prostate adenocarcinomas, along with 

breast carcinomas). CDC6 mRNA expression levels were obtained from mRNA microarrays. 

CDC6 mRNA expression levels and patients’ survival status were extracted from METABRIC. 

(b.) The R55T mutation of MAP2K3. As the R55T mutation of MAP2K3 was also observed in 

colon cancer we investigated its possible role in the functionality of the particular kinase. We 

attempted to create a theoretical model by using several available crystal structures of 
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homologous MAPK kinases (MAPKKs) as templates. However, in all cases R55 was 

unambiguously mapped on a disordered region of the kinase N-terminal lobe preceding β sheet 1. 

As a result, the mutation site and its precise topology could not be inspected within the context of 

a consistent homology model. Yet, there are specific indications that the positioning of R55 

within the N-terminal region of MAP2K3 may be of pivotal role to the functionality of the 

particular kinase as a regulator of signal transduction cascades. Indeed, a number of short linear 

motifs have been associated in the past with regulatory properties for MAPK kinases. Such 

patterns have been reported to be involved in a diverse range of functions including both 

inactivation through the formation of autoinhibitory dimmers, like in the case of the closely 

related MAP2K6 or, conversely, the establishment of protein-protein interactions that can greatly 

increase affinity for downstream kinases, therefore facilitating more efficient phosphorylation 

and, consequently, ensuring higher activation levels as well as selectivity over isoforms (Enslen 

et al., 2000; Chang et al., 2002; Kragelj et al., 2015; Min et al., 2009). Those regulatory N-

terminal sequence patterns include the relatively infrequent 'arginine stacks' (Min et al., 2009) 

and several categories of specificity-determining docking sites of downstream target proteins (D 

motifs) (Enslen et al., 2000). They are comprised in most of the described cases by adjacent 

basic residues and, as already mentioned, they have been found to drastically affect both the 

activity of the specific kinases as well as the activation state of their downstream targets 

(Holland & Cooper, 1999). For example, activation by different MAPKKs of specific isoforms 

of p38 kinase is strongly dependent upon the presence of a particular 18-residue long docking 

motif on the MAPKK N-terminal domain that confers the desired selectivity over the untargeted 

p38 isoforms (Enslen et al., 2000). As a result, it is reasonable to expect that the R55T mutation 

on MAP2K3 would possibly have a non-negligible effect on the overall functionality of the 
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enzyme, either with respect to its self-regulatory dynamics or regarding its activity as an effector 

that regulates downstream proteins such as p38. Although R55 could not be identified as a 

component of the docking sites of MAP2K6 and MAP2K3β (Enslen et al., 2000; Chang et al., 

2002) or on the arginine stack motif of MAP2K6 (Min et al., 2009), the possibility that it 

comprises an essential part of a regulatory domain cannot be ruled out. Indeed, its spatial 

proximity with structural determinants on the N-terminal region that are important for kinase 

function such as the active site and the Glycine-rich loop could possibly justify a significant 

contribution of the particular residue to the stabilization and subsequent dynamics of the kinase. 

Whereas additional studies are needed to further clarify the structural and dynamical role of the 

effect the aforementioned mutation has on MAPK signaling, this finding could offer a starting 

point for introducing a hypothesis that the observed over-activation of p38 kinase (Figure 12e) 

can be approached as a regulatory perturbation of MAP2K3 caused by the altered dynamics of 

the R55T mutant that triggers aberrant activation of its downstream kinase. 

(c.) Dose response curves for the MEK1/2 inhibitor PD98059 in the HBEC-CDC6 Tet-ON 

cellular system. Rightward shift in dose response curve (red arrow) in escaped relative to non-

induced HBEC-CDC6 Tet-ON cells (Komseli et al., 2018), denoting resistance of these 

malignant counterparts to the inhibitory effect of the MEK1/2 inhibitor PD98059. * denotes p < 

0.05 (see details in Supplementary Materials section) 
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Table 1. Terminology description and further reading. 

 

Term Description Reference 

Algorithm 
Set of instructions (performed in a stepwise manner) used to solve a class of problems or perform a 

computation, in the fields of mathematics and computer science 
James. et al. (2013) Springer, ISBN 978-1-4614-7138-7 

 

Algorithm parameters 

 

The parameters set for an algorithm like k (number of clusters) or the input data 
Nelder and Wedderburn. (1972) Journal of the Royal Statistical 

Society. Series A, 135: 370-384. 

 

Artificial intelligence 

 

The scientific domain aiming to give the computer systems the ability of learning, reasoning and self-

correction 

Brookshear J.G. (2008) Computer Science: An Overview. 

Addison-Wesley Publishing Company USA ISBN: 

9780321524034 

 

Batch effect removal 

 

The removal of technical variations from  data that introduce systematic bias between groups of 

examined samples 
Luo, et al. (2010) Pharmacogenomics J. 10: 278–291. 

 

Bayesian inference 

 

A statistical method that updates the probability for a hypothesis as more data become available to the 

model 
van de Schoot, et al. (2014). Child Dev. 85: 842–860 

 

Bias 

 

How different is the correct value we originally wanted to predict with our model, from the average 

prediction of our model 

https://towardsdatascience.com/understanding-the-bias-variance-

tradeoff-165e6942b229 

 

Big data 

 

Collection of very large information used in computational analyses to reveal patterns, trends, and 

associations (> 1TB information) 

Kleppmann M. (2017) Designing Data-Intensive Applications: 

The Big Ideas Behind Reliable, Scalable and Maintainable 

Systems, ISBN-13: 978-1449373320 

 

Classification 

 

Is a supervised learning process based on an algorithm that  categorizes the output into a limited set of 

values 
James, et al. (2013) Springer, ISBN 978-1-4614-7138-7 

 

Clustering 

 

Unsupervised machine learning process used to group a set of objects, based on similarity (see also 

Table 2) 
Trilla-Fuertes, et al. (2019) BMC Cancer. 19: 636 

 

Computer science 

 

Multidisciplinary field that studies computers and computational concepts 

Brookshear JG (2008) Computer Science: An Overview. 

Addison-Wesley Publishing Company USA ISBN: 

9780321524034 

 

Cost function 

 

A measure of how badly a machine learning model behaves 
https://towardsdatascience.com/machine-learning-fundamentals-

via-linear-regression-41a5d11f5220 

 

Data mining 

 

Process of unveiling hidden patterns from enormous data sets using methods of statistics, database 

systems and machine learning 

Bishop, C.M. (2006) Pattern Recognition and Machine Learning, 

Springer, ISBN 978-0-387-31073-2 

 

Feature selection 

 

The process in statistics and machine learning in which a subset of relevant features/variables  is 

selected in order to be used in the model construction 
James, et al. (2013) Springer, ISBN 978-1-4614-7138-7 

 

General linear models 

 

Under this term are any statistical linear models in the form of y = ax+b (see also Table 2), where 

x=input, y=output 

Nelder and Wedderburn. (1972) Journal of the Royal Statistical 

Society. Series A, 135, 370-384. 

 

Imputation 

 

Replacing of missing data with substituted values James, et al. (2013) Springer, ISBN 978-1-4614-7138-7 

Independent evaluation Test, after training, of a candidate model to accurately predict response on unseen settings 
Bishop, C.M. (2006) Pattern Recognition and Machine Learning, 

Springer, ISBN 978-0-387-31073-2 

Iterative rule-based approach 

Rule based process that starts from all the samples in the cohort proceeding to a subset of samples and is 

executed until there are no features fulfilling the requirements to further divide the subset of samples 

into groups 

Chen et al. (2015) Cancer Res 75: 2987–98. 

 

Kernelized regression 

 

A non-parametric technique in statistics to estimate the conditional expectation of a random variable 
Henderson and Parmeter. (2015). Applied Nonparametric 

Econometrics. Cambridge Core 
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k-fold cross-validation (KF-CV)* 
A nested cross-validation technique where the dataset is split into k groups with the k-1 groups used as 

the training set and the remaining group as the test set 
Stone M. (1974) J. Royal Stat Soc 36: 111–147 

 

Machine learning 

 

Scientific discipline that uses algorithms and statistical tools to perform tasks without instructions but 

based on patterns and deductions 

Bishop, C.M. (2006) Pattern Recognition and Machine Learning, 

Springer, ISBN 978-0-387-31073-2 

 

Matching 

 

The establishment of a link between separate data records that are related to the same entity 
https://liliendahl.com/2018/11/28/data-matching-machine-

learning-and-artificial-intelligence/ 

 

Metrics of performance 

 

The metrics used in order to evaluate the performance of a machine learning model (AUC, Accuracy 

etc) 

Bishop, C.M. (2006) Pattern Recognition and Machine Learning, 

Springer, ISBN 978-0-387-31073-2 

 

Model fit 

 

The process of training a model to accurately represent the data trend James, et al. (2013) Springer, ISBN 978-1-4614-7138-7 

 

Model generalisation 

 

When a trained machine learning model maintains its predictive power in blind datasets. 
Dietterich, T. (1995) ACM Computing Surveys (CSUR) 27: 326-

327 

 

Multi-task learning 

 

Concurrent solving of multiple tasks with shared use of commonalities and differences across these 

tasks 
Ruder, S. (2017) arXiv, 1706.05098. 

 

Multi-view learning 

 

The integration of data from multiple sources  Zhao, et al. (2017). Inf. Fusion 38(C): 43–54. 

 

Network-based data representations 

 

The representation of data via graphs, whose vertices represent data points (entities) and the edges 

represent relationships between pairs of those data points 

Wang, et al. (2014) Similarity network fusion for aggregating 

data types on a genomic scale. Nat Methods 11: 333–7. 

 

Normalization 

 

Is a data pre-processing technique, the goal of which is to change the values of numeric columns in the 

dataset to a common scale, without distorting differences in the ranges of values with the goal of 

integration for model training and inference. 

Milligan and Cooper. (1988) Journal of Classification, 5: 181–

204. 

 

Overfitting/ Overtraining 

 

When a model implements noise and fluctuations from the training set as real data for learning.  
Dietterich, T. (1995) ACM Computing Surveys (CSUR) 27: 326-

327 

Pattern recognition A procedure of recognizing patterns and regularities in data processed in machine learning. 
Bishop, C. M. (2006), Pattern Recognition and Machine 

Learning, Springer, ISBN 978-0-387-31073-2 

 

Regularization 

 

Process based on penalization that prevents the model becoming too complex and flexible, in order to 

avoid overfitting 

Dietterich, T. (1995) ACM Computing Surveys (CSUR) 27: 326-

327 

Sample stratification  Sampling from a data set which can be separated into non-overlapping subgroups. 
https://archive.is/20131013132818/http://nestor.coventry.ac.uk/~

nhunt/meths/strati.html 

 

Supervised 

 

Machine learning category in which the algorithm receives as input labeled data points (see also Table 

2) 
Libbrecht and Noble. (2015) Nat Rev Genet 16: 321–332 

 

Testing phase 

 

Part of the machine learning process where the algorithm performance after training is evaluated on a 

new data set not used in the training phase 
Libbrecht and Noble. (2015) Nat Rev Genet 16: 321–332 

 

Training phase 

 

Part of the machine learning process where the algorithm is provided with a large data set, processes it 

and builds a model 
Libbrecht and Noble. (2015) Nat Rev Genet 16: 321–332 

 

Transfer learning 

 

The term has dual different uses: i) in ensemble learning methods, it involves taking the results from 

one model to improve the results of another 

ii) inclusion of more than one features in training data, while only one of these features is used in testing 

data 

Weiss et al. (2016) J Big Data, 3: 9. 

 

Underfitting/ Undertraining 

 

When a model can neither learn the training data nor generalize to new data. 
Dietterich, T. (1995) ACM Computing Surveys (CSUR) 27: 326-

327 

 

Unsupervised 

 

Machine learning category in which the algorithm receives as input  unlabeled data points (see also 

Table 2) 
Libbrecht and Noble. (2015) Nat Rev Genet 16: 321–332 
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Variance 

 

Is an indication of how much our model can be generalized on new data other than the ones it was 

trained on 

https://towardsdatascience.com/understanding-the-bias-variance-

tradeoff-165e6942b229 

 

Weighted model 

 

Methods used in MCDA* applications for evaluating a number of alternatives in terms of a number of 

decision criteria 

Triantaphyllou, E. (2000). Multi-criteria Decision-Making 

Methods - A Comparative Study Springer US. ISBN 978-1-4757-

3157-6 
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Table 2. A highlight of machine learning algorithms used in drug response prediction. 

 

Type of Algorithm Algorithm Name Brief Description Pros Cons References 

 

 

Supervised – 

Linear 

 

 

 

Linear Regression 

 

 

Is the statistical method that assumes the relationship 

between a single predictor value X and a quantitative 

response Y is linear 

 

 

- Very simple 

- Efficient solution for most 

simple problems 

- Only models linear 

relationships 

- Sensitive to over-fitting 

when number of 

features >> number of 

samples 

James et al., (2013) 

Springer ISBN 978-1-

4614-7138-7 

Support Vector 

Machines (SVMs)* 

 

 

Is a classification algorithm that has an input of 

vectors that are non-linearly mapped to a very high 

dimensional feature space, and finds the optimal 

separating hyperplane for those data 

 

- Convex Optimization 

ensures that the solution 

reached is the global 

minimum. 

- Very fast 

- Cannot model non-

linear systems 

- Cannot handle many 

features and therefore 

needs extensive feature 

engineering as a pre-

processing step 

Cortes and Vapnik. 

(1995) Machine 

Learning. 20: 273–297 

 

 

Supervised – 

Linear-Penalisation 

 

 

 

Ridge Regression 

 

Is a statistical method close to least squares that uses 

penalisation when finding coefficient estimates. This 

method keeps all the initial predictors in the final 

model 

- It avoids overfitting and can 

be applied even when number 

of features is larger than 

number of data 

- It does not lose information 

like Lasso because it does not 

completely eliminate the 

features 

- Usually delivers better 

performance than the Lasso 

when highly correlated 

features are present 

 

- Cannot be used as a 

feature selection tool 

 

James et al., (2013) 

Springer ISBN 978-1-

4614-7138-7 

Lasso regression 

 

In contrast to ridge regression, lasso yields “sparse” 

models that include only a subset of the initial values. 

 

- It avoids overfitting and can 

be applied even when number 

of features is larger than 

number of data 

- It can do feature selection 

- Very fast training and 

inference 

 

- Unstable feature 

selection process. On 

different bootstrapped 

data, the selected features 

can vary significantly. 

- Feature selection is not 

easily interpretable. 

 

James et al., (2013) 

Springer ISBN 978-1-

4614-7138-7 

Elastic Net 

 

The elastic net is a regularized regression method that 

combines the penalisation used in the lasso and the 

ridge regression methods 

- All the advantages of  Lasso 

and Ridge 

- Complex model 

hyperparameter 

optimisation 

Hui and Hastie. (2005) 

Journal of the Royal 

Statistical Society, Series 

B: 301–320. 

 

 

Supervised – 

Non linear 

Naive Bayes 
Is a probabilistic machine learning classifier based on 

Bayes theorem 

- Computationally efficient 

-Simple to implement 

- Works equally well with 

both linear and non-linear 

data 

- Relies on the 

assumption that features 

are independent and will 

produce poor results if 

this assumption is false 

Maron, M.E. (1961) 

Journal of the ACM. 8: 

404–417. 

Decision Trees 

 

Is a machine learning tool that uses a graphical 

representation of events/decisions composed of nodes, 

branches and endpoints. 

 

- Easily interpretable. 

- Especially good in handling 

categorical features 

- Computationally efficient 

 

- Prone to overfitting 

 

Breiman, et al. Olshen 

(1984) Chapman and 

Hall/CRC ISBN 

9780412048418 - CAT# 

C4841 

 

Neural Networks 

Is a system inspired by biological neural networks. It 

consists of an input layer, a hidden layer and an 

output layer. Each layer contains nodes called neurons 

that are fully connected to the neurons of the next 

layer. Neurons transmit signals through their 

connections just like the biological paradigm. 

- Can capture complex non-

linear relationships between 

features 

- No feature selection or 

feature engineering is 

required. This automatically 

happens in the hidden layer. 

-Tendency to overfit 

unless techniques such as 

dropout are used 

-It requires large amount 

of data to reach 

maximum performance 

-Computationally 

expensive training 

McCulloch and Pitts. 

(1943). Bulletin of 

Mathematical 

Biophysics. 5: 115–133. 
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-multi-dimensional 

feature relationships 

captured in the hidden 

layers is not interpretable 

Deep Neural 

Networks 

Is like the Artificial Neural Network, the only 

difference being that there are multiple fully 

connected hidden layers 

- Same as Neural Networks 

only much more efficient due 

to higher number of hidden 

layers 

-Same as Neural 

Networks only much 

more computationally 

expensive training 

Hinton, G.E. (2007) 

Trends in Cognitive 

Sciences. 11: 428–434. 

Supervised – 

Non linear-Ensemble 

Random Forests 

 

Is an ensemble learning method that combines a 

multitude of single fully grown decision trees (low 

bias, high variance) with randomly selected subsets of 

features to calculate the final result 

- Top predictive performance 

with minimal model tuning 

- Provides a robust feature 

selection importance metric 

- They do not over-fit 

- Computationally 

expensive training and 

inference 

- Low interpretability of 

the ensemble model 

 

Breiman, L. (2001) 

Machine Learning 45: 5–

32. 

Gradient Boosting 

Machines (GBMs)* 

 

 

Is an ensemble learning method that combines a 

multitude of weak learners - shallow trees with high 

bias and low variance that are increasingly focused on 

hard examples in contrast to the fully grown decision 

trees used in random forests 

 

- Top predictive performance 

equivalent or superior to 

Random Forests 

- Resistant to over-fitting 

- Same as random forests 

plus model instability 

hence small changes in 

the training or feature set 

can create models of 

radically different 

performance 

Friedman, J.H. (2001) 

The Annals of Statistics 

29: 1189-1232. 

Unsupervised - 

Clustering 

 

k-means 

 

Is a hard clustering method aiming to assign n data 

points to k clusters, using the mean and resulting to 

partitioning of the space into Voronoi cells. 

 

- Very computationally 

efficient when it comes to big 

data 

- Works well with non-linear 

data 

 

- k needs to arbitrarily be 

defined 

- Unstable in the sense 

that can create different 

representations based on 

different initializations 

Nidheesh, et al. (2017) 

Comput Biol Med 91: 

213-221; 

Trilla-Fuertes et al. 

(2019) BMC Cancer. 19: 

636 

Hierarchical 

clustering 

Is a method that seeks to build hierarchy clusters 

either through a bottom-up (Agglomerative) or a top-

down (Divisive) approach. 

- The tree-like structure is 

very informative 

- Results are very stable and 

independent of different 

intialisations 

- Quite computationally 

demanding 

- Cannot readily identify 

distinct groups 

Lior and Maimon. (2005) 

Springer US, 321-352; 

Pritchard et al. (2013) 

Mol Biosyst 9: 1604-19. 

Unsupervised - 

Dimensionality 

reduction 

 

 

PCA (Principal 

Component 

Analysis)* 

 

Is a linear statistical procedure that converts a set of 

observations into a set of linearly uncorrelated 

variables called principal components 

- Reduction in size of data. 

- It creates totally 

uncorrelated components 

 

- Not computationally 

efficient when handling 

big data 

- Works best when 

original features are 

linearly correlated 

Pearson, K. (1901). 

Philosophical Magazine 

2: 559–572. 

 

t-SNE 

(t-distributed 

Stochastic 

Neighbor 

Embedding)* 

 

Is a machine learning algorithm for non-linear 

dimensionality reduction and visualisation 

- Works well when features 

are non-linearly correlated 

- Produces superior 

visualisations to PCA 

- Not computationally 

efficient when handling 

big data 

- Underperforms unless 

data is strongly non-

linear 

 

van der Maaten and  

Hinton (2008) Journal of 

Machine Learning 

Research. 9: 2579–2605 

Deep Autoencoders 

Is an unsupervised deep learning network that applies 

backpropagation for training with the goal to 

reconstruct its input 

Same as deep neural networks 
Same as deep neural 

networks 

Hinton and Zemel. 

(1994). Advances in 

neural information 

processing systems pp: 3-

10; Rampášek L, et al. 

(2019) Bioinformatics, 

pii: btz158. 

Unsupervised - Rule 

based 

 

 

Association Rule 

Mining 

 

 

Is a statistical procedure to identify association 

patterns in data and express them in the form of rules 

- Efficient algorithm, ideal for 

big-data handling 

- Exhaustive algorithm that 

discovers all associations in a 

data-set 

- Generates easy to interpret 

rules 

- Can model complex multi-

way relationships given a 

data-set of adequate size 

- Multi measures of 

significance 

- If data-set is small the 

algorithm tends to 

generate false 

associations 

- Can only model AND 

logical associations. 

Cannot represent rules 

containing various logic 

handlers such as OR, 

NOT, XOR 

 

 

Agrawal et al (1993). 

Proceedings of the 1993 

ACM SIGMOD 

international conference 

on Management of data,  

pp. 207-216 
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Table 3. Publicly available repository panels containing big-data for building machine learning and data mining 

frameworks. 

Features\Resource NCI-DREAM 
AstraZeneca-Sanger 

DREAM 
NCI-60 GDSC CCLE TCGA/TCPA 

 

Sample type 

 

53 breast cancer cell lines 85 cancer cell lines 
59 cell lines from 9 tissue 

types 

1124 cell lines from 29 

tissue types 

>1000 cell lines from 36 

types of cancer 

~ 11,000 patient tumors from 

33 tissue types 

Number of 

compounds: 
28 compounds 

910 pairwise 

combinations of 118 

drugs 

>1,500 265 24 - 

 

Main omics data sets 

 

Mut, CNV, Meth, GE, PR Mut, CNV, Meth, GE Mut, CNV, GE, Meth, PR Mut, CNV, Meth, GE Mut, CNV, Meth, GE 
Mut, CNV, GE, Meth, PR, 

Hist 

 

Number of cancers 

 

1 6 9 55 36 33 

Reference 
Costello et al. (2014) Nat 

Biotechnol 32: 1202. 

Menden et al. (2019) Nat 

Commun 10: 2674 

Shoemaker RH. (2006) 

Nat Rev Cancer 6: 813. 

 

Garnett et al. (2012) 

Nature 483: 570. 

 

Barretina et al. (2012) 

Nature 483: 603. 

Weinstein et al. (2013) Nat 

Genet 45: 1113/ 

Li et al. (2013) Nat Methods 

10: 1046. 

Website 

https://www.synapse.org/#

!Synapse:syn2785778/wiki

/70252 

https://www.synapse.org/

DrugCombinationChallen

ge 

discover.nci.nih.gov/cell

miner/ 

http://www.cancerrxgen

e.org/ 

http://www.broadinstitute

.org/ccle 

http://cancergenome.nih.gov/  

http://tcpaportal.org/tcpa/ 

 

 
Mut: gene Mutation; CNV: gene Copy Number Variation; GE: Gene Expression; Meth: DNA Methylation, PR: Protein Expression, Hist: 

Histopathological images 
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Table 4. Performance metrics of machine learning frameworks. 
 

Model types Performance measure Type of measure 

Regression 

models 

R² 

R-squared is a statistical measure that represents the proportion of 

the variance for a dependent variable that is explained by an 

independent variable or variables in the regression model under 

evaluation. 

 

Adjusted R² 

 

 

Similar to R² but with a penalty for increasing model complexity 

 

Root Mean Square Error (RMSE)* 

The Root Mean Squared Error measures the square root of the 

average of the squared difference between the predictions and the 

ground truth. 

 

Mean Absolute Error 

 

The Mean Absolute Error measures the average of the absolute 

difference between each ground truth and the predictions. 

F-Test 

The F-Test compares the model to be evaluated against a model 

with no variables. The null hypothesis is that the model with no 

variables performs just as good as the model with the variables. 

Classification 

models 

 

Log Loss (Logarithmic Loss or Cross 

Entropy Loss) 

 

Penalizes classifiers during prediction. It is maximal for false 

prediction classification. 

 

True Positive (TP)* 

 

Equivalent with hit 

True Negative (TN)* Equivalent with correct rejection 

False Positive (FP)* Equivalent with false alarm (Type I error) 

False Negative (FN)* Equivalent with miss (Type II error) 

Sensitivity, recall, hit rate, or true 

positive rate (TPR)* 
True Positives over all Positives 

Specificity, selectivity or true negative 

rate (TNR)* 
True Negatives over all Negatives 

 

Precision or positive predictive value 

(PPV)* 

True Positives over True Positives plus False Positives 

Negative predictive value (NPV)* True Negatives over True Negatives plus False Negatives 

Miss rate or false negative rate (FNR)* False Negatives over all Positives 

 

Fall-out or false positive rate (FPR)* False Positives over all Negatives 

 

False discovery rate (FDR) 

 

False positives over False Positives plus True Positives 

 

False omission rate (FOR) 

 

False Negatives over False Negatives plus True Negatives 

Accuracy (ACC) 
True Positives plus True Negatives over  all Positives plus all 

Negatives 
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F1 Score The harmonic mean of precision and sensitivity 

Youden’s Index 
A single statistic that captures the performance of a dichotomous 

diagnostic test 

Area under the ROC curve (AUC) 

The ROC curve is plotted with TPR against the FPR where TPR is 

on the y-axis and FPR is on the x-axis. AUC is the area under this 

curve. AUC 0.5 indicates a random model whose performance is 

equivalent to chance. AUC 1 indicates the perfect predictive model 
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Table 5. Highlights of machine learning applications in oncology in chronological order 

 

Year Reference Model applied Training set Testing set Outcome 

2011 
Gillet et al. (2011) Proc Natl Acad Sci 

USA 108: 18708–13.  

BRB-ArrayTools for classification of 

tumor types and Hierarchical 

clustering analysis 

NCI-60 cancer cell line panel Primary tumors of different origin 

Tendency of cell lines of different 

anatomical origin to resemble 

each other, rather to reflect their 

origin 

2013 
Daemen et al. (2013) Genome Biol 

14: R110.  

1) Weighted least squares support 

vector machine (LS-SVM) and 2) 

Random Forests (RF) 

 

Breast cancer cell lines 

 

TCGA breast tumors for which 

expression (Exp), copy number 

(CNV) and methylation (Meth) 

measurements were available 

AUC based sensitivity prediction 

2013 
Niepel et al. (2013) Sci Signal 6: 

ra84.  

Partial least-squares regression to 

simulate signaling networks 

activation profile 

 

NCI-ICBP43 breast cancer cell 

line collection 

 

Breast cancer cell lines Prediction of drug sensitivity 

2103 
Byers et al, (2013) Clin Cancer Res 

191: 279–90.  

Hierarchical clustering and principal 

component 

Analysis (PCA) 

Non–small cell lung carcinoma 

(NSCLC) cell lines 

 

i) non–small cell lung carcinoma 

(NSCLC) cell lines 

ii) patients treated in the Biomarker-

Integrated Approaches of Targeted 

Therapy for Lung Cancer Elimination 

(BATTLE) study. 

EMT signature that predicts drug 

resistance to EGFR and PI3K/Akt 

inhibitors 

2014 
Geeleher et al. (2014) Genome Biol 

15: R47.  
Ridge Regression 

Cancer Genome Project (CGP) 

cell lines 

 

i) Docetaxel treated breast cancer 

patients 

ii) Paclitaxel treated breast cancer 

patients 

iii) Bortezomib treated myeloma 

iv) Erlotinib treated NSCLC 

Sensitivity versus resistance 

prediction 

2014 
Guinney et al. (2014) Clin Cancer Res 

20: 265–72. 
Penalized ElasticNet regression 

Fresh-frozen colorectal cancer 

tissues analyzed for K-ras 

(codons 12 and 13) mutations 

 

i) Cetuximab response: mouse 

xenografts and patients 

ii) MAP–ERK kinase (MEK) 

inhibition: cell lines and mouse 

xenografts 

Prediction response to anti-EGFR 

agents and MEK inhibitors based 

on RAS phenotype 

2014 
Tran et al. (2014) BMC Syst Biol 8: 

74. 

ElasticNet regression combined with 

logarithmic transformation of the data 

Kinase inhibitor treated cell 

lines 
Experimental validation 

 

Identification of specific kinases 

linked to drug response of a given 

cell line 

 

 

 

2014 

 

Liang et al. (2014) Int  J Mol Sci 15: 

11220–33.  

 

A linear model was applied for 

continuous covariates along with 

ANOVA test for categorical 

covariates 

 

Neuroblastoma cell lines and 

patients 

 

 

Neuroblastoma patients 

 

REST-driven transcriptional 

signature associated with 

neuroblastoma drug sensitivity 

 

2014 
Costello et al. (2014) Nat Biotechnol 

32: 1202-12. 

 

Wining model: Bayesian efficient 

multiple kernel learning (BEMKL) 

method  

 

Breast cancer cell lines Cell lines 

Community effort to define the 

state-of-the-art in drug response 

prediction from ‘omic’ data 

2015 
Falgreen et al. (2015) BMC Cancer 

15: 235. 

 

Penalized ElasticNet regression 

combined with Lasso and Ridge 

Regression 

 

Combined human B-cell 

cancer cell lines (HBCCL) 

with published CGP gene 

expression datasets 

Diffuse large B-cell lymphoma 

(DLBCL) patients treated with CHO: 

cyclophosphamide (C), doxorubicin 

(H), and vincristine (O) 

Generate resistance gene 

signatures (REGS) for predicting 

sensitivity or resistance 

2015 
Chen et al. (2015) Cancer Res 75: 

2987–98. 

PSFinder: an iterative rule–based 

unsupervised approach 

TCGA derived high-grade 

serous ovarian cancer (HGS-

OvCa) with platinum–taxane 

therapy 

Separate TCGA derived high-grade 

serous ovarian cancer (HGS-OvCa) 

with platinum–taxane therapy 

Classification into poor versus 

positive survival outcome 

2015 Fey et al. (2015) Sci Signal 8: ra130. 

Rule based modeling employing 

ordinary differential equations 

(ODEs) to simulate reactions and 

states of the JNK pathway 

i) Neuroblastoma 

cells lines 

ii) Neuroblastoma patients 

 

i) Neuroblastoma cells lines 

ii) Neuroblastoma patients 

iii) Zebrafish neuroblastoma model 

 

Survival prediction based on 

activation status of JNK pathway 
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2015 
Pereira et al. (2015) PLoS One 10: 

e0145754. 

 

Log-binomial models combined with 

logistic regression models 

 

Patients with gynecologic 

malignancies 

Patients with gynecologic 

malignancies 

Circulating tumor DNA (ctDNA) 

as a post-treatment survival 

biomarker 

2015 
Zheng et al. (2015) 

Pharmacogenomics J 15: 135–43. 

 

BRB-arrayTools to perform 

regression analysis 

 

Colorectal cancer cell lines 

with available gene expression 

profiles 

Colorectal cancer clinical cohorts 
Contribution of drug resistance-

related genes to patient survival 

2019 
Menden et al. (2019) Nat Commun 

10: 2674 
Ensemble models Cancer cell lines Cancer cell lines and PDX models 

Community effort to define 

computational strategies for 

predicting synergistic drug pairs 

and biomarkers 

2019 
Chiu et al. (2019) BMC Med 

Genomics 31: 12:18. 
DLNN 

 

Cancer cell lines from CCLE 

& GDSC, clinical samples 

from TCGA 

clinical samples from TCGA (33 

cancer types) 
Drug response prediction 
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Table 6. Potential mechanism of action following genes silencing that confers sensitivity to 

doxorubicin treatment. 

Gene Function Mechanism affecting 

sensitivity 

Reference 

 

 

 

 

POFB1 

(Premature 

Ovarian Failure 

Protein 1B) 

 

 

 

 

Plays a key role in the 

organization of 

epithelial monolayers 

by regulating the actin 

cytoskeleton. 

 

POF1B loss:  

1. Disrupts binding of 

non-muscle actin 

filaments. 

2. Abolishes tight 

junction localization. 

Thus, potentially 

enhances Doxorubicin 

mediated cytoskeleton 

re-organization related to 

cell shrinkage, 

detachment and 

apoptosis. Consequently 

cells develop increased 

sensitivity to 

Doxorubicin requiring 

lower IC50 values of the 

drug. 

 

 

 

 

 

Padovano V et al, J 

Cell Sci 2011 

Lacombe A et al, 

AJHG 2006  

Crespi A et al, J 

Invest Dermatol 2014 

Lee SJ et al, BMB 

Rep 2017  

 

 
 

 

 

 

 

Gene Function Mechanism affecting 

sensitivity 

Reference 

    

+ Doxorubicin (IC50) siPOF1B+ Doxorubicin (↓ IC50)

Enhanced cell death

non-muscle actin filaments
tight junctions

POF1B

nucleus

1.

2. 3.

4.
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MAGI3 

(Membrane-

Associated 

Guanylate Kinase) 

Acts as a scaffolding 

protein at cell-cell 

junctions, thereby 

regulating various 

cellular and signaling 

processes. Modulate 

the activity of ERK and 

AKT1 pathways. 

 

Loss of MAGI3 

expression disrupts 

activation of the 

PI3K/AKT and/or ERK 

pathways assisting 

Doxorubicin treatment 

effect (lower IC50 value 

for Doxorubicin 

treatment). 

Zhang H et al, Cell 

Signal 2007  

Abrams SL et al, Cell 

Cycle 2010  

Wang Y et al, 

Neoplasma 2015  

Wu Y et al, J Biol 

Chem. 2000  

 

 
 

 

siMAGI3 + Doxorubicin (↓ IC50)

cell junctions

MAGI3

nucleus

PI3K/AKT

ERK

PI3K/AKT

ERK

PI3K/AKT

ERK

PI3K/AKT

ERK activation

Decreased

cell survival

Doxorubicin (IC50)
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Gene Function Mechanism affecting 

sensitivity 

Reference 

 

 

 

PDIA3 

(ERp57/PDIA3: 

Protein disulfide 

isomerase family) 

 

A phosphatidylinositol 

4,5-bisphosphate 

phosphodiesterase type I 

(phospholipase C-alpha). 

Catalyzes the 

rearrangement of -S-S- 

bonds in proteins. Acts in 

concert with calreticulin 

and calnexin in the 

folding of glycoproteins 

destinated to the plasma 

membrane or to be 

secreted.  

 

 

 

Functions as a hub 

integrating signals that 

mediate metastasis. Its 

silencing inhibits cell 

proliferation and 

increases sensitivity to 

ionizing radiation and 

chemotherapeutics. 

Therefore, cells develop 

increased sensitivity to 

Doxorubicin requiring 

lower IC50 values of the 

drug. 

 

 

 

Santana-Codina N 

et al, Mol Cell 

Proteom 2013 

Hussmann M et al, 

Oncotarget 2015 

Su BB et al, J Surg 

Res 2016  

 

 
 

 

siPDIA3 + Doxorubicin (↓ IC50) 

PDIA3

nucleus
signaling

Decreased

metastasis
Metastasis

Doxorubicin (IC50)
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Gene Function Mechanism affecting 

sensitivity 

Reference 

 

 

 

CD151 

(Tetraspanin-24) 

 

CD151 is a cell surface 

glycoprotein that 

associates strongly with 

the laminin-binding 

integrins (α3β1, α6β1 

and α6β4), growth 

factors and matrix 

metalloproteinases. It is 

involved in epithelial 

cell–cell adhesion. 

 

 

Inhibition of CD151 

affects integrin-

mediated cell adhesion 

and signaling, resulting 

in sensitivity to 

Doxorubicin treatment 

(lower IC50 value for 

Doxorubicin treatment). 

Targeting CD151 

inhibits metastasis by 

blocking cell motility. 

 

 

Yamada M et al, 

FEBS J 2008  

Haeuw J-F et al, 

Biochem Soc Trans 

2011 

Lovitt CJ et al, BMC 

Cancer 2018  

Liu T et al, Mol Cell 

Biochem 2015  

 

 
 

 

siCD151 + Doxorubicin (↓ IC50) 

CD151

nucleus

Decreased

Tumor growth

Migration

Invasion

Metastasis

Tumor growth

Migration

Invasion

Metastasis

α-β integrins

signaling

growth factor receptor

complex

Doxorubicin (IC50)
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Gene Function Mechanism affecting 

sensitivity 

Reference 

 

 

 

NPTN 

(Neuroplastin) 

 

Probable homophilic 

and heterophilic cell 

adhesion molecule. In 

cancer context it 

activates the FGFR 

signaling pathway, 

promoting neo-

angiogenesis and 

metastasis. 

 

 

 

FGFR inhibition 

synergizes with 

Doxorubicin treatment 

leading to increased 

sensitivity (lower IC50 

value for Doxorubicin 

treatment). 

 

Beesley PW et al, J 

Neurochem 2014  

Roidl A et al, Clin 

Cancer Res 2009  

Byron SA et al, Int J 

Gynecol Cancer 2012 

 

 
 

 

siNPTN + Doxorubicin (↓ IC50)

NPTN

nucleus

signaling

Decreased

Neo-angiogenesis

Metastasis

Neo-angiogenesis

Metastasis

FGFR

Doxorubicin (IC50)
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Table 7. Potential mechanism of action following genes silencing that confers resistance to 

doxorubicin treatment. 

Gene Function Mechanism affecting 

resistance 

Reference 

 

 

 

 

 

 

TP53 

(Tumor Protein 

p53) 

 

 

 

A key tumor suppressor 

that acts in many tumor 

types, inducing growth 

arrest, senescence or 

apoptosis depending on 

the physiological 

circumstances and cell 

type. Involved in cell 

cycle regulation as a 

trans-activator that acts 

to negatively regulate 

cell division by 

controlling genes 

required for this 

process. 

 

Loss of p53 or mutation 

augments resistance to 

Doxorubicin (Dox) 

mediated apoptotic and 

non-apoptotic death. 

Several p53-dependent 

cell death inducing 

routes upon Dox 

treatment include: i) the 

DNA damage response 

(DDR) pathway, ii) the 

mitochondrial 

cyclophilin D/p53 

complex, iii) p53 assisted 

TGF-β/Smad3 apoptosis 

induction. Consequently 

cells develop increased 

resistance to Dox 

requiring higher IC50 

values of the drug. 

 

 

 

Lu J-H et al, Mol Cell 

Biochem 2014  

Aas T et al, Nat Med 

1996  

Sun Y et al, Am J 

Cancer Res 2015  

Wang S et al, J Biol 

Chem 2004  

O’Connor MJ, Mol 

Cell 2015 

Negrini S et al, Nat 

Rev Mol Cell Biol. 

2010  

Kastenhuber ER, 

Lowe SW, Cell 2017  

 

 
 

 

Gene Function Mechanism affecting 

resistance 

Reference 

 

 

 

 

 

 

 

 

 

 

 

DNA binding protein 

 

Evidence indicates that 

doxorubicin forms a 

complex with the DNA 

by intercalation of its 

planar rings between 

 

 

 

 

 

 

siTP53 + Doxorubicin (↑ IC50)
TGFBR

nucleus

signaling

Decreased

Cell death

(eg apoptosis)

Cell death

(eg apoptosis)

p53

Smad

mitochondrium

Genotoxic stress/

DDR activation

cyclophilin D

Doxorubicin (IC50)
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CTCF 

(11-zinc finger 

protein or 

CCCTC-binding 

factor) 

responsible for insulator 

function, nuclear 

architecture and 

transcriptional control, 

which probably acts by 

recruiting epigenetic 

chromatin modifiers.  

nucleotide base pairs. 

This intercalation 

generates bidirectional 

torsional stress on the 

DNA helix, which along 

with the Topoisomerase 2 

inhibitory effect of 

Doxorubicin, leads 

eventually to DNA 

double strand breaks. The 

stress is possibly relieved 

upon removal of CTCF 

stable boundaries, thus 

requiring higher 

Doxorubicin (IC50 

values) to exert a similar 

stress induced DNA 

damage and cell death. 

 

Yang F et al, 

Biochim Biophys 

Acta 2014  

O’Connor MJ, Mol 

Cell 2015  

Canela A et al, Cell 

2017  

 

 
 

 

 

 

Gene Function Mechanism affecting 

resistance 

Reference 

 

 

 

CCND3 

(cyclin D3) 

 

 

Member of the highly 

conserved cyclin D 

family, regulating cell 

cycle progression. It 

also activates Caspase 

2, triggering apoptosis. 

 

CCND3 silencing results 

in loss of sensitizing 

cells to apoptosis 

through inability to 

activate Caspase 2. In 

turn, higher Doxorubicin 

IC50 values are required 

to bypass the acquired 

resistance to this drug. 

 

 

 

 

Mendelsohn AR et al, 

PNAS 2002  

siCTCF + Doxorubicin (↑ IC50)

CCTCF

Doxorubicin (IC50)

Doxorubicin
torsion stressTAD TAD
DNA double strand break

torsion stress accumulation

torsion stress dissipation

TAD: Topological Associated Domain (loop)
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siCCND3 + Doxorubicin (↑ IC50)

nucleus
Decreased

Apoptosis
Apoptosis

CCND3

Caspase 2

Doxorubicin (IC50)
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Gene Function Mechanism affecting 

resistance 

Reference 

 

 

 

ARHGDIB  

(Rho GDP 

dissociation 

inhibitor beta) 

 

 

Regulates the 

GDP/GTP exchange 

reaction of the Rho 

proteins by inhibiting 

the dissociation of GDP 

from them, and the 

subsequent binding of 

GTP.  

 

 

Aberrantly activated 

Rho proteins promote 

many “hallmarks” of 

cancer. Silencing of 

ARHGDIB facilitates 

activation of Rho 

proteins that mediate 

increased resistance to 

Doxorubicin treatment 

(higher IC50 values). 

 

Rickardson L et al, 

Br J Cancer 2005  

Sahai E, Marshall CJ, 

Nat Rev Cancer 2002  

Porter AP et al, Small 

GTPases 2016  

 

 

 
 

 

siARHGDIB + Doxorubicin (↑ IC50)

GTP
Enhanced

Tumor

growth 

Control over

Tumor

growth

ARHGDIB

GDP

Rho

inactive

active

inactive

active

Doxorubicin (IC50)
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Gene Function Mechanism affecting 

resistance 

Reference 

 

 

 

ZCCHC7 

(zinc finger 

CCHC-type 

containing 7) 

 

 

 

Possibly involved in 

deadenylation-dependent 

mRNA decay. 

 

ZCCHC7 down-

regulation in Acute 

lymphoblastic leukemia 

(ALL) is associated with 

relapse and poor 

survival. Its silencing in 

breast cancer is 

associated with increased 

cell proliferation. 

Therefore higher IC50 

Doxorubicin values are 

required to arrest tumor 

cell growth. 

 

 

 

Nunez-Enriquez JC 

et al, Arch Med Res 

2016  

Rangel R et al, 

Cancer Res 2017  

 

 

 
 

 

 

 

Supplementary File 

siZCCHC7 + Doxorubicin (↑ IC50)

nucleus

Decreased

Cell growth
Cell growth

ZCCHC7

Doxorubicin (IC50)
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