49 research outputs found

    Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow

    Get PDF
    Pre-stack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure and seismic velocities resolved to ∌14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration and short-term geodetically determined slow-slip events. The subduction interface is a shallow dipping thrust at < 7 km depth near the trench and steps down to 14 km depth along an ∌18 km long ramp, beneath Porangahau Ridge. This apparent bend in the dĂ©collement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, up-dip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid rich sediments have been imbricated by splay faults in a region that coincides with the step down in the dĂ©collement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip

    3‐D Seismic Investigation of a Gas Hydrate and Fluid Flow System on an Active Mid‐Ocean Ridge; Svyatogor Ridge, Fram Strait

    Get PDF
    Tectonic settings play a large role in the development of fluid flow pathways for gas migrating through sedimentary strata. Gas hydrate systems worldwide are located on either the slopes of passive continental margins, often in large contourite deposits, or in accretionary wedges on subduction margins. The Svyatogor Ridge, however, located at the northwestern flank of the Knipovich Ridge and south of the Molloy Transform Fault (Fram Strait), is a gas hydrate system which is located on an actively spreading margin. Svyatogor Ridge has evidence of shallow gas accumulations; a strong BSR indicating a gas hydrate and underlying free gas system, and fluid flow pathways to the seafloor culminating in pockmarks. Using a high‐resolution P‐Cable 3‐D seismic survey, we investigate how tectonic and sedimentary regimes have influenced the formation of this well‐developed gas hydrate system. Large‐scale basement faults identified in the seismic data are interpreted as detachment faults, which have exhumed relatively young ultramafic rocks. These detachment faults act as conduits for fluid flow, and are responsible for the formation of folds in the overlying sediments that are breached by faults. We propose a model for fluid flow within this system whereby as sedimentary faults breach upward through the sedimentary strata, fluid is able to migrate further upward. We find that the tectonic regime on Svyatogor Ridge is the dominant driver of fluid migration and episodic release at the seafloor

    Crustal processes sustain Arctic abiotic gas hydrate and fluid flow systems

    Get PDF
    The Svyatogor Ridge and surroundings, located on the sediment-covered western flank of the Northern Knipovich Ridge, host extensive gas hydrate and related fluid flow systems. The fluid flow system here manifests in the upper sedimentary sequence as gas hydrates and free gas, indicated by bottom simulating reflections (BSRs) and amplitude anomalies. Using 2D seismic lines and bathymetric data, we map tectonic features such as faults, crustal highs, and indicators of fluid flow processes. Results indicate a strong correlation between crustal faults, crustal highs and fluid accumulations in the overlying sediments, as well as an increase in geothermal gradient over crustal faults. We conclude here that gas generated during the serpentinization of exhumed mantle rocks drive the extensive occurrence of gas hydrate and fluid flow systems in the region and transform faults act as an additional major pathway for fluid circulation

    Bottom-simulating reflector dynamics at Arctic thermogenic gas provinces: An example from Vestnesa Ridge, offshore west Svalbard

    Get PDF
    The Vestnesa Ridge comprises a >100 km long sediment drift located between the western continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep water (>1000 m) gas hydrate and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system. Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and measured gas compositions results in an unusual underestimation of the observed bottom-simulating reflector (BSR) depth. The BSR is up to 60 m deeper than predicted for pure methane and measured gas compositions with >99% methane. Models for measured gas compositions with >4% higher-order hydrocarbons result in a better BSR approximation. However, the BSR remains >20 m deeper than predicted in a region without active seepage. A BSR deeper than predicted is primarily explained by unaccounted spatial variations in the geothermal gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates containing higher-order hydrocarbons form at greater depths and higher temperatures and contribute with larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant upward revision (up to 50% in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates

    Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor

    Get PDF
    Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.authorsversionPeer reviewe

    Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard

    Get PDF
    We present stable isotope and geochemical data from four sediment cores from west of Prins Karls Forland (ca. 340 m water depth), offshore western Svalbard, recovered from close to sites of active methane seepage, as well as from shallower water depths where methane seepage is not presently observed. Our analyses provide insight into the record of methane seepage in an area where ongoing ocean warming may be fueling the destabilization of shallow methane hydrate. The ?13C values of benthic and planktonic foraminifera at the methane seep sites show distinct intervals with negative values (as low as ?27.8‰) that do not coincide with the present-day depth of the sulfate methane transition zone (SMTZ). These intervals are interpreted to record long-term fluctuations in methane release at the present-day landward limit of the gas hydrate stability zone (GHSZ). Shifts in the radiocarbon ages obtained from planktonic foraminifera toward older values are related to methane-derived authigenic carbonate overgrowths of the foraminiferal tests, and prevent us from establishing the chronology of seepage events. At shallower water depths, where seepage is not presently observed, no record of past methane seepage is recorded in foraminifera from sediments spanning the last 14 ka cal BP (14C-AMS dating). ?13C values of foraminiferal carbonate tests appear to be much more sensitive to methane seepage than other sediment parameters. By providing nucleation sites for authigenic carbonate precipitation, foraminifera thus record the position of even a transiently stable SMTZ, which is likely to be a characteristic of temporally variable methane fluxes

    Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data

    Get PDF
    The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites along the continental margin, using ray-trace forward modeling. Two southern sites were located in the vicinity of a 30 km long zone where methane gas bubbles escaping from the seafloor were observed during the cruise. The three remaining sites were located along an E-W orientated line in the north of the margin. At the deepest northern site, Vp anomalies indicate the presence of hydrate in the sediment immediately overlying a zone containing free gas up to 100-m thick. The acoustic impedance contrast between the two zones forms a bottom-simulating reflector (BSR) at approximately 195 m below the seabed. The two other sites within the gas hydrate stability zone (GHSZ) do not show the clear presence of a BSR or of gas hydrate. However, anomalously low Vp, indicating the presence of free gas, was modeled for both sites. The hydrate content was estimated from Vp and Vs, using effective-medium theory. At the deepest northern site, modeling suggests a pore-space hydrate concentration of 7–12%, if hydrate forms as part of a connected framework, and about 22% if it is pore-filling. At the two other northern sites, located between the deepest site and the landward limit of the GHSZ, we suggest that hydrate is present in the sediment as inclusions. Hydrate may be present in small quantities at these two sites (4–5%) of the pore space. The variation in lithology for the three sites indicated by high-resolution seismic profiles may control the distribution, concentration and formation of hydrate and free gas

    Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation – a model study

    No full text
    We present an integrated 2D model of thermal and microbial generation of methane, migration into the gas hydrate stability zone (HSZ), and formation of methane hydrates. The model reconstructs the shallow (0e20 km) thermal structure of the subduction interface between the Australian plate and the subducting Pacific plate, and the trench basin (Pegasus Basin). Modelled temperatures of less than 110 °C within Pegasus Basin constrain the generation of oil and gas. Whilst a cool thermal regime is predicted to limit thermogenic generation of gas to a burial depth of >10 km, it extends the interval where prolific microbial gas generation occurs. The modelled rate of microbial generation of methane increases beneath the HSZ and peaks at ~1600 m below seafloor. Diffusive upward migration of microbially generated methane is interpreted to lead to widespread methane hydrate formation and the presence of a semicontinuous bottom simulating reflector (BSR). Predicted average hydrate saturation within the HSZ is 0.9% for a modelled sedimentary organic matter content of 0.5% and 1.6% for 1% organic matter in finegrained Pegasus Basin sediments. Considerably higher concentrations of methane hydrate of up to 20 e70% are predicted to occur where gas migration is focussed within the frontal anticline and proto-thrust zone southeast of the modern accretionary wedge and in channel and basin floor sandstones related to the Hikurangi Channel. The Hikurangi Channel sedimentary system transported coarse clastic sediments eroded from the rising Southern Alps along the eastern margin of the Pegasus Basin since the Miocene. It provides carrier beds specifically for transport of thermogenic gas generated close to the subduction interface. A buried Mesozoic accretionary wedge originating from subduction of the Pacific Plate beneath Gondwana further focusses the migration of gas. Focussed migration of thermogenic gas leads to the highest predicted hydrate concentrations in potential channel sand reservoirs
    corecore