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Abstract The Vestnesa Ridge comprises a >100 km long sediment drift located between the western
continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep water (>1000 m) gas hydrate
and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon
isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system.
Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and
measured gas compositions results in an unusual underestimation of the observedbottom-simulating reflector
(BSR) depth. The BSR is up to 60m deeper than predicted for pure methane andmeasured gas compositions
with>99%methane. Models for measured gas compositions with>4% higher-order hydrocarbons result in a
better BSR approximation. However, the BSR remains>20m deeper than predicted in a region without active
seepage. ABSRdeeper thanpredicted is primarily explainedbyunaccounted spatial variations in thegeothermal
gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates
containing higher-order hydrocarbons form at greater depths and higher temperatures and contribute with
larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant
upward revision (up to 50% in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates.

1. Introduction

Gas hydrates are crystalline structures in which gas molecules are trapped in water cages. They form under
low temperature and high pressure inmarine and permafrost sediments where a sufficient supply ofmethane
exists [e.g., Kvenvolden and Claypool, 1988]. Gas hydrates may also exist as unwanted blocking precipitates in
gas pipelines. In nature, gas hydrates host substantial amounts of carbon (i.e., 102–106 Gt) [Dobrynin, 1981;
Soloviev, 2002] and the associated gas (mainly methane) is considered as an untapped energy resource but
is also seen as a potential global warming amplifier if methane gas reaches the atmosphere [e.g., Moridis
et al., 2013]. In addition, gas hydrates are discussed as trigger for geohazards as their destabilization is inferred
to increase slope instability or fluid flow [e.g., Sultan et al., 2004]. A commonly observed indicator of gas
hydrate occurrence in sediments is the bottom-simulating reflector (BSR), a high-amplitude seismic reflection
that crosscuts stratigraphic layers and mimics the seafloor but with an opposite seismic amplitude polarity
[e.g.,Mienert and Bünz, 2016]. The gas hydrate stability zone (GHSZ) represents the interval where gas hydrates
are theoretically stable; its boundaries are defined by pressure-temperature (P-T) conditions, salinity of the
pore fluid, and the source gas composition [Sloan and Koh, 2008]. The BSR is observed at or nearby the base
of the gas hydrate stability zone (BGHS) in response to the acoustic impedance contrast between hydrate
bearing and underlying gas bearing sediments [MacKay et al., 1995; Shipley et al., 1979; Xu and Ruppel, 1999].

The dynamics of a gas hydrate system at a specific geological setting in response to dominant external factors
such as bottom water temperature (BWT), geothermal gradient (GTG), heat flow, pressure, gas composition,
and salinity can be assessed by analyzing discrepancies between the predicted BGHS and the observed BSR
[e.g., Bale et al., 2014; Liu and Flemings, 2011; Ruppel, 1997; Xu and Ruppel, 1999]. For instance, in convergent
margin settings such as Nankai Trough and the Hikurangi Margin, the depth of the BSR (300–500 m below
seafloor (mbsf)) readjusts primarily to heat flow changes and pressure changes due to uplift and erosion
[Kinoshita et al., 2011; Pecher et al., 2005], whereas in continental slopes along passive margins, seafloor tem-
perature variability and sea level cycles can bemajor factors controlling the BSR depth [e.g., Berndt et al., 2014;
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Mienert et al., 2005; Skarke et al., 2014;Westbrook et al., 2009]. Another factor suggested to influence the BSR
depth is the capillary effect which allows gas to coexist with hydrates in sediments right above and below the
BGHS. This can shift the BSR a few meters above the theoretical BGHS [Liu and Flemings, 2011], reconciling
common worldwide observations of a shallower BSR than theoretical predictions [e.g., Liu and Flemings,
2011; Ruppel, 1997; Torres et al., 2008].

Global estimates of gas hydrate concentrations rely on the prediction of the extent of the GHSZ at specific
geological settings [e.g., Klauda and Sandler, 2005]. The GHSZ extent can be predicted using thermodynamic
models [e.g., Bale et al., 2014; Dickens and Quinby-Hunt, 1994; Lu and Sultan, 2008; Sloan and Koh, 2008]
together with constraints from direct sampling and indirect evidence from both geophysical and geochem-
ical data. Several numerical models have been proposed that emphasize controls on hydrate stability by spe-
cific parameters [Bale et al., 2014, and references therein; Peszynska et al., 2016]. The modeling approach by
Sloan and Koh [2008] is particularly widely implemented for hydrate studies in different continental settings
due to its applicability for gas hydrates with a mixed composition of microbial and thermogenic methane
with higher-order hydrocarbons (i.e., structures I, II, and H). Essentially, the gas source for hydrates in conti-
nental margins can be a mixture of microbial methane, thermogenic methane, and larger hydrocarbons such
as ethane and propane, or even abiogenic gas [Johnson et al., 2015; Rajan et al., 2012]. The presence of
ethane, propane, and butane in addition to methane is a critical factor influencing hydrate stability and thus
the thickness of the GHSZ, particularly in margins with structural focusing of hydrocarbons [e.g., Milkov and
Sassen, 2002; Paganoni et al., 2016]. Gas hydrates with larger guest molecules such as ethane are more stable
and form in wider P-T regimes if compared to pure methane hydrate [Sloan and Koh, 2008]. Except for active
fault-controlled seepage systems (e.g., at the Gulf of Mexico and Caspian Sea) where thermogenic gas is
transported to the seafloor [Brooks et al., 1984; Ginsburg et al., 1992], gas samples in hydrate systems
commonly show >99% microbial methane in their composition [Kvenvolden and Lorenson, 2001].

In situ thermogenic gas hydrate accumulations have been often considered as “anecdotal exceptions” [Sloan
and Koh, 2008]. Thus, a common heuristic to simplify predictions of the GHSZ thickness and global hydrate
inventories has been that seafloor gas compositions of ~100% methane is representative for the entire
thickness of the GHSZ. However, our knowledge about gas hydrate systems from field observations is
growing and the number of documented hydrate provinces with thermogenic gas input is steadily increas-
ing—e.g., offshore Northern California [Kvenvolden and Field, 1981], the Gulf of Mexico [Brooks et al., 1984],
the Cascadia Margin [Lu et al., 2007], the Barents Sea [Chand et al., 2008], Lake Baikal [Khlystov et al., 2013],
the Alaska North Slope [Pinero et al., 2014], the west Svalbard margin [Smith et al., 2014], and the continental
slope of Sabah [Paganoni et al., 2016]. The significance of higher-order hydrocarbons contributing to the
carbon budget, although not necessarily predominant at the near surface sediments, has thus become more
evident. Essentially, 1 m3 of ethane (C2H6) hydrate contains 2 times the amount of carbon compared to a
similar volume of methane (CH4) hydrate. These higher-order hydrocarbon hydrates in nature remain a less
understood component of gas hydrate systems.

Using constraints from integrated geophysical and geochemical data, this study implements the gas hydrate
phase boundary by Sloan and Koh [2008] to investigate the effect of higher-order hydrocarbons on the
dynamics of a well-defined BSR. The study focuses on a deep marine (>1000 m water depth) gas hydrate sys-
tem located between thewestern continental slope of Svalbard and the Arcticmid-ocean ridges (Figure 1). The
paper documents a field example where the BSR dynamics, in addition to spatial changes in the geothermal
gradient, is likely influenced by laterally and vertically variable gas compositions and concentrations. The study
emphasizes that near-surface headspace gas compositions are not necessarily representative of gas composi-
tions deeper in the sediment. Our findings suggest that the underestimation of the GHSZ thickness due to an
unconstrained pure methane-hydrate assumption may be noteworthy, particularly in regions with significant
input from thermogenic gas reservoirs (e.g., the Arctic). Such findingsmay have implications for refining global
estimates of gas hydrates as major carbon capacitors and their interplay with past and present climate.

2. The Study Area: Vestnesa Ridge

Vestnesa Ridge is a sediment drift developed on <19 Ma old oceanic crust [Engen et al., 2008; Hustoft et al.,
2009; Johnson et al., 2015] in water depths around 1000 m (Figure 1). It is located offshore west Svalbard, with
its westernmost end descending toward the Molloy spreading ridge (Figure 1a). The stratigraphy of the
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sediment drift consists of three main units [Eiken and Hinz, 1993; Hustoft et al., 2009] interpreted on our seismic
data based on correlation with Ocean Drilling Program (ODP) Leg 151, Sites 910–912 located on the Yermak
Plateau (YP) north of Vestnesa Ridge [Mattingsdal et al., 2014; Plaza-Faverola et al., 2015]. YP-1, the oldest
(Miocene) sequence, is characterized by synrift deposition directly over oceanic crust, YP-2 is dominated by
sediments deposited by contour currents and has a main depocenter parallel to the passive west Svalbard
margin, and YP-3 consists of glaciomarine sediments and turbidites mainly toward the easternmost segment
of the ridge. The YP-2/YP-3 boundary is estimated to be ~2.7 Ma. It marks the intensification of the Northern
Hemisphere glaciation in the region [Mattingsdal et al., 2014]. The GHSZ along the ridge is within the YP-3
sequence. More precisely, the base of the GHSZ toward the shallowest end of Vestnesa Ridge lies ~90 m
below a distinct seismic horizon (Figures 2 and 3) correlated with a 1.5 Ma old stratigraphic interface [Plaza-
Faverola et al., 2015]. This stratigraphic period has been suggested to mark the onset of local glacial
intensification at the Yermak Plateau [Mattingsdal et al., 2014]. Except for vertical disturbances caused by gas
chimneys and fine-scale faults (i.e., few tens of meters), main stratigraphic interfaces extend undisturbed
along ~100 km long Vestnesa Ridge, suggesting a homogenous, largely invariant stratigraphic setting.

Figure 1. (a) Location of Vestnesa Ridge offshore the west Svalbard margin. Vestnesa Ridge is bounded by the Molloy
Ridge (MR) to the west, the Spitsbergen and the Molloy transform faults (MTF and STF) to the north and south, respec-
tively, and by the west Svalbard continental margin to the east. The inset indicates the location of sites from the Ocean
Drilling Program (ODP) in the region. (b) Multibeam bathymetry of Vestnesa Ridge and data collected. Regional heat
flow is from Crane et al. [1991]. Ocean bottom seismometer (OBS) stations used by Petersen et al. [2010] and Goswami et al.
[2015] are projected.

Figure 2. Three-dimensional composite figure of Vestnesa Ridge gas hydrate system: the seismic profile shows faults piercing through the gas hydrate stability zone
and expected active fluid pathways (arrow), the bathymetry data show the character of seafloor pockmarks, and echosounder data show active seepage sites where
gas bubbles form acoustic flares have been identified so far.
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Geothermal gradients along the ridge are considerably higher (i.e., >80°C km�1; Figure 1) than toward the
continental margin [Crane et al., 1991; Sundvor et al., 2000; Vogt et al., 1999]. Fluid escape-related pockmarks
at the seafloor were first identified in the 1990s along the entire ridge extent [Vogt et al., 1994]. Gas chim-
neys have been documented associated to the pockmarks [Bünz et al., 2012; Hong et al., 2016; Petersen et al.,
2010], but present-day seepage is restricted to the southeastern part of the ridge [Figure 2; Bünz et al., 2012;
Hustoft et al., 2009]. Three-dimensional seismic data document the presence of fine-scale faults and fractures
controlling the distribution of gas chimneys, suggesting a tectonic control on seepage activity along the ridge
for at least the last 2.7 Ma [Plaza-Faverola et al., 2015]. Thermogenic gas was first identified in hydrate samples
froman active pockmarkwith associated hydrate-coated gas bubbles that reached the upper limit of theGHSZ
in thewater column at ~400mbelow sea surface [Smith et al., 2014]. The 1-D petroleum systemmodeling sug-
gests that organic-rich Miocene and potential Eocene source rocks caused thermogenic methane production
within given temperature and burial conditions near the ridge [Dumke et al., 2016]. In addition to thermogenic
gas, abiogenic gas from mantle serpentinization was recently suggested to sustain hydrate accumulations at
the western flank of the active Knipovich spreading ridge [Johnson et al., 2015].

3. Data and Methods
3.1. Seismic Data

An acoustic survey and gas sampling program were conducted on board R/V Helmer Hanssen during CAGE_1
cruise in 2013 to investigate gas hydrate system dynamics at Vestnesa Ridge. We used high-resolution
seismic data (20–300 Hz) to map the BSR along the crest of the ridge (Figures 2 and 3). The 2-D seismic lines
were acquired with the P-Cable seismic equipment [Planke et al., 2009] configured for 2-D surveys. The length
of the streamer was 100 m providing 32 recording channels. The minimum nominal offset was 50 m and
maximum offset 150 m. The source consisted of two GI-Guns configured as 45/45 and 45/105 cm3. The
sampling rate was 0.5 ms, and the shooting interval is 10 s at an average sailing speed of 4.5 knots.
Processing included band-pass filtering and Stolt migration at a constant P wave velocity of 1500 m/s.

The seismic traces have a dominant frequency of ~80 Hz. The theoretical lateral resolution after migration is
given by a binning size of 6.25 m. The theoretical vertical resolution is ~4.5 m at the seafloor, calculated as λ/4
using a water velocity of 1469 m s�1.

3.2. Headspace Gas Samples

Gas compositions used for BGHS predictions were obtained by analyzing the dissolved gas concentrations in
pore water samples from gravity cores along Vestnesa Ridge (Table 1). After splitting of the cored sediments

Figure 3. Seismic transect along Vestnesa Ridge in depth. Seismic velocities used for depth conversion are from ocean bottom reflection seismic stations (P_OBS and
G_OBS) [Goswami et al., 2015; Petersen et al., 2010]. BSR stands for bottom-simulating reflector. Gas samples from five gravity cores along the ridge (GC01, GC02,
GC04, GC10, and GC19) were used for modeling the base of the gas hydrate stability zone (BGHS). The predicted BGHS for pure methane (blue) projects up to 60 m
shallower than the observed BSR.
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in meter sections, 3 mL of sediment was
subsampled by cutoff syringes and
stored in 20 mL glass vials with 9 mL of
saturated NaCl solution. The vials were
crimped sealed with rubber stoppers
and aluminum caps and stored in a dark
room at ~+3.6°C.

Hydrocarbon gases concentrations
were analyzed by a ThermoScientific
FOCUS gas chromatogram (GC)
equipped with a flame ionization detec-

tor (temperature ramping 40, 70, and 120°C; H2 carrier gas, Resteck 2 m packed column HS-Q 80/100).
Accuracy of the method and system is 5% for methane and 8% for ethane and propane. Stable carbon iso-
tope ratios of methane (Table S1 in the supporting information) were determined by using a continuous flow
gas chromatography-isotope ratio mass spectrophotometer. Methane and ethane were separated in a
Thermo Trace GC (Isotherm at 70°C, He-carrier gas, ShinCarbon 1.5 m packed column). The subsequent con-
version of methane and ethane, respectively, to carbon dioxide was conducted in a Ni/Pt combustion furnace
at 980°C. The δ13C value of produced CO2 was determined by isotope ratio mass spectrometry (Thermo
MAT253). Reproducibility of stable carbon isotope determination is ±0.3‰. All isotope ratios are given in
the δ notation versus Vienna Peedee belemnite standard. Isotope ratios and gas compositions are reported
as averages from three samples, which agreed well with each other.

3.3. Gas Hydrate Stability Zone Modeling

The observed BSR depth was compared to the predicted BGHS for 100% methane gas hydrate and five
measured gas compositions (Figure 1). Theoretical predictions of the BGHS were made using the CSMHYD
program’s P-T phase boundary curves for hydrates with mixed gas compositions [Sloan and Koh, 2008].
The program uses an algorithm based on Gibbs energy minimization and calculates multiphase equilibria
for any given temperature or pressure. We implemented the program such as it calculated pressure for given
temperature values. In deep water settings, these pressure values have a mathematical uncertainty of ~15%
(Table 2) [Sloan and Koh, 2008]. Pressure estimations (P) were converted to depths (h) as h = P/(ρ × g), where ρ
(1030 kg m�3) and g (9.8 m s�2) are water density and acceleration due to gravity, respectively. Pressure was
assumed to be hydrostatic and a pore water salinity of 35 g L�1 was used in our models.

Resulting temperature-depthprofileswere comparedwith the thermal profile fromconductivity-temperature-
depth (CTD)dataandgeothermalgradient ateach location (~6.5mspatial interval) along the seismic transect. If
the temperature from theoretical stability curves at a particular depth was greater than that from field data,
hydrates were deemed to be stable at that depth.

Bottom water temperatures along the ridge were constrained by historical CTD casts (1960–2013) [National
Oceanographic Data Center, 2013] showing a negligible regional fluctuation of ±0.1°C over the last 50 years.
For constraining GTG used in the models we considered available regional values measured in situ using up
to 10 m long temperature probes with an associated instrumental error of ±10°C km�1 [Crane et al., 1991;
Sundvor et al., 2000; Vogt et al., 1999]. GTG along Vestnesa Ridge increases westward from ~80 ± 10°C km�1

at the eastern end of the ridge to ~180 ± 10°C km�1 toward the Molloy Deep, an ultraslow spreading ridge
[Crane et al., 1991; Sundvor et al., 2000;
Vogt et al., 1999].

Uncertainties in predicted BGHS depths
were estimated by statistically combin-
ing uncertainty ranges of individual
parameters (Table 2 and supporting
information Figure S2). Overall, the pre-
dicted BGHS has a mean standard
deviation (�1σ) of 18 m over the seismic
profile (for pure methane) due to the

Table 2. Model Parameters, Used Values for Final Models of the BGHS
for Specific Gas Compositions and Associated Uncertainty Values
Considered for the Uncertainty Analysis

Parameter Value Uncertainty

Water depth (m) 1099–2913 ±5
Bottom water temperature (°C) �0.896–0.793 ±0.1
Geothermal gradient (oC km�1) 85–180 ±10
Pore water salinity (g L�1) 35 ±35
Pressure (CSMHYD) (%) - ±15

Table 1. Gas Concentrations Measured in Pore Water Samples From
Gravity Core (GC) Stations Used for Modeling of the Gas Hydrate
Stability Zone

Core Station C1(%) C2(%) C3–C6(%)

100% CH4 100 0 0
GC19 95.62 2.06 2.32
GC10 99.56 0.34 0.1
GC04 95.04 2.13 2.82
GC02 98.39 0.71 0.89
GC01 93.50 3.10 3.40
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combined effect of uncertainties in
BWT, GTG, pore water salinity, seafloor
depth, together with the mathematical
uncertainty associated with CSMHYD
(Table 2). The uncertainties related to
Sloan and Koh’s [2008] approach seems
to be the major contributor to the
errors, which is highest at shallower
water depths (up to 26 m toward the
east end of the transect) and lowest at
deeper water depths (up to 12 m
toward the west end of the transect).

3.4. Time to Depth Conversion of the
Seismic Profile

Predicted BGHS for measured gas com-
positions were compared with the BSR
picked on seismic data converted to
depth. The accuracy of the comparison
between modeled and observed BSR
depends on well-constrained velocities
used for depth conversion. Stretching
the two-way travel times of seismic
records to depth is equivalent to solving
the forward modeling problem. This is
to find P wave velocities (Vp) and layer
thicknesses that explain the recorded
travel times. The depth (d) of a seismic
reflector is proportional to one-way tra-

vel time (t) and velocity (v) through the relationship d = t × v. Hence, the higher the seismic velocities, the
deeper the BSR in the depth section. In a depth converted seismic profile using the water column velocity
the BSR appears toward its minimum probable depth.

Along Vestnesa Ridge we have interval velocity constraints from ocean bottom seismometers (OBSs). We
used P wave interval velocity information from two OBSs located >20 km apart from each other along the
ridge [Goswami et al., 2015; Petersen et al., 2010]. Velocity models from these two sites document a velocity
increase from ~1470 m/s at the seafloor to ~1800 m/s at the BSR (Figure 4) and are in good agreement with
a third velocity model frommultichannel seismic intersecting the eastern segment of Vestnesa Ridge [Hustoft
et al., 2009]. We used velocities constrained by these two OBS-derived 1-D models for four layers in addition
to the water column [Figure 4; Goswami et al., 2015; Petersen et al., 2010]. The extent of the four layers are
delineated in the velocity models by their characteristic velocities and are denoted for simplicity as
hydrate-free zone (HFZ), hydrate zone (HZ), free gas zone (FGZ), and deeper layers (Figure 4). In each layer,
the available interval velocities from the two velocity models are averaged, resulting in interval velocities with
associated standard deviations (1σ). The BSR represents the interface between the zone of slightly anomalous
higher velocities above (HFZ) and anomalous low velocities underneath corresponding to a zone of free gas
in the sediments (FGZ) [Goswami et al., 2015; Petersen et al., 2010].

To constrain the range of variation of the BSR depth with changing velocities, we depth converted our seis-
mic line using six velocity functions derived from the two 1-D velocity models [Goswami et al., 2015; Petersen
et al., 2010] including the lower and upper boundaries of the standard deviations (1σ) for each model. The
combined effect of these velocity uncertainties results in ±8 m error (~4–6% of the total GHSZ thickness)
in the observed (mapped) BSR depth (Figure 5, shaded blue area).

The stratigraphy in the upper strata is largely invariable along the ridge (Figure 3). Hence, we have no reasons
to suspect a significant effect of lateral velocity variations on the BSR depth. Slight differences in the interval
velocities reported by the two OBS sites at comparable depths [Goswami et al., 2015; Petersen et al., 2010] may

Figure 4. Pwave velocity (Vp) models extracted from Petersen et al. [2010]
and Goswami et al. [2015] with estimated uncertainties (1σ). Four seismic
velocity layers are used in addition to the water column velocity to depth
convert the seismic section. The upper layer, showing a normal trend of
Vp, is referred to as the hydrate free zone (HFZ); a zone showing slightly
anomalous higher velocities in both models is referred to as the hydrate
zone (HZ); a zone of anomalous inverted Vp corresponds to the free gas
zone (FGZ). The observed bottom-simulating reflector (BSR) is in good
agreement with the interface between the HZ and the FGZ in both
OBS-derived Vp models.
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be partially due to differences in the picked reflections for the base of the layers. In addition, small focused
accumulations of faster or lower seismic velocity material (e.g., gas hydrates or carbonates and free gas
respectively) inside gas chimneys or above the BSR may result in small scale but focused lateral velocity
variations. Nevertheless, if gas hydrate or carbonate bearing layers is hypothetically abundant within the
entire GHSZ beyond the resolution of the OBS models, the BSR depth would be deeper than assumed.
Regionally, the BSR depth in our depth-converted transect provides an excellent match for that in Petersen
et al. [2010] and Goswami et al. [2015] at the location of the OBS sites (Figure 4).

4. Results: The Observed BSR and Predicted BGHS Along Vestensa Ridge

A continuous BSR along Vestnesa Ridge marks the top of a >30 m thick high-amplitude, low-velocity zone
indicative of free gas [Hustoft et al., 2009]. The BSR depth decreases from ~195 ± 8 m bsf at 1093 m water
depth, to ~140 ± 8 m bsf where Vestnesa Ridge approaches the Molloy spreading ridge (>1500 m water

Figure 5. Comparison between observed (blue solid line) and modeled (gray solid line) BSR depths within uncertainty
ranges (shaded areas), for pure methane and measured gas compositions from gravity cores G01, G02, G04, G10, and
G19 along Vestnesa Ridge. Themismatch betweenmodels and observation (green solid line) is also presented with a range
of uncertainty associated (green shaded envelop) which results from comparisons of minimum and maximum scenarios
bounded bymodel and depth conversion uncertainties. The regional trend of the geothermal gradient (red) shows a lateral
increase of ~100°C km�1 from one end to the other along the ~120 km long seismic profile.
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depth; Figure 5). Such a decrease of>40 m in the BSR depth, despite a larger water column and thus increase
in hydrostatic pressure, reflects the regional effect of an increasing geothermal gradient from ~80°C km�1 to
~180°C km�1 toward the Molloy spreading ridge (Figures 1 and 5). The regional trend of the GTG experiences
a lateral increase of ~100°C km�1 from one end to the other of the investigated seismic profile (Figure 5). The
BSR generally follows the seafloor morphology except locally at gas chimneys, where a clear BSR does not
exist. Toward Molloy Ridge, the BSR experiences a gentle downward bend with respect to the seafloor
(Figures 5 and 6d).

We modeled the BGHS for five gas compositions (Table 1) in addition to a gas concentration of 100%
methane. Gas analyses were accomplished along the easternmost segment of Vestnesa Ridge (Figure 1),
and the samples show variable amounts of higher-order hydrocarbons. From east to west the gas samples
are (Figures 1, 3, and 5) as follows: GC01—located at the eastern boundary of a zone with active pockmarks
along the ridge, GC02 and GC04—located at the flank of a pockmark that is inactive (no gas bubbles docu-
mented) at present, and GC10 and GC19—located at the flanks of active pockmarks. While GC10 shows ~99%
methane, the other samples show >2% ethane and higher-order hydrocarbons. GC04 shows the highest
concentration of ethane and propane (Table 1).

Comparison of the predicted BGHS for each seafloor gas sample with the observed BSR indicates that the
BSR depth is generally underestimated by the models beyond the uncertainty ranges (Figure 5). The BSR
is in average 40–60 m deeper than the predicted BGHS for pure CH4 (Figure 5a) and for GC10 (99.56% CH4)
(Figure 5e). The best fitting model is the BGHS for GC19 (i.e., with ~4% ethane and higher hydrocarbons)
which shows an average mismatch ranging from +20 (the BSR is shallower than predicted) around the active
seepage segment of Vestnesa Ridge to �35 m (the BSR is deeper than predicted) toward the Molloy Ridge
(Figure 5f). The other four gas compositions result in a BGHS that lies between the BGHS for puremethane and
that for GC19 (Figures 5b–5e), depending on the amount of propane in the samples. At the location of gas sam-
plesGC19 andGC04, themisfit betweenpredictedBGHS for their correspondinggas compositions and theBSR
is almost zero (Figures 5d and 5f). Near GC01 andGC02 themisfit is within themodel uncertainties. Overall, the
BGHS for gas concentration in GC19 fits the observed BSRwithin the uncertainty range alongmost of Vestnesa
Ridge except for the westernmost 20 km of the transect. Here the discrepancy becomes more prominent (i.e.,
up to 30 m) and corresponds with the zone of downward bending BSR (Figure 6).

5. Discussion

In continental margins, the BSR coincides with the BGHS when the gas input into the GHSZ reaches a critical
value leading to the formation of gas hydrates right at the base of the GHSZ [e.g., Haacke et al., 2008; Xu and

Figure 6. (a–d) Magnified view of key zones along Vestnesa Ridge where distinct mismatch between the BSR depth and
predicted BGHS indicate spatial variations in the BSR dynamics. The models are projected: pure methane (blue), GC01
(pink), GC02 (purple), GC04 (red), GC10 (green), and GC19 (yellow).
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Ruppel, 1999]. In low-methane flux systems like Blake Ridge, discrepancies between the BSR and the BGHS
have been observed and attributed to the presence of a transition zone without significant amounts of
hydrates or free gas [Xu and Ruppel, 1999]. However, at structurally controlled systems with high-methane
flux (e.g., Hydrate Ridge) drilling through the BSR has shown that the BSR does coincide with the predicted
BGHS [Trehu et al., 2004]. Similarly, a recent study from borehole data at thermogenic gas hydrate systems
of the convergent margin of Borneo documents a BSR that coincides with the BGHS predicted for measured
concentrations of >96% methane type II gas hydrates [Paganoni et al., 2016].

Under the assumption that the BSR indicates the base of the GHSZ at Vestnesa Ridge, we interpret the
discrepancies between modeled and observed BSR as indicative of a highly dynamic gas hydrate system that
is structurally controlled and under the influence of mid-ocean ridge thermal regimes. There are clear
differences in the fluid flow systems developed at the eastern and western Vestnesa Ridge segments as
indicated by the distribution of active gas chimneys and fault structures [Plaza-Faverola et al., 2015]. These
differences are also reflected in how the BSR compares with the models (Figure 5) and suggest that diverse
factors influence the BSR dynamics at key zones along Vestnesa ridge.

5.1. BSR Dynamics at the Active Seepage Zone

Active seepage along Vestnesa Ridge has been documented at a few discrete sites at ~500 m wide pock-
marks on the eastern Vestnesa Ridge segment (Figure 2), where gas chimneys associated with tectonic faults
provide the pathways for fluid migration to the seafloor [Bünz et al., 2012; Plaza-Faverola et al., 2015]. In
areas of focused fluid migration from greater depth, geothermal gradients are expected to be modified
by increased heat flux, resulting in a shallower BSR and hence a thinner GHSZ [Liu and Flemings, 2007].
Such a dynamic response of the BSR to heat flow from depth has been documented from several margins
[e.g., Hornbach et al., 2012; Mann and Kukowski, 1999; Vadakkepuliyambatta et al., 2015]. Along Vestnesa
Ridge, the BSR shoaling in the active seepage region does not seem to be pronounced, though a relative
shoaling with respect to the BSR at the inactive seepage region can be recognized. This relative shoaling
of the BSR is best illustrated by comparison with the best fitting model (i.e., GC19; Figures 5f and 6). The
BSR is slightly shallower (i.e., within the uncertainty range of the models) with respect to the GC19 model
at the active seepage zone (Figure 6a). However, the same model underestimates the BSR depth elsewhere
along Vestnesa Ridge, including inactive seep locations where evidence for past seepage activity exist
(Figures 6c and 6d). Since the relative BSR shoaling is within the uncertainty range and considering the
possibility of a deeper BSR due to unaccounted slightly higher Vp, it is difficult to further analyze the effect
of heat flow on the BSR dynamics. Nonetheless, seepage in this part of Vestnesa Ridge indicates that
anomalous heat flux from deeper formations has an effect on the BSR dynamics, potentially overshadowing
the effect of other mechanisms determining its depth.

5.2. BSR Dynamics at Zones of Past Seepage Activity

Gas bubble release into the water column has not been identified toward the western segment of Vestnesa
Ridge during numerous cruises to the area, and this region is thus referred to as inactive (Figure 2). In
contrast to the observations at the active seepage region, the comparison between modeled and observed
BSR does not indicate shoaling in response to anomalous high heat flow (Figure 5). The only indication of a
potentially higher heat flow zone is at a chimney cluster associated with an outcropping fault where the
GC19 model locally fits the BSR despite a clear trend of a BSR deeper than predicted in the surroundings
(Figure 6c). This part of the ridge is thus ideal to constrain the impact of additional temperature and pressure
related factors on the modeling results.
5.2.1. BSR Adjustment to Postglacial Pressure and Temperature Conditions
Our models assume that the BSR is at present-day steady state. However, competing processes such as
sea level and temperature changes since the Last Glacial Maximum (LGM; >17,000 years ago)
[Rasmussen et al., 2007; Sztybor and Rasmussen, 2016] may have an influence on the BSR dynamics.
Increasing bottom water temperature-driven BSR readjustment shifts the BSR upward and in opposite
direction to an adjustment in response to increased pressure. In a crude balance, a �1°C change in
bottom water temperature and �100 m of water column with respect to present-day conditions (i.e.,
water depth >1000 m) would have shifted the BGHS +10 m and �10 m, respectively. These processes
occur at a rate of a few millimeters per year and have a balancing effect [Ruppel, 1997]. Thus, climate-
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related pressure and temperature variations are not expected to have a significant impact on the BSR
depth at present day along Vestnesa Ridge.
5.2.2. Overpressure Zones Beneath the BSR
The assumption of hydrostatic pressure in the models does not account for potential zones of overpressure
at the BGHS. Pore fluid pressures in sedimentary basins with well-drained sediments are expected to remain
hydrostatic down to ~2.5 km depth [Gradmann and Beaumont, 2012]. In the case of gas hydrate systems (i.e.,
commonly restricted to the upper 1 km of sediments) a hydrostatic pressure assumption through the sedi-
mentary column is generally valid as long as zones of significantly reduced permeability prone to overpres-
sure do not occur within the GHSZ [e.g., Tinivella and Giustiniani, 2013]. A pore fluid pressure higher than
hydrostatic at the BGHS would shift the BSR downward. At Blake Ridge, a lithostatic gas pressure was iden-
tified at an interconnected free gas column immediately beneath the BGHS (Ocean Drilling Program (ODP)
Site 997) [Flemings et al., 2003]. Gas input from deeper thermogenic gas reservoirs can promote overpres-
sure buildup at interconnected gas columns beneath the BSR [Flemings et al., 2003; Hornbach et al., 2004].
By analogy with Blake Ridge, Vestnesa Ridge gas hydrate system may present overpressure conditions dri-
ven by the gas input from deep sediments, increased sedimentation rates, and tectonic stress distribution
[Plaza-Faverola et al., 2015]. However, based on modeling results, the effect of overpressure on the BSR
dynamics is assumed negligible at settings like Vestnesa Ridge (i.e., water depth >1000 m, bottom water
temperatures <0°C, geothermal gradients >40°C km�1, and presence of thermogenic gases) [Tinivella and
Giustiniani, 2013]. Indeed, for a bulk density of 1500 kg m�3 through the upper 200 m of sediments offshore
west Svalbard (i.e., as constrained from ODP Site 909) [Myhre et al., 1995], lithostatic pressure at the BGHS
along Vestnesa Ridge would be 0.6–0.9 MPa higher than hydrostatic pressure. This would be equivalent to
additional 70–90 m of water column height for the hydrostatic pressure approach, which in this setting would
result in a BSR depth <10 m deeper than predicted for a purely hydrostatic approach. Occurrence of non-
hydrostatic pressures in places would still be insufficient to explain the observed mismatch (i.e., >30 m in
places) between observed BSR depths and predictions for constrained gas compositions (Figure 5).
5.2.3. Overestimation of the Geothermal Gradient
A modeled BGHS shallower than the observed BSR can be discussed in terms of how accurate is our
approximation of the thermal regime in the shallow sediments. In general, the observed BSR depths indi-
cate that the GTGs used in our models are too high. The BSR predicts significant spatial and sometimes
localized variations of geothermal gradients, which are not anticipated by regional temperature
measurements from seafloor probes (Figure 7). For example, to fit the observed BSR at the location of
the largest misfit, the GTG has to be 123°C km�1 and 100°C km�1 for the GC19 composition and pure
methane respectively (i.e., 35–55°C km�1 less than the value used in our models; Figures 7b and 7c). The

Figure 7. (a) Seafloor and observed BSR depth below sea level. (b) Comparison between shallow geothermal gradients
(GTG) constrained from regional measurements (red) and predicted GTG from the BSR depth for GC19 composition
(purple) and pure methane (blue). Except for the deepest part of the seismic data, shallow GTG measurements correlate
well with GC19 BSR-predicted GTG. (c) Difference between the GTG used in our models and the GTG derived based on the
BSR depth for GC19 (purple) and pure methane (blue); MD = maximum difference.
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BSR predicts a westward increase by up to 20°C km�1 within 15 km from this location, which is a closer
approximation to the >150°C km�1 value constrained by seafloor temperature probes (Figure 7c). A
hypothetical GTG overestimation cannot be fully attributed to instrumental uncertainties. Therefore, we
discuss potential explanations for cooler temperatures at the BSR than expected frombackgroundGTG values.

The temperature probes used to constrain GTG along Vestensa Ridge are located within few meters to kilo-
meters away from our seismic profile (Figure 1). An interpolation from a temperature probe located over, e.g.,
a fault, may measure higher temperatures than at a location 10 km away from the fault. In addition, the
assumption of constant thermal conductivities in estimating GTG from shallow (<10 m) temperature mea-
surements could result in an overestimation compared to GTG estimated using deeper temperature mea-
surements [Stranne and O’Regan, 2016]. Hypothetically, the BSR-derived GTG values predict either less heat
flow than assumed by our models or a thermal conductivity that increases with depth within the GHSZ.

More fundamentally, the temperatures predicted by the BSR depth could be cooler than predicted from the
background GTG if the basin’s geothermal regime is still adjusting to newly deposited sediments [e.g.,
Palumbo et al., 1999; Turcotte and Ahern, 1977]. The crustal heat is constantly redistributed and the geotherms
in newly deposited strata equilibrate toward warmer or cooler temperatures through time following deposi-
tion or erosion, respectively. Several studies have used analytical heat transport models to show that sedi-
mentation and erosion can significantly affect the BSR depth [e.g., Henrys et al., 2003; Hornbach et al., 2008;
Martin et al., 2004]. However, this is a complex problem that is commonly simplified by assuming that (1)
the temperature was in steady state at the start time of the model and the background GTG is known, (2)
the sedimentation/erosion rates have been consistently sustained through long intervals (millions of years)
during basin evolution, and (3) the effect of compaction and basin subsidence has a negligible impact on
the process of heat transfer through the sediments.

At Vestnesa Ridge, we lack constraints on the total sedimentary thickness and sedimentation rates to resolve
the thermal evolution since the beginning of deposition ~19 Ma ago. Sedimentation rates have been
estimated for three chronological markers (i.e., 0.2, 1.5, and 2.7 Ma) based on foraminifera analyses and
seismic stratigraphy [Consolaro et al., 2015; Plaza-Faverola et al., 2015; Sztybor and Rasmussen, 2016]. Thus,
to provide a physical sense of the potential effect of sedimentation on the BSR depth, we assume that the
sediment temperature was at steady state condition prior to the onset of glaciations, 2.7 Ma ago. We ran a
2-D numerical model for purely diffusive heat transport in the sediments and recalculate the BGHS for the

Figure 8. Two-dimensional profile along Vestnesa Ridge showing the effect of sedimentation on the BSR dynamics. The
sediment temperature after accounting for the effect of sedimentation was estimated using numerical models for purely
diffusive heat transport (supporting information Figures S2–S4). The base of gas hydrate stability (BGHS) was recalculated
for the non-steady-state temperatures. The assumed steady state BGHS for puremethane can be 7–40m shallower than the
BGHS after accounting for sedimentation (sedimentary BGHS). Toward the westernmost part of the ridge, where the BSR
inflection is most significant, sedimentation rates are lowest and the assumed steady state and sedimentary BGHS are
comparable.
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non-steady-state temperatures (sup-
porting information Figures S2–S4)
[Allen and Allen, 2013; Gerya, 2010].
This modeling exercise results in a BGHS
(i.e., referred to as sedimentary BGHS in
Figure 8) that is approximately 7–40 m
deeper than the assumed steady-state
BGHS at the zones of minimum and
maximum sedimentation rates, respec-
tively (Figure 8). The relaxation time
of the geotherms after sustained
sedimentation for 1 Ma can be as long
as 0.5 Ma. Whether the sediment tem-
perature was at steady state at 2.7 Ma
or has ever reached a steady state
condition since the beginning of
deposition cannot be resolved with
the currently available data.

Interestingly, the largest anomaly in the
BSR depth (i.e., up to 60 m with respect
to the pure methanemodel) is exhibited
within the westernmost 20 km where
average sedimentation rates are lowest

over the last ~2.7 Ma (Figures 3, 5a, and S3). We thus observe an effect of sedimentation on the BSR dynamics
along Vestnesa Ridge that is overshadowed by additional processes, i.e., particularly at the zone of less sedi-
mentation and maximum BSR deflection toward the mid-ocean ridge (Figures 8 and S3). Conjectural low
GTGs with respect to background GTG toward the western tip of Vestnesa Ridge may be caused by crustal
mid-ocean ridge processes, e.g., water percolation and localized cooling of the crust [Davis et al., 1989].
Near-surface GTG values may not be providing an ideal constraint to the temperatures at the BSR depth. A
GTG constrained over larger depth ranges would be a better approximation of the background GTG in the
basin. Nevertheless, the westward decrease of the BSR depth despite an evident increase in hydrostatic pres-
sure and decrease in sedimentation rates suggests that the BSR depth is somewhat consistent with the region-
ally constrained GTG values used in our models (Figures 3, 7, and 8).

5.3. Effect of Higher-Order Hydrocarbons on BSR Dynamics

The analysis above suggests that even after consideration of pressure and temperature instabilities within
the GHSZ the mismatch between modeled and observed BSR is still unresolved. We take now into consid-
eration the composition of the host gases in hydrates. Measured gas compositions from gravity cores
(Table 1) reflect a spatial variability in the composition and the sources of gas along the ridge. The gas
composition varies considerably within a small spatial range. We find that only small changes in the
amount of propane (GC19 and GC04; Table 1) can cause significant variations in the predicted BGHS
(Figure 5). We suggest that a deeper BSR than predicted along Vestnesa Ridge may reflect an input of
thermogenic gas sources with significant amount of higher-order hydrocarbons (C2, C3, and higher) into
the GHSZ. Such input of thermogenic gas is only partially reflected by the shallow headspace gas samples
from the gravity cores due to the technical difficulties during sampling. In general, it is difficult to constrain
the in situ gas composition from headspace gas samples taken at atmospheric pressure due to the degas-
sing of samples upon core recovery. The presence of >5% ethane and other higher-order hydrocarbons as
well as methane carbon isotopic ratios of ~40 ‰ point toward a significant contribution of thermogenic
gas sources at Vestnesa Ridge (Figure 9) [Paull and Ussler, 2001]. Even with the abundant C2+ measured
though, these samples collected near the seafloor (<6 m bsf) along Vestnesa Ridge (Table 1) are likely
to underestimate the contribution of higher-order hydrocarbons in the hydrate system at greater depths
(within 140–190 m bsf), as recently documented from borehole data at the margins of Borneo [Paganoni
et al., 2016].

Figure 9. δ13C versus δD (deuterium) of CH4 diagram (modified from
Whiticar [1999]) showing the thermogenic signature of gas samples
from gas hydrates (GH; 1 and 2) and from headspace (3 and 4) gas
samples on Vestnesa Ridge (red circles). Isotope values are presented in
supporting information Table S1. Gas samples from other stratigraphic
and structurally controlled gas hydrate provinces around the globe are
also included for comparison [Milkov, 2005, and references therein]:
A = Hydrate Ridge; B = Ulleung Basin; C = Offshore Sakhalin Island;
D = Mackenzie Delta; E = Gulf of Mexico-Green Canyon; F = Gulf of
Mexico-Mississippi; G = Gulf of Mexico-Atwater; H = Offshore Vancouver
Island (Barkley Canyon); and I = Offshore Costa Rica.
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Microbial gas sources show C1/C2+
ratios typically greater than 1000, while
for thermogenic gas this ratio is typi-
cally <100 (e.g., <50 at Green Canyon)
[Brooks et al., 1994]. Data from ODP-
Sites 909, 911, and 986 surrounding
Vestnesa Ridge [Myhre et al., 1995]
show that at regions without a proven
hydrate system the C1/C2+ ratio
decreases from >2000 for the upper
60 m bsf to <1000 below the regional
BSR depth (Figure 10). The ratio for
our gas analyses is below 200
(Figure 10), consistent with thermo-
genic gas reaching the seafloor.
Methane to ethane and heavier hydro-
carbon ratios (C1/C2+) from drilling sites
at other continental margins also
reconcile the observations offshore
west Svalbard, showing a general trend
toward lower ratios with depth even in
areas where a thermogenic gas source
has not been anticipated [Choi et al.,

2013; Kastner et al., 1998; Lorenson et al., 2008; Myhre et al., 1995; Paull and Ussler, 2001; Trehu et al.,
2004]. All these observations support our inference of larger amounts of higher-order hydrocarbons at
depth that may enhance hydrate stability and widen the GHSZ.

In the context of leaking hydrocarbon provinces our analysis suggests that spatial BSR depth variations along
Vestnesa Ridge may be explained reasonably well by modifying the gas compositions (e.g., by ~2% increase
in C2 and C3 concentrations measured at GC19) with the exception of the zone of BSR inflection and
maximum misfit (Figure 7c). A slightly deeper BSR at this location and its anomalous inflection remains
puzzling but can be partially explained by the added effect of all the factors discussed.

5.4. Implications for Global Estimates of Carbons in Marine Gas Hydrates

Two main variables in estimating carbon in gas hydrates are the volume of pore space available for hydrate
formation and the gas composition in the hydrate phase [Dickens, 2011; Wallmann et al., 2012]. These two
variables can be better constrained in stratigraphic gas hydrate accumulations (e.g., Blake Ridge [Paull et al.,
1996], Gulf of Mexico minibasins [Milkov and Sassen, 2002], the Ulleung Basin [Choi et al., 2013], and Nankai
Trough [Matsumoto et al., 2004]) where microbial methane (i.e., formed in situ or supplied from shallow
depth to the surface) is the dominant source of gas to form hydrates [e.g., Dickens, 2011; Milkov and
Sassen, 2002; Wallmann et al., 2012; Xu and Ruppel, 1999]. An additional effort is, however, required for con-
straining the GHSZ volume at structurally controlled hydrate systems where gas migration from deeper
hydrocarbon reservoirs may result in a mixed gas source making the BSR more dynamic [e.g., Marín-
Moreno et al., 2013; Wallmann et al., 2012]. New structurally controlled hydrate systems are constantly iden-
tified worldwide that show mixed gas compositions and highly depleted methane carbon isotopes
(Figure 8).

Our study at Vestnesa Ridge shows that from the geochemistry perspective, gas hydrate stability modeling
assuming pure methane may represent a significant underestimation, by up to 60 m, of the GHSZ thickness.
Similarly, modeling the base of gas hydrate stability with constrains from gravity core gas compositions—not
necessarily representative of gas compositions at greater depths—may still represent a significant underes-
timation by 20–60 m of the GHSZ thickness. For comparison, the GHSZ thickness constrained for deeper
(>6 m) thermogenic gas samples at the northern Gulf of Mexico hydrate province results in a 60% thicker
GHSZ (i.e., in a setting where the GHSZ is >400 m thick) with respect to the pure methane GHSZ thickness
[Milkov and Sassen, 2000].

Figure 10. Plot of C1/(C2 + C3) ratios versus depth, documenting a
decrease of microbial gas and increase of thermogenic gas with depth
at the location of ocean drilling project (ODP) Sites 910, 986, and 909. The
Vestnesa Ridge gravity core samples have C1/(C2 + C3) ratios <200,
indicating a dominant thermogenic gas source near the seafloor.
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Structurally controlled gas hydrate systems—characterized by high fluid fluxes—have a larger potential for
high amounts of gas hydrate accumulations if compared to stratigraphic provinces [Milkov and Sassen,
2002, and references therein]. Large structural gas hydrate accumulations, presumably hosting significant
but yet unidentified amounts of thermogenic gas hydrates, may exist in margins with proven petroleum
systems (e.g., the Hikurangi Margin with ~40,000 km2 of mapped BSR) [Henrys et al., 2003].

The volume of the GHSZ and the amount of carbon trapped in hydrates will be larger in thermogenic hydrate
systems where ethane, propane, and butane are part of the hydrate structure. To illustrate the above we
assume the following: (1) an area of ~4000 km2 based on picked BSR in the region [Sarkar et al., 2012] and
a GHSZ volume of ~700 km3 (supporting information Figures S2 and S5); (2) a maximum gas hydrate satura-
tion of 3% of the total GHSZ volume [Hustoft et al., 2009], (3) a 94% cage occupancy by gas in hydrates
[Lorenson and Collett, 2000], (4) 1 m thick sulfate-methane transition zone where gas hydrates are not
expected to form [Hong et al., 2016], and (5) the equilibrium gas composition in the hydrate phase for gas
samples in core GC19 (i.e., C1 = 0.7508, C2 = 0.02, C3 = 0.1232, iC4 = 0.1054, and nC4 = 0.0006). For the
assumed gas composition in the hydrate phase (type II gas hydrates) Vestnesa Ridge would host 2.88 Gt of
carbon, while the total amount of carbon would be 1.82 Gt if we consider the pure methane scenario. For
the BSR area considered by Hustoft et al. [2009], their estimate of 0.52 Gt of carbons assuming pure methane
becomes 0.83 Gt of carbons considering the hydrate phase equivalent to gas concentrations from GC19.

Similarly, if extrapolated to other Arctic regions where major petroleum provinces are known to exist, a
similar gas concentration assumed in the gas hydrate phase would transform the 9000 Gt of carbons esti-
mated by Biastoch et al. [2011] into 14,260 Gt. This difference is in turn about 10 times the upper boundary
in the Arctic carbon inventory estimated by Marín-Moreno et al. [2016] (i.e., ~541 Gt).

Estimates of the global and Arctic carbon inventory based on different approaches remain highly divergent
[Biastoch et al., 2011; Kretschmer et al., 2015; Marín-Moreno et al., 2016; Moridis et al., 2013]. Observations
from Vestnesa Ridge highlight the importance of geochemically and geothermally constrained field
predictions of the GHSZ thickness. Such predictions may result not only in the identification of hidden ther-
mogenic gas hydrate accumulations but also in a refined carbon inventory within thermogenic gas
hydrate systems.

6. Conclusions

An integrated analysis of seismic and geochemical data from Vestnesa Ridge gas hydrate system provides
insight into the dynamics of a structurally controlled gas hydrate system adjacent to mid-ocean ridges.
Assuming that the bottom-simulating reflector (BSR) marks the base of the gas hydrate stability zone in this
structurally controlled fluid flow system, field-constrained gas hydrate stability modeling leads to the
following main conclusions:

1. The observed BSR along >100 km long Vestnesa sedimentary ridge is tens of meters deeper than
predicted assuming steady state conditions for pure methane hydrates as well as for constrained head-
space thermogenic gas compositions from gravity cores. The magnitude of the misfit between the
observed BSR and the models varies spatially reflecting the importance of different mechanisms
controlling BSR dynamics depending on the pattern of seepage activity.

2. The BSR at the region of active seepage is affected by the inflow of warmer fluids carrying gases from
deeper reservoirs, showing a relative shoaling of the BSR, possibly overshadowing the effect of additional
processes on the BSR dynamics. In contrast, zones with evidence of past seepage (inactive pockmarks),
allowed studying the potential effect of additional processes on the BSR dynamics related to the pressure,
thermal, and geochemical regimes of the basin.

3. While the observed BSR anomalies cannot be explained by pressure-related processes, spatial and
temporal variations in the geothermal regime may be having a considerable effect on the BSR dynamics.
Sedimentary deposition and mid-ocean ridge crustal processes could lead to unexpectedly lower
geothermal gradients than constrained by near-seafloor temperature probes.

4. Similarly, spatial variations in gas compositions within the gas hydrate stability zone provide a plausible
explanation for a deeper BSR than predicted. Measured gas compositions from the upper few meters of
sediments most likely do not correctly represent, but underestimate, the amount of thermogenic gas
present within the deeper gas hydrate system.
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5. Finally, an assumption of constant gas composition (i.e., pure methane) within the entire gas hydrate
stability zone may leave thermogenic gas hydrate accumulations unidentified. When placed in a global
context, the presented investigations along Vestnesa Ridge emphasizes the importance of constraining
thermogenic gas hydrate accumulations and the nature of the gas deeper in the hydrate system, in the
refinement of the global gas hydrate inventory and amount of carbon stored in gas hydrates.
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