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Abstract Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New
Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities
resolved to �14 km depth. We investigate the potential relationship between the crustal architecture, fluid
migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow
dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an �18 km long
ramp, beneath Porangahau Ridge. This apparent step in the d�ecollement is associated with splay fault
branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during
slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate
interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability
condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay
faults in a region that coincides with the step down in the d�ecollement from the top of subducting
sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate
interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay
faults at Porangahau Ridge may signify stress changes during slow slip.

1. Introduction

Fluid flow and seafloor seepage in continental margins have well established implications for the Earth’s
global climate [e.g., Etiope, 2009; MacDonald et al., 2002; Svensen et al., 2004], for prediction of hydrocarbon
accumulations [Gay et al., 2003; Hovland et al., 2010], and for marine hazard assessment [Bugge et al., 1987;
Judd and Hovland, 2007]. Although fluid expulsion from marine sediments to the seafloor is frequently man-
ifested as pockmarks, mounds, mud volcanoes, or as direct seepage along faults [Barnes et al., 2010; Berndt,
2005; Judd and Hovland, 2007; Plaza-Faverola et al., 2014; Saffer and Bekins, 1999; Westbrook, 1991], tracking
the origin of these fluids remains challenging but necessary for a full account of the fluid budget in conti-
nental margins.

In accretionary prisms, structural deformation and fluid migration as a consequence of burial and compac-
tion have a complex history of interactions [e.g., Moore et al., 2011; Moore and Vrolijk, 1992; Westbrook,
1991]. Loading, heating, and deformation in active tectonic regimes drive high fluid pressures and fluid flow
[Moore et al., 2011]. Pore fluid pressure buildup associated with fluid accumulation and migration can influ-
ence the style of deformation and faulting [Bolton and Maltman, 1998; Moore et al., 2011]. Maintaining a crit-
ical taper during lateral growth of an accretionary wedge may result in fluid-rich sediment underplating,
facilitating splay fault evolution [Audet, 2010]. If the interplay between splay and megathrust fault rupture,
underplating, and fluid pressure does contribute to the diversity of fault slip behavior at subduction zones,
then determining the geometry of the plate interface and overlying crust is critical to understanding how
plate boundary displacements are accommodated.

Along the Hikurangi subduction margin of New Zealand (Figure 1), slow slip events (SSEs) are identified
from continuous GPS observations [Wallace and Beavan, 2010]. SSEs are episodic creep events on the sub-
duction interface and are inferred to be associated with large amounts of slip (a few to tens of cm) lasting
days to years. Hikurangi SSEs often have comparatively large amounts of slip (typically 10–30 cm) with a
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Mw equivalent to 6.0–7.0 and durations varying from weeks to a year [Bartlow et al., 2014; Wallace and
Beavan, 2010]. At southern Hikurangi, most of these SSEs occur at the downdip transition (>30 km depth)
from interseismic locking to steady aseismic creep [Wallace and Beavan, 2010, Figure 1]. In contrast, shallow
SSEs (<5–15 km) are observed at the central and northern Hikurangi margin, in a region where most of the
shallow subduction interface is dominated by aseismic creep but may host patches that are interseismically
locked [Wallace et al., 2016]. In 2011, a short-term SSE sequence occurred, offshore Wairarapa, surprisingly
within the previously interseismically locked portion of the plate interface but in a region that is considered
partially coupled and within the along strike-transition from deep to shallow coupling [Wallace et al., 2012].
The 2011 sequence is also near a zone of heat flow anomalies inferred from pronounced upwarping of BSRs
[Pecher et al., 2010; Crutchley et al., 2011] and active seafloor venting [Bialas, 2011]. Many studies suggest
that elevated fluid pressures (i.e., near lithostatic) promote SSEs by reducing effective stresses along fault
planes [e.g., Audet, 2010; Ito et al., 2005; Liu and Rice, 2005; Song et al., 2009]. Saffer and Wallace [2015] show
that many regions of shallow slow slip events (e.g., <15 km deep) are closely associated with expected high
fluid pressures from compaction and dewatering of subducted sediments. It is also possible that strain due
to SSEs can drive fluid flow through overlying sediments, both by diffusion or through fractures/faults
[Brown et al., 2005; Davis et al., 2011].

Analysis of seismic P wave velocities as indicators of anomalous pore-fluid pressures can contribute to
understanding the role of fluid distribution in controlling styles of fault slip [e.g., Ito et al., 2005; Peng and
Gomberg, 2010; Song et al., 2009]. Geochemical, geological, and geophysical studies from many subduction
margins suggest that significant amounts of fluids involved in subduction processes are concentrated in
sedimentary layers underlying the d�ecollement, leading to zones of excess pore-fluid pressures [e.g., Ellis
et al., 2015; Moore et al., 2011; Saffer, 2003]. At the northern Hikurangi margin, seismic reflection data reveal
diverse plate interface properties, including zones of high-amplitude reflectivity coinciding with the source
area of some SSEs [Bell et al., 2010]. The high-amplitude zones are interpreted as fluid-rich underplated sedi-
ments, while intervening lower amplitude zones, and nonreflective areas interpreted as subducting
seamounts.

In this study, we explore the relationship between slow slip, fluid flow, and geometry of the subduction
zone in the region of the short term (�2–3 weeks duration) 2011 slow slip events at the Hikurangi margin.
Specifically we integrate P wave velocity and waveform modeling with complimentary structural analysis

Figure 1. Regional tectonic setting of the East Coast of the North Island of New Zealand. (a) Slip rate deficit distribution at the plate inter-
face [Wallace and Beavan, 2010]. Red regions are where the plate interface is interseismically locked. Red arrows show the relative conver-
gence vector between the Pacific and Australian Plates. PAC, Pacific Plate and AUS, Australian Plate. (b) Location of the investigated
seismic reflection line 05CM-38 (red line). Other seismic reflection data coverage of the 05CM survey are shown in grey lines. Cumulative
slip on the interface in the 2011 East Coast slow slip event (SSE) sequence from Wallace et al. [2012] is represented in yellow to brown col-
ors (white contours labeled in millimeters). Red filled circles are earthquake epicenters in the depth range 3–20 km and magnitude greater
than 3, from January 2000 to January 2016 (GeoNet catalog: http://quakesearch.geonet.org.nz/).
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[Ghisetti et al., 2016] derived from high quality prestack depth-migrated multichannel seismic reflection
data that crossed close to the maximum slip for the 2011 SSE sequence (Figure 1). We suggest a conceptual
model to provide an explanation to the observed correlation between splay fault branching within the sub-
duction shear zone, overpressured fluid-rich sediments, and slow slip occurrence.

2. Prestack Depth Migration Data

We conducted prestack depth migration (PSDM) along seismic profile 05CM-38, part of a 2D survey lead by
the New Zealand Ministry of Business, Innovation and Employment (formerly MED, Ministry of Economic
Development) along the East Coast of New Zealand North Island. Time migrated versions of this seismic
profile have been the subject of detailed studies of shallow structures related to fluid flow and hydrates in
the Porangahau Ridge region [Crutchley et al., 2011], as well as studies of the subduction interface [Barker

et al., 2009]. Data consist of 960 channels with a maximum offset of 12 km. The source was a 4140 m3 airgun
array. Shot interval was 37.5 m and sampling rate 2 ms.

We reprocessed the seismic profile focusing on multiple removal and depth migration in order to image
deeper structures linking deep sourced fluids with the gas hydrate stability zone (GHSZ). Premigration proc-
essing (supporting information Table S1) included bandpass filtering, seafloor reflection-based multiple
elimination (SRME), Tau-P deconvolution, radon multiple removal, and CDP binning at 12.5 m. The PSDM
approach implemented is that described by Plaza-Faverola et al. [2012] and similar to the approach by Hoff-

mann and Reston [1992] and Kopf [1999]. The PSDM is performed iteratively, using updated P wave velocity
models (Vp) to improve subsequent migrated images. Depth conversion, energy depth focusing analysis,
velocity model smoothing, and ray tracing are main routines in the flow, performed iteratively until the pre-
ferred image of the structures is obtained. Progressive minimization of the normalized errors (a) and focus-
ing of the reflection energy around a 5 1 (supporting information Figures S1.1 and S1.2) determines the
choice of the resulting image. We performed nine iterations for line 05CM-38. However, after iteration 5 the
resulting image appeared already robustly constrained and only small refinements were observed (Figure 2
and supporting information Figure S1.3).

3. Interpretation

The convergent margin offshore northern Wairarapa lies at the southern end of the Tonga-Kermadec-
Hikurangi subduction zone, where thick 120 Ma oceanic crust of the Hikurangi Plateau (Pacific Plate) is
being subducted westward beneath the Australian Plate. Here the Pacific Plate motion of �42 mm/yr is par-
titioned between margin-normal slip on the subduction thrust, accounting for 80% of the convergence in
the last 5 My [Nicol and Beavan, 2003], margin-normal shortening, strike-slip faulting, and vertical-axis fault-
block rotations. Margin-normal shortening in the overriding plate accounts for 6–19% of convergence [Nicol

and Beavan, 2003]. Shortening is mainly accommodated by folding and thrust faulting offshore [Barker

et al., 2009; Barnes et al., 2010; Barnes and Mercier de Lepinay, 1997; Davey et al., 1986; Lewis and Pettinga,
1993]; imaged on line 05CM-38 as a 150 km wide deformed prism. The accretionary wedge along this part
of the Hikurangi margin includes an inner wedge of deforming Late Cretaceous and Paleogene rocks, great-
er than 10 km thick, and an outer wedge of late Cenozoic accreted trench-fill turbidites [Barnes et al., 2010].
The outer wedge is primarily composed of a deforming cover sequence of Miocene to Recent shelf and
slope basin sediments up to 6 km thick and is characterized by low taper (�38) with average surface slope
of about 18. Deformation in the outer wedge, offshore Wairarapa, is accommodated principally by imbricate
thrusts that young eastward toward the toe and sole into a reflection horizon that defines a d�ecollement,
separating the deforming accretionary sediments above from undeformed sedimentary reflectors on the
downgoing plate beneath [Barker et al., 2009; Ghisetti et al., 2016].

Our interpretation of the seismic stratigraphy of 05CM-38 (Figure 2) is based on previous descriptions by
Barnes and Mercier de Lepinay [1997], Barnes et al. [2010], Plaza-Faverola et al. [2012] and extended to our
study from Ghisetti et al. [2016]. Main structural features imaged in the �120 km long prestack depth-
migrated section include the plate interface with associated subducted sedimentary zone, a step-down in
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the d�ecollement possibly accommodating sediment underplating, and splay fault branching at the
d�ecollement.

3.1. Seismic Character of the Subducted Sediment Zone
The d�ecollement across the Hikurangi margin is well resolved in the outer accretionary wedge, east of Por-
angahau Ridge and beneath the Akito trough at 7 km depth (Figures 2 and 3). The d�ecollement is coinci-
dent with, or lies above, Reflector 7 which has been inferred as the boundary between the Miocene
sediments and the underlying reflective condensed Late Cretaceous-Early Oligocene (70–32 Ma) sediments
(sequence Y of Davy et al. [2008]). The latter are underlain by a weakly reflective unit that is inferred to com-
prise Cretaceous sedimentary rocks (MES of Davy et al. [2008], 100–70 Ma in age). The d�ecollement exhibits
a step down near CDP 4200 (50 km from the deformation front) forming a �8 km long ramp, dipping on
average �208, which soles to a nearly horizontal d�ecollement at 13–14 km depth (Figure 2 and supporting
information Figure S1.3). This part of the d�ecollement appears to coincide approximately with the landward
projection of Reflector 8, the top of the Early Cretaceous Hikurangi Plateau oceanic volcanic sequence (HKB
of Davy et al. [2008]). We refer to the subducting Pacific Plate sedimentary sequence (between Reflectors 7
and 8) as the subducted sediment zone (SSZ).

The SSZ experiences a thickness increase westward below Porangahau Ridge (i.e., downdip) with an aver-
age thickness of 2 km (Figures 2 and 3), and is well imaged beneath the Akito Trough and ridge (Figure 3).
The upper boundary of the SSZ (coinciding with Reflector 7), toward the deformation front, is highly reflec-
tive and dips westward �3.58. It shows reverse polarity at discrete locations where the zero phase wavelet
has been preserved and can be compared with the seafloor reflection wavelet (Figures 3d and 3e). We inter-
pret that the d�ecollement coincides with Reflector 7 to the east of Porangahau Ridge and that extends to
the deformation front beyond the eastern end of line 05CM-38 [Ghisetti et al., 2016].

Figure 2. (a) Prestack depth-migrated seismic transect along profile 05CM-38 resolving the depth of the subduction interface from �7 to
14 km. The interpreted seismic reflections are identified from Barnes and Mercier de Lepinay [1997], Barnes et al. [2010], Plaza-Faverola et al.
[2012], and adapted from Ghisetti et al. [2016]. HKB, the top of the Hikurangi margin basement; MES, Mesozoic sediments; Sequence Y (Seq.
Y) is a condensed section coinciding with the d�ecollement. Faults and splay fault branching are shown in black arrows. The extent of slow
slip events (SSEs) from 2011 (in millimeters) is projected; SSZ, subducted sediment zone; BSR, bottom simulating reflector. Vertical exaggera-
tion 2:1. (b) P wave velocity model used for prestack depth migration. The ‘‘X’’ axis denotes distance from the deformation front. In general,
velocities have a picked semblance-associated error <5%. Details of the processing sequence are given in supporting information.
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3.1.1. Waveform Characteristics of Reflector 7
We investigate the waveform characteristics of Reflector 7 and the condensed Late Cretaceous-Early Oligo-
cene reflection interval (sequence Y) to determine its thickness and the reflection coefficients across the
plate interface. We carry out one-dimensional forward synthetic modeling [Mallick and Frazer, 1987] of sim-
plified models of sequence Y and compare these to time migrated near zero-offset trace coda from raw
05CM-38 CDP sorted data.

Only limited portions of 05CM-38 show Reflector 7 above the seafloor multiple. We did the waveform analy-
sis between CDPs 1600 and 1700 where we are confident that the wavelet amplitudes of sequence Y are
not masked by multiple energy (Figure 3g). The wavelet amplitudes for Reflector 7 vary laterally on zero-
offset traces and are highest near the eastern end of 05CM-38, but consistently show a ‘‘double peak’’ com-
prising a positive peak, the same polarity as the seafloor, followed by a negative peak in depth-migrated

Figure 3. (a) Enlarged seismic image between CDP 1600 and 3260 (km 24–42). Interpreted faults and seismic reflections are from Figure 2.
Distinctive bright reflections are identified within the subducted sediment zone (SSZ) where a low-velocity zone (LVZ) is well resolved by
the semblance focusing velocity analysis. Reflector 7 is interpreted as the top of sequence Y [Davy et al., 2008; Wood and Davy, 1994]. Plots
(b) and (c) show the magnitude of the P wave velocity (Vp) inversion within the LVZ. Plot (d) shows polarity of the reflection at the top of
the SSZ in comparison to the seafloor polarity. The brightest pick (yellow) in Figure 3d is inferred to be top of sequence Y, a potential seal
for fluid from underthrusting sediments [Plaza-Faverola et al., 2012]. Plot (e) is the time migrated near zero-offset traces enlarged around
the seafloor (vertical axis is two-way travel time (TWT)). (f) Red single trace at CDP640 and matching synthetic seismogram of seafloor
reflection (black). (g) Time migrated near zero-offset traces in a 300 ms window encompassing sequence Y, 120 ms above the seafloor mul-
tiple. (h) Red single trace at CDP640 and matching synthetic seismograms of Vp 3.9 km/s single layer that thickens from 50 to 140 m left to
right (black). (i) Velocity models used in calculations of synthetic seismograms; constant density of 1.1 Mg/m3 and Qp 5 200. The best
match of synthetic to observed data is for sequence Y to be 100 m thick.
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images and near-trace raw data (Figures 3d and 3h). This signature is consistent with a thin high-velocity
layer (3.9 km/s) of positive-polarity reflection coefficient top (0.017) and negative-polarity base (20.013)
overlying a low velocity layer (LVL) with velocity gradient of 3.8 km/s at the top and �3.5 km/s at the base.
The base of the LVL lies below the seafloor multiple but, constrained by our PSDM to about 0.5 km thick.
We varied the thickness of the high-velocity layer between 50 and 140 m with the best match between syn-
thetic and observed data being 100 m thick (Figures 3h and 3i). In our synthetic modeling, we kept density
constant (1.1 Mg/m3) and used quality factor (Qp), of 200 for sedimentary layers. Sequence Y is widely rec-
ognized [Barnes et al., 2010; Bland et al., 2015; Davy et al., 2008; Ghisetti et al., 2016; Plaza-Faverola et al.,
2012] and tied to borehole data from the eastern edge of the Hikurangi Plateau at ODP site 1124, where it
comprises Late Cretaceous-Early Oligocene nannofossil chalks and alternating mudstones [Davy et al.,
2008]. The resolution of 05CM-38 data is not sufficient to determine if sequence Y comprises multiple layers.
Nonetheless the lateral variation in the wavelet of Reflector 7 is suggestive of a sequence of thin layers of
which all or part, coinciding with the d�ecollement fault zone, may be sheared as described by drill hole and
field studies [Fagereng, 2011; Kimura et al., 2012; Rowe et al., 2013].
3.1.2. SSZ Low-Impedance Layer
A �1.5 km thick zone of low Vp (LVZ) appears to extend from sequence Y to the top of the Hikurangi Plateau
(Reflector 8). Velocities decrease updip from �5 km/s at 10 km depth to �3 km/s at 6 km depth (Figures 2b,
3b, and 3c). Relative to overlying interval velocities, the LVZ represents a velocity inversion of 400–600 m/s.
The lower boundary of the LVZ coincides with a positive-polarity unconformity at which horizontally strati-
fied layers, with high frequency content, onlap highly reflective and inclined (�78 dip) strata characterized
by a lower frequency content (Figure 3a). We interpret this unconformity as Reflector 8 and a boundary
between marine basin-floor sediments of Early and Late Cretaceous age (MES of Davy et al. [2008]) deposit-
ed on a succession of intercalated volcanic rocks, volcaniclastics and sediment of the Hikurangi Plateau
(HKB of Davy et al. [2008]). One-dimensional waveform modeling indicates low seismic impedance for the
SSZ which we attribute to under consolidated, overpressured sediment beneath the d�ecollement. The pres-
ence of an oceanic seamount piercing through the sediments is inferred based on pinch out of well strati-
fied HKB sediments against a zone of chaotic seismic character and the appearance of low-velocity zones
(LVZs) bounding the top of the chaotic seismic body (Figures 2b and 3).

Reflector 7 can be traced westward downdip to a depth of �9 km, at km 50 (Figure 4a). Farther west, how-
ever, the continuity of the SSZ is disrupted. Relying on the location of dipping diffracted energy associated
with fault planes we interpret a 4 km step down in the d�ecollement from Reflector 7 to Reflector 8 at
�12 km depth. This deeper d�ecollement level corresponds to the plate boundary west of Porangahau Ridge
and below the inner wedge of the accretionary prism. Given the absence of a clear interface reflection
under the inner wedge, an uncertainty of �10% in our velocity model is introducing a potentially consider-
able error in the depth of the plate interface at this location. For example, the plate boundary identified in
Figure 2 is 2 km deeper than the margin wide boundary constructed by combining regional earthquake
and seismic reflection data [Williams et al., 2013]. However, the two surfaces are in agreement at the west-
ern end of 05CM-38 and beneath Porangahau Ridge.

3.2. Splay Faults
The seismic transect reveals three main thrust fault clusters and ridges in the overriding plate (Figures 1
and 2). Bathymetric data reveal the Porangahau and Akito Ridges as prominent outer accretionary wedge
highs that are continuous for over 100 km along strike (Figure 1). These ridges have been previously
described at a regional scale based on seismic interpretation of a wide range of seismic profiles across and
along the Hikurangi margin [Barker et al., 2009; Ghisetti et al., 2016; Lewis and Pettinga, 1993]. The PSDM ver-
sion of profile 05CM-38 shows the relationship of the major upper plate splay faults to the d�ecollement. The
deformation front and zones of proto-thrusts are imaged on an adjoining seismic line, SO191-4, 15 km sea-
ward of Akito Ridge [Barnes et al., 2010; Ghisetti et al., 2016]. A lateral change in the pattern of thrusting on
this part of the margin can be observed in terms of dip angle, fault extension, and geometry of each thrust
fault cluster (Figure 2). The easternmost group of faults, beneath Akito ridge (CDP 600-1700), is character-
ized by �6.5–7.5 km long thrust faults dipping up to �30-358 that offset the Miocene to Pleistocene
sequence (reflections 4 and 5B). Their clear splay fault branching, from the d�ecollement at �8 km depth,
delineates the subduction interface at this location (Figure 2).
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Further west, Porangahau Ridge is characterized by three semicontinuous west-dipping splay-faults (F1, F2,
and F3 in Figure 4) that appear to branch upward from where the dip of the plate boundary interface
increases (CDP 3000–5000 and km 40–65). Prominent fault planes ramp and steepen from dips of 208 to
greater than 608 approaching the seafloor. Splay fault planes have bright reflections associated, sometimes
with polarity comparable to BSRs (i.e., reverse polarity with respect to the seafloor; Figures 4b–4d) and remi-
niscent of splay faults branching from the d�ecollement at the Nankai subduction zone, southeast Japan
[Bangs et al., 2009].

The easternmost splay fault, F1, is associated with a blind thrust (Figure 4a). Porangahau Ridge, results from
deformation along a second splay fault, F3, soling from the d�ecollement at �12 km depth (Figures 2 and
4a) and additional thrust faults branching at depths of 5–7 km. A third splay fault, F2, merges with the
d�ecollement near the step down at CDP 4000, >50 km from the deformation front (Figure 4a). We are not
able to confidently trace coherent crustal seismic reflections beneath Porangahau Ridge on the final PSDM
image but footwall and hanging-wall cut-offs are interpretable in places and imply that Reflector 7 and SSZ
sediments step up along the major splay faults consistent with faster midcrust velocities (Vp> 4.5 km/s)
between km 55 and 70 (Figure 2b). In places, imbricated SSZ sediment appears as highly reflective energy
(Figure 4a).

A zone of homogeneous seismic reflectivity separates the Porangahau region from the next landward ridge
(between CDP 7300–9000 and km 95–115) indicating steep dips or uniform rocks with no contrasts in
acoustic impedance. One main splay fault branches from the d�ecollement dipping 10–208 at 14 km depth

Figure 4. (a) Enlarged seismic image, between CDP 2890 and 5500 (km 38–71), showing a set of faults associated with a major splay fault
(labeled F1, F2, and F3) in the region of Porangahau Ridge. Interpreted faults and seismic reflections are from Figure 2. MES, Mesozoic
sequence and HKB, Hikurangi basement. We interpret a step down in the d�ecollement from Reflector 7 to Reflector 8 potentially coinciding
with the plate boundary. Plots (b) and (c) show the polarity of seismic traces along the seafloor and along the bottom-simulating reflector
(BSR), respectively. Plot (d) shows the polarity of the reflection at a zone of high reflectivity, interpreted to be a zone of fluid accumulation
beneath Porangahau Ridge.
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(Figure 2) and steepens to >608 beneath the southern continuation of Paoanui Ridge (CDP 6000). To the
west, the depth extent of thrust faults becomes less clear, while entering a zone marked by a distinct reflec-
tivity (Figures 2a and 5).

3.3. High Amplitude Wedge
Thrust faults west of Porangahau Ridge (CDP 7300–9000) are rooted in a zone of high velocities (>4.8 km/s).
These faults surround a high-amplitude reflectivity wedge �25 km wide and �7 km thick above the
d�ecollement (Figures 2 and 5). This high amplitude wedge has been previously described from time migrated
seismic data and suggested to be a ‘‘backstop’’ to the outer wedge [Barker et al., 2009]. In the depth-migrated
profile amplitudes are strongest toward the shallowest part of the wedge and bright reflections are in distinct
packages resembling the seismic character of the SSZ, further east, where the LVZs coincide with bright-well
stratified reflectors (Figures (2 and 3), and 5) interpreted as Cretaceous age sediments [Bland et al., 2015]. Sev-
eral layers, 1–2 km thick, delimited by upper and lower bright reflections, with internal weak reflectivity zones,
are stacked at variable dips (10–308) (Figure 5). We outline two plausible interpretations of these reflective
packages:

1. Due to the resemblance of the reflective packages to the MES sediments, it is possible that these struc-
tures are duplexes of fluid-rich underplated MES sediments. If this is correct, the core of the underplated
imbricate slices will be mainly Cretaceous and Paleogene (SSZ) strata emplaced by northwest dipping
thrust sheets, that continue over 100 km northward along strike [Barker et al., 2009] to where rocks of
this age are exposed as an inlier on Mahia Peninsula [Field et al., 1997] and in southern Hawkes Bay [Pet-
tinga, 1982]. A zone, experiencing a lateral Vp decrease, is also seen in the velocity analysis for discrete
CDP gathers at the westernmost inferred underplated duplex (Figure 5). High amplitude reflections sit-
ting above the zone of decreased Vp (Figure 5a) may indicate focused fluid migration upward from com-
pacting underplated and imbricated rocks. This model would require a large proportion of the offshore
forearc to be composed of underplated sediments, which may be implausible. If the large reflective pack-
age at the landward side of 05CM-38 is indeed underplated sediment, it would have been underplated
beneath a very thin forearc (�2 km thick), or involve large uplift and erosion of the forearc to accommo-
date the underplating.

2. It is also possible that this wedge of high amplitude reflections beneath offshore Wairarapa and Hawke
Bay constitutes 100–110 Ma accretionary margin rocks equivalent to deformed Torlesse composite ter-
rane accretionary rocks of this age exposed onshore [Bland et al., 2015; Mountjoy and Barnes, 2011]. If this
is the case, the imbricated high-amplitude zone is equivalent to the frontal sequence of the inactive
Mesozoic accretionary wedge under the northern Chatham Rise [Barnes et al., 2010]. The overall higher
Vp observed in this reflective unit (>5 km/s) may be more consistent with this hypothesis than the under-
plating hypothesis.

Figure 5. (a) Enlarged seismic image, between CDP 7630 and 8900 (km 93–114) showing dipping (up to 288) bright reflections at the high
amplitude wedge interpreted to be underplated material or 100–110 Ma Torlesse terrane accretionary rocks. (b) P wave velocity (Vp) at the
location of three CDPs (7500, 8000, and 8500) within the high amplitude wedge. A relative lateral velocity decrease, documented by CDP
8500 at �5 km depth, indicates preferential zones for fluid accumulations.
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Overlying the highly reflective section described here are Miocene to recent shelf and slope basin sedi-
ments, which are up to �3 km thick beneath the upper margin (Figure 5) and generally thin seaward
[Barnes et al., 2010]. Tawatawa-1 well, at the western end of 05CM-38 (Figure 2), reached 1560 m and pene-
trated the basal part of Late Miocene sediments [Field et al., 1997]. The sequences of the upper margin are
exposed in uplifted forearc basins on land and basin fill architecture is strongly influenced by active tecton-
ics expressed by regionally extensive unconformities and normal faulting (Figure 2).

4. Discussion

4.1. Plate Interface, Subducting Sediment, and Fluid Distribution
The eastern end of seismic line, 05CM-38, images the trench slope and active plate d�ecollement at 7 km
deep (Figure 2). Here the d�ecollement coincides with the upper part of a unit inferred by Barnes et al. [2010]
to comprise a condensed sequence of strongly reflective Late Cretaceous-Early Oligocene (70–32 Ma)
marine nannofossil chalks, mudstones, and chert and referred to in previous work east of the trench as
sequence Y (Seq Y in Figures 2 and 6a) [Davy et al., 2008]. Beneath the d�ecollement, up to 1.5 km thick
sequence of Mesozoic sediments is being subducted along the Hikurangi margin beneath the active plate
boundary thrust dipping �28 landward (Figures 2 and 6a, MES of Davy et al. [2008]). Our velocity analysis
reveal that the MES sequence, coinciding with what we describe as the subducted sedimentary zone (SSZ),
is associated with >10 km long zones of anomalously low Vp (LVZs in Figure 2b). The same association
between sequence Y, underlying fluid-rich MES sediments and anomalous low velocities persists further
south, in Pegasus Basin, where the LVZ is up to 3 km thick at 8 km depth [Plaza-Faverola et al., 2012] and is
interpreted to extend beneath the North Island before stepping down to the top of the Hikurangi Plateau
[Bassett et al., 2014].

The occurrence of an LVZ within the SSZ is broadly interpreted as indication of undercompaction induced
by the presense of pore-filling fluids commonly trapped within subducting sediments that are rapidly bur-
ied [e.g., Bangs et al., 2009, 1990; Calahorrano et al., 2008; Collot et al., 1996; Kamei et al., 2012; Kitajima and

Figure 6. (a) Integrated prestack depth-migrated seismic transect along profile 05CM-38 superimposed on the P wave velocity model. Interpreted faults and seismic reflections are from
Figure 2. Red filled circles are hypocenters of earthquakes, plotted in Figure 1, which occurred within a 50 km along strike section of 05CM-38. Cumulative slip in the 2011 East Coast
slow slip event (SSE) sequence from Wallace et al. [2012] on the plate interface (rainbow colors, see scale bar). HA, high amplitude wedge and MES, Mesozoic sequence. Our interpreta-
tion maintains there is a link between slow slip, sediment underplating, and splay fault branching from the subduction interface along this part of the margin. Preferential zones of fluid
accumulation are expected to be primarily related to sediments in the subducted sediment zone (SSZ). Vertical exaggeration is 2:1. (b) Schematic representation of the development of
splay faults, the step down in the d�ecollement and associated fluid migration. AUS, Australian Plate; PAC, Pacific Plate; and SSE, slow slip event.
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Saffer, 2012; Vannucchi et al., 2012]. Further to the north, along the northern Hikurangi margin, a
thermomechanical-fluid model predicts that significant overpressures, with fluid pressure ratios of 0.95
or higher, may develop along the subduction interface at �8–9 km depth, landward of a subducting
seamount, if a thin, low-permeability (102 k m2) seal is present along the d�ecollement [Ellis et al., 2015].
Our reflectivity modeling of Reflector 7, coinciding with the d�ecollement and the top of sequence Y,
reveals this boundary to be a thin high-velocity layer (3.9 km/s) of positive-polarity reflection coeffi-
cient and approximately 100 m thick (Figure 3h). The presence of a seamount beneath the Akito Ridge
and a sealing sequence Y, provide an ideal setting for the generation of significant overpressures, nec-
essary to explain the LVZs documented to both sides of the interpreted seamount on line 05CM-38
(Figure 2).

With respect to overlying interval velocities, the magnitude of the Vp inversion varies within the LVZ,
increasing from 400 km/s at the downdip end to 600 km/s toward the updip end (Figures 3b and 3c). Struc-
turally, a zone within 40 km of the trench is likely to be the preferred location for accumulation of fluids,
migrating updip along the SSZ and accompanied by sediment compaction downdip (Figure 6b). This is sim-
ilar to the settings of Muroto transect, Nankai [Bangs et al., 2009], and the Ecuador margin [Calahorrano
et al., 2008], which document a trend of decreasing Vp, increasing porosity, decreasing effective stress, and
increasing pore pressure ratio toward the trench. Our results suggest thus that the central Hikurangi margin
is characterized by a mechanically weak plate interface in the outer wedge, consistent with the low critical
wedge taper there [Fagereng, 2011]. Speculatively, the decrease in Vp within the SSZ >40 km away from the
deformation front may be the result of sediment compaction leading to increasing shear stress resulting in
down-stepping of the d�ecollement to �12 km depth that represents a transfer of slip to the oceanic crust
beneath Porangahau Ridge.

Beneath Porangahau Ridge the 8 km ramp structure coincides with a 208 increase in dip of the d�ecollement
and where west-dipping splay faults converge. The sediments above the d�ecollement appear imbricated
between splay faults (Figure 4) resulting in a complex seismic structure. These imbricated sediments, similar
to the high amplitude wedge to the west, could be interpreted as a complex zone of underplating and
duplex structures, or as 100–110 Ma accretionary margin Torlesse terrane rocks. In either case, the step
down floor thrust (Figures 2 and 6) may account for thickening in the overriding plate and may accommo-
date interplate shortening [e.g., Nicol and Beavan, 2003]. If there is any shortening, represented by under-
plating, it may represent a component of the unaccounted margin-perpendicular shortening on this part of
the Hikurangi margin in the last 2 Myr [Ghisetti et al., 2016].

The SSZ loses coherency beneath the imbricated sediments and the PSDM velocity analysis does not
resolve the presence of low Vp. Although a similar pattern of an SSZ with excess pore-fluid pressures toward
the trench is documented from PSDM across the southern Hikurangi margin [Plaza-Faverola et al., 2012], we
cannot entirely rule out the possibility of overpressure zones deeper along the d�ecollement. Nonetheless,
the sediments above the d�ecollement and beneath Porangahau Ridge (Figures 2a and 4), are highly reflec-
tive and show reverse polarity reflections, with variable dip, along segments that terminate at major splay
faults (Figure 4). Higher Vp (4.5–5.0 km/s at 5–8 km depth) in this region above the d�ecollement, lead us to
believe that sediments here are significantly indurated and subjected to high stress perhaps facilitating fluid
migration toward more permeable splay faults (Figure 6). Zones of high stress are prone to extensive frac-
turing and constant reopening of conduits for fluids [Curewitz and Karson, 1997; Sibson, 1994]. Fault inter-
sections and linkage of fault segments favor fluid migration and redistribution [Curewitz and Karson, 1997].
We suggest that down-stepping of the d�ecollement together with splay fault branching provides an ideal
setting for fluid migration from the SSZ toward the surface, explaining documented perturbation of the gas
hydrate stability zone [Pecher et al., 2010; Crutchley et al., 2011] and seafloor seepage at Porangahau Ridge
[Bialas, 2011]. Seafloor seepage induced by fluid migration along faults is a transient process that may occur
in pulses. In active faulting settings, such periodicity is believed to be tied to stress cycles through creation
or reduction of permeability [Fisher et al., 1995; Sibson, 2013] and where periodic cracking and sealing of
microstructures can take place in less than 10 days [Fisher and Brantley, 2014], similar to the duration of
short-term (1–3 weeks) SSEs. Furthermore, similar seismic observations (i.e., high amplitude-reverse polarity
reflections, associated with major thrust faults) are indicative of permeable faults playing a key role in the
transport of fluids from subducting sediments toward the seafloor [e.g., Bangs et al., 1999; Ranero et al.,
2008; Shipley et al., 1994].
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4.2. Relationship to Slow Slip
The relationship between our seismic observations and geodetic data are summarized in Figure 6a where
we compare the PSDM seismic image with the distribution of slip during the slow slip event in June/July
2011 that was recorded by shore-based continuous GPS stations [Wallace et al., 2012]. The zone of maxi-
mum cumulative slip (i.e., up to 90 mm), correlates with the zone of splay fault branching at the lowermost
level of the d�ecollement (�14 km depth), west of the plate interface thrust ramp (Figure 6a). However, we
emphasize that the detailed slow slip distribution beneath the offshore region that is based on land-based
GPS data, is not well-constrained, particularly the location of the updip limit of slow slip. For example, Wal-
lace et al. [2016] recently showed from a seafloor geodetic experiment that the offshore slow slip further
north along the Hikurangi margin extends closer to the trench than inferred from GPS data alone.

Many slow slip source areas at circum-Pacific subduction zones are associated with low-velocity zones, such
as Mexico [Song et al., 2009], Cascadia [Audet et al., 2009], and southwest Japan [Kamei et al., 2012; Kitajima
and Saffer, 2012; Kodaira et al., 2004]. These low-velocity zones are thought to represent fluid-rich material
at the plate interface. This association between slow slip (and related seismic phenomena) and low-velocity
zones has contributed to the widely held view that SSEs are promoted by high fluid pressures. Although
the slow slip events observed in the Porangahau region appear to terminate just landward of the LVZs that
we observe on 05CM-38 (Figures 2b and 6a), it is certainly plausible that these SSEs such as that in 2011
actually continue through the LVZ all the way to the trench, similar to what is observed offshore the north-
ern Hikurangi margin [Wallace et al., 2016]. Seafloor geodetic experiments should be undertaken in this
region to determine the distribution of SSE slip with respect to the LVZ observed in 05CM-38.

Seismic velocities near the plate interface in the SSE zone on 05CM-38 appears to be relatively high (Figures
2b and 6a). Bassett et al. [2014] made a similar observation of higher wave speeds along 05CM-38 compared
to portions of the forearc further north. As discussed in section 4.1, our result of higher velocities (Figure 2b)
could be either real or due to difficulties in picking reflections for the semblance analysis in this part of the
margin (supporting information Figure S1.1). On the basis that these higher velocities are resolvable, our
results suggest a lack of widespread high fluid pressure within the main portion of the geodetically deter-
mined SSE zone. This is in distinct contrast to what has been observed in other slow slip regions, where flu-
ids are thought to be abundant.

To date, most theoretical and observational studies suggest that SSEs are a consequence of transitional fault
zone stability, which can be influenced by excess fluid pressures [Kodaira et al., 2004; Liu and Rice, 2005],
transitional frictional properties [Scholz and Campos, 2012], fault rigidity [Leeman et al., 2016], or some com-
bination of all three [Saffer and Wallace, 2015]. If SSEs observed offshore northern Wairarapa are not clearly
associated with excess fluid pressure, it is possible that the properties of the rocks in the fault zone (friction,
rigidity) play a larger role, or that other factors may be involved. Numerical modeling studies have also
shown that spatial heterogeneity of fault frictional properties and/or rheology can widen the conditions
required for SSE behavior [Ando et al., 2012; Lavier et al., 2013; Skarbek et al., 2012], which agrees well with
outcrop observations of exhumed subduction complexes where SSE-like processes are inferred [Fagereng
and Sibson, 2010]. Most areas that host shallow SSEs (e.g., <15 km depth) also coincide with rough subduct-
ing seafloor, further suggesting that heterogeneity of plate boundary structure and properties may help to
promote shallow SSEs [Saffer and Wallace, 2015; Wang and Bilek, 2014]. Our analysis of 05CM-38 does sug-
gest significant heterogeneity of plate boundary properties exists there, including: LVZs alternating with
subducted seamounts, step-down of the d�ecollement to different stratigraphic levels, and numerous
branching splay faults (Figure 6). Together, these factors could produce significant spatial variation in fric-
tional properties of the plate interface and help to promote the recorded SSEs.

To explain the observation of the 2011 East Coast SSE sequence offshore northern Wairarapa, in a region of
the plate interface that is otherwise partially (�75%) coupled, Wallace et al. [2012] proposed that the transi-
tion zone between interseismic locking (south) and aseismic creep (north) may be a region characterized by
highly heterogeneous plate interface properties. That is, a patchwork of asperities that are strongly velocity
weakening (i.e., slip in earthquakes), surrounded by regions of the subduction thrust fault with transitional
frictional properties that undergo episodic slow slip. Indeed, seismicity, that accompanied the 2011 SSE
sequence, cluster on the western downdip edge of the cumulative slip distribution (Figures 1b and 6a) and
moment tensor solutions of two of the largest events indicate thrust faulting, with a small component of
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strike-slip motion [Wallace et al., 2012]. To test the degree to which high fluid pressures play a role in off-
shore Wairarapa SSEs and locking versus other processes (for example, fault rock properties, heterogeneity),
additional experiments such as offshore magnetotelluric observations and OBS deployments are required.

Finally, we speculate that seafloor seepage at Porangahau Ridge [Bialas, 2011] may occur episodically in
response to stress changes at the d�ecollement and overlying imbricated sediments during SSEs. The maxi-
mum rates of slow slip are distributed at the zone where major splay faults branch out from the
d�ecollement (Figure 6a). We suggest that a redistribution of stress and hence fluid pressure post-SSE may
induce pulses of fluid release, as an analogous mechanism to postseismic discharge of fluids [Sibson, 1994].
Enhanced fluid flow during slow slip has been observed previously using seafloor monitoring systems off-
shore Costa Rica [Brown et al., 2005; Davis and Villinger, 2006; Solomon et al., 2009]. This hypothesis is consis-
tent with one-dimensional models of fluid expulsion at the Porangahau Ridge, which indicates inferred
doming of the base of gas hydrate stability by advective heat flow, at realistic fluid-flow rates, can be
explained by fluids sourced at depth, possibly from the region of the d�ecollement [Barnes et al., 2010]. If
warm fluids from deep within a subduction system are transported sufficiently rapidly upward along perme-
able splay faults toward the gas hydrate system and the seafloor, they can promote the dissociation of gas
hydrates [Crutchley et al., 2014] and potentially provide a window into processes occurring on the subduc-
tion interface [Lauer and Saffer, 2015]. Testing this hypothesis requires temporal data on SEEs together with
observations of fluid flux rates.

5. Conclusions

We have undertaken prestack depth migration of line 05CM-38 across the central Hikurangi subduction
thrust that experienced a short duration slow-lip in 2011, and transects the accretionary margin that is in
the transition zone between interseismic locking and aseismic creep. The results summarized in Figure 6
show that:

1. The active plate d�ecollement, up to 50 km from the deformation front, coincides with a low-permeability
condensed sequence of strongly reflective Late Cretaceous-Early Oligocene marine nannofossil chalks.
Beneath the d�ecollement, up to 1.5 km of low velocity sequences constitute a subduction sedimentary
zone interpreted as undercompacted, induced by the presense of pore-filling fluids, and providing an
explanation for a mechanically weak low critical wedge taper along this part of the Hikurangi margin.

2. We regard the downdip trend of increasing Vp, decreasing porosity and increasing shear stress at distan-
ces greater than 40 km away from the deformation front may be responsible for the down-stepping of
the d�ecollement from 8 to �12 km depth. The down-stepping fault represents a transfer of slip to the
oceanic crust beneath Porangahau Ridge, possibly driving underplating along the megathrust
d�ecollement. The down-stepping ramp merges with prominent landward dipping splay thrust faults that
extend from the d�ecollement to the seafloor, providing pathways for fluid migration toward the surface
and explaining documented perturbation of the gas hydrate stability zone and seafloor seepage at Por-
angahau Ridge.

3. A highly reflective zone in the wedge, west of Porangahau Ridge and beneath the shelf, can be inter-
preted as either (a) a region of sediment underplating or (b) Torlesse terrane that was accreted during a
much earlier phase of subduction. The highly reflective part of the forearc and splay fault branching
overlies the portion of the interface that undergoes large slow slip. To resolve the physical controls on
shallow SSEs beneath Porangahau, it is necessary to better understand whether or not excess pore-fluid
pressures are present at the plate interface in this region. If the high Vp of this part of the forearc and
interface is real, then it might suggest that other factors such as fault rock properties and plate boundary
heterogeneity are more important in this area.
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