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RESEARCH ARTICLE
10.1029/2018GC007482

3-D Seismic Investigation of a Gas Hydrate and Fluid Flow
System on an Active Mid-Ocean Ridge; Svyatogor Ridge, Fram
Strait
Kate A. Waghorn1 , Stefan B€unz1 , Andreia Plaza-Faverola1 , and Joel E. Johnson2

1Department of Geosciences, Centre for Arctic Gas Hydrate, Environment and Climate, UiT—The Arctic University of
Norway, Tromsø, Norway, 2Department of Earth Sciences, University of New Hampshire, Durham, NH, USA

Abstract Tectonic settings play a large role in the development of fluid flow pathways for gas migrating
through sedimentary strata. Gas hydrate systems worldwide are located on either the slopes of passive con-
tinental margins, often in large contourite deposits, or in accretionary wedges on subduction margins. The
Svyatogor Ridge, however, located at the northwestern flank of the Knipovich Ridge and south of the Mol-
loy Transform Fault (Fram Strait), is a gas hydrate system which is located on an actively spreading margin.
Svyatogor Ridge has evidence of shallow gas accumulations; a strong BSR indicating a gas hydrate and
underlying free gas system, and fluid flow pathways to the seafloor culminating in pockmarks. Using a high-
resolution P-Cable 3-D seismic survey, we investigate how tectonic and sedimentary regimes have influ-
enced the formation of this well-developed gas hydrate system. Large-scale basement faults identified in
the seismic data are interpreted as detachment faults, which have exhumed relatively young ultramafic
rocks. These detachment faults act as conduits for fluid flow, and are responsible for the formation of folds
in the overlying sediments that are breached by faults. We propose a model for fluid flow within this system
whereby as sedimentary faults breach upward through the sedimentary strata, fluid is able to migrate fur-
ther upward. We find that the tectonic regime on Svyatogor Ridge is the dominant driver of fluid migration
and episodic release at the seafloor.

1. Introduction

Gas hydrates are solid compounds of water and gas (i.e., dominantly methane), which are stable in marine
sediments or permafrost regions at high pressures and low temperatures (i.e., Sloan, 1998). Determinants
for gas hydrate formation are salinity (high salinity inhibits hydrate formation), porosity, and a sufficient gas
input. The gas that sustains gas hydrate accumulations in shallow sediments has been found to be predomi-
nantly of microbial or thermogenic origin (Klauda & Sandler, 2005). In the case of microbial in situ methane
production, an input of organic matter into the system is also necessary (Paull et al., 1994). Therefore, many
of the subaqueous gas hydrate and related fluid flow system occurrences worldwide are observed on TOC-
rich sedimented continental margins (i.e., Hikurangi Margin (Pecher et al., 2005), Cascadia Margin (Suess
et al., 1999), Gulf of Mexico (Shipley et al., 1979)) or in large contourite deposits (i.e., Vestnesa Ridge (B€unz
et al., 2012), Blake Ridge (Faugères et al., 1999)) as these settings generally meet all the conditions for both
gas hydrate formation and stability. Distal settings (i.e., abyssal plains), on the other hand, are generally
characterized by deposition of clays and silts, and lower organic matter fluxes to the seafloor (Klauda & San-
dler, 2005; M€uller & Suess, 1979) and the common assumption is that these are not ideal settings for gas
hydrate formation, even though they may fall within the gas hydrate stability zone.

In the Fram Strait, the Western Svalbard Margin and Vestnesa Ridge are known for storing large quantities
of methane within the sedimentary strata, where large amounts of this shallow gas is sequestrated as gas
hydrate (B€unz et al., 2012; Hustoft et al., 2009; Vanneste et al., 2005). The Western Svalbard margin is a pas-
sive continental margin that evolved in connection with the onset of rifting in the North Atlantic (e.g., Engen
et al., 2008; Lundin & Dor�e, 2002). Vestnesa Ridge formed as a large contourite deposit that extends off the
continental margin crossing the continental-oceanic crust transition (B€unz et al., 2012; Eagles et al., 2015;
Engen et al., 2008). Although the distribution of fluid flow related features developed through the gas
hydrate zone on Vestnesa Ridge is correlated with the presence of faults (Plaza-Faverola et al., 2015), the
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gas hydrate system here is assumed to have developed post-rift (B€unz et al., 2012; Eiken & Hinz, 1993;
Engen et al., 2008). However, to the west of the Western Svalbard Margin and south of Vestnesa Ridge is
the Knipovich Ridge, which is an ultraslow spreading ridge (Dick et al., 2003). In such ultraslow settings,
magmatism is limited and low-angle detachment faults accommodate the majority plate motion and can
remain active for 1–3 Myr (Escartin et al., 2008; Tucholke et al., 1998). The Arctic mid-ocean ridges are all
ultraslow and in particular, low-angle detachment faults and exhumed serpentinized peridotites have been
observed and/or sampled on the Gakkel Ridge, Lena Trough, and Molloy Ridge (Dick et al., 2003; Michael
et al., 2003; Snow et al., 2001). Abiotic methane has been, in recent years, identified as another potential gas
source available for gas hydrate formation in slow to ultraslow spreading environments (Johnson et al.,
2015; Rajan et al., 2012), forming during serpentinization of ultramafic rocks (Etiope & Sherwood Lollar,
2013). Serpentinites sampled on the seafloor in slow and ultraslow spreading mid-ocean ridges are often
found in close proximity to detachment faults (Cann et al., 1997; Kelley et al., 2005), which provide easy
access for seawater to drive serpentinization reactions. Due to the limited life span of slip on a detachment
fault and the temperature range for maximum serpentinization, the window to form serpentinized methane
is limited to young crust close to the spreading axis (Johnson et al., 2015). Additionally, serpentinites are
commonly observed at the junctures between spreading ridges and transform faults, where detachment
faults are well developed (Tucholke et al., 1998).

Due to the proximity of the Arctic mid-ocean ridges to the Western Svalbard Margin, and their ultraslow
spreading rates, the Arctic mid-ocean ridges are often sedimented, and magma-limited conditions create
geothermal gradients lower than at intermediate to fast spreading ridges. The flanks of the Knipovich Ridge
and Molloy Ridge are not only within the temperature and pressure regime required for gas hydrate stabil-
ity, but also are characterized by having similar sedimentary depositional regimes (Eiken & Hinz, 1993) and
potentially even their own methane source—serpentinized abiotic methane (Johnson et al., 2015; Rajan
et al., 2012).

Svyatogor Ridge is a sedimented, elongated ridge located on the flank of the Knipovich Ridge at the inner
junction with the Molloy Transform Fault. Previous work has documented the presence of a gas hydrate sys-
tem on the Svyatogor Ridge (Johnson et al., 2015). Unlike the other Fram Strait gas hydrate reservoirs, the
gas hydrate system on the Svyatogor Ridge is on the flank of an actively spreading mid-ocean ridge, imply-
ing that unlike the other Arctic gas hydrate systems, Svyatogor Ridge is in an actively rifting environment.
Using high-resolution 3-D seismic data, we investigate the first gas hydrate system identified on the flank of
an actively rifting ultraslow spreading margin. Based on detailed descriptions of tectonic and sedimentary
structures characterizing the gas hydrate bearing ridge, we explore the implications that this tectonically
active ultraslow spreading setting has on the development of a gas hydrate system and associated seafloor
seepage system.

2. Geologic Setting and Tectonic History

2.1. Study Area
Svyatogor Ridge is a contourite driven sedimented ridge with a length of 46 km and a width of �5 km
(Figure 1) (Johnson et al., 2015). Our study focuses on the southernmost part of the ridge.

2.2. Tectonic Background
The ultraslow spreading Knipovich Ridge extends for �550 km in N-S direction (Okino et al., 2002), with a
half-spreading rate for the Knipovich Ridge of 6.2 mm/yr, on the western, faster moving, side of the Ridge
(Ehlers & Jokat, 2009). The Knipovich Ridge connects the Gakkel Ridge in the Arctic Ocean to the Mohns
Ridge through a number of transform faults and small spreading centers (Figure 1). The Gakkel and Mohns
Ridges most likely began spreading during Chron 24 at 53 Ma (Ehlers & Jokat, 2009; Vogt et al., 1978), and
the Knipovich Ridge began propagating northward at Chron 13, 33 Ma (Ehlers & Jokat, 2009; Talwani & Eld-
holm, 1977). At the northernmost segment of Knipovich Ridge, magnetic anomaly C6 (19.6 Ma) is clearly
delineated, and C5 (9.8 Ma) is present as a weaker lineation (Engen et al., 2008) on the western side of the
Ridge. Conjugate magnetic anomalies are not present on the Svalbard side of the Ridge, leading Engen
et al. (2008) to suggest that the junction between the Molloy Transform Fault and Knipovich Ridge has
migrated northward. Faults and rift escarpments further north suggest that the Knipovich ridge is continu-
ing to propagate northward under the West Svalbard Margin (Crane et al., 2001). Due to the nature of the
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geologic and tectonic setting of the study area, close to the Knipovich Ridge, the crust is young and close
to the seafloor (Amundsen et al., 2011).

2.3. Seismic Stratigraphy
Three main stratigraphic units provide chronological constraints on the West Svalbard Margin (Eiken &
Hinz, 1993). YP-1 is the oldest unit, composed of syn-rift and post-rift sediments, which deposited directly
on oceanic crust; YP-2 sequence comprises the onset of contourite facies with a basal age between 11
and 14.6 Ma; and YP-3 corresponds to the onset of glacially transported sediments, where contourites
and glaciomarine turbidites and debris flows are the predominant facies. Correlation to cores drilled dur-
ing Ocean Drilling Program Leg 151 (Geissler et al., 2011) provides the age control for these seismic strati-
graphic units. The boundary between YP-2 and YP-3 is estimated to be 2.7 Ma (Eiken & Hinz, 1993;
Mattingsdal et al., 2014), and has been identified in the region comprising the Yermak Plateau, the Vest-
nesa Ridge, and offshore Prins Karls Forland (Eiken & Hinz, 1993; Hustoft et al., 2009; Mattingsdal et al.,
2014). Based on the supposition that the Svyatogor Ridge was offset to the west during growth of Vest-
nesa Ridge across the MTF during the last 2–3 Ma (Johnson et al., 2015), YP-2 and YP-3 seismic strati-
graphic units should also be present on the Svyatogor Ridge. YP-1, however, is most likely too old
compared to the estimated crustal age to be present on Svyatogor Ridge (Engen et al., 2008; Mattingsdal
et al., 2014).

Figure 1. (a) The Svyatogor Ridge is a 46 km long, �5 km wide feature at the intersection between the Molloy Transform
Fault (MTF) and the Knipovich Ridge (KR). The Knipovich Ridge has a spreading rate of �8 mm/yr (Ehlers & Jokat, 2009).
Svyatogor Ridge is located between Chrons 5 and 2A (C2A, C5), correlating to 9.8 and 2.8 Ma, respectively (Engen et al.,
2008). The location of the 3-D P-Cable Seismic survey is marked by the black box in the inset and seismic examples from
Johnson et al. (2015) are marked by blue lines. Other tectonic and geologic features in the Fram Strait are the Vestnesa
Ridge (VR), Molloy Ridge (MR), Yermak Plateau (YP), Lena Trough (LT), and Gakkel Ridge (GR). (b) Position of Figures 5–7
and 9 in relation to the 3-D seismic cube.
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2.4. Oceanography
The Fram Strait channels warm, saline waters from the North Atlantic into the Arctic Ocean, and transports
cold Arctic water southward (Beszczynska-M€oller et al., 2012). The West Spitsbergen Current brings North
Atlantic water northward, and is an important sediment supply system for the Western Svalbard Margin,
having deposited the muddy-silty contourite deposits that dominate sedimentation (Howe et al., 2008;
Rebesco et al., 2013). Although paleo-current indications suggest the West Spitsbergen Current has
migrated up the West Svalbard Margin slope over time (Eiken & Hinz, 1993), this current may have been
influencing the Svyatogor Ridge in the past (Johnson et al., 2015), thus, driving sedimentation that ulti-
mately hosts the gas hydrate and free gas system observed there today. As the West Spitsbergen Current
has migrated upslope through time, we expect the WSC influenced sedimentation to decrease through
time on Svyatogor Ridge.

3. Data and Methods

A 2 3 10 km high-resolution P-Cable 3-D seismic data set was acquired in 2014 aboard R/V Helmer Hanssen.
P-Cable seismic data were recorded using 14, 25 m long streamers spaced 12.5 m apart with eight channels
per streamer (e.g., Planke et al., 2009). The source used was a mini-GI air gun with a capacity of 15/15 in.3,
fired every 5 s with the ship maintaining a speed of 4 km and sailing line spacing of �60 m. Data processing
steps included: insertion of navigation data, CDP-Binning at 6.25 3 6.25 m (fold of approximately 7 traces
per CDP bin), static corrections, bandpass filtering with a frequency of 10–20–400–500 Hz, attenuation and
spherical divergence correction, NMO correction, stacking, interpolation in crossline direction and a 3-D
Stolt (post-stack)|Migration. We used a constant velocity of 1,600 m/s for migration, constrained for the
imaged sedimentary infill by Ritzmann et al. (2004), who used Ocean Bottom Seismometers for velocity
analysis. Dominant frequency of this data is 120 Hz, so the vertical data resolution is <3.2 m (k/4) at the sea-
floor assuming a water velocity of 1,490 m/s (measured by CTD at beginning of surveying). Data penetration
is restricted to 3,200 ms TWT. Seismic interpretation used commercially available seismic interpretation soft-
ware (Petrel). Variance maps were generated along major reflections for fault analysis and depositional
reconstruction carried out for constraining the evolution of the study area. Seismic results are analyzed
together with bathymetry data with a resolution of �10–20 m collected aboard the R/V Helmer Hanssen
between 2014 and 2016. Repeated water column acoustic mapping (June 2014 and October 2015) during
CAGE cruises 14-1, 14-2, and 15-6 reveled no active fluid expulsion above pockmarks on the crest of Svyato-
gor Ridge.

4. Results and Interpretations

4.1. Distinct Depositional Periods
Four main depositional periods (S1–S4) are identified in addition to the acoustic basement, based on: (1)
the seismic character of the reflections; (2) faulting pattern; and time framework (i.e., syn-rift or post-rift
deposition) (Figure 2).

Johnson et al. (2015) define the basement in this study area, which are indicated by the transition in seismic
response between sediments and oceanic basement. Using the nearest published seafloor sampling results,
seismic refraction data, and the tectonic setting, Johnson et al. (2015) suggest that the basement in the
study area is likely composed of serpentinized ultramafic rocks. The basement has two prominent highs
(East Peak, West Peak; Figure 3a), with a depression located in between. Associated with these two peaks,
the acoustic basement tilts creating an additional two small basins at the western and eastern ends of the
data set (Figure 3). Within the unit defined as basement, there are no seismic indications of stratified reflec-
tions from sediments. We interpret the basement as young crust formed as part of the Knipovich Ridge
spreading regime.

Pockets of sediments infilling acoustic basement lows (Figures 2 and 3a) characterize the first period of
deposition (Unit S4). In the central depression between the two basement peaks, this unit appears to onlap
against the East Peak but abruptly truncates against the West Peak. Amplitude of reflections in this unit is
very low. All reflectors in this unit dip at similar angles to the acoustic basement (Figure 3a). The reflector
marking the top of Unit S4 appears to be erosional (truncating lower reflectors) on the western side of West
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Peak. Unit S4 is interpreted to be sedimentation infilling the basement highs and lows. It is difficult to inter-
pret further owing to the extremely low amplitudes. The rotation of the few reflectors we could identify sug-
gests this unit has tilted because of tectonic event(s).

Unit S3 also infills basement lows; however, it is not localized in the same manner as S4; the top reflections of
this unit are nearly continuous throughout the entire data set, except in one area (west peak) where the
acoustic basement protrudes above this unit (Figures 2 and 3a). While in the west of the data set, reflectors
are subhorizontal to slightly rotated, the eastern half of this unit is rotated to conform to the dip trend of the
acoustic basement (Figures 2 and 3a). Overall, the amplitudes and reflection frequency of this unit are low;
however, moving upward through this unit reflectors appears to become increasingly less rotated (Figure 3a).
We therefore interpret this unit to have continued to infill basement lows after the deposition of Unit S4.

Depositional period S2 consists of mostly subhorizontal deposition in the west and dipping reflectors in the
east. In this unit, there is thickening of sedimentary packages toward the east (Figure 3). Disruption and ver-
tical offset of reflections are prevalent within Unit S2. Based on the correlation with regional seismic lines
(e.g., Hustoft et al., 2009), we interpret that the top reflection of our S2 depositional period coincides with
the YP2/YP3 boundary. This indicates that the sediment deposited in this unit is older than 2.7 Ma. In addi-
tion, the unit thickens eastward so this unit is interpreted to deposit as the WSC was moving east, while
simultaneously the Knipovich Ridge was propagating Svyatogor Ridge westward.

Depositional period S1 is composed of mostly subhorizontal reflectors in the west and dipping reflectors
in the east (Figure 3). Unit S1 shows a clear thickening trend of sedimentary packages toward the east
(Figure 3b). The amplitudes in this depositional period also cycle from high amplitude to low amplitude;
however, the transition to low amplitude is abrupt and therefore there is a predominance of high amplitude
(Figure 3a). Frequency of reflections in this unit is high. Like Unit S2, disruption and vertical offset of reflec-
tions are common. The uppermost reflector in this unit is the seafloor and the base has been correlated as
YP2/3 (e.g., Hustoft et al., 2009); therefore, this unit must correlate to YP3 (<2.7 Ma) sediment. The eastward
thickening of this unit is interpreted to result from the combined effects of the eastward migration of the
WSC and the westward offset of the ridge along the MTF.

Figure 2. The data set is divided into four units representing depositional periods (S4–S1) and basement. These deposi-
tional periods are defined based on seismic properties that indicated a change in depositional regime and rock/sediment
properties. Locations of structural maps in Figures 5 and 8 are annotated on this section. WP and EP are the west and east
basement peaks, respectively.
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4.2. Fault Analysis
4.2.1. Major Tectonic Faults
Two normal faults (BF1, BF2) were identified at the lower limit of penetration of the data set (Figure 4).
These faults occur in the acoustic basement and do not extend upward into the sedimentary sequences
(Figure 4). The western-most basement fault (BF1) is the best imaged and closer to the surface. The eastern-

Figure 3. (a) The acoustic basement has two main peaks (WP, West Peak; EP, East Peak) that are defined by two normal
faults, with basins surrounding the peaks. Units S4 and S3 infill these basement highs. Units S2 and S1 are composed of
mainly subhorizontal reflectors in the west and dipping reflectors in the east. Inset: Units S4 and S3 are slightly rotated,
and stretched, to conform to the tilt of the basement. This has led to the interpretation that these units have been depos-
ited while these faults were active. (b) Isopach maps of Units S1 and S2 show that eastward thickening of strata is most
pronounced in S2. Section marked ‘‘WP’’ is where the basement peak West Peak outcrops into S2.
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most basement fault (BF2) is at the very edge of both lateral and vertical data extent; however, it is still pos-
sible to interpret a fault plane. The dip of BF1 and BF2 is calculated to be 308 and 208, respectively (based
on a velocity of 1,600 m/s adjacent to sedimentary sections), and dip azimuth of BF1 is �808 while BF2
�958. Both faults conform to the regional tectonic setting. Offset of BF1 is at least 1,200 m and the offset of
BF2 at least 1,000 m (Amundsen et al., 2011). These faults are interpreted to be detachment faults, which
are related to spreading on the Knipovich Ridge (Amundsen et al., 2011; Johnson et al., 2015).
4.2.2. Sedimentary Faults
In the sedimentary strata, there are numerous steeply dipping normal faults present throughout the data
set. These faults are NNW-SSE oriented and have dips of between 408 and 908, although most faults dip
between 608 and 908 (Figure 4). Most of the faults upwardly terminate in Unit S2 although a few terminates
within Unit S1 or reach the seafloor. These faults are all concentrated around the two major tectonic faults,

Figure 4. (a) BF1 and BF2 are two large normal detachment faults identified within the data set. These faults do not
extend beyond the basement however, sedimentary fault arrays occur exclusively around the area where the basement
faults occur. (b) The sedimentary faults mostly conform to the regional tectonic regime (strike of Knipovich Ridge marked
in red on Stereonet, from Peive and Chamov (2008)). Dip of the sedimentary faults is between 408 and 908. (c) Sedimen-
tary faults from the eastern-most group shown in Figure 4a showing instances of small folds occurring above the fault ter-
mination, indicating that these are developing as growth faults.
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BF1 and BF2, in the acoustic basement (Figure 4). These faults mostly comply with the regional tectonic set-
ting although some at the apex of the ridge do not (Figure 4) (Peive & Chamov, 2008). Sedimentary faults
nearly exclusively terminate against the basement. At the upward termination of the faults, there is often a
very small fold, which is indicative of a fault propagation folding (Hardy & McClay, 1999; Jackson et al.,
2006). We interpret folding at the upper terminus of sedimentary faults to indicate upward and lateral prop-
agation of normal faults through ductile sediment deposited over more rigid basement material (e.g., Cor-
field & Sharp, 2000).
4.2.3. Radial Faults and Fracture Networks
Structural maps reveal smaller scale faults forming at random azimuths between larger scale NW-SE trend-
ing faults (Figure 5). We only identify this type of faulting in the area above West Peak. This type of faulting
occurs in a linear, step-like fashion around a zone of acoustic blanking coincident above West Peak
(Figure 5). This type of faulting is interpreted as radial faulting, and similarly to the radial-type faulting
around sediment remobilization features (e.g., Hansen et al., 2005), is interpreted to be a function of
the sediment doming around the peaks associated with the two major detachment faults BF1 and BF2
(Figure 4a). In this case, we interpret the structure causing sediment doming to be uplift of West Peak into
the sedimentary sequence. Lastly, we also identify even smaller scale features in variance attribute that are
also forming at random azimuths, and sometimes as circular features, and are often barely recognizable in
the seismic section (Figure 5). These features are mostly associated with a very small depression at the
upward termination, which may be interpreted as fluid flow features (Hartwig et al., 2012). As the depres-
sion structure is at the limit of seismic resolution, it is difficult to interpret whether it is a paleo-pockmark or
associated with syn-tectonic infill; however, the circular features often form at intersections of the small
scale, random azimuth features. Therefore, we interpret the random azimuth features as fracture networks.

4.3. Fluid Flow and Associated Gas Hydrate System
In Unit S1, located 150 ms TWT beneath the seafloor, at the apex of Svyatogor Ridge is a persistent crosscut-
ting reflector with anomalously high amplitude, reverse polarity cf. the seafloor that simulates the seafloor

Figure 5. Structural maps (variance attribute) of horizons show radial faulting at depths greater than 2,150 ms TWT. These
are interpreted to be caused by the uplift of the basement West Peak into its current position. We also identified fracture
networks (b) which often present as small circular features in variance attribute, however, are often difficult to observe as
faults in the seismic section. Location of horizons shown in Figure 2 and inset.
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(Figure 6a). Such a distinct crosscutting reflection is known as the
bottom-simulating reflector (BSR) which indicates the base of the
GHSZ (Shipley et al., 1979). There is a zone (40–60 ms TWT thick)
immediately below the BSR with enhanced amplitudes compared to
the surrounding strata (Figure 7b).

This high amplitude zone is also a typical element of a gas hydrate
system, where free gas is trapped underneath gas hydrate bearing
sediments (e.g., Holbrook et al., 1996). The free gas zone in Svyatogor
ridge is contained to the west of the BF1 footwall (Figure 6b), becom-
ing thinner toward the flanks of the sedimentary ridge until disap-
pearing �1 km away from the axis of the ridge (Figure 6b). Beneath
the enhanced reflection zone is a diminished amplitude zone extend-
ing through Units 2, 3, and 4 (Figure 7b). This zone characterized by
amplitude blanking is the result of energy attenuation and scattering
when the waves travel through gas-bearing sediments (Anderson &
Hampton, 1980; Cartwright & Santamarina, 2015; Løseth et al., 2009).

A number of circular-elliptical depression structures (90–350 m diame-
ter) disturb the seafloor at the apex of Svyatogor Ridge (Figure 7a).
We interpret these features as pockmarks related to fluid expulsion at
the seafloor. There are two distinct fluid migration pathways leading
to these seafloor pockmarks. First, underlying the apex of the ridge
(Figure 7b) is a zone of hummocky, nonconformant reflections, which
are notably lower in amplitude than the rest of Unit S1 (section 4.1.5).
This zone is interpreted to be a zone of focused fluid migration,
referred to as a chimney zone here. The second fluid migration path-
way are faults that upwardly terminate at the base of pockmarks. Spa-
tially, pockmarks with a chimney beneath occur at the crest of the
ridge while pockmarks underlain by a fault occur <100 m east of the
ridge crest (Figures 7a and 7b).

Within the chimney cluster, interleaved between sections of low
amplitude, hummocky reflections are four horizons that have higher
amplitude, are semicontinuous, and appear undulating in 2-D. In 3-D,

these undulations are circular depressions, the flanks of which are truncating reflectors beneath (Figure 8).
These depression structures are infilled with a low amplitude material which onlaps against the flanks of
the depression (Figure 8). We interpret these features as buried pockmarks, with the disturbed, low ampli-
tude zones beneath being individual chimneys. Buried pockmarks occur only in the chimney cluster.
Although reflections are highly disturbed in the chimney cluster, we are unable to discern any faults leading
to buried pockmarks. Buried pockmarks occur specifically on four stratigraphic intervals (Figure 9); however,
they are not vertically stacked, nor are they of consistent size, either within the same stratigraphic interval
or vertically throughout the data set; therefore, they are not velocity artifacts. Due to their locations on four
specific stratigraphic intervals, these are interpreted to be recording episodic fluid expulsion at paleo-
seafloors.

5. Discussion

5.1. Structural and Stratigraphic Evolution of Svyatogor Ridge
The Svyatogor Ridge has undergone much deformation as indicated by the numerous faults present in the
data set. The configuration of reflections within the individual units provides information on the style and
possible timing of faulting and deformation on the Svyatogor Ridge. The rotation angles and onlap/termina-
tion patterns of Units S4 and S3 indicate that these packages have undergone rotation during phases of
movement on BF1 and BF2 (Figure 3). Units S2 and S1 are highly faulted, especially around the basement
highs (Figures 2 and 5). This is indicative that there was still movement on the basement faults during or
after deposition of these units. As the West Spitsbergen Current is the dominant sediment supply current to

Figure 6. (a) The reflection identified as a BSR is characterized by being reverse
polarity and mimicking the seafloor as well as being notably higher in ampli-
tude than the surrounding strata. (b) The free gas zone beneath the BSR is rela-
tively small in comparison to the extent of our 3-D cube, however important to
note that it is limited to the area west of the BF1 footwall and is thickest at the
ridge crest axis.
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the West Svalbard Margin and Yermak Plateau (Eiken & Hinz, 1993),
and that Svyatogor Ridge is isolated from downslope processes by
the Knipovich Ridge axial valley, the West Spitsbergen Current has
likely dominated sediment supply to Svyatogor Ridge in the past.
Given that the West Spitsbergen Current has migrated upslope, away
from the Svyatogor Ridge (Eiken & Hinz, 1993; Johnson et al., 2015),
the Svyatogor Ridge has likely been sediment-limited since spreading
began on the northern Knipovich Ridge (Johnson et al., 2015).

Two styles of faulting present in the data can be attributed to regional
tectonism—the detachment faults, which are directly linked to
spreading on the Knipovich Ridge (Amundsen et al., 2011; Johnson
et al., 2015), and the sedimentary faults, which based on the strike of
these faults, conform to the regional tectonic setting (Crane et al.,
2001). There are two main possible mechanisms for the formation of
such faults in this environment.

First, the creation of accommodation space as the Knipovich Ridge
spreads can result in gravity driven extension (Bodego & Agirrezabala,
2013; Peel, 2014). Second, growth faulting, which occurs when a
mechanically weaker material (sediment) overlies a mechanically
stronger material (basement), and the stronger material faults (Hardy
& McClay, 1999; Tvedt et al., 2013). As a fault in the basement moves,
the sediment overlying the basement accommodates this by folding
(Figure 10); however, as offset on the basement fault increases, the
folds may become breached, forming the sedimentary faults (Ferrill
et al., 2012; Hardy & McClay, 1999). The process of sedimentary fault
propagation through this mechanism will occur at a rate determined
by the movement of the basement fault (Allmendinger & Shaw, 2000;
Ferrill et al., 2012). In this study area, the basement faults are accom-
modating the stress from the ultraslow extension at the plate bound-
ary. Therefore, we would expect episodic movement on the basement
faults implying that the sedimentary faults would have also grown
over a much longer period than in a faster spreading environment.
We suggest that this has also had consequences for fluid migration
within this system.

5.2. Fluid Migration Evolution
The fluid migration system on Svyatogor Ridge is unique in that it

occurs in a sedimented mid-ocean ridge system where the basement rock is identified only �500 ms TWT
beneath the seafloor. Additionally, all the fluid flow features, such as the BSR and pockmarks, occur exclu-
sively above the basement faults. Although it is not clear whether the system is still actively leaking fluid
today, buried pockmarks occurring along certain stratigraphic horizons would indicate episodic fluid release
events. In such large water depths, temperature and pressure changes due to sea-level fluctuations during
glacial cycles are unlikely to have had a significant effect on the dynamics of a gas hydrate and associated
fluid flow system here. However, it remains uncertain whether glacial related isostatic adjustments as mod-
eled on the West Svalbard shelf (Wallmann et al., 2018) may have influenced fault activity and fluid migra-
tion on Svyatogor Ridge.

Johnson et al. (2015) proposed that the basement faults imaged on Svyatogor Ridge are acting as fluid
migration pathways for fluids from the mid-ocean ridge system to reach the shallow subsurface. In this sce-
nario, periods of fluid activity (migration and release from the seafloor) are most likely tectonically con-
trolled. As noted previously, faulting events on BF1 and BF2 have occurred as recently as the time Unit S2
was deposited.

On the seafloor, pockmarks occur above both the chimney zone and above faults 50–100 m east of the
chimney zone. Buried pockmarks, however, occur only within the chimney zone and not associated with

Figure 7. (a) Seafloor map (interpreted from the 3-D seismic) shows two groups
of pockmarks are observed, those above the chimney zone, and those which
are underlain by the western-most sedimentary fault (F1). (b) The chimney
zone is immediately adjacent to F1. It is delineated by a change between regu-
lar subhorizontal deposition to hummocky irregular deposition. The free gas
zone is 60 ms TWT thickest at the thickest point.
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the faults to the east (Figures 8 and 9). This indicates that fluids
bypassing the GHSZ have found an additional pathway over time;
from releasing at paleo-seafloor(s) at the apex of the ridge indicated
by paleo-pockmarks within the chimney zone to utilizing zones of
weakness and fault planes, which culminates in pockmarks above
faults. We interpret that this is a function of the time taken for sedi-
mentary faults to develop. As shown in Figure 11, below the GHSZ
fluid is able to utilize faults as migration pathways to the point of
encountering the fold at the upper termination—the fold is acting as
a structural seal. If the pore spaces of the sediment become overpres-
surized before another section of folded strata breaches into faults,
fluid release to the seafloor will be characterized by ‘‘blow-out’’ type
seal bypass systems (Cartwright et al., 2007) such as a chimney. As
sedimentary faults propagate upward toward the seafloor they pro-
vide an additional seal bypass pathway (Figure 11). We have also iden-
tified small fracture networks, which are important in transporting
fluid through the GHSZ. These fracture networks have randomly ori-
ented strikes and therefore are not a consequence of the regional tec-
tonic regime. We suggest that fracture networks are a consequence of
hydraulic fracturing, occurring as fluids migrate through the subsur-
face. Small faults themselves have random strikes, but to the east of
the free gas zone, these faults become integrated with sedimentary
faults striking in compliance with the regional tectonic regime. Frac-
ture networks appear to be restricted to a zone immediately above

and within the free gas zone. We suggest that this is evidence for how fluid bypassed a seal created by
hydrate clogging the pore space, a model consistent with Hornbach et al. (2004). We suggest that faults or
planes of weakness were created in the past when the radial faulting formed that were then reactivated as
the free gas zone became critically thick (Hornbach et al., 2004). In this scenario, planes of weakness across
the seal need only be reactivated so that overpressure is released, and fluid can migrate upward without
obstruction. We cannot determine from seismic data alone the type of brittle failure that is occurring to cre-
ate these fractures (i.e., hydraulic extension fractures, extensional shear fractures, or meshes) (Sibson, 2003).
However, we propose that in this case gas hydrate within the pore space of the sediment and the natural
anticlinal structure of the ridge acts as an effective seal or cap rock. The fracture networks we identify here
could be seismic evidence for the extent of the seal trapping free gas in this study location (Hornbach et al.,
2004; Sibson, 2003).

Given that there are buried pockmarks found at �30 ms TWT (�22 m) above the current BSR, and �60 ms
TWT (�45 m) above YP2–3 (Figures 9 and 11), gas migration into the free gas zone, gas hydrate formation,
and migration to the (paleo-)seafloor has been ongoing during most of S1 deposition (Figures 2 and 11).
Johnson et al. (2015) proposed that abiotic methane from serpentinization could be the origin of much of
the gas here on Svyatogor Ridge. Our research suggests that the detachment faults here have indeed
played a major role in driving fluid migration and expulsion in the subsurface and that methane may well
have originated within these faults through serpentinization.

5.3. Consequence of Active Margin, Deep Ocean Setting on the Gas Hydrate and Fluid Flow System
The location of the Svyatogor Ridge on the flank of the Knipovich Ridge, atop detachment faults (which
accommodate rifting), makes it a unique location for a gas hydrate and fluid flow system. In general the
types of fluid flow systems normally identified on the flanks of spreading ridges are high temperature basalt
hosted hydrothermal vent systems, generated by the increased heat flow provided by magmatic centers
along axis (e.g., Guaymas Basin (Lizarralde et al., 2011)) or lower temperature peridotite hosted hydrother-
mal systems sustained by water-rock serpentinization reactions (e.g., Lost City Hydrothermal Field (Kelley
et al., 2005)). In the case of the northern Knipovich Ridge, the ultraslow spreading regime, accommodated
by observed detachment faults, implies it is a magma-limited environment, which would be inherently a
lower temperature subseafloor regime, suitable for the development of the observed, stable gas hydrate
system. There is documentation of magmatic instrusive bodies on the eastern flank of the Northern

Figure 8. Paleo-pockmarks occur only within the Chimney zone, bordered by
two sedimentary faults which are pervasive through the data, F1 and F2 (F2
annotated here). The paleo-pockmarks occur beneath the crest of the ridge,
where the BSR is shallowest. One paleo-pockmark is highlighted in this figure,
with the base of the paleo-pockmark displayed using RMS amplitude attribute
to highlight that the paleo-pockmarks are circular-elliptical in shape and have a
higher amplitude base than infill. Additionally, there is a higher amplitude at
the base of the depression than the flanks, indicated by the RMS amplitude
attribute. The infill is characterized by being onlapping against the base of the
pockmark.
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Knipovich Ridge (Ritzmann et al., 2004), which would have presumably formed in conjunction with rifting
on either the Molloy Ridge or the Knipovich Ridge, in a mixed mode scenario of detachment fault and mag-
matic spreading in the past; however, other studies have not found evidence for magmatic instrusive bod-
ies associated with the northern section of the Knipovich Ridge (i.e., Amundsen et al., 2011; Crane et al.,
2001). Partial serpentinization of the crust at this location is supported by Ritzmann et al. (2004) who
observe crustal velocities of �7.6 km/s south of the Molloy Transform Fault. Hydrothermal system studies
further south along the Knipovich Ridge also suggest that there is some methane flux from serpentinization
along with other hydrothermally generated fluids (Cannat et al., 2010). That a fluid flow system exists on a
spreading ridge is not unique in itself due to the abundance of hydrothermal systems present on mid-
ocean ridges, but the lack of significant heat flow and therefore, potential for a stable gas hydrate stability
zone, is an interesting case for Svyatogor Ridge, as gas hydrate systems are normally identified on passive
continental margins, far from spreading ridges. Most of the world’s oceans deeper than approximately 300
mbsl have potential for gas hydrate stability (Kvenvolden, 1993). However, a distal setting is commonly
excluded from global gas hydrate concentration models due to a lack of organic matter deposition (Klauda
& Sandler, 2005). A possible exception to this is of course in the case where the Continental-Oceanic crust
boundary is proximal to a sediment source and has been active for a long period of time, for example, in
the Gulf of Mexico or in the Fram Strait at Vestnesa Ridge. On the Svyatogor Ridge, however, asymmetric,
ultraslow spreading of the Knipovich Ridge means that the Svyatogor Ridge has, since the underlying crust
formed, been in proximity to the West Svalbard Margin and West Spitsbergen Current, allowing sedimenta-
tion at the northern extent of the Knipovich Ridge flanks (Eiken & Hinz, 1993; Johnson et al., 2015) and
therefore providing suitable reservoir material for fluids generated by crustal processes.

Figure 9. In variance attribute taken across horizons, the chimney zone (black oval) is characterized by being highly variant, but chaotic. The first two pervasive
sedimentary faults (F1 and F2, red dotted lines) are clear in all four variance maps, and border the chimney zone to the east. Locations of horizons shown in Fig-
ures 2 and 8.
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The occurrence of a gas hydrate system on the flank of an actively spreading margin presents an interesting
case because active margin hydrate systems are better studied and more prolific on subduction margins,
for example, the Hikurangi (Barnes et al., 2010; Crutchley et al., 2010; Faure et al., 2006; Pecher et al., 2005)
and Cascadia margins (Bohrmann et al., 1998; Pohlman et al., 2009; Riedel & Collett, 2005; Suess et al., 1999).
In a compressional tectonic system, we expect to identify particular structural fabrics related to the regional
tectonic regime. However, these structural fabrics will differ in an extensional regime, and while we can
compare a gas hydrate system in an extensional setting to, for example, a hydrothermal system in terms of
fluid flow pathway development, the Svyatogor Ridge setting may be confounded by two additional fac-
tors: (1) the location proximal to a strike-slip tectonic setting could be influencing the tectonic setting and
(2) it is difficult to determine what effect, if any, an ultraslow spreading regime has on the coupling between
fluid migration pathway development, seepage and tectonic development. In this initial investigation of
Svyatogor Ridge, we have not been able to determine with precision if the Molloy Transform Fault has an
influence on the structural fabric and therefore fluid flow regime; however, we have posited that the ultra-
slow nature of the Knipovich Ridge might have played a role in the timing of fluid release on the Svyatogor
Ridge. In contrast to the tectonic setting on Vestnesa Ridge, which is a contourite drift developed close to
the mid-ocean ridge but on a passive margin slope, (B€unz et al., 2012; Plaza-Faverola et al., 2015; Vanneste
et al., 2005), Svyatogor Ridge appears to be unique in that sedimentary sequences, the gas hydrate system,
and the tectonic setting are developing in unison, particularly reliant on the tectonic setting to form as they
have.

5.4. A Note on Gas Origin
Shallow penetrating gravity cores collected on Svyatogor Ridge during CAGE expeditions have yet to
recover enough gas for isotopic analysis. As there are no other gas samples from the Svyatogor Ridge avail-
able to the authors, we note from the 3-D seismic survey that (1) faults appear to be controlling where and

Figure 10. (a) Conceptual diagram of fault growth where a mechanically stronger basement, covered by a mechanically
weaker strata, faults and causes folds to develop, and with continued movement on the basement fault these folds
breach into faults. In this simple scenario, fluid () can utilize the faulted sections to migrate but may become trapped
(labeled ‘‘trap’’) by the unfaulted strata (after Hardy & McClay, 1999). (b) When this process occurs close to the seafloor,
fluid seepage across the seafloor results in pockmark formation. With continued syn-deformation sedimentation, pock-
marks get buried and the process continues.
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how the gas hydrate system has formed and that (2) the detachment faults are the major linking factor to
all the processes occurring on the Svyatogor Ridge (sedimentary fault development, fluid flow pathway
development, and ridge topography). With regards to thermogenic gas production, we posit that there has
been no thermogenic methane produced within the sediments on the Svyatogor Ridge itself as the crite-
rion for generation (normally depths greater than 1,000 m below seafloor (Floodgate & Judd, 1992)) is not
met. We cannot rule out that there is gas migrating from another source, for example, across the Molloy
Transform Fault (Smith et al., 2014) or from Hovgård Ridge (Knies et al., 2018), which has also been shown
to have some source rock present (Knies & Mann, 2002). We do note, however, that methane is generated
in serpentinization reactions (Etiope & Sherwood Lollar, 2013) and that Cannat et al. (2010) and Proskurow-
ski et al. (2008) show methane production from serpentinization is produced in slow to ultraslow spreading
ridge settings. Additionally, Ritzmann et al. (2004) shows that there is potential for partially serpentinized

Figure 11. (a) During initial activation of the detachment fault, faults in the sedimentary strata had not propagated far
through the sedimentary column so they were not fluid migration pathways to the seafloor. However, gas hydrate can
develop as can a free gas zone. (b) With prolonged fluid migration into the system, fluids in the FGZ can become over-
pressurized and force the chimney zone to form (c). As additional material deposited, the BGHSZ is able to migrate
upward, and sedimentary faults propagated further due to further movement on detachment fault. This means that fluid
migrating to the seafloor is able to use faults as fluid migration pathways to the seafloor. (d) Today, it is not clear whether
the detachment faults are supplying fluid to Svyatogor Ridge; however, the evidence of past fluid migration and release is
preserved.
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crust beneath Svyatogor Ridge. Given that the detachment faults are key for the dynamics of this gas
hydrate system, we would not rule out some contribution from serpentinization produced methane. Active
methane production via serpentinization beneath the study location today may be unlikely, however, as
the detachment faults now are approaching the end, or are at the end, of their typical duration of activity
(1–3 My), sedimentation above the oceanic crust restricts seawater peridotite interaction, and continued
spreading and offset along the MTF has nearly removed Svyatogor Ridge sediments from the serpentiniza-
tion driven abiotic methane window suggested by Johnson et al. (2015). Thus, any abiotic methane present
within the gas hydrate system here today, must have formed while the detachment faults were active, Svya-
togor Ridge was within the abiotic methane production window, and there was sufficient sedimentation to
trap the gases. In this scenario, methane generated through serpentinization may be preserved in early
developing gas hydrate systems, like Svyatogor Ridge, but with continued development, the influence of
crustal sources of fluids and gases may be minimized. Given the history here, we associate the modern fluid
flow system in this study area as a sediment hosted gas hydrate system that developed over the last �3 mil-
lion years.

6. Conclusion

The Svyatogor Ridge has developed on the North Western flank of the Knipovich Ridge in an active margin
setting. The majority of sedimentation on the Svyatogor Ridge has been interpreted to deposit during the
YP-2 and YP-3 sedimentation regimes, while the Svyatogor Ridge was still close to the spreading center and
an active sediment supply. The tectonic environment here has greatly controlled all aspects of development
in this setting, from sedimentary evolution to fluid flow system evolution. Sedimentary faults in the 3-D seis-
mic data are directly linked to the movement on spreading related detachment faults and the seismic stra-
tigraphy is largely based on changes of reflection patterns linked to phases of faulting on detachment
faults. The gas hydrate system on the Svyatogor Ridge is located on the flank of the Knipovich ridge axis—
in a natural trapping structure along the crest of the Svyatogor Ridge. Seepage from this system to the
water column has been episodic in nature, occurring at four distinct intervals throughout the last �2.7 Ma.
Tectonism appears to be the major driver of fluid flow on Svyatogor Ridge, with movement on detachment
faults shown to be impacting both the fluid flow into the gas hydrate and free gas zones, and release of at
the (paleo-)seafloor.

Subaqueous gas hydrate reservoirs are generally found in settings with thick sedimentary sequences: on
passive continental margins, contourite deposits, or active (subducting) continental margins. Svyatogor
Ridge, however, is a sediment-limited, deep water drift located on an actively spreading plate boundary.
Worldwide, this setting type is generally dominated by hydrothermal fluid systems sustained by seawater
circulation in basalt or peridotite dominated crust. Due to the amagmatic nature of the northern Knipovich
Ridge, there is no significant heat source for a magmatically heated hydrothermal system. Hydrothermal
systems further south along the Knipovich Ridge have been shown to have methane as a fluid constituent,
due to serpentinization reactions, and on the Svyatogor Ridge studies have shown that the acoustic velocity
of basement material give a likelihood of serpentinitized mantle beneath the Svyatogor Ridge. Therefore,
we conclude that the Svyatogor Ridge has developed a gas hydrate system in this ultraslow, amagmatic
spreading setting largely due to the presence of detachment faults, which accommodate seafloor spreading
and deformation of the overlying sediment column, enable seawater rock reactions to drive serpentiniza-
tion, and serve as pathways for crustal fluid and gas migration to the overlying sediments.
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