176 research outputs found

    Genomic Consequences of Fragmentation in the Endangered Fennoscandian Arctic Fox (Vulpes lagopus)

    Get PDF
    Accelerating climate change is causing severe habitat fragmentation in the Arctic, threatening the persistence of many cold-adapted species. The Scandinavian arctic fox (V. lagopus) is highly fragmented, with a once continuous, circumpolar distribution, it struggled to recover from a demographic bottleneck in the late 19th century. The future persistence of the entire Scandinavian population is highly dependent on the northernmost Fennoscandian subpopulations (Scandinavia and the Kola Peninsula), to provide a link to the viable Siberian population. By analyzing 43 arctic fox genomes, we quantified genomic variation and inbreeding in these populations. Signatures of genome erosion increased from Siberia to northern Sweden indicating a stepping-stone model of connectivity. In northern Fennoscandia, runs of homozygosity (ROH) were on average ~1.47-fold longer than ROH found in Siberia, stretching almost entire scaffolds. Moreover, consistent with recent inbreeding, northern Fennoscandia harbored more homozygous deleterious mutations, whereas Siberia had more in heterozygous state. This study underlines the value of documenting genome erosion following population fragmentation to identify areas requiring conservation priority. With the increasing fragmentation and isolation of Arctic habitats due to global warming, understanding the genomic and demographic consequences is vital for maintaining evolutionary potential and preventing local extinctions. inbreeding; runs of homozygosity; bottleneck; fragmentation; mutational load; conservatio

    Potential for increased connectivity between differentiated wolverine populations

    Get PDF
    Information on genetic population structure provides important knowledge for species conservation. Yet, few studies combine extensive genetic data to evaluate the structure and population dynamics of transboundary populations. Here we used single nucleotide polymorphisms (SNPs), microsatellites and mitochondrial haplotypes to analyze the genetic population structure of wolverines (Gulo gulo) across Fennoscandia using a long-term monitoring dataset of 1708 individuals. Clear population subdivision was detected between the Scandinavian and the eastern Finnish population with a steep cline in the contact zone. While the Scandinavian population showed isolation by distance, large swaths of this population were characterized by high connectivity. Areas with high resistance to gene flow are likely explained by a combination of factors, such as historical isolation and founder effects. From a conservation perspective, promoting gene flow from the population in eastern Finland to the northwest of Scandinavia could augment the less variable Scandinavian population, and increase the demographic resilience of all subpopulations. Overall, the large areas of low resistance to gene flow suggest that transboundary cooperation with aligned actions of harvest and conflict mitigation could improve genetic connectivity across Finland, Sweden, and Norway

    Expedient synthesis of an atypical oxazolidinone compound library

    Get PDF
    In order to address the current downturn in the drug discovery pipeline, initiatives are being undertaken to synthesise screening libraries of sp3-rich, low molecular weight compounds. As part of the European Lead Factory initiative, the synthesis and derivatisation of a simple hexahydrooxazolo[5,4-c]pyridin-2(1H)-one bicyclic carbamate has been achieved. The synthetic route employed involved a telescoped hetero-Diels-Alder/[2,3]-sigmatropic rearrangement/cyclisation sequence to deliver the desired core scaffold containing two points for further diversification. When applied, this synthesis was found to be robust and scalable which allowed the production of a 155 compound library

    A Deletion in the N-Myc Downstream Regulated Gene 1 (NDRG1) Gene in Greyhounds with Polyneuropathy

    Get PDF
    The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs

    Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: A pilot study

    Get PDF
    BACKGROUND: Bengal tiger Panthera tigris tigris the National Animal of India, is an endangered species. Estimating populations for such species is the main objective for designing conservation measures and for evaluating those that are already in place. Due to the tiger's cryptic and secretive behaviour, it is not possible to enumerate and monitor its populations through direct observations; instead indirect methods have always been used for studying tigers in the wild. DNA methods based on non-invasive sampling have not been attempted so far for tiger population studies in India. We describe here a pilot study using DNA extracted from faecal samples of tigers for the purpose of population estimation. RESULTS: In this study, PCR primers were developed based on tiger-specific variations in the mitochondrial cytochrome b for reliably identifying tiger faecal samples from those of sympatric carnivores. Microsatellite markers were developed for the identification of individual tigers with a sibling Probability of Identity of 0.005 that can distinguish even closely related individuals with 99.9% certainty. The effectiveness of using field-collected tiger faecal samples for DNA analysis was evaluated by sampling, identification and subsequently genotyping samples from two protected areas in southern India. CONCLUSION: Our results demonstrate the feasibility of using tiger faecal matter as a potential source of DNA for population estimation of tigers in protected areas in India in addition to the methods currently in use

    Nonreceding hare lines: genetic continuity since the Late Pleistocene in European mountain hares (Lepus timidus)

    Get PDF
    Throughout time, climate changes have caused substantial rearrangements of habitats which have alternately promoted and disfavoured different types of taxa. At first glance, the mountain hare (Lepus timidus) shows the typical hallmarks of a cold-adapted species that has retreated to refugia since the onset of the current Holocene interglacial. In contrary to expectations, however, the species has a high contemporary genetic diversity with no clear differentiation between geographically isolated populations. In order to clarify the phylogeographic history of European mountain hares, we here analysed ancient DNA from the glacial populations that inhabited the previous midlatitude European tundra region. Our results reveal that the Ice Age hares had similar levels of genetic variation and lack of geographic structure as observed today, and the ancient samples were intermingled with modern individuals throughout the reconstructed evolutionary tree. This suggest a temporal genetic continuity in Europe, where the mountain hares were able to keep pace with the rapid changes at the last glacial/interglacial transition, and successfully track their shifting habitat to northern and alpine regions. Further, the temporal demographic analyses showed that the species’ population size in Europe appear to have been tightly linked with palaeoclimatic fluctuations, with increases and declines occurring during periods of global cooling and warming, respectively. Taken together, our results suggest that neither habitat shifts nor demographic fluctuations have had any substantial impact on the genetic diversity of European mountain hares. This remarkable resilience, which contrasts to a majority of previously investigated cold-adapted species, is likely due to its generalist nature which makes it less vulnerable to environmental changes

    A Massively Parallel Sequencing Approach Uncovers Ancient Origins and High Genetic Variability of Endangered Przewalski's Horses

    Get PDF
    The endangered Przewalski's horse is the closest relative of the domestic horse and is the only true wild horse species surviving today. The question of whether Przewalski's horse is the direct progenitor of domestic horse has been hotly debated. Studies of DNA diversity within Przewalski's horses have been sparse but are urgently needed to ensure their successful reintroduction to the wild. In an attempt to resolve the controversy surrounding the phylogenetic position and genetic diversity of Przewalski's horses, we used massively parallel sequencing technology to decipher the complete mitochondrial and partial nuclear genomes for all four surviving maternal lineages of Przewalski's horses. Unlike single-nucleotide polymorphism (SNP) typing usually affected by ascertainment bias, the present method is expected to be largely unbiased. Three mitochondrial haplotypes were discovered—two similar ones, haplotypes I/II, and one substantially divergent from the other two, haplotype III. Haplotypes I/II versus III did not cluster together on a phylogenetic tree, rejecting the monophyly of Przewalski's horse maternal lineages, and were estimated to split 0.117–0.186 Ma, significantly preceding horse domestication. In the phylogeny based on autosomal sequences, Przewalski's horses formed a monophyletic clade, separate from the Thoroughbred domestic horse lineage. Our results suggest that Przewalski's horses have ancient origins and are not the direct progenitors of domestic horses. The analysis of the vast amount of sequence data presented here suggests that Przewalski's and domestic horse lineages diverged at least 0.117 Ma but since then have retained ancestral genetic polymorphism and/or experienced gene flow

    Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations

    Get PDF
    Alterations in intrauterine programming occurring during critical periods of development have adverse consequences for whole-organ systems or individual tissue functions in later life. In this paper, we show that rat embryonic neural stem cells (NSCs) exposed to the synthetic glucocorticoid dexamethasone (Dex) undergo heritable alterations, possibly through epigenetic mechanisms. Exposure to Dex results in decreased NSC proliferation, with no effects on survival or differentiation, and changes in the expression of genes associated with cellular senescence and mitochondrial functions. Dex upregulates cell cycle-related genes p16 and p21 in a glucocorticoid receptor(GR)-dependent manner. The senescence-associated markers high mobility group (Hmg) A1 and heterochromatin protein 1 (HP1) are also upregulated in Dex-exposed NSCs, whereas Bmi1 (polycomb ring finger oncogene) and mitochondrial genes Nd3 (NADH dehydrogenase 3) and Cytb (cytochrome b) are downregulated. The concomitant decrease in global DNA methylation and DNA methyltransferases (Dnmts) suggests the occurrence of epigenetic changes. All these features are retained in daughter NSCs (never directly exposed to Dex) and are associated with a higher susceptibility to oxidative stress, as shown by the increased occurrence of apoptotic cell death on exposure to the redox-cycling reactive oxygen species (ROS) generator 2,3-dimethoxy-1-naphthoquinone (DMNQ). Our study provides novel evidence for programming effects induced by glucocorticoids (GCs) on NSCs and supports the idea that fetal exposure to endogenous or exogenous GCs is likely to result in long-term consequences that may predispose to neurodevelopmental and/or neurodegenerative disorders
    corecore