371 research outputs found
Toxicogenomics analysis of dynamic dose-response in macrophages highlights molecular alterations relevant for multi-walled carbon nanotube-induced lung fibrosis
Toxicogenomics approaches are increasingly used to gain mechanistic insight into the toxicity of engineered nanomaterials (ENMs). These emerging technologies have been shown to aid the translation of in vitro experimentation into relevant information on real-life exposures. Furthermore, integrating multiple layers of molecular alteration can provide a broader understanding of the toxicological insult. While there is growing evidence of the immunotoxic effects of several ENMs, the mechanisms are less characterized, and the dynamics of the molecular adaptation of the immune cells are still largely unknown. Here, we hypothesized that a multi-omics investigation of dynamic dose-dependent (DDD) molecular alterations could be used to retrieve relevant information concerning possible long-term consequences of the exposure. To this end, we applied this approach on a model of human macrophages to investigate the effects of rigid multi-walled carbon nanotubes (rCNTs). THP-1 macrophages were exposed to increasing concentrations of rCNTs and the genome-wide transcription and gene promoter methylation were assessed at three consecutive time points. The results suggest dynamic molecular adaptation with a rapid response in the gene expression and contribution of DNA methylation in the long-term adaptation. Moreover, our analytical approach is able to highlight patterns of molecular alteration in vitro that are relevant for the pathogenesis of pulmonary fibrosis, a known long-term effect of rCNTs exposure in vivo.Peer reviewe
Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment
The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.Peer reviewe
On the Unique-Lifting Property
Abstract. We study the uniqueness of minimal liftings of cut gener-ating functions obtained from maximal lattice-free polytopes. We prove a basic invariance property of unique minimal liftings for general max-imal lattice-free polytopes. This generalizes a previous result by Basu, Cornuéjols and Köppe [3] for simplicial maximal lattice-free polytopes, thus completely settling this fundamental question about lifting. We also extend results from [3] for minimal liftings in maximal lattice-free sim-plices to more general polytopes. These nontrivial generalizations require the use of deep theorems from discrete geometry and geometry of num-bers, such as the Venkov-Alexandrov-McMullen theorem on translative tilings, and McMullen’s characterization of zonotopes.
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia
<p>Abstract</p> <p>Background</p> <p>Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (<it>Fgf10</it>) null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for <it>Fgf10 </it>is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs <it>Fgf10 </it>also plays a role in regulating differentiation.</p> <p>Results</p> <p>Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia.</p> <p>Conclusion</p> <p>We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.</p
Error bounds for monomial convexification in polynomial optimization
Convex hulls of monomials have been widely studied in the literature, and
monomial convexifications are implemented in global optimization software for
relaxing polynomials. However, there has been no study of the error in the
global optimum from such approaches. We give bounds on the worst-case error for
convexifying a monomial over subsets of . This implies additive error
bounds for relaxing a polynomial optimization problem by convexifying each
monomial separately. Our main error bounds depend primarily on the degree of
the monomial, making them easy to compute. Since monomial convexification
studies depend on the bounds on the associated variables, in the second part,
we conduct an error analysis for a multilinear monomial over two different
types of box constraints. As part of this analysis, we also derive the convex
hull of a multilinear monomial over .Comment: 33 pages, 2 figures, to appear in journa
- …