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Abstract

The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a
clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to
generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of
the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied
data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated
with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term
systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant
drugs targeting proteins involved in multiple steps of the host response to the virus.
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Introduction
The newly identified coronavirus SARS-CoV-2 is responsible for
a pandemic form of respiratory tract infection currently ongoing
worldwide. Even if most patients remain asymptomatic or show
mild symptoms, some develop complications, such as severe
pneumonia and acute respiratory distress syndrome (ARDS)
[1, 2]. Furthermore, systemic complications, such as cardiovas-
cular disorders, persistent lung injuries and possibly fibrosis are
rapidly emerging as key threats in addition to the respiratory
syndrome. Restrictive measures have been adopted to slow
down the spreading of the virus; however, it is expected that the
infection will remain entrenched in the population for years [3].

To date, no approved vaccine is yet available and some
therapeutic strategies have been proposed to control the clinical
outcomes of the infection [4, 5]. Currently, a great effort is being
made by the scientific community in order to develop new
therapeutic approaches as well as to understand the molecular
events characterizing the host response to SARS-CoV-2 infection.
SARS-CoV-2 infects the cells via the angiotensin converting
enzyme 2 (ACE2) receptor-mediated endocytosis [6]. ACE2 is
expressed in several organs and cell types, such as lung, heart,
kidney, intestine and endothelial cells, which further raises
concerns about possible ectopic effects of the infection [7].

Molecular characterization of infected tissues and cells can
elucidate key potential molecular targets involved in the patho-
genesis of COVID-19. To this end, for instance, Gordon et al.
[8] applied mass spectrometry to identify SARS-CoV-2 human
protein interactors. These proteins can be considered as the first
responders to the virus, acting upstream in the host response
to the infection. Moreover, transcriptomic data of infected lungs
and cell types are already publicly available [9]. On the con-
trary, the genes derived from the transcriptomic data represent
late effectors in the host immune response. Nonetheless, a
knowledge gap exists to link the first host responses to the
virus with the subsequent phenotypic alterations. In this work,
we hypothesize that genes linking the upstream interactors
and downstream effectors are involved in the transduction and
amplification of the host response to the virus and can therefore
represent a new set of potentially relevant genes. Developing
computational methods that are able to infer such missing infor-
mation is of extreme importance, especially in situations where
there are limited data available, such as in the COVID-19 disease.
Moreover, a deeper understanding of the underlying molecular
responses is required in order to develop suitable treatment
methods and prepare for possible long-term effects. This gap
could be filled by exploiting the large amount of biomedical
data accumulated in recent years. However, the use of this infor-
mation is currently hampered by the heterogeneity of data for-
mats scattered across multiple repositories [10–12]. In this study,
we applied scalable and flexible data integration methods to
develop a robust compendium of molecular knowledge, the Uni-
fied Knowledge Space (UKS). Knowledge graphs (KGs) are large
data structures that model different entities, their properties
and relationships [13–16]. KGs allow to integrate multiple data
from diverse domains and repositories into a common space.
In this way, KGs facilitate the organization of information in a
structured manner and allow to visualize and retrieve complex
relationships between different entities derived from multiple
sources. Another purpose of KGs is the generation of currently
unknown facts, which can be inferred from existing links in the
KG. In the domain of biology, KGs have for example been used
in drug repositioning [17, 18] or to infer disease-biomolecule
associations [19, 20]. In our UKS, nodes can be genes, gene

products or drugs, while edges represent different relationships
between the entities. The UKS is created by combining homoge-
neous with heterogeneous network integration methods. Homo-
geneous network integration combines different networks with
the same node (type) but different edges, merging them into a
single network (e.g. combining multiple protein–protein interac-
tions (PPI) networks), while heterogeneous network integration
aims at connecting networks with different node (types) (e.g.
gene–drug target networks with a gene–gene network) [21].

The expansion of the PPI network through other data types
to construct a heterogeneous network has been previously
applied in a variety of contexts [20, 22, 23]; Davis and Chawla
[23] constructed a phenotypic-disease network merged with
a genetic-disease network to investigate disease comorbidities,
while Goh et al. [20] built a network linking genetic disorders with
known disease genes to investigate the role of disease genes
in the human interactome. A detailed review about different
network data integration methods and their application is
provided by Gligorijević and Pržulj [21]. While previous studies
aimed at constructing a homogeneous or heterogeneous
network for a specific case study, we built an expandable and
flexible data structure. Consequently, high-quality networks can
be inferred (homogeneous and/or heterogeneous networks can
be retrieved). This allows the UKS to be used in a wide variety of
different studies in the future.

We analysed the UKS and retrieved a novel set of genes
potentially associated with the molecular host response to
SARS-CoV-2 infection. The functional characterization of this
new set of genes allows us to describe possible unpredicted
long-term complications of the COVID-19 disease, as well as to
suggest repositioning of some already approved drugs.

Methods
The proposed methodology aims at giving insights into the
possible mechanistic aspects of the SARS-CoV-2 infection and
host response through the construction of a Unified Knowl-
edge Space. Combining knowledge about viral physical inter-
actor human proteins and transcriptomic studies into a single
knowledge space allows to gain new valuable insights about
the mechanisms underlying COVID-19. By further expanding
the UKS with information about drug targets, valuable novel
knowledge regarding multiple facets of the SARS-CoV-2 infection
can be generated. We define the UKS as a knowledge graph con-
stituted through multiple network layers [24, 25], where nodes
are representing either gene (products) or drugs, and edges
represent either direct known physical gene–gene interactions
or drug–gene target relationships. The UKS comprises all human
protein-coding genes as retrieved from Ensembl [26], known
physical interactions of their associated proteins as well as all
known drug target relationships. Our whole applied pipeline,
including data retrieval, processing and knowledge extracted, is
outlined as pseudocode in the Supplementary File S1 available
online at https://academic.oup.com/bib.

Data collection
Viral interactors

Genes known to be physically interacting with the viral com-
ponents of SARS-CoV-2 were retrieved from [8]. These genes
are involved in the first events of the host response upon viral
infection.
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Transcriptomics data

The gene expression data of human lung biopsies of SARS-
CoV-2 infected patients and SARS-CoV-2 infected cell lines were
retrieved from the Gene Expression Omnibus (GEO) repository
(GEO ID GSE147507) [9]. The dataset only consisted of one time
point, and RNA was extracted 24 h after the infection. In this
work, we analyzed five different experimental conditions con-
tained in the GEO dataset: human lung biopsies of SARS-CoV-2
infected patients and uninfected control; A549 cell line infected
with SARS-CoV-2; A549 cell line infected with SARS-CoV-2 over-
expressing ACE2; Calu-3 cells infected with SARS-CoV-2; NHBE
cell line infected with SARS-CoV-2. For each of the cell lines, the
mock treated lines were collected to be used as controls for the
expression analysis.

Transcriptomics data analysis (DE gene set
identification)

Gene expression analysis was carried out starting from the raw
counts provided within the GEO record. Low read counts were
filtered by applying the proportion test method implemented
within the NOISeq Bioconductor package [27]. Filtered counts
were normalized through the upper quartile method imple-
mented in the NOISeq package. Differential expression anal-
ysis was carried out by using the DESeq2 Bioconductor pack-
age [28], while p-values were adjusted through the Benjamini-
Hochberg method [29]. The pre-processed expression matrices
are reported in the Supplementary Files S2–S5 available online
at https://academic.oup.com/bib.

UKS construction and PPI network retrieval
Known human protein coding genes were retrieved from
Ensembl (Assembly: GRCh38) [26], which represent the base of
the developed UKS. Known protein–protein interactions were
retrieved from HIPPIE (downloaded 28/10/2019) [30], HitPredict
[31, 32] (downloaded 04/11/2019), KEGG (downloaded 08/12/2019)
[33] and STRING (downloaded 23/02/2020) [34]. We combined
these PPI networks into a unique homogeneous network, by
mapping the proteins to their associated genes. The edges were
weighted based on an interaction source support score, where
an edge weight of 1 indicates source support by 100% of the
collected sources. This is important, since it has been shown that
there is a high variance between links in PPI networks, in terms
of quality of the determined interactions (e.g. experimental
based versus literature based). Therefore, the confidence of
the interaction varies widely and, in addition, links between
proteins may be missing [35–37]. To reduce the data quality bias,
we consider source support for each edge as important to reveal
a high confidence subnetwork from the homogeneously merged
PPI network. This approach is similar to the robust PPI network
construction approach suggested by Martha et al. [38]. Drug
target information was collected from DrugBank (downloaded
22/04/2020) [39] and Open Targets (downloaded 15/02/2019) [40]
and integrated into the UKS. The data contained in these two
sources are merged into a single data layer by means of mapping
drugs to PubChem CIDs or SIDs [41], again conserving source
information. In order to link the data accurately to the previously
discussed data layers, gene symbols are mapped to Ensembl
Gene IDs [26] through mygene.info (http://mygene.info) [42, 43].
To provide a highly flexible data provisioning system, the UKS
is stored as a graph database in Neo4j 4.0 (https://neo4j.com/),
which allows to edit, retrieve and add new data as needed. The

complete UKS contains 20 793 human protein coding genes,
which are interlinked by 5 941 639 edges, representing physical
known interactions. Additional 7099 drugs are linked through
22 973 edges to their genetic targets. To construct a high-quality
gene–gene network, gene–gene relationships, associated with a
source support score of at least 0.75, are queried from the UKS
and used to construct a single layer gene–gene network, which
is represented as a Python NetworkX graph [44]. The final gene–
gene network is made up of 20 793 nodes, representing Ensembl
gene IDs, interlinked by 132 244 high-quality edges, describing
interactions between the gene’s associated proteins.

Identification of intermediate genes through shortest
paths

In order to identify the relevant genes that may have a crucial
role in the progression of SARS-CoV-2 infection, the shortest
paths between the physical interacting (PI) and the differentially
expressed (DE) gene sets were computed. Shortest path analysis
is a method to link two sets of nodes of interest and identify
interactor nodes between them. On a graph G = (V, E), where V is
the set of nodes and E is the set of edges, a shortest path between
vi and vj is defined as the path between vi and vj requiring the
least effort. In an unweighted network, this translates into the
least number of steps to be taken to connect vj and vi [45]. The
shortest path analysis was performed for each group of DE genes
identified in each biological system.

The shortest paths were retrieved with Python NetworkX
[44], shortest_path() function, by running Dijkstra’s shortest path
algorithm [45] between all possible pairs of PI and DE genes
(Python 3.6.9, NetworkX 2.3). All edges were considered to have
equal weight, meaning that only the number of steps was con-
sidered when running the algorithm. Only paths consisting of at
least one intermediate gene (IN) (path length >1) were consid-
ered during further analysis.

For each gene in the PPI network, its occurrences as an IN
between PI and DE was estimated separately for each experi-
mental class and statistically significant enriched IN genes were
identified. Hypergeometric test was performed by comparing
the IN frequencies identified in the shortest paths of interest
with their occurrences on all possible shortest paths in the com-
plete gene–gene network. By estimating statistical significance
of each visited intermediate node, only intermediate nodes that
are relevant in linking the previously defined sets of key nodes
(DE and PI) are considered. Adjusted p-values were estimated by
applying the Benjamin and Hochberg multiple testing correction
[29]. The nominal p-values were calculated with Python’s SciPy
package [46] and the adjusted p-values were estimated based
on Python’s statsmodels package [47] (SciPy 1.3.2, statsmodels
0.11.1).

Pathway enrichment analysis

In order to functionally characterize the lists of PIs, INs, and
DEs, pathway enrichment analyses were performed using the
Wikipathway 2019 Human database through the EnrichR online
tool [48, 49]. The enriched pathways were visualized by means of
the FunMappOne tool [50].

Gene ranking

In order to evaluate the overall most common genes crossed
in the shortest paths, for each in vivo and in vitro system,
only statistically significant genes were selected and ranked

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/2/1430/6132618 by H

ulib user on 19 July 2021

https://academic.oup.com/bib
mygene.info
http://mygene.info
https://neo4j.com/


Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment 1433

according to the intermediate gene count value. The five lists
were given as an input to the Borda function of the TopKList R
package [51], to calculate the Borda scores and rank the genes
according to the median function.

Identification of relevant drugs

In order to highlight drugs that could simultaneously affect
multiple steps of the host response to SARS-CoV-2, we retrieved
from the UKS the list of drugs targeting genes in the PI, IN and
DE sets and retrieved the set contained in their intersection.

Results and discussion
A novel set of genes involved in the pathogenesis of
COVID-19 can be retrieved from multi-scale molecular
network analysis

The Unified knowledge space (UKS) defined in this work has
been generated by integrating multiple data sets containing
protein–protein interaction (PPI) information as well as drug–
target relationships. By querying the UKS, we derived a net-
work of 20 793 human protein coding genes, represented as
nodes, and 132 244 edges, representing the physical interac-
tion relationships existing between the proteins encoded by
the UKS gene nodes. These interactions were integrated from
four data sources and stored in the UKS together with a data
support score, representing the number of sources in which the
connections are present. In order to have a reliable structure
of the network, we selected only edges supported in at least
three out of four sources (see section ‘UKS Construction and PPI
Network Retrieval’ for more details). The UKS network was fur-
ther extended with gene–drug information by adding 7099 drug
nodes that are linked to their target gene nodes through 22 973
edges (Figure 1A). We systematically mapped the SARS-CoV-2
physical interacting (PI) genes and the differentially expressed
(DE) genes in multiple biological systems infected by SARS-CoV-2
[9] (Figure 1B).

A set of human proteins has been recently described by
Gordon et al. as physical interactors of the SARS-CoV-2 viral
components [8]. We considered these as the first set of proteins
involved in the host response to a SARS-CoV-2 infection. On
the other hand, we considered the differentially expressed
genes retrieved from transcriptomic analysis of infected in
vivo (infected versus healthy human lung biopsies) and in vitro
(infected versus mock CALU-3, A549, A549 overexpressing ACE2,
and NHBE cell lines) systems, as late effectors associated with
the COVID-19 pathological phenotype. In order to identify the
relationships between the first interactors of SARS-CoV-2 (PI
gene set) and the late effectors (DE gene set), a third set of genes,
located in the shortest path between each possible pair of (PI-DE
genes) was retrieved.

The concept of shortest paths has already been widely
applied in the analysis of biological networks and has yielded
biologically relevant results [52–54]. Du et al. [52] mapped differ-
entially expressed genes onto a PPI network and successfully
identified transcription factors linking a cancer gene to its
differentially expressed genes. Simões et al. [53] applied a
similar strategy in order to identify genes associated to complex
diseases.

In our study, we use the concept of shortest paths to investi-
gate the set of genes linking the genes directly interacting with
viral components and the ones whose transcription is altered
by the induced host response. From a kinetics perspective, the

first set of genes (PI) can be assumed to have a role in the
first molecular events upon viral exposure; on the contrary,
modulation of the expression of the late effector genes (DE) is
associated with cellular and, ultimately, systemic response to
the infection. We, therefore, assumed that genes in the shortest
paths can be involved in the transduction and amplification
of the host response. In this light, the intermediate genes can
better explain the chain of the molecular events characterizing
the response to SARS-CoV-2, as well as can represent another
important set of therapeutic targets.

For each in vitro and in vivo system analyzed, we named as
intermediate genes (IN gene set), all the genes, not belonging to
either the PI nor the DE gene sets, significantly overrepresented
(P-value ≤ 0.05) in the shortest paths.

In contrast with the heterogeneity of the DE gene set sizes,
the number of intermediate genes is comparable among the
different biological systems (Figure 2). Overall, we observe a
progressive increase in the size of the gene sets when going
from the first interactors (PI), through the intermediate genes
(IN), to the effector pathways genes (DE), suggesting the role
of the intermediate genes in propagating the host response
mechanisms to the virus entry. The human bronchial epithelial
cells (NHBE), on the contrary, was the only dataset showing a
decreasing trend from the PI to the DE gene set. This is probably
due to the smaller number of differentially expressed genes,
which can be associated with the lower permissiveness of the
NHBE cell line.

Functional characterization of intermediate gene set
reveals possible long-term effects of COVID-19 disease

In order to characterize the IN gene set, we performed path-
way enrichment analysis independently for each in vivo and
in vitro biological system analyzed. Moreover, we compared the
pathways over-represented in the IN set with the ones over-
represented in the PI and DE genes, respectively, in order to
identify specific biological functions, which could fill the gap
between the early molecular interaction events and the down-
stream transcriptomic host response (Figure 3).

As expected, PI genes specifically enriched pathways related
to viral infections, such as Ebola Virus pathway on Host and
Dual hijack model of Vif in HIV infection. Not surprisingly, cilia
associated pathways were also enriched, since epithelial cells
are the first ones to encounter SARS-CoV-2 in the respiratory
system. These pathways are also well represented in the IN
genes, while they are not significantly enriched in the DE
gene set.

Metabolic pathways are present in all the gene sets (PI, IN and
DE), with the oxidative phosphorylation and lipid metabolism
being the most affected functions. Viral infections are known to
induce a global metabolic alteration of the cell and, in particular,
lipids play a pivotal role in facilitating viral replication [55].

DE genes specifically enriched immune system related
pathways, which were not represented in the PI gene set and
minorly represented in the IN set. Some of the main effector
molecules involved in the cytokine storm observed in COVID-19
were present in the enriched immune pathways (e.g. INFγ , TNF,
IL-1β and other chemokines) as well as the NFkB transcription
factor pathway (Figure 3) [6, 56]. Interestingly, interferon
response was retrieved as significantly over-represented both
in IN and DE genes. However, type I interferon was specifically
enriched in the IN set, whereas type II was enriched in the DE set
only. Interferon gamma, the only type II interferon, is one of the
genes involved in the cytokine storm [56]. On the contrary, type I
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Figure 1. Scheme of the analytical framework. Data from multiple protein–protein interaction (PPI) sources (KEGG, HIPPIE, HitPredict and STRING) were collected and

mapped to their corresponding Ensembl Gene IDs. The PPI network was further integrated with drug–target information, derived from DrugBank and OpenTargets, to

form the UKS (A, left). A robust gene–gene network was extracted from the UKS, where only edges supported by at least three of the merged PPI networks were included

(A, right). PI and DE genes were mapped onto the extracted gene–gene network and intermediate genes (IN) were identified by means of shortest paths between each

possible pair of PI and DE (B). Pathway enrichment analysis was performed for all three gene sets. Drugs that have targets in all three gene sets (PI, DE and IN) were

selected and classified as ‘relevant drugs’ (C).

Figure 2. Number of known gene sets (DE and PI) and new gene set (IN) in each biological system. The number of differentially expressed genes (DE), and the new

retrieved set of intermediate genes (IN), are compared in each in vitro and in vivo system. The samples (biological system) derived from public transcriptomics dataset

comprising a lung biopsy and four different cell lines infected with the virus: the transformed cell lines A549 (adenocarcinomic human alveolar basal epithelial cells)

and CALU-3 (human lung cancer epithelial cell), the epithelial cell line NHBE and A549 overexpressing the angiotensin receptor ACE2 (A549_ACE2).
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Figure 3. Pathway enrichment of the PI, IN and DE gene sets. For each biological system (in vitro and in vivo), significantly enriched Wikipathways by the three sets of

genes (PI, IN, DE in the columns) are shown (rows). The number of samples that enriched specific pathways are marked with different colours (values). Furthermore, the

enriched pathways have been grouped according to more generic biological processes (cell differentiation, cell metabolism, cell death, metabolism, immune system)

or molecules and structures (mRNA, viral, vascular and cilia).
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interferons are key antiviral mediators, and low levels have been
described in COVID-19 patients [57] .

Both IN and DE genes enriched pathways related to cell
differentiation, such as lung fibrosis, Wnt pathway and ecto-
derm differentiation. As we already reported, COVID-19 disease
shares many mediators of the lung fibrosis pathogenesis, such
as NFkB, IL-6, TGF and INF [58]. Furthermore, the receptor ACE2
is a known anti-fibrotic mediator, and lung fibrosis has already
been reported subsequently to the outbreak of SARS-CoV [59],
making it also a plausible long-term consequence of SARS-CoV-
2 viral infection. IN genes specifically enriched the Wnt pathway,
which has been linked to chronic lung pathologies, including
idiopathic pulmonary fibrosis, pulmonary arterial hypertension,
asthma and chronic obstructive pulmonary disease [60]. Alto-
gether, this suggests that fibrogenic alterations in the lung can
be a possible long-term effect of the COVID-19 pathogenesis, as
we have already recently suggested [58].

Finally, the IN gene set enriched specific biological functions
represented in neither PI nor DE. Signalling related pathways,
with the exception of nuclear receptors, are only present in
the IN group. This indicates the central role of the IN genes in
propagating the signal from the PI initial interactors to the late
effector pathways. Consistently, mRNA processing pathways are
only enriched in the IN group.

Therefore, the pathway enrichment of the newly identified IN
set of genes reveals specific categories that represent signalling
and metabolic pathways. These intermediate pathways are fill-
ing the gap between the first interactors and the late effector
pathways, as well as cell differentiation pathways, suggesting
possible long-term lung tissue remodelling.

The intermediate genes are also linked to endothelial
cells dysfunction and vascular remodelling

Interestingly, the IN gene set also enriched vascular related
pathways. Among them, we found VEGF signaling pathways,
angiogenesis, EPO signaling and extracellular matrix related
pathways. Ackermann et al. recently showed that lung tis-
sue of SARS-CoV-2 infected patients presented endothelial
damage and significant new vessel growth [61]. The overall
modulation of vascular related pathways highlighted in the
IN genes, as well as the previously described cell differ-
entiation pathways, may be an indication of endothelial
remodelling and dysfunction. Endothelial dysfunction refers
to a systemic condition in which the endothelium loses
its physiological properties, including the tendency to pro-
mote vasodilation, fibrinolysis and platelets aggregation [62].
Different studies already proposed the endothelium as one of
the main targets of SARS-CoV-2 [63–65], furthermore increasing
evidence of coagulation alterations and fibrotic lesions are
currently emerging in the scientific literature [63, 66]. Therefore,
the new set of IN genes further strengthens the notion that the
endothelial cells play a pivotal role in the COVID-19 disease and
can help in predicting long-term effects in the lung in terms of
vascular remodeling and dysfunction.

We further compiled five ranked lists of intermediate genes
(for each in vitro and in vivo system represented in the DE space),
according to the frequency in which they occurred in the list of
shortest paths identified in each biological system. To obtain a
final consensus rank, we merged the lists by using the Borda
method (Supplementary File S6 available online at https://acade
mic.oup.com/bib).

Leucine-rich repeat kinase 2 (LRRK2) is the most frequently
visited gene in the shortest paths identified in the gene–gene
network retrieved from the UKS. This gene, which has been

extensively studied for its role in Parkinson disease [67], is
known to upregulate the transcriptional activity of NFkB by
increasing phosphorylation levels of NFkB inhibitor alpha (IkBa).
Hongge et al. proposed that LRRK2 has the potential to be an
important target for the treatment of endothelial dysfunction
[68]. Furthermore, Marker et al. [69] demonstrated that in
HIV infection, LRRK2 decreases the levels of the angiogenesis
inhibitor BAI1 and increases the production of pro-inflammatory
cytokines and phagocytosis. Given the pivotal role of NFkB in the
COVID-19 disease, LRRK2 is potentially important in both acute
and long-term responses.

Cullin 3 (CUL3), the third gene in the rank, has a role in
endothelial remodelling and angiogenesis, both in physiological
and pathological conditions [70].

The Exportin 1 (XPO1) gene is known to modulate the activity
of mothers against decapentaplegic homolog 3 (SMAD3), a well-
established initiator of epithelial mesenchymal transition (EMT)
[71]. SMAD3 is an important downstream transcription factor
of TGF-beta, which regulates the transcription of extracellular
matrix components involved in cellular infection [72]. Interest-
ingly, XPO1, together with SMAD3 and TGF-beta, are strongly
linked to lung fibrosis [73, 74]. Similarly, heat shock protein fam-
ily A (Hsp70) member 4 (HSPA4), a chaperone protein, modulates
the expression of transcription factor TWIST1, a master regulator
of morphogenesis and epithelial mesenchymal transition [75].

The histone variant H2AX, a sensitive marker of DNA repair
machinery, is also present among the top genes of the Borda
ranking. There is evidence that it plays an important role in
endothelial cell proliferation under hypoxia and, more generally,
in hypoxia-induced angiogenesis.

The heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1)
gene has the capability of controlling migration, proliferation
and gene expression levels of vascular smooth muscle cells. A
recent functional study showed that not only hnRNPA1 is an
important regulator in vascular smooth muscle cells function
and lesion-induced vessel remodeling but may also represent a
potential therapeutic target [76].

Finally, during lung epithelium infection, an important role
in activating both the innate and adaptive immune system and
the tissue repair mechanisms is also played by the estrogen
receptors [77]. Furthermore, anti-inflammatory effects of estro-
gens have already been reported [78] and are also supported
by our results since both estrogen receptors ESR1 and ESR2
are contained in the top ranked genes (Supplementary File S6
available online at https://academic.oup.com/bib). Based on our
results, our novel UKS is able to highlight key genes involved
in possible long-term effects of SARS-CoV-2, which are asso-
ciated with vascular remodelling and endothelial dysfunction,
and in some cases have already been pointed out as interesting
therapeutic targets.

Drugs targeting genes in all gene sets suggest
repositioning of drugs with anti-angiogenic and
immuno-modulatory properties

Given the functional importance of the IN gene set, we fur-
ther investigated whether these genes could also be molecular
targets of known drugs. We retrieved information about drugs
targeting the PI, IN and DE gene sets from the UKS.

Highlighting drugs, which can simultaneously target multiple
components of the host response (PI, IN and DE gene sets)
allows to uncover possible therapeutic strategies, which can
more effectively reduce the clinical consequences of the viral
infection [79, 80]. We hence identified 77 drugs targeting genes
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Figure 4. Overview of the 77 drugs targeting genes in all gene sets (PI, IN, DE).

The list of 77 drugs sharing at least one target in each set of genes (PI, IN, DE)

belong to four main therapeutic classes showing both immunomodulatory and

anti-angiogenic properties: HDAC inhibitors (12%), proteasome inhibitors (5%),

drugs targeting the opioids receptors (16%) and the coagulation cascade (13%).

in all the three gene sets of interest (Figure 4 and Supplementary
File S7 available online at https://academic.oup.com/bib).

Among the 77 drugs, four different therapeutic classes were
strongly represented: HDAC inhibitors, proteasome inhibitors,
drugs targeting the coagulation cascade and drugs targeting the
opioids receptors (Figure 4).

Moreover, we found cough suppressants, such as dex-
tromethorphan, hydrocodone and pentoxyverine, as well
as expectorants and bronchodilators, such as theophylline,
aminophylline and oxtriphylline [81]. These drugs are all
centrally acting agents, thus exerting their effect on the lungs
by inhibiting the cough centre in the brain.

Other well-represented drug categories were analgesics,
antipsychotics and opioid antagonists. Haloperidol, amitripty-
line, pentazocine and naltrexone, among others, belong to such
categories. These drugs, together with the previously described
dextromethorphan, hydrocodone and pentoxyverine, share the
same molecular targets both in the PI and IN gene sets: the sigma
non-opioid intracellular receptor 1 (SIGMAR1) and the μ opioid
receptor (OPRM1), respectively (Supplementary File S7 available
online at https://academic.oup.com/bib). Opioid drugs have a
well-recognized effect on immune cells both modulating the
immune system and exerting anti-inflammatory properties [82].
Besides, existing literature suggests that opioids might be able
to interact with viral receptors, viral proteins, viral promoters
and even modulate epigenetic mechanisms, such as the
expression of anti-viral miRNAs [83]. In fact, dextromethorphan
was already reported by Gordon et al., because of its antiviral
properties. On the other hand, dextromethorphan also shows
immunomodulatory effects by decreasing NF-κB and the MAPK
cascade genes activation in LPS-treated dendritic cells, and
interfering with primary T-cell responses [84]. On the contrary,
naltrexone, an antagonist of the μ receptor, has been shown
to revert the immunomodulatory action of opioids in several
experimental models [85]. Since the sigma receptors have
negligible affinity for naltrexone, it might be speculated that
a significant part of the effect is exerted via direct binding to
the opioid receptors. Taken together, these data suggest that
compounds acting on the sigma opioid receptors might be
involved in the innate and adaptive immunity in response to
a SARS-CoV-2 infection and that they can have an effect in
modulating the cytokine storm observed in the most severe
and life-threatening stages of the disease.

Fostamatinib, a tyrosine kinase inhibitor, is also present in
the list of identified drugs and importantly it targets LRRK2,
the most commonly crossed IN genes in the shortest paths

derived from the UKS. Fostamatinib is currently used to treat
autoimmune diseases and thrombocytopenia, but it has recently
been proposed for COVID-19 disease treatment by Saha et al. [86].
Similar to fostamatinib, we retrieved several drugs targeting the
coagulation cascade, such as kappadione, a vitamin K analogue,
and menadione, used in hypoprothrombinemia treatment. It has
already been shown that COVID-19 patients commonly show
thrombocytopenia and are at risk of developing disseminated
intravascular coagulation, even though the molecular mecha-
nisms have been poorly described [87, 88]. Thrombocytopenia
is usually associated with an excessive activation of platelets
and of the coagulation cascade, which can be triggered upon
viral infection. Indeed, viruses have the ability of altering the
balance between procoagulant and anticoagulant homeostatic
mechanisms, as well as to induce pathogenic processes such as
endothelial dysfunction, Toll-like receptor activation and tissue
factor pathway inhibitor activation [87, 89].

Noteworthy, the drugs listed in Supplementary File S7
available online at https://academic.oup.com/bib highlighted
possible repositioning of HDAC inhibitors. HDAC inhibitors
are a class of compounds that act on epigenetic regulation
of gene expression by increasing the lysine acetylation of
histones [90]. They have antiviral properties by controlling
the virus replication cycle and exerting cytotoxic activity, but
they also have immunomodulatory properties by regulating the
production of cytokines as well as the activity of macrophages
and dendritic cells [91, 92]. Gordon et al. [8] showed that the
SARS-CoV-2 non-structural protein 5 (Nsp5) interacts with
the histone deacetylases and proposed valproic acid as a
therapeutic agent in COVID-19. Our UKS system was able to
detect several HDAC inhibitors, which target genes in all the PI,
IN and DE sets: romidepsin, belinostat, entinostat, tacedinaline,
fimepinostat, panobinostat, Cucd-101 and the valproic acid
itself. Specifically, the eight HDAC inhibitors targeted the
HDAC2 gene present in the PI set, and the HDAC5, HDAC7
and HDAC11 present in the IN gene list, and HDAC9, HDAC1,
HDAC10, HDAC3, HDAC6 and HDAC8 in the DE set. HDAC2 is
a class I inhibitor located in the nucleus of the cell, where it
can modulate inflammation in macrophages and monocytes
by inhibiting the NFkB complex [93]. On the contrary, HDAC5 is
a class II inhibitor, which can migrate into the nucleus upon
phosphorylation and mediate important anti-inflammatory
functions [94]. Thalidomide and its derivatives, pomalidomide
and lenalidomide, also share HDAC2 as a molecular target.
Thalidomide is an immunomodulatory agent and works by a
number of mechanisms including the stimulation of T cells
as well as decreasing TNF production. Importantly, these
compounds also share anti-angiogenic properties and inhibit
the proliferation of endothelial vascular cells [95].

Moreover, we identified proteasome inhibitors, sharing
both antiviral and anti-angiogenic activity [96]. The ubiquitin–
proteasome system plays an important role in virus replication
and cell cycle, thus inhibiting virus entry, genome replication
and viral protein synthesis. Proteasome inhibitors have already
been pointed out as therapeutic strategies against other
coronaviruses, since they can also limit the cytokine storm
associated with the abnormal immunological response induced
by the virus [97]. Most proteasome inhibitors can inhibit the
NFkB-mediated production of IL-6, and, by inhibiting the
NFkB transcription factor, they also exert an important anti-
angiogenic effect [98]. Remarkably, HDAC inhibitors, proteasome
inhibitors and thalidomide derivatives, are all currently used as
a therapeutic regimen against multiple myeloma, an oncological
condition in which myeloma cells produce a microenvironment
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enriched with pro-angiogenic factors, such as VEGF and IL-
6 [95]. In conclusion, the four classes of drugs identified by
the UKS share both immuno-modulatory and anti-angiogenic
properties and are therefore good candidates in counteracting
both the acute cytokine storm as well as endothelial and
vascular complications.

Conclusions
Characterizing the cascade of events taking place at multiple
levels in response to SARS-CoV-2 infection is urgently needed
as the COVID-19 pandemic keeps rampaging worldwide. Here,
we interrogated a unified network of public biomedical data,
the Unified Knowledge Space (UKS), in order to elucidate the
molecular alterations characterizing the SARS-CoV-2 infection.

By assuming that early viral responses are mediated by virus-
interacting genes, while the downstream effects of infection
are mediated by genes whose expression is altered, we inter-
rogated the UKS in search of a novel set of intermediate genes
that would help to further characterize the COVID-19 patho-
genesis. Our analysis highlighted genes representing functions
related to fibrosis and vascular remodelling, implying further
long-term consequences of SARS-CoV-2 infection. Furthermore,
we identified a set of drugs with at least one target present
in each of the identified gene sets: proteins known to interact
with SARS-CoV-2 (PI, as defined by Gordon et al. [8]), differ-
entially expressed (DE) genes in multiple biological systems
infected by SARS-CoV-2 (Blanco-Melo et al. [9]) and intermediate
genes (IN, newly discovered here). Our results point to ther-
apeutic classes with immunomodulatory and anti-angiogenic
roles.

In conclusion, the robust network-based approach applied
here helps to shed light on the details of the SARS-CoV-2–host
interaction, suggesting possible long-term effects of the viral
infections, and highlights important therapeutic targets, paving
the way to new drug repositioning studies. Furthermore, due to
the high flexibility of the UKS, our strategy can be applied to
study the molecular alterations induced by other diseases or by
the exposure to drugs or chemicals.

Key Points
• Integrated molecular network analysis can help to

clarify the pathogenesis of complex diseases and sug-
gest novel drug targets.

• By mapping SARS-CoV-2 first physical interactors and
COVID-19 downstream differentially expressed genes
on the integrated human molecular network, we iden-
tified a new set of intermediate genes.

• The newly discovered set of intermediate genes
underlies important aspects of COVID-19 pathogen-
esis and long-term consequences, pointing to lung
tissue remodelling and fibrosis.

• We highlighted immuno-modulatory and anti-
angiogenic drugs targeting multiple genes in each and
every relevant set: physical interactors, intermediate
and downstream effectors.
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