180 research outputs found

    Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

    Get PDF
    An increased intake of the antioxidant α- Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α- Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α- Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α- Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased. These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning. © S. Salucci et al., 2014

    Different somatic alterations of the HRPT2 gene in a patient with recurrent sporadic primary hyperparathyroidism carrying an HRPT2 germline mutation

    Get PDF
    Early onset of primary hyperparathyroidism (PHPT) and multiglandular involvement suggest a familial form in which germline mutation of a PHPT-related gene(s) and a somatic event at the same locus can be often demonstrated. We investigated the involvement of multiple endocrine neoplasia type 1 (MEN1) and HRPT2 genes in a 39-year-old man with recurrent PHPT. PHPT was firstly diagnosed at the age of 21 and the patient had two recurrences separated by extended periods of normocalcemia. This unusual history prompted us to investigate other family members and study the MEN1 and HRPT2 genes. An HRPT2 germline missense mutation in exon 3 (R91P) was found in the index case, which was associated with different HRPT2 somatic alterations in each of the three examined parathyroid tumors. These findings are consistent with Knudson's 'two hit' concept of biallelic inactivation of classical tumor suppressor genes. Screening of 15 asymptomatic relatives was negative for the R91P germline mutation. All the three abnormal parathyroid specimens showed cystic features at histology and were negative for parafibromin immunostaining. In one specimen, diffuse parafibromin staining was evident in a rim of normal parathyroid tissue surrounding the adenomatous lesion. Our study shows that different somatic genetic events at the HRPT2 locus are responsible for the asynchronous occurrence of multiple adenomas in a patient carrying an HRPT2 germline mutation. The finding of diffuse parafibromin staining in a rim of normal parathyroid tissue, but not in the contiguous adenomatous lesion, reinforces the concept that loss of parafibromin expression is responsible for the development of parathyroid tumors in this setting

    Congenital hypothyroidism due to a new deletion in the sodium/iodide symporter protein.

    Get PDF
    OBJECTIVE: Iodide transport defect (ITD) is a rare disorder characterised by an inability of the thyroid to maintain an iodide gradient across the basolateral membrane of thyroid follicular cells, that often results in congenital hypothyroidism. When present the defect is also found in the salivary glands and gastric mucosa and it has been shown to arise from abnormalities of the sodium/iodide symporter (NIS). PATIENT: We describe a woman with hypothyroidism identified at the 3rd month of life. The diagnosis of ITD was suspected because of nodular goitre, and little if any iodide uptake by the thyroid and salivary glands. Treatment with iodide partially corrected the hypothyroidism; however, long-term substitution therapy with L-thyroxine was started. MEASUREMENTS: Thyroid radioiodide uptake was only 1.4% and 0.3% at 1 and 24 h after the administration of recombinant human TSH. The saliva to plasma I- ratio was 1.1 indicating that the inability of the thyroid gland to concentrate I- was also present in the salivary glands. RESULTS: Analysis of the patient's NIS gene revealed a 15 nucleotide (nt) deletion of the coding sequence (nt 1314 through nt 1328) and the insertion of 15 nt duplicating the first 15 nt of the adjacent intron. The patient was homozygous for this insertion/deletion, while both consanguineous parents were heterozygous. This deletion predicts the production of a protein lacking the five terminal amino acids of exon XI (439-443) which are located in the 6th intracellular loop. COS-7 cells transfected with a vector expressing the mutant del-(439-443) NIS failed to concentrate iodide, suggesting that the mutation was the direct cause of the ITD in this patient. CONCLUSION: In conclusion we describe the first Italian case of congenital hypothyroidism due to a new deletion in the NIS gene

    Estrogens Attenuate Oxidative Stress and the Differentiation and Apoptosis of Osteoblasts by DNA-Binding-Independent Actions of the ERα

    Get PDF
    Estrogens diminish oxidative stress in bone and bone marrow, attenuate the generation of osteoblasts, and decrease the prevalence of mature osteoblast apoptosis. We have searched for the molecular mechanism of these effects using as tools a mouse model bearing an estrogen receptor α (ERα) knock-in mutation that prevents binding to DNA (ERαNERKI/−) and several osteoblast progenitor cell models expressing the wild-type ERα or the ERαNERKI/−. We report that the ability of estrogens to diminish the generation of reactive oxygen species, stimulate the activity of glutathione reductase, and decrease the phosphorylation of p66shc, as well as osteoblastogenesis and osteoblast number and apoptosis, were fully preserved in ERαNERKI/− mice, indicating that the DNA-binding function of the ERα is dispensable for all these effects. Consistent with the attenuation of osteoblastogenesis in this animal model, 17β-estradiol attenuated bone morphogenetic protein 2 (BMP-2)–induced gene transcription and osteoblast commitment and differentiation in murine and human osteoblastic cell lines. Moreover, 17β-estradiol attenuated BMP-2-induced differentiation of primary cultures of calvaria- or bone marrow–derived osteoblastic cells from ERαNERKI/− mice as effectively as in cells from wild-type littermates. The inhibitory effect of the hormone on BMP-2 signaling resulted from an ERα-mediated activation of ERKs and the phosphorylation of Smad1 at the linker region of the protein, which leads to proteasomal degradation. These results illustrate that the effects of estrogens on oxidative stress and the birth and death of osteoblasts do not require the binding of ERα to DNA response elements, but instead they result from the activation of cytoplasmic kinases. © 2010 American Society for Bone and Mineral Researc

    Eucalcemic Parathyroid Hormone Elevation After Parathyroidectomy for Primary Sporadic Hyperparathyroidism: Risk Factors, Trend, and Outcome

    Get PDF
    BACKGROUND: Patients with eucalcemic parathyroid hormone elevation (ePTH) after parathyroidectomy for primary hyperparathyroidism (HPT) may be at risk of recurrence. We aimed to examine risk factors, trend of PTH level, and outcome of patients with ePTH 6 months after parathyroidectomy. METHODS: A total of 161 primary HPT were analyzed. The 6-month postoperative calcium and PTH levels were obtained. ePTH was defined as an elevated PTH level in the presence of normocalcemia. At 6 months, 98 had eucalcemic normal PTH and 63 (39.1%) had ePTH. Perioperative variables, PTH trend, and outcome were compared between 2 groups. Multivariable analyses were performed to identify independent preoperative and operative/postoperative risk factors for ePTH. RESULTS: Among preoperative factors, advanced age (odds ratio [OR] = 1.042, P = .027) and low 25-hydroxyvitamin D(3) (25OHD(3)) (OR = 1.043, P = .009) were independently associated with ePTH, whereas among operative/postoperative factors, high 10-min intraoperative PTH level (OR = 1.015, P = .040) and high postoperative 3-month PTH (OR = 1.048, P < .001) were independently associated with ePTH. After a mean follow-up of 38.7 months, recurrence rate was similar between the 2 groups (P = 1.00). In the first 2 postoperative years, 75 (46.6%) had ePTH on at least 1 occasion and 8 (5.0%) had persistently ePTH on every occasion. CONCLUSIONS: Advanced age, low 25OHD(3), high 10-min intraoperative PTH, and high postoperative 3-month PTH were independently associated with ePTH at 6-month. Although 39.1% of patients had ePTH at 6 months, more than 50% had at least 1 ePTH within the first 2 years of follow-up. Recurrence appeared similar between those with or without ePTH at 6 months.published_or_final_versionSpringer Open Choice, 21 Feb 201

    When Are New Hippocampal Neurons, Born in the Adult Brain, Integrated into the Network That Processes Spatial Information?

    Get PDF
    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing

    The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory

    Get PDF
    Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2) in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3–4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits

    "Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary hyperparathyroidism (PHPT) affects mainly cortical bone. It is thought that parathyroid hormone (PTH) indirectly regulates the activity of osteoclasts by means of the osteoprotegerin/ligand of the receptor activator of nuclear factor-κβ (OPG/RANKL) system. Several studies have confirmed that <it>OPG </it>(osteoprotegerin) and <it>RANKL </it>(ligand of the receptor activator of nuclear factor-κβ) loci are determinants of bone mineral density (BMD) in the general population. The aim of this study is to analyze the relationship between fractures and BMD and the rs3102735 (163 A/G), rs3134070 (245 T/G) and rs2073618 (1181 G/C) SNPs of the <it>OPG </it>and the rs2277438 SNP of the <it>RANKL</it>, in patients with sporadic PHPT.</p> <p>Methods</p> <p>We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analyzed anthropometric data, history of fractures or renal lithiasis, biochemical determinants including markers for bone remodelling, BMD measurements in the lumbar spine, total hip, femoral neck and distal radius, and genotyping for the SNPs to be studied.</p> <p>Results</p> <p>Regarding the age of diagnosis, BMI, menopause status, frequency of fractures or renal lithiasis, we found no differences between genotypes in any of the SNPs studied in the PHPT group. Significant lower BMD in the distal radius with similar PTH levels was found in the minor allele homozygotes (GG) compared to heterozygotes and major allele homozygotes in both <it>OPG </it>rs3102735 (163 A/G) and <it>OPG </it>rs3134070 (245 T/G) SNPs in those with PHPT compared to control subjects. We found no differences between genotypes of the <it>OPG </it>rs2073618 (1181 G/C) SNP with regard to BMD in the PHPT subjects. In the evaluation of rs2277438 SNP of the <it>RANKL </it>in PHPT patients, we found a non significant trend towards lower BMD in the 1/3 distal radius and at total hip in the minor allele homocygotes (GG) genotype group versus heterocygotes and major allele homocygotes (AA).</p> <p>Conclusions</p> <p>Our study provides the first evaluation of the relationship between SNPs of the <it>OPG/RANK </it>system and sporadic PHPT. Subjects with PHPT and minor homocygote genotype (GG) for the <it>OPG </it>rs3102735 (163 A/G) and <it>OPG </it>rs3134070 (245 T/G) SNPs have lower BMD in the distal radius, and this association does not appear to be mediated by differences in PTH serum levels.</p

    Reliable Activation of Immature Neurons in the Adult Hippocampus

    Get PDF
    Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir) conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing

    Functional Convergence of Neurons Generated in the Developing and Adult Hippocampus

    Get PDF
    The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function
    corecore