51 research outputs found

    Analysis of the Role of Tortuosity and Infiltration Constants in the Beerkan Method

    Get PDF
    It has recently been proposed to couple the Beerkan method with the Beerkan Estimation of Soil Transfer parameters (BEST) algorithm to facilitate the estima- tion of soil hydraulic parameters from an infiltration experiment. Although this simplified field procedure is relatively rapid and inexpensive, it has been doubt - ed if the Beerkan method can represent a valid and reliable alternative to other conventional methods. This study explored the impact of the tortuosity param- eter (p) and two infiltration constants included in the BEST algorithm using a sensitivity analysis applied to three experimental soils. The analysis that was validated using the numerical model HYDRUS 2D/3D indicates that the tortuosity is relatively insignificant compared to parameters b and g that have a large impact on the estimation procedure

    Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model

    Full text link
    Groundwater is an important factor that needs to be considered when evaluating the water balance of the soil-plant-atmosphere system and the sustainable development of arid oases. However, the impact of shallow groundwater on the root zone water balance and cotton growth is not fully understood. In this study, we have first analyzed the influence of the groundwater table depth on the seasonal maximum leaf area index of cotton, the average seasonal water stress, cotton yield, actual transpiration, actual evaporation, and capillary rise using experimental data collected at the Aksu water balance station, in Xinjiang, northwest of China and the Hydrus-1D variably-saturated soil water flow model coupled with a simplified crop growth model from SWAT. The coupled model has been first calibrated and validated using field observations of soil water content, leaf area index, cotton height, the above ground biomass, and cotton yield comparisons between measured and modeled variables have shown a reasonable agreement for all variables. Additionally, with a validated model, we have carried out numerical experiments from which we have concluded that groundwater is a major water resource for cotton growth in this region. The capillary rise from groundwater contributes almost 23% of crop transpiration when the average groundwater depth is 1.84. m, which is the most suitable groundwater depth for this experimental site. We have concluded that cotton growth and various components of the soil water balance are highly sensitive to the groundwater table level. Different positions of the groundwater table showed both positive and negative effects on cotton growth. Likewise, cotton growth has a significant impact on the capillary rise from groundwater. As a result, groundwater is a crucial factor that needs to be considered when evaluating agricultural land management in this arid region. The updated Hydrus-1D model developed in this study provides a powerful modeling tool for evaluating the effects of the groundwater table on local land management

    Estimating Soil Hydraulic Properties from Infrared Measurements of Soil Surface Temperatures and TDR Data

    Full text link
    The spatiotemporal development of soil surface temperatures (SST) depends on water availability in the near-surface soil layer. Because the soil loses latent heat during evaporation and water available for evaporation depends on soil hydraulic properties (SHP), the temporal variability of SST should contain information about the near-surface SHP. The objective of this study was to investigate the uncertainties of SHP derived from SST. The HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate van Genuchten-Mualem parameters from infrared-measured SST and time domain reflectometry (TDR)-measured water contents. This approach was tested using synthetic and real data, collected during September 2008 from a harrowed silty loam field plot in Selhausen, Germany. The synthetic data illustrated that SHP can be derived from SST and that additional soil water content measurements reduce the uncertainty of the estimated SHP. Unlike for the synthetic experiment with a vertically homogeneous soil profile, a layered soil profile had to be assumed to derive SHP from the real data. Therefore, the uncertainty of SHP derived from real data was considerably larger. Water retention curves of undisturbed soil cores were similar to those estimated from SST and TDR data for the deeper undisturbed soil. The retention curves derived from SST and TDR data for the harrowed topsoil layer were typical for a coarse-textured soil and deviated considerably from the retention curves of soil cores, which were typical for a fine-textured soil and similar to those from the subsoil

    Infiltration from the pedon to global grid scales: an overview and outlook for land surface modelling

    Get PDF
    Infiltration in soils is a key process that partitions precipitation at the land surface in surface runoff and water that enters the soil profile. We reviewed the basic principles of water infiltration in soils and we analyzed approaches commonly used in Land Surface Models (LSMs) to quantify infiltration as well as its numerical implementation and sensitivity to model parameters. We reviewed methods to upscale infiltration from the point to the field, hill slope, and grid cell scale of LSMs. Despite the progress that has been made, upscaling of local scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows, that there is a large variety in approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few land surface models consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. In order to tackle the above challenges and integrate current knowledge on soil processes affecting infiltration processes on land surface models, we advocate a stronger exchange and scientific interaction between the soil and the land surface modelling communities

    Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D

    Full text link
    Nitrogen (N) pollution is a global environmental problem that has greatly increased the risks of both the eutrophication of surface waters and contamination of ground waters. The majority of N pollution mainly comes from agricultural fields, in particular during rice growing seasons. In recent years, a gradual shift from the transplanting rice cultivation method to the direct seeding method has occurred, which results in different water and N losses from paddy fields and leads to distinct impacts on water environments. The N transport and transformations in an experimental direct-seeded-rice (DSR) field in the Taihu Lake Basin of east China were observed during two consecutive seasons, and simulated using Hydrus-1D model. The observed crop N uptake, ammonia volatilization (AV), N concentrations in soil, and N leaching were used to calibrate and validate the model parameters. The two most important inputs of N, i.e., fertilization and mineralization, were considered in the simulations with 220 and 145.5kgha-1 in 2008 and 220 and 147.8kgha-1 in 2009, respectively. Ammonia volatilization and nitrate denitrification were the two dominant pathways of N loss, accounting for about 16.0% and 38.8% of the total N input (TNI), respectively. Both nitrification and denitrification processes mainly occurred in the root zone. N leaching at 60 and 120cm depths accounted for about 6.8% and 2.7% of TNI, respectively. The crop N uptake was 32.1% and 30.8% of TNI during the 2008 and 2009 seasons, respectively, and ammonium was the predominant form (74% of the total N uptake on average). Simulated N concentrations and fluxes in soil matched well with the corresponding observed data. Hydrus-1D could simulate the N transport and transformations in the DSR field, and could thus be a good tool for designing optimal fertilizer management practices in the future

    Soil tillage to reduce surface metal contamination – model development and simulations of zinc and copper concentration profiles in a pig slurry-amended soil

    Full text link
    Long-term applications of organic amendments, such as pig slurry (PS), may represent environmental risk of soil and water pollution by trace metals (TM). Our objective was to examine different soil and manure management scenarios that enhance the long-term agricultural use of soils under repetitive PS applications while avoiding environmental risk. Firstly, we developed a new module for simulating the impacts of soil tillage frequencies in Hydrus-1D. Secondly, we used a previously validated modeling approach to predict the surface accumulation and movement of the TM during the next 100-year in the soil under different PS doses (80 and 40m3ha-1cultivation-1) and tillage frequencies (no-tillage and 20, 10, and 5-year tillage). No-tillage simulations revealed consistent TM surface accumulations, reaching the soil threshold value for Cu in the 0-20cm layer after 86 years of PS amendments at high doses, but in layers 0-5, 0-10, and 5-10cm, this concentration was already reached after 17, 38, and 75 years, respectively. While soil tillage reduced TM concentrations over the top 20cm of the soil profile, it increased their transfer to deeper layers. Periodical soil tillage each 5, 10, and 20 years was found to allow PS applications without reaching the Cu threshold value in soil during 100 years. However, soil solution concentrations of Zn reached the threshold values for groundwater. Therefore, the best manure management practice for the long-term PS disposal with respect to Zn and Cu concentrations in soil is the application of moderate PS rates. © 2014 Elsevier B.V

    On the use of surrogate-based modeling for the numerical analysis of Low Impact Development techniques

    Full text link
    Mechanistic models have proven to be accurate tools for the numerical analysis of the hydraulic behavior of Low Impact Development (LIDs) techniques. However, their widespread adoption has been limited by their computational cost. In this view, surrogate modeling is focused on developing and using a computationally inexpensive surrogate of the original model. While having been previously applied to various water-related and environmental modeling problems, no studies have used surrogate models for the analysis of LIDs. The aim of this research thus was to investigate the benefit of surrogate-based modeling in the numerical analysis of LIDs. The kriging technique was used to approximate the deterministic response of the widely used mechanistic model HYDRUS-2D, which was employed to simulate the variably-saturated hydraulic behavior of a contained stormwater filter. The Nash-Sutcliffe efficiency (NSE) index was used to compare the simulated and measured outflows and as the variable of interest for the construction of the response surface. The validated kriging model was first used to carry out a Global Sensitivity Analysis of the unknown soil hydraulic parameters of the filter layer, revealing that only the shape parameter α and the saturated hydraulic conductivity Ks significantly affected the model response. Next, the Particle Swarm Optimization algorithm was used to estimate their values. The NSE value of 0.85 indicated a good accuracy of estimated parameters. Finally, the calibrated model was validated against an independent set of measured outflows with a NSE value of 0.8, which again corroborated the reliability of the surrogate-based optimized parameters

    Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system

    No full text
    Accurate estimation of the soil water balance of the soil-plant-atmosphere system is key to determining the availability of water resources and their optimal management. Evapotranspiration and leaching are the main sinks of water from the system affecting soil water status and hence crop yield. The accuracy of soil water content and evapotranspiration simulations affects crop yield simulations as well. DSSAT is a suite of field-scale, process-based crop models to simulate crop growth and development. A “tipping bucket” water balance approach is currently used in DSSAT for soil hydrologic and water redistribution processes. By comparison, HYDRUS-1D is a hydrological model to simulate water flow in soils using numerical solutions of the Richards equation, but its approach to crop-related process modeling is rather limited. Both DSSAT and HYDRUS-1D have been widely used and tested in their separate areas of use. The objectives of our study were: (1) to couple HYDRUS-1D with DSSAT to simulate soil water dynamics, crop growth and yield, (2) to evaluate the coupled model using field experimental datasets distributed with DSSAT for different environments, and (3) to compare HYDRUS-1D simulations with those of the tipping bucket approach using the same datasets. Modularity in the software design of both DSSAT and HYDRUS-1D made it easy to couple the two models. The pairing provided the DSSAT interface an ability to use both the tipping bucket and HYDRUS-1D simulation approaches. The two approaches were evaluated in terms of their ability to estimate the soil water balance, especially soil water contents and evapotranspiration rates. Values of the d index for volumetric water contents were 0.9 and 0.8 for the original and coupled models, respectively. Comparisons of simulations for the pod mass for four soybean and four peanut treatments showed relatively high d index values for both models (0.94–0.99)
    corecore