33 research outputs found

    Effect of Microwave Frying on Acrylamide Generation, Mass Transfer, Color, and Texture in French Fries

    Full text link
    [EN] The objective of this work was to evaluate the effect of microwave power on acrylamide generation, as well as moisture and oil fluxes and quality attributes of microwave-fried potatoes. Concretely, 25 g of potato strips, in 250 mL of fresh oil (at room temperature), were subjected to three different microwave powers (315, 430, and 600 W) in a conventional microwave oven. Microwave frying resulted in an acrylamide reduction ranged from 37 to 83% compared to deep-oil frying. Microwave-fried French fries presented lower moisture and higher fat content than deep-oil fried potatoes. Concretely, microwave-fried potatoes presented values of moisture and texture more similar to potato chips than French fries, nonetheless with lower fat levels (less than 20 g/100 g wb) and acrylamide content (lower than 100 ¿g/kg wb) at the reference time. This study presents an alternative way of frying to address the production of healthier potato chips.The authors would like to thank the Universitat Politecnica de Valencia for the PhD scholarship given to Mariola Sansano Tomas.Sansano, M.; De Los Reyes Cánovas, R.; Andrés Grau, AM.; Heredia Gutiérrez, AB. (2018). Effect of Microwave Frying on Acrylamide Generation, Mass Transfer, Color, and Texture in French Fries. Food and Bioprocess Technology. 11(10):1934-1939. doi:10.1007/s11947-018-2144-zS193419391110AACC. (1995). Approved methods of the American association of cereal chemists (9th ed.). St. Paul: The Association.Adedeji, A. A., Ngadi, M. O., & Raghavan, G. S. V. (2009). Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. Journal of Food Engineering, 91(1), 146–153.Ahrné, L., Andersson, C.-G., Floberg, P., Rosén, J., & Lingnert, H. (2007). Effect of crust temperature and water content on acrylamide formation during baking of white bread: steam and falling temperature baking. LWT-Food Science and Technology, 40(10), 1708–1715.Amrein, T. M., Limacher, A., Conde-Petit, B., Amadò, R., & Escher, F. (2006). Influence of thermal processing conditions on acrylamide generation and Browning in a potato model system. Journal of Agricultural and Food Chemistry, 54(16), 5910–5916.Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2013). Mass transfer and volume changes in French fries during air frying. Food and Bioprocess Technology, 6(8), 1917–1924.Barutcu, I., Sahin, S., & Sumnu, G. (2009). Acrylamide formation in different batter formulations during microwave frying. LWT - Food Science and Technology, 42(1), 17–22.Belgin Erdoǧdu, S., Palazoǧlu, T. K., Gökmen, V., Şenyuva, H. Z., & Ekiz, H. İ. (2007). Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips. Journal of the Science of Food and Agriculture, 87(1), 133–137.Biedermann, M., Noti, A., Biedermann-Brem, S., Mozzetti, V., & GROB, K. (2002). Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 93(6), 668–687.Bråthen, E., & Knutsen, S. H. (2005). Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), 693–700.Buffler, C. R. (1993). Microwave cooking and processing: Engineering fundamentals for the food scientist. (A. Books, Ed.). New York: Van Nostrand Reinhold.Datta, A. K. (1990). Heat and mass transfer in the microwave processing of food. Chemical Engineering Progress, 86(6), 47–53.Datta, A. K. (2001). Handbook of microwave technology for food application. CRC Press.De los Reyes, R., Heredia, A., Fito, P., De los Reyes, E., & Andrés, A. (2007). Dielectric spectroscopy of osmotic solutions and osmotically dehydrated tomato products. Journal of Food Engineering, 80(4), 1218–1225. 2.Granda, C., & Moreira, R. G. (2005). Kinetics of acrylamide formation during traditional and vacuum frying of potato chips. Journal of Food Process Engineering, 28(5), 478–493.Lizhi, H., Toyoda, K., & Ihara, I. (2008). Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. Journal of Food Engineering, 88(2), 151–158.Oztop, M. H., Sahin, S., & Sumnu, G. (2007). Optimization of microwave frying of potato slices by using Taguchi technique. Journal of Food Engineering, 79(1), 83–91.Parikh, A., & Takhar, P. S. (2016). Comparison of microwave and conventional frying on quality attributes and fat content of potatoes. Journal of Food Science, 81(11), E2743–E2755.Pedreschi, F., & Moyano, P. (2005). Oil uptake and texture development in fried potato slices. Journal of Food Engineering, 70(4), 557–563.Sahin, S., Sumnu, G., & Oztop, M. H. (2007). Effect of osmotic pretreatment and microwave frying on acrylamide formation in potato strips. Journal of the Science of Food and Agriculture, 87(15), 2830–2836. https://doi.org/10.1002/jsfa.3034 .Sansano, M., Juan-Borrás, M., Escriche, I., Andrés, A., & Heredia, A. (2015). Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. Journal of Food Science, 80(5), 1120–1128.Sansano, M., Heredia, A., Peinado, I., & Andrés, A. (2017). Dietary acrylamide: What happens during digestion. Food Chemistry, 237, 58–64.Schiffmann, R. (2017). 7 - Microwave-assisted frying. In The microwave processing of foods (2nd edn, pp. 142–151). Sawston: Woodhead Publishing.Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X.Young, J. Tang, C. Zhang, & W. Xin (Eds.), Advances in Agricultural Engineering (pp. 1–44). New York: Scientific Press.Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006.Taubert, D., Harlfinger, S., Henkes, L., Berkels, R., & Schömig, E. (2004). Influence of processing parameters on acrylamide formation during frying of potatoes. Journal of Agricultural and Food Chemistry, 52(9), 2735–2739.Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88(1), 1–18

    Deep NIR photometry of HI galaxies in the Zone of Avoidance

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Current studies of the peculiar velocity flow field in the Local Universe are limited by either the lack of detection or accurate photometry for galaxies at low Galactic latitudes. The contribution to the dynamics of the Local Group of the largely unknown mass distribution in this 'Zone of Avoidance' remains controversial. We present here the results of a pilot project to obtain deep near infrared (NIR) observations of galaxies detected in the systematic Parkes deep HI survey of the ZoA - 578 galaxies with recession velocities out to 6000 km/s were observed with the 1.4m InfraRed Survey Facility SIRIUS camera providing J, H and K_s imaging ~2 mag deeper than 2MASS. After star-subtraction, the resulting isophotal magnitudes and inclinations of ZoA galaxies are of sufficient accuracy (magnitude errors under 0.1 mag even at high extinction) to ultimately be used to determine cosmic flow fields "in" the ZoA via the NIR Tully-Fisher relation. We further used the observed NIR colours to assess the ratio of the true extinction to the DIRBE/IRAS extinction deep into the dust layers of the Milky Way. The derived ratio was found to be 0.87 across the HIZOA survey region with no significant variation with Galactic latitude or longitude. This value is in excellent agreement with the completely independently derived factor of 0.86 by Schlafly & Finkbeiner based on Sloan data far away from the Milky Way.Peer reviewedFinal Published versio

    Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    Get PDF
    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 < log M*/MG < 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ∼ 44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ∼ 20 − 30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley. Key words: galaxies: elliptical and lenticular, cD – galaxies: spiral – galaxies: evo- lution – galaxies: star formation – galaxies: statistics – galaxies: structur

    Coprimely packed rings

    No full text

    Coprimely packed rings

    Get PDF
    AbstractAn ideal I of a commutative ring R with identity is said to be coprimely packed by prime ideals of R if whenever I is coprime to each element of a family of prime ideals of R, I is not contained in the union of prime ideals of the family. We say that R is coprimely packed if every ideal of R is coprimely packed. It is shown that in a Noetherian arithmetical ring R every prime ideal is coprimely packed if and only if a positive power of every ideal of R is principal. Consequently for a Dedekind domain this is equivalent to the ideal class group being a torsion group (see also Theorem 2.2 of C. M. Reis and T. M. Viswanathan [A compactness property for prime ideals in Noetherian rings, Proc. Amer. Math. Soc. 25 (1970), 353–356]). We also show that every compactly packed ring R is coprimely packed. For characterizations of coprimely packed Prüfer domains from a different point of view see V. Erdoǧdu [Modules with locally linearly ordered distributive hulls, J. Pure Appl. Algebra 47 (1987), 119–130]

    Three notes on coprime packedness

    Full text link

    Inhibitory effect of polysaccharides on acrylamide formation in chemical and food model systems

    No full text
    The inhibitory effect of three polysaccharides (alginate, pectin and chitosan) on acrylamide formation was investigated in chemical and fried potato food model systems, under two heating regimes (heating block and microwave). In the chemical system, acrylamide formation followed a second order reaction kinetic behaviour. Activation energies (Ea) were 17.85 and 110.78 kJ/mol for conventional and microwave heating respectively. Acrylamide content was highest at 180 °C after 60 min conventional heating (27.88 ng/ml) and 3.5 fold higher after microwave heating for 60 s (800 W, 98.02 ng/ml). Alginate (0.3% w/v) and pectin (0.2% w/v) solutions efficiently inhibited acrylamide formation by 65% and 56% respectively under conventional heating, and 36% and 30% respectively under microwave heating. Coating potatoes with alginate, pectin and chitosan (1% w/v) prior to frying dramatically inhibited acrylamide formation by 54%, 51% and 41% respectively. However only alginate and pectin slightly reduced acrylamide by 5% in the microwave
    corecore