34 research outputs found

    A Study on RGB Image Multi-Thresholding using Kapur/Tsallis Entropy and Moth-Flame Algorithm

    Get PDF
    In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, widely implemented to enhance the information in a class of gray/RGB class pictures. The thresholding helps to enhance the image by grouping the similar pixels based on the chosen thresholds. In this research, an entropy assisted threshold is implemented for the benchmark RGB images. The aim of this work is to examine the thresholding performance of well-known entropy functions, such as Kapur’s and Tsallis for a chosen image threshold. This work employs a Moth-Flame-Optimization (MFO) algorithm to support the automatic identification of the finest threshold (Th) on the benchmark RGB image for a chosen threshold value (Th=2,3,4,5). After getting the threshold image, a comparison is performed against its original picture and the necessary Picture-Quality-Values (PQV) is computed to confirm the merit of the proposed work. The experimental investigation is demonstrated using benchmark images with various dimensions and the outcome of this study confirms that the MFO helps to get a satisfactory result compared to the other heuristic algorithms considered in this study

    A multilevel image thresholding based on Hybrid Salp Swarm algorithm and Fuzzy Entropy

    Get PDF
    The image segmentation techniques based on multi-level threshold value received lot of attention in recent years. It is because they can be used as a pre-processing step in complex image processing applications. The main problem in identifying the suitable threshold values occurs when classical image segmentation methods are employed. The swarm intelligence (SI) technique is used to improve multi-level threshold image (MTI) segmentation performance. SI technique simulates the social behaviors of swarm ecosystem, such as the behavior exhibited by different birds, animals etc. Based on SI techniques, we developed an alternative MTI segmentation method by using a modified version of the salp swarm algorithm (SSA). The modified algorithm improves the performance of various operators of the moth-flame optimization (MFO) algorithm to address the limitations of traditional SSA algorithm. This results in improved performance of SSA algorithm. In addition, the fuzzy entropy is used as objective function to determine the quality of the solutions. To evaluate the performance of the proposed methodology, we evaluated our techniques on CEC2005 benchmark and Berkeley dataset. Our evaluation results demonstrate that SSAMFO outperforms traditional SSA and MFO algorithms, in terms of PSNR, SSIM and fitness value

    Image multi-level-thresholding with Mayfly optimization

    Get PDF
    Image thresholding is a well approved pre-processing methodology and enhancing the image information based on a chosen threshold is always preferred. This research implements the mayfly optimization algorithm (MOA) based image multi-level-thresholding on a class of benchmark images of dimension 512x512x1. The MOA is a novel methodology with the algorithm phases, such as; i) Initialization, ii) Exploration with male-mayfly (MM), iii) Exploration with female-mayfly (FM), iv) Offspring generation and, v) Termination. This algorithm implements a strict two-step search procedure, in which every Mayfly is forced to attain the global best solution. The proposed research considers the threshold value from 2 to 5 and the superiority of the result is confirmed by computing the essential Image quality measures (IQM). The performance of MOA is also compared and validated against the other procedures, such as particle-swarm-optimization (PSO), bacterial foraging optimization(BFO), firefly-algorithm(FA), bat algorithm (BA), cuckoo search(CS) and moth-flame optimization (MFO) and the attained p-value of Wilcoxon rank test confirmed the superiority of the MOA compared with other algorithms considered in this wor

    Effect of different segmentation methods using optical satellite imagery to estimate fuzzy clustering parameters for Sentinel-1A SAR images

    Get PDF
    Optical and SAR data are efficient data sources for shoreline monitoring. The processing of SAR data such as feature extraction is not an easy task since the images have totally different structure than optical imagery. Determination of threshold value is a challenging task for SAR data. In this study, SENTINEL-2A optical data was used as ancillary data to predict fuzzy membership parameters for segmentation of SENTINEL-1A SAR data to extract shoreline. SENTINEL-2A and SENTINEL-1A satellite images used were taken in September 9, 2016 and September 13, 2016 respectively. Three different segmentation algorithms which are selected from object, learning and pixel-based methods. They have been exploited to obtain land and water classes which have been used as an input data for parameter estimation. Thus, the performance of different segmentation algorithm has been investigated and analysed. In the first step of the study, Mean-Shift, Random Forest and Whale Optimization algorithms have been employed to obtain water and land classes from the SENTINEL-2A image. Water and land classes derived from each algorithm – are used as input data, and then the required parameters for the fuzzy clustering of SENTINEL-1A SAR image, were calculated. Lake Constance, Germany has been chosen as the study area. In this study, additionally an interface plugin has been developed and integrated into the open source Quantum GIS software platform. The developed interface allows non-experts to process and extract the shorelines without using any parameters. But, this system requires pre-segmented data as input. Thus, the batch process calculates the required parameters

    Grey Scale Image Multi-Thresholding Using Moth-Flame Algorithm and Tsallis Entropy

    Get PDF
    In the current era, image evaluations play a foremost role in a variety of domains, where the processing of digital images is essential to identify vital information. The image multi-thresholding is a vital image pre-processing field in which the available digital image is enhanced by grouping similar pixel values. Normally, the digital test images are available in RGB/greyscale format and the appropriate processing methodology is essential to treat the images with a chosen methodology. In the proposed approach, Tsallis Entropy (TE) supported multi-level thresholding is planned for the benchmark greyscale imagery of dimension 512x512x1 pixels using a chosen threshold values (T=2,3,4,5). This work suggests the possible Cost Value (CV) that can be considered during the optimization search and the proposed work is executed by considering the maximization of the TE as the CV. The entire thresholding task is executed using Moth-Flame Algorithm (MFA) and the accomplished results are validated based on the image quality measures of various thresholds. The attained result with MFO is better compared to the result of CS, BFO, PSO, and GA

    Multilevel Thresholding for Image Segmentation Using an Improved Electromagnetism Optimization Algorithm

    Get PDF
    Image segmentation is considered one of the most important tasks in image processing, which has several applications in different areas such as; industry agriculture, medicine, etc. In this paper, we develop the electromagnetic optimization (EMO) algorithm based on levy function, EMO-levy, to enhance the EMO performance for determining the optimal multi-level thresholding of image segmentation. In general, EMO simulates the mechanism of attraction and repulsion between charges to develop the individuals of a population. EMO takes random samples from search space within the histogram of image, where, each sample represents each particle in EMO. The quality of each particle is assessed based on Otsu’s or Kapur objective function value. The solutions are updated using EMO operators until determine the optimal objective functions. Finally, this approach produces segmented images with optimal values for the threshold and a few number of iterations. The proposed technique is validated using different standard test images. Experimental results prove the effectiveness and superiority of the proposed algorithm for image segmentation compared with well-known optimization methods

    A Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm and a Ranking-Based Diversity Reduction Strategy

    Get PDF
    Many countries are challenged by the medical resources required for COVID-19 detection which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19 causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19. This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works on finding the particles that couldn't find better solutions within a consecutive number of iterations, and then moving those particles towards the best solutions so far. The performance of IMPA has been validated on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA), Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition, the performance of our proposed model was convergent on all numbers of thresholds level in the Structured Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.</p

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    EFFECT OF DIFFERENT SEGMENTATION METHODS USING OPTICAL SATELLITE IMAGERY TO ESTIMATE FUZZY CLUSTERING PARAMETERS FOR SENTINEL-1A SAR IMAGES

    Get PDF
    Optical and SAR data are efficient data sources for shoreline monitoring. The processing of SAR data such as feature extraction is not an easy task since the images have totally different structure than optical imagery. Determination of threshold value is a challenging task for SAR data. In this study, SENTINEL-2A optical data was used as ancillary data to predict fuzzy membership parameters for segmentation of SENTINEL-1A SAR data to extract shoreline. SENTINEL-2A and SENTINEL-1A satellite images used were taken in September 9, 2016 and September 13, 2016 respectively. Three different segmentation algorithms which are selected from object, learning and pixel-based methods. They have been exploited to obtain land and water classes which have been used as an input data for parameter estimation. Thus, the performance of different segmentation algorithm has been investigated and analysed. In the first step of the study, Mean-Shift, Random Forest and Whale Optimization algorithms have been employed to obtain water and land classes from the SENTINEL-2A image. Water and land classes derived from each algorithm – are used as input data, and then the required parameters for the fuzzy clustering of SENTINEL-1A SAR image, were calculated. Lake Constance, Germany has been chosen as the study area. In this study, additionally an interface plugin has been developed and integrated into the open source Quantum GIS software platform. The developed interface allows non-experts to process and extract the shorelines without using any parameters. But, this system requires pre-segmented data as input. Thus, the batch process calculates the required parameters

    A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems

    Get PDF
    Image segmentation is considered a crucial step required for image analysis and research. Many techniques have been proposed to resolve the existing problems and improve the quality of research, such as region-based, threshold-based, edge-based, and feature-based clustering in the literature. The researchers have moved toward using the threshold technique due to the ease of use for image segmentation. To find the optimal threshold value for a grayscale image, we improved and used a novel meta-heuristic equilibrium algorithm to resolve this scientific problem. Additionally, our improved algorithm has the ability to enhance the accuracy of the segmented image for research analysis with a significant threshold level. The performance of our algorithm is compared with seven other algorithms like whale optimization algorithm, bat algorithm, sine–cosine algorithm, salp swarm algorithm, Harris hawks algorithm, crow search algorithm, and particle swarm optimization. Based on a set of well-known test images taken from Berkeley Segmentation Dataset, the performance evaluation of our algorithm and well-known algorithms described above has been conducted and compared. According to the independent results and analysis of each algorithm, our algorithm can outperform all other algorithms in fitness values, peak signal-to-noise ratio metric, structured similarity index metric, maximum absolute error, and signal-to-noise ratio. However, our algorithm cannot outperform some algorithms in standard deviation values and central processing unit time with the large threshold levels observed
    corecore