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Abstract 

Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving 

to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the 

infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-

19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral 

pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 

- sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the 

specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray 

images could be classified using the machine learning techniques to specify if the person infected severely, 

mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest 

within the image that contains the features of COVID-19 must be extracted. This problem is called the 

image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most 

commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentat ion. 

This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for 

COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mould 

algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The 

performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 

30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly 

algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. 

The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy 

for all the metrics used and the standard SMA could perform better than the other algorithms in the 

comparison under all the metrics.  

Keywords: Image segmentation problem; Slime mould algorithm(SMA); whale optimization algorithm; 

Kapur's entropy; X-ray images; COVID-19. 

1. Introduction 

Starting in China and passing to all the worldwide, a novel virus named COVID-19 outbreaks 

continuously. This virus infects the victim with fever and respiratory symptoms such as cough and sore 

throat. However, those symptoms do not confirm the infection with COVID-19 [1], so many attempts have 



been performed to find a tool that confirms if the person infected with COVID-19. After making chest CT 

imaging for suspects infected with COVID-19, the bilateral pulmonary parenchymal ground-glass and 

consolidative pulmonary opacities can be used to determine the infection. A rounded morphology and a 

peripheral lung distribution could sometimes been spotted [2].  

Fortunately, since the CT findings are extracted as a normal image, it could be segmented into similar 

small regions, some of which may contain the features of COVID-19. The process of segmenting an image 

is commonly known as an image segmentation problem (ISP) and many algorithms have been applied for 

overcoming ISP. However, those algorithms still suffer from some problems prevent from reaching better-

segmented images. As a result, the need for a new robust algorithm to segment the images has significantly 

been increased those days, especially with appearing chest CT images. 

Recently, a novel algorithm known as the slime mould algorithm (SMA) inspired the slime mould 

behaviors to obtain the optimal track for gathering food. SMA has already been proposed for tackling the 

continuous optimization problems and could achieve significant success in comparison with the other 

algorithms. Accordingly, in this paper, SMA is adopted to tackle the chest X-ray image segmentat ion 

problem for the first time, as a new addition to separate the similar regions or to extract the region of 

interest inside an X-ray image. In addition, as an attempt to improve the performance of SMA and 

proposing a multi-thresholding model has a high ability on tackling ISP, the whale optimization algorithm 

(WOA) will be integrated with it to borrow its exploration capability within the first half of the iterations 

and after finishing the predefined first iterations where WOA runs within, the SMA will start to exploit 

around the best region explored by WOA with disposing of local minima problem under its ability that 

will re-initialize the solutions within the search space under a certain probability. The proposed model is 

only observed on X-ray test images infected with COVID-19, so it is proposed for dealing with this type 

of image. And within our future work, its performance will be validated on a number of test images from 

The Berkeley Segmentation Dataset and Benchmark to see if its performance is stable on any image or not.  

The contribution of this paper is summarized as follows:  First, a new integrated approach (HSMA_WOA) 

is proposed based on the behavior of SMA and WOA for finding the optimal threshold values that 

overcome the multi-threshold image segmentation problems of chest X-ray images. Second, experiments 

of HSMA_WOA have been undertaken and outperforming all the compared algorithms in fitness values, 

PSNR, UQI, SSIM, CPU time, and standard deviation under Kapur's entropy. 

The rest of this paper is structured as follows. In section 2, some proposed works for ISP has been 

reviewed. Additionally, Kapur's entropy is explained in Section 3. Sections 4 and 5 give a description of 

the whale optimization algorithm, and the slime mould algorithm, respectively. Section 6 introduces the 

proposed work for overcoming the image segmentation problem. Section 7 illustrates the results obtained 

under both Kapur's and entropy functions. Finally, section 8 concludes the paper. 

 
2. Related work 

 



  Nowadays, ISP plays a crucial role in image processing [3] and computer vision [4] to focus on an 

interesting region rather than the whole image until managing to analyze the image with higher accuracy. 

ISP is present in many fields such as medical diagnosis [5, 6], object recognition [7], satellite image 

processing [8], remote sensing [9], historical documents [10], and historical newspapers [11, 12].  

 Several methodologies for tackling ISP, such as region-based [13], edge-based [14], feature selection-

based clustering [15], and threshold-based [16], has been suggested to help in separating the similar regions 

into an image. From involving those methodologies, Threshold-based segmentation is deemed the best one 

for solving the ISP [3, 17, 18]. Due to its simplicity, speed, and accuracy compared with the others. 

Thresholding is classified into two types: a bi-level threshold and a multi- level threshold. If the image 

contains only two similar regions: object and background, then the bi-level threshold is the best candidate 

for separating those two regions; otherwise, the multi- level threshold is better. Although the multi- leve l 

threshold could help in segmenting the image with more than two regions, the time increases exponentia lly 

when the number of regions increases.  

 Some techniques proposed for solving the image segmentation problem are based on an approach that 

needs to identify some parameters for each class using a probability density function for segmenting the 

image, those approaches are classified as parametric [19]. Meanwhile, another approach classified as non-

parametric [19] maximizes a function (such as Kapur’s entropy [20], fuzzy entropy [21], and Otsu function) 

without needing to calculate parameters at the outset. 

Due to the time complexity problem with the increased threshold levels, traditional techniques failed 

to be the best tool for solving the ISP. Subsequently, the need for another different technique to overcome 

the problem of time complexity was significantly increased. Thus, the meta-heuristic algorithms (MHAs) 

have been more popular among researchers since significant superiorities with less time in several fields 

were offered by MHAs [22-27] as the most appropriate tool to solve the ISP and overcome the time 

complexity. Since the w processing time increases exponentially with increasing thresholds, traditiona l 

techniques will use the considerable time to search for the optimal threshold.  

 Recently, many meta-heuristic algorithms have been suggested for overcoming ISP, such as particle 

swarm optimization (PSO) [28-30], ant-colony optimization algorithm [31], bee colony algorithm (BCA) 

[32],  whale optimization algorithm (WOA) [33], genetic algorithm (GA) [34],  multi-verse optimizer [35], 

cuckoo search (CS) [36], symbiotic organisms search (SOS) [37], Harris hawks optimization algorithm 

(HHA) [38], and firefly optimization algorithm (FFA) [39], flower pollination algorithm (FPA) [40], crow 

search algorithm [41], grey wolf optimizer [42], honey bee mating  (HBM) optimization [43], locust search 

algorithm (LSA) [44] , moth-flame optimization algorithm (MFA) [33], and firefly optimization algorithm 

(FFA) [39]. Some of those algorithms are summarized in the following Table. 

Table 1:  Some algorithms proposed for solving ISP 

 Reference  Procedure  

1 Singla and Patra [45] The cluster validity measure was used to investigate the boundaries of the threshold 

levels to find the bounds that may contain the optimal threshold values. Then, it applied 

GA on the obtained bounds to search for the optimal threshold values within. 

2 Manikandan et al. [46] The real coded GA with the simulated binary crossover has been suggested for tackling 

the ISP of the medical image by maximizing the Kapur's entropy. This algorithm 



approved their efficacy compared with the others when solving the ISP of the medical 

image 

3 Maitra, Chatterjee [47]  PSO improved by cooperative and comprehensive learning has been developed for 

tackling the ISP. Both cooperative and comprehensive learning used with PSO to 

alleviate the dimensionality curse and prevent the early convergence 

4 Liu, Y., et al. [48] The PSO has been modified using adaptive inertia and the adaptive population for 

tackling the ISP. Adaptive inertia is used to promote the convergence speed of PSO, 

while the adaptive population is used to prevent stuck into local optima. 

5 Ghamisi et al. [49] Fractional-order Darwinian PSO has been proposed for overcoming the image 

segmentation problem based on the Otsu function. The Fractional-derivative was used 

with PSO  to dominate the convergence rate. 

6 El Aziz [33] WOA and MFA were proposed for tackling the ISP by maximizing otsu method, 

although just for threshold levels reaching 6 

7 Chen [50] In this paper, The Improved FFA (IFFA) has been proposed for solving ISP. IFFA was 

improved using the Cauchy mutation to avoid local minima and neighborhood strategy 

to enhance the convergence 

8 Agrawal[36] In this paper, CS has been proposed to extract the optimal threshold values of an image 

by maximizing the Tsallis entropy. 

9 Bhandari[51] In this paper, the satellite image was segmented using ABC based on maximizing a 

variety of objective functions. ABC was improved using a chaotic search to initialize 

the population at the outset and the differential evolution to enhance the exploitation 

capability. 

10 Sanyal[52] The fuzzy entropy to change between the exploration and exploitation operators was 

used with The bacterial foraging algorithm (BFA) for getting to the optimal threshold 

values of an image. 

11 Sathya[53] In this paper, to accelerate the premature convergence of BFA when solving ISP, the 

best bacteria among all the chemotactic steps is moved to the subsequent generations. 

12 Tang[53] This paper integrated the PSO with BFA to provide the global search capability and 

promote the premature convergence towards the optimal threshold values  

13 Abdel-Basset [54] A novel equilibrium optimizer (EO) has been proposed for finding the optimal 

threshold values of an image by maximizing the Kapur's entropy. 

14 Abdel-Basset [55] A novel marine predators algorithm (IMPA) improved using the Ranking-based 

diversity reduction strategy has been suggested to segment the chest X-ray image  

15 Chouksey[56] In this paper, the antlion optimization (ALO) and the multiverse optimization (MVO) 

have been developed for tackling the ISP by maximizing the Kapur's entropy and Otsu 

method. After investigating the performance of ALO, and MVO, the author notified 

that MVO is better 

16  Erik Cuevas[44] 

 

In this paper, the locust search algorithm (LSA) was applied for solving the multi-level 

thresholding image segmentation under a new objective function in a gaussian  mixture 

model.  

All the algorithms listed in the literature were proposed for overcoming the ISP of a normal image 

and medical image of type X-Ray images, but no one of which is experimented on the X-ray images that 

are considered the most important thing to detect the infection with COVID-19. Currently, there are two 

ways to be blended for much better performance. First, the high ability of WOA can be used to explore a 

new region to find a better solution within the first half of iterations. Second, the high capacity of SMA 

can be used to balance between exploitation and exploration. Thus, authors are motivated to make a 

hybridization between them to propose a new model to combine those two capabilities for overcoming the 

ISP for COVID-19 X-ray images. Broadly speaking, the SMA is integrated with WOA to finding a better 

solution, where the WOA will be run within the first CI iteration to explore various regions within the 

search space. Afterward, the SMA will take the solutions obtained by WOA to exploit them or explore at 

the expense of the fitness of each solution as an attempt to use up this capability of SMA. Additiona lly, 



SMA increases its exploration capability to escape out of the local minima by re-initializing the current 

solution randomly within the search space of the problem based on a certain probability. This hybrid 

approach is abbreviated as HSMA_WOA. SMA and HSMA_WOA are compared with several state-of-

the-art algorithms under X-ray test images infected with COVID-19. After comparison, we saw that 

HSMA_WOA could outperform all the algorithms used to compare most of the test images used in our 

experiment. 

3. Kapur's entropy 

In this section, the mathematical model of Kapur's entropy method is shown. Kapur's entropy 

searches for the optimal threshold values by maximizing the variance between the segmented regions [20]. 
The mathematical model of this method is described as follows: 

supposing that [r0, r1, r2, … … . . , rT]  refers to the threshold values that subdivide the image into a 
different similar area, then the Kapur's entropy can be calculated as follows: 

 
     R(r0 , r1, r2, … … . . , rT

) = R0 + R1 + R2 + ⋯ … . . + RT                                                       (1) 
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                                                  (5) 

 

R0, R1,  R2, … … . . , and RT  refer to the entropies obtained by each threshold value, and 

Ni  indicates the count of the pixels having a value I, the grey level. And W0,  W1,  W2,… , and WT refers to 

the percent of the pixels in each region to the pixels in the whole image. And T indicates the threshold 
levels.  

 
In order to extract the optimal threshold values, the following equation  is maximized: 

   F(𝑟0 , r1, r2, … … . . , rT
) = max {R(r0, r1, r2 , … … . . , rT)}                                                              (6)   

The proposed algorithm will use Eq.6 as an objective function to get the optimal threshold values. 

4. Standard whale optimization algorithm (WOA) 

In WOA [57], the behaviors of the humpback whales are simulated to proposed new optimizat ion 
algorithms for tacking the continuous optimization problems. These whales move surround the prey in a 

spiral shape and then move toward prey in a shrinking circle when attacking. This behavior is called 
bubble-new foraging. This hunting mechanism is mimicked within the WOA by a trade-off between a 

spiral model and a shrinking encircling prey with a probability of 50%, generating the new solution within 

the optimization process. The encircling mechanism is athletes described as follows: 

𝑆(𝑡 + 1) = 𝑆∗⃗⃗⃗⃗⃗(𝑡) − 𝐴 .  �⃗⃗⃗�                                                                                   (7) 

                      𝐴 = 2𝑎 .  𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗ − 𝑎                                                                                             (8) 



                𝑎 = 2 − 2
𝑡

𝑡𝑚𝑎𝑥
                                                                                                (9) 

�⃗⃗⃗� = |𝐶 .  𝑆∗⃗⃗⃗⃗⃗(𝑡) − 𝑆(𝑡) |                                                                                 (10) 

                 𝐶 = 2 .  𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗                                                                                                    (11) 

where 𝑆  is a vector that expresses the current whale, 𝑡 is the current generation,  𝑆 ∗⃗⃗⃗⃗ ⃗  refers to the values of 

the best whale in the population, 𝑟 is a numerical vector generated randomly between 0 and 1. 𝑡𝑚𝑎𝑥  refers 

to the maximum generations, and 𝑎 is a parameter linearly decreased from 2 to 0 and is the distance control 
factor. The distance between the position of the victim and the whale is used where the helix-shaped 

movements simulated by a spiral model are done. The spiral model is mathematically modeled as: 

                               𝑆(𝑡 + 1) = 𝑆∗⃗⃗⃗⃗⃗(𝑡) +  𝐷′⃗⃗ ⃗⃗  .  𝑒𝑙𝑏  .  cos(2𝜋𝑙)                                                (12) 

                               𝐷′⃗⃗ ⃗⃗ = |𝑆∗⃗⃗⃗⃗⃗(𝑡) − 𝑆(𝑡)  |                                                                       (13)   

where 𝐷′⃗⃗ ⃗⃗  is the difference between the best-so-far solution and 𝑖 𝑡ℎ  solution, 𝑙  is a number created 

randomly between [-1, 1], the logarithmic spiral shape is described by 𝑏 as a constant. The best-so-far 
solution may be a local minima problem, so focusing completely on it within the optimization process may 
waste the search process within any beneficial mentioned. Therefore, the whale search for another position 

may contain the prey within the search area by picking a random whale from the population to move the 

current whale toward finding a better solution. Specifically, if  �⃗�< 1, then the current whale is directed 
based on a whale picked randomly from the population. The mathematical model of this exploration phase 

is: 

𝑆(𝑡 + 1) = 𝑆∗⃗⃗⃗⃗⃗(𝑡) − 𝐴. �⃗⃗⃗�                                                                                    (14) 

�⃗⃗⃗� = |𝐶. 𝑆𝑟𝑎𝑛𝑑 (𝑡)  −  𝑆(𝑡)  |                                                                              (15)         

where 𝑆𝑟𝑎𝑛𝑑 is a position vector picked randomly from the population. Finally, the steps of the standard 

WOA are listed in Algorithm 1. 

Algorithm 1 The standard WOA 

1. Initilaization 𝑆𝑖(𝑖 = 1,2,3, … . , 𝑁) 

2. Evaluate each 𝑆𝑖 using the fitness function 

3. Find the best 𝑠∗ 
4. 𝑡 = 1// current iteration 

5. while (𝑡 < 𝑡𝑚𝑎𝑥 ) 

6.      for each 𝑆𝑖 

7.          Update a, A, p, C, and l 

8.           if (𝑝 < 0.5) 

9.                if (|𝐴| < 1) 

10.                     Update 𝑆𝑖
⃗⃗⃗ ⃗(𝑡 + 1) based on Eq. (7) 

11.                else 

12.                     Update 𝑆𝑖
⃗⃗⃗ ⃗(𝑡 + 1) based on Eq. (14) 

13.               end if 

14.           else  

15.                Update 𝑆𝑖
⃗⃗⃗ ⃗(𝑡 + 1) based on Eq. (12) 

16.          end if 

17.      end for 



18.      Check the fitness value of each updated  𝑆𝑖 

19.      Update the best  𝑆∗ with 𝑆𝑖 if better. 

20.      𝑡++ 

21. end while 

5. Slime mould algorithm (SMA). 

Chen [56] has recently been proposed a new optimization algorithm inspired by the behaviors of the 

slime mould in obtaining the optimal path for connecting food. This algorithm was known as the slime 

mould algorithm (SMA). The mathematical model of the SMA based on Chen proposition [56] is described 

in the following. 

In the first stage, when SMA searches for the food, it uses its odor in the air as a means of reaching the 

food. Based on the behavior of the slime mould, it is formulated as follows to simulate the contraction 

mode [58] : 

𝑆(𝑡 + 1) = {
𝑆𝑏
⃗⃗⃗⃗⃗(𝑡) + 𝑣𝑏⃗⃗ ⃗⃗⃗ ∗ (�⃗⃗⃗⃗� ∗ 𝑆𝐴

⃗⃗ ⃗⃗ (𝑡) − 𝑆𝐵
⃗⃗⃗⃗ ⃗(𝑡)) , 𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗⃗ ∗ 𝑆(𝑡), 𝑟 ≥ 𝑝
                                                            (16) 

 

𝑣𝑏⃗⃗ ⃗⃗⃗ is randomly generated within [𝑎, −𝑎] as:  

 

𝑣𝑏⃗⃗ ⃗⃗⃗ = [−𝑎, 𝑎]                                                                                                                    (17) 

𝑎 = arctanh  (− (
𝑡

𝑡𝑚𝑎𝑥
) + 1)                                                                                             (18) 

 

And  𝑣𝑐⃗⃗⃗⃗⃗ linearly decreases from 1 to 0, 𝑡 indicates the iteration current, 𝑡𝑚𝑎𝑥  indicates the maximum of 

iteration, 𝑆𝑏 is a vector that contains the location with the highest odor concentration found so far.  �⃗⃗⃗�(𝑡 + 1) 

indicates the next position taken by the current slime mould (SM). 𝑆(𝑡) is the current position of the SM, 

and 𝑆𝐴
⃗⃗ ⃗⃗  and 𝑆𝐵

⃗⃗⃗⃗ ⃗ are two vectors containing the location of two randomly selected individuals from the 

population. The variable 𝑟 is a random number between 0 and 1. �⃗⃗⃗⃗� describes the slime mould weight and 

calculated as follows:  

𝑊(𝑠𝑚𝑒𝑙𝑙𝑖𝑛𝑑𝑒𝑥 (𝑙) )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {
1 + 𝑟 ∗ 𝑙𝑜𝑔 (

𝑏𝐹 −𝑆(𝑖)

𝑏𝐹 −𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑟 ∗ 𝑙𝑜𝑔 (
𝑏𝐹 −𝑆(𝑖)

𝑏𝐹 −𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟

                                     (19) 

𝑠𝑚𝑒𝑙𝑙𝑖𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡 (𝑆)                                                                           (20) 

where 𝑟 is a random number created within the range of 0 and 1, 𝑏𝐹 is the best fitness value within the 

current iteration, while  𝑤𝐹 stands for the worst one, 𝑠𝑚𝑒𝑙𝑙𝑖𝑛𝑑𝑒𝑥 refers to the indices of the sorted fitness 

values, condition indicates  𝑆(𝑖) ranks of the first half of the population. In relative to parameter 𝑝 in Eq.21 

is modeled as follows: 

𝑝 = tanh  (|𝑓(𝑖) − 𝐷𝐹|)                                                                                        (21) 

 

where 𝑖 ∈ 1,2,3, … . , 𝑛, 𝑓(𝑖) is the fitness of the current �⃗�, 𝐷𝐹 is the best fitness obtained so far.  
 



In the second phase, the wrapped phase simulates the contraction mode in the venous structure of slime 

mould, which tunes their positions according to the quality of the food, when the food concentration is high, 

the weight of this region is bigger. Otherwise, the region's weight is turned to explore other regions, as 

shown in Eq.15. The SM needs to decide when to leave the current area to another one until finding a 

variety of food sources at the same time rather than the current better one. Generally, the mathematica l 

model of updating the SM position could be re-modeled, as shown in Eq. 18 to simulate the methodology 

of the SM to find various food sources at the same time when foraging another area.  

 

𝑆∗⃗⃗⃗⃗⃗(𝑡 + 1) = {

𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧 

𝑆𝑏
⃗⃗⃗⃗⃗(𝑡) + 𝑣𝑏⃗⃗ ⃗⃗ ⃗ ∗ (�⃗⃗⃗⃗� ∗ 𝑆𝐴

⃗⃗ ⃗⃗ (𝑡) − 𝑆𝐵
⃗⃗⃗⃗ ⃗(𝑡) ) ,𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗⃗ ∗ 𝑆(𝑡), 𝑟 ≥ 𝑝

                                                                       (22) 

 

where 𝑟𝑎𝑛𝑑 and 𝑟 are two numbers generated randomly between 0 and 1, and 𝑈𝐵 and 𝐿𝐵 are the upper 

and lower bounds of the problem's search space. z is a probability used to determine it the SMA will search 

for another food source or search around the best current one. In relative to �⃗⃗⃗⃗�, 𝑣𝑏⃗⃗ ⃗⃗⃗,𝑎𝑛𝑑 𝑣𝑐⃗⃗⃗⃗⃗, they are used 

to mimic the venous width variation. Finally, the steps of SMA are presented by Algorithm 2. 

 Algorithm 2 The Slime mould algorithm (SMA) 

1. Initializations step 

2. While (𝑡 < 𝑡𝑚𝑎𝑥 ) 

3.    Evaluate each 𝑆𝑖 

4.    Update the global best fitness 𝐺𝐹 , and global best position  𝐺𝑃 

5.    Compute 𝑊 using Eq.19 

6.     for each 𝑆𝑖  

7.        Update 𝑝, 𝑣𝑏 , and 𝑣𝑐  

8.        Update 𝑆𝑖 based on Eq.22 

9.     end for 

10.     𝑡 + +   

11. end while 

12. Output: return 𝐺𝐹 , 𝐺𝑃 

  
6. The proposed work. 

Within this part, our methodology for overcoming ISP for COVID-19 X-ray images will be 

illustrated in detail to show our plan for finding the threshold values that will help in extracting the region 

of interest within the infected images. Specifically, within this section, the following steps that contract 

the main structure of our proposition will be discussed: Initialization, SMA for ISP, hybrid SMA with 

WOA. 

   6.1. Initialization 

As an inhabit of all the meta-heuristic algorithms, a set consists of N solutions has been proposed 

at the start. Each one has a number of dimensions distributed within 0 and 255 randomly using Eq.23.  

 

 𝑆𝑖 = �⃗⃗� 𝑚𝑖𝑛 + 𝑟 ∗ (�⃗⃗�𝑚𝑎𝑥 − �⃗⃗�𝑚𝑖𝑛)                                                            (23) 



Where �⃗⃗�𝑚𝑖𝑛, 𝑎𝑛𝑑 �⃗⃗�𝑚𝑎𝑥 indicate the boundaries of the gray levels, 𝑟 is a random numerical vector in the 

range of [0, 1], and  𝑆𝑖 indicates the 𝑖 𝑡ℎ solution.  

6.2. SMA for ISP 

  Last but not least, SMA is adapted for overcoming the ISP of the COVID-19 X-ray images by 

maximizing Kapur's entropy. This adaptation will help in extracting similar regions within images that 

may contain similar features of COVID-19. The main advantages of SMA include a high ability to 

balance between exploration and exploitation. When the distance between the fitness of the current 

individual is high, it will try to move toward it in an attempt to exploit it. Meanwhile, if the distance is 

small, then it will explore another food source to find a better solution. Finally, the steps of SMA for 

overcoming ISP are listed in Algorithm 3. 

Algorithm 3 adapting SMA for ISP 

1. Initializations step, 𝑆𝑖 , 𝑖 = 0,1,2,3,4, … … . . , 𝑁 

2. While (𝑡 < 𝑡𝑚𝑎𝑥 ) 

3.    Compute the fitness of each 𝑆𝑖 using Eq.6. 

4.    Update the global best fitness 𝐺𝐹 , and global best position  𝐺𝑃 

5.    Compute 𝑊 using Eq.19 

6.    for each 𝑆𝑖 mould 

7.        Update 𝑝, 𝑣𝑏 , and 𝑣𝑐  

8.        Update 𝑆𝑖 using Eq.22 

9.     end for 

10.     𝑡 + +   

11. end while 

12. Output: return 𝐺𝐹 , 𝐺𝑃 

 

6.3. Hybrid SMA_WOA (HSMA_WOA) 

In this version, the SMA will be used with the WOA for tackling the ISP, where the SMA is used 

to pay attention to the best so-far regions obtained by the WOA. At the same time, the WOA is applied at 

the start of the optimization process until a predefined iteration CI is reached. CI is the end iteration where 

the WOA will stop and SMA starts. Specifically, WOA is applied at the outset to use up its exploration 

capability within the first half of the iteration for exploring the search space. After reaching the CI, the 

WOA will be stopped. SMA then starts to pay attention to searching for a better solution using the high-

ability of SMA that will exploit around the best-so-far if the distance between the fitness value of the 

current solution and the best-so-far solution is higher than a specific value generated randomly. Otherwise, 

it will work on exploring another region searching for a better food source. In addition to disposing of the 

local minima using the SMA's exploration capability that re-initialized the solutions that were within a 

predefined probability randomly within the search space. This hybridization is aimed to exploit the 

exploration capability of the WOA at the start. The next step is to enhance the significant balancing 

capability of SMA and increase their ability to get out of local minima.  Therefore, this can achieve full 

exploration capability when a number generated random SMA is less dependent on the z factor. 

The main advantages of this model are as follows:  

1. By using the high-ability of the WOA at the start of the optimization process, it can explore most of 

the regions within the search space to find a better solution. 



2. After exploring the search space using the exploration capability of WOA, the SMA is used to explo it 

around the best-so-far solution if the distance between the fitness of the current one and the best-so-

far fitness is higher than a threshold value generated randomly between 0 and 1. Otherwise, the 

current SM will try to explore another region for another best-so-far solution. Additionally, SMA 

used another capability to explore another region for a better solution. This capability is based on re-

initializing randomly the current mould within the search space of the problem according to a certain 

probability. 

3. This high-ability on exploring at the first half of the optimization process and adjusting that 

determines if the exploration or exploitation capability will be used within the second half of the 

optimization process help in proposing a model with high-ability on exploration, exploitation and 

avoiding dropping into local minima.  

4. Having only two parameters, r and CI need to be updated accordingly. 

The main drawbacks of this model are as follows: 

1. Difficulties in picking the relevant value for CI can lead to using up the ability of this hybridizat ion.  

2. It still suffers from the probability of falling into local minima problem if the best-so-far solution 

obtained by WOA is local minima. The value of z of the SMA used to escape local minima is small, 

and increasing this value will enhance the probability of randomly re-initializing the current solution 

within the search space and, subsequently, the convergence toward the best solution significantly 

reduce. 

At the final, the final brief steps for the hybridization of both WOA and SMA are presented by 

Algorithm 4.  

Algorithm 4 HSMA_WOA 

1. Initializations step, 𝑆𝑖 , 𝑖 = 0,1,2,3,4, … … . . , 𝑁 

2. While (𝑡 < 𝑡𝑚𝑎𝑥 ) 

3.     If (t<CI) 

4.          Apply the WOA shown in Algorithm 1  

5.          Continue; 

6.      end if 

7.      Compute the fitness of each 𝑆𝑖 using Eq.6 

8.      Update the global best fitness 𝐺𝐹 , and global best position  𝐺𝑃  

9.      Compute 𝑊 using Eq.19 

10.      for each 𝑆𝑖 mould 

11.         Update 𝑝, 𝑣𝑏 , and 𝑣𝑐  

12.         Update 𝑆𝑖 using Eq.22 

13.       end for 

14.        𝑡 + +   

15. end while 

16. Output: return 𝐺𝐹 , 𝐺𝑃 

 

7. Results and discussion  
In this section, extensive experiments have been conducted to validate the proposed algorithms' 

performance and compare their performance with some of the state-of-the-art algorithms when tackling the 



ISP. Those experiments were performed on a set of chest X-ray COVID-19 images, namely X1, X 2, X3, 
X4, X5, X6, X7, X8, X9, X10, X11, and X12.  

      X1    X2   

      X3    X4   

      X5    X6   

X7    X8   

X9  X10   
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X11  X12   
Fig. 1 the original COVID-19  images and their histograms 

 

Additionally, a device equipped with 32-bit windows seven ultimate has been prepared for 
conducting our experiments. This device has the following capabilities: 

 Core i3 processor with speed 2.20 GHz 

 1 GB of RAM 
 

In order to check the efficacy of the proposed algorithm, it is compared with several well-known 

algorithms, such as Lshade [59], FFA [39], WOA [33], SSA [60], and HHA [38]. All those algorithms are 

further implemented using Java programming language. For the compared algorithms, the parameter values 

are the same as found in the original paper rather than the maximum iteration and population size that are 

set to 150, and 30 respectively, for a fair comparison.  Additionally, all algorithms run 20 independently 

times to check the stability and consistency of the results obtained by each one. 

 

  Regarding our proposition, the CI parameter needs to be carefully picked for reaching the best 

performance for this approach, so several values for it, such as 0, 30, 50, 70, 90, 100, 120, and 150, are 

checked under test images X1, X2 and X3 to see the best value. And after running the algorithm under each 

CI value 20 independent runs and drawing the convergence curve of the best run for X1, X2 and X3 in 

Fig.2 (a), (b), and (c), respectively, we witness that the value 100 is the best for it on X1, and X3. While 

CI=90 is the best on X2 and its performance is converged with CI=100 on X3. So, the best two candidate 

values for CI under our experiments are 90 and 100. 

 

Regarding the r parameter, five values, such as 0.01, 0.02, 0.03, 0.04, and 0.04, are selected to test 

the performance of the proposed algorithm under them. After running the algorithm under each r value 20 

independent runs, the best run for each value is pictured in Fig.2(d) and (e) for X1 and X2, respectively. 

According to those figures, r=0.02 is the best among the others, so it will be used for r within the next 

extensive experiments. Finally, Table 2 gives the parameter values of the proposed algorithm.  
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a. Convergence curve under different CI values on X1 with T=30.             b. Convergence curve under different CI values on X2 with T=30. 

 

 
                                                     c. Convergence curve under different CI values on X3 with T=30. 

 



                
                            d. Convergence curve under different r values on X1 with T=30.                 e. Convergence curve under different r values on X2 with T=30. 
 

Fig.2 Adjustment of CI and z parameters  

 

Table 2 Parameter setting for the proposed  

Parameter Value 

Number of runs 20 

Population size 30 

The maximum number of iteration 150 

Z 0.02 
CI 100 

 

The remainder of this section is listed as follows: 

1. Section 7.1: Analyzes the Stability and CPU time. 

2. Section 7.2: Discusses the quality of images using Fitness values. 

3. Section 7.3:  Discusses the quality of images using peak signal to noise ratio. 

4. Section 7.4:  Discusses the quality of images using a structured similarity index metric. 

5. Section 7.5: exposes the outcomes of the universal quality image metric. 

6. Section 7.6: Convergence rate among SMA, HSMA_WOA, and WOA. 

7.1. Stability and CPU time analysis. 

In this section, the time taken by each algorithm until finding the threshold levels is observed to see 

any algorithm could achieve the minimum of time. In addition, some algorithms produce spaced-out results 

in the different runs, so the stability of the obtained has to be calculated to see which algorithm could 

achieve converged results in all. This is known using the standard deviation (𝑆𝑡𝑑 ) calculated based on the 

following formula: 

 𝑆𝑡𝑑 = √
1

𝑛−1
∑ (𝑓𝑖 − 𝑓̅ )

2
 𝑛

𝑖=1                                                                                   (24) 



Where n indicates the number of times, each algorithm tried.  𝑓𝑖 is the fitness value of the 𝑖𝑡ℎ run, and 𝑓 ̅is 

the average of all the fitness values gotten. SD must be minimized to get to a better result.  

Under Kapur's function, respectively, Fig. 3, and 4 show the average of SD and CPU time values 

obtained by each algorithm within 20 independent runs. As a result of inspecting those figures, 

HSMA_WOA could reach less SD and CPU time values, while Lshade, and HHA achieve the worst value 

for both Std and CPU time. 

           
                            Fig. 3 the Std values obtained under Kapure’s function                              Fig. 4 Comparison of the CPU time values obtained under Kapur                               

    

7.2 Fitness values under Kapur. 

Regarding the fitness values of Kapur's method, Table 3 shows the fitness values obtained by the 

compared algorithm and the proposed under this function. After calculating the average of the fitness values 

within 20 runs on each threshold level for each image, those values are recorded in Table 3 and displayed 

graphically in Fig.5. Based on this table, the proposed could outperform the others in most cases. This is 

confirmed based on Fig.5 that shows the superiority of the proposed algorithm with a value of 29.29 

compared with the others with a difference of at least 0.0418. 

 

Table 3:  Fitness values of each algorithm under Kapur's entropy. 

img T HSMA_WOA SMA FFA 

[39] 

WOA  

[33] 

SSA  

[60] 

HHA 

[38] 

LShade 

[59] 

Img HSMA_WOA SMA FFA 

[39] 

WOA  

[33] 

SSA 

 [60] 

HHA 

[38] 

LShade 

[59] 

X1 2 12.2074 12.2074 12.2074 12.2068 12.2074 12.2074 12.1556 X7  12.2964 12.2967 12.2967 12.2964 12.2967 12.2967 12.2777 
3 15.4120 15.4120 15.4120 15.4119 15.4120 15.4119 15.2913 15.5549 15.5549 15.5548 15.5548 15.5548 15.5547 15.3888 

4 18.3112 18.3112 18.3108 18.3102 18.3104 18.3108 18.0011 18.4683 18.4683 18.4681 18.4682 18.4681 18.4680 18.1718 

5 20.9774 20.9776 20.9758 20.9751 20.9760 20.9753 20.5394 21.1420 21.1417 21.1395 21.1418 21.1398 21.1410 20.6861 

6 23.4434 23.4440 23.4375 23.4412 23.4358 23.4416 22.8031 23.6338 23.6324 23.6265 23.6337 23.6297 23.6326 22.9432 
7 25.7537 25.7343 25.7294 25.7547 25.7436 25.7337 24.9663 25.9929 25.9718 25.9499 25.9919 25.9322 25.9826 25.2158 

8 27.9823 27.9577 27.9280 27.9621 27.9293 27.9527 26.9708 28.3005 28.2498 28.1752 28.2776 28.1857 28.2527 27.2256 

9 30.1637 30.1407 30.0533 30.1534 30.0713 30.1281 29.1068 30.4908 30.4411 30.3546 30.4587 30.3330 30.4322 29.2097 
10 32.2340 32.2322 32.0841 32.2147 32.1798 32.1957 30.8905 32.6062 32.5833 32.5143 32.5549 32.5056 32.5387 31.1228 

15 41.5906 41.5320 41.3379 41.5832 41.4564 41.4961 39.3727 42.3377 42.3673 41.8330 42.1271 41.8258 41.8732 39.5835 

 20 50.1159 50.0046 49.7143 50.1298 49.9001 49.6968 46.7057  50.3917 50.4087 49.6449 50.1529 49.5730 49.7524 46.6173 

 30 63.8093 63.7036 63.2656 63.8746 63.4349 62.7237 58.4513  63.8513 63.2789 62.8727 62.7227 62.5030 62.6031 58.4957 
X2 2 12.6324 12.6324 12.6324 12.6324 12.6324 12.6324 12.6044 X8  12.3441 12.3441 12.3441 12.3441 12.3441 12.3441 12.3095 

3 15.7263 15.7263 15.7263 15.7263 15.7263 15.7263 15.6539 15.4573 15.4573 15.4573 15.4573 15.4573 15.4572 15.3512 

4 18.7055 18.7054 18.7052 18.7055 18.7053 18.7054 18.4603 18.1902 18.1884 18.1867 18.1887 18.1945 18.1959 18.0256 

5 21.4534 21.4532 21.4522 21.4533 21.4528 21.4531 21.0459 20.8900 20.8896 20.8809 20.8895 20.8880 20.8898 20.6162 
6 24.0311 24.0238 24.0237 24.0295 24.0248 24.0304 23.4316 23.4203 23.4146 23.4043 23.4177 23.4019 23.4168 23.0338 

7 26.4825 26.4711 26.4763 26.4821 26.4789 26.4805 25.5994 25.8917 25.8778 25.8747 25.8904 25.8771 25.8906 25.3007 

8 28.8380 28.8289 28.7895 28.8381 28.7971 28.8337 27.7372 28.2040 28.1926 28.1680 28.1957 28.1705 28.1858 27.4058 

9 31.0405 31.0292 31.0151 31.0395 31.0096 31.0283 29.5524 30.4411 30.4344 30.3963 30.4455 30.3813 30.4329 29.6020 
10 33.1868 33.1659 33.1504 33.1946 33.1522 33.1614 31.5542 32.6168 32.5619 32.4833 32.5955 32.4729 32.5696 31.5018 

15 42.6820 42.6037 42.5246 42.7080 42.5106 42.5746 38.9055 42.7217 42.5800 42.4650 42.6246 42.5328 42.5093 40.8442 

 20 50.7079 50.5412 50.4158 50.7806 50.2943 50.3530 45.7687  51.5077 51.3147 51.0380 51.2673 51.0484 51.0233 48.3724 
 30 63.8566 63.3631 63.0311 63.8308 63.0813 62.6600 56.8894  65.7863 65.4368 65.1388 65.3790 65.0701 64.6126 60.6688 
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X3 2 11.7581 11.7581 11.7581 11.7581 11.7581 11.7581 11.7534 X9  12.6276 12.6276 12.6276 12.6276 12.6276 12.6276 12.6022 

3 14.5988 14.5988 14.5988 14.5988 14.5988 14.5988 14.4816 15.8423 15.8423 15.8423 15.8423 15.8423 15.8423 15.7972 

4 17.1833 17.1832 17.1832 17.1832 17.1832 17.1833 16.9445 18.7937 18.7936 18.7936 18.7938 18.7936 18.7935 18.6185 
5 19.6124 19.6116 19.6108 19.6124 19.6109 19.6125 19.1511 21.5610 21.5605 21.5613 21.5602 21.5585 21.5634 21.3423 

6 21.9391 21.9349 21.9307 21.9388 21.9325 21.9388 21.0710 24.2487 24.2489 24.2449 24.2489 24.2438 24.2466 23.8325 

7 24.1795 24.1732 24.1435 24.1743 24.1512 24.1742 22.8515 26.7337 26.7297 26.7176 26.7325 26.7149 26.7305 26.1619 
8 26.2990 26.2891 26.2626 26.2988 26.2664 26.2935 24.6100 29.1067 29.1013 29.0893 29.1069 29.0719 29.1027 28.4645 

9 28.3243 28.3033 28.2610 28.3266 28.2817 28.3108 26.3513 31.4107 31.3829 31.3743 31.4094 31.3314 31.3819 30.3883 

10 30.2695 30.2522 30.1717 30.2758 30.1624 30.2327 27.9424 33.6113 33.5793 33.5479 33.5034 33.5391 33.5901 32.4441 

15 38.7253 38.7204 38.4560 38.6548 38.4627 38.5182 34.0568 43.6111 43.4979 43.3693 43.4066 43.3396 43.3413 41.2879 
 20 45.7534 45.8173 45.1861 45.3783 45.2480 45.2328 39.6107  52.1459 52.1104 51.6784 51.7949 51.6493 51.4513 48.8682 

 30 56.8804 57.0820 55.9473 55.9056 56.1606 56.0479 48.6062  66.1320 65.9175 65.2294 65.6912 65.7141 65.1745 61.3303 

X4 2 11.5969 11.5969 11.5969 11.5922 11.5969 11.5969 11.5018 X10 11.4659 11.4659 11.4659 11.4659 11.4659 11.4658 11.4416 

3 14.6869 14.6869 14.6869 14.6869 14.6869 14.6865 14.3767 14.4734 14.4734 14.4734 14.4734 14.4734 14.4734 14.3120 
4 17.5072 17.5072 17.5057 17.5072 17.5000 17.5021 17.0861 17.1998 17.1997 17.1993 17.1991 17.1994 17.1994 16.9438 

5 20.1209 20.1205 20.1129 20.1199 20.1137 20.1110 19.3430 19.7327 19.7314 19.7288 19.7322 19.7272 19.7314 19.1657 

6 22.5707 22.5680 22.5443 22.5601 22.5491 22.5594 21.6035 22.1103 22.1136 22.1041 22.1126 22.0954 22.1114 21.2619 

7 24.8598 24.8493 24.7909 24.8597 24.7693 24.8236 23.5827 24.3413 24.3347 24.3276 24.3410 24.3121 24.3337 23.2309 
8 27.0702 27.0339 26.9016 27.0394 26.8738 26.9829 25.4259 26.5355 26.5175 26.5121 26.5258 26.5101 26.5241 25.0055 

9 29.2080 29.2076 28.9102 29.1391 28.9810 29.1070 27.2155 28.6495 28.6020 28.5441 28.6429 28.5219 28.5987 26.8410 

10 31.2598 31.1961 30.9021 31.1877 30.8910 31.1434 29.0150 30.6022 30.5700 30.4296 30.5823 30.4392 30.5532 28.1181 
15 40.3413 40.3433 39.5598 40.1708 39.3364 40.0304 36.4513 39.3277 39.2510 38.8889 39.2983 38.9420 39.0566 34.8619 

 20 47.9266 47.8417 46.5941 47.6547 46.6598 47.2432 42.4565  46.6662 46.5212 46.0319 46.6636 46.0741 46.2364 40.8092 

 30 60.0793 59.6827 58.0592 59.6088 58.2804 59.1605 52.8618  57.9616 57.9755 57.1485 57.6431 56.8034 57.3010 50.4033 

X5  2 12.2716 12.2716 12.2716 12.2716 12.2716 12.2716 12.2343 X11 12.5867 12.5867 12.5867 12.5867 12.5867 12.5867 12.5640 
3 15.1753 15.1753 15.1753 15.1753 15.1753 15.1753 15.0662  15.8311 15.8311 15.8311 15.8310 15.8311 15.8311 15.7465 

4 17.9995 17.9995 17.9993 17.9995 17.9993 17.9991 17.7654  18.7378 18.7377 18.7376 18.7378 18.7375 18.7376 18.6008 

5 20.8227 20.8232 20.7797 20.8005 20.7691 20.8018 20.2735  21.4981 21.4977 21.4958 21.4977 21.4952 21.4969 21.2420 

6 23.3704 23.3589 23.3467 23.3463 23.3381 23.3406 22.6542  24.0897 24.0837 24.0810 24.0833 24.0753 24.0854 23.6556 
7 25.8073 25.8326 25.7707 25.7956 25.8197 25.7531 24.8665  26.5695 26.5703 26.5640 26.5760 26.5627 26.5638 26.0417 

8 28.1356 28.1180 28.0283 28.1002 28.0606 28.0664 26.9687  28.9554 28.9516 28.9416 28.9590 28.9469 28.9529 28.1990 

9 30.2882 30.2694 30.2412 30.2119 30.2515 30.1984 29.1365  31.2528 31.2362 31.1760 31.2486 31.1696 31.2182 30.4522 

10 32.5805 32.5036 32.4395 32.3911 32.4113 32.3871 31.1720  33.4313 33.4086 33.3633 33.4224 33.3296 33.4041 32.2970 
15 42.5845 42.5995 42.2694 42.2985 42.3155 42.2362 40.3625  43.2185 43.1243 43.0157 43.1955 43.0276 43.0623 41.0752 

 20 51.2666 51.2620 50.6443 50.8380 50.7128 50.6155 47.9260  51.9702 51.7279 51.4212 51.7075 51.3078 51.4473 48.6555 

 30 65.4349 65.0206 64.2166 64.8382 64.3390 64.2387 60.5143  65.8829 65.4744 64.8427 65.3291 64.8827 64.5217 61.0966 
X6 2 12.3680 12.3680 12.3680 12.3680 12.3680 12.3680 12.3459 X12 11.5270 11.5270 11.5270 11.5270 11.5270 11.5270 11.5051 

 3 15.5171 15.5171 15.5171 15.5171 15.5170 15.5170 15.4254  14.3421 14.3421 14.3421 14.3421 14.3421 14.3421 14.1520 

 4 18.3767 18.3767 18.3763 18.3766 18.3766 18.3766 18.1390  16.9039 16.9038 16.9039 16.9039 16.9038 16.9038 16.4324 

 5 21.0194 21.0192 21.0135 21.0170 21.0150 21.0207 20.6942  19.2474 19.2462 19.2425 19.2474 19.2436 19.2467 18.5003 
 6 23.5388 23.5188 23.5184 23.5308 23.5222 23.5305 22.9603  21.4496 21.4303 21.3734 21.4494 21.3800 21.4478 20.6131 

 7 26.2273 26.0760 26.0680 26.1715 26.0603 26.1610 25.3283  23.4149 23.4171 23.3540 23.4218 23.4021 23.4578 22.6905 

 8 28.7099 28.6659 28.6314 28.6177 28.5135 28.6417 27.6532  25.5494 25.5592 25.5187 25.5551 25.5211 25.5676 24.7982 

 9 31.1027 31.0934 30.8702 31.0039 30.9502 30.9094 29.9045  27.7060 27.7039 27.6170 27.7009 27.6496 27.6898 26.6235 
 10 33.3305 33.3115 33.2345 33.2451 33.1824 33.0647 31.8420  29.7960 29.7688 29.6837 29.7730 29.6457 29.7596 28.5756 

 15 43.2567 43.2632 43.0468 42.9601 42.8639 42.8860 41.0070  39.2299 39.2056 38.6952 39.0824 38.7402 38.8831 36.3898 

 20 51.8206 51.9327 51.5385 51.5309 51.4507 51.2959 48.2590  47.0948 46.9360 46.4421 46.9399 46.4491 46.6039 42.7844 
 30 66.0900 65.7362 64.7226 65.4600 64.9066 65.0200 61.3966  59.7040 59.4203 58.0159 59.4729 58.1772 58.5367 53.0049 

Bold value expresses the best outcome. 

 

 
Fig. 5 average fitness values obtained under Kapur's method 
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In this section, another metric called PSNR has been used to measure the segmented image's quality 

compared with the original image. PSNR determines the ratio between the square of the maximum grey 

level, 2552,  and the mean square error (MSE) between the original and separated one and it is calculated 

using as follows:  

PSNR = 10 log10 (
2552

MSE
)                                                                             (25) 

And 𝑀𝑆𝐸 is calculated as shown in the following equation:  

MSE =
∑ ∑ |A(i,j)−S(i,j)|N

j =1
M
i=1

M∗N
                                                                       (26) 

Where 𝐴(𝑖, 𝑗) is the grey level of the segmented image and 𝑆(𝑖, 𝑗) is the grey level of the row 𝑖 𝑡ℎ and 

column 𝑗𝑡ℎ  in the original image matrix. M, and N are the number of columns and rows within the image. 

PSNR must be maximized to get to better quality.  

Based on the segmented images under Kapure’s function, the average PSNR value within 20 runs 

is calculated and introduced in Table 4. By observing this table, it is obvious that HSMA_WOA could be 

superior in 59 cases and equal in 14 out of 144, while SMA could be the best for 26 cases and equal in 14 

out of 144. Generally, the proposed algorithms could be superior and equal in 104 out of 144.  As a result , 

both SMA and HSMA_WOA could reach better-segmented images in all the superior cases compared with 

the other algorithms. In order to illustrate the results in Table 4 graphically, Fig. 6 is given to show the 

average of the PSNR values obtained by each algorithm. Based on this figure, the proposed algorithms: 

SMA, HSMA_WOA is considered superior compared with the others and HSMA_WOA is superior in 

comparison with SMA. 
 

Table 4:  PSNR values under Kapur's entropy. 

img T HSMA_ 

WOA 

SMA FFA 

[39] 

WOA  

[33] 

SSA  

[60] 

HHA 

[38] 

LShade 

[59] 

Img HSMA_WOA SMA FFA 

[39] 

WOA  

[33] 

SSA 

 [60] 

HHA 

[38] 

LShade 

[59] 

X1 2 13.1162 13.1162 13.1143 13.1134 13.1162 13.1162 12.8150 X7  15.2050 15.3933 15.3933 15.2050 15.3933 15.3933 15.1889 

3 16.4252 16.4252 16.4272 16.4224 16.4260 16.4342 16.0049 17.2119 17.2119 17.2103 17.2126 17.2103 17.2138 16.6914 

4 18.9556 18.9487 18.9706 18.9472 18.9729 18.9282 18.0015 19.4480 19.4630 19.4441 19.4513 19.4407 19.4623 18.5221 

5 21.2097 21.2093 21.3252 21.2233 21.3038 21.2017 19.5347 21.4352 21.4649 21.3603 21.4409 21.3665 21.4431 20.4637 

6 22.8398 22.8121 22.9398 22.8181 22.9310 22.7924 20.3662 22.8084 22.7867 22.6449 22.8054 22.6897 22.7897 20.5910 

7 24.1734 23.8189 23.9626 24.2318 24.1870 23.9846 21.6186 23.1957 23.7250 23.3627 23.0896 23.3614 23.2624 21.9508 

8 24.2804 24.7267 25.0769 24.4745 25.0152 24.3947 22.4469 23.8709 23.9958 23.7704 23.9287 23.9326 23.7384 22.3479 

9 25.3263 25.2232 25.9481 25.2295 25.8470 25.0828 23.3580 24.5680 24.3410 24.2142 24.5100 24.3554 24.5018 22.9391 

10 25.9865 26.1360 26.8390 26.0330 26.5743 25.8618 24.3433 25.1472 25.0194 24.5543 24.9923 24.5985 24.9951 23.0372 

15 29.4277 29.4927 29.8138 29.4908 29.8449 29.2103 26.5681 27.1336 27.1160 26.4416 27.1190 26.4248 26.4378 25.0565 

 20 31.6407 31.5051 31.8526 31.5302 32.0161 30.8344 29.0766  28.3797 28.3409 27.8586 28.2522 27.3527 27.6881 26.5497 

 30 34.2147 34.7117 34.4426 34.2688 34.8958 33.4774 31.6066  29.5656 29.3375 29.1227 29.2851 28.9762 29.1881 28.4078 

X2 2 15.4339 15.4339 15.4339 15.4339 15.4339 15.4339 15.0664 X8  15.0584 15.0584 15.0584 15.0581 15.0584 15.0584 15.0231 

3 19.0614 19.0614 19.0598 19.0614 19.0598 19.0593 17.5684 18.5399 18.5397 18.5300 18.5398 18.5397 18.5384 18.3247 

4 19.5687 19.5676 19.5460 19.5845 19.5473 19.5785 19.0799 20.4752 20.4396 20.2559 20.3902 20.3021 20.3089 19.3735 

5 21.8944 21.9055 21.8064 21.9103 21.8351 21.8833 19.9896 21.7622 21.7326 21.4727 21.6882 21.3617 21.7624 20.7030 

6 23.3280 23.2037 23.1561 23.3193 23.1632 23.3404 21.1292 23.2417 23.0551 22.7673 23.1817 22.6722 23.1439 21.3987 

7 23.6048 23.7391 23.4373 23.6147 23.4716 23.6404 22.3326 23.8725 23.7568 23.6656 23.8724 23.7051 23.8228 22.1885 

8 25.2772 25.2649 24.7597 25.2939 24.8453 25.2088 22.7135 25.1533 25.1050 24.3448 24.9353 24.4041 24.8915 23.3818 

9 26.1459 26.0982 25.7633 26.2206 25.7351 26.0065 24.1776 26.0072 25.8164 25.1265 25.8631 25.1310 25.9092 24.3065 

10 26.8214 26.7884 26.3162 26.6867 26.3212 26.5252 24.6270 27.0580 26.6239 25.7109 26.8672 25.5503 26.6832 23.3187 

15 30.2230 30.2786 29.0026 30.3224 28.8439 29.7970 26.6702 28.4823 28.6101 27.4389 28.2749 27.9789 28.5384 26.9208 

 20 32.5178 32.2824 31.1105 32.6471 30.7657 31.6089 29.3500  31.0909 30.2209 29.5583 30.8247 29.2329 30.0101 28.1920 

 30 35.6553 35.7611 33.5503 35.7363 33.8251 34.0759 31.9949  34.4386 33.9666 32.9237 34.4272 32.7464 33.1187 31.0745 

X3 2 13.5597 13.5597 13.5597 13.5597 13.5597 13.5597 13.5856 X9  13.9264 13.9264 13.9264 13.9264 13.9264 13.9264 13.9408 
3 15.4668 15.4608 15.4653 15.4668 15.4659 15.4668 15.8627 17.4209 17.4217 17.4209 17.4209 17.4200 17.4217 17.0266 
4 18.6812 18.6322 18.7060 18.6334 18.7064 18.6933 17.7343 19.7395 19.7373 19.7204 19.7387 19.7242 19.7436 18.6316 
5 20.5014 20.5286 20.9156 20.4033 20.8693 20.3339 18.6695 20.6141 20.6085 20.4564 20.5715 20.5183 20.5629 20.1364 



6 23.7724 23.5477 23.9135 23.7670 23.7958 23.7620 20.6607 22.2588 22.2602 22.2333 22.2654 22.2294 22.2429 21.0136 

7 24.5192 24.4967 25.1493 24.5074 25.0146 24.4681 21.0312 23.6050 23.5830 23.3621 23.5882 23.3540 23.5769 22.2219 

8 26.3355 25.9230 26.5196 26.2487 26.6897 26.1332 22.3935 24.4299 24.5225 24.2443 24.4996 24.1444 24.5016 22.8170 

9 27.5838 27.2210 27.7576 27.5861 27.8061 27.5820 22.8420 25.2991 25.2872 25.0545 25.2862 24.9055 25.1897 23.3581 

10 28.3308 28.2626 28.6363 28.2831 28.7330 28.2442 24.4468 26.1767 26.2434 25.8457 26.1998 25.8211 26.1591 23.7645 

15 30.9231 31.3151 31.9472 30.5238 31.9835 30.8741 27.0095 29.0098 29.2177 28.8906 28.6140 28.6985 28.2695 26.2449 

 20 32.7470 33.3867 34.4622 32.3973 34.4528 32.4652 28.4250  31.4450 31.3282 30.6876 30.8601 30.6150 30.0195 28.5902 

 30 36.0843 36.9800 37.9711 35.5183 37.9570 35.8354 31.7538  34.7220 34.5881 33.3637 34.1399 33.7642 33.4018 31.5622 

X4 2 14.0817 14.0817 14.0817 14.1187 14.0817 14.0817 13.9607 X10 16.0138 16.0138 16.0138 16.0219 16.0138 16.0299 15.4414 
3 18.3927 18.3927 18.3927 18.3927 18.3927 18.3874 16.5780 19.4769 19.4769 19.4769 19.4801 19.4774 19.4774 18.4177 
4 20.8446 20.8528 20.8181 20.8524 20.7754 20.8269 18.6470 21.6089 21.6270 21.6471 21.6303 21.6809 21.6223 20.2690 
5 22.7884 22.7420 22.4952 22.7890 22.5426 22.7888 20.7013 23.5025 23.4975 23.4472 23.5018 23.4589 23.4938 20.9350 
6 24.3006 24.3038 24.0282 24.2793 24.0370 24.2615 21.2844 24.9480 24.9837 24.7865 25.0199 24.7514 24.9710 22.1587 
7 25.3571 25.4504 25.2328 25.4069 25.0215 25.1716 21.9359 25.8710 25.9455 25.5210 25.8056 25.3843 25.8204 22.9135 
8 26.0496 26.1674 25.8153 26.0798 25.6611 26.0980 22.6437 26.5926 26.7707 26.4238 26.5759 26.5108 26.4779 23.9432 
9 26.6098 26.5313 26.1939 26.1744 26.4447 26.6716 23.5580 27.7314 27.8226 27.5119 27.7398 27.3700 27.5431 24.5070 
10 27.3563 27.2461 26.8866 27.3559 26.8032 27.2050 24.3201 28.8519 28.7088 28.0721 28.8094 28.0597 28.5790 25.1122 
15 30.2457 29.8135 29.1392 30.2096 29.0109 30.1001 26.9848 31.6919 31.5349 31.0770 31.6099 31.2207 30.8728 26.8402 

 20 32.2000 31.5708 30.9785 31.9510 30.2745 31.4728 28.1634  34.3762 33.6492 33.3989 34.0633 33.4870 33.1391 29.2939 
 30 34.2907 33.3357 32.9391 33.8974 32.9951 33.6508 30.8160  36.6847 36.4906 36.1726 36.2996 35.5768 35.7522 32.5480 
X5  2 16.8558 16.8558 16.8558 16.8558 16.8558 16.8558 16.5945 X11 14.2717 14.2717 14.2717 14.2717 14.2717 14.2717 14.2243 

3 19.9997 19.9997 19.9966 19.9987 19.9967 19.9975 18.5084  17.2552 17.2552 17.2540 17.2551 17.2540 17.2551 17.1190 

4 20.4189 20.3982 20.3662 20.4464 20.3874 20.4801 18.9831  19.9315 19.9244 19.9145 19.9315 19.9040 19.9273 19.1704 

5 20.6283 20.6116 20.7390 20.6807 20.8800 20.4794 20.1040  20.9527 20.9345 20.8917 20.9406 20.8786 20.9346 20.0765 

6 22.5190 22.2922 22.4222 22.4383 22.2021 22.3436 21.1247  22.2043 22.1748 22.0959 22.1603 22.0270 22.2015 20.9618 

7 23.4453 23.2175 22.9219 23.2131 22.8777 23.1368 21.8744  23.2544 23.2099 23.0703 23.2271 23.0977 23.2535 22.1135 

8 24.6961 24.5548 23.7161 24.6919 24.0570 24.2918 22.3592  24.2597 24.3125 24.0775 24.2580 24.1121 24.2203 22.7172 

9 25.2118 25.2193 24.3273 25.3126 24.2135 24.8847 22.8288  25.2773 25.2904 24.8579 25.2501 24.8420 25.0545 23.6391 

10 24.9566 25.0411 24.3275 24.8350 24.4260 24.9272 23.8191  26.1130 26.1173 25.7950 26.0308 25.6674 25.9849 24.1108 

15 27.5008 27.7911 27.1203 27.2337 26.8370 26.9085 25.6230  28.7869 28.7463 28.2373 28.6988 28.4623 28.5285 26.3509 

 20 29.1286 29.1651 29.0824 28.6639 29.0095 28.4533 27.2341  30.8302 31.4031 30.6196 30.3909 30.5756 30.2222 28.2633 

 30 30.7165 30.6026 30.5441 30.2876 30.7036 30.0646 29.4905  33.5412 33.3217 32.9252 32.9138 32.9945 32.0790 30.4614 

X6 2 14.5488 14.5488 14.5488 14.5488 14.5488 14.5488 14.5558 X12 11.7366 11.7366 11.7366 11.7366 11.7366 11.7366 12.4388 

 3 17.8770 17.8770 17.8753 17.8770 17.8671 17.8702 17.5791  14.7809 14.7809 14.7815 14.7797 14.7809 14.7782 11.1844 

 4 19.8781 19.8781 19.8623 19.8749 19.8699 19.8702 18.9017  17.1519 17.0353 17.1667 17.1374 17.1667 17.1084 17.1003 

 5 21.2166 21.2187 21.0808 21.1654 21.1375 21.2583 19.5376  18.0776 18.1041 18.4005 18.0776 18.3146 18.0667 18.0707 

 6 21.5448 21.9494 21.8046 21.4509 21.5674 21.7895 20.0646  19.4659 19.6111 20.7148 19.4475 20.6380 19.4496 19.4717 

 7 21.2614 21.9631 21.7077 21.1139 21.6558 20.9267 19.9842  24.1208 23.2142 24.0832 23.4850 23.8491 22.3931 22.3033 

 8 22.1957 22.2642 21.7215 21.9257 22.1219 21.7240 21.3627  24.6843 25.7926 25.9087 25.6349 25.9052 25.8755 23.6704 

 9 22.8453 22.7665 22.4835 22.6769 22.5525 22.5510 21.4795  26.8606 26.6221 26.6835 26.8531 26.7703 26.7230 24.2734 

 10 23.6546 23.5141 23.2509 23.4438 22.8786 22.9563 22.0010  27.5479 27.5171 27.5659 27.7848 27.3789 27.8282 24.9804 

 15 25.1382 25.1011 24.8791 24.9874 24.3782 24.7988 23.9355  30.6922 30.5015 30.4197 30.4398 30.6144 29.7160 26.9165 

 20 25.9393 25.9809 25.6561 25.7365 25.6036 25.5312 24.9332  33.0374 33.0790 32.8630 32.9186 32.8577 32.3296 29.6352 

 30 26.6336 26.6257 26.3605 26.5272 26.4522 26.3838 25.9521  36.5517 36.0368 35.5624 36.0258 36.1598 34.9519 31.0913 

The bold value indicates the best value.  

  

 
Fig.6 Average PSNR values under Kapure’s entropy 
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Unfortunately, PSNR calculates only the ratio of the error between the segmented and the source 

image without taking into consideration the structure of the image. Therefore, SSIM [61] is proposed to 

measure the similarity, contrast distortion and brightness between the original and the segmented one using 

the following formula:  

SSIM(O, S) =
(2μoμs+a)(2σos+b)

(μo
2 +μs

2+a)(σo
2+σs

2+b)
                                                      (27) 

Where 𝜇𝑜 is the average intensities of the original image, while 𝜇𝑠 indicates the average intensities of the 

segmented image. 𝜎𝑜,  𝜎𝑠  are the SD of the original and segmented images, respectively. σos  are the 

covariance between the two images. And 𝑎, 𝑏 is equal to 0.001 and 0.003, respectively. SSIM must also be 

maximized to get better results. 

 

In order to inspect the results under using Kapur's entropy as a fitness function, the average SSIM 
values obtained within 20 runs under Kapur's are calculated and given in Table 5. This table shows that 

HSMA_WOA could get to the best in 57 cases and equal in 24 while its performance on the other cases is 
converged with the other algorithms. Meanwhile, SMA could outperform in 24 and equal in 22. Fig.7 
shows the superiority of HSMA_WOA in comparison with SMA that is superior to the others. 

 
 

Table 5:  SSIM values under Kapure method. 
img T HSMA_WOA SMA FFA 

[39] 

WOA  

[33] 

SSA  

[60] 

HHA 

[38] 

LShade 

[59] 

Img HSMA_WOA SMA FFA 

[39] 

WOA  

[33] 

SSA 

 [60] 

HHA 

[38] 

LShade 

[59] 

X1 2 0.7439 0.7439 0.7439 0.7441 0.7439 0.7439 0.7250 X7  0.8638 0.8727 0.8727 0.8638 0.8727 0.8727 0.8637 
3 0.8745 0.8745 0.8746 0.8746 0.8746 0.8748 0.8577 0.9038 0.9038 0.9036 0.9038 0.9036 0.9036 0.8833 
4 0.9243 0.9246 0.9248 0.9243 0.9246 0.9240 0.8993 0.9368 0.9370 0.9367 0.9368 0.9367 0.9370 0.9114 
5 0.9524 0.9524 0.9537 0.9525 0.9535 0.9523 0.9271 0.9576 0.9578 0.9570 0.9577 0.9571 0.9577 0.9427 

6 0.9654 0.9651 0.9669 0.9653 0.9667 0.9650 0.9364 0.9659 0.9658 0.9650 0.9660 0.9652 0.9657 0.9387 
7 0.9741 0.9715 0.9730 0.9744 0.9714 0.9727 0.9498 0.9688 0.9706 0.9686 0.9685 0.9680 0.9689 0.9559 
8 0.9746 0.9763 0.9782 0.9751 0.9781 0.9747 0.9570 0.9722 0.9721 0.9701 0.9723 0.9709 0.9710 0.9571 
9 0.9791 0.9782 0.9818 0.9786 0.9815 0.9778 0.9658 0.9745 0.9733 0.9715 0.9744 0.9722 0.9740 0.9598 

10 0.9816 0.9822 0.9849 0.9818 0.9840 0.9808 0.9720 0.9763 0.9759 0.9733 0.9758 0.9733 0.9755 0.9607 
15 0.9910 0.9912 0.9916 0.9912 0.9918 0.9904 0.9825 0.9812 0.9811 0.9785 0.9812 0.9781 0.9785 0.9712 

 20 0.9939 0.9937 0.9940 0.9938 0.9943 0.9926 0.9893  0.9833 0.9833 0.9820 0.9829 0.9806 0.9814 0.9776 
 30 0.9956 0.9959 0.9957 0.9956 0.9960 0.9949 0.9930  0.9854 0.9848 0.9841 0.9848 0.9838 0.9845 0.9828 
X2 2 0.8255 0.8255 0.8255 0.8255 0.8255 0.8255 0.7973 X8  0.7400 0.7400 0.7400 0.7400 0.7401 0.7400 0.7498 

3 0.9162 0.9162 0.9161 0.9162 0.9161 0.9161 0.8683 0.9058 0.9058 0.9058 0.9058 0.9058 0.9060 0.8904 
4 0.9238 0.9238 0.9234 0.9240 0.9235 0.9239 0.8953 0.9329 0.9328 0.9304 0.9321 0.9353 0.9364 0.9099 

5 0.9524 0.9525 0.9512 0.9526 0.9516 0.9522 0.9124 0.9533 0.9529 0.9482 0.9522 0.9469 0.9532 0.9299 
6 0.9628 0.9621 0.9613 0.9627 0.9613 0.9620 0.9231 0.9656 0.9641 0.9613 0.9653 0.9604 0.9649 0.9366 
7 0.9642 0.9655 0.9630 0.9642 0.9633 0.9645 0.8546 0.9706 0.9695 0.9686 0.9705 0.9690 0.9705 0.9449 
8 0.9767 0.9768 0.9725 0.9770 0.9734 0.9765 0.9415 0.9775 0.9770 0.9721 0.9763 0.9727 0.9759 0.9579 

9 0.9808 0.9805 0.9786 0.9811 0.9781 0.9801 0.9608 0.9811 0.9802 0.9763 0.9807 0.9761 0.9806 0.9635 
10 0.9833 0.9831 0.9806 0.9827 0.9807 0.9821 0.8743 0.9845 0.9829 0.9788 0.9839 0.9777 0.9833 0.9563 
15 0.9915 0.9912 0.9877 0.9912 0.9874 0.9902 0.9722 0.9884 0.9885 0.9835 0.9877 0.9857 0.9875 0.9787 

 20 0.9943 0.9937 0.9914 0.9944 0.9901 0.9927 0.9851  0.9927 0.9909 0.9882 0.9923 0.9871 0.9901 0.9825 
 30 0.9965 0.9963 0.9935 0.9964 0.9936 0.9948 0.9906  0.9957 0.9951 0.9934 0.9957 0.9927 0.9940 0.9898 
X3 2 0.7356 0.7356 0.7356 0.7356 0.7356 0.7356 0.5969 X9  0.8256 0.8256 0.8256 0.8256 0.8256 0.8256 0.8213 

3 0.8023 0.8020 0.8026 0.8023 0.8022 0.8023 0.5878 0.9151 0.9151 0.9151 0.9151 0.9151 0.9151 0.9090 
4 0.8804 0.8791 0.8802 0.8790 0.8810 0.8802 0.7837 0.9518 0.9518 0.9516 0.9518 0.9516 0.9518 0.9344 

5 0.9120 0.9127 0.9199 0.9102 0.9189 0.9090 0.6624 0.9590 0.9589 0.9577 0.9588 0.9581 0.9587 0.9489 
6 0.9596 0.9569 0.9608 0.9596 0.9595 0.9595 0.9099 0.9724 0.9724 0.9719 0.9724 0.9719 0.9721 0.9557 
7 0.9648 0.9643 0.9700 0.9649 0.9689 0.9641 0.9148 0.9782 0.9782 0.9772 0.9782 0.9771 0.9781 0.9667 
8 0.9776 0.9740 0.9802 0.9768 0.9799 0.9758 0.9348 0.9819 0.9824 0.9809 0.9822 0.9803 0.9823 0.9695 

9 0.9838 0.9809 0.9842 0.9838 0.9844 0.9836 0.9398 0.9855 0.9850 0.9837 0.9854 0.9831 0.9847 0.9728 
10 0.9859 0.9852 0.9867 0.9856 0.9869 0.9853 0.9572 0.9878 0.9879 0.9861 0.9878 0.9860 0.9876 0.9726 
15 0.9908 0.9912 0.9926 0.9899 0.9927 0.9904 0.9753 0.9928 0.9930 0.9923 0.9919 0.9918 0.9910 0.9833 

 20 0.9931 0.9941 0.9954 0.9927 0.9954 0.9925 0.9811  0.9952 0.9952 0.9942 0.9945 0.9938 0.9932 0.9899 
 30 0.9962 0.9969 0.9973 0.9957 0.9974 0.9958 0.9903  0.9971 0.9969 0.9959 0.9967 0.9963 0.9961 0.9939 
X4 2 0.7787 0.7787 0.7787 0.7764 0.7787 0.7787 0.5612 X10 0.8216 0.8216 0.8216 0.8217 0.8216 0.8217 0.7915 



3 0.8813 0.8813 0.8813 0.8813 0.8813 0.8813 0.8058 0.9115 0.9115 0.9115 0.9115 0.9115 0.9115 0.8726 

4 0.9368 0.9369 0.9368 0.9369 0.9359 0.9361 0.8656 0.9411 0.9414 0.9414 0.9417 0.9418 0.9413 0.9071 
5 0.9542 0.9539 0.9518 0.9542 0.9522 0.9542 0.9091 0.9603 0.9603 0.9595 0.9603 0.9595 0.9602 0.9130 
6 0.9662 0.9662 0.9634 0.9661 0.9637 0.9657 0.9155 0.9705 0.9707 0.9693 0.9710 0.9691 0.9705 0.9291 
7 0.9725 0.9727 0.9706 0.9726 0.9691 0.9703 0.9276 0.9757 0.9761 0.9739 0.9754 0.9732 0.9753 0.9345 

8 0.9756 0.9758 0.9731 0.9755 0.9720 0.9748 0.9368 0.9796 0.9803 0.9785 0.9799 0.9788 0.9789 0.9524 
9 0.9781 0.9773 0.9747 0.9753 0.9758 0.9771 0.9468 0.9839 0.9842 0.9827 0.9839 0.9820 0.9828 0.9544 
10 0.9804 0.9800 0.9771 0.9800 0.9773 0.9788 0.9523 0.9876 0.9870 0.9842 0.9874 0.9845 0.9864 0.9621 
15 0.9874 0.9864 0.9836 0.9872 0.9815 0.9865 0.9675 0.9925 0.9922 0.9910 0.9923 0.9913 0.9903 0.9685 

 20 0.9903 0.9892 0.9875 0.9896 0.9845 0.9885 0.9735  0.9953 0.9944 0.9934 0.9950 0.9939 0.9935 0.9829 
 30 0.9922 0.9909 0.9899 0.9918 0.9898 0.9912 0.9849  0.9961 0.9961 0.9956 0.9961 0.9942 0.9954 0.9909 
X5  2 0.8627 0.8627 0.8627 0.8627 0.8627 0.8627 0.8491 X11 0.8247 0.8247 0.8247 0.8247 0.8247 0.8247 0.8201 

3 0.9311 0.9311 0.9311 0.9311 0.9311 0.9311 0.8950  0.8994 0.8994 0.8995 0.8994 0.8994 0.8994 0.8929 
4 0.9368 0.9366 0.9363 0.9370 0.9363 0.9374 0.7296  0.9381 0.9379 0.9377 0.9381 0.9375 0.9380 0.9237 
5 0.9404 0.9402 0.9403 0.9410 0.9417 0.9368 0.8291  0.9542 0.9539 0.9533 0.9539 0.9532 0.9538 0.9362 
6 0.9589 0.9565 0.9575 0.9581 0.9548 0.9569 0.9327  0.9638 0.9635 0.9631 0.9636 0.9628 0.9636 0.9444 

7 0.9652 0.9636 0.9611 0.9635 0.9600 0.9617 0.9418  0.9708 0.9706 0.9694 0.9708 0.9697 0.9707 0.9572 
8 0.9723 0.9713 0.9657 0.9719 0.9678 0.9691 0.9481  0.9766 0.9764 0.9748 0.9763 0.9751 0.9764 0.9613 
9 0.9737 0.9740 0.9687 0.9739 0.9682 0.9714 0.7643  0.9809 0.9808 0.9781 0.9808 0.9777 0.9798 0.9669 
10 0.9739 0.9733 0.9699 0.9712 0.9684 0.9713 0.9614  0.9834 0.9834 0.9817 0.9831 0.9811 0.9828 0.9700 

15 0.9815 0.9822 0.9798 0.9797 0.9788 0.9785 0.9708  0.9906 0.9897 0.9875 0.9905 0.9877 0.9893 0.9802 
 20 0.9849 0.9850 0.9847 0.9835 0.9845 0.9828 0.9772  0.9931 0.9936 0.9921 0.9923 0.9916 0.9916 0.9860 
 30 0.9872 0.9868 0.9866 0.9863 0.9870 0.9856 0.9841  0.9951 0.9949 0.9941 0.9944 0.9941 0.9932 0.9900 
X6 2 0.7549 0.7549 0.7549 0.7549 0.7549 0.7549 0.7461 X12 0.6720 0.6720 0.6720 0.6720 0.6720 0.6720 0.3302 
 3 0.8863 0.8863 0.8863 0.8863 0.8862 0.8863 0.8712  0.7837 0.7837 0.7837 0.7837 0.7837 0.7837 0.4418 
 4 0.9131 0.9131 0.9129 0.9131 0.9130 0.9131 0.8925  0.8514 0.8482 0.8518 0.8510 0.8518 0.8502 0.7148 
 5 0.9281 0.9282 0.9263 0.9275 0.9269 0.9288 0.8965  0.8710 0.8713 0.8777 0.8710 0.8757 0.8705 0.8963 
 6 0.9318 0.9354 0.9333 0.9305 0.9302 0.9343 0.9061  0.8975 0.8994 0.9190 0.8972 0.9180 0.8972 0.9418 
 7 0.9303 0.9359 0.9320 0.9282 0.9318 0.9251 0.9006  0.9661 0.9524 0.9708 0.9575 0.9627 0.9423 0.8765 
 8 0.9399 0.9397 0.9323 0.9357 0.9357 0.9331 0.9260  0.9688 0.9824 0.9837 0.9804 0.9837 0.9828 0.9672 
 9 0.9441 0.9429 0.9370 0.9422 0.9394 0.9395 0.9219  0.9864 0.9853 0.9863 0.9864 0.9864 0.9858 0.9724 
 10 0.9493 0.9482 0.9454 0.9467 0.9420 0.9425 0.9311  0.9881 0.9879 0.9886 0.9893 0.9882 0.9894 0.9758 
 15 0.9560 0.9554 0.9538 0.9547 0.9481 0.9532 0.9462  0.9939 0.9935 0.9934 0.9936 0.9936 0.9920 0.9824 
 20 0.9587 0.9588 0.9566 0.9575 0.9566 0.9564 0.9523  0.9959 0.9960 0.9957 0.9957 0.9956 0.9950 0.9903 
 30 0.9607 0.9604 0.9589 0.9602 0.9590 0.9594 0.9571  0.9975 0.9972 0.9968 0.9972 0.9971 0.9964 0.9918 

Bold value indicates the best value.  

  

 
Fig.7 Average SSIM values obtained under Kapure’s entropy 

 
7.5 Universal Quality Index (UQI) 

UQI [62] is an indicator similar to SSIM in measuring the quality of the segmented image based on 

the similarity structure between the two images rather than the error rate and mathematically formulated as 

in Eq. 24. 
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where 𝑂  refers to the original image,  𝑆 is the segmented image,  𝜇𝑜  are the mean intensities of the original 

image, 𝜇𝑠 are the mean intensities of the and segmented image. 𝜎𝑜 and 𝜎𝑠 are the standard deviations for both the 

source and predicted image; σos is the covariance between the separated and source image. A higher value of UQI 

indicates better results. 

After executing each algorithm, 20 runs and calculated the average UQI within them obtained by each one 

under Kapure’s entropy, it is introduced in Table 5. By observing outcomes in this table, we notify that 

HSMA_WOA could overcome the others in 58 cases and equal in 20 others. In the same context, SMA 

could achieve the best in 18 and equal in 19. Specifically, the proposed algorithms could be superior and 

equal in 101 out of 144 test cases. Based on that, the proposed algorithms are competitive with others for 

generating a better-segmented image. In order to illustrate the data in Table 6, Fig.8 is taken to show the 

average UQI obtained by the algorithms within 20 runs and all the test images and threshold levels.  This 

figure shows the superiority of the comparison of the proposed algorithms with the others under Kapur's 

method. 

Table 6:  UQI values under Kapur's entropy. 
img T HSMA_WOA SMA FFA 

[39] 
WOA  
[33] 

SSA  
[60] 

HHA 
[38] 

LShade 
[59] 

Img HSMA_WOA SMA FFA 
[39] 

WOA  
[33] 

SSA 
 [60] 

HHA 
[38] 

LShade 
[59] 

X1 2 0.7479 0.7479 0.7478 0.7477 0.7479 0.7479 0.7262 X7  0.8641 0.8729 0.8729 0.8641 0.8729 0.8729 0.8647 
3 0.8760 0.8760 0.8761 0.8760 0.8760 0.8764 0.8590 0.9042 0.9042 0.9042 0.9042 0.9042 0.9042 0.8844 
4 0.9260 0.9259 0.9263 0.9258 0.9264 0.9255 0.9004 0.9380 0.9383 0.9379 0.9380 0.9379 0.9383 0.9126 
5 0.9538 0.9537 0.9553 0.9539 0.9550 0.9536 0.9285 0.9590 0.9593 0.9582 0.9590 0.9583 0.9590 0.9438 
6 0.9671 0.9668 0.9681 0.9669 0.9661 0.9666 0.9378 0.9673 0.9672 0.9662 0.9675 0.9665 0.9671 0.9398 
7 0.9752 0.9727 0.9742 0.9755 0.9755 0.9738 0.9512 0.9700 0.9718 0.9698 0.9697 0.9692 0.9701 0.9571 
8 0.9758 0.9777 0.9796 0.9765 0.9794 0.9760 0.9583 0.9734 0.9732 0.9713 0.9734 0.9721 0.9722 0.9583 
9 0.9804 0.9796 0.9831 0.9800 0.9827 0.9792 0.9670 0.9757 0.9745 0.9727 0.9756 0.9734 0.9752 0.9610 
10 0.9830 0.9836 0.9862 0.9832 0.9853 0.9821 0.9734 0.9776 0.9771 0.9745 0.9769 0.9745 0.9767 0.9619 
15 0.9925 0.9926 0.9931 0.9926 0.9933 0.9918 0.9838 0.9825 0.9824 0.9797 0.9824 0.9793 0.9798 0.9723 

 20 0.9954 0.9952 0.9955 0.9953 0.9958 0.9941 0.9908  0.9845 0.9845 0.9832 0.9842 0.9818 0.9827 0.9788 
 30 0.9971 0.9974 0.9972 0.9971 0.9975 0.9964 0.9944  0.9867 0.9861 0.9854 0.9861 0.9850 0.9858 0.9841 
X2 2 0.8263 0.8263 0.8263 0.8263 0.8263 0.8263 0.7989 X8  0.7406 0.7406 0.7406 0.7406 0.7406 0.7406 0.7506 

3 0.9181 0.9181 0.9180 0.9181 0.9180 0.9180 0.8696 0.9064 0.9063 0.9065 0.9064 0.9063 0.9066 0.8912 
4 0.9248 0.9248 0.9244 0.9251 0.9244 0.9250 0.8966 0.9338 0.9337 0.9312 0.9329 0.9361 0.9372 0.9108 
5 0.9532 0.9533 0.9524 0.9534 0.9527 0.9531 0.9137 0.9541 0.9537 0.9491 0.9529 0.9478 0.9543 0.9308 
6 0.9639 0.9631 0.9627 0.9639 0.9627 0.9640 0.9243 0.9666 0.9650 0.9622 0.9662 0.9614 0.9659 0.9375 
7 0.9653 0.9666 0.9640 0.9654 0.9643 0.9656 0.9438 0.9713 0.9704 0.9695 0.9714 0.9699 0.9714 0.9457 
8 0.9781 0.9779 0.9737 0.9782 0.9746 0.9778 0.9427 0.9783 0.9779 0.9730 0.9771 0.9735 0.9767 0.9588 
9 0.9819 0.9815 0.9798 0.9822 0.9792 0.9812 0.9618 0.9820 0.9811 0.9772 0.9815 0.9770 0.9815 0.9643 
10 0.9845 0.9842 0.9817 0.9840 0.9818 0.9831 0.9647 0.9854 0.9838 0.9797 0.9848 0.9786 0.9841 0.9572 
15 0.9924 0.9923 0.9887 0.9922 0.9884 0.9913 0.9732 0.9893 0.9893 0.9844 0.9885 0.9865 0.9884 0.9796 

 20 0.9952 0.9947 0.9924 0.9954 0.9912 0.9936 0.9861  0.9935 0.9918 0.9890 0.9932 0.9880 0.9910 0.9834 
 30 0.9975 0.9973 0.9945 0.9976 0.9946 0.9958 0.9916  0.9966 0.9959 0.9943 0.9965 0.9935 0.9949 0.9907 
X3 2 0.7345 0.7345 0.7345 0.7345 0.7345 0.7345 0.7353 X9  0.8269 0.8269 0.8269 0.8269 0.8269 0.8269 0.8227 

3 0.8029 0.8027 0.8032 0.8029 0.8029 0.8029 0.8111 0.9160 0.9160 0.9160 0.9160 0.9160 0.9160 0.9103 
4 0.8801 0.8790 0.8806 0.8790 0.8806 0.8804 0.8546 0.9528 0.9527 0.9525 0.9527 0.9525 0.9527 0.9358 
5 0.9125 0.9130 0.9202 0.9106 0.9193 0.9093 0.8676 0.9608 0.9607 0.9593 0.9605 0.9598 0.9604 0.9503 
6 0.9605 0.9576 0.9604 0.9605 0.9600 0.9603 0.9105 0.9732 0.9733 0.9730 0.9733 0.9729 0.9731 0.9569 
7 0.9653 0.9649 0.9706 0.9654 0.9695 0.9646 0.9153 0.9795 0.9794 0.9783 0.9794 0.9781 0.9794 0.9679 
8 0.9783 0.9747 0.9809 0.9775 0.9806 0.9765 0.9354 0.9833 0.9836 0.9821 0.9835 0.9815 0.9835 0.9706 
9 0.9849 0.9816 0.9849 0.9844 0.9851 0.9843 0.9404 0.9864 0.9861 0.9848 0.9864 0.9841 0.9857 0.9739 
10 0.9867 0.9860 0.9874 0.9863 0.9877 0.9861 0.9579 0.9888 0.9890 0.9871 0.9889 0.9871 0.9887 0.9738 
15 0.9916 0.9921 0.9935 0.9907 0.9936 0.9912 0.9760 0.9939 0.9941 0.9934 0.9929 0.9929 0.9921 0.9844 

 20 0.9940 0.9950 0.9964 0.9936 0.9963 0.9934 0.9819  0.9963 0.9962 0.9952 0.9955 0.9949 0.9942 0.9909 
 30 0.9971 0.9978 0.9983 0.9967 0.9983 0.9968 0.9912  0.9981 0.9979 0.9970 0.9977 0.9973 0.9971 0.9949 
X4 2 0.7793 0.7793 0.7793 0.7770 0.7793 0.7793 0.7374 X10 0.8214 0.8214 0.8214 0.8216 0.8214 0.8217 0.7919 

3 0.8818 0.8818 0.8818 0.8818 0.8818 0.8819 0.8067 0.9120 0.9120 0.9120 0.9121 0.9120 0.9120 0.8731 
4 0.9376 0.9377 0.9376 0.9377 0.9367 0.9369 0.8665 0.9419 0.9422 0.9422 0.9425 0.9426 0.9421 0.9078 
5 0.9552 0.9548 0.9527 0.9551 0.9531 0.9551 0.9100 0.9610 0.9610 0.9602 0.9611 0.9602 0.9610 0.9137 
6 0.9670 0.9670 0.9643 0.9668 0.9646 0.9665 0.9163 0.9714 0.9715 0.9701 0.9719 0.9699 0.9714 0.9298 
7 0.9733 0.9735 0.9714 0.9734 0.9700 0.9712 0.9284 0.9766 0.9769 0.9748 0.9763 0.9741 0.9762 0.9352 
8 0.9764 0.9767 0.9740 0.9764 0.9729 0.9757 0.9377 0.9805 0.9812 0.9794 0.9808 0.9797 0.9798 0.9533 
9 0.9789 0.9782 0.9756 0.9762 0.9767 0.9780 0.9477 0.9849 0.9852 0.9836 0.9849 0.9829 0.9837 0.9552 



10 0.9813 0.9808 0.9780 0.9809 0.9782 0.9797 0.9532 0.9886 0.9879 0.9852 0.9884 0.9854 0.9873 0.9629 
15 0.9883 0.9873 0.9845 0.9881 0.9824 0.9874 0.9684 0.9935 0.9932 0.9920 0.9933 0.9923 0.9913 0.9694 

 20 0.9912 0.9901 0.9884 0.9905 0.9854 0.9894 0.9744  0.9963 0.9954 0.9945 0.9960 0.9949 0.9945 0.9838 
 30 0.9931 0.9918 0.9908 0.9926 0.9907 0.9921 0.9857  0.9972 0.9972 0.9967 0.9971 0.9953 0.9964 0.9919 
X5  2 0.8640 0.8640 0.8640 0.8640 0.8640 0.8640 0.8496 X11 0.8261 0.8261 0.8261 0.8261 0.8261 0.8261 0.8213 

3 0.9314 0.9314 0.9314 0.9314 0.9314 0.9314 0.8955  0.9010 0.9010 0.9010 0.9010 0.9010 0.9010 0.8939 
4 0.9371 0.9369 0.9366 0.9374 0.9368 0.9378 0.9051  0.9392 0.9391 0.9388 0.9392 0.9386 0.9391 0.9246 
5 0.9410 0.9407 0.9409 0.9416 0.9424 0.9374 0.9225  0.9550 0.9548 0.9545 0.9549 0.9543 0.9547 0.9370 
6 0.9595 0.9570 0.9584 0.9587 0.9556 0.9576 0.9335  0.9649 0.9646 0.9641 0.9647 0.9637 0.9647 0.9453 
7 0.9659 0.9644 0.9618 0.9642 0.9608 0.9625 0.9426  0.9717 0.9715 0.9703 0.9716 0.9705 0.9716 0.9582 
8 0.9731 0.9721 0.9664 0.9727 0.9687 0.9698 0.9489  0.9775 0.9774 0.9757 0.9772 0.9760 0.9773 0.9623 
9 0.9745 0.9748 0.9695 0.9746 0.9690 0.9722 0.9539  0.9819 0.9817 0.9790 0.9818 0.9787 0.9807 0.9679 
10 0.9746 0.9741 0.9706 0.9720 0.9692 0.9721 0.9622  0.9843 0.9843 0.9828 0.9841 0.9821 0.9838 0.9709 
15 0.9824 0.9831 0.9806 0.9805 0.9797 0.9794 0.9716  0.9913 0.9907 0.9884 0.9915 0.9887 0.9903 0.9811 

 20 0.9858 0.9859 0.9856 0.9844 0.9854 0.9837 0.9780  0.9940 0.9945 0.9930 0.9933 0.9926 0.9925 0.9870 
 30 0.9881 0.9877 0.9875 0.9872 0.9879 0.9865 0.9850  0.9960 0.9958 0.9950 0.9954 0.9950 0.9941 0.9910 
X6 2 0.7571 0.7571 0.7571 0.7571 0.7571 0.7571 0.7472 X12 0.6728 0.6728 0.6728 0.6728 0.6728 0.6728 0.6992 
 3 0.8880 0.8880 0.8880 0.8880 0.8878 0.8879 0.8724  0.7842 0.7842 0.7842 0.7842 0.7842 0.7842 0.7617 
 4 0.9142 0.9142 0.9140 0.9142 0.9141 0.9143 0.8934  0.8524 0.8490 0.8528 0.8520 0.8528 0.8511 0.8471 
 5 0.9292 0.9293 0.9274 0.9287 0.9280 0.9299 0.8977  0.8715 0.8719 0.8785 0.8715 0.8764 0.8711 0.8971 
 6 0.9329 0.9365 0.9344 0.9316 0.9313 0.9354 0.9071  0.8984 0.9002 0.9198 0.8980 0.9189 0.8980 0.9027 
 7 0.9315 0.9369 0.9330 0.9294 0.9330 0.9262 0.9017  0.9670 0.9533 0.9717 0.9584 0.9635 0.9432 0.9511 
 8 0.9410 0.9408 0.9335 0.9368 0.9368 0.9342 0.9271  0.9697 0.9833 0.9846 0.9813 0.9846 0.9837 0.9681 
 9 0.9452 0.9440 0.9381 0.9433 0.9405 0.9406 0.9230  0.9874 0.9863 0.9873 0.9874 0.9873 0.9868 0.9733 
 10 0.9503 0.9493 0.9464 0.9479 0.9431 0.9436 0.9321  0.9891 0.9888 0.9895 0.9902 0.9892 0.9904 0.9767 
 15 0.9570 0.9565 0.9548 0.9558 0.9491 0.9543 0.9472  0.9948 0.9945 0.9944 0.9945 0.9946 0.9930 0.9834 
 20 0.9597 0.9598 0.9577 0.9586 0.9576 0.9574 0.9534  0.9969 0.9969 0.9966 0.9967 0.9966 0.9959 0.9913 
 30 0.9617 0.9614 0.9599 0.9612 0.9600 0.9604 0.9581  0.9985 0.9982 0.9978 0.9982 0.9981 0.9974 0.9927 

The bold value indicates the best value. 
  

 
Fig.8 Average UQI values obtained under Kapur's entropy  

 

Fig.9 shows the segmented images obtained by the proposed algorithm on X1, X2, X3, and X3 under 
both Kapur's for the threshold levels 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, and 30  
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Fig.9: Segmented images by proposed algorithm under Kapure’s entropy  

 
 

7.8.Comparison of convergence curve among SMA, HSMA_WOA, and WOA 

 
In this part, the convergence rate by SMA, HSMA_WOA, and WOA will be observed to illustrate 

the effectiveness of our approach. Generally speaking, X1, X2, X3, X4, X5, and X6 test images with 30 
threshold levels are used to check the convergence rate of each algorithm. After running each algorithm, 

the output in each iteration on each test image from X1 to X6 is plotted in Fig.10-15, respectively. 
Inspecting these figures show that within the first CI=100 iteration, the convergence is accelerated as 
possible, but at the end of CI, the outcomes have no change and the possibility of reaching a better 

solution is so hard because the algorithm may be gotten stuck into local minima. As a result, it is time to 
integrate SMA with WOA to refresh its performance to get out of local optima, find better solutions and 

use the significant exploitation capability of SMA. 
 

      

Fig.10 convergence curve on X1                                       Fig.11 convergence curve on X2 



        

Fig.12 convergence curve on X3                                              Fig.13 convergence curve on X4 

 

      

Fig.14 convergence curve on X5                                       Fig.15 convergence curve on X6 

8.  Conclusion and Future work 

According to the ongoing outbreaks of COVID-19 worldwide since December 2019, the entire world has 

moved to rely on technology to find tools and techniques to help identify the infected persons out of the 

normal ones. After many attempts and confirmed by the medical scientists, chest CT images could 

significantly identify whether the suspected patients have been infected. COVID-19 infection could be 

identified by the bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities.  

Sometimes a rounded morphology and a peripheral lung distribution could be spotted. However, CT scan 

is so expensive compared to X-ray, and unfortunately, the specification of the infection under X-ray is so 

hard. The reason was that the X-ray images were considered normal images, so it could be processed using 

a machine learning technique to specify if this person infected or not. But when machine learning focused 

on the whole image, their accuracy reduced significantly. Therefore, it was necessary to find a tool to 

extract similar regions within the image until managing to improve the accuracy of the machine learning 

technique when classifying the CT images.  



The process of separating or extracting the similar regions into an image was called image segmentat ion 

problem.  According to that, in this paper, our techniques were based on extracting the similar small regions 

into chest images as an attempt to extract the regions that may contain COVID-19, and this process was 

known as image segmentation problem (ISP). Several techniques were proposed for tackling ISP. A 

technique called threshold-based segmentation was distinguished from involving those techniques with its 

simplicity, speed, and accuracy when segmenting an image. Hence, a new hybrid multi-threshold ing 

approach based on the SMA behavior with WOA for overcoming ISP was proposed in this paper. Its 

effectiveness was observed with five state-of-art algorithms such as WOA, SSA, Lshade, HHA, and FFA. 

The comparison was performed by applying the algorithms on a set of chest X-ray images with threshold 

levels between 2 and 30. Based on the results obtained by each algorithm, the performance of the proposed 

algorithm was verified to outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU 

time and (Std).   

With rapidly-increased reported cases worldwide and the need to verify our algorithm with new images, 

the future work will involve validating the performance of the proposed algorithm on a set of the test images 

taken from The Berkeley Segmentation Dataset and Benchmark. The aim will be focused on checking 

whether its performance is stable on the other images. Furthermore, the improved Slime mould algorithm 

will be applied to solve flow shop scheduling problems, DNA fragment assembly problems, and parameter 

estimation of the photovoltaic solar cell. 
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