HSMA_WOA: a hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X -ray images

Mohamed Abdel-Basset ${ }^{1}$, Victor Chang ${ }^{2}$ and Reda Mohamed ${ }^{1}$
${ }^{1}$ Faculty of Computers and Informatics, Zagazig University, Sharqiyah, Egypt.
E-mails: analyst_mohamed@zu.edu.eg; redamoh@zu.edu.eg 2. School of Computing, Engineering and Digital Technologies, Teesside University, UK
Email: victorchang.research@gmail.com/V.Chang @tees.ac.uk
*Correspondence: Victor Chang; Email: victorchang.research @ gmail.com/V.Chang @tees.ac.uk

Abstract

Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 - sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mould algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics.

Keywords: Image segmentation problem; Slime mould algorithm(SMA); whale optimization algorithm; Kapur's entropy; X-ray images; COVID-19.

1. Introduction

Starting in China and passing to all the worldwide, a novel virus named COVID-19 outbreaks continuously. This virus infects the victim with fever and respiratory symptoms such as cough and sore throat. However, those symptoms do not confirm the infection with COVID-19 [1], so many attempts have
been performed to find a tool that confirms if the person infected with COVID-19. After making chest CT imaging for suspects infected with COVID-19, the bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be used to determine the infection. A rounded morphology and a peripheral lung distribution could sometimes been spotted [2].

Fortunately, since the CT findings are extracted as a normal image, it could be segmented into similar small regions, some of which may contain the features of COVID-19. The process of segmenting an image is commonly known as an image segmentation problem (ISP) and many algorithms have been applied for overcoming ISP. However, those algorithms still suffer from some problems prevent from reaching bettersegmented images. As a result, the need for a new robust algorithm to segment the images has significantly been increased those days, especially with appearing chest CT images.

Recently, a novel algorithm known as the slime mould algorithm (SMA) inspired the slime mould behaviors to obtain the optimal track for gathering food. SMA has already been proposed for tackling the continuous optimization problems and could achieve significant success in comparison with the other algorithms. Accordingly, in this paper, SMA is adopted to tackle the chest X-ray image segmentation problem for the first time, as a new addition to separate the similar regions or to extract the region of interest inside an X-ray image. In addition, as an attempt to improve the performance of SMA and proposing a multi-thresholding model has a high ability on tackling ISP, the whale optimization algorithm (WOA) will be integrated with it to borrow its exploration capability within the first half of the iterations and after finishing the predefined first iterations where WOA runs within, the SMA will start to exploit around the best region explored by WOA with disposing of local minima problem under its ability that will re-initialize the solutions within the search space under a certain probability. The proposed model is only observed on X-ray test images infected with COVID-19, so it is proposed for dealing with this type of image. And within our future work, its performance will be validated on a number of test images from The Berkeley Segmentation Dataset and Benchmark to see if its performance is stable on any image or not.

The contribution of this paper is summarized as follows: First, a new integrated approach (HSMA_WOA) is proposed based on the behavior of SMA and WOA for finding the optimal threshold values that overcome the multi-threshold image segmentation problems of chest X-ray images. Second, experiments of HSMA_WOA have been undertaken and outperforming all the compared algorithms in fitness values, PSNR, UQI, SSIM, CPU time, and standard deviation under Kapur's entropy.

The rest of this paper is structured as follows. In section 2, some proposed works for ISP has been reviewed. Additionally, Kapur's entropy is explained in Section 3. Sections 4 and 5 give a description of the whale optimization algorithm, and the slime mould algorithm, respectively. Section 6 introduces the proposed work for overcoming the image segmentation problem. Section 7 illustrates the results obtained under both Kapur's and entropy functions. Finally, section 8 concludes the paper.

2. Related work

Nowadays, ISP plays a crucial role in image processing [3] and computer vision [4] to focus on an interesting region rather than the whole image until managing to analyze the image with higher accuracy. ISP is present in many fields such as medical diagnosis [5, 6], object recognition [7], satellite image processing [8], remote sensing [9], historical documents [10], and historical newspapers [11, 12].

Several methodologies for tackling ISP, such as region-based [13], edge-based [14], feature selectionbased clustering [15], and threshold-based [16], has been suggested to help in separating the similar regions into an image. From involving those methodologies, Threshold-based segmentation is deemed the best one for solving the ISP [3, 17, 18]. Due to its simplicity, speed, and accuracy compared with the others. Thresholding is classified into two types: a bi-level threshold and a multi-level threshold. If the image contains only two similar regions: object and background, then the bi-level threshold is the best candidate for separating those two regions; otherwise, the multi-level threshold is better. Although the multi-le vel threshold could help in segmenting the image with more than two regions, the time increases exponentially when the number of regions increases.

Some techniques proposed for solving the image segmentation problem are based on an approach that needs to identify some parameters for each class using a probability density function for segmenting the image, those approaches are classified as parametric [19]. Meanwhile, another approach classified as nonparametric [19] maximizes a function (such as Kapur's entropy [20], fuzzy entropy [21], and Otsu function) without needing to calculate parameters at the outset.

Due to the time complexity problem with the increased threshold levels, traditional techniques failed to be the best tool for solving the ISP. Subsequently, the need for another different technique to overcome the problem of time complexity was significantly increased. Thus, the meta-heuristic algorithms (MHAs) have been more popular among researchers since significant superiorities with less time in several fields were offered by MHAs [22-27] as the most appropriate tool to solve the ISP and overcome the time complexity. Since the w processing time increases exponentially with increasing thresholds, traditional techniques will use the considerable time to search for the optimal threshold.

Recently, many meta-heuristic algorithms have been suggested for overcoming ISP, such as particle swarm optimization (PSO) [28-30], ant-colony optimization algorithm [31], bee colony algorithm (BCA) [32], whale optimization algorithm (WOA) [33], genetic algorithm (GA) [34], multi-verse optimizer [35], cuckoo search (CS) [36], symbiotic organisms search (SOS) [37], Harris hawks optimization algorithm (HHA) [38], and firefly optimization algorithm (FFA) [39], flower pollination algorithm (FPA) [40], crow search algorithm [41], grey wolf optimizer [42], honey bee mating (HBM) optimization [43], locust search algorithm (LSA) [44], moth-flame optimization algorithm (MFA) [33], and firefly optimization algorithm (FFA) [39]. Some of those algorithms are summarized in the following Table.

Table 1: Some algorithms proposed for solving ISP

	Reference	Procedure
1	Singla and Patra [45]	The cluster validity measure was used to investigate the boundaries of the threshold levels to find the bounds that may contain the optimal threshold values. Then, it applied GA on the obtained bounds to search for the optimal threshold values within.
2	Manikandan et al. [46]	The real coded GA with the simulated binary crossoverhas been suggested fortackling the ISP of the medical image by maximizing the Kapur's entropy. This algorithm

		approved their efficacy compared with the others when solving the ISP of the medical image
3	Maitra, Chatterjee [47]	PSO improved by cooperative and comprehensive learning has been developed for tackling the ISP. Both cooperative and comprehensive learning used with PSO to alleviate the dimensionality curse and prevent the early convergence
4	Liu, Y., et al. [48]	The PSO has been modified using adaptive inertia and the adaptive population for tackling the ISP. Adaptive inertia is used to promote the converg ence speed of PSO, while the adaptive population is used to prevent stuck into local optima.
5	Ghamisi et al. [49]	Fractional-order Darwinian PSO has been proposed for overcoming the image segmentation problem based on the Otsu function. The Fractional-derivative was used with PSO to dominate the convergence rate.
6	El Aziz [33]	WOA and MFA were proposed for tackling the ISP by maximizing otsu method, although just for threshold levels reaching 6
7	Chen [50]	In this paper, The Improved FFA (IFFA) has been proposed for solving ISP. IFFA was improved using the Cauchy mutation to avoid local minima and neighborhood strategy to enhance the convergence
8	Agrawal[36]	In this paper, CS has been proposed to extract the optimal threshold values of an image by maximizing the Tsallis entropy.
9	Bhandari[51]	In this paper, the satellite image was segmented using ABC based on maximizing a variety of objective functions. ABC was improved using a chaotic search to initialize the population at the outset and the differential evolution to enhance the exploitation capability.
10	Sanyal[52]	The fuzzy entropy to change between the exploration and exploitation operators was used with The bacterial foraging algorithm (BFA) for getting to the optimal threshold values of an image.
11	Sathya[53]	In this paper, to accelerate the premature convergence of BFA when solving ISP, the best bacteria among all the chemotactic steps is moved to the subsequent generations.
12	Tang[53]	This paper integrated the PSO with BFA to provide the global search capability and promote the premature convergence towards the optimal threshold values
13	Abdel-Basset [54]	A novel equilibrium optimizer (EO) has been proposed for finding the optimal threshold values of an image by maximizing the Kapur's entropy.
14	Abdel-Basset [55]	A novel marine predators algorithm (IMPA) improved using the Ranking-based diversity reduction strategy has been suggested to segment the chest X-ray image
15	Chouksey[56]	In this paper, the antlion optimization (ALO) and the multiverse optimization (MVO) have been developed for tackling the ISP by maximizing the Kapur's entropy and Otsu method. After investigating the performance of ALO, and MVO, the author notified that MVO is better
16	Erik Cuevas[44]	In this paper, the locust search algorithm (LSA) was applied for solving the multi-level thresholding image segmentation under a new objective function in a gaussian mixture model.

All the algorithms listed in the literature were proposed for overcoming the ISP of a normal image and medical image of type X -Ray images, but no one of which is experimented on the X-ray images that are considered the most important thing to detect the infection with COVID-19. Currently, there are two ways to be blended for much better performance. First, the high ability of WOA can be used to explore a new region to find a better solution within the first half of iterations. Second, the high capacity of SMA can be used to balance between exploitation and exploration. Thus, authors are motivated to make a hybridization between them to propose a new model to combine those two capabilities for overcoming the ISP for COVID-19 X-ray images. Broadly speaking, the SMA is integrated with WOA to finding a better solution, where the WOA will be run within the first CI iteration to explore various regions within the search space. Afterward, the SMA will take the solutions obtained by WOA to exploit them or explore at the expense of the fitness of each solution as an attempt to use up this capability of SMA. Additionally,

SMA increases its exploration capability to escape out of the local minima by re-initializing the current solution randomly within the search space of the problem based on a certain probability. This hybrid approach is abbreviated as HSMA_WOA. SMA and HSMA_WOA are compared with several state-of-the-art algorithms under X-ray test images infected with COVID-19. After comparison, we saw that HSMA_WOA could outperform all the algorithms used to compare most of the test images used in our experiment.

3. Kapur's entropy

In this section, the mathematical model of Kapur's entropy method is shown. Kapur's entropy searches for the optimal threshold values by maximizing the variance between the segmented regions [20]. The mathematical model of this method is described as follows:
supposing that $\left[\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots \ldots, \mathrm{r}_{\mathrm{T}}\right]$ refers to the threshold values that subdivide the image into a different similar area, then the Kapur's entropy can be calculated as follows:

$$
\begin{equation*}
R\left(r_{0}, r_{1}, r_{2}, \ldots \ldots, r_{T}\right)=R_{0}+R_{1}+R_{2}+\cdots \ldots . .+R_{T} \tag{1}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathrm{R}_{0}=-\sum_{\mathrm{i}=0}^{\mathrm{r}_{0}-1} \frac{\mathrm{x}_{\mathrm{i}}}{\mathrm{w}_{0}} * \ln \frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{~W}_{0}}, \mathrm{X}_{\mathrm{i}}=\frac{\mathrm{N}_{\mathrm{i}}}{\mathrm{w}}, \mathrm{~W}_{0}=\sum_{\mathrm{i}=0}^{\mathrm{r}_{0}-1} \mathrm{X}_{\mathrm{i}} \tag{2}\\
& \mathrm{R}_{1}=-\sum_{\mathrm{i}=\mathrm{r}_{0}}^{\mathrm{r}_{1}-1} \frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{w}_{1}} * \ln \frac{\mathrm{X}_{\mathrm{i}}}{W_{1}}, \mathrm{X}_{\mathrm{i}}=\frac{\mathrm{N}_{\mathrm{i}}}{\mathrm{w}}, \mathrm{~W}_{1}=\sum_{\mathrm{i}=\mathrm{r}_{0}}^{\mathrm{r}_{1}-1} \mathrm{X}_{\mathrm{i}} \tag{3}\\
& \mathrm{R}_{2}=-\sum_{\mathrm{i}=\mathrm{r}_{1}}^{\mathrm{r}_{2}-\frac{X_{i}}{W_{2}}} * \ln \frac{x_{\mathrm{i}}}{\mathrm{~W}_{2}}, \mathrm{X}_{\mathrm{i}}=\frac{\mathrm{N}_{\mathrm{i}}}{W}, \mathrm{~W}_{2}=\sum_{\mathrm{i}=\mathrm{r}_{1}}^{\mathrm{r}_{2}-1} \mathrm{X}_{\mathrm{i}} \tag{4}\\
& R_{T}=-\sum_{i=r_{T}}^{L-1} \frac{X_{i}}{W_{T}} * \ln \frac{X_{i}}{W_{T}}, X_{i}=\frac{N_{i}}{W}, W_{T}=\sum_{i=r_{T}}^{L-1} X_{i} \tag{5}
\end{align*}
$$

$R_{0}, R_{1}, R_{2}, \ldots \ldots$. , and R_{T} refer to the entropies obtained by each threshold value, and N_{i} indicates the count of the pixels having a value I, the grey level. And $W_{0}, W_{1}, W_{2}, \ldots$, and W_{T} refers to the percent of the pixels in each region to the pixels in the whole image. And T indicates the threshold levels.

In order to extract the optimal threshold values, the following equation is maximized:

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots \ldots \ldots, \mathrm{r}_{\mathrm{T}}\right)=\max \left\{\mathrm{R}\left(\mathrm{r}_{0}, \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots \ldots \ldots, \mathrm{r}_{\mathrm{T}}\right)\right\} \tag{6}
\end{equation*}
$$

The proposed algorithm will use Eq. 6 as an objective function to get the optimal threshold values.

4. Standard whale optimization algorithm (WOA)

In WOA [57], the behaviors of the humpback whales are simulated to proposed new optimization algorithms for tacking the continuous optimization problems. These whales move surround the prey in a spiral shape and then move toward prey in a shrinking circle when attacking. This behavior is called bubble-new foraging. This hunting mechanism is mimicked within the WOA by a trade-off between a spiral model and a shrinking encircling prey with a probability of 50%, generating the new solution within the optimization process. The encircling mechanism is athletes described as follows:

$$
\begin{align*}
& \vec{S}(t+1)=\overrightarrow{S^{*}}(t)-\vec{A} \cdot \vec{D} \tag{7}\\
& \vec{A}=2 \vec{a} \cdot \overrightarrow{\text { rand }}-\vec{a} \tag{8}
\end{align*}
$$

$$
\begin{align*}
\vec{a} & =2-2 \frac{t}{t_{\max }} \tag{9}\\
\vec{D} & =\left|\vec{C} \cdot \overrightarrow{S^{*}}(t)-\vec{S}(t)\right| \tag{10}\\
\vec{C} & =2 \cdot \overrightarrow{\operatorname{rand}} \tag{11}
\end{align*}
$$

where \vec{S} is a vector that expresses the current whale, t is the current generation, $\overrightarrow{S^{*}}$ refers to the values of the best whale in the population, \vec{r} is a numerical vector generated randomly between 0 and 1. $t_{\max }$ refers to the maximum generations, and a is a parameter linearly decreased from 2 to 0 and is the distance control factor. The distance between the position of the victim and the whale is used where the helix-shaped movements simulated by a spiral model are done. The spiral model is mathematically modeled as:

$$
\begin{align*}
\vec{S}(t+1) & =\overrightarrow{S^{*}}(t)+\overrightarrow{D^{\prime}} \cdot e^{l b} \cdot \cos (2 \pi l) \tag{12}\\
\overrightarrow{D^{\prime}} & =\left|\overrightarrow{S^{*}}(t)-\vec{S}(t)\right| \tag{13}
\end{align*}
$$

where $\overrightarrow{D^{\prime}}$ is the difference between the best-so-far solution and $i^{\text {th }}$ solution, l is a number created randomly between $[-1,1]$, the logarithmic spiral shape is described by b as a constant. The best-so-far solution may be a local minima problem, so focusing completely on it within the optimization process may waste the search process within any beneficial mentioned. Therefore, the whale search for another position may contain the prey within the search area by picking a random whale from the population to move the current whale toward finding a better solution. Specifically, if $\vec{A}<1$, then the current whale is directed based on a whale picked randomly from the population. The mathematical model of this exploration phase is:

$$
\begin{gather*}
\vec{S}(t+1)=\overrightarrow{S^{*}}(t)-\vec{A} \cdot \vec{D} \tag{14}\\
\vec{D}=\left|\vec{C} \cdot \vec{S}_{\text {rand }}(t)-\vec{S}(t)\right| \tag{15}
\end{gather*}
$$

where $\vec{S}_{\text {rand }}$ is a position vector picked randomly from the population. Finally, the steps of the standard WOA are listed in Algorithm 1.

```
Algorithm 1 The standard WOA
    Initilaization \(S_{i}(i=1,2,3, \ldots, N)\)
    Evaluate each \(\vec{S}_{i}\) using the fitness function
    Find the best \(s^{*}\)
    \(t=1 / /\) current iteration
    while \(\left(t<t_{\max }\right)\)
        for each \(\vec{S}_{i}\)
            Update a, A, p, C, and 1
            if \((p<0.5)\)
                if \((|A|<1)\)
                            Update \(\overrightarrow{S_{l}}(t+1)\) based on Eq. (7)
                    else
                            Update \(\overrightarrow{S_{l}}(t+1)\) based on Eq. (14)
                end if
            else
                    Update \(\overrightarrow{S_{l}}(t+1)\) based on Eq. (12)
        end if
        end for
```

```
18. Check the fitness value of each updated }\mp@subsup{\vec{S}}{i}{
19. Update the best }\mp@subsup{\vec{S}}{}{*}\mathrm{ with }\mp@subsup{\vec{S}}{i}{}\mathrm{ if better.
20. t++
21. end while
```


5. Slime mould algorithm (SMA).

Chen [56] has recently been proposed a new optimization algorithm inspired by the behaviors of the slime mould in obtaining the optimal path for connecting food. This algorithm was known as the slime mould algorithm (SMA). The mathematical model of the SMA based on Chen proposition [56] is described in the following.

In the first stage, when SMA searches for the food, it uses its odor in the air as a means of reaching the food. Based on the behavior of the slime mould, it is formulated as follows to simulate the contraction mode [58] :

$$
\vec{S}(t+1)=\left\{\begin{array}{c}
\overrightarrow{S_{b}}(t)+\overrightarrow{v b} *\left(\vec{W} * \overrightarrow{S_{A}}(t)-\overrightarrow{S_{B}}(t)\right), r<p \tag{16}\\
\overrightarrow{v c} * \vec{S}(t), r \geq p
\end{array}\right.
$$

$\overrightarrow{v b}$ is randomly generated within $[a,-a]$ as:

$$
\begin{align*}
& \overrightarrow{v b}=[-a, a] \tag{17}\\
& a=\operatorname{arctanh}\left(-\left(\frac{t}{t_{\max }}\right)+1\right) \tag{18}
\end{align*}
$$

And $\overrightarrow{v c}$ linearly decreases from 1 to $0, t$ indicates the iteration current, $t_{\max }$ indicates the maximum of iteration, \vec{S}_{b} is a vector that contains the location with the highest odor concentration found so far. $\vec{S}(t+1)$ indicates the next position taken by the current slime mould (SM). $\vec{S}(t)$ is the current position of the SM, and $\overrightarrow{S_{A}}$ and $\overrightarrow{S_{B}}$ are two vectors containing the location of two randomly selected individuals from the population. The variable r is a random number between 0 and $1 . \vec{W}$ describes the slime mould weight and calculated as follows:

$$
\begin{align*}
& \overrightarrow{W(\text { smellindex }(l))}=\left\{\begin{array}{c}
1+r * \log \left(\frac{b F-S(i)}{b F-w F}+1\right), \text { condition } \\
1-r * \log \left(\frac{b F-S(i)}{b F-w F}+1\right), \text { other }
\end{array}\right. \tag{19}\\
& \text { smellindex }=\operatorname{sort}(S) \tag{20}
\end{align*}
$$

where r is a random number created within the range of 0 and $1, b F$ is the best fitness value within the current iteration, while $w F$ stands for the worst one, smellindex refers to the indices of the sorted fitness values, condition indicates $S(i)$ ranks of the first half of the population. In relative to parameter p in Eq. 21 is modeled as follows:

$$
\begin{equation*}
p=\tanh (|f(i)-D F|) \tag{21}
\end{equation*}
$$

where $i \in 1,2,3, \ldots, n, f(i)$ is the fitness of the current $\vec{X}, D F$ is the best fitness obtained so far.

In the second phase, the wrapped phase simulates the contraction mode in the venous structure of slime mould, which tunes their positions according to the quality of the food, when the food concentration is high, the weight of this region is bigger. Otherwise, the region's weight is turned to explore other regions, as shown in Eq.15. The SM needs to decide when to leave the current area to another one until finding a variety of food sources at the same time rather than the current better one. Generally, the mathematical model of updating the SM position could be re-modeled, as shown in Eq. 18 to simulate the methodology of the SM to find various food sources at the same time when foraging another area.

$$
\overrightarrow{S^{*}}(t+1)=\left\{\begin{array}{c}
r \text { and } *(U B-L B)+L B, \text { rand }<z \tag{22}\\
\overrightarrow{S_{b}}(t)+\overrightarrow{v b} *\left(\vec{W} * \overrightarrow{S_{A}}(t)-\overrightarrow{S_{B}}(t)\right), r<p \\
\overrightarrow{v c} * \vec{S}(t), r \geq p
\end{array}\right.
$$

where rand and r are two numbers generated randomly between 0 and 1 , and $U B$ and $L B$ are the upper and lower bounds of the problem's search space. z is a probability used to determine it the SMA will search for another food source or search around the best current one. In relative to $\vec{W}, \overrightarrow{v b}$, and $\overrightarrow{v c}$, they are used to mimic the venous width variation. Finally, the steps of SMA are presented by Algorithm 2.

```
Algorithm 2 The Slime mould algorithm (SMA)
    Initializations step
    While \(\left(t<t_{\text {max }}\right)\)
        Evaluate each \(S_{i}\)
        Update the global best fitness \(G F\), and global best position \(G P\)
        Compute \(W\) using Eq. 19
        for each \(S_{i}\)
            Update \(p, v b\), and \(v c\)
            Update \(S_{i}\) based on Eq. 22
            end for
            \(t++\)
    end while
    2. Output: return GF,GP
```


6. The proposed work.

Within this part, our methodology for overcoming ISP for COVID-19 X-ray images will be illustrated in detail to show our plan for finding the threshold values that will help in extracting the region of interest within the infected images. Specifically, within this section, the following steps that contract the main structure of our proposition will be discussed: Initialization, SMA for ISP, hybrid SMA with WOA.

6.1. Initialization

As an inhabit of all the meta-heuristic algorithms, a set consists of N solutions has been proposed at the start. Each one has a number of dimensions distributed within 0 and 255 randomly using Eq.23.

$$
\begin{equation*}
\vec{S}_{i}=\vec{L}_{\text {min }}+\vec{r} *\left(\vec{L}_{\text {max }}-\vec{L}_{\text {min }}\right) \tag{23}
\end{equation*}
$$

Where $\vec{L}_{\text {min }}$, and $\vec{L}_{\text {max }}$ indicate the boundaries of the gray levels, \vec{r} is a random numerical vector in the range of $[0,1]$, and \vec{S}_{i} indicates the $i^{\text {th }}$ solution.

6.2. SMA for ISP

Last but not least, SMA is adapted for overcoming the ISP of the COVID-19 X-ray images by maximizing Kapur's entropy. This adaptation will help in extracting similar regions within images that may contain similar features of COVID-19. The main advantages of SMA include a high ability to balance between exploration and exploitation. When the distance between the fitness of the current individual is high, it will try to move toward it in an attempt to exploit it. Meanwhile, if the distance is small, then it will explore another food source to find a better solution. Finally, the steps of SMA for overcoming ISP are listed in Algorithm 3.

```
Algorithm 3 adapting SMA for ISP
    Initializations step, \(S_{i}, i=0,1,2,3,4, \ldots \ldots \ldots, N\)
    While \(\left(t<t_{\text {max }}\right)\)
        Compute the fitness of each \(S_{i}\) using Eq.6.
        Update the global best fitness \(G F\), and global best position \(G P\)
        Compute \(W\) using Eq. 19
        for each \(S_{i}\) mould
            Update \(p, v b\), and \(v c\)
            Update \(S_{i}\) using Eq. 22
        end for
        \(t++\)
    end while
    Output: return GF, GP
```


6.3. Hybrid SMA_WOA (HSMA_WOA)

In this version, the SMA will be used with the WOA for tackling the ISP, where the SMA is used to pay attention to the best so-far regions obtained by the WOA. At the same time, the WOA is applied at the start of the optimization process until a predefined iteration CI is reached. CI is the end iteration where the WOA will stop and SMA starts. Specifically, WOA is applied at the outset to use up its exploration capability within the first half of the iteration for exploring the search space. After reaching the CI, the WOA will be stopped. SMA then starts to pay attention to searching for a better solution using the highability of SMA that will exploit around the best-so-far if the distance between the fitness value of the current solution and the best-so-far solution is higher than a specific value generated randomly. Otherwise, it will work on exploring another region searching for a better food source. In addition to disposing of the local minima using the SMA's exploration capability that re-initialized the solutions that were within a predefined probability randomly within the search space. This hybridization is aimed to exploit the exploration capability of the WOA at the start. The next step is to enhance the significant balancing capability of SMA and increase their ability to get out of local minima. Therefore, this can achieve full exploration capability when a number generated random SMA is less dependent on the z factor.

The main advantages of this model are as follows:

1. By using the high-ability of the WOA at the start of the optimization process, it can explore most of the regions within the search space to find a better solution.
2. After exploring the search space using the exploration capability of WOA, the SMA is used to explo it around the best-so-far solution if the distance between the fitness of the current one and the best-sofar fitness is higher than a threshold value generated randomly between 0 and 1 . Otherwise, the current SM will try to explore another region for another best-so-far solution. Additionally, SMA used another capability to explore another region for a better solution. This capability is based on reinitializing randomly the current mould within the search space of the problem according to a certain probability.
3. This high-ability on exploring at the first half of the optimization process and adjusting that determines if the exploration or exploitation capability will be used within the second half of the optimization process help in proposing a model with high-ability on exploration, exploitation and avoiding dropping into local minima.
4. Having only two parameters, r and $C I$ need to be updated accordingly.

The main drawbacks of this model are as follows:

1. Difficulties in picking the relevant value for CI can lead to using up the ability of this hybridization.
2. It still suffers from the probability of falling into local minima problem if the best-so-far solution obtained by WOA is local minima. The value of z of the SMA used to escape local minima is small, and increasing this value will enhance the probability of randomly re-initializing the current solution within the search space and, subsequently, the convergence toward the best solution significantly reduce.

At the final, the final brief steps for the hybridization of both WOA and SMA are presented by Algorithm 4.

```
Algorithm 4 HSMA_WOA
    Initializations step, \(S_{i}, i=0,1,2,3,4, \ldots \ldots \ldots, N\)
    While \(\left(t<t_{\max }\right)\)
            If \((\mathrm{t}<\mathbf{C l})\)
            Apply the WOA shown in Algorithm 1
            Continue;
            end if
            Compute the fitness of each \(S_{i}\) using Eq. 6
            Update the global best fitness \(G F\), and global best position \(G P\)
            Compute \(W\) using Eq. 19
            for each \(S_{i}\) mould
            Update \(p, v b\), and \(v c\)
            Update \(S_{i}\) using Eq. 22
            end for
            \(t++\)
    end while
    Output: return \(G F, G P\)
```


7. Results and discussion

In this section, extensive experiments have been conducted to validate the proposed algorithms' performance and compare their performance with some of the state-of-the-art algorithms when tackling the

ISP. Those experiments were performed on a set of chest X-ray COVID- 19 images, namely $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, X4, X5, X6, X7, X8, X9, X10, X11, and X12.

Fig. 1 the original COVID-19 images and their histograms

Additionally, a device equipped with 32-bit windows seven ultimate has been prepared for conducting our experiments. This device has the following capabilities:

- Core i3 processor with speed 2.20 GHz
- 1 GB of RAM

In order to check the efficacy of the proposed algorithm, it is compared with several well-known algorithms, such as Lshade [59], FFA [39], WOA [33], SSA [60], and HHA [38]. All those algorithms are further implemented using Java programming language. For the compared algorithms, the parameter values are the same as found in the original paper rather than the maximum iteration and population size that are set to 150 , and 30 respectively, for a fair comparison. Additionally, all algorithms run 20 independently times to check the stability and consistency of the results obtained by each one.

Regarding our proposition, the CI parameter needs to be carefully picked for reaching the best performance for this approach, so several values for it, such as $0,30,50,70,90,100,120$, and 150 , are checked under test images $\mathrm{X} 1, \mathrm{X} 2$ and X 3 to see the best value. And after running the algorithm under each CI value 20 independent runs and drawing the convergence curve of the best run for $\mathrm{X} 1, \mathrm{X} 2$ and X 3 in Fig. 2 (a), (b), and (c), respectively, we witness that the value 100 is the best for it on X1, and X3. While $\mathrm{CI}=90$ is the best on X 2 and its performance is converged with $\mathrm{CI}=100$ on X 3 . So, the best two candidate values for CI under our experiments are 90 and 100 .

Regarding the r parameter, five values, such as $0.01,0.02,0.03,0.04$, and 0.04 , are selected to test the performance of the proposed algorithm under them. After running the algorithm under each r value 20 independent runs, the best run for each value is pictured in Fig.2(d) and (e) for X1 and X2, respectively. According to those figures, $\mathrm{r}=0.02$ is the best among the others, so it will be used for r within the next extensive experiments. Finally, Table 2 gives the parameter values of the proposed algorithm.

c. Convergence curve under different CI values on X 3 with $\mathrm{T}=30$.

Fig. 2 Adjustment of CI and z parameters
Table 2 Parameter setting for the proposed

Parameter	Value
Number of runs	20
Population size	30
The maximum number of iteration	150
Z	0.02
CI	100

The remainder of this section is listed as follows:

1. Section 7.1: Analyzes the Stability and CPU time.
2. Section 7.2: Discusses the quality of images using Fitness values.
3. Section 7.3: Discusses the quality of images using peak signal to noise ratio.
4. Section 7.4: Discusses the quality of images using a structured similarity index metric.
5. Section 7.5: exposes the outcomes of the universal quality image metric.
6. Section 7.6: Convergence rate among SMA, HSMA_WOA, and WOA.

7.1. Stability and CPU time analysis.

In this section, the time taken by each algorithm until finding the threshold levels is observed to see any algorithm could achieve the minimum of time. In addition, some algorithms produce spaced-out results in the different runs, so the stability of the obtained has to be calculated to see which algorithm could achieve converged results in all. This is known using the standard deviation (Std) calculated based on the following formula:

$$
\begin{equation*}
S t d=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(f_{i}-\bar{f}\right)^{2}} \tag{24}
\end{equation*}
$$

Where n indicates the number of times, each algorithm tried. f_{i} is the fitness value of the $i^{\text {th }}$ run, and \bar{f} is the average of all the fitness values gotten. SD must be minimized to get to a better result.

Under Kapur's function, respectively, Fig. 3, and 4 show the average of SD and CPU time values obtained by each algorithm within 20 independent runs. As a result of inspecting those figures, HSMA_WOA could reach less SD and CPU time values, while Lshade, and HHA achieve the worst value for both Std and CPU time.

7.2 Fitness values under Kapur.

Regarding the fitness values of Kapur's method, Table 3 shows the fitness values obtained by the compared algorithm and the proposed under this function. After calculating the average of the fitness values within 20 runs on each threshold level for each image, those values are recorded in Table 3 and displayed graphically in Fig.5. Based on this table, the proposed could outperform the others in most cases. This is confirmed based on Fig. 5 that shows the superiority of the proposed algorithm with a value of 29.29 compared with the others with a difference of at least 0.0418 .

Table 3: Fitness values of each algorithm under Kapur's entropy.

img	T	HSMA_WOA	SMA	$\begin{aligned} & \text { FFA } \\ & \text { [39] } \end{aligned}$	$\begin{gathered} \hline \text { WOA } \\ {[33]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { HHA } \\ {[38]} \end{gathered}$	LShade [59]	Img	HSMA_WOA	SMA	$\begin{aligned} & \text { FFA } \\ & \text { [39] } \end{aligned}$	$\begin{gathered} \hline \text { WOA } \\ {[33]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { HHA } \\ {[38]} \\ \hline \end{gathered}$	LShade [59]
X1	2	12.2074	12.2074	12.2074	12.2068	12.2074	12.2074	12.1556	X7	12.2964	12.2967	12.2967	12.2964	12.2967	12.2967	12.2777
	3	15.4120	15.4120	15.4120	15.4119	15.4120	15.4119	15.2913		15.5549	15.5549	15.5548	15.5548	15.5548	15.5547	15.3888
	4	18.3112	18.3112	18.3108	18.3102	18.3104	18.3108	18.0011		18.4683	18.4683	18.4681	18.4682	18.4681	18.4680	18.1718
	5	20.9774	20.9776	20.9758	20.9751	20.9760	20.9753	20.5394		21.1420	21.1417	21.1395	21.1418	21.1398	21.1410	20.6861
	6	23.4434	23.4440	23.4375	23.4412	23.4358	23.4416	22.8031		23.6338	23.6324	23.6265	23.6337	23.6297	23.6326	22.9432
	7	25.7537	25.7343	25.7294	25.7547	25.7436	25.7337	24.9663		25.9929	25.9718	25.9499	25.9919	25.9322	25.9826	25.2158
	8	27.9823	27.9577	27.9280	27.9621	27.9293	27.9527	26.9708		28.3005	28.2498	28.1752	28.2776	28.1857	28.2527	27.2256
	9	30.1637	30.1407	30.0533	30.1534	30.0713	30.1281	29.1068		30.4908	30.4411	30.3546	30.4587	30.3330	30.4322	29.2097
	10	32.2340	32.2322	32.0841	32.2147	32.1798	32.1957	30.8905		32.6062	32.5833	32.5143	32.5549	32.5056	32.5387	31.1228
	15	41.5906	41.5320	41.3379	41.5832	41.4564	41.4961	39.3727		42.3377	42.3673	41.8330	42.1271	41.8258	41.8732	39.5835
	20	50.1159	50.0046	49.7143	50.1298	49.9001	49.6968	46.7057		50.3917	50.4087	49.6449	50.1529	49.5730	49.7524	46.6173
	30	63.8093	63.7036	63.2656	63.8746	63.4349	62.7237	58.4513		63.8513	63.2789	62.8727	62.7227	62.5030	62.6031	58.4957
X2	2	12.6324	12.6324	12.6324	12.6324	12.6324	12.6324	12.6044	X8	12.3441	12.3441	12.3441	12.3441	12.3441	12.3441	12.3095
	3	15.7263	15.7263	15.7263	15.7263	15.7263	15.7263	15.6539		15.4573	15.4573	15.4573	15.4573	15.4573	15.4572	15.3512
	4	18.7055	18.7054	18.7052	18.7055	18.7053	18.7054	18.4603		18.1902	18.1884	18.1867	18.1887	18.1945	18.1959	18.0256
	5	21.4534	21.4532	21.4522	21.4533	21.4528	21.4531	21.0459		20.8900	20.8896	20.8809	20.8895	20.8880	20.8898	20.6162
	6	24.0311	24.0238	24.0237	24.0295	24.0248	24.0304	23.4316		23.4203	23.4146	23.4043	23.4177	23.4019	23.4168	23.0338
	7	26.4825	26.4711	26.4763	26.4821	26.4789	26.4805	25.5994		25.8917	25.8778	25.8747	25.8904	25.8771	25.8906	25.3007
	8	28.8380	28.8289	28.7895	28.8381	28.7971	28.8337	27.7372		28.2040	28.1926	28.1680	28.1957	28.1705	28.1858	27.4058
	9	31.0405	31.0292	31.0151	31.0395	31.0096	31.0283	29.5524		30.4411	30.4344	30.3963	30.4455	30.3813	30.4329	29.6020
	10	33.1868	33.1659	33.1504	33.1946	33.1522	33.1614	31.5542		32.6168	32.5619	32.4833	32.5955	32.4729	32.5696	31.5018
	15	42.6820	42.6037	42.5246	42.7080	42.5106	42.5746	38.9055		42.7217	42.5800	42.4650	42.6246	42.5328	42.5093	40.8442
	20	50.7079	50.5412	50.4158	50.7806	50.2943	50.3530	45.7687		51.5077	51.3147	51.0380	51.2673	51.0484	51.0233	48.3724
	30	63.8566	63.3631	63.0311	63.8308	63.0813	62.6600	56.8894		65.7863	65.4368	65.1388	65.3790	65.0701	64.6126	60.6688

Bold value expresses the best outcome.

Fig. 5 average fitness values obtained under Kapur's method

7.3 Peak signal to noise ratio (PSNR)

In this section, another metric called PSNR has been used to measure the segmented image's quality compared with the original image. PSNR determines the ratio between the square of the maximum grey level, 255^{2}, and the mean square error (MSE) between the original and separated one and it is calculated using as follows:

$$
\begin{equation*}
\operatorname{PSNR}=10 \log _{10}\left(\frac{255^{2}}{\mathrm{MSE}}\right) \tag{25}
\end{equation*}
$$

And MSE is calculated as shown in the following equation:

$$
\begin{equation*}
\text { MSE }=\frac{\sum_{i=1}^{M} \sum_{j=1}^{N}|A(i, j)-S(i, j)|}{M * N} \tag{26}
\end{equation*}
$$

Where $A(i, j)$ is the grey level of the segmented image and $S(i, j)$ is the grey level of the row $i^{\text {th }}$ and column $j^{t h}$ in the original image matrix. M, and N are the number of columns and rows within the image. PSNR must be maximized to get to better quality.

Based on the segmented images under Kapure's function, the average PSNR value within 20 runs is calculated and introduced in Table 4. By observing this table, it is obvious that HSMA_WOA could be superior in 59 cases and equal in 14 out of 144 , while SMA could be the best for 26 cases and equal in 14 out of 144. Generally, the proposed algorithms could be superior and equal in 104 out of 144 . As a result, both SMA and HSMA_WOA could reach better-segmented images in all the superior cases compared with the other algorithms. In order to illustrate the results in Table 4 graphically, Fig. 6 is given to show the average of the PSNR values obtained by each algorithm. Based on this figure, the proposed algorithms: SMA, HSMA_WOA is considered superior compared with the others and HSMA_WOA is superior in comparison with SMA.

img	T	$\begin{gathered} \text { HSMA_ }_{-} \\ \text {WOA } \end{gathered}$	SMA	$\begin{aligned} & \hline \text { FFA } \\ & {[39]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WOA } \\ & \text { [33] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HHA } \\ & {[38]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { LShade } \\ {[59]} \\ \hline \end{gathered}$	Img	HSMA_WOA	SMA	$\begin{aligned} & \hline \text { FFA } \\ & \text { [39] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WOA } \\ & \text { [33] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HHA } \\ & {[38]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { LShade } \\ {[59]} \\ \hline \end{gathered}$
X1	2	13.1162	13.1162	13.1143	13.1134	13.1162	13.1162	12.8150	X7	15.2050	15.3933	15.3933	15.2050	15.3933	15.3933	15.1889
	3	16.4252	16.4252	16.4272	16.4224	16.4260	16.4342	16.0049		17.2119	17.2119	17.2103	17.2126	17.2103	17.2138	16.6914
	4	18.9556	18.9487	18.9706	18.9472	18.9729	18.9282	18.0015		19.4480	19.4630	19.4441	19.4513	19.4407	19.4623	18.5221
	5	21.2097	21.2093	21.3252	21.2233	21.3038	21.2017	19.5347		21.4352	21.4649	21.3603	21.4409	21.3665	21.4431	20.4637
	6	22.8398	22.8121	22.9398	22.8181	22.9310	22.7924	20.3662		22.8084	22.7867	22.6449	22.8054	22.6897	22.7897	20.5910
	7	24.1734	23.8189	23.9626	24.2318	24.1870	23.9846	21.6186		23.1957	23.7250	23.3627	23.0896	23.3614	23.2624	21.9508
	8	24.2804	24.7267	25.0769	24.4745	25.0152	24.3947	22.4469		23.8709	23.9958	23.7704	23.9287	23.9326	23.7384	22.3479
	9	25.3263	25.2232	25.9481	25.2295	25.8470	25.0828	23.3580		24.5680	24.3410	24.2142	24.5100	24.3554	24.5018	22.9391
	10	25.9865	26.1360	26.8390	26.0330	26.5743	25.8618	24.3433		25.1472	25.0194	24.5543	24.9923	24.5985	24.9951	23.0372
	15	29.4277	29.4927	29.8138	29.4908	29.8449	29.2103	26.5681		27.1336	27.1160	26.4416	27.1190	26.4248	26.4378	25.0565
	20	31.6407	31.5051	31.8526	31.5302	32.0161	30.8344	29.0766		28.3797	28.3409	27.8586	28.2522	27.3527	27.6881	26.5497
	30	34.2147	34.7117	34.4426	34.2688	34.8958	33.4774	31.6066		29.5656	29.3375	29.1227	29.2851	28.9762	29.1881	28.4078
X2	2	15.4339	15.4339	15.4339	15.4339	15.4339	15.4339	15.0664	X8	15.0584	15.0584	15.0584	15.0581	15.0584	15.0584	15.0231
	3	19.0614	19.0614	19.0598	19.0614	19.0598	19.0593	17.5684		18.5399	18.5397	18.5300	18.5398	18.5397	18.5384	18.3247
	4	19.5687	19.5676	19.5460	19.5845	19.5473	19.5785	19.0799		20.4752	20.4396	20.2559	20.3902	20.3021	20.3089	19.3735
	5	21.8944	21.9055	21.8064	21.9103	21.8351	21.8833	19.9896		21.7622	21.7326	21.4727	21.6882	21.3617	21.7624	20.7030
	6	23.3280	23.2037	23.1561	23.3193	23.1632	23.3404	21.1292		23.2417	23.0551	22.7673	23.1817	22.6722	23.1439	21.3987
	7	23.6048	23.7391	23.4373	23.6147	23.4716	23.6404	22.3326		23.8725	23.7568	23.6656	23.8724	23.7051	23.8228	22.1885
	8	25.2772	25.2649	24.7597	25.2939	24.8453	25.2088	22.7135		25.1533	25.1050	24.3448	24.9353	24.4041	24.8915	23.3818
	9	26.1459	26.0982	25.7633	26.2206	25.7351	26.0065	24.1776		26.0072	25.8164	25.1265	25.8631	25.1310	25.9092	24.3065
	10	26.8214	26.7884	26.3162	26.6867	26.3212	26.5252	24.6270		27.0580	26.6239	25.7109	26.8672	25.5503	26.6832	23.3187
	15	30.2230	30.2786	29.0026	30.3224	28.8439	29.7970	26.6702		28.4823	28.6101	27.4389	28.2749	27.9789	28.5384	26.9208
	20	32.5178	32.2824	31.1105	32.6471	30.7657	31.6089	29.3500		31.0909	30.2209	29.5583	30.8247	29.2329	30.0101	28.1920
	30	35.6553	35.7611	33.5503	35.7363	33.8251	34.0759	31.9949		34.4386	33.9666	32.9237	34.4272	32.7464	33.1187	31.0745
X3	2	13.5597	13.5597	13.5597	13.5597	13.5597	13.5597	13.5856	X9	13.9264	13.9264	13.9264	13.9264	13.9264	13.9264	13.9408
	3	15.4668	15.4608	15.4653	15.4668	15.4659	15.4668	15.8627		17.4209	17.4217	17.4209	17.4209	17.4200	17.4217	17.0266
	4	18.6812	18.6322	18.7060	18.6334	18.7064	18.6933	17.7343		19.7395	19.7373	19.7204	19.7387	19.7242	19.7436	18.6316
	5	20.5014	20.5286	20.9156	20.4033	20.8693	20.3339	18.6695		20.6141	20.6085	20.4564	20.5715	20.5183	20.5629	20.1364

The bold value indicates the best value.

Algorithms
Fig. 6 Average PSNR values under Kapure's entropy
7.4. Structured similarity index metric (SSIM)

Unfortunately, PSNR calculates only the ratio of the error between the segmented and the source image without taking into consideration the structure of the image. Therefore, SSIM [61] is proposed to measure the similarity, contrast distortion and brightness between the original and the segmented one using the following formula:

$$
\begin{equation*}
\operatorname{SSIM}(0, S)=\frac{\left(2 \mu_{o} \mu_{s}+a\right)\left(2 \sigma_{o s}+b\right)}{\left(\mu_{0}^{2}+\mu_{s}{ }^{2}+a\right)\left(\sigma_{0}{ }^{2}+\sigma_{S}{ }^{2}+b\right)} \tag{27}
\end{equation*}
$$

Where μ_{o} is the average intensities of the original image, while μ_{s} indicates the average intensities of the segmented image. σ_{o}, σ_{s} are the SD of the original and segmented images, respectively. $\sigma_{o s}$ are the covariance between the two images. And a, b is equal to 0.001 and 0.003 , respectively. SSIM must also be maximized to get better results.

In order to inspect the results under using Kapur's entropy as a fitness function, the average SSIM values obtained within 20 runs under Kapur's are calculated and given in Table 5. This table shows that HSMA_WOA could get to the best in 57 cases and equal in 24 while its performance on the other cases is converged with the other algorithms. Meanwhile, SMA could outperform in 24 and equal in 22. Fig. 7 shows the superiority of HSMA_WOA in comparison with SMA that is superior to the others.

img	T	HSMA_WOA	SMA	$\begin{aligned} & \hline \text { FFA } \\ & {[39]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WOA } \\ & \text { [33] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HHA } \\ & {[38]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LShade } \\ {[59]} \\ \hline \end{gathered}$	Img	HSMA_WOA	SMA	$\begin{aligned} & \hline \text { FFA } \\ & {[39]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { WOA } \\ {[33]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HHA } \\ & {[38]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LShade } \\ {[59]} \\ \hline \end{gathered}$
X1	2	0.7439	0.7439	0.7439	0.7441	0.7439	0.7439	0.7250	X7	0.8638	0.8727	0.8727	0.8638	0.8727	0.8727	0.8637
	3	0.8745	0.8745	0.8746	0.8746	0.8746	0.8748	0.8577		0.9038	0.9038	0.9036	0.9038	0.9036	0.9036	0.8833
	4	0.9243	0.9246	0.9248	0.9243	0.9246	0.9240	0.8993		0.9368	0.9370	0.9367	0.9368	0.9367	0.9370	0.9114
	5	0.9524	0.9524	0.9537	0.9525	0.9535	0.9523	0.9271		0.9576	0.9578	0.9570	0.9577	0.9571	0.9577	0.9427
	6	0.9654	0.9651	0.9669	0.9653	0.9667	0.9650	0.9364		0.9659	0.9658	0.9650	0.9660	0.9652	0.9657	0.9387
	7	0.9741	0.9715	0.9730	0.9744	0.9714	0.9727	0.9498		0.9688	0.9706	0.9686	0.9685	0.9680	0.9689	0.9559
	8	0.9746	0.9763	0.9782	0.9751	0.9781	0.9747	0.9570		0.9722	0.9721	0.9701	0.9723	0.9709	0.9710	0.9571
	9	0.9791	0.9782	0.9818	0.9786	0.9815	0.9778	0.9658		0.9745	0.9733	0.9715	0.9744	0.9722	0.9740	0.9598
	10	0.9816	0.9822	0.9849	0.9818	0.9840	0.9808	0.9720		0.9763	0.9759	0.9733	0.9758	0.9733	0.9755	0.9607
	15	0.9910	0.9912	0.9916	0.9912	0.9918	0.9904	0.9825		0.9812	0.9811	0.9785	0.9812	0.9781	0.9785	0.9712
	20	0.9939	0.9937	0.9940	0.9938	0.9943	0.9926	0.9893		0.9833	0.9833	0.9820	0.9829	0.9806	0.9814	0.9776
	30	0.9956	0.9959	0.9957	0.9956	0.9960	0.9949	0.9930		0.9854	0.9848	0.9841	0.9848	0.9838	0.9845	0.9828
X2	2	0.8255	0.8255	0.8255	0.8255	0.8255	0.8255	0.7973	X8	0.7400	0.7400	0.7400	0.7400	0.7401	0.7400	0.7498
	3	0.9162	0.9162	0.9161	0.9162	0.9161	0.9161	0.8683		0.9058	0.9058	0.9058	0.9058	0.9058	0.9060	0.8904
	4	0.9238	0.9238	0.9234	0.9240	0.9235	0.9239	0.8953		0.9329	0.9328	0.9304	0.9321	0.9353	0.9364	0.9099
	5	0.9524	0.9525	0.9512	0.9526	0.9516	0.9522	0.9124		0.9533	0.9529	0.9482	0.9522	0.9469	0.9532	0.9299
	6	0.9628	0.9621	0.9613	0.9627	0.9613	0.9620	0.9231		0.9656	0.9641	0.9613	0.9653	0.9604	0.9649	0.9366
	7	0.9642	0.9655	0.9630	0.9642	0.9633	0.9645	0.8546		0.9706	0.9695	0.9686	0.9705	0.9690	0.9705	0.9449
	8	0.9767	0.9768	0.9725	0.9770	0.9734	0.9765	0.9415		0.9775	0.9770	0.9721	0.9763	0.9727	0.9759	0.9579
	9	0.9808	0.9805	0.9786	0.9811	0.9781	0.9801	0.9608		0.9811	0.9802	0.9763	0.9807	0.9761	0.9806	0.9635
	10	0.9833	0.9831	0.9806	0.9827	0.9807	0.9821	0.8743		0.9845	0.9829	0.9788	0.9839	0.9777	0.9833	0.9563
	15	0.9915	0.9912	0.9877	0.9912	0.9874	0.9902	0.9722		0.9884	0.9885	0.9835	0.9877	0.9857	0.9875	0.9787
	20	0.9943	0.9937	0.9914	0.9944	0.9901	0.9927	0.9851		0.9927	0.9909	0.9882	0.9923	0.9871	0.9901	0.9825
	30	0.9965	0.9963	0.9935	0.9964	0.9936	0.9948	0.9906		0.9957	0.9951	0.9934	0.9957	0.9927	0.9940	0.9898
X3	2	0.7356	0.7356	0.7356	0.7356	0.7356	0.7356	0.5969	X9	0.8256	0.8256	0.8256	0.8256	0.8256	0.8256	0.8213
	3	0.8023	0.8020	0.8026	0.8023	0.8022	0.8023	0.5878		0.9151	0.9151	0.9151	0.9151	0.9151	0.9151	0.9090
	4	0.8804	0.8791	0.8802	0.8790	0.8810	0.8802	0.7837		0.9518	0.9518	0.9516	0.9518	0.9516	0.9518	0.9344
	5	0.9120	0.9127	0.9199	0.9102	0.9189	0.9090	0.6624		0.9590	0.9589	0.9577	0.9588	0.9581	0.9587	0.9489
	6	0.9596	0.9569	0.9608	0.9596	0.9595	0.9595	0.9099		0.9724	0.9724	0.9719	0.9724	0.9719	0.9721	0.9557
	7	0.9648	0.9643	0.9700	0.9649	0.9689	0.9641	0.9148		0.9782	0.9782	0.9772	0.9782	0.9771	0.9781	0.9667
	8	0.9776	0.9740	0.9802	0.9768	0.9799	0.9758	0.9348		0.9819	0.9824	0.9809	0.9822	0.9803	0.9823	0.9695
	9	0.9838	0.9809	0.9842	0.9838	0.9844	0.9836	0.9398		0.9855	0.9850	0.9837	0.9854	0.9831	0.9847	0.9728
	10	0.9859	0.9852	0.9867	0.9856	0.9869	0.9853	0.9572		0.9878	0.9879	0.9861	0.9878	0.9860	0.9876	0.9726
	15	0.9908	0.9912	0.9926	0.9899	0.9927	0.9904	0.9753		0.9928	0.9930	0.9923	0.9919	0.9918	0.9910	0.9833
	20	0.9931	0.9941	0.9954	0.9927	0.9954	0.9925	0.9811		0.9952	0.9952	0.9942	0.9945	0.9938	0.9932	0.9899
	30	0.9962	0.9969	0.9973	0.9957	0.9974	0.9958	0.9903		0.9971	0.9969	0.9959	0.9967	0.9963	0.9961	0.9939
X4	2	0.7787	0.7787	0.7787	0.7764	0.7787	0.7787	0.5612	X10	0.8216	0.8216	0.8216	0.8217	0.8216	0.8217	0.7915

	3	0.8813	0.8813	0.8813	0.8813	0.8813	0.8813	0.8058		0.9115	0.9115	0.9115	0.9115	0.9115	0.9115	0.8726
	4	0.9368	0.9369	0.9368	0.9369	0.9359	0.9361	0.8656		0.9411	0.9414	0.9414	0.9417	0.9418	0.9413	0.9071
	5	0.9542	0.9539	0.9518	0.9542	0.9522	0.9542	0.9091		0.9603	0.9603	0.9595	0.9603	0.9595	0.9602	0.9130
	6	0.9662	0.9662	0.9634	0.9661	0.9637	0.9657	0.9155		0.9705	0.9707	0.9693	0.9710	0.9691	0.9705	0.9291
	7	0.9725	0.9727	0.9706	0.9726	0.9691	0.9703	0.9276		0.9757	0.9761	0.9739	0.9754	0.9732	0.9753	0.9345
	8	0.9756	0.9758	0.9731	0.9755	0.9720	0.9748	0.9368		0.9796	0.9803	0.9785	0.9799	0.9788	0.9789	0.9524
	9	0.9781	0.9773	0.9747	0.9753	0.9758	0.9771	0.9468		0.9839	0.9842	0.9827	0.9839	0.9820	0.9828	0.9544
	10	0.9804	0.9800	0.9771	0.9800	0.9773	0.9788	0.9523		0.9876	0.9870	0.9842	0.9874	0.9845	0.9864	0.9621
	15	0.9874	0.9864	0.9836	0.9872	0.9815	0.9865	0.9675		0.9925	0.9922	0.9910	0.9923	0.9913	0.9903	0.9685
	20	0.9903	0.9892	0.9875	0.9896	0.9845	0.9885	0.9735		0.9953	0.9944	0.9934	0.9950	0.9939	0.9935	0.9829
	30	0.9922	0.9909	0.9899	0.9918	0.9898	0.9912	0.9849		0.9961	0.9961	0.9956	0.9961	0.9942	0.9954	0.9909
X5	2	0.8627	0.8627	0.8627	0.8627	0.8627	0.8627	0.8491	X11	0.8247	0.8247	0.8247	0.8247	0.8247	0.8247	0.8201
	3	0.9311	0.9311	0.9311	0.9311	0.9311	0.9311	0.8950		0.8994	0.8994	0.8995	0.8994	0.8994	0.8994	0.8929
	4	0.9368	0.9366	0.9363	0.9370	0.9363	0.9374	0.7296		0.9381	0.9379	0.9377	0.9381	0.9375	0.9380	0.9237
	5	0.9404	0.9402	0.9403	0.9410	0.9417	0.9368	0.8291		0.9542	0.9539	0.9533	0.9539	0.9532	0.9538	0.9362
	6	0.9589	0.9565	0.9575	0.9581	0.9548	0.9569	0.9327		0.9638	0.9635	0.9631	0.9636	0.9628	0.9636	0.9444
	7	0.9652	0.9636	0.9611	0.9635	0.9600	0.9617	0.9418		0.9708	0.9706	0.9694	0.9708	0.9697	0.9707	0.9572
	8	0.9723	0.9713	0.9657	0.9719	0.9678	0.9691	0.9481		0.9766	0.9764	0.9748	0.9763	0.9751	0.9764	0.9613
	9	0.9737	0.9740	0.9687	0.9739	0.9682	0.9714	0.7643		0.9809	0.9808	0.9781	0.9808	0.9777	0.9798	0.9669
	10	0.9739	0.9733	0.9699	0.9712	0.9684	0.9713	0.9614		0.9834	0.9834	0.9817	0.9831	0.9811	0.9828	0.9700
	15	0.9815	0.9822	0.9798	0.9797	0.9788	0.9785	0.9708		0.9906	0.9897	0.9875	0.9905	0.9877	0.9893	0.9802
	20	0.9849	0.9850	0.9847	0.9835	0.9845	0.9828	0.9772		0.9931	0.9936	0.9921	0.9923	0.9916	0.9916	0.9860
	30	0.9872	0.9868	0.9866	0.9863	0.9870	0.9856	0.9841		0.9951	0.9949	0.9941	0.9944	0.9941	0.9932	0.9900
X6	2	0.7549	0.7549	0.7549	0.7549	0.7549	0.7549	0.7461	X12	0.6720	0.6720	0.6720	0.6720	0.6720	0.6720	0.3302
	3	0.8863	0.8863	0.8863	0.8863	0.8862	0.8863	0.8712		0.7837	0.7837	0.7837	0.7837	0.7837	0.7837	0.4418
	4	0.9131	0.9131	0.9129	0.9131	0.9130	0.9131	0.8925		0.8514	0.8482	0.8518	0.8510	0.8518	0.8502	0.7148
	5	0.9281	0.9282	0.9263	0.9275	0.9269	0.9288	0.8965		0.8710	0.8713	0.8777	0.8710	0.8757	0.8705	0.8963
	6	0.9318	0.9354	0.9333	0.9305	0.9302	0.9343	0.9061		0.8975	0.8994	0.9190	0.8972	0.9180	0.8972	0.9418
	7	0.9303	0.9359	0.9320	0.9282	0.9318	0.9251	0.9006		0.9661	0.9524	0.9708	0.9575	0.9627	0.9423	0.8765
	8	0.9399	0.9397	0.9323	0.9357	0.9357	0.9331	0.9260		0.9688	0.9824	0.9837	0.9804	0.9837	0.9828	0.9672
	9	0.9441	0.9429	0.9370	0.9422	0.9394	0.9395	0.9219		0.9864	0.9853	0.9863	0.9864	0.9864	0.9858	0.9724
	10	0.9493	0.9482	0.9454	0.9467	0.9420	0.9425	0.9311		0.9881	0.9879	0.9886	0.9893	0.9882	0.9894	0.9758
	15	0.9560	0.9554	0.9538	0.9547	0.9481	0.9532	0.9462		0.9939	0.9935	0.9934	0.9936	0.9936	0.9920	0.9824
	20	0.9587	0.9588	0.9566	0.9575	0.9566	0.9564	0.9523		0.9959	0.9960	0.9957	0.9957	0.9956	0.9950	0.9903
	30	0.9607	0.9604	0.9589	0.9602	0.9590	0.9594	0.9571		0.9975	0.9972	0.9968	0.9972	0.9971	0.9964	0.9918

Bold value indicates the best value.

Fig. 7 Average SSIM values obtained under Kapure's entropy

7.5 Universal Quality Index (UQI)

UQI [62] is an indicator similar to SSIM in measuring the quality of the segmented image based on the similarity structure between the two images rather than the error rate and mathematically formulated as in Eq. 24.

$$
\begin{equation*}
\operatorname{UQI}(0, S)=\frac{\left(4 \sigma_{0 s} \mu_{0} \mu_{\mathrm{s}}\right)}{\left(\mu_{\mathrm{o}}{ }^{2}+\mu_{\mathrm{s}}^{2}\right)\left(\sigma_{\mathrm{o}}^{2}+\sigma_{\mathrm{s}}^{2}\right)} \tag{28}
\end{equation*}
$$

where O refers to the original image, S is the segmented image, μ_{o} are the mean intensities of the original image, μ_{s} are the mean intensities of the and segmented image. σ_{o} and σ_{s} are the standard deviations for both the source and predicted image; $\sigma_{\text {os }}$ is the covariance between the separated and source image. A higher value of UQI indicates better results.

After executing each algorithm, 20 runs and calculated the average UQI within them obtained by each one under Kapure's entropy, it is introduced in Table 5. By observing outcomes in this table, we notify that HSMA_WOA could overcome the others in 58 cases and equal in 20 others. In the same context, SMA could achieve the best in 18 and equal in 19. Specifically, the proposed algorithms could be superior and equal in 101 out of 144 test cases. Based on that, the proposed algorithms are competitive with others for generating a better-segmented image. In order to illustrate the data in Table 6, Fig. 8 is taken to show the average UQI obtained by the algorithms within 20 runs and all the test images and threshold levels. This figure shows the superiority of the comparison of the proposed algorithms with the others under Kapur's method.

Table 6: UQI values under Kapur's entropy.

img	T	HSMA_WOA	SMA	$\begin{aligned} & \hline \text { FFA } \\ & \text { [39] } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { WOA } \\ \text { [33] } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HHA } \\ & {[38]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { LShade } \\ {[59]} \\ \hline \end{gathered}$	Img	HSMA_WOA	SMA	$\begin{aligned} & \hline \text { FFA } \\ & \text { [39] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WOA } \\ & \text { [33] } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SSA } \\ & {[60]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HHA } \\ & {[38]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { LShade } \\ {[59]} \\ \hline \end{gathered}$
X1	2	0.7479	0.7479	0.7478	0.7477	0.7479	0.7479	0.7262	X7	0.8641	0.8729	0.8729	0.8641	0.8729	0.8729	0.8647
	3	0.8760	0.8760	0.8761	0.8760	0.8760	0.8764	0.8590		0.9042	0.9042	0.9042	0.9042	0.9042	0.9042	0.8844
	4	0.9260	0.9259	0.9263	0.9258	0.9264	0.9255	0.9004		0.9380	0.9383	0.9379	0.9380	0.9379	0.9383	0.9126
	5	0.9538	0.9537	0.9553	0.9539	0.9550	0.9536	0.9285		0.9590	0.9593	0.9582	0.9590	0.9583	0.9590	0.9438
	6	0.9671	0.9668	0.9681	0.9669	0.9661	0.9666	0.9378		0.9673	0.9672	0.9662	0.9675	0.9665	0.9671	0.9398
	7	0.9752	0.9727	0.9742	0.9755	0.9755	0.9738	0.9512		0.9700	0.9718	0.9698	0.9697	0.9692	0.9701	0.9571
	8	0.9758	0.9777	0.9796	0.9765	0.9794	0.9760	0.9583		0.9734	0.9732	0.9713	0.9734	0.9721	0.9722	0.9583
	9	0.9804	0.9796	0.9831	0.9800	0.9827	0.9792	0.9670		0.9757	0.9745	0.9727	0.9756	0.9734	0.9752	0.9610
	10	0.9830	0.9836	0.9862	0.9832	0.9853	0.9821	0.9734		0.9776	0.9771	0.9745	0.9769	0.9745	0.9767	0.9619
	15	0.9925	0.9926	0.9931	0.9926	0.9933	0.9918	0.9838		0.9825	0.9824	0.9797	0.9824	0.9793	0.9798	0.9723
	20	0.9954	0.9952	0.9955	0.9953	0.9958	0.9941	0.9908		0.9845	0.9845	0.9832	0.9842	0.9818	0.9827	0.9788
	30	0.9971	0.9974	0.9972	0.9971	0.9975	0.9964	0.9944		0.9867	0.9861	0.9854	0.9861	0.9850	0.9858	0.9841
X2	2	0.8263	0.8263	0.8263	0.8263	0.8263	0.8263	0.7989	X8	0.7406	0.7406	0.7406	0.7406	0.7406	0.7406	0.7506
	3	0.9181	0.9181	0.9180	0.9181	0.9180	0.9180	0.8696		0.9064	0.9063	0.9065	0.9064	0.9063	0.9066	0.8912
	4	0.9248	0.9248	0.9244	0.9251	0.9244	0.9250	0.8966		0.9338	0.9337	0.9312	0.9329	0.9361	0.9372	0.9108
	5	0.9532	0.9533	0.9524	0.9534	0.9527	0.9531	0.9137		0.9541	0.9537	0.9491	0.9529	0.9478	0.9543	0.9308
	6	0.9639	0.9631	0.9627	0.9639	0.9627	0.9640	0.9243		0.9666	0.9650	0.9622	0.9662	0.9614	0.9659	0.9375
	7	0.9653	0.9666	0.9640	0.9654	0.9643	0.9656	0.9438		0.9713	0.9704	0.9695	0.9714	0.9699	0.9714	0.9457
	8	0.9781	0.9779	0.9737	0.9782	0.9746	0.9778	0.9427		0.9783	0.9779	0.9730	0.9771	0.9735	0.9767	0.9588
	9	0.9819	0.9815	0.9798	0.9822	0.9792	0.9812	0.9618		0.9820	0.9811	0.9772	0.9815	0.9770	0.9815	0.9643
	10	0.9845	0.9842	0.9817	0.9840	0.9818	0.9831	0.9647		0.9854	0.9838	0.9797	0.9848	0.9786	0.9841	0.9572
	15	0.9924	0.9923	0.9887	0.9922	0.9884	0.9913	0.9732		0.9893	0.9893	0.9844	0.9885	0.9865	0.9884	0.9796
	20	0.9952	0.9947	0.9924	0.9954	0.9912	0.9936	0.9861		0.9935	0.9918	0.9890	0.9932	0.9880	0.9910	0.9834
	30	0.9975	0.9973	0.9945	0.9976	0.9946	0.9958	0.9916		0.9966	0.9959	0.9943	0.9965	0.9935	0.9949	0.9907
X3	2	0.7345	0.7345	0.7345	0.7345	0.7345	0.7345	0.7353	X9	0.8269	0.8269	0.8269	0.8269	0.8269	0.8269	0.8227
	3	0.8029	0.8027	0.8032	0.8029	0.8029	0.8029	0.8111		0.9160	0.9160	0.9160	0.9160	0.9160	0.9160	0.9103
	4	0.8801	0.8790	0.8806	0.8790	0.8806	0.8804	0.8546		0.9528	0.9527	0.9525	0.9527	0.9525	0.9527	0.9358
	5	0.9125	0.9130	0.9202	0.9106	0.9193	0.9093	0.8676		0.9608	0.9607	0.9593	0.9605	0.9598	0.9604	0.9503
	6	0.9605	0.9576	0.9604	0.9605	0.9600	0.9603	0.9105		0.9732	0.9733	0.9730	0.9733	0.9729	0.9731	0.9569
	7	0.9653	0.9649	0.9706	0.9654	0.9695	0.9646	0.9153		0.9795	0.9794	0.9783	0.9794	0.9781	0.9794	0.9679
	8	0.9783	0.9747	0.9809	0.9775	0.9806	0.9765	0.9354		0.9833	0.9836	0.9821	0.9835	0.9815	0.9835	0.9706
	9	0.9849	0.9816	0.9849	0.9844	0.9851	0.9843	0.9404		0.9864	0.9861	0.9848	0.9864	0.9841	0.9857	0.9739
	10	0.9867	0.9860	0.9874	0.9863	0.9877	0.9861	0.9579		0.9888	0.9890	0.9871	0.9889	0.9871	0.9887	0.9738
	15	0.9916	0.9921	0.9935	0.9907	0.9936	0.9912	0.9760		0.9939	0.9941	0.9934	0.9929	0.9929	0.9921	0.9844
	20	0.9940	0.9950	0.9964	0.9936	0.9963	0.9934	0.9819		0.9963	0.9962	0.9952	0.9955	0.9949	0.9942	0.9909
	30	0.9971	0.9978	0.9983	0.9967	0.9983	0.9968	0.9912		0.9981	0.9979	0.9970	0.9977	0.9973	0.9971	0.9949
X4	2	0.7793	0.7793	0.7793	0.7770	0.7793	0.7793	0.7374	X10	0.8214	0.8214	0.8214	0.8216	0.8214	0.8217	0.7919
	3	0.8818	0.8818	0.8818	0.8818	0.8818	0.8819	0.8067		0.9120	0.9120	0.9120	0.9121	0.9120	0.9120	0.8731
	4	0.9376	0.9377	0.9376	0.9377	0.9367	0.9369	0.8665		0.9419	0.9422	0.9422	0.9425	0.9426	0.9421	0.9078
	5	0.9552	0.9548	0.9527	0.9551	0.9531	0.9551	0.9100		0.9610	0.9610	0.9602	0.9611	0.9602	0.9610	0.9137
	6	0.9670	0.9670	0.9643	0.9668	0.9646	0.9665	0.9163		0.9714	0.9715	0.9701	0.9719	0.9699	0.9714	0.9298
	7	0.9733	0.9735	0.9714	0.9734	0.9700	0.9712	0.9284		0.9766	0.9769	0.9748	0.9763	0.9741	0.9762	0.9352
	8	0.9764	0.9767	0.9740	0.9764	0.9729	0.9757	0.9377		0.9805	0.9812	0.9794	0.9808	0.9797	0.9798	0.9533
	9	0.9789	0.9782	0.9756	0.9762	0.9767	0.9780	0.9477		0.9849	0.9852	0.9836	0.9849	0.9829	0.9837	0.9552

The bold value indicates the best value.

Fig. 8 Average UQI values obtained under Kapur's entropy
Fig. 9 shows the segmented images obtained by the proposed algorithm on $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, and X 3 under both Kapur's for the threshold levels $2,3,4,5,6,7,8,9,10,15,20$, and 30

Fig.9: Segmented images by proposed algorithm under Kapure's entropy

7.8.Comparison of convergence curve among SMA, HSMA_WOA, and WOA

In this part, the convergence rate by SMA, HSMA_WOA, and WOA will be observed to illustrate the effectiveness of our approach. Generally speaking, X1, X2, X3, X4, X5, and X6 test images with 30 threshold levels are used to check the convergence rate of each algorithm. After running each algorithm, the output in each iteration on each test image from X 1 to X 6 is plotted in Fig.10-15, respectively. Inspecting these figures show that within the first $\mathrm{CI}=100$ iteration, the convergence is accelerated as possible, but at the end of CI, the outcomes have no change and the possibility of reaching a better solution is so hard because the algorithm may be gotten stuck into local minima. As a result, it is time to integrate SMA with WOA to refresh its performance to get out of local optima, find better solutions and use the significant exploitation capability of SMA.

Fig. 10 convergence curve on X1

Fig. 11 convergence curve on X2

Fig. 12 convergence curve on X3

Fig. 14 convergence curve on X5

Fig. 13 convergence curve on X4

Fig. 15 convergence curve on X6

8. Conclusion and Future work

According to the ongoing outbreaks of COVID-19 worldwide since December 2019, the entire world has moved to rely on technology to find tools and techniques to help identify the infected persons out of the normal ones. After many attempts and confirmed by the medical scientists, chest CT images could significantly identify whether the suspected patients have been infected. COVID-19 infection could be identified by the bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities. Sometimes a rounded morphology and a peripheral lung distribution could be spotted. However, CT scan is so expensive compared to X-ray, and unfortunately, the specification of the infection under X-ray is so hard. The reason was that the X-ray images were considered normal images, so it could be processed using a machine learning technique to specify if this person infected or not. But when machine learning focused on the whole image, their accuracy reduced significantly. Therefore, it was necessary to find a tool to extract similar regions within the image until managing to improve the accuracy of the machine learning technique when classifying the CT images.

The process of separating or extracting the similar regions into an image was called image segmentation problem. According to that, in this paper, our techniques were based on extracting the similar small regions into chest images as an attempt to extract the regions that may contain COVID-19, and this process was known as image segmentation problem (ISP). Several techniques were proposed for tackling ISP. A technique called threshold-based segmentation was distinguished from involving those techniques with its simplicity, speed, and accuracy when segmenting an image. Hence, a new hybrid multi-thresholding approach based on the SMA behavior with WOA for overcoming ISP was proposed in this paper. Its effectiveness was observed with five state-of-art algorithms such as WOA, SSA, Lshade, HHA, and FFA. The comparison was performed by applying the algorithms on a set of chest X-ray images with threshold levels between 2 and 30. Based on the results obtained by each algorithm, the performance of the proposed algorithm was verified to outperform all other algorithms in the fitness values, SSIM, PSNR, UQI, CPU time and (Std).

With rapidly-increased reported cases worldwide and the need to verify our algorithm with new images, the future work will involve validating the performance of the proposed algorithm on a set of the test images taken from The Berkeley Segmentation Dataset and Benchmark. The aim will be focused on checking whether its performance is stable on the other images. Furthermore, the improved Slime mould algorithm will be applied to solve flow shop scheduling problems, DNA fragment assembly problems, and parameter estimation of the photovoltaic solar cell.

Acknowledgment

This research is partly supported by VC Research (VCR 0000075) for Prof Chang.

References

1. Bai, Y., et al., Presumed asymptomatic carrier transmission of COVID-19. Jama, 2020. 323(14): p. 14061407.
2. Guan, C.S., et al., Imaging Features of Coronavirus disease 2019 (COVID-19): Evaluation on Thin-Section CT. Academic Radiology, 2020.
3. Kuruvilla, J., et al. A review on image processing and image segmentation. in 2016 international conference on data mining and advanced computing (SAPIENCE). 2016. IEEE.
4. Hu, R., et al., Utilizing large scale vision and text datasets for image segmentation from referring expressions. arXiv preprint arXiv:1608.08305, 2016.
5. Mittal, M., et al., Image Segmentation Using Deep Learning Techniques in Medical Images, in Advancement of Machine Intelligence in Interactive Medical Image Analysis. 2020, Springer. p. 41-63.
6. Zhang, Z., et al., DENSE-INception U-net for medical image segmentation. Computer Methods and Programs in Biomedicine, 2020: p. 105395.
7. Wang, X., X. Wang, and D.M. Wilkes, An Efficient Image Segmentation Algorithmfor Object Recognition Using Spectral Clustering, in Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment. 2020, Springer. p. 215-234.
8. Karydas, C.G., Optimization of multi-scale segmentation of satellite imagery using fractal geometry. International Journal of Remote Sensing, 2020. 41(8): p. 2905-2933.
9. Su, T. and S . Zhang, Local and global evaluation for remote sensing image segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 2017. 130:p. 256-276.
10. Alberti, M., et al. Historical document image segmentation with LDA-initialized deep neural networks. in Proceedings of the 4th International Workshop on Historical Document Imaging and Processing. 2017.
11. Naoum, A., J. Nothman, and J. Curran. Article segmentation in digitised newspapers with a $2 D$ Markov model. in 2019 International Conference on Document Analysis and Recognition (ICDAR). 2019. IEEE.
12. Barman, R., et al., Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers. arXiv preprint arXiv:2002.06144, 2020.
13. Aksac, A., T. Ozyer, and R. Alhaji, Complex networks driven salient region detection based on superpixel segmentation. Pattern Recognition, 2017. 66: p. 268-279.
14. Prathusha, P. and S. Jyothi, A Novel edge detection algorithmfor fast and efficient image segmentation, in Data Engineering and Intelligent Computing. 2018, Springer. p. 283-291.
15. Narayanan, B.N.,et al., Optimizedfeatureselection-based clustering approachfor computer-aided detection of lung nodules in different modalities. Pattern Analysis and Applications, 2019. 22(2): p. 559-571.
16. Han, J., et al., A new multi-threshold image segmentation approach using state transition algorithm. Applied Mathematical Modelling, 2017. 44: p. 588-601.
17. Oliva, D., et al., A multilevel thresholding algorithmusing electromagnetismoptimization. Neurocomputing, 2014. 139: p. 357-381.
18. Arora, S., et al., Multilevel thresholdingforimage segmentation through a fast statistical recursive algorithm. Pattern Recognition Letters, 2008. 29(2): p. 119-125.
19. Dirami, A., et al., Fastmultilevel thresholdingforimage segmentation through a multiphaselevel setmethod. Signal Processing, 2013. 93(1): p. 139-153.
20. Kapur, J.N., PK Sahoo, and A.K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics, and image processing, 1985. 29(3): p. 273-285.
21. Oliva, D., M.A.Elaziz, and S. Hinojosa, Fuzzy entropy approachesforimage segmentation, in Metaheuristic Algorithms for Image Segmentation: Theory and Applications. 2019, Springer. p. 141-147.
22. Abdel-Basset, M., et al., A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Generation Computer Systems, 2018. 85: p. 129-145.
23. Sayed, G.I., A.E. Hassanien, and A.T. Azar, Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications, 2019. 31(1): p. 171-188.
24. Rizk-Allah, R.M., et al., A new binary salp swarm algorithm: development and application for optimization tasks. NeuralComputing and Applications, 2019. 31(5): p. 1641-1663.
25. Cuevas, E., J. Gálvez, and O. Avalos, An Enhanced Crow Search Algorithm Applied to Energy Approaches, in Recent Metaheuristics Algorithms for Parameter Identification. 2020, Springer. p. 27-49.
26. Cuevas, E., F. Fausto, and A. González, The Locust Swarm Optimization Algorithm, in New Advancements in Swarm Algorithms: Operators and Applications. 2020, Springer. p. 139-159.
27. Ibrahim, R.A., et al., An opposition-based social spider optimization for feature selection. Soft Computing, 2019. 23(24): p. 13547-13567.
28. Guo, C. and H. Li. Multilevel thresholding method for image segmentation based on an adaptive particle swarm optimization algorithm. in Australasian joint conference on artificial intelligence. 2007. Springer.
29. Xiong, L., et al., Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM. The Journal of Supercomputing, 2020: p. 1-15.
30. Di Martino, F. and S. Sessa, PSO image thresholding on images compressed via fuzzy transforms. Information Sciences, 2020. 506: p. 308-324.
31. Kaveh, A. and S. Talatahari, An improved ant colony optimization for constrained engineering design problems. Engineering Computations, 2010. 27(1): p. 155-182.
32. Huo, F., X. Sun, and W. Ren, Multilevel image threshold segmentation using an improved Bloch quantum artificial bee colony algorithm. Multimedia Tools and Applications, 2020. 79(3): p. 2447-2471.
33. El Aziz, MA, A.A. Ewees, and A.E. Hassanien, Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 2017. 83:p. 242-256.
34. Elsayed, SM, RA Sarker, and DL Essam, A new genetic algorithmfor solving optimization problems. Engineering Applications of Artificial Intelligence, 2014. 27: p. 57-69.
35. Kandhway, P. and A.K. Bhandari, Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimedia Tools and Applications, 2019. 78(16): p. 2261322641.
36. Agrawal, S., et al., Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm and Evolutionary Computation, 2013. 11: p. 16-30.
37. Chakraborty, F., D. Nandi, and P.K. Roy, Oppositional symbiotic organisms search optimization for multilevel thresholding of color image. Applied Soft Computing, 2019: p. 105577.
38. Bao, X., H. Jia, and C. Lang, A Novel Hybrid Harris Hawks Optimization for Color Image Multilevel Thresholding Segmentation. IEEE Access, 2019. 7: p. 76529-76546.
39. Erdmann, H., et al., A study of a firefly meta-heuristics for multithreshold image segmentation, in Developments in medical image processing and computational vision. 2015, Springer. p. 279-295.
40. Wang, R., et al., A hybrid flower pollination algorithm based modified randomized location for multithreshold medical image segmentation. Bio-medical materials and engineering, 2015. 26(s1): p. S1345S1351.
41. Oliva, D., et al., Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Systems with Applications, 2017. 79: p. 164-180.
42. Yao, X., et al. Multi-Threshold Image Segmentation Based on Improved Grey Wolf Optimization Algorithm. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing.
43. Horng, M.-H., Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Systems with Applications, 2010. 37(6): p. 4580-4592.
44. Cuevas, E., F. Fausto, and A. González, Locust Search Algorithm Applied to Multi-threshold Segmentation, in New Advancements in Swarm Algorithms: Operators and Applications, E. Cuevas, F. Fausto, and A. González, Editors. 2020, Springer International Publishing: Cham. p. 211-240.
45. Singla, A. and S. Patra, A fast automatic optimal threshold selection technique for image segmentation. Signal Image \& Video Processing, 11: 1-8. 2016.
46. Manikandan, S., et al., Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement, 2014. 47: p. 558-568.
47. Maitra, M. and A. Chatterjee, A hybrid cooperative-comprehensive learning based PSO algorithmfor image segmentation using multilevel thresholding. Expert Systems with Applications, 2008. 34(2): p. 1341-1350.
48. Liu, Y., et al., Modified particle swarm optimization-based multilevel thresholding for image segmentation. Soft computing, 2015. 19(5):p. 1311-1327.
49. Ghamisi, P., et al., Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Transactions on Geoscience and Remote sensing, 2013. 52(5): p. 2382-2394.
50. Chen, K., et al., Multilevel image segmentation based on an improved firefly algorithm. Mathematical Problems in Engineering, 2016. 2016.
51. Bhandari, A.K., A. Kumar, and G.K. Singh, Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions. Expert Systems with Applications, 2015. 42(3): p. 1573-1601.
52. Sanyal, N., A. Chatterjee, and S. Munshi, An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation. Expert Systems with Applications, 2011. 38(12): p. 15489-15498.
53. Sathya, P. and R.Kayalvizhi, Modifiedbacterialforaging algorithmbasedmultilevel thresholdingforimage segmentation. Engineering Applications of Artificial Intelligence, 2011. 24(4): p. 595-615.
54. Abdel-Basset, M., V. Chang, and R. Mohamed, A novel equilibrium optimization algorithm for multithresholding image segmentation problems. Neural Computing and Applications, 2020: p. 1-34.
55. Abdel-Basset, M., et al., A hybrid COVID-19 detection model using an imp rovedmarine predators algo rithm and a ranking-based diversity reduction strategy. IEEE Access, 2020.
56. Chouksey, M., R.K. Jha, and R. Sharma, A fast technique for image segmentation based on two Metaheuristic algorithms. Multimedia Tools and Applications, 2020: p. 1-53.
57. Mirjalili, S. and A. Lewis, The whale optimization algorithm. Advances in engineering software, 2016. 95: p. 51-67.
58. Nakagaki, T., H. Yamada, and T. Ueda, Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophysical chemistry, 2000. 84(3): p. 195-204.
59. Brest, J., M.S. Maučec, and B. Bošković. iL-SHADE: Improved L-SHADE algorithmfor single objective real-parameter optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC). 2016. IEEE.
60. Wang, S., H. Jia, and X. Peng, Modifiedsalp swarmalgorithmbasedmultilevel thresholdingforcolorimage segmentation. Mathematical biosciences and engineering: MBE, 2019. 17(1): p. 700-724.
61. Hore, A. and D. Ziou. Image quality metrics: PSNR vs. SSIM. In 2010 20th International Conference on Pattern Recognition. 2010. IEEE.
62. Egiazarian, K., et al. New full-reference quality metrics based on HVS. in Proceedings of the Second International Workshop on Video Processing and Quality Metrics. 2006.
