4,362 research outputs found

    Changes in left atrial deformation in hypertrophic cardiomyopathy: Evaluation by vector velocity imaging.

    Get PDF
    OBJECTIVES: Hypertrophic cardiomyopathy (HCM) represents a generalized myopathic process affecting both ventricular and atrial myocardium. We assessed the global and regional left atrial (LA) function and its relation to left ventricular (LV) mechanics and clinical status in patients with HCM using Vector Velocity Imaging (VVI). METHODS: VVI of the LA and LV was acquired from apical four- and two-chamber views of 108 HCM patients (age 40 ± 19years, 56.5% men) and 33 healthy subjects, all had normal LV systolic function. The LA subendocardium was traced to obtain atrial volumes, ejection fraction, velocities, and strain (ϵ)/strain rate (SR) measurements. RESULTS: Left atrial reservoir (ϵsys,SRsys) and conduit (early diastolic SRe) function were significantly reduced in HCM compared to controls (P  - 1.8s(- 1) was 81% sensitive and 30% specific, SRa> - 1.5s(- 1) was 73% sensitive and 40% specific. By multivariate analysis global LVϵsys and LV septal thickness are independent predictors for LAϵsys, while end systolic diameter is the only independent predictor for SRsys, P < .001. CONCLUSION: Left atrial reservoir and conduit function as measured by VVI were significantly impaired while contractile function was preserved among HCM patients. Left atrial deformation was greatly influenced by LV mechanics and correlated to severity of phenotype

    Early diagnosis of cardiovascular diseases in workers: role of standard and advanced echocardiography

    Get PDF
    Cardiovascular disease (CVD) still remains the main cause of morbidity and mortality and consequently early diagnosis is of paramount importance. Working conditions can be regarded as an additional risk factor for CVD. Since different aspects of the job may affect vascular health differently, it is important to consider occupation from multiple perspectives to better assess occupational impacts on health. Standard echocardiography has several targets in the cardiac population, as the assessment of myocardial performance, valvular and/or congenital heart disease, and hemodynamics. Three-dimensional echocardiography gained attention recently as a viable clinical tool in assessing left ventricular (LV) and right ventricular (RV), volume, and shape. Two-dimensional (2DSTE) and, more recently, three-dimensional speckle tracking echocardiography (3DSTE) have also emerged as methods for detection of global and regional myocardial dysfunction in various cardiovascular diseases, and applied to the diagnosis of subtle LV and RV dysfunction. Although these novel echocardiographic imaging modalities have advanced our understanding of LV and RV mechanics, overlapping patterns often show challenges that limit their clinical utility. This review will describe the current state of standard and advanced echocardiography in early detection (secondary prevention) of CVD and address future directions for this potentially important diagnostic strategy

    Moving Domain Computational Fluid Dynamics to Interface with an Embryonic Model of Cardiac Morphogenesis

    Get PDF
    Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP)y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis. © 2013 Lee et al

    Functional Assessment for Congenital Heart Disease

    Get PDF
    published_or_final_versio

    Assessment of Left Atrial Deformation and Function by 2-Dimensional Speckle Tracking Echocardiography in Healthy Dogs and Dogs With Myxomatous Mitral Valve Disease

    Get PDF
    open7noBackground: The assessment of left atrial (LA) function by 2-dimensional speckle tracking echocardiography (STE) holds important clinical implications in human medicine. Few similar data are available in dogs. Objectives: To assess LA function by STE in dogs with and without myxomatous mitral valve disease (MMVD), analyzing LA areas, systolic function, and strain. Animals: One hundred and fifty dogs were divided according to the American College of Veterinary Internal Medicine classification of heart failure: 23 dogs in class A, 52 in class B1, 36 in class B2, and 39 in class C + D. Methods: Prospective observational study. Conventional morphologic and Doppler variables, LA areas, and STE-based LA strain analysis were performed in all dogs and results were compared among groups. Correlation analysis was carried out between LA STE variables and other echocardiographic variables. Results: Variability study showed good reproducibility for all the tested variables (coefficient of variation &lt;16%). Left atrial areas, fractional area change, peak atrial longitudinal strain (PALS), peak atrial contraction strain, and contraction strain index (CSI) differed significantly between groups B2 and C + D and all the other groups (overall P &lt; .001), whereas only PALS differed between groups B1 and A (P = .01). Left atrial areas increased with progression of the disease, whereas LA functional parameters decreased. Only CSI increased nonsignificantly from group A to group B1 and then progressively decreased. Thirty-one significant correlations (P &lt; .001, r &gt; .3) were found between conventional left heart echocardiographic variables and LA areas and strain variables. Conclusions and Clinical Importance: Left atrial STE analysis provides useful information on atrial function in the dog, highlighting a progressive decline in atrial function with worsening of MMVD.openBaron Toaldo, M; Romito, G.; Guglielmini, C.; Diana, A.; Pelle, N.G.; Contiero, B.; Cipone, M.Baron Toaldo, M; Romito, G.; Guglielmini, C.; Diana, A.; Pelle, N.G.; Contiero, B.; Cipone, M

    The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging

    Get PDF
    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination. Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function. When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed. With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR

    The prognostic value of left atrial and left ventricular strain in patients after ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention

    Get PDF
    Background: Global longitudinal strain (GLS) based on two-dimensional speckle-tracking echocardiography (2D-STE) might better reflect left ventricular (LV) contractile performance than conventional parameters. Recently, left atrial (LA) strain has been used as a more accurate alternative to assessing LA performance. The aim in this study was to assess the clinical prognostic value of left ventricular GLS (LV GLS) and peak atrial longitudinal strain (PALS) in patients after ST-segment elevation myocardial infarction (STEMI).Methods: The study enrolled 199 patients who underwent primary percutaneous coronary intervention (pPCI) for first STEMI. Conventional and 2D-STE were performed within 48 h after pPCI. LV GLS and PALS were related to LV remodeling at 6-month follow-up and to adverse events.Results: Diabetes mellitus, GLS and PALS independently predicted LV remodeling. With multivariable Cox proportional hazards, diabetes mellitus, GLS and PALS were predictive of adverse clinical outcomes. However, PALS did not add significant incremental value beyond LV GLS in the prediction of LV remodeling (increase in area under the receiver-operator characteristic curve [AUC]: 0.05, p = 0.24) and clinical events (even a decrease in AUC: 0.03, p = 0.69).Conclusions: Both GLS and PALS provide independent prognostic value for adverse LV remodeling and clinical outcomes after STEMI. However, the ability of the combination of PALS and GLS to predict LV remodeling and clinical outcomes may not be superior to that of a single indicator

    State diagrams of the heart – a new approach to describing cardiac mechanics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac time intervals have been described as a measure of cardiac performance, where prolongation, shortening and delay of the different time intervals have been evaluated as markers of cardiac dysfunction. A relatively recently developed method with improved ability to measure cardiac events is Tissue Doppler Imaging (TDI), allowing accurate measurement of myocardial movements.</p> <p>Methods</p> <p>We propose the state diagram of the heart as a new visualization tool for cardiac time intervals, presenting comparative, normalized data of systolic and diastolic performance, providing a more complete overview of cardiac function. This study aimed to test the feasibility of the state diagram method by presenting examples demonstrating its potential use in the clinical setting and by performing a clinical study, which included a comparison of the state diagram method with established echocardiography methods (E/E' ratio, LVEF and WMSI). The population in the clinical study consisted of seven patients with non ST-elevation myocardial infarction (NSTEMI) and seven control subjects, individually matched according to age and gender. The state diagram of the heart was generated from TDI curves from seven positions in the myocardium, visualizing the inter- and intraventricular function of the heart by displaying the cardiac phases.</p> <p>Results</p> <p>The clinical examples demonstrated that the state diagram allows for an intuitive visualization of pathological patterns as ischemia and dyssynchrony. Further, significant differences in percentage duration between the control group and the NSTEMI group were found in eight of the totally twenty phases (10 phases for each ventricle), e.g. in the transition phases (Pre-Ejection and Post-Ejection). These phases were significantly longer (> 2.18%) for the NSTEMI group than for the control group (p < 0.05). No significant differences between the groups were found for the established echocardiography methods.</p> <p>Conclusion</p> <p>The test results clearly indicate that the state diagram has potential to be an efficient tool for visualization of cardiac dysfunction and for detection of NSTEMI.</p

    Will the real ventricular architecture please stand up?

    Get PDF
    Ventricular twisting, essential for cardiac function, is attributed to the contraction of myocardial helical fibers. The exact relationship between ventricular anatomy and function remains to be determined, but one commonly used explanatory model is the helical ventricular myocardial band (HVMB) model of Torrent-Guasp. This model has been successful in explaining many aspects of ventricular function, (Torrent-Guasp et al. Eur. J. Cardiothorac. Surg., 25, 376, 2004; Buckberg et al. Eur. J. Cardiothorac. Surg., 47, 587, 2015; Buckberg et al. Eur. J. Cardiothorac. Surg. 47, 778, 2015) but the model ignores important aspects of ventricular anatomy and should probably be replaced. The purpose of this review is to compare the HVMB model with a different model (nested layers). A complication when interpreting experimental observations that relate anatomy to function is that, in the myocardium, shortening does not always imply activation and lengthening does not always imply inactivation
    • …
    corecore