5,605 research outputs found

    Digital representation of historical globes : methods to make 3D and pseudo-3D models of sixteenth century Mercator globes

    Get PDF
    In this paper, the construction of digital representations of a terrestrial and celestial globe will be discussed. Virtual digital (3D) models play an important role in recent research and publications on cultural heritage. The globes discussed in this paper were made by Gerardus Mercator (1512-1594) in 1541 and 1551. Four techniques for the digital representation are discussed and analysed, all using high-resolution photographs of the globes. These photographs were taken under studio conditions in order to get equal lighting and to avoid unwanted light spots. These lighting conditions are important, since the globes have a highly reflective varnish covering. Processing these images using structure from motion, georeferencing of separate scenes and the combination of the photographs with terrestrial laser scanning data results in true 3D representations of the globes. Besides, pseudo-3D models of these globes were generated using dynamic imaging, which is an extensively used technique for visualisations over the Internet. The four techniques and the consequent results are compared on geometric and radiometric quality, with a special focus on their usefulness for distribution and visualisation during an exhibition in honour of the five hundredth birthday of Gerardus Mercator

    Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance

    Get PDF
    Finite element analysis (FEA) is a modelling technique increasingly used in anatomical studies investigating skeletal form and function. In the case of the cranium this approach has been applied to both living and fossil taxa to (for example) investigate how form relates to function or infer diet or behaviour. However, FE models of complex musculoskeletal structures always rely on simplified representations because it is impossible completely to image and represent every detail of skeletal morphology, variations in material properties and the complexities of loading at all spatial and temporal scales. The effects of necessary simplifications merit investigation. To this end, this study focuses on one aspect, model geometry, which is particularly pertinent to fossil material where taphonomic processes often destroy the finer details of anatomy or in models built from clinical CTs where the resolution is limited and anatomical details are lost. We manipulated the details of a finite element (FE) model of an adult human male cranium and examined the impact on model performance. First, using digital speckle interferometry, we directly measured strains from the infraorbital region and frontal process of the maxilla of the physical cranium under simplified loading conditions, simulating incisor biting. These measured strains were then compared with predicted values from FE models with simplified geometries that included modifications to model resolution, and how cancellous bone and the thin bones of the circum-nasal and maxillary regions were represented. Distributions of regions of relatively high and low principal strains and principal strain vector magnitudes and directions, predicted by the most detailed FE model, are generally similar to those achieved in vitro. Representing cancellous bone as solid cortical bone lowers strain magnitudes substantially but the mode of deformation of the FE model is relatively constant. In contrast, omitting thin plates of bone in the circum-nasal region affects both mode and magnitude of deformation. Our findings provide a useful frame of reference with regard to the effects of simplifications on the performance of FE models of the cranium and call for caution in the interpretation and comparison of FEA results

    Influence of structural position on fracture networks in the Torridon Group, Achnashellach fold and thrust belt, NW Scotland

    Get PDF
    Acknowledgements This research is funded by a NERC CASE studentship (NERC code NE/I018166/1) in partnership with Midland Valley. The authors thank Midland Valley for use of FieldMove Clino software for fracture data collection, and Move software for cross section construction, and strain modelling. 3D Field software is acknowledged for contour map creation. We also thank Toru Takeshita for overseeing the editorial process, and Catherine Hanks and Ole Petter Wennberg for constructive reviews.Peer reviewedPublisher PD

    Prototype of a Virtual Experiment Information System for the Mont Terri Underground Research Laboratory

    Get PDF
    Underground Research Laboratories (URLs) allow geoscientific in-situ experiments at large scale. At the Mont Terri URL in Switzerland, international research groups conduct numerous experiments in parallel. The measured and simulated data as well as research results obtained from them are highly relevant as they improve the general understanding of geological processes, for example in the context of radioactive waste disposal. Unfortunately, the data obtained at the test site is often only available to researchers who are directly involved in a particular experiment. Furthermore, typical visualisation techniques of such data by domain scientists often lack spatial context and accessing and exploring the data requires prior technical knowledge and a high level of effort.We created a digital replica of the Mont Terri URL and thereby implemented a prototype of a Virtual Experiment Information System that integrates highly heterogeneous data from several different sources. It allows accessing and exploring the relevant data embedded in its spatial context without much prior technical knowledge. Both, simulation results and observation data are displayed within the same system. The 4D visualisation approach focuses on three exemplary experiments conducted at Mont Terri and is easily transferable to other experiments or even other URLs. The Unity Game Engine has been used to develop the prototype. This allowed to build the application for various output devices like desktop computers or Virtual Reality hardware without much additional effort. The implemented system reduces the technical effort required to access and explore highly relevant research data and lowers the cognitive effort usually needed to gain insights from measurements, simulation models and context data. Moreover, it promotes exchange among research groups by enabling interactive visualisations embedded in the URL’s spatial context. In addition, a future use of the system for the communication of scientific methods and results to stakeholders or the general public is plausible

    Drift and its mediation in terrestrial orbits

    Get PDF
    The slow deformation of terrestrial orbits in the medium range, subject to lunisolar resonances, is well approximated by a family of Hamiltonian flow with 2.52.5 degree-of-freedom. The action variables of the system may experience chaotic variations and large drift that we may quantify. Using variational chaos indicators, we compute high-resolution portraits of the action space. Such refined meshes allow to reveal the existence of tori and structures filling chaotic regions. Our elaborate computations allow us to isolate precise initial conditions near specific zones of interest and study their asymptotic behaviour in time. Borrowing classical techniques of phase- space visualisation, we highlight how the drift is mediated by the complement of the numerically detected KAM tori.Comment: 22 pages, 11 figures, 1 table, 52 references. Comments and feedbacks greatly appreciated. This article is part of the Research Topic `The Earth-Moon System as a Dynamical Laboratory', confer https://www.frontiersin.org/research-topics/5819/the-earth-moon-system-as-a-dynamical-laborator

    The worsening impacts of land reclamation assessed with Sentinel-1: The Rize (Turkey) test case

    Get PDF
    Massive amounts of land are being reclaimed to build airports, new cities, ports, and highways. Hundreds of kilometers are added each year, as coastlines are extended further out to the sea. In this paper, this urbanization approach is monitored by Persistent Scatterer Interferometry (PSI) technique with Sentinel-1 SAR data. The study aims to explore this technology in order to support local authorities to detect and evaluate subtle terrain displacements. For this purpose, a large 3-years Sentinel-1 stack composed by 92 images acquired between 07/01/2015 to 27/01/2018 is employed and stacking techniques are chosen to assess ground motion. The test site of this study, Rize, Turkey, has been declared at high risk of collapse and radical solutions such as the relocation of the entire city in another area are been taken into consideration. A media fact-checking approach, i.e. evaluating national and international press releases on the test site, is considered for the paper and this work presents many findings in different areas of the city. For instance, alerts are confirmed by inspecting several buildings reported by the press. Critical infrastructures are monitored as well. Portions of the harbor show high displacement rates, up to 1 cm/year, proving reported warnings. Rural villages belonging to the same municipality are also investigated and a mountainous village affected by landslide is considered in the study. Sentinel-1 is demonstrated to be a suitable system to detect and monitor small changes or buildings and infrastructures for these scenarios. These changes may be highly indicative of imminent damage which can lead to the loss of the structural integrity and subsequent failure of the structure in the long-term. In Rize, only a few known motion-critical structures are monitored daily with in-situ technologies. SAR interferometry can assist to save expensive inspection and monitoring services, especially in highly critical cases such as the one studied in this paper

    In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete

    Get PDF
    In-situ micro X-ray Computed Tomography (XCT) tests of concrete cubes under progressive compressive loading were carried out to study 3D fracture evolution. Both direct segmentation of the tomography and digital volume correlation (DVC) mapping of the displacement field were used to characterise the fracture evolution. Realistic XCT-image based finite element (FE) models under periodic boundaries were built for asymptotic homogenisation of elastic properties of the concrete cube with Young’s moduli of cement and aggregates measured by micro-indentation tests. It is found that the elastic moduli obtained from the DVC analysis and the FE homogenisation are comparable and both within the Reuss-Voigt theoretical bounds, and these advanced techniques (in-situ XCT, DVC, micro-indentation and image-based simulations) offer highly-accurate, complementary functionalities for both qualitative understanding of complex 3D damage and fracture evolution and quantitative evaluation of key material properties of concrete
    corecore