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ARTICLE INFO ABSTRACT

Keywords: Massive amounts of land are being reclaimed to build airports, new cities, ports, and highways. Hundreds of
Sentinel-1 kilometers are added each year, as coastlines are extended further out to the sea. In this paper, this urbanization
Persistent Scatterer Interferometry approach is monitored by Persistent Scatterer Interferometry (PSI) technique with Sentinel-1 SAR data. The
Subsidence study aims to explore this technology in order to support local authorities to detect and evaluate subtle terrain
]S“::i:ﬁ:lamanon displacements. For this purpose, a large 3-years Sentinel-1 stack composed by 92 images acquired between 07/
Landfill 01/2015 to 27/01/2018 is employed and stacking techniques are chosen to assess ground motion. The test site of
Landslides this study, Rize, Turkey, has been declared at high risk of collapse and radical solutions such as the relocation of

the entire city in another area are been taken into consideration. A media fact-checking approach, i.e. evaluating
national and international press releases on the test site, is considered for the paper and this work presents many
findings in different areas of the city. For instance, alerts are confirmed by inspecting several buildings reported
by the press. Critical infrastructures are monitored as well. Portions of the harbor show high displacement rates,
up to 1cm/year, proving reported warnings. Rural villages belonging to the same municipality are also in-
vestigated and a mountainous village affected by landslide is considered in the study. Sentinel-1 is demonstrated
to be a suitable system to detect and monitor small changes or buildings and infrastructures for these scenarios.
These changes may be highly indicative of imminent damage which can lead to the loss of the structural integrity
and subsequent failure of the structure in the long-term. In Rize, only a few known motion-critical structures are
monitored daily with in-situ technologies. SAR interferometry can assist to save expensive inspection and
monitoring services, especially in highly critical cases such as the one studied in this paper.

1. Introduction coast in the north-east of Turkey. This city was reported on February

21, 2018, as: “Center of Turkey's Black Sea town Rize to be demolished,

The world's largest construction projects, ranging from highways,
airports, subways and dams are recently carried out in Turkey
(Srivastava and Full, 2016). Although they contribute to the country's
economic growth and the demographic transition, the sustainability in
cities is facing important challenges due to the lack of land for urban
growth. In this context, shorelines are used for residential expansion
through land reclamation and they are often exploited for expanding
and developing the cities with low cost solutions. Land reclamation is a
large business today, and the Ordu-Giresun and Rize-Artvinin airport
projects in the Black sea region are conducted by reclamation. The
small-town province of Rize, Turkey, has added 350.000 km? onto its
size over years by reclamation process (Ozhaseki, 2018). Rize hosts
about a hundred thousand inhabitants and it is located on the Black Sea

* Corresponding author.
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relocated aimed fears of collapse” (Ozhaseki, 2018). Indeed, the local
municipality and the government are planning radical solutions such as
the relocation of the entire town center in another place. The collapse
risk is due to terrain subsidence. Here, the main subsidence source is the
construction of buildings on artificial ground reclaimed to the sea. Since
the 60s, many multi-floors buildings have been erected despite the
original planning that was forecasting a maximum of three floors per
building. Moreover, new reclamation projects such as the airport con-
struction and the marine urban sprawl zoning plan are encouraged by
the authorities. However, it is crucial to monitor reclamation areas to
properly plan future construction projects in an efficient way in terms
of long term cost and environment.

In this context, structural health measurements can be performed,
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but they require proper demand from the building owners. In Turkey,
city municipalities like Rize provide structural health information but
only in response to extreme events such as heavy rainfalls, superloads
and evident cracks. These in-situ measurements are very reliable but
most of the time it is too late to repair the damage. Therefore, efficient
monitoring systems — specifically over reclamation lands — that enable
the estimation of structural health are necessary. The availability of
geodetic measurements (GPS or leveling) could be very important in
this context to perform local scale monitoring. Nevertheless, these
standard methods are known to be time consuming, laborious and ex-
pensive as they involve intensive field sampling and require the use of
special measuring instruments (Halicioglu et al., 2012).

As opposed to these traditional techniques, remote sensing methods
using satellite technologies are known to be cost effective and have the
advantage of obtaining large-scale information with frequent updates.
Synthetic Aperture Radar (SAR) is a mature radar technology and
several sensors at different bandwidths are operational and can provide
data on a daily base (Moreira et al., 2013). The differential interfero-
metric SAR (dInSAR) technique, which is based on two SAR images, has
been intensively used for the monitoring of disasters created by vol-
canoes (Dirscherl and Rossi, 2018), glaciers (Eriksen et al., 2017; Erten,
2013), landslides (Thomas et al., 2014) and earthquakes (Erten et al.,
2010). Thanks to its capability to detect deformations in the order of a
fraction of the radar wavelength, dInSAR provides a unique possibility
for characterizing deformation over large areas, and is therefore fun-
damental source of information for damage assessment (Osmanoglu
et al., 2016; Aslan et al., 2018; Crosetto et al., 2011; Calo et al., 2015).
Nevertheless, dInSAR cannot generally detect movements on the
building level and it can be affected by large artefacts due to temporal
changes at all levels (e.g. atmosphere, terrain).

Persistent Scatterer Interferometry (PSI) is an interferometric
method for deriving two dimensional deformation, i.e. E-W and vertical
dimensions when combining ascending and descending geometries,
which makes use of the reliability of coherent targets (PSs) in time to
tackle dInSAR limitations (Crosetto et al., 2016; Cao et al., 2016;
Narayan et al., 2018). The deformation measurement takes place on the
PS location. The importance of PSI has been highlighted intensively in
city monitoring, which normally includes many coherent scatterers.
Among the numerous examples, Cigna et al. (2014) highlights the
condition and structural health of the historic centre of Rome, Italy,
while Yang et al. (2016), Schunert and Soergel, (2016) show how PSI
can be used for monitoring single building deformation. Milillo et al.
(2018) shows the tunnel-induced subsidence in London, and Yang et al.
(2018); Kim et al., 2005 underline the impacts of reclamation on sub-
sidence in China. All the previous examples have employed high-re-
solution commercial X-band sensors, namely TerraSAR-X and Cosmo
SkyMed, which have been widely used to monitor deformation phe-
nomena induced by human activities in urbanized area (Costantini
et al., 2017). A few studies have used coarse-resolution dataset along
with PSI processing for city monitoring (Solari et al., 2016). Alter-
natively, Sentinel-1 C-band data supplies free accessible interferometric
dataset with approximately weekly temporal resolution since 2016 in
Europe and other selected areas, with huge amount of data available for
regular monitoring (Iftikhar et al., 2018; Lasko et al., 2018; Raspini
et al., 2018;lftikhar et al., 2018; Lasko et al., 2018; Raspini et al., 2018
Raspini et al., 2018). On the building level, three measurement sce-
narios are possible:

1. Multiple measurements on a single building. In this case, the dif-
ferential settlement can be evaluated and related to critical mea-
sures for the building structural health (Nicodemo et al., 2017).
Indeed, differential settlement, i.e. variations in the vertical dis-
placement for a structure, is the first cause of building damage and
potential collapse (Wroth and Burland, 1974; Boscardin and
Cording, 1989). High-resolution sensors can usually provide with
many measurements per building, typically at the facade, and can be
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considered in this case.

2. Single measurement on a building. While a single measure is not
sufficient to derive differential settlement, it can still be useful to
assess if movements are higher than predictions and provide with
indication for further inspections. For instance, the maximum al-
lowable settlement is a well-known problem (Skempton and
McDonald, 1956). This number is usually estimated before starting a
construction project and strongly depends on the soil type and
characteristics and on the building design.

3. No measurement on a building. While this case is clearly not pro-
viding any indications, estimates on surrounding buildings can still
provide with relevant information on subsidence issues at a larger
scale.

A relevant advantage of SAR technology is the provision of all
weather data, an important factor for cities in a wet climate. Moreover,
the ensured data continuity for the next 25-30 years makes the
Sentinel-1 mission an invaluable opportunity for small municipalities
and governmental organizations (Plank, 2014). Within this context, the
goal of this article is to study Sentinel-1 PS time series across Rize to
quantify the subsidence phenomena due to the reclamation and discuss
how the Sentinel-1 mission provides an affordable solution for small
municipalities to derive useful information. A fact check approach is
considered in the study, with several news from the test area taken from
local, national and international media.

The paper is organised as follows. Section 2 describes the test site,
available SAR data and gives an overview of the PSI processing. Section
3 presents the processing results with four test cases covering different
scenarios and Section 4 discusses and summarises the major findings of
the study.

2. Description of the test site, available data and processing

The test site, Rize, is located along a bay on the Black Sea in the
north-eastern part of Turkey at geographical coordinates (N 41°01’29”
and E 40°3120”). Its exceptional location between sea and mountains
makes Rize a difficult place for industrial development and urban
sprawl (see Fig. 1). In this context, being cheap and easy to implement,
reclamation process has become an attractive procedure. Indeed, since
the 60s, more than 404,685 m? of land (about one-third of Rize's city
center) have been reclaimed in Rize by infilling the sea (Ozhaseki,
2018).

Rize is nowadays the biggest tea-producing city in Turkey - the fifth
biggest tea producer country — with its humid subtropical climate.
Beyond the city center, the tea growing lands, which were covered by
forests, can be easily seen in Fig. 1. In the last two decades heavy
rainfall coupled with deforestation due to agricultural tea land expan-
sion in this mountainous land has causes lots of landslides
(Althuwaynee et al., 2018). The Kirechane village, marked in Fig. 1, has
been heavily affected by landslides and it is taken as example in the
following section.

The Sentinel-1 sensor is regularly acquiring data over Turkey at
temporal resolution depending on the area, with minimum orbit repeat
cycle of 6 days since 2016. Specifically, all the available data from
January 2015 to February 2018 at relative orbit 145 have been con-
sidered for this study. A total of 92 acquisitions, taken every 12 days,
have been considered. These Single Look Complex (SLC) data, freely
available through the Copernicus Open Access Hub (Copernicus, 2018)
and acquired in the Interferometric Wide (IW) swath mode, have pixel
spacing of about 20m by 5m (azimuth and range components, re-
spectively). The center scene incidence angle is about 34deg and the
acquisitions are taken in ascending geometry.

The data processing needs initial large disk space resources (about
1.5TB). Not all the data is anyhow required (the original swath size is
about 250 km). The processing is performed over a selected portion of
the data stack centered in Rize, spanning about 30 km along the coast
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Fig. 1. The location of the study area, Rize, with its topographical character (top-left). The black square over the topographic map delineates the area shown by the
Google Earth image, highlighting the urbanization challenges arising from being located between sea and mountains. The background Turkey map shows the location
of the province (in orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and 10km across the mountains. Moreover, only the VV (vertical
transmission and reception) polarization is considered for the study.

2.1. PSI processing

Among the various interferometric stacking techniques, PSI has
been chosen due to its suitability for urban scenarios (Cigna et al., 2014;
Milillo et al., 2018). PSI was invented in the late 90 s and since then it
has been widely used to assess surface deformation (Crosetto et al.,
2016). The algorithm used for this study (Ferretti et al., 2001; Colesanti
et al., 2003) is based on four processing steps: (1) differential inter-
ferogram generation; (2) preliminary estimation of displacement velo-
city and residual heights; (3) final estimation and atmospheric phase
removal; (4) results geocoding. A comprhesive description of the pro-
cessing stages is provided in (Kampes, 2006).

The main parameters are listed in Table 1 and briefly described in
the following. First, the differential interferogram generation stage is
performed using the Shuttle Radar Topography Mission (SRTM) DEM as
input. All the 91 interferograms are considered for the analysis and are
referred to the master acquisition, taken on the 10th August, 2016. The
interferometric processing is performed with a range multilooking of 3.
The preliminary displacement estimation is performed independently
on sub-areas of 25 sqkm, for which the reference point is automatically
chosen to remove a phase offset from all the interferograms. This esti-
mation is based on candidate scatterers (Permanent Scatterer Candi-
dates, PSC), selected to overcome a specific threshold to ensure small

Table 1

Principal PSI processing parameters.
Parameter Value
Interferometric range looks 3
Interferometric azimuth looks 1
Parameter estimation sub-area size 25 sqkm
Parameter estimation sub-area PS overlap 30%
PSC /o threshold 0.6
Atmosphere low-pass filter 1.2km
Atmosphere high-pass filter 1 year
Coherence threshold for visualisation 0.7
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phase dispersion. A threshold of 0.6 for the parameter i/0, where u
refers to the temporal mean of the pixel and o its temporal standard
deviation, is chosen and PSCs are targets that exceed this threshold. The
subareas are then merged according to a minimum overlap of PSs in
their overlap, set to 30%. The atmospheric correction is performed with
two filters, specifically a low pass-filter to account for spatial distribu-
tion and having a size of 1.2km, and a hi-pass filter to consider the
temporal distribution with a temporal window of 365 days. Finally, a
linear displacement model is estimated and points exceeding a co-
herence value of 0.7 have been chosen for the visualisations in the
following subsections.

The time-baseline plot of the interferometric processing is shown in
Fig. 2. The master acquisition is displayed with a yellow dot and the
orbital tube reaches maximum perpendicular baseline values of around
140 m (Prats-Iraola et al., 2015). In the following section, the main PSI
processing output, i.e. the temporal displacement time series, is ana-
lyzed. The displacements are measured in the Line Of Sight (LOS) of the
radar sensor, at a right looking direction at 34dgr.

3. Results

This section covers the analysis of the dataset presented in the
previous section to understand how free-accessible Sentinel-1 data
could serve small municipalities to monitor city and could present a
vision to facilitate the effectiveness of construction projects. Firstly, we
focus on quantifying the terrain subsidence rate of the Rize city centre
(Ozhaseki, 2018) in Section 3.1. Then, in Section 3.2 several local ex-
amples recently reported on media are presented to support the news
with quantitative analysis.

3.1. Ground deformation LOS velocity map (2015-2018)

Fig. 3 shows the average LOS velocity map of Rize for the three
years considered in the study. As expected, most of the PSs are located
in urbanized areas. Here, negative and positive values correspond re-
spectively the movement away from and towards the radar sensor. In
the town center, five residential zones of subsidence (specifically the
district of Tophane, Pasakuyu, Miiftii, Giilbahar, and Engindere) have
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Fig. 2. Temporal (x-axis) and perpendicular (y-axis) baseline of the Sentinel-1 acquisitions. All interferograms are referred to one master (the yellow dot) image taken
on 10 August 2016. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

been identified as all located over the reclamation land. The area
without PSs, marked in Fig. 3, is the construction area of a new shop-
ping-mall, and it used to be a stadium. The area close to the construc-
tion area of the shopping-mall exhibits the largest range of movement
within its district. The cracks in the buildings due to ongoing huge
construction project has been recently reported on the local news as
well (Rizenin Sesi, 2017). Considering the marked subsidence area, the
western side is more stable than the eastern one. In the eastern side,
some of the buildings reached approximately —13 mm/yr LOS dis-
placement towards the sensor.

As Fig. 3 highlights, the seawalls and some residential areas exhibit
high subsidence rates. It should be noticed that even with its coarser
resolution compared to TerraSAR-X and CosmoSky-Med, Sentinel-1
data supplies a remarkable number of PSs for the seawalls. Although
the number of PSs over the recreation areas on the shoreline is limited,
there are enough samples to see the trend that shows here significant
linear patterns of deformation.

3.2. Local test cases

In the following subsections, four different types of subsidence

example are chosen to demonstrate how Sentinel-1 can be used for
monitoring human and natural induced subsidences. All the cases were
reported in national and international media. Section 3.2.1 and Section
3.2.2 analyze the seawalls and the landfill areas, respectively. Section
3.2.3 analyzes the residential area reported at risk of collapse. Finally,
Section 3.2.4 moves away from the city center and reports about a
village, marked in Fig. 1, belonging to the Rize municipality and af-
fected by landslides. Although not directly related to urban subsidence
on reclaimed areas, this example is shown as a complementary de-
monstration of the capabilities of the system in providing a monitoring
solution for subsidence problems in topographically complex areas like
the one studied in the paper.

3.2.1. A quantitative analysis to evaluate warning sign along Seawall

One of the first mega construction project in Rize was the harbor
expansion through land reclamation. The optical images in Fig. 4 dis-
play the construction history of Rize's international port, which started
in 1990, was suspended in 2001 due to the economic reasons, resumed
in 2013, and was finally completed in 2015. By then, most goods from
Rize are exported by ship.

In Fig. 4, the spatial variability of the subsidence over the harbour

Fig. 3. Average ground deformation map
across Rize derived with 92 Sentinel-1 images.
Red and blue PSs are corresponding to the
velocity away and towards from the Sentinel-1
satellites, respectively. PSs are classified con-
sidering the velocity standard deviation. The
town districts and the construction area men-
tioned in the text are marked, and the SAR
acquisition geometry (azimuth and range co-
ordinates) is represented at the bottom-right.
The optical basemap is extracted from Google
Earth.
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Fig. 4. (a) Optical image of the Rize port in
2009. (b) Same view in 2018, with overlying
dots representing the PSs. Highest subsidence
is measured at the pier's end. (¢) The temporal
ground motion plot obtained from the PSs in
the white box in (b) shows clear subsiding
trends. Different colors represent different
scatterers. (For interpretation of the references
to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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can be easily seen, with higher values at its end. The overall harbour
(about 2000 m long and 60 m width) presents many measurements. The
LOS displacements at selected PSs over the harbour's end, marked in
Fig. 4, are also shown. The time series analysis underlines how the
newly reclaimed part of the harbour exhibits a moderate subsidence
with mean deformation rate of —8.2 mm/yr. The subsidence of Rize's
port has been confirmed by the Hiirriyet news source, which was
published on January 9, 2018: “The eroding rocks at the harbour are being
buried into the sea” (Kalender, 2018a,b,c). The article discusses whether
the type of rock used for the last reclamation guarantees the quality of
the fill or not.

3.2.2. Is the reinforcement good enough? The conversion of landfill to build-
up area

The second example concerns the construction over previously
placed waste. The optical imagery taken in 2009, displayed in Fig. 5,

shows an area which was the former landfill site transformed into a
natural area. This seaside land was firstly used for recreational purposes
including soccer fields, basketball and tennis courts, as well as play-
grounds. In late 2012, the recreational facilities were further extended
by subsequently adding a swimming pool. Although the construction of
the swimming pool was completed in 2013, its opening encountered a
series of delays due to the poor construction planning. According to the
media records in 2013 (Kacar, 2013), the main reason for this delay lies
in the fact that highway-induced vibrations, coupled with soft soil, led
cracks in the foundation of the swimming building and hence it was not
possible to fill the swimming pools due to the leakage. To tackle this
problem, the building's foundation was reinforced and the seawall was
extended eastward to provide protection to the building (and its foun-
dation) from the action of waves (see Fig. 5). The swimming pool has
been in use since the late 2015s. However, the time series over the
swimming pool building given in Fig. 5 warns that in the long term the

Fig. 5. (a) Optical imagery of the old landfill site in 2009. (b) Same area in 2018,
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with dots representing the location of PSs. The main changes are the western

extension of the seawall and the new constructions in the landfill area. (c) Time series plots over the swimming pool building, marked with the larger white box in
(b). The swimming pool building was seen in the national newspapers in 2013, with the headline of “The indoor swimming pool that do not retain water” (Kacar, 2013).
Different colors correspond to different scatterers. (d) Time serie plot of a PS in the recreation area, marked with the small white box in (b), highlights the subsidence

rate of the site.
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Fig. 6. Sentinel-1 ground motion measurements over the Google Earth image of Engindere district of Rize (a), with Google Maps Street Views (b) acquired in June,
2015, highlighting the subsidence in Deniz housing estate, which is marked with the white box in the first subfigure and its corresponding displacement time series of
PSs (c and d). In particular, (c) shows the scatterer associated with block B1 and (d) the the three scatterers associated with blocks B2 and B3.

pool could face with the same problem it had in its planned opening
(average rate of 3.1 mm/yr). Additionally, the average LOS velocity of
the PS in the recreational area, next to the swimming pool building,
reached a rate of 17 mm/yr within the landfill area.

3.2.3. Is really Rize at risk of collapse? Residential areas over reclamation
land

The third local deformation analysis focuses on the residential area
located on reclamation zone in the district of Engindere. This aspect is
of great concern to the municipality since nearly 2700 buildings and
1500 business are in risk of collapse and authorities need detailed in-
formation on the structural health of the buildings, as firstly reported
on February 21, 2018 by Hiirriyet Daily News (Ozhaseki, 2018).
Fig. 6(a) shows the estimated average LOS velocity over the optical
image in the district of Engindere. This map draws the attention to the
area indicated in the white square, including building blocks (more
than 120 flats) and high-schools, located next to the highlighted
buildings on the western side. This residential area has been built in
1988. Here it should be noticed that the road between the schools and
blocks was a culvert, one of the lost streams due to heavy urbanization.

The subsidence pattern of PSs over the Deniz housing estate (4
blocks) — marked in the white box - is shown in Fig. 6 with their LOS
velocity. All buildings show the same trend with slightly different LOS
velocity, 17 mm/yr (Fig. 6(c), building B1), and 14.8 mm/yr (Fig. 6(d),
buildings B2-B3). A visual inspection of the street view images in
Fig. 6(b) shows how the pending side of the buildings is being
strengthened with steel plates between balconies. Recently, concerns
have been raised with respect to the structure stability of those build-
ings: “Scaring precaution: all the buildings in such condition,” Dogan
News Agency reported on January 17, 2018 (Kalender, 2018a,b,c). As
mentioned in the introduction, differential building settlement is the
main trigger to collapse. While here the point density is not sufficient to
properly evaluate differential settlement, the measurements can
anyhow confirm the subsidence, which can in principle also damage the
drainage system and the utilities beneath the building. A particular
concern should be raised considering that the subsidence pattern is not
uniform in the district but affects the highlighted buildings and the
adjacent school complex. Besides the residential area, the seawall in
this area exhibits also moderate subsidence trend (~5 mm/yr).

This remarkable finding, with other similar examples across Rize,
confirms the collapse risk for several buildings.
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3.2.4. Are the villages as well at risk? Landslides in susceptible regions

In the processed time series data, the most conspicuous subsidence
zone in rural areas lies on the south of Rize, close to the Kirechane
village marked in Fig. 1. Like other villages of Rize, the Kirechane
village is prone to landslides and mudflows associated with steep
slopes, heavy rain and deforestation for agricultural activities. This
village has been featured for two days on the news, September 28, 2017
(Kalender, 2017) and March 8, 2018 (Kalender, 2018a,b,c). Kalender
(2017) focused on how heavy rain caused flooding on many villages
roads and created widespread damage (see the photographs in
Fig. 7(a)). Kalender (2018a,b,c) reported the Disaster and Emergency
Management Presidency of Turkey (AFAD) statement about the wor-
rying conditions of the structural health of many houses. With the
headline, “A village in Rize is being evacuated due to the fear of landslide”,
the Dogan News Agency mentioned the risk in the village (Kalender,
2018a,b,c). The time series analysis of 12 houses from the same village
— given in Fig. 7 (c) — chimed with the news and AFAD report, warning
since January 2015 that some houses in the village have been in danger.
For this example, unfortunately no street view photograph are available
to visually analyze the current situation of the selected houses however
there is a high probably that these houses are the ones mentioned on the
report by AFAD due to the limited number of buildings in the village.
Kalender (2018a,b,c) also stated that the occurrences of heavy rainfall
events in 2016 made the soil saturated and more heavy rains are likely
to produce more landslide events in the region since then. In Fig. 7(d),
the temporal displacement of one PS over a selected building in the
village is given with daily precipitation amount. Remarkable LOS
movements are estimated in autumn 2016 as a consequence of suc-
cessive rain events followed by a significant precipitation of about
50 mm in a week. Two main subsidence steps are remarkable in the
figure, in October 2015 and November 2016. The correlation with the
accumulated monthly precipitation can be evaluated from the figure,
where the largest monthly precipitation peak happened in September
2015 and a series of rain events with large rainfall amounts has been
measured between June 2016 and September 2016.

This example shows how municipalities can have measures of sub-
sidence peaks in rural residential area to be further inspected. In mixed
environments, i.e. urban and rural, an advantage of Sentinel-1 is given
by its bandwidth, C-band, which could provide more measurements in
vegetated areas compared to X-band systems (TerraSAR-X, Cosmo
SkyMed), typically chosen for high-resolution estimates over urban
areas. Besides Kirechane village, it has been found that some assets in
Kendirli, Pazarkdy and Giineysu villages exhibit large subsidences as
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Fig. 7. Photographs taken in Kopriilii and Kirechane villages, in mid-October 2017 (Kalender, 2017) (a) and in March 2018 (Kalender, 2018a,b,c) (b). (c) Temporal
trends of PSs over the Kirechane village, some of which houses are reported to be evacuated according to the Disaster and Emergency Management Presidency of
Turkey, Dogan News Agency reported on March 7, 2018. Different colors represent different scatterers. (d) Temporal trend of a PS over the village with Rize's daily
rainfall distribution (https://www.wunderground.com) along with Sentinel-1 acquisitions.

well. Here, Sentinel-1 can be used for landslide monitoring, ideally in
conjunction with meteorological, topographic and geological data
(Althuwaynee et al., 2018;Bouali et al., 2018). Indeed, the research on
assessing landslide impact with PSI is well covered in the literature
(Colesanti et al., 2003;Farina et al., 2006;Hilley et al., 2004; Cigna
et al., 2013;Tofani et al., 2013).

4. Discussions and conclusions

Interferometric stacking techniques are well known technique for
the management of city's infrastructures with high resolution images. In
this context, even with its medium resolution, it is shown that Sentinel-
1 imagery provides remarkable information for city monitoring. Besides
being freely available, the Sentinel-1 temporal resolution is very valu-
able for monitoring systems, especially in developing countries with
low budgets. To show the potential of these data for urban monitoring
and to provide quantitative information for subsidence phenomena in
Rize, four different types of subsidence occurred in the last three years
are reviewed, discussing the assessment of the construction projects in
long term. The review has been performed based on public reports and
media. Of the four sites, three of them are located in the reclaimed city
center and one of them in the rural area. The first example, covering the
harbour of Rize, demonstrates the effectiveness of Sentinel-1 at mea-
suring the subsidence/uplift of seawalls, characterized by linear and
thin assets. With the large amount of measurements over the seawalls,
Sentinel-1 has been shown to be an effective tool for monitoring, pre-
dicting and mitigating toe scour at seawalls. The study at the second
test site, the landfill area, also suggests that assets over the reclaimed
area face with subsidence problems. The rehabilitation process has been
substantially performed by the municipality in 2015. However, still
exists subsidence in the site, and the movements detected for the only
building in the site could indicate a sign of cracking on the foundation,
probably going below water level. The third example focusing on re-
sidential area intends to aid recognition of the main collapse risk in
Rize. To do so, the study focused on one of the areas of maximum de-
tected subsidence. Although local photographs were reflecting the de-
formation in the district, the PSI analysis allows to reconstruct the de-
formation pattern in the areas without in-situ geodetic measurements.
With their changing subsidence rate, this information can be vital for
the municipality to predict which areas are at risk of collapse. The last
example from the dataset focuses on a village, where roughly 600
people are being evacuated due to the risk of landslide. In this example
the village which has been threatened by landslides has been con-
sidered. This kind of information is specifically essential for local
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authorities and for warning local communities about the structural
health of their houses. Designing landslide monitoring system is beyond
the scope of this paper, but it is clear that Sentinel-1 can provide very
important inputs for the management of such a difficult scenario,
characterizing by steep mountains and heavy rains.

In addition to these specific examples supported by the national and
local newspapers, this work contributes to an understanding of the risks
posed by reclamation process in Rize since 1960s. It helps to quantify
the subsidence rate in Rize and opens a discussion on how to monitor
large-scale construction projects such as Rize-Artvin airport, for which a
proper planning of the reclamation process (e.g. the location, the rock
type, type of monitoring, etc.) is key to the success of this mega project.
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