16 research outputs found

    Active-learning methods for control engineering teaching using web applications

    Full text link
    [EN] The development of active-learning methods is strongly proliferating nowadays in Higher Education studies. Roughly speaking, active learning can be understood as a way of learning in which students are more directly involved in the learning process. It is commonly accepted that, in contrast to traditional methods, substantial improvement of the own learning process is achieved through active methodologies. In particular, teachers must address an extra effort to engage the interest of students when faced with subjects provided with strong theoretical background (such as automatic control related topics). Indeed, one of the main drawbacks reported by the own students is their difficulty to connect real engineering application and theoretical lessons. In this paper, we present an active learning method conceived for automatic control subjects with the aid of virtual laboratories compatible with a wide range of web browsers for this end. In a first stage, some real engineering problems for students in the classroom are raised. Through a suitable follow-up of intermediate results and the appropriate discussions, teachers will be able to obtain an immediate feedback while evaluating the quality of learning at each stage. It is worthwhile mentioning that virtual labs are developed using the standard web interactive programming language HTML and Javascript, which only requires a web browser to be executed. Hence, in comparison to previous academic years, it is expected to better promote the usefulness of the control engineering for the students¿ careers with high degree of autonomy for self-scheduling homework and low cost resources, while improving the self-motivation and long-term quality of learning.This work is supported by the Universidad de Zaragoza project PIIDUZ_19_342 Desarrollo e implantación de un modelo basado en aula invertida y metodologías activas para asignaturas de informática e ingeniería de sistemas.González Sorribes, A.; Del Val Noguera, E. (2020). Active-learning methods for control engineering teaching using web applications. Iated. 5583-5589. https://doi.org/10.21125/inted.2020.1516S5583558

    Laboratorios virtuales web como herramienta de apoyo para prácticas de ingeniería no presenciales

    Full text link
    [ES] Este trabajo presenta una metodología de desarrollo e implantación de laboratorios virtuales para asignaturas de ingeniería de control, concebidos con el propósito de permitir y favorecer la no presencialidad en prácticas de laboratorio. Una de las ventajas reseñables del método propuesto es que únicamente es necesario que los estudiantes dispongan de un navegador web, lo cual implica una mayor flexibilidad y un bajo coste en recursos. Esto es gracias al hecho de que los laboratorios virtuales están implementados en lenguaje estándar HTML y Javascript, totalmente compatible con los navegadores web comerciales. Cabe resaltar que la herramienta Easy Java Simulation (EJS) de libre disposición permite a los docentes desarrollar nuevos laboratorios virtuales sin necesidad de conocimientos avanzados de programación. Aparte de alcanzar un grado mayor de autonomía y flexibilidad, este método permitirá mejorar la percepción de la asignatura y la calidad de aprendizaje a largo plazo por la posibilidad que ofrece de integrar un amplio repertorio de ejemplos didácticos que pueden utilizarse en el aula de forma complementaria a los contenidos teóricos impartidos.[EN] This paper presents a method for development and implantation of virtual laboratories for control engineering subjects, conceived with the purpose of allowing and promoting non-attending laboratory practices. One of the remarkable avantages of the proposed method is the unique requirement for students to have access to a web browser, which implies more flexibility and low cost resources. This is due to the fact that such virtual labs are implemented in a standard HTML and JAVASCRIPT language programming, which are full compatible with commercial web browsers. Moreover, it is worthwhile mentioning that the freely available tool Easy Java Simulation (EJS) allows teachers to develop new virtual laboratories without being necessary to possess strong skills in advanced programming. Apart from reaching a higher degree of autonomy and flexibility, this method will allow improving the long-term quality of learning because of the possibility of integrating a great variety of different didactic examples, which can simulataneosuly be used in the classroom in combination with theoretical lessons.Los autores agradecen el soporte financiero a la Universidad de Zaragoza, proyecto PIIDUZ_19_074 Integración de asignaturas de ingeniería de sistemas y automática dentro de una red nacional de laboratorios interactivos UNILabs para el fomento de las metodologías activasGonzález Sorribes, A. (2021). Laboratorios virtuales web como herramienta de apoyo para prácticas de ingeniería no presenciales. En IN-RED 2020: VI Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 542-549. https://doi.org/10.4995/INRED2020.2020.11995OCS54254

    Cloud e-learning for mechatronics: CLEM

    Get PDF
    his paper describes results of the CLEM project, Cloud E-learning for Mechatronics. CLEM is an example of a domain-specific cloud that is especially tuned to the needs of VET (Vocational, Education and Training) teachers. An interesting development has been the creation of remote laboratories in the cloud. Learners can access such laboratories to support their practical learning of mechatronics without the need to set up laboratories at their own institutions. The cloud infrastructure enables multiple laboratories to come together virtually to create an ecosystem for educators and learners. From such a system, educators can pick and mix materials to create suitable courses for their students and the learners can experience different types of devices and laboratories through the cloud. The paper provides an overview of this new cloud-based e-learning approach and presents the results. The paper explains how the use of cloud computing has enabled the development of a new method, showing how a holistic e-learning experience can be obtained through use of static, dynamic and interactive material together with facilities for collaboration and innovation

    Enhancing EJsS with extension plugins

    Get PDF
    Easy JavaScript Simulations (EJsS) is an open-source tool that allows teachers with limited programming experience to straightforwardly bundle an interactive computer science or engineer simulation in an HTML+ JavaScript webpage. Its prominent place in Physics (where it has won several prizes) should not hinder its application in other fields (such as building the front-end of remote laboratories or learning analytics) after having adapted part of the functionality of EJsS to them. To facilitate the future inclusion of new functionalities in EJsS, this paper presents a new version of this tool that allows the enhancement of EJsS, letting it incorporate new tools and change its graphical user interface, by means of extension plugins (special software libraries). To illustrate the benefits of this distributable self-contained non-intrusive strategy, the paper (a) discusses the new methodological possibilities that the Plugins bring to EJsS developers and users, and (b) presents three plugins: one to support the plugin management and the others to easily set up a streamlined remote laboratory. Moreover, the paper also presents the main characteristics of that remote lab to allow readers take advantage of EJsS and the three plugins to set up new online experiments for their students quickly

    Validación de requisitos funcionales de un Laboratorio Virtual Remoto como apoyo al blended learning

    Get PDF
    This research analyzes the requirements detected among students and teachers of scientific- technical education, on the design and functionality of a future web platform implementing a Virtual Remote Laboratory (VRL). The VRL is currently in the design phase, and is intended to supplement the experimental classroom teaching on Optics and Photonics. To this end, we have designed two surveys (for teachers and students, respectively), in order to gather their needs and expectations on the use and contents of the virtual platform. Surveys have been published in English and Spanish, their contents were validated by experts worldwide in science, engineering and education, and distributed online between students and teachers of Spanish and foreign universities. This paper describes the detailed structure of the surveys, the assessment by experts on the content thereof, the reliability analysis performed, the results of the completion by teachers and students, and the discussion thereof, conducted jointly with the help of a group of experts.Esta investigación analiza los requisitos detectados entre estudiantes y profesores de enseñanzas científico-técnicas, sobre el diseño y funcionalidad de una futura plataforma web que implemente un Laboratorio Virtual Remoto (VRL). El VRL actualmente está en fase de diseño, y pretende servir como complemento a la enseñanza experimental en el laboratorio presencial, en las áreas de Óptica y Fotónica. A tal fin, se han diseñado dos cuestionarios (para profesores y estudiantes, respectivamente), con el fin de recabar las necesidades y expectativas de ambos colectivos, en el uso y contenidos de la plataforma virtual. Los cuestionarios se han editado en inglés y español, su contenido ha sido validado previamente por expertos nacionales e internacionales en ciencias, ingeniería y educación, y se han distribuido en línea entre estudiantes y profesores de universidades españolas y extranjeras. El trabajo detalla la estructura de los cuestionarios, la valoración de los expertos sobre su contenido, el análisis de fiabilidad realizado, los resultados obtenidos en la cumplimentación por profesores y estudiantes, y la discusión de dichos resultados, realizada con la ayuda de un grupo de expertos

    Construcción y programación de un brazo robótico de madera

    Get PDF
    El proyecto que se presenta, consiste en la construcción y programación de un brazo robótico de madera para su uso didáctico en las asignaturas que se requiera usar para la fácil comprensión del alumnado ante estos nuevos conocimientos. Lo primero que haremos será explicar el modelo usado para el robot y su construcción, las piezas usadas, la electrónica y los materiales, así como las medidas aproximadas de cada una de ellas ya que algunas son importantes a la hora de programar. Por último, se hablará del lenguaje que usaremos para programarlo, así como el algoritmo que se ha usado para su funcionamiento.The project presented consists in the construction and programming of a robotic wooden arm for its didactic use in the subjects that are required to be used for the easy understanding of the students before this new knowledge. The first thing we will do is explain the model used for the robot and its construction, the parts used, the electronics and the materials, as well as the approximate measurements of each one of them since some are important when programming. Finally, we will talk about the language we will use to program it, as well as the algorithm that has been used for its operation.Universidad de Sevilla. Grado en Ingeniería Electrónica, Robótica y Mecatrónic

    Evaluating Intention to Use Remote Robotics Experimentation in Programming Courses

    Get PDF
    The Digital Agenda for Europe (2015) states that there will be 825,000 unfilled vacancies for Information and Communications Technology by 2020. This lack of IT professionals stems from the small number of students graduating in computer science. To retain more students in the field, teachers can use remote robotic experiments to explain difficult concepts. This correlational study used the unified theory of acceptance and use of technology (UTAUT) to examine if performance expectancy, effort expectancy, social influence, and facilitating conditions can predict the intention of high school computer science teachers in Cyprus, to use remote robotic experiments in their classes. Surveys, based on the UTAUT survey instrument, were collected from 90 high school computer science teachers in Cyprus, and a multiple regression analysis was used to measure the correlations between the constructs and finally the model fit of the analysis. The model was able to predict approximately 35% of the variation of the teachers\u27 intent to use remote robotic experiments. The biggest predictor was facilitating conditions followed by effort expectancy. Performance expectancy had little impact, whereas social influence had no impact on the intention of high school teachers to use remote robotic experiments in their classes. These results can help curriculum decision makers in the Ministry of Education in Cyprus to examine what factors affect the acceptance of remote robotic experiments and develop them in ways that would increase their implementation in high schools. By incorporating remote robotic experiments in high schools, students may learn difficult concepts, leading to an increase in computer science graduates and ultimately an increase in IT professionals

    Virtual and Remote Robotic Laboratory Using EJS, MATLAB and LabVIEW

    Get PDF
    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented

    Control of piezomechanical microrobots moving in trajectories

    Get PDF
    Plokštumoje judantys pjezomechaniniai mikrorobotai – tai įrenginiai, kurių judesys formuojamas atvirkštiniu pjezoefektu veikiančiais ir mechaninį judesį generuojančiais pjezomechaniniais keitikliais. Disertacijoje tiriamieji pjezorobotai neturi papildomų judesį generuojančių mechanizmų, tokių kaip ratai kojos ar panašius įtaisai, o tik tiesioginius kontakto su statine plokštuma taškus. Tokiems pjezomechaniniams mikrorobotams judesiui formuoti klasikiniai judėjimo trajektorija formavimo metodai netinka. Tokiam judėjimui reikalingas sudėtinis atskirų pjezoelektrinių keitiklių ak-tyvių segmentų valdymas siekiant nukreipti pjezoroboto judėjimą reikiama trajektorija. Mokslinių tyrimų tikslas – sukurti ir ištirti naujus trajektorijomis ju-dančių pjezorobotų valdymo metodus ir algoritmus. Darbe sprendžiami šie pagrindiniai uždaviniai: pjezoroboto konstrukci-jos parinkimas, pjezorobotų judesio generavimo metodų analizė, pje-zorobotų valdymo algoritmų sudarymas, aparatinės įrangos pjezorobotų valdymui parinkimas ir sistemos sudarymas, programinės įrangos, skirtos plokštumoje judantiems pjezorobotams, sukūrimas, judančių pjezorobotų trajektorijų atkartojimo tikslumo ir greičio matavimai, analizė ir valdymo metodų parinkimas konkrečioms judėjimo užduotims. Įvadiniame skyriuje formuluojama problema, aptariamas darbo ak-tualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas ir uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, formuluojami ginamieji teiginiai. Pirmajame skyriuje analizuojama literatūra, pateikti judesio generavimo ir judėjimo tra-jektorijomis formavimo metodai. Antrajame skyriuje formuluojami pje-zoroboto judesio trajektorijos formavimo uždaviniai, nagrinėjami detalūs trajektorijų formavimo algoritmai. Trečiajame skyriuje aprašomas pje-zorobotų valdymo sistemos sukūrimas. Pateikiama sukurta valdymui skirta programinė įranga. Ketvirtame skyriuje aprašomi autoriaus atlikti praktiniai eksperimentai. Atlikta pjezorobotų trajektorijos atkartojamumo ir greičio parametrų analizė pjezorobotą valdant trimis skirtingais metodais. Pateikiamos išvados apie valdymo metodų tinkamumą pjezorobotų judėjimui trajektorijomis realizuoti. Disertacijos tema paskelbti 8 straipsniai, perskaityti 5 pranešimai Lietuvos bei tarptautinėse konferencijose. Didžioji dalis mokslinių tyrimų buvo finansuojama LMA projektų MIP – 075/2012 ir MIP-084/2015
    corecore