124 research outputs found

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Automatic Estimation of Coronary Blood Flow Velocity Step 1 for Developing a Tool to Diagnose Patients With Micro-Vascular Angina Pectoris

    Get PDF
    Aim: Our aim was to automatically estimate the blood velocity in coronary arteries using cine X-ray angiographic sequence. Estimating the coronary blood velocity is a key approach in investigating patients with angina pectoris and no significant coronary artery disease. Blood velocity estimation is central in assessing coronary flow reserve. Methods and Results: A multi-step automatic method for blood flow velocity estimation based on the information extracted solely from the cine X-ray coronary angiography sequence obtained by invasive selective coronary catheterization was developed. The method includes (1) an iterative process of segmenting coronary arteries modeling and removing the heart motion using a non-rigid registration, (2) measuring the area of the segmented arteries in each frame, (3) fitting the measured sequence of areas with a 7◦ polynomial to find start and stop time of dye propagation, and (4) estimating the blood flow velocity based on the time of the dye propagation and the length of the artery-tree. To evaluate the method, coronary angiography recordings from 21 patients with no obstructive coronary artery disease were used. In addition, coronary flow velocity was measured in the same patients using a modified transthoracic Doppler assessment of the left anterior descending artery. We found a moderate but statistically significant correlation between flow velocity assessed by trans thoracic Doppler and the proposed method applying both Spearman and Pearson tests. Conclusion: Measures of coronary flow velocity using a novel fully automatic method that utilizes the information from the X-ray coronary angiographic sequence were statistically significantly correlated to measurements obtained with transthoracic Doppler recordings.publishedVersio

    Medical image registration by neural networks: a regression-based registration approach

    Get PDF
    This thesis focuses on the development and evaluation of a registration-by-regression approach for the 3D/2D registration of coronary Computed Tomography Angiography (CTA) and X-ray angiography. This regression-based method relates image features of 2D projection images to the transformation parameters of the 3D image by a nonlinear regression. It treats registration as a regression problem, as an alternative for the traditional iterative approach that often comes with high computational costs and limited capture range. First we presented a survey of the methods with a regression-based registration approach for medical applications, as well as a summary of their main characteristics (Chapter 2). Second, we studied the registration methodology, addressing the input features and the choice of regression model (Chapter 3 and Chapter 4). For that purpose, we evaluated different options using simulated X-ray images generated from coronary artery tree models derived from 3D CTA scans. We also compared the registration-by-regression results with a method based on iterative optimization. Different image features of 2D projections and seven regression techniques were considered. The regression approach for simulated X-rays was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach. Neural Networks obtained accurate results and showed to be robust to large initial misalignment. Third, we evaluated the registration-by-regression method using clinical data, integrating the 3D preoperative CTA of the coronary arteries with intraoperative 2D X-ray angiography images (Chapter 5). For the evaluation of the image registration, a gold standard registration was established using an exhaustive search followed by a multi-observer visual scoring procedure. The influence of preprocessing options for the simulated images and the real X-rays was studied. Several image features were also compared. The coronary registration–by-regression results were not satisfactory, resembling manual initialization accuracy. Therefore, the proposed method for this concrete problem and in its current configuration is not sufficiently accurate to be used in the clinical practice. The framework developed enables us to better understand the dependency of the proposed method on the differences between simulated and real images. The main difficulty lies in the substantial differences in appearance between the images used for training (simulated X-rays from 3D coronary models) and the actual images obtained during the intervention (real X-ray angiography). We suggest alternative solutions and recommend to evaluate the registration-by-regression approach in other applications where training data is available that has similar appearance to the eventual test data

    Reconstruction of coronary arteries from X-ray angiography: A review.

    Get PDF
    Despite continuous progress in X-ray angiography systems, X-ray coronary angiography is fundamentally limited by its 2D representation of moving coronary arterial trees, which can negatively impact assessment of coronary artery disease and guidance of percutaneous coronary intervention. To provide clinicians with 3D/3D+time information of coronary arteries, methods computing reconstructions of coronary arteries from X-ray angiography are required. Because of several aspects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction from X-ray coronary angiography has led to vast amount of research and it still remains as a challenging and dynamic research area. In this paper, we review the state-of-the-art approaches on reconstruction of high-contrast coronary arteries from X-ray angiography. We mainly focus on the theoretical features in model-based (modelling) and tomographic reconstruction of coronary arteries, and discuss the evaluation strategies. We also discuss the potential role of reconstructions in clinical decision making and interventional guidance, and highlight areas for future research

    간 조영술을 위한 혈관 모델 기반의 국부 적응 2D-3D 정합 알고리즘 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 신영길.Two-dimensional–three-dimensional (2D–3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which make it difficult to obtain the correct solution of 2D–3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34 ± 1.94 mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.Chapter 1 Introduction 1 1.1 Background 1 1.2 Problem statement 6 1.3 Main contributions 8 1.4 Contents organization 10 Chapter 2 Related Works 12 2.1 Overview 12 2.1.1 Definitions 14 2.1.2 Intensity-based and feature-based registration 17 2.2 Neurovascular applications 19 2.3 Liver applications 22 2.4 Cardiac applications 27 2.4.1 Rigid registration 27 2.4.2 Non-rigid registration 31 Chapter 3 3D Vascular Structure Model 33 3.1 Vessel segmentation 34 3.1.1 Overview 34 3.1.2 Vesselness filter 36 3.1.3 Vessel segmentation 39 3.2 Skeleton extraction 40 3.2.1 Overview 40 3.2.2 Skeleton extraction based on fast marching method 41 3.3 Graph construction 45 3.4 Generation of subtree structures from 3D tree model 46 Chapter 4 Locally Adaptive Registration 52 4.1 2D centerline extraction 53 4.1.1 Extraction from a single DSA image 54 4.1.2 Extraction from angiographic image sequence 55 4.2 Coarse registration for the detection of the best matched subtree 58 4.3 Fine registration with selected 3D subtree 61 Chapter 5 Experimental Results 63 5.1 Materials 63 5.2 Phantom study 65 5.3 Performance evaluation 69 5.3.1 Evaluation for a single DSA image 69 5.3.2 Evaluation for angiographic image sequence 75 5.4 Comparison with other methods 77 5.5 Parameter study 87 Chapter 6 Conclusion 90 Bibliography 92 초록 109Docto
    corecore