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Abstract 

This thesis presents an automated framework for quantitative vascular shape 

analysis of the coronary arteries, which constitutes an important and fundamental 

component of an automated image-based diagnostic system. Firstly, an automated 

vessel segmentation algorithm is developed to extract the coronary arteries based on 

the framework of active contours. Both global and local intensity statistics are 

utilised in the energy functional calculation, which allows for dealing with 

non-uniform brightness conditions, while evolving the contour towards to the desired 

boundaries without being trapped in local minima. To suppress kissing vessel 

artifacts, a slice-by-slice correction scheme, based on multiple regions competition, 

is proposed to identify and track the kissing vessels throughout the transaxial images 

of the CTA data. Based on the resulting segmentation, we then present a dedicated 

algorithm to estimate the geometric parameters of the extracted arteries, with focus 

on vessel bifurcations. In particular, the centreline and associated reference surface 

of the coronary arteries, in the vicinity of arterial bifurcations, are determined by 

registering an elliptical cross sectional tube to the desired constituent branch. The 

registration problem is solved by a hybrid optimisation method, combining local 

greedy search and dynamic programming, which ensures the global optimality of the 

solution and permits the incorporation of any hard constraints posed to the tube 

model within a natural and direct framework. In contrast with conventional volume 

domain methods, this technique works directly on the mesh domain, thus alleviating 

the need for image upsampling. The performance of the proposed framework, in 

terms of efficiency and accuracy, is demonstrated on both synthetic and clinical 

image data. Experimental results have shown that our techniques are capable of 

extracting the major branches of the coronary arteries and estimating the related 

geometric parameters (i.e., the centreline and the reference surface) with a high 

degree of agreement to those obtained through manual delineation. Particularly, all of 

the major branches of coronary arteries are successfully detected by the proposed 

technique, with a voxel-wise error at 0.73 voxels to the manually delineated ground 

truth data. Through the application of the slice-by-slice correction scheme, the false 

positive metric, for those coronary segments affected by kissing vessel artifacts, 

reduces from 294% to 22.5%. In terms of the capability of the presented framework 

in defining the location of centrelines across vessel bifurcations, the mean square 

errors (MSE) of the resulting centreline, with respect to the ground truth data, is 

reduced by an average of 62.3%, when compared with initial estimation obtained 

using a topological thinning based algorithm.  
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Chapter 1 

Introduction 

This thesis presents the development of a fully automated framework for 

segmentation and quantitative vascular shape analysis of the coronary arteries based 

on coronary Computed Tomography Angiography (CTA) images, which constitutes 

an essential and fundamental component of a computer-aided system for the early 

diagnosis of coronary artery disease. In this chapter, we commence with a brief 

introduction of the clinical background associated to this research, including the 

anatomy of the heart and coronary arteries, coronary artery disease as well as the 

diagnostic imaging procedures for the assessment of coronary artery disease in 

Sections 1.1-1.3. Finally, an outline of the thesis is given in the final section of this 

chapter, Section 1.4.  

1.1 Anatomy of the Heart and Coronary Arteries 

The heart, positioned within the mediastinum, is the centre of the circulatory 

system. It is composed of cardiac muscle tissue, which continuously contracts and 

relaxes, and requires a constant supply of oxygen and nutrients in order to keep 

continuous blood circulation. Coronary arteries are the network of blood vessels 

that pump blood to the myocardium (the heart muscle) to feed it with oxygen and 

nutrients [1]. As illustrated in Fig. 1, the arterial tree comprises two main branches, 

namely the Left Coronary Artery (LCA) and the Right Coronary Artery (RCA), 

which originate at the root of the aorta, near the top of the heart. In the LCA branch, 

the initial segment between the aorta and the first bifurcation is called the Left Main 

(LM) coronary. The LM coronary typically branches into the Left Anterior 

Descending (LAD) and the Left Circumflex (LCX) arteries. On the other hand, the 

RCA normally originates at the right coronary cusp and travels to the posterior 

interventricular branch. In 85% of the cases, the RCA is the dominant vessel and 

supplies blood to the posterior descending branch, which travels in the Posterior 
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Interventricular Vein (PIV) groove. However, the exact anatomy of the coronary 

arteries could exhibit a wide range of geometries, depending on the individual [2]. 

 

Figure 1.1: Illustration of the major coronary arteries of the heart, including the right coronary 

(RCA), the left anterior descending (LAD) and the left circumflex (LCX) arteries [2]. 

1.2 Coronary Artery Disease 

Coronary Artery Disease (CAD) occurs when the coronaries are occluded and 

become constricted, which leads to the heart becoming starved for oxygen and other 

nutrients and eventually stop beating. According to the most recent statistics by the 

World Health Organization (WHO), CAD is one of the most prevalent causes of 

death in the world and affects an increasing number of people. Approximately 17 

million people were killed due to one or more types of CAD year worldwide in 

2011 [3]. Atherosclerosis is a condition in which plaques, typically made up of fat, 

cholesterol, calcium and other substances found in the blood, become clogged up in 

the medium and large arteries of the heart. If this is left untreated, it will harden and 

narrow the arteries over a period of time. As a consequence, the flow of oxygen-rich 

blood to organs and other parts of body will be reduced, which may cause serious 

problems, including myocardial infarction, or even death. Fig. 1.2 illustrates a 

comparison before and after plaque builds up within a blood vessel. The abnormal 

blood flow can be identified at the site where the plaques are present in the arterial 

wall.  
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                                  (a)                                                             (b) 

Fig 1.2: Illustration of blood flow in (a) A normal artery, (b) A narrowing artery with plaque 

buildup [4]. 

1.3 Diagnostic Imaging of Coronary Artery Disease 

From the clinician’s point of view, it is important to image the entire coronary 

arterial tree in order to assess the prognosis of coronary abnormalities, such as 

evaluate the severity of stenosis (narrowing arteries), and facilitate subsequent 

treatment. In the following subsections, we will go through the routine clinical 

procedures for imaging of coronary arteries and illustrate example images produced 

by these imaging modalities.  

1.3.1 Coronary Artery Angiography  

Coronary artery angiography is an X-ray examination of the vessels and 

chambers of the heart, which is often done to identify any narrowed or clogged 

coronary arteries that may prevent blood from reaching the heart muscle. The study 

can be also used to measure the size and the function of the chambers of the heart 

and the function of heart valves. During the procedure, the patient is firstly placed 

on a table equipped with a fluoroscope and an X-ray imaging device, as illustrated 

in Fig. 1.3(a). Then, the fluoroscope moves around the patient’s chest in all 

directions to record pictures of the heart and the coronary arteries from multiple 

angles.  
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    (a)          (b) 

Figure 1.3: Imaging the coronary arteries through the conventional cardiac catheterisation 

examination. (a) An illustration of a modern cardiovascular X-ray system designed for 

interventional radiology, (b) Illustration of the commonly used entry site, i.e., the artery in the 

groin area, for cardiac catheterisation [5].  

        

Figure 1.4: Examples of conventional coronary angiography images.  

Most cardiac catheterisation procedures take place in the arteries of the groin area 

and the arteries of the arms. When the doctor decides the entry site, an introducer, 

which is a thin plastic tube, is inserted into the artery. Once this introducer is placed, 

a wire passes through the introducer and is gently guided through the arterial system 

to the heart. Next, the catheter, a small flexible tube, is inserted over the wire and 

carefully advanced through the aorta and the coronary arteries, where the catheter 
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movement is viewed through the X-ray screens. As soon as the catheter reaches the 

coronary arteries, a special dye is injected, which allows the fluoroscope to take X-

ray images, so called angiograms, of the arteries. Any blockages can then be clearly 

identified as the arteries are filled with dye (see Fig. 1.4).   

 

 

Figure 1.5: A modern multiple slice Computed Tomography machine. The patient is placed on 

the table, moving through the ring unit, which is comprised of the X-ray source and the detector 

[5]. 

1.3.2 Computed Tomography Angiography 

Although cardiac catheterisation is capable of providing high resolution coronary 

images and is still treated as the gold standard for the assessment of stenotic 

coronaries, some complications and limitations have been identified. Firstly, as it is 

an invasive imaging modality, it carries moderate risks of morbidity and mortality 

[6]. In very rare occasions, it could damage the blood vessels as the catheter is 

threaded to the heart. The risk of complications is higher in people who have 

diabetes and kidney disease. In addition, conventional cardiac catheterisation is only 

able of producing 2D images of the arterial lumen and cannot image atherosclerotic 

plaques, which contain clinically meaningful information about the associated risk 

of developing coronary heart disease [7].  
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Computed Tomography (CT) is a non-invasive medical imaging modality, which 

provides an alternative way for imaging the coronary arteries. Since its first 

commercial deployment in 1972, CT has been intensively used in radiology 

departments to image the human body. Recent advances in vascular imaging 

technology using multiple-slice CT allow for providing volumetric datasets with 

high spatial and temporal resolution of the body. State-of-the-art CT scanners, with 

up to 320-row detectors, are capable of imaging the coronary arteries within a single 

heart beat, producing a 3D image dataset with less than half a millimetre spatial 

resolution in all three directions [8, 9]. This has given rise to CT becoming a 

reliable routine examination for the assessment of cardiovascular disease in clinical 

practice. As illustrated in Fig. 1.5, a modern CT scanner, in general, consists of a 

tunnel-like structure with an X-ray tube on one side and the detector on the other 

side. Before scanning, the patient is placed on the table, and the medical technician 

places an intravenous (IV) line to the patient’s arm, which will provide the actual 

contrast to view the arteries by injecting the contrast material. To synchronise 

image acquisition and reconstruction with the heart motion, the electrocardiogram 

(ECG) signal is usually monitored. By continuously monitoring the ECG signal, 

cross sectional images of the heart are imaged and reconstructed at the same cardiac 

cycle, which compensates for the motion of the beating heart (see Fig. 1.6). During 

the examination, the IV contrast agent is automatically injected and the patient is 

advised to hold their breath for 3-5 seconds. The CT scanner records the X-ray 

attenuation through a plane with a finite thickness cross section of the patient, and 

these attenuation measurements are then reconstructed using a dedicated 

computerised system to produce a 3D volumetric image dataset of the body. These 

images permit the cardiologist to determine whether plaque or blockages are present 

in the arterial walls.  
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Figure 1.6: Illustration of the ECG-triggered cardiac CT scanning mode. During the procedure, 

the X-rays are turned on at predetermined R-wave to R-wave (R-R) intervals to acquire 

sufficient data of the coronary arteries for image reconstruction [10]. 

Fig. 1.7(a) shows an example of a transaxial coronary CT image. It is also 

possible to visualise the CT volume data in such a way as to follow the course of 

the artery, which displays the lumen and surrounding tissues of the vessel in a 

single image. Such a technique is referred to as curved planar reconstruction (CPR) 

[11, 12], and is a useful tool to view a CT image sequence from a perspective angle 

rather than the transaxial acquisition plane (see Fig. 1.7(b)). This technique will be 

discussed in more detail in Section 2.3. 

       

                                    (a)                                                      (b) 

Figure 1.7:  Examples of different post-processing techniques for visualisation of the coronary 

artery. (a) An axial image taken from a coronary CT volume image, and (b) Illustration of the 

curved planar reconstructed CT image of the coronary artery.  
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1.4 Outline of the Thesis 

Following this introduction, the thesis proceeds by exploring the literature in 

vascular image analysis in Chapter 2. In Section 2.1, a review of vascular structures 

extraction algorithms is firstly provided, with particular emphasis in 3D contrast 

enhanced vessel imaging modalities, i.e., CT and MRA. Then, we present recent 

developments in coronary quantification methods for the assessment of the severity 

of stenosis in Section 2.2. Finally, commonly used post-processing techniques for 

visual examination of coronary arteries are briefly introduced in Section 2.3.  

Chapter 3 presents an automated framework for extraction of the entire coronary 

arterial tree in 3D CTA images. The chapter commences with a description of the 

pre-processing stage of the proposed framework, which is followed by the 

presentation of the two-step algorithm for segmentation of coronary arteries, taking 

into considering the problem of kissing vessel artifacts (Section 3.4.4). In the 

following section, we present the experimental results obtained from using hold out 

methods to demonstrate the efficiency and the accuracy on various synthetic and 

clinical datasets.  

Chapter 4 proposes a dedicated algorithm for performing 3D quantitative vascular 

shape analysis in CTA images. The method is primarily aimed at providing the true 

reference surface and centreline data in the bifurcation regions, which usually 

exhibit irregular geometry and have not been addressed by conventional vessel 

quantitative analysis algorithms. The proposed method is based on the registration 

of an elliptic cross sectional tube model to each constituent branch of the 

bifurcation. The registration process is governed by a generic active contour based 

energy functional, which is minimised, when the fitted tube is registered onto the 

desired constituent vessel branch of the bifurcation, which will be explained with 

great detail in Sections 4.2-4.4. 

Chapter 5 concludes this thesis and provides a list of recommendations for 

possible future directions and improvements to the existing work.  
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Chapter 2 

Literature Review of Coronary Image Processing 

Thanks to the continuing development of vascular imaging techniques, modern 

angiography imaging equipment is now capable of providing reliable 3D images for 

the assessment of vascular disease in clinical practice. Given the size and 

complexity of the 3D images produced by modern imaging devices, manual 

interpretation and analysis of these images can quickly add up to several hours of 

processing. Hence, there is an urgent need to develop dedicated systems to assist in 

the analysis of angiography images and facilitate subsequent diagnostic procedures. 

In this chapter, we begin with a review of the state-of-the-art in vascular structures 

extraction techniques with particular interest in 3D contrast enhanced imaging 

modalities, such as MRA and CT, as vessel extraction is a crucial component in 

developing automatic radiological systems. Next, existing work in the quantitative 

analysis of coronary arteries, such as plaque characterisation and stenosis grading, 

is explored in Section 2.2. This is followed by a short introduction of commonly 

used post-processing techniques, including Curved Planar Reconstruction (CPR), 

Maximum Intensity Projection (MIP) and Volume Rendering (VR), for the 

examination of coronary lesions in Section 2.3. Finally, Section 2.4 concludes this 

chapter.  

2.1 A Brief Review of Vascular Structures Extraction 

During the past decade, intensive research effort has been dedicated in designing 

semi- or fully automated algorithms for delineation of vascular structures in medical 

images (i.e., detection of vessel boundaries and centreline extraction). However, 

there is still no general solution for all applications, as methods vary in terms of the 

image modalities, anatomical applications (e.g., cerebral, cardiac and retinal, etc) 

and many other application-specific factors. Rather than providing an exhaustive 

review of all of the existing work in the field of vessel segmentation and centreline 
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extraction, we focus our analysis in the research dedicated to 3D contrast enhanced 

image applications (i.e., MRA and CTA). In this section, we survey vessel 

extraction techniques, covering both early and current work, and structure them in 

three categories based on the extraction schemes, namely, minimum (shortest) path 

based methods, stochastic tracking based techniques (for instance, Bayesian filters) 

and active contour models based approaches. Certainly, given the great amount of 

research in this field, it is possible to categorise published work on a number of 

alternative criteria. Comprehensive reviews of 3D vessel extraction algorithms can 

be found in [13, 14].  

2.1.1 Minimum Path Based Vessel Extraction 

Minimum (shortest) path algorithms have been studied for a long time as a means 

of solving computer vision tasks. In the context of vascular structures extraction, 

minimum path based approaches are particularly popular for searching for the 

centreline of vessels between user supplied endpoints. This technique enables the 

determination of the global optimal of the associated minimal path energy, thus 

making the resulting path less sensitive to local spurious image features. Let C(s) 

denote a curve starting at point p0 and ending at p1 (where s represents the 

parameterisation variable). The minimum path problem can be generally defined in 

the following form [15]:  
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ppA represents the search space of all curves connecting the two endpoints 

constrained by the boundary conditions: C(0)=p0, C(L)=p1, and L denotes the length 

of the path between the two ends. The potential P is derived from the image data, Ω, 

and varies according to the specific tasks. w is a constant controlling the smoothness 
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of the extracted path. In terms of the numerical schemes employed to solve the 

minimum path problem, existing algorithms can be categorised into two notable 

classes, namely, discrete Dijkstra graph based methods [16-19] and Fast marching 

based algorithms [20, 21].  

In Dijkstra’s approach, an image is mapped to a graph, where each voxel is a 

vertex, and is connected to neighbouring voxels through edges. The weights on the 

vertices are defined by the potential (i.e., the associated minimum path energy), 

derived from the image. Distance transform (mapping) is one of the simplest and 

the most commonly used potentials in the Dijkstra shortest path problem. In these 

methods, a distance field is firstly constructed by calculating the distance from the 

user defined source point to each pixel/voxel inside the object of interest. Then, the 

shortest path between an arbitrary pixel/voxel to the source point is obtained by 

backtracing from such pixel/voxel to the source, along the gradient direction of the 

distance field. In order to reduce the computational cost of the distance transform, a 

variety of distance approximations have been proposed, such as the Manhattan 

metric [22], the Chamfer distance [23] and the Euclidean distance [24].  

Despite these methods enjoying the advantage of computational efficiency, the 

shortest path, extracted based on distance transform methods, often deviates from 

the position of the central axis of the vascular structures and tends to follow the 

boundaries at high curvature positions, as shown in Fig 2.1(b). This is due to the 

fact that all voxels (i.e., both the boundary and the central voxels of the object) are 

treated equally, whereas the ‘hugging corner’ effect simply leads to a shorter path. 

To address this problem, Samara et al., [22] proposed the determination of the 

centreline by averaging two shortest paths obtained by starting from each of the 

endpoints. However, this simple averaging procedure cannot guarantee resolving 

the ‘centricity problem’ at sharp turn locations.  
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                             (a)              (b) 

Figure 2.1: Illustration of the ‘hugging corner’ effect [22] in a synthetic image. (a) The distance 

map, (b) The centreline (shown in red) is extracted through the application of Dijkstra searching 

algorithm based on the distance field in (a). The centreline is attracted to the boundaries of the 

object (in blue) at sharp turn positions.  

Wan et al., [25, 26] proposed a potential function based on the distance from the 

boundary (DFB) field, where the Euclidean distance for each voxel inside the object 

to its nearest boundary point is calculated. In their approach, each vertex x of the 

Dijkstra’s graph is weighted in terms of its distance to the nearest boundary 

(1/DFB(x)), and thus, the centricity of the centreline is improved at high curvature 

positions by assigning high weights to vertices near the boundaries. Closely related 

to the DFB based methods, Bitter et al., [27-29] proposed the suppression of the 

‘hugging corner’ effect by finding the minimum cost path in a penalised distance 

field (PDEF). The PDEF field is constructed from the Dijkstra graph, as illustrated 

in Fig. 2.2, but with additional edges and vertices associated with the penalty term. 

The additional vertices and edges penalise the path from coming close to the 

boundaries of the objects, thus improving the accuracy and robustness of the 

resulting path in high curvature positions. Calculating the distance from the 

boundaries, however, involves additional computational costs causing lower 

efficiency of these methods. By realising the fact that boundaries voxels contribute 

less in determining the centreline in Dijkstra shortest path based approaches, the 

dimension of the Dijkstra problem can be therefore reduced if we only conduct our 

analysis in the voxels near the centreline to be extracted. To this end, Jiang et al., 

[30] proposed cutting off boundary voxels to reduce the number of voxels that need 
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to be processed. In [27-29], the voxels around the centreline are detected through 

the analysis of the neighbour pattern of the gradient flow vector of the DFB field.  

                

   (a)       (b)    

Figure 2.2: Illustration of the mapping from the image voxel grid onto an undirected graph in 

2D view. (a) Distance field defined on a graph based on a simple mapping from the image grid, 

(b) Penalised distance field for the same region as in (a). Solid lines depict the weights, which 

depend on the distance between the vertices. Dashed lines denote the penalty edges associated 

to the voxel [28]. 

Previously discussed distance transform based methods generally require a binary 

representation of the vascular structures prior to performing the shortest path based 

centreline extraction, which involves unnecessary costs when the objective is only 

to extract the centreline. Furthermore, as these methods solely work on the 

segmented binary image, the detected path may depend heavily on the initial 

segmentation. To eliminate the need for the pre-segmentation, recent research has 

emerged into the detection of the shortest path directly from image features. Vessel 

enhancement filters [31-33], based on the eigenvalue analysis of the Hessian matrix, 

are a popular technique in searching for tubular geometries in medical images. 

Under the assumption that vessels are cylindrical structures with Gaussian 

distributed profiles along their normal direction, the eigenvalues of the Hessian 

matrix are used as the shape descriptor to detect the presence of the vascular 

structures. In general, these filters respond at the location of each pixel/voxel by 

returning the likelihood of such pixel/voxel belonging to a vascular structure. The 

filter response reaches its maximum at the centre of the vessel, when the scale of the 
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filter matches the size of the vessel. Early work based on the response of vessel 

enhancement filters as the shortest path potential was reported by Wink et al., [34], 

where the authors proposed the combination of the filter response in [31] with the 

minimum cost path technique for defining the centreline of coronary arteries in 

MRA images. They further developed their work in [35] in order to deal with 

vessels of varying widths and crossing vessels. In the extended work, rather than 

searching for the minimum path based on the maximum response of the filter, they 

propose the calculation of the minimum path energy based on a vector-valued 

multiscale feature image, where tubular structures are enhanced. By using the scale 

of the filter as an additional dimension, the performance of the method is improved 

with respect to the crossing vessel artifacts and the variation in vessel diameters.  

Hessian matrix based vessel enhancement filters are based on a single branch 

vessel model, and may result in false positive responses in the presence of 

aneurysms, stenoses and bifurcations, where the intensity distribution deviates from 

the assumption of the underlying model. Under the assumption that the shape of 

vessels can be approximated as a circular/elliptic disk surrounded by darker rings in 

the cross sectional view of CT images, Kaftan et al., [36] proposed the use of the 

‘medialness’ measurement, obtained by analysing the local intensity profiles for 

each pixel/voxel of the image, as the shortest path energy. Compared with Hessian 

based vesselness metric, the proposed potential energy is more robust to local 

intensity variations, such as the presence of neighbouring bright structures (see Fig. 

2.3). Gulsun and Tek [37] extended this concept for general vascular structures 

modelling. Instead of computing the ‘medialness’ map at each vertex of the graph 

(i.e., each voxel of the image), they propose only calculating the ‘medialness’ 

metric for these vertices perpendicular to the orientation of the current path during 

the searching process, which increases the accuracy and the efficiency of the their 

algorithm.  
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            (a)                                       (b)                                                   (c)                         

Figure 2.3: Illustration of the filter responses along a ray on an axial CT image. (a) An axial CT 

image, (b) The medialness filter response obtained using the algorithm reported by Kaftan et al., 

(c) The Hessian based filter response [37]. 

The previously discussed methods, merely relying on intensity features derived 

from the image, may produce erroneous paths in the presence of image artifacts and 

branching structures, where irregular intensity appearances are usually encountered. 

To address this problem, the authors in [38] proposed the incorporation of local 

orientation information into the shortest path energy functional. In their method, as 

illustrated in Fig. 2.4, the geometry of a vessel segment is modelled as a 1D profile 

with different orientations and varying widths, which serve as templates for 

approximating orthogonal vessel portions. The potential of the associated minimum 

path problem is then defined as the normalised cross correlation between the image 

and the models. Cetingul et al., [39] proposed a two-step centreline extraction 

algorithm to deal with vessel bifurcations and nearby spurious branches. In the first 

stage of the proposed method, the initial centreline is extracted based on the 

response of the vessel medialness filter [37]. The centrelines are refined in the latter 

step through the application of a multiscale orientation descriptor, which estimates 

the local direction of the vessel in the vicinity of bifurcations and crossing vessels.  
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Figure 2.4: Illustration of the local vessel model for different orientations and scales [38].  

 

Figure 2.5: Illustration of the metrication errors caused by the Dijkstra graph based minimum 

path method. The optimal path between points A and B determined by using graph search based 

methods (either P1 or P2) suffers from metrication errors. The blue line shows the actual 

minimum path between A and B.  

The aforementioned shortest path approaches, solved based on the Dijkstra graph 

algorithm, generally enjoy the advantage of the high computational efficiency. 

However, they are not consistent with continuous front propagation rules, when 

implemented in a discrete rectangular grid, which can result in numerical errors 

(known as the metrication error [40]) due to the discrete graphical representation of 
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the search space. As depicted in Fig. 2.5, the optimal (shortest) path between points 

A and B is shown in blue, however, due to the discrete graph representation, the 

detected optimal path(s) by means of Dijkstra methods can be either P1 or P2, 

irrespective of the resolution of the grid.  

 In order to eliminate such metrication errors, numerical solutions consistent with 

the continuous front propagation rules have been developed [41-43]. Fast marching 

based algorithms, pioneered by Cohen and Kimmel [15] and further developed by 

Sethian and his colleagues [20, 21, 44], have received a great deal of attention since 

their first introduction in solving the minimal path problem in 1990s, due to their 

low computational costs and consistency with the continuous formulation of the 

associated minimal path energy. Broadly speaking, fast marching methods share 

many common features with Dijkstra’s approaches, but they approximate the 

Euclidean (L2) cumulative cost, and thus, are capable of producing optimal paths 

with sub-voxel accuracy. As defined in Eq. (2.3), in fast marching methods, a 

surface U0, known as minimal action surface, is firstly constructed to define the 

arrival time of a front propagating from the manually selected start points to each 

pixel of the image. The values at each point, p, on this surface correspond to the 

minimal energy integrated along a path that originates from the user supplied source 

point p0 and ends at p:  
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where P denotes the potential derived from the image data, s is the arc-length 

parameter and C(s) denotes the path(s) starting at p0 and ending at p. L represents 

the length of the path. The surface can be determined by solving the Eikonal 

equation PU  , and then the geodesic (shortest) path connecting point p0 to p is 

found by back propagation on U0 along the gradient descent direction.  

Early work of using fast marching methods to solve the vessel extraction problem 

was reported by Deschamps and Cohen [40, 45], where the potential for the 

minimum path problem is defined as the similarity between the source voxel and 

the detected voxel in the image, measured in terms of intensity differences. This 



Chapter 2. State-of-the-art in Coronary Image Processing 

 

18 

 

method works well for objects with homogenous intensity distributions and good 

contrast to the background. However, uneven intensity distribution along the vessels 

is commonly encountered in angiography images, due to the concentration changes 

of the contrast agent and the acquisition noise. Distance transform (DT) based 

methods have also found applications in defining the centreline of vascular 

structures using fast marching algorithms. In contrast to DT based methods applied 

on graphs, techniques based on fast marching algorithms are capable of producing 

continuous and accurate (with sub-voxel precision) centrelines. Cardenes et al., [46] 

proposed the use of fast marching methods to refine the initial centreline determined 

by the distance transform, which may contain disconnected and collapsed centreline 

points due to discretisation effects. Uitert and Bitter [47] proposed the computation 

of the distance transform from object boundaries using level sets, with sub-voxel 

accuracy, and then the extraction of the centrelines based on the distance field by 

fast marching algorithms.   

As previously discussed, second-order derivative information (i.e., Hessian 

matrix) is a popular local descriptor for detection of vascular structures. However, 

they are sensitive to image noise and local intensity variations. Hence, using such 

filters for the estimation of the potential function, as in the case of the minimum 

path problem, may result in erroneous detection of centrelines. To increase the 

robustness of the detected centreline in the presence of local spurious features, 

Young et al., [48] proposed the use of the registration error between the local image 

and an adaptive cylinder model, defined by its orientation and radius, as an 

additional criterion to Frangi et al., vesselness metric to form the potential function. 

Similar work is also found in [49], where the generic cylinder model, constrained 

by an active contour like energy functional [50, 51], is registered to each segment of 

the vessel to refine the resulting centreline. When combined with cylindrical shape 

models, the robustness of vessel enhancement filter based methods is significantly 

improved with respect to local intensity variations and the presence of image 

artifacts and noise. However, forming such models and registering them to local 

vascular structures requires significant computational power, which hinders their 

real-time clinical application.  
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(a)                                                          (b) 

Figure 2.6: Illustration of modelling a 3D vessel surface as a 4D curve. (a) The 4D curve is 

represented by successive 3D point coordinates and the associated radii of the best fit spheres, 

(b) An example of using the 4D curve to represent the vessel surface.  

As the synthetic images shown in Fig. 2.6, vessels can also be approximated by a 

succession of circles/spheres with varying centres and radii. Based on this concept, 

Li and Yezzi [52, 53] proposed modelling vascular structures as 4D curves to 

simultaneous extract both vessel centreline and boundaries, using the minimum path 

method in 4D space. In their work, Li and Yezzi proposed the formulation of 

shortest path energy based a spherical neighbourhood as follows:  
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where sp = (p, r) represents the circle/sphere located at point p with radius r, and μ(·) 

and σ(·) denote the mean and variance derived from the region inside the 

circle/sphere defined by sp, respectively. sp0 is the initial circle/sphere defined by 

the user. w is a constant controlling the smoothness of the centreline. λ1 and λ2 are 

the weights for the similarity metrics. The minimum of the potential function occurs 

when the current sphere (sp) is inside the vessel (exhibiting similar intensity 

statistics as the starting sphere) and is tangential to the vessel boundaries (the radius 

of the current sphere at that point is maximised). To deal with varying intensity 

patterns along the vasculature, they further proposed calculating the minimum path 

energy based on intensity statistics at the surfaces (boundaries) of the sphere:  
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where δμ(·) and δσ(·) represent the mean and variance differences at the surfaces 

between spheres sp=(p, r) and sp’=(p, r-1). Despite this method being able to 

simultaneously extract the centreline and detect the vessel boundaries, there were 

also some limitations. Firstly, the potential function designed for extraction of 

vessels with constant intensity distribution is sensitive to initialisation (in terms of 

both the position and the radius of the initial circle/sphere). Secondly, the potential, 

dedicated for segmenting the vessel with spatial varying intensities, uses the 

intensity statistics at the surface of the sphere. Due to image discretisation, however, 

the surface of the sphere may contain a small number of voxels, thus making this 

metric less robust to image noise and artifacts. Furthermore, the selection of an 

appropriate step size in r poses additional difficulties, and as a matter of fact, it is a 

compromise between accuracy and efficiency. On one hand, a small step size for r 

leads to a fine resolution in the fourth dimension, however it also increases the 

computational cost of the method: the computational complexity of the fast 

marching is O(N log N), where N is the number of grid points in the search space 

[20]. On the other hand, a large step size in radius allows for r taking a limited 

number of values, which may compromise the accuracy of the algorithm. Moreover, 

Li and Yezzi’s method is based on an isotropic metric, which does not take into 

account vessel orientation information.   

Along the same research line, Antiga et al., [54] proposed the extraction of 

centrelines by finding the locus of centres of maximal spheres inscribed into the 

tubular structures based on the Voronoi diagram using the surface points of the 

object. The proposed method works directly on the continuous surface domain, thus 

improving the accuracy of the estimated centrelines, when compared to Li and 

Yezzi’s approach. Benmansour et al., [55, 56] proposed using an anisotropic 

potential for the minimal path problem, where the local metrics (potentials) allow 

for a higher speed along the orientation of the vessels. In particular, the optimally 

oriented flux (OOF) based vesselness descriptor [57], which accounts for the 

magnitude of image gradient flows along a specific direction at the outer surface of 
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a closed region, is calculated at each voxel of the image to locally measure the 

vesselness. The oriented flux along the direction v is defined as: 

   
rS

daIGrf nvvhxvx )))((();,(            (2.6) 

where Sr denotes the local sphere and r represents the radius of the local sphere. 

G is a gradient of a Gaussian function, G. n represents the outward unit vector of 

the sphere, and h=rn. da denotes a small segment (area) of the outer surface of 

sphere Sr. v is a vector indicating the projection direction. The symbol, *, denotes 

the convolution. In their methods, the local metric is designed based on both the 

eigenvalues and eigenvectors information of the OOF, which enables the proposed 

method to detect local vessel directions and enforce the front propagating along that 

direction. In contrast to Hessian matrix based vessel enhancement filters which 

measure the vesselness of each voxel based on a local region centred at that voxel, 

the OOF responds for vascular structures relying on the outer surface of the local 

sphere, and thus, the robustness of the filter is greatly improved with respect to the 

presence of adjacent vessel-like structures. Since these methods are based on an 

anisotropic metric, conventional fast marching methods are not suitable for solving 

such problems [58]. The authors proposed the use of an iterative method in [59] to 

determine the minimal action surface, however, as discussed in their research [56], 

the iterative scheme is computationally expensive and requires parallel 

implementation to speed up the whole process.   

In fast marching methods, the front will expand to every voxel in the image as 

time goes by, which will increase the number of voxels which need to be processed 

and the probability of extracting undesirable paths. Freezing processes [45, 60], 

which terminate front evolution at some ‘wall voxels’ by setting their speed to zero, 

have been introduced to extract the central path for elongated objects. Mueller and 

Maeder [61] proposed freezing the evolution of the front when it is out of the 

vascular regions, i.e., when the vesselness metric is below a threshold. As pointed 

out by Deschamps [62], the minimum path extracted through the backtracing 

method with a fixed step size in the gradient descent direction may result in 

oscillations. To prevent such oscillations, they proposed the use of an adaptive step 
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size in the backtracing calculation, which is determined in terms of the rate of 

change of the potential (speed) function.  

2.1.2 Stochastic Filters Based Vessel Extraction 

Rather than detecting the vascular structures deterministically, the vessel 

extraction problem can also be solved statistically through the use of Bayesian 

tracking approaches [63], where the probability density function is computed at 

each voxel to measure the likelihood of such voxel belonging to vessels. Compared 

with deterministic methods, these algorithms are not only capable of producing the 

optimal solution (in a statistical sense) of the vessel extraction problem, but also to 

provide the statistical properties of the solution (e.g., the variance of the resulting 

solution). In this section, we consider the vessel as a succession of thin segments, 

which are characterised by a set of parameters (known as the state-vector) 

containing all of the necessary information to reconstruct each segment of the 

vessel, connected in series. If we seek to obtain a complete segmentation of the 

vessel, then the state vectors are required to be determined optimally at each 

segment. To this end, we assume these parameters as unknown states of a sequential 

of stochastic/dynamic process, which can be determined successively through the 

use of Bayesian tracking algorithms. Mathematically, the Bayesian tracking 

problem can be modelled using a stochastic process, which is characterised by two 

equations, namely, the dynamic/system equation (model), 


),,( 111  kkkkk f vuxx


and the measurement/observation equation (model) 

 ),,( kkkkk h nuxz  

where fk(·) and hk(·) are known functions associated with the system and 

measurement model at the time sequence k, given previous state, input uk-1 and the 

state noise vk-1, respectively. xk and xk-1 are the current and previous states. zk is the 

measurement based on the current state, the system input and the measurement 

noise nk. The system model describes how the state of the system changes with 
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time. The measurement equation, on the other hand, models the noisy outputs of the 

process based on the current state.  

The aim of Bayesian tracking approaches is to estimate the posterior probability 

density function (PDF) of the state, when a measurement is received. Recursive 

filters, which sequentially update the previous estimations, are particularly suitable 

for solving the incremental tracking problem in this case. Such filters, in general, 

alternate between predictions of the prior PDF of the state and updating the 

posterior PDF once the current measurement becomes available. In the prediction 

step, let us assume the prior PDF p(xk-1|z1: k-1) is known, according to the Chapman-

Kolmogorov equation, the prior PDF of the state at time k can be expanded as: 

 11:1111:1 )|()|()|(   kkkkkkk dppp xzxxxzx 

where the probability of p(xk|xk-1) is defined by the dynamic model defined in Eq. 

(2.7). For the update stage, when the measurement zk is available at time sequence 

k, the posterior PDF of the state is calculated based on Bayes rule: 
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p(zk|xk) is obtained using the measurement model in Eq. (2.8). By recursively 

implementing the prediction and update stages, the state vector of the process can 

be determined successively. However, there are no analytical solutions for these 

probabilities, since the integrals are not tractable. Kalman filters [64-66], based on 

the assumption that both the prior and posterior PDF of the state are following the 

Gaussian distribution, are capable of providing an optimal approximation of this 

Bayesian tracking problem by using simple linear equations. Unfortunately, given 

the complexity of the vessel geometry (e.g., vessel bifurcations) and appearance 

(such as the presence of coronary pathologies), the linear and Gaussian distributed 

state assumption does not hold in the vessel tracking problem in medical images. 

Particle filters [67-70], a sequel of Monte Carlo techniques, provide a sub-optimal 

solution to the Bayesian tracking problem, and are particular popular in solving 

non-linear and multimodal Bayesian state estimation problems. The key idea of the 
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particle filter is that any given PDF can be approximated by a set of random 

samples/particles, whose distribution is known a priori. Hence, given all of the 

measurements zk, the PDF of the current state can be represented as: 
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where Ns denotes the number of random samples/particles used to approximate the 

posterior PDF p(xk|zk); when Ns is chosen to significantly large, the approximation 

defined in Eq. (2.11) converges to the true PDF. x
i
 represents random samples 

whose distribution is conditioned by the importance density function q(·), which is 

defined by the user and can be any distribution. w
i
 is the weights associated with 

each particle. According to the principle of sequential importance sampling (SIS) 

[71], which is the basic framework for most particle filter algorithms, the weight for 

each sample (particle) is updated as:  
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In practice, in order to prevent the weights becoming skewed as time goes by, a 

resampling process is usually applied after a certain number of steps.  

The first application of particle filters in vessel extraction was reported by Florin 

and his co-workers [72], who modelled vessels by a succession of elliptical cross 

sections. The shape, in terms of the set of parameters defining the ellipse and the 

local vessel orientation, and the appearance related parameters (i.e., the intensity 

features of the cross section), are used as the state variables of the stochastic process 

to characterise the vessel. The shape parameters provide information regarding the 

position of the ellipse in the image and define the region of interest (i.e., the area 

within the interior of the ellipse). Appearance related components, on the other 

hand, are used to model the statistical properties of the region of interest. In order to 

accommodate the irregular intensity distribution of the vessel caused by pathologies 

such as calcifications, they propose the approximation of the statistical properties of 

vessel cross sections using a Gaussian mixture model (GMM), which comprises two 

components related to the blood and calcified voxels, respectively. The sample 
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importance distribution q(·), in their method, is chosen as the prior probability of the 

states, and hence according to Eq. (2.12), the weight for each particle only depends 

on the measurement model. The symmetric Kullback-Leibler distance [72], 

measuring the difference between the predicted intensity distribution and the actual 

measurement derived from the interior of the ellipse, together with a ‘ribbon’ 

metric, which provides a measurement of the image contrast to identify bright 

vessels on dark background, are employed in the update stage to quantify the 

goodness of the estimation. The metrics reach their extremes when the estimated 

ellipse is aligned with the boundaries of the vessel of interest. In the extension of 

their work [73], they proposed the detection of vessel boundaries using the circular 

shortest path algorithm [74], and the application of the boundary information as an 

additional metric to evaluate the quality of the prediction. These seminal works, 

pioneered by Florin and his colleagues, have demonstrated the efficiency and 

flexibility of particle filter based methods to incorporate multiple hypotheses for 

solving the tracking problem. Compared with classical deterministic methods, 

which rely on single assumption for the local features, the robustness of the particle 

filter based methods with respect to image noise and local image feature variations 

is significantly improved.  

Along the same research direction, Shim et al., [75, 76] propose the use of 

boundary points, taken from a plane perpendicular to the vessel axis, as the 

observations in the calculation of the posterior PDF of the state in the update stage. 

In contrast to Florin’s methods in [72, 73], which measure the differences between 

the prediction and the observation based on the appearance information alone, this 

technique takes both the orientation and appearance properties into account in the 

update stage. Specifically, vessel boundary points are firstly detected by examining 

the gradient intensity profiles, collected from a number of rays originating from the 

centre of the cross section and pointing outwards. Possible outliers, such as sharp 

gradient changes caused by calcium, bones and nearby veins, are removed by 

analysing their intensity profile patterns. Next, the orthogonal cross section is 

determined by finding the minimum cross sectional area defined by the detected 

border points. The border points located within this perpendicular cross section are 
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then used in the subsequent stage for calculation of the disparity metric, which is 

measured by the exponential sum of distances between these boundary points and 

the estimated ellipse. In a departure to Florin’s appearance model, which is based 

on local regional information, the proposed method defines the observation relying 

on the boundaries of the vessel cross sections, and thus, the robustness of the 

method with respect to local intensity variations is improved. In addition, the 

technique takes the local orientation of the vessel into consideration, thus leading to 

better tracking performance.  

 
(a)                                            (b) 

Figure 2.7: Illustration of approximating a vessel by a series of tube segments [77]. (a) Part of 

the tubular approximation, where r denotes the radius of the tube segment, v is the step length of 

the tracker (i.e., the width of the tube segment) and x represents the orientation of the tube,  (b) 

The local region of interest defined as the regions inside and outside the tube.  

The aforementioned models define vascular structures using the 2D planes 

perpendicular to the vessel centreline, which is not sufficient in modelling 3D 

vascular structures, since these approximations do not fully exploit 3D information. 

Schaap et al., [77] proposed modelling the vessel as a series of short tubes, 

characterised by its location, orientation, average radius and the mean intensity 

inside the tube, to more robustly and accurately describe the vessels (see Fig. 2.7). 

Under the assumptions that vessels are brighter than the background, and the 

intensity distributions within the vessel and the background are homogenous, they 

design their observation model in a similar way as the ribbon metric in the Florin et 

al., method, which maximises the mean intensity differences of the interior and 
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exterior areas of the tube segment. In order to deal with spatially varying intensity 

distribution, the full histogram information is utilised in modelling the appearance 

information of the vessel to be segmented in their refinement work [78]. 

Specifically, the Bhattacharyya metric, measuring the difference between 

distributions, is applied to measure the local contrast and the difference between the 

prediction and the observation. Worz et al., [79] propose using a 3D parametric 

intensity model as the measurement for the particle filter, where the model is 

defined by using a 3D cylinder with Gaussian distributed profiles along the normal 

direction of the cylinder. To obtain a closed form representation of the model, the 

cylinder is constructed using a mixture of the two cylinders with different widths, as 

described in [80]. The measurement model, in their method, is defined as the least 

squares fitting error between the predicted model and the image intensities with the 

region of interest defined by the cylinder.  

Rather than using the parametric cylinder/tube model to represent the vessels, 

Lesage et al., [81] propose an alternative way of delineating 3D vascular structures, 

where the vessel is modelled as an envelope of spheres with different centres and 

radii [52, 53]. The reliability of the estimation is evaluated using the gradient flow 

through the outer surface of the sphere, which infers the degree of alignment of the 

estimated sphere to the vessel boundaries. In a departure to the conventional particle 

based methods using a limited number of particles to update the posterior 

probabilities in the update stage, they propose using a wide range of samples in the 

prediction stage to accommodate broader hypotheses. Zhao et al., [82] modified the 

sphere model by extending the region of interest to the space around the original 

sphere, where the geometric model consists of two layers: the core (i.e., the original 

sphere) represents the foreground, while the outer layer (sphere) corresponds to the 

background. Rather than modelling the intensity pattern within the region of interest 

parametrically, they propose the use of a non-parametric estimation algorithm to 

adaptively approximate the intensity appearance. In CT angiography, the 

boundaries of the vessel are usually blurred owing to the partial volume effect. To 

account for such effects, the appearance of the vessel is modelled as a weighted 

combination of the vessel lumen and boundary patterns. Based on the assumption 
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that the contrast agent will not affect the intensity patterns of the vessel wall, the 

boundary appearance is constructed offline based on training images. For the 

measurement model, they propose the use of the Earth Mover’s distance as the local 

contrast metric to measure the difference between the background and the vessel.  

In particle filter based tracking problems, it is popular to choose the sampling 

importance density function q(·) as the prior probability density function of the 

state, which leads to a simplified weights updating scheme, i.e., the weights are 

solely dependent on the measurement density. However, such a choice is not trivial, 

as the particles are drawn from this distribution, inappropriate selection of the 

importance density function may lead to the random particles located far from the 

optimal solution, thus affecting the accuracy of the approximation of the posterior 

PDF of the state. One may suggest generating a large population of particles to 

cover a wider solution space. However, this is at the expense of increasing the 

computational complexity. Cetingul et al., [83] propose the design of the 

importance density function based on a nonlinear pivoting filter [84], which is a 

local orientation descriptor to identify the local direction of vascular structures. This 

approach was applied in tracking of vascular structures using Dijkstra based method 

[39], discussed previously in Section 2.1.2. The pivoting filter consists of two 

components derived from both cross section and tubular intensity properties. 

Specifically, one metric detects the possible vessel directions by comparing the 

intensity variation between the boundary of the previous orthogonal cross section 

and the intensity variation along that orientation. The other one, measures the 

intensity homogeneity along the detected direction. By modelling the importance 

density function based on the pivoting filter, the drawn particles have higher 

probabilities to be located in positions near the final solution.  

2.1.3 Active Contour Models Based Vessel Extraction 

Active contour models, also known as snakes, are elastic splines fitting to the 

image contents based on the detected features. Since their introduction as a means 

of front propagation based segmentation methods, active contour models are 

receiving a great amount of attention by the medical image processing community. 
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To the best of our knowledge, the first use of the snakes for solving image 

segmentation problem was reported by Kass et al., [85], following this seminal 

work, numerous research effects have been dedicated to design the active contour 

based energy functionals for various image segmentation tasks. Broadly speaking, 

image segmentation by means of active contours is performed by iteratively 

deforming a contour/surface until the user-defined energy functional is minimised. 

The energy of the active contour often depends on its shape (internal energy) and its 

position in the image (external energy derived from the image), and can be defined 

as: 

  
1

0
))(())(())(( ssvsvsv dEEEE ConExtIntSnake 

where EExt gives rise to the external force driven from image features. ECon 

represents the constraint force defined by the user or prior knowledge. EInt denotes 

the internal energy of the snake, which is usually defined as a combination of the 

elasticity (v´(s)=dv(s)/ds, v(s) is the medial axis and s is the parameterisation 

variable) and the stiffness of the medial axis (v´´(s)=d
2
v(s)/ds

2
): 
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α and β are constants, controlling the contribution of each term to the internal 

energy. The parametric representation of the snakes cannot directly handle 

topological changes during contour evolution, unless dedicated processes are 

applied to deal with the possible split and merge of the contour. Level sets methods 

[21, 86], implicitly representing the active contours by embedding them into the 

zero level of a higher dimensional level set function, are capable of accommodating 

changes in topology in a natural framework. Hence, level sets based active contour 

models, also known as geometric active contours [50], became one of the most 

popular methods in vessel segmentation. As illustrated in Fig. 2.8, in level sets 

method, the contours C(x) are often represented implicitly as the iso-contours (the 

interface) of a higher dimensional signed distance function, known as the level set 

function. 
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where ϕ stands for the signed distance function, x is the spatial parameters 

describing the contour and t is an artificial evolution time. In this thesis, we assume 

that ϕ(x,t)<0 represents the region outside the curve, while ϕ(x,t)>0 defines the 

region inside the curve.  

 

Figure 2.8: Illustration of the implicit contour representation. The contours are represented as 

iso-contours (interface) of a level set function [86]. 

The evolution of the surface (the level set) along its normal direction is controlled 

by the following equation: 

 0  Vt 

where the subscript t denotes a temporal partial derivative in the time variable t. The 

speed function V(x) defines the velocity at each point of the surface (level set) and 

is usually derived from the image content features. Existing algorithms using level 

set based active contour models can be generally categorized in two groups, in 

terms of the image based energy, namely, edge based and region based models.  

The application of edge based models to image segmentation was pioneered in 

[50, 87], where active contours are represented using geodesic formulations. The 

authors have mathematically demonstrated that the energy minimisation problem of 

the active contour models is equivalent to finding the geodesic curve (i.e., the 

minimal length curve between two points) in Riemannian space based on the image 

content features. In these methods, the difference of Gaussians (DoG) is utilised as 
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the edge detector to derive the image based energy, and thus, the front evolution is 

terminated when it reaches high image gradient regions. In the initial work, the 

external energy is defined based on the local edge detectors, which makes the 

resulting solution sensitive to image noise and contour initialisation. Yang et al., 

[88] proposed an improved algorithm for segmentation of coronary arteries based 

on a Bayesian probabilistic framework. In their method, the image driven energy is 

redefined using posterior probabilities, based on the global histogram distributions, 

to more accurately terminate the evolution of surfaces at the desired boundaries. 

Specifically, they assume that the histogram of the coronary CT image consists of 

three classes, which corresponds to the lungs areas, the soft tissues and the contrast 

media filled regions (i.e., blood filled regions, including the blood vessels and 

pools). Three Gaussian functions are used to model the prior probabilities for each 

voxel belonging to these pre-defined classes. The posterior probabilities, obtained 

based on the Bayesian rule, are then used to derive the image energy by measuring 

the differences between the posteriors for each voxel being classified as the blood 

filled regions and the others. Since the posterior probabilities are obtained from 

global statistics, the method cannot handle the varying brightness and contrast 

changes over the entire image. Hence, it is not capable of segmenting small and 

distal segments of the coronary arteries due to their relatively low intensity and 

contrast.  

The leakage problem, where the contour leaks into adjacent regions during curve 

propagation, is often encountered in medical image segmentation when using local 

gradients as the stopping criterion. This occurs in the case where the boundaries 

between different objects cannot be clearly defined by the gradients. Shape priors 

[89, 90], usually obtained from a training set, have been incorporated into the active 

contour framework as hard constraints, which greatly improve the segmentation 

results when the objects to be extracted have the similar shape to the ones present in 

the training sets. Leventon et al., [91] propose parameterisation of shape priors 

using the signed distance function and the correspondence between the samples is 

roughly established by the Eigenfaces method [92]. The principal shape variations 

of the given training set are determined through the application of principal 
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component analysis (PCA) and are fit to the Gaussian distribution, which defines 

the probability distribution on the shape. In the conventional methods, the pose 

parameters (i.e., the rotation, translation and scaling factors) need to be optimised in 

order to align the shapes between the current segmentation and the template by 

comparing their differences, which introduces additional difficulties in the 

numerical implementation as these pose parameters cannot be simultaneously 

optimised using a gradient descent method. Cremers et al., [93] propose alleviate 

solution to this problem by using a translation and scaling invariant shape prior. 

Instead of evaluating the shape difference using the global coordinates, they 

propose to align the shape with respect to its centre of gravity and normalise the 

area of the object to unity, which leads to a shape representation invariant to scaling 

and translation. In contrast to classical methods modelling the probability of the 

shape using a Gaussian model, in their method, the probability distribution on the 

shape of the training set is derived by a non-parametric kernel density estimation 

method, which allows for more accurate estimation of the probability densities of 

the shape prior.  

 

                                        (a)                                           (b) 

Figure 2.9: A graphical example demonstrating the effect of the shape filter. (a) Illustration of 

the shape filter centred at p and with the radius R, (b) The output of the shape filter [94]. 

However, reliable shape priors are in general difficult to determine in practice due 

to the high inter-patient variability of the vessel geometries and the limited 

availability of training datasets. To address these problems, Nain et al., [94] 

incorporate a soft shape prior into the conventional active contour model. They 
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propose the application of a shape filter to locally describe the shape of the 

segmented region. As illustrated in Fig. 2.9, the shape filter is defined as a ball 

structure centred on each point along the contour with radius r. This measures the 

percentage of voxels belonging to both the ball and the object (i.e., the regions 

inside the contour). The output of the shape filter is high when the current point 

belongs to a region corresponding to leakage. Conversely, lower values of the 

filter’s output indicate that the current point is within the vessel. The filter response 

then serves as the external energy of the active contour, penalising leakages during 

the curve evolution. However, the shape filter cannot discriminate vessel 

bifurcations from leakage areas, and may result in undesired gaps in the vicinity of 

vessel bifurcations. Gooya et al., [95] proposed the use of an anisotropic 

regularisation force, which is designed to detect the local front orientation and 

encourage the surface evolving along the elongated direction, to reduce the risk of 

leakage when segmenting vascular structures. In the propose method, the 

correlation matrix of the image gradient [96] is employed as a descriptor to estimate 

the local surface structure. For each point along the active contour, the correlation 

matrix is derived from the regions defined by the intersection of a ball structure, 

centred at each point on the contour with a radius R, and the interior of the contour. 

The elongated direction of the object can be identified by analysing the eigenvalue 

patterns of the correlation matrix. Since this method enforces the front propagate 

along the elongated direction, possible leakages caused by ambiguous edge can thus 

be limited. Topological properties have also been utilised to address the leakage 

problem. Manniesing et al., [97] impose a shape constraint on the topology of the 

segmented vessels, where the skeleton of the front is used to guide the contour 

evolution.  

Contrary to edge based active contour models, which characterise image content 

based on a small neighbourhood of pixels, region based methods, relying on global 

information obtained from image regions, are more robust to weak or 

inhomogeneous gradients at the edge locations as well as insensitive to image noise. 

Region based segmentation methods generally seek to partition regions in terms of 

common image features. Early work in region based segmentation using variational 
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principles was reported by Mumford and Shah [98], where they proposed solving 

the image segmentation problem by decomposing image g into a set of disjoint sub-

regions Ri, such that: 

 RRR n  1 

where Ri is associated with the image sub-regions as a partition of the image 

domain g, and they assume that the image content within each region Ri varies 

smoothly, which is known as the piecewise smooth (PS) or cartoon model. The 

above segmentation problem can be solved through an energy minimisation process: 

   
R R
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where f stands for the function approximating the image content g, and Γ denotes 

the boundaries between the different image regions Ri. μ and v are constants 

controlling the weights of each individual energy term. Based on this concept, Zhu 

and Yuille [99] proposed the interpretation of the regional intensity variations as a 

random variable with a probability density which needs to be determined based on 

regional information. The image segmentation problem is solved by minimising a 

minimum description length (MDL) criterion based on the Bayesian rule. Later on, 

Chan and Vese [51] proposed the solution of the Mumford-Shah functional 

minimisation problem using the level sets based active contour methods, where they 

developed a reduced form of the PS model by assuming that the image consists of 

homogenous regions, thus leading to the piecewise constant (PC) model. The 

associated energy functional is defined as: 
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where C is a closed contour(s), which is usually used to delineate the boundaries of 

the objects to be segmented, inside(C) are the regions inside the contour C, and 

outside(C) represents the regions outside of the contour. c1 and c2 denote the mean 

intensity values inside and outside the contour, respectively. I(x) is the gray level 

intensity value at pixel x. μ, λ1 and λ2 are constants, controlling the weights of the 
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individual energy terms. This work was later extended to multiple phase images, 

where the image consists of more than two homogeneous regions [100].  

Following the seminar work by Chan and Vese, Rousson et al., [101] proposed 

the use of the two parameters of the Gaussian function (i.e., both the mean and the 

variance) to more robustly and accurately model the region statistics. Lecellier et 

al., [102] extended the Gaussian parametric model to the entire family of 

exponential functions and proposed a general framework for optimisation of the 

associated energy functional. In their approach, image intensities are treated as 

random variables whose distributions belong to one of the exponential parametric 

models, and their parameters are estimated using the Maximum Likelihood (ML) 

method. The probability density function of image regions, however, cannot always 

be accurately approximated by parametric models, especially when the prior 

statistical information about the image regions to be segmented is not available. 

Non-parametric methods are preferred in this case, for their capability of dealing 

with complex distributions without assuming any prior knowledge. Michailovich et 

al., [103] proposed using the full histograms of image regions, obtained by kernel 

density estimation (KDE) algorithms, as regional descriptors for image 

segmentation. In their method, the Bhattacharyya distance is employed as the 

discrepancy metric to measure the similarity between two distributions 

(histograms), and is to be minimised at the boundaries of the objects to be 

segmented. Kim et al., [104] proposed the application of information theory to 

solve the active contour segmentation problem. In their method, region labels, L(x), 

a Boolean function indicating whether the current pixel x should be classified as 

belonging to the object, are defined at the location of each pixel of the image. The 

value of the labels is determined based on Bayes rule, where the prior probability 

density function of the image regions inside and outside the active contour is 

estimated using the Parzen window. Hence, image segmentation can be achieved by 

maximising the mutual information between the region labels and the image 

intensities. 
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(a)                         (b)                                        (c)   

Figure 2.10: A synthetic image illustrating the erroneous segmentation caused by using global 

statistics in the presence of non-uniform illumination. (a) Contour initialisation, (b) and (c) the 

final segmentation results obtained using basic/localised Chan and Vese methods, respectively. 

As illustrated in Fig. 2.10, the aforementioned methods, based on global intensity 

statistics, are inefficient when regional statistics is spatially varying across the 

image. Image intensity inhomogeneity is often encountered in medical images due 

to the acquisition artifacts and the attenuation of the contrast media. Localised 

approaches, estimating regional statistics in a neighbourhood of the active contour, 

have recently emerged to overcome this problem. In these methods, the image based 

energy functional is generally defined in the following form: 

 xyyxyx
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where C(x) denotes a closed contour(s) representing boundaries of the objects to be 

segmented. k(x,y) is a non-negative localised kernel function returning the weights 

for each pixel within the neighbourhood centred at x, which defines a localised 

image, Ωx, around x, and g(·) is a generic function measuring the overlapping 

between distributions (derived from the image regions inside and outside of the 

active contour within the local region Ωx, respectively). For instance, in the 

localised PC model [105, 106], the localised image-driven energy term g(·) can be 

written as:  
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where c1 and c2 represent the mean intensity values inside and outside the active 

contour within the local region Ωx. By introducing the localised kernel k(x,y), the 
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active contour evolution is based on local decisions, thus improving the overall 

performance of the segmentation under changing brightness conditions, as there is 

less brightness changes in a local image (see Fig. 2.10(c)). In PC active contour 

models, the overlapping between distributions is measured in terms of the mean 

intensity values derived from image regions, which cannot separate distributions 

with similar means but different variances. To more robustly describe local regional 

statistics, Wang et al., [107], propose taking into account the variance of image 

regions and modelling region statistics by Gaussian distributions. Similarly, Darolti 

et al., [108] proposed a disparity metric using confidence intervals to locally 

determine if a voxel should be classified as belonging to the object in terms of the 

mean and variance derived from local image regions. The authors further proposed 

using the local Markov Random Field (MRF) model as the disparity metric to deal 

with largely overlapping probability density distributions. Lankton et al., [109] 

proposed a general localised region based active contour framework, which allows 

for the incorporation of any region based energies (such as the Bhattacharyya 

distance [103]). However, the selection of an appropriate scale for the localised 

window is an important tuning parameter and can greatly affect the segmentation 

performance. A small size of localised kernel makes the active contour sensitive to 

initialisation since only a small group of voxels, i.e., the ones near the contour, are 

taken into account in contour energy calculation. On the other hand, too large a size 

for the local window will include more voxels in the decision process, which may 

introduce possible image artifacts and image inhomogeneity. Piovano and 

Papadopoulo [110] addressed this difficulty by adaptively varying the width of the 

local window. In their method, they compute the speed (active contour energy) for 

each point on the contour over multiple scales, and the smallest scale, which leads 

to the evolution speed at such point being greater than a given threshold, is chosen 

as the optimal scale at that point. By doing so, the proposed method favours small 

neighbourhoods near the locations of edges, while a larger window size is chosen in 

the case of homogenous regions.  

One of the major drawbacks of standard level sets methods is the large amount of 

computational resources required to solve the evolution equations over the entire 
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image domain. Narrow band based methods [21, 41, 111], which update the level 

set function near the curve (zero level set) at every time step, are commonly 

employed to improve the efficiency of level sets based segmentation algorithms. In 

conventional approaches, the level set function needs to be periodically re-

initialised in order to maintain it as a signed distance function, which impacts on the 

efficiency of the algorithm. To remedy this issue, Li and his colleagues [112] 

proposed the introduction of a constraint energy term into the framework of 

geometric active contours, which penalises the level set when it deviates from a 

signed distance function. Since their method removes the need for re-initialisation, 

the efficiency of level sets based active contours has been significantly improved.  

2.2 Quantitative Coronary Analysis  

Quantification of the resulting segmentation of coronary arteries (e.g., estimation 

of the degree of luminal narrowing and quantification of the plaque volume), 

obtained through manual delineation or automated methods, provides important 

information about the associated risks of developing cardiovascular disease for the 

patient, and is beneficial for reviewing the results of cardiac interventions.  

     

                                           (a)             (b)  

Figure 2.11: Examples of the stenosis quantification scheme. Illustrations of the quantification 

of the severity of stenosis for (a) soft, and (b) calcified stenotic plaques [113].  

The severity of coronary stenosis, determined through visual inspection, is 

measured using a binary approach with 50% luminal diameter narrowing as a cut-

off [114]. However, such binary description of coronary stenoses may usually 

exclude the ‘intermediate’ stenosis (which could lead to slightly less than 50% 
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narrowing) and cannot sufficiently describe clinical information with regards to 

obstructive lesions. For diagnostic purposes, accurate discrimination between mild, 

moderate and severe stenotic plaques is required. To this end, Cheng et al., [113] 

proposed a multi-tiered evaluation scheme for grading coronary stenoses based on 

the longitude image of the arteries. In the proposed method, all of the non-stent 

coronary segments with a luminal stenosis of >25% are flagged for further 

examination. As illustrated in Fig. 2.11, for each stenotic plaque, the reference 

vessel regions located prior and distal to the lesion and the minimal diameter at the 

site of the stenosis are determined manually, and the corresponding luminal 

diameters (Dprox, Ddis and Dsten) are quantified using semi-automated software. Then, 

the reference vessel diameters (i.e., the normal luminal diameters) along the vessel 

segment between the two reference sites are determined by linear interpolation. 

Hence, the maximum degree of the stenosis can be calculated as follows:  

 )))]-()/((-)/((-[1 = Stenosis disprox21proxsten DDXXDD  

where X1 and X2 denotes the distances between the two reference sites, and from the 

proximal reference site to the maximal degree of stenosis, respectively. Their study 

has shown that semi-automated quantification has a high degree of agreement with 

the manual evaluation, however it does not improve the overall accuracy of the 

measurement. This is partially because the quantification method requires a certain 

amount of user interaction, including determination of the reference points and the 

stenotic sites, which introduces significant variability in the resulting analysis.  

To improve the objectivity and reproductivity of the assessment regarding the 

severity of coronary stenosis, semi- or fully automated systems have been 

developed to reduce the amount of user engagement. Joshi et al., [115] reported the 

use of a computer-aided system to perform quantitative analysis of coronary 

stenosis using IVUS as the reference for validation. The semi-automated analysis 

commences from extraction of the arterial centrelines and detection of the 

associated lumen areas based on the user-provided endpoints. Then, a refinement 

process is conducted manually to ensure the correctness of the detected coronary 

lumen. Next, the physician is required to determine the two reference regions, 
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located proximal and distal to the lesion, and the associated geometrical parameters 

(i.e., luminal diameter and cross sectional area) regarding the stenotic plaque are 

subsequently calculated by the software in an automated fashion. As such semi-

automated system significantly reduces the amount of the user interaction; 

diagnostic results by means of CT angiography have shown an improved correlation 

with the standalone procedure using intravascular ultrasound (IVUS).  

Despite the promising results obtained using semi-automated approaches for 

quantification of coronary stenosis, such methods still suffer from large variability 

in terms of diagnostic accuracy and have a low rate of reproductivity due to the 

manual interfaces, introduced in the evaluation process. Hence, there is a need for 

development of a dedicated system to perform the quantification in a fully 

automated manner, which could further improve the accuracy and reproductivity of 

the evaluation. Boogers et al., [116] applied an automated software (QAngioCT 1.1, 

Medis Medical Imaging Systems) to quantify the degree of stenosis in CT 

angiography images. The analysis starts with the extraction of the 3D centreline of 

the vessel of interest (starting from the root of the artery to its distal segment) 

through a vessel tracking algorithm. Next, the stretched multiplanar reformation 

(MPR) method [117] is employed to create the four longitude vascular volumes at 

45º intervals, which allow for the visualisation of the curved arteries as straight 

vessels. Then, the boundaries of the longitudinal multiplanar reformatted images are 

detected using a model based minimum cost algorithm, which utilises a 

combination of image derivatives and a circular shape model as the minimum cost 

energy functional. In the subsequent step, the luminal diameters and the 

perpendicular cross sectional areas along the course of the vessel segment are 

determined and these data is further processed to quantify the severity of coronary 

stenosis.  

Coronary bifurcation lesions constitute a challenge for interventional cardiology. 

Conventional methods, however, are commonly developed for quantitative analysis 

of the ‘straight’ segments of vessels and have limitations in precisely defining the 

location of the centreline and the true reference lumen surface for both the main 

vessel and the side branch in the vicinity of bifurcations. To address these issues, 
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Wong and Chung [118] proposed using a deformable model based method to 

recover the healthy shape of the abnormal vessels in 3D angiography images. In 

their method, the original shape of a diseased vessel segment is reconstructed by 

registering a circular cross sectional tube to the vessel boundaries in normal regions. 

The method was further developed to incorporate the user’s guidance to trace the 

vessel axis in the presence of complex vascular structures, such as multiple 

branching, kissing vessel artifacts and aneurismal lumens [119]. Despite this 

approach being able to generate centrelines in complex vascular structures, it still 

suffers from a number of problems, as follows. Firstly, their method is sensitive to 

initialisation, since the width along the tube model is determined by linear 

interpolation between two manually selected ending cross sections. It may result in 

under- or over-estimation of the area of tubular cross sections due to the non-linear 

nature of the vessel, and thus, produce erroneous estimations of vessel centrelines 

and the reference surface. Moreover, the tube deformation process is carried out in 

the voxel domain, which requires upsampling of the original volume to calculate the 

image-based energy due to insufficient resolution. Different image upsampling 

methods could dramatically affect the magnitude of the image-driven energy, which 

leads to non-unique solutions for the tube registration problem.    

Similar work was also reported in Kang et al., [120], who proposed the 

classification of the region of interest (ROI) to one of three types, namely, normal, 

stenotic and aneurismal (corresponding to bifurcations), prior to model registration. 

The initial segmentation of the ROI is obtained based on a region growing 

algorithm, which uses two user-defined points. Then, an active tube model is fitted 

to the ROI by minimising a snake-like energy functional. In a departure from 

previous deformable model based methods, calculating cross sections based on the 

centreline points, they propose the determination of the cross sections by extracting 

the iso-surface of the complementary geodesic distance field, which allows for the 

cross sections of the vessel to be determined uniquely and independently of the 

fitted centrelines. In this method, the classification of the ROI is based on the 

segmented image, obtained using a region-growing algorithm. The ‘leakage 

problem’, which is commonly encountered in region-growing based segmentation, 
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however, could result in erratic classification of the ROI and subsequently degrade 

the performance of the method. 

Ramcharitar et al., [121] developed a dedicated method for quantitative coronary 

analysis of bifurcation lesions in 2D X-ray angiography images. Based on the two 

user-defined points (before and after a vessel bifurcation), a circle fitting algorithm 

is firstly applied to detect the point of bifurcation and segment the bifurcation area. 

The reference diameter within the bifurcation region is subsequently determined by 

a minimum freedom approach. The method was later extended to quantify abnormal 

vessels in 3D images in order to eliminate foreshortening and out-of-plane 

magnification effects, which are commonly encountered in 2D angiograms [122]. 

The 3D artery model, however, is reconstructed from different views of the 

projection images. The accuracy of the reconstructed model depends on the 

selection of the projection angles and the assumed vessel model (e.g., a circular 

cross sectional tube), which impacts on the re-productivity of the results.  

In addition to measuring the degree of coronary stenosis, a lot of research efforts 

have been dedicated to quantify the plaque volume (e.g., measuring the size of the 

plaque). However, the blooming effect, which is a partial volume artefact, which 

occurs during high radiation exposure in the case of high attenuation objects (e.g., 

the calcifications), results to such objects appearing larger, this is commonly 

encountered in CT angiography due to the limited spatial resolution. Image 

deconvolution techniques [123] have been proposed to suppress such effect by 

solving the inverse problem of estimating the true size of the object from the 

images. Conventional deconvolution methods, however, may amplify image noise 

and artifacts which are usually associated with the high frequency components of 

the image spectrum. Hijarrubia et al., [124] proposed a histogram based selective 

deblurring algorithm to restore the true size of high intensity objects (i.e., calcified 

plaques) while maintaining the information of the remaining regions in CT images. 

In the proposed method, the deconvolution is firstly performed using the Wiener 

filter [125], with a  point spread function (PSF), obtained during training, using the 

information available from the phantoms. Then, the calcified regions, in both 

original and deconvoluted images, are identified using a region growing method. 
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Next, the transition regions are determined by finding the difference between the 

calcification volume in the original and deconvoluted images, and restored through 

the linear interpolation between the two regions. At last, a smoothing process is 

applied to the transition regions to generate the final results. However, the point 

spread function, in their method, is estimated in an ad hoc manner, which makes the 

estimation highly correlated to the image modalities and the configuration during 

the image acquisition process. Cline et al., [126] presented an automated system for 

recovering the true size of the calcified plaques in CT angiograms. In the proposed 

method, the blooming effect of CT images is modelled as the convolution of a 

noise-free image with a Gaussian distributed PSF, derived from the imaging system. 

The variance of the PSF is estimated from the intensity profiles across a sharp edge, 

such as the interface between the lungs and myocardium. The core of the calcified 

plaques, determined by thresholding, is then convolved with the PSF to obtain the 

estimated plaque volumes.   

2.3 Coronary CT Image Interpretation  

Accurate and efficient interpretation of coronary CTA images is an essential and 

important component in the visual examination of coronary arterial disease, which 

provides the physician with reliable diagnostic information about the state of the 

coronaries. In the following subsections, the most commonly used post-processing 

techniques for the interpretation of coronary CT studies, including transaxial 

examination, multiplanar reformation (MPR), curved planar reformation (CPR) and 

volume rendering (VR) will be introduced. The focus of this review is to provide a 

high-level description of these techniques, rather than their algorithmic details, as 

they are primarily related to visualisation aspects, which are not within the scope of 

the current work. However, the terminologies introduced here will assist in 

understanding the evaluation framework used to validate our contributions, which 

will be presented in the following two chapters. 
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                                        (a)             (b) 

Figure 2.12: Illustration of the axial view of CT images. (a) The definition of the projection 

planes, (b) A transaxial image examination allows the visualisation of the 2D axial-projection 

image [127].  

2.3.1 Transaxial Examination  

Transaxial (axial) examination is a basic yet essential tool for CTA image 

interpretation. Axial images, reconstructed from the projection data (i.e., the initial 

result of CT acquisition and cannot be viewed directly) form the basis for 

generating 3D multiplanar reformatted images. In these images, the heart region is 

contained in a series of 2D cross sectional slices, stacked together to form the 

volumetric data (see Fig. 2.12), which provide the most common and meaningful 

information regarding the arteries. A typical 12-bit CT image contains up to 4096 

different intensity levels, which cannot be discriminated by the human eye. 

Window-Levelling [128], an operation controlling the brightness and contrast of the 

image, is usually carried out during the visual reviewing process, in order to 

optimally visualise the object of interest. This technique maps the entire range of 

grey levels to a sub-range, which contains less intensity levels, and can thus be 

discriminated by the observer. The relationship between image contrast and 

brightness and the terms window and level are illustrated in Fig. 2.13. Making the 

window wider will decrease the image contrast, since more grey levels are 

displayed. The display brightness can be adjusted by moving the level left or right. 
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Figure 2.13: A diagram shows the relation between image contrast and brightness and the 

window-level settings.  

2.3.2 Multiplanar Reformation  

 The routine transaxial images, where the volumetric image is projected onto the 

axial, sagittal and coronal viewing planes, are only able to provide limited viewing 

angles for inspection of the artery. Some segments of the coronary arteries, 

however, cannot be appropriately viewed in these basic transaxial images. Hence, 

the multiplanar reformation technique [129, 130] was proposed as a suitable 

solution for the generation of slice images with arbitrary orientations, as shown in 

Fig. 2.14.  

               

                                     (a)                                                              (b) 

Figure 2.14: The images illustrate the multiplanar reformatted image reconstructed from the 

volumetric CT dataset. (a) 3D visualisation showing the volume rendered image of the thorax, 

(b) Image reconstructed from an off-axial plane, defined by the red rectangle shown in (a). 
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The multiplanar reformation problem can be solved by interpolating the original 

CT volume data along an arbitrary plane, where the intensity values of each voxel 

within the newly generated plane are determined from its neighbours. For 

visualisation purposes, the tri-linear interpolation algorithm is commonly employed 

to determine the intensities of the new viewing plane.    

2.3.3 Curved Planar Reformation  

Coronary arteries are tubular structures with relatively small luminal diameters 

and complex topologies. Hence, the aforementioned visualisation techniques, which 

display a cross section or a small fragment of the vessels, are not sufficient to 

exploit the ‘global’ properties of the entire vessel, such as the minimum and 

maximum luminal diameters and average X-ray attenuation. Curved planar 

reformation [11, 12] is a popular post-processing technique to visualise the entire 

vessel along its centreline within a single 2D image, where both the lumen and the 

surrounding tissue can be clearly displayed. In Fig. 2.15, we illustrate the CPR 

images of the left and right coronary arteries, respectively. It can be seen from these 

angiogram-like images that, the calcium (hyper-density components shown in Fig. 

2.15(a)) deposited in the luminal area can be intuitively viewed. 

 

                                                                                  

             (a)                                                            (b) 

Figure 2.15: Visualisation of CPR images of the (a) left and (b) right coronary arteries. 
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2.3.4 Volume Rendering 

The commonly used 2D CT image interpretation techniques are sufficient for the 

radiologists to get a 3D understanding about the pathology and anatomy of the 

patient. However, they may require a full 3D interpretation of the anatomical 

structures under examination for the preparation of the diagnostic report. Volume 

rendering, a technique which constructs a pseudo 3D interpretation of an object, 

generally assigns each element (voxel) of the image volume with a transparency 

measurement (known as the alpha map), which defines the opacity levels of that 

voxel, and maps the voxel intensities onto a pseudo colour map. The assignment of 

opacity and colour maps to the voxels is defined in terms of the imaging protocols 

and anatomical structures [131-133]. In Fig. 2.16, we illustrate the different settings 

for visualisation of the vessels and bones in 3D volume rendered images.  

   
(a)                                                 (b) 

    
(c)                                                (d) 

Figure 2.16: Examples of volume rendered views constructed from coronary CT angiography. 

(a) and (b) illustrate the volume rendered images with the alpha and colour map configurations, 

as depicted in (c) and (d), for visualising the vasculature and bones, respectively.  
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2.4 Conclusions 

In summary, this chapter presented an overview of the state-of-the-art techniques 

in coronary image processing. We commenced our discussion by exploring the 

existing literature regarding vascular structures extraction algorithms. For each of 

the techniques described in the review section, the basic ideas, principles, 

developments as well as their limitations were discussed. This was followed by a 

brief introduction of quantitative coronary analysis methods in the assessment of the 

severity of luminal stenosis. Finally, we described commonly used post-processing 

techniques for interpretation of coronary CTA images, which are useful in 

illustrating the results of this research, reported in Chapters 3 and 4.  

Numerous commercial and laboratory-based systems for quantification of 

coronary arteries have been developed based on various algorithms in recent years. 

However, there is no system that allows for the construction of the geometric model 

of a coronary artery with a single click, and often, manual interaction is required by 

trained staff, which may result in large intra- and inter-observer variability. 

Reproducible and accurate modelling of the geometries of the coronary is a key step 

towards quantitative coronary shape analysis (such as stenosis grading) and patient-

specific haemodynamic studies. Thus, there is an immense need for the 

development of a fully automated system for the construction of patient-specific 

geometric model of the coronary arteries, with minimum user interaction. In the 

following chapter, we will present a novel framework for the segmentation of the 

coronary artery from cardiac CT images in a fully automated fashion, which 

facilitates the construction of the patient-specific models of the arteries.  
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Chapter 3 

Segmentation of Coronary Arteries in 3D CTA 

Images 

This chapter presents an innovative framework for segmentation of coronary 

arteries in 3D CTA images. It commences with the description of a series of image 

pre-processing techniques to define the region of interest and roughly identify the 

arteries in Section 3.2. This is followed by the presentation of the proposed two-step 

active contours model based segmentation algorithm in Section 3.3. In this method, 

both global and local intensity information are utilised in the active contours energy 

calculation. The global term is defined as a normalised cumulative distribution 

function (CDF), which contributes to the overall active contour energy in an 

adaptive fashion based on image histograms, to deform the contour out of local 

stationary points. Possible outliers, such as kissing vessel artifacts, are removed in a 

post-processing stage of the segmentation by a slice-by-slice correction scheme 

based on multiple regions competition, where both arteries and kissing vascular 

structures are identified and tracked through the slices. Section 3.4 demonstrates the 

efficiency and accuracy of the proposed technique on synthetic and real datasets and 

presents extensive performance evaluation results. Section 3.5 concludes this 

chapter. 

3.1 Outline of the Proposed Algorithm 

The flow chart of the proposed approach is shown in Fig. 3.1. It begins with a 

series of algorithms towards to the development of an automated pre-processing 

framework (Section 3.2), which defines the region of interest and generates the 

initial segmentation of the coronary arteries for the subsequent processing. Then, 

the coronaries are refined by using the proposed vessel segmentation technique, 

based on a generalised active contours model. Kissing vessel artifacts, which cannot 
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be identified in the first stage of the segmentation, are removed in the following 

step by using a slice-by-slice correction algorithm.  

 

Figure 3.1: Flow chart of the proposed segmentation algorithm. 

3.2 Coronary CT Image Pre-Processing 

It is not efficient or necessary to process the entire volume image of a coronary 

CT study, since coronaries usually occupy only a small number of voxels. Hence, 

defining the region of interest and suppressing the irrelevant information is an 

important and essential step prior to the actual segmentation. In this section, we 

present an automated method to define the region of interest (i.e., the heart region) 

and roughly extract the arteries in 3D contrast enhanced CT angiography images. 

Specifically, Section 3.2.1 presents a fast yet efficient heart segmentation algorithm 

to extract the entire heart from the thoracic organs, which facilitates subsequent 

processing and allows for the coronaries, located at the outer surface of the heart, to 

become easily visible. In Section 3.2.2, we present a modification to the vessel 

enhancement filter in [33] to detect the vascular geometries within the heart region. 

Section 3.2.3 details the procedure for automated identification of the arteries from 

 

Heart 

Segmentation 

Vessel 

Enhancement 
Coronary Artery 

Identification 

Active Contour Model based 

Vessel Segmentation 

Kissing Vessel 

Correction 

CTA Images 

(DICOM) 

Pre-processing 



Chapter 3.  Segmentation of Coronary Arteries in 3D CT Images 

 

51 

 

the filtered image and the construction of the initial surface for the active contour 

based segmentation, discussed in the following section.  

3.2.1 Fast Heart Segmentation 

Fast and efficient heart segmentation (isolating the heart from nearby organs such 

as lungs, liver and ribs) is an important pre-processing step for segmentation of the 

entire arterial tree and facilitates the visualisation of coronary arteries in 3D. The 

purpose of this stage is not to establish an accurate segmentation of the heart, but 

rather to define the region of interest for subsequent processing. In this section, we 

propose a fast mathematical morphology based method to segment the entire heart 

from its surrounding organs. The transaxial CT images shown in Figs. 3.2 (a)-(h) 

are used as an example to provide the details of the proposed algorithm. The same 

procedure will be applied to other axial slices along the z-direction of the CT 

volume data to construct a complete 3D heart mask. Fig. 3.2(a) shows an axial 

image randomly taken from a CT study, and its associated histogram is shown in 

Fig. 3.2(b). The proposed method starts by detecting the lung regions using an 

optimal thresholding algorithm, where the threshold value is determined by finding 

the first peak of the axial image histogram. Next, a ‘hole filling’ algorithm [125] is 

employed to eliminate pulmonary vessels within the lungs, as illustrated in Fig. 

3.2(c). Consecutively, by making use of prior anatomical information about the 

heart position with respect to the lungs, i.e., the heart is completely surrounded by 

the left and right lungs, the heart region is determined as the interior area of the 

lungs. Specifically, we firstly determine four critical points (or landmarks) on the 

lungs, corresponding to the rightmost and the leftmost points of the left and right 

lung, respectively. These points are then connected using the Bresenham line 

drawing algorithm [134] to enclose the area between the anterior and posterior 

mediastinum (see Fig. 3.2(d)). Then, the heart area can be defined by tracing the 

interior boundary of the previously obtained binary mask, as illustrated in Fig. 

3.2(e). However, closing the anterior mediastinum using line segments may cut 

through the coronary arteries, located on the surface of the heart chambers, leading  
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 (a)                                                 (b) 

                

                                 (c)                                                         (d)                                                  

                    

    (e)                                                          (f) 
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         (g)                (h) 

                                                      

                                 (i)                                                             (j) 

Figure 3.2: Illustration of the heart segmentation scheme: (a) An axial CT image randomly 

taken from the CT volume data, (b) The histogram of the image in (a), (c) The lungs extracted 

by thresholding, (d) Connecting the critical points, defined by red crosses, using the Bresenham 

line drawing algorithm, (e) The heart region, (f) The border of the heart superimposed on the 

original image, (g) Example of the erroneous segmentation, when using a straight line segment 

to enclose the anterior mediastinum, (h) The arc connecting the two top critical points and the 

centre of the initial estimation of the heart, shown by red dots, (i) The border of the heart region 

superimposed on the original image using an arc segment to enclose the anterior mediastinum, 

(j) 3D example of the outer surface of the heart obtained by using the proposed heart 

segmentation algorithm.  

to incomplete segmentation of the arterial tree. To alleviate this problem, we 

propose using an arc, which is defined as a of portion of the circumference of a 

circle, determined by the two upper critical points and the centre of the initial 

estimation of the heart region, to enclose the anterior mediastinum (see Fig. 3.2(h)). 

The same procedure is repeated for every axial image of the CT volume data, which  



Chapter 3.  Segmentation of Coronary Arteries in 3D CT Images 

 

54 

 

 

(a)                       (b) 

Figure 3.3: 3D volume rendered image illustrating the coronary CT data, (a) before, and (b) 

after the application of heart segmentation. 

leads to the final heart segmentation, as depicted in Fig. 3.2(j). Fig. 3.2 shows the 

effect of heart segmentation by comparing the surface rendered images obtained 

before and after segmentation, in Figs. 3.3(a) and (b), respectively.  

3.2.2 Vessel enhancement 

 Frangi et al., filter [33] is a popular method to detect vascular structures in 

medical images. In this method, the norm of the Hessian matrix is used to measure 

the local contrast of the image. False positives, originated from bronchi and 

calcified regions, usually have a high local image contrast to the background, and 

are thus more likely to be classified as belonging to vessels. In order to eliminate 

these false positives, we propose a modification to the technique proposed by 

Frangi and his co-workers [33], where the intensity information of the voxels is 

taken into consideration. Specifically, we utilise a window function to select the 

intensity region that we are interested in (i.e., blood filled regions). To this end, we 

define the window function, W(x), as the product of two hyperbolic tangent-sigmoid 

transfer functions as:  

 )]1)))((((tan1[5.0]1)))((([tan5.0)( 21  HL TIbsigTIbsigW xxx 
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where LT  and HT  are the low and high thresholds, determined using prior 

knowledge about the intensity characteristics of the blood regions, and I(x) denotes 

the intensity level at voxel x. b1 and b2 are constants controlling the slope of the 

window. sig(·) is the sigmoid function. The vesselness function can be then defined 

as: 
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V0(x) denotes the vesselness measurement, obtained at pixel x. |λ1|<|λ2|<|λ3|, are 

eigenvalues of the Hessian matrix, calculated at each pixel of the volumetric data. 

The term RA is used for distinguishing between plate-like and tubular structures. It 

approaches zero when tubular structures are present in the image. RB is able to 

discriminate blob-like structures from others, and the Hessian norm S serves as a 

penalty term to suppress the background noise. α, β and c are constants controlling 

the weights of each individual metric. Fig. 3.4 demonstrates the efficiency of the 

proposed vessel enhancement filter in 2D axial images, where all of the non-

vascular structures are eliminated in the filtered image (see Figs. 3.4(b) and (d)). 

Note that, we only apply the vessel enhancement filter within the heart area defined 

in the previous step. We refer the reader to [31-33] and the references therein for 

details about Hessian based vessel enhancement techniques.  
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                                    (a)                                                       (b) 

 

(c)                                                    (d) 

Figure 3.4: Axial images illustrate the efficiency of the vessel enhancement filter: (a) and (c) 

are original axial CT images randomly taken from the volume data, (c) and (d) are the 

corresponding filter responses.   

3.2.3 Identification of the Coronary Arteries 

The filter responds to each voxel of the CT image, and assigns a vesselness 

measurement, indicating the likelihood that such voxel belongs to the vascular 

structure. To create a binary representation of the coronary arteries, an adaptive 

thresholding algorithm is applied on the outputs of the enhancement filter. The 

binary image is obtained by finding the voxels with a filter response greater than 

90% of the median value of its neighbourhood. To eliminate the unwanted filter 

responses caused by false positives such as pulmonary arteries, we only consider 

the filter response within the heart mask, defined in the previous section. The 
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resulting binary image, however, may still contain some small disconnected 

fragments, which do not belong to the arteries, as shown in Fig. 3.5(a). To 

discriminate the coronaries from these fragments, we propose the use of prior 

anatomical knowledge, i.e., coronaries originate from the descending aorta, to 

identify the coronary arteries in an automated fashion. This is achieved by finding 

the largest two components connecting to the aorta in the binary image. Based on 

the observation that the shape of the aorta is almost circular in the upper axial 

images through the heart (see Fig. 3.6), we firstly extract the descending aorta using 

the Hough transform for circle detection [135], by finding the best fitting circle 

within the heart region. To ensure the correct generalisation of the aorta, for each 

slice, the top three best fitting circles, based on their Hough transform scores, are 

considered as the candidates. The current segmentation of the aorta is then chosen 

as the candidate circle with more than 85% overlapping to the aorta, detected in the 

previous slice, and with the minimum distance between the centres of the circles in 

the current and previous slices. Once the descending aorta is segmented, the 

coronary arteries can be subsequently identified by finding the largest two 

components connecting to the aorta, as illustrated in Fig. 3.5(b). 

 

                         

                                              (a)                                                      (b) 

Figure 3.5: Identification of coronaries based on the response of the vessel enhancement filter: 

(a) The binary image of the coronaries obtained by thresholding the filter response, (b) 3D 

reconstructed image of the coronary arteries and part of the aorta. 
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                                   (a)                                                       (b) 

    

                                  (c)                                                        (d)     

Figure 3.6: Segmentation of the aorta: (a) The original axial image randomly taken from the 

volume, (b) The edge map of the heart regions, (c) The accumulator space of the Hough 

transform for circular object detection, (d) The segmented descending aorta. 

3.3 Segmentation of Coronary Arteries 

In this section, we present an active contour based method for segmentation of the 

coronary arteries in 3D CTA images, where both global and local grey level 

intensity information are utilised in the energy calculation. We compute the regional 

statistics locally, in the neighbourhood of the active contour, to deal with varying 

image brightness. The global intensity information, on the other hand, is utilised to 

evolve the contour to the desired boundaries without being trapped in local minima. 

The proposed algorithm is implemented using a Bayesian probabilistic framework 
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to incorporate these two homogeneity constraints. Possible outliers, such as kissing 

vessel artifacts, are removed in the subsequent stage through a novel slice-by-slice 

correction scheme based on multiregion competition, where both arteries and 

kissing vessels are identified and tracked through the transaxial slices.  

3.3.1 Modelling Global Intensities 

We commence our analysis by modelling the histogram of coronary CT images 

using a Gaussian Mixture Model, where three Gaussian functions are used to 

approximate the intensity distribution of the background (i.e., air in the lungs), soft 

tissues and blood filled regions, respectively. The parameters for each class (i.e., the 

mean and variance) are determined using the Expectation Maximisation (EM) 

method [136] (see Fig. 3.7(a)). By utilising prior anatomical knowledge, i.e., 

coronaries are located on the outer surface of the heart, we neglect the class 

corresponding to the air to obtain a bi-modal histogram, as shown in Fig. 3.7(b). 

The first peak (T1) in the fitted histogram corresponds to the soft tissues in the heart. 

We therefore assume that voxels with intensity values less than T1 belong to the 

background, while voxels with intensity values greater than this threshold are 

considered as potential objects of interest (i.e., blood-filled regions). 

  

                                (a)                                                                  (b) 

Figure 3.7: The histograms of the CTA image. (a) The histogram (blue) and the fitted mixture 

model (red) of the CTA image, (b) The fitted histogram within the heart region.         

 Based on the fitted histogram, we assign each voxel of the image with a fuzzy 

label, measuring the probability of the voxel belonging to the object, through the 
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application of a labelling function. In this research, we formulate the labelling 

function as a normalised cumulative density function (CDF) of the fitted histogram. 

The labelling function is normalised between -1 and 0 for voxels with intensity 

values between 0 to T1, and we bound the output of the function between 0 and 1 for 

the input voxels with intensity values greater than T1. Hence, the labelling function 

is defined as follows: 
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Fig. 3.8 illustrates the labelling result obtained through the application of the 

labelling function to the coronary CT image. The anisotropic diffusion filter [137] is 

subsequently applied to the resulting image in order to the reduce noise introduced 

during image acquisition.  

       

                                 (a)                                        (b) 

Figure 3.8: The labelling function applied to an axial CT image randomly taken from 

volumetric dataset. (a) The original transaxial CT image, (b) The resulting image after the 

application of the labelling function.  

3.3.2 Modelling Local Intensities 

Let Ωx denote a neighbourhood with a radius r centred at x on the active contour 

C(x). As illustrated in Fig. 3.9, the localised image, Ωx, can be partitioned into two 

sub-regions by the active contour, i.e., the regions inside and outside the active 

contour, respectively. Hence, we define the probability of a voxel being classified 

as belonging to the region Ωi as follows 
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where {Ωi | i = 1,2} denote the regions inside and outside the contour. I(y) is the 

image intensity at y, μi and σi represent the mean and the variance derived from 

region Ωi, respectively. Note that, we use x and y as two independent spatial 

variables to represent a single point in the image domain. 

    

                                       (a)                                                       (b) 

Figure 3.9: Synthetic image illustrates the localised image regions of the active contour model. 

(a) A point randomly chosen from the active contour. The red circle shows the circular 

neighbourhood around the centre point (shown in yellow), which is located in the active 

contour, (b) The zoomed-in image within the circle defined in (a). Note that the pixels outside 

of the circle are ignored.  

As previously discussed in Chapter 2, global statistics are robust to local spurious 

features, while localised information enables dealing with varying brightness in the 

image. In order to incorporate their advantages, the labelling function is designed to 

be a normalised CDF of the fitted histogram, rather than the PDF as defined in the 

work of Yang et al., [88]. By doing so, the distal segments of the arteries, usually 

exhibiting relatively lower intensities and with less contrast to the background, 

would be assigned with labels which are close to zero (i.e., |L(x)| →0). In these 

regions, the global term will contribute less to the overall energy functional, and 

thus, the contour will evolve mainly based on the local energy information. On the 

other hand, when the contour is located in the homogenous regions or unwanted 
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local minima, the global energy is able to provide additional force to drive the front 

to evolve away from these stationary points. 

3.3.3 Active Contour Energy and Level Set Formulation 

In this section, we incorporate the two aforementioned energy terms using a 

probabilistic framework. Consider a contour, C(x), representing the boundary of the 

object to be segmented. For each point along the contour, given its local image Ωx 

and the labelling function L(y), the posterior probability of a voxel y being classified 

as belonging to the sub-region Ωi⋂Ωx can be defined as:  
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where P(y∈Ωi⋂Ωx) is the prior probability of the current voxel being assigned to 

region Ωi among all the possible partitions within the local image Ωx. This term can 

be ignored, if equal probabilities are assumed for all partitions of the image. 

P(I(y),L(y)) denotes the joint probability density distribution of the grey level value 

I(y) and the labelling function L(y), which is independent of the segmentation of the 

image and can therefore be neglected. We assume that the voxel labels and the grey 

level intensity distribution are independent. The posterior probability for each voxel 

can thus be computed as:    

 )|)(()|)(()|)(),(( xxx yyyyyyy   iii LPIPLIP 

The prior probability of P(I(y)|y∈Ωi⋂Ωx) has been already defined in Eq. (3.7). In 

order to compute the posterior probabilities in Eq. (3.8), the prior probability of the 

labelling function should be known. In this research, we model the prior probability 

distribution of the labels as:  
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represents the weighting kernel, which is a decaying function of the distance 

between x and y. v is the overall weight, which determines the influence of the 

labels on the segmentation, R(x) is a normalised Boolean function indicating 

whether the current voxel x is located inside the contour C(x) within the local image 

Ωx.  
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According to Eq. (3.10), when a voxel, located at position x, is classified as 

belonging to the object, i.e., R(x) =1, then a point y in its vicinity has a higher 

probability of being marked as belonging to the object (i.e., L(y) →1) and is less 

likely to be considered as the background (L(y) →-1).  

Maximising the posterior probability in Eq. (3.8) is equivalent to minimising its 

negative logarithm. Hence, for each given point x belonging to the contour C(x), the 

image-based energy can be defined as: 
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The prior probabilities, i.e., P(I(y)|y∈Ωi⋂Ωx) and P(L(y)|y∈Ωi⋂Ωx), were defined in 

Eqs. (3.7) and (3.10), respectively.  

To achieve the active contour segmentation, we need to define a contour C(x) that 

minimises the energy Ex along the contour over the image domain, which is 

equivalent to finding the minimum energy of the integral of Ex in the image. In level 

sets methods [86], a contour is usually represented as the embedding zero level set 

of a higher dimensional signed distance function ϕ (known as the level set 

function). We assume that the function takes positive values in the interior of the 
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contour, and is negative for regions outside of the zero level set. We denote H(·) to 

be the Heaviside function, and then the active contour energy can be formulated as: 
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where M1(ϕ(y))=H(ϕ) and M2(ϕ(y))=1-H(ϕ), and H´(·) denotes the derivative of 

Heaviside function. The first term in the right hand side of Eq. (3.14) is the negative 

logarithm posterior probability defined in Eq. (3.8), which is minimised when the 

active contour is located at the desired boundaries. The second term estimates the 

length of the zero level contour of the level set function, which enforces smoothness 

in the resulting contour. The constant μ controls the contribution of this smoothness 

term in the entire active contour functional. The associated Euler-Lagrange equation 

is defined as: 
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p1 and p2 represent the prior probability density distribution of the object and 

background, respectively. δ(·) denotes the Dirac delta function, which is defined as 

the derivative of Heaviside function H(·). The evolution equation defined in Eq. 

(3.15) can be solved numerically using the gradient descent algorithm as: 
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where ҡ denotes the curvature of the level set function at position x and given as 

follows: 
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x´, y´ and z´ represent the first order partial derivatives of the level set function, ϕ , 

along x,y and z direction, respectively, while x´´, y´´ and z´´ denote the second order 

partial derivatives along the three orthogonal axes. The partial derivatives at each 

point of the level set function are approximated using central differences. To keep 

the computational cost at an appropriate level, we only update the level set function 

near the zero level set within a narrow band [138]. The level set function was 

periodically re-initialised in order to maintain it as the signed distance function [86]. 

The step size, Δt, in the evolution equation, defined in Eq. (3.17) is constrained by 

the Courant-Fridreiches-Lewy (CFL) condition to ensure the numerical stability of 

the solution [86].  

3.3.4 Kissing Vessel artifacts Suppression  

The segmentation results obtained in the first stage of processing are nearly 

optimal. However, due to the complexity of medical images and the associated 

artifacts, the resulting images may contain some outliers, such as kissing vessels 

(see Fig. 3.10). In order to remove these erroneous segments, a slice-by-slice 

correction scheme is applied to the resulting images obtained in the first stage of the 

segmentation. As it can be observed in the zoomed image in Fig. 3.10(b), the non-

arterial vessel appears darker than the coronary artery, and thus, it can be potentially 

segmented through a multiregion competition based method. As reported by Brox 
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                                     (a)                                              (b)  

Figure 3.10: Illustration of ‘kissing vessel’ artifacts present in coronary CT images. (a) 3D 

surface reconstruction of the coronary arteries with a touching non-arterial vessel (shown by the 

arrow), (b) The cross sectional image taken from the volume, and the close up image of the 

outlier vessel. The cross sectional segment of the non-arterial vessel (shown by the arrow) 

appears darker than the artery. 

and his co-worker [139], for a fixed number of objects to be segmented, the  

evolution equations of multiple region level sets for image segmentation can be 

represented as:  
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where ϕi is associated with the i-th level set function defining the object, and ek 

denotes the internal energy derived from the image regions described by ϕk. The 

probability density function, pk, is defined based on regions within the interior of k-

th level sets function, and μ is a constant controlling the smoothness of the contour. 

The term (ei - 1) in the maximum operator ensures that the contour expands 

outwards with a constant speed, when there is no competition around the zero level 

set of the current embedding function, making the contour move far away from its 

initial position and often approaching undesired boundaries. To address this issue, 

we propose a modification to Brox and Weickert’s evolution scheme [139], where 

the active contour moves according to the following: 
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where ek,1 and ek,2 represent the energy derived from the regions within the interior 

and exterior of k-th level set, respectively. Pk,i denotes the posterior probability of a 

voxel, x, being classified as belonging to image region Ωi⋂Ωx by the k-th level set 

function, defined previously in Eq. (3.8). In terms of Eq. (3.20), the active contour 

will evolve according to two-phase energy, when there is no competition nearby. 

When multiple contours are presented in an interface, the points in the interface 

would move together, subject to the strongest force across all the regions. 

 

Figure 3.11: Flow-chart of the proposed slice-by-slice correction scheme for suppression of 

kissing vessel artifacts. 
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To identify kissing vessels and remove them from the first stage segmentation, 

we assume that the coronary arteries can be modelled as a tree structure, and the 

transaxial cross sectional segments of the artery taken from the top to the bottom 

can only split but not merge over the transaxial images. The flow chart of the 

proposed kissing vessels correction algorithm is shown in Fig. 3.11. The procedure 

begins by finding the first slice that contains the coronary artery. Next, the axial 

segment of the artery is extracted, which is then tracked through the slices. For each 

new slice, we compare the segmentation obtained in the first stage against the 

tracked artery. If there is a component that does not touch any known segments of 

the tracked artery, then the object is considered as a kissing vessel structure, and a 

level set is assigned to it. In the following step, both of these two vessels are 

evolved and tracked. We repeat this process until the last slice containing the artery 

is reached.  

3.4 Experiments and Discussion  

In this section, we apply the proposed method to various 2D and 3D synthetic and 

real images and analyse its efficiency. In section 3.3.1, we firstly compare the 

proposed method with active contour models based on using global (Yang et al., 

[88]) and local (localised Chan-Vese (CV) model [105]) information alone, to 

demonstrate the benefits offered by using both local and global statistics based on 

2D synthetic images. Then, we validate the proposed method in 3D CTA images 

and compare our method with the active contour model proposed by Yang et al., in 

Section 3.3.2. The tuning parameters of the proposed technique were empirically 

determined and fixed throughout this experiment. In particular, we chose the 

smoothness weight μ at 0.2, and the global energy factor v was set to 0.4. The radius 

of the localised image r was selected based on prior information regarding the size 

of the vessels to be segmented, which equals the maximum radius of the vessel of 

interest. 
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3.4.1 Experiments on Synthetic Images 

To quantify the performance of the resulting segmentation, four metrics were 

used to validate the results, specifically: 
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where the ground truth NR is a binary image with voxels labelled to one for the 

object and zero for others, NB indicates the pixels/voxels, which are segmented as 

the object by the aforementioned algorithms. TP, FN and FP denote the true 

positive, false negative and false positive metrics, respectively. OM represents the 

overlapping metric defined in [140], which is close to 1, when the segmentation is 

well matched to the reference ground truth and approaches zero when the results 

have no similarity to the reference.  

We commence our analysis with a simple binary image, which is distorted by 

additive Gaussian noise as shown in Fig. 3.12(a). The size of the synthetic image is 

181×125 pixels. In Fig. 3.12 and Table 3.1, we present the segmentation results 

obtained through the application of the previously reported methods and the 

proposed technique to this synthetic image. Contour initialisation is shown in Fig. 

3.12(a). The result obtained using the active contour model reported by Yang et al., 

is depicted in Fig. 3.12(b). In Figs. 3.12(c) and (d), we illustrate the results obtained 

through the use of the localised CV model and the proposed algorithm, respectively. 

By and large, all of the techniques enable the correct segmentation of the vascular 

structure in this synthetic image, although the performance of the Yang et al., 

algorithm, in terms of the TP rate and OM metric (see Table 3.1), is slightly inferior 

to others. This is because the image-driven energy in their method is smoothed by 

anisotropic diffusion, which blurs the boundaries of the object to be segmented, thus 

leading to erroneous classifications along the borders of the vessel.  
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Table 3.1: Comparison of the 2D synthetic image segmentation results for various 

methods (For Fig. 3.12).  

 

Rate (%) Yang et al., Method  Localised CV Proposed Method 

TP 93.6 96.7 97.6 

FN 6.43 3.30 2.43 

FP 4.41 0.170 0.100 

OM 94.5 98.2 98.7 

 

          

                                 (a)                                                       (b) 

          

                              (c)                                                       (d) 

Figure 3.12:  Segmentation results on 2D binary synthetic image. (a) Contour Initialisation, (b) 

Results obtained using Yang et al., method, (c) and (d) Illustration of the segmentation results 

from the localised CV model and the proposed algorithm, respectively.      
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Table 3.2: Comparison of the 2D synthetic image segmentation results for various 

methods (For Fig. 3.13). 

 

Rate Yang et al., Method  Localised CV Proposed Method 

TP (%) 76.0 95.8 97.6 

FN (%) 24.0 4.21 2.40 

FP (%) 3.86 0.14 0.100 

OM 0.845 0.978 0.987 

 

         

                                     (a)                                                      (b) 

                                     

 (c)                                              (d) 

Figure 3.13: Segmentation results on 2D synthetic images under uneven brightness conditions. 

(a) Initialisation, (b) Results of Yang et al., method, (c) Localised CV model results, (d) 

Proposed algorithm results.  
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In Fig. 3.13, we present the comparison of the segmentation results obtained from 

aforementioned methods with respect to the ground true data, under changing 

brightness conditions. Contour initialisation is shown in Fig. 3.13 (a). Fig. 3.13 (b) 

shows the resulting segmentation obtained by the method of Yang et al., Figs. 

3.13(c) and (d) depict the results obtained using the localised CV model and the 

proposed technique, respectively.  In the presence of uneven brightness conditions, 

Yang et al., approach performs less well than the other two methods, which utilise 

local intensity information in the energy calculation. It fails to extract the entire 

vasculature even when the initial contour is placed close to the final solution. The 

quantitative validation of these results can be found in Table 3.2, the TP rate and 

OM metric of Yang et al., algorithm are found to be 76.0% and 0.845, respectively, 

indicating that their model under-segments the object. On the contrary, both the 

localised CV model and the proposed technique are able to achieve satisfactory 

segmentations.   

Fig. 3.14 shows another synthetic image consisting of two elongated objects with 

distinct intensity distributions, at close proximity to each other. Similarly, Gaussian 

noise was added to the image for a simplified approximation of the noise model in 

CT images [141]. In this experiment, we will use this image as an example to 

demonstrate the benefits offered by considering both local and global intensity 

features. The proposed method begins with the analysis of the histogram for the 

entire image. As it is shown in Fig. 3.14(b), the highest peak in the histogram 

corresponds to the background pixels, which are associated with high intensity 

values. Since these pixels can be discriminated by simple thresholding, we therefore 

neglect them in order to more precisely approximate the intensity distribution of the 

remaining objects, using the Gaussian mixture model (see Fig. 3.15(a)). In this 

experiment, the number of Gaussian functions used to model the histogram is 

automatically determined by increasing the number of Gaussians until the fitting 

error is minimised.  
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                              (a)                                                                  (b)   

Figure 3.14: A synthetic image to evaluate the efficiency of the proposed method. (a) 

Illustration of the synthetic image, and (b) Normalised histogram distribution. 

   
                                     (a)                                              (b)  

Figure 3.15: An example of fitting the histogram of Fig. 3.14(b) and defining the labelling 

function. (a) The histogram of the potential objects (shown in blue) and the fitted histogram 

(depicted in red), and (b) The labelling function obtained based on the fitted histogram. 

 

             

                        (a)                                                                 (b)     

Figure 3.16: Illustration of the global energy map. (a) The labelled image, (b) The smoothed 

labelled map following anisotropic diffusion.  
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As depicted in Fig. 3.15(a), the fitted histogram has two peaks, which reflect the 

intensity distribution of the two objects. If we seek to extract the darker object, i.e., 

the one with the lower intensities, the labelling function should be formulated as a 

monotonically decreasing function based on the fitted histogram and normalised in 

the range between -1 and 1, which is shown in Fig. 3.15(b). The resulting labelled 

image is shown in Fig. 3.16(a), and we employ an anisotropic diffusion filter to 

further reduce noise, as illustrated in Fig. 3.16(b).  

Table 3.3: Comparison of the 2D synthetic image segmentation results for various 

methods (For Fig. 3.17). 

 

Rate Yang et al.,   Localised CV Proposed Method 

TP (%) 95.0 95.9 94.6 

FN (%) 5.04 4.59 5.39 

FP (%) 103 27.9 4.43 

OM 0.636 0.857 0.951 

 

   

                              (a)                                         (b) 

     

                              (c)                                                               (d) 

Figure 3.17: Comparison of the segmentation results obtained using the Yang et al., model, the 

localised CV method and the proposed algorithm. (a) Initialisation, (b) Yang et al., model 

results, (c) Localised CV method results, (d) Results of the proposed algorithm.  
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In Fig. 3.17, we present the segmentation results obtained using the previously 

reported algorithms and the proposed method for this 2D synthetic image. Contour 

initialisation is shown in Fig. 3.17(a). Fig. 3.17(b) shows that the Yang et al., 

model, based on global intensity information alone, segments the two objects as a 

whole. The localised CV method achieves a better segmentation result. However, as 

illustrated in Fig. 3.17(c), there are regions that have been incorrectly segmented. 

By contrast, the proposed technique, using both global and local intensity 

information, achieves satisfactory results, which is shown in Fig 3.17(d). The 

quantitative validation of these results is shown in Table 3.3. It can be seen that the 

TP rate of the proposed method is slightly lower than the other two models. This is 

due to the fact that both of these methods over-segment the object, where more 

pixels are classified as belonging to the object, thus resulting in a higher TP rate. 

However, in terms of the FP and OM metrics, the overall performance of the 

proposed technique is superior. 

3.4.2 Experiments on Real Clinical Images 

Twelve coronary CT volumes were acquired from St Thomas’ and Guys’ 

Hospitals, London, UK. Two of them were obtained with a 16-slice CT scanner 

(Brilliance, Philips), and the remaining volumes were acquired with a Philips ICT-

256 workstation. The mean size of the images is 512 ×512 × 286 with an average 

in-plane resolution of 0.40 mm × 0.40 mm, and the mean voxel size in the z-axis is 

0.42 mm.  

The ground truth data were obtained through manual delineation with the 

assistance of interactive software, developed in our centre. To construct the ground 

truth data, the CT volume was firstly resampled as a successive cross sections, 

which is perpendicular to the course of the arteries, as shown in Fig. 3.18. Then, the 

luminal area was manually annotated by trained biomedical engineering research 

students (see Fig. 3.19(a)). The software will fit the manually delineated curve to a 

circle by solving the associated least squares problem (see Fig. 3.19(b)). The 

software then records the coordinates of the centre and the associated radius. In 

order to ensure the correct generation of the ground truth data, the luminal area of 
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the artery is required to be specified by the observer at least every 3mm. By doing 

so, the ground truth data for each major branch of the arterial tree contains on 

average 48 central axis points and the associated radii, which takes approximately 

half an hour to complete. Next, the centreline points were uniformly resampled with 

a distance at 0.05mm (roughly 0.1 voxel), and the associated radii were determined 

via linear interpolation. To construct a closed surface of the ground truth data, we 

firstly generate the boundary points of the artery based on the centreline and radius 

information, which is depicted in Fig. 3.20(a). Then, the outer surface of the artery 

can be reconstructed using the ball pivoting algorithm, as illustrated in Fig. 3.20(b).  

 

 

 

              (a)                                (b)   

Figure 3.18: Illustration of the re-sampled cross sectional images of the CTA data for the 

construction of the ground truth data. (a) The segmented coronary artery is represented as 3D 

surface (semi transparent structure), (b) Cross sectional images of the artery, obtained by slicing 

the volume data using the planes perpendicular to the orientation of the vessel. 
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                               (a)                                              (b) 

Figure 3.19: Determination of the ground truth data based on the successive cross sections. (a) 

An example of the annotation of the observer (show in blue), the red circles are the control 

points determined by the observer (the square denotes the starting control point), (b) The 

resulting ground truth data determined by the software in red. The red dot indicates the centre 

and the circle represents the radius of the artery at this cross section.  

         
                  (a)                             (b) 

Figure 3.20: Construction of the ground truth surface from manually delineated vessel 

boundaries. (a) The boundary points of the left coronary artery constructed using the centreline 

and the corresponding radius information obtained via manual annotation, (b) The outer surface 

of the artery reconstructed based on the boundary points shown in (a).  

Since the manual segmentation procedure is very time consuming, only four 

major branches, i.e., right coronary artery (RCA), left anterior descending artery 

(LAD), left circumflex artery (LCX), and one large side branch of the coronaries, 

were chosen for evaluation. In addition to the metrics defined in Eq. (3.22), the 

Hausdorff distance [142] was also applied to measure the difference between the 
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segmented vessel surface and the manually delineated ground truth data. The 

Hausdorff distance is defined as: 

 )},(infsup),,(infsupmax{),( yxdyxdd
xYyyx

H
XYX

YX


 

where X,Y are the vertices of the mesh surfaces of the arteries corresponding to the 

segmentation results and the ground truth, respectively, and d(x,y) measures the 

Euclidean distance between points x and y belonging to vertices X and Y. The mesh 

surface of the arteries was obtained by extracting the isosurface of the binary 

volume obtained from the segmentation/manual delineation, using the marching 

cube algorithm [143].  

In Figs. 3.21-3.22 and Tables 3.4 and 3.5, we present the comparison of the 

resulting segmentation obtained using the proposed technique and Yang et al., 

method with respect to the ground truth data. The initial surface for the active 

contour models was obtained through the application of a Hessian-based vessel 

enhancement filter described previously in Section 3.1. The tuning parameters of 

both of the two techniques were empirically determined from a training set, which 

consisted of three CT studies randomly selected from the available datasets. 

Specifically, for the proposed approach, we set u = 0.2, v =0.1 and the radius of 

localised kernel was set to 7 voxels. The proposed approach was implemented in 

MATLAB (R2010b) on a standard specification PC (Dell Precision T3500, Inter(R) 

Xeon(R) CPU at 2.67GHz), and the average execution time was found to be 80 

seconds for extraction of the entire coronary trees. Yang et al., on the other hand, 

requires roughly 45 seconds to carry out the same process. 
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                                (a)             (b) 

              

             (c)                            (d) 

                 

        (e)                          (f) 

Figure 3.21: Comparison of the resulting segmentation for datasets #3, #5 and #11 obtained 

using the proposed model (a), (c) and (e), and Yang et al., technique (b), (d) and (f), with 

respect to the ground truth data. The semi-transparent surface denotes the outer surface of the 

ground truth data, and the resulting segmentation is depicted in red. 
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(a)                                                   (b) 

       
 (c)                                               (d) 

       
(e)                                                  (f) 

Figure 3.22: 2D transaxial images illustrating the segmentation results. (a) and (b) depict the 

resulting segmentation on 2D cross sectional images randomly taken from dataset #3, (c) and (d) 

depict the resulting segmentation on 2D axial image from dataset #5, The examples of the 

segmentation results on data #11 are illustrated in (e) and (f). The red contour represents the 

manually delineated ground truth, while the segmentation obtained from the proposed method 

and Yang et al., method are shown in blue and black contours, respectively. Note that, the cross 

sectional images were up-sampled by a factor of five using linear interpolation to increase the 

resolution.  
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Table 3.4-A:  Comparison of the 3D CTA segmentation results between the 

proposed method and Yang et al., technique: Datasets #1-6 

Metrics Methods 
3D CTA Images 

1 2 3 4 5 6 

TP (%) 
Proposed 94.1 93.9 93.1 92.8 97.0 93.2 

Yang et al., 47.6 50.3 52.1 25.6 89.9 87.9 

FN (%) 
Proposed 5.90 6.10 6.90 7.20 3.00 6.80 

Yang et al., 52.4 49.7 47.9 74.4 10.1 12.1 

FP (%) 
Proposed 32.4 28.4 43.1 38.3 45.5 29.4 

Yang et al., 1.31 8.39 13.6 3.16 6.07 6.89 

OM 
Proposed 0.831 0.731 0.791 0.803 0.800 0.837 

Yang et al., 0.639 0.634 0.629 0.397 0.717 0.685 

Mean(dH) 
Proposed 0.623 1.02 0.670 0.833 0.623 0.782 

Yang et al., 0.865 1.35 1.00 1.09 0.767 0.891 
 

 
 

Table 3.4-B: Comparison of the 3D CTA segmentation results between the 

proposed method and Yang et al., technique: Datasets # 7-12 

Metrics Methods 
3D CTA Images 

7 8 9 10 11 12 

TP (%) 
Proposed 90.1 89.0 95.3 80.5 86.5 87.8 

Yang et al., 51.2 49.2 88.4 53.6 23.4 26.7 

FN (%) 
Proposed 8.90 11.0 4.70 19.5 13.5 12.2 

Yang et al., 48.8 50.8 11.6 46.4 76.6 73.3 

FP (%) 
Proposed 41.6 38.6 51.8 35.2 42.2 44.7 

Yang et al., 3.16 1.57 16.3 10.0 9.55 6.18 

OM 
Proposed 0.778 0.782 0.713 0.744 0.756 0.755 

Yang et al., 0.663 0.318 0.580 0.655 0.353 0.402 

Mean(dH) 
Proposed 0.759 0.719 0.620 0.561 0.769 0.783 

Yang et al., 1.07 1.63 0.976 1.15 1.24 0.861 

 

Table 3.5:  Comparison of the 3D CTA segmentation results between the proposed 

method and Yang et al., technique (overall) 

 

Rate 

Methods 

Proposed Method 

 Mean 

Yang et al., Method 

Mean 

TP (%) 91.1  53.8 

FN(%) 8.90 46.2 

FP (%) 39.2 16.9 

OM 0.776 0.556 

Mean(dH) 0.730 1.07 
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As shown in Table 3.5, the mean TP rate and OM metric for the proposed method 

were found to be 91.1% and 0.776, respectively, which indicate that the proposed 

method is able to correctly extract the major branches of the coronary arteries (see 

Figs. 3.21 (a), (b) and (c)). Meanwhile, the high values of the FP rate (39.2% on 

average) mean that the proposed method over-segments the arteries, as illustrated in 

Fig. 3.22, where the segmentation results were shown on the 2D axial image as 

contours. In these axial images, the red contours represent the ground truth 

boundary, and the blue and black curves represent the segmentation obtained using 

the proposed method and Yang et al., algorithm, respectively. Since the ground 

truth data were modelled as circular cross sectional tubes, this would lead to the 

resulting ground truth data under-estimating the true vessel surfaces. However, in 

terms of the voxel-wise measurements, the average value of the Hausdorff distance 

metric was found to be 0.73 voxels, which implies that the proposed method is 

capable of extracting the luminal surfaces of the arteries with sub-voxel accuracy.  

In terms of the FP rate, the Yang et al., method outperforms the proposed 

approach, with the average value found to be 16.9%. However, we note that the TP 

and OM metrics of their segmentation results are significantly lower than those of 

the proposed technique, with the average values being 53.8% and 0.556, 

respectively. In addition, by observing the statistics presented in Table 3.4, we note 

that both the TP rate and the OM metric vary significantly, with the TP rate ranging 

from 23.4% to 89.9%, while the minimum and maximum values of the OM metric 

were found to be 0.318 and 0.717, respectively. These observations imply that Yang 

et al., model under-segments the coronary arteries and is only able to extract partial 

branches of the arterial tree, which is illustrated in Figs. 3.21(b), (d) and (e). The 

reason for this is that the Yang et al., technique, solely relying on global intensity 

statistics, is sensitive to image contrast and brightness changes. The method is able 

to correctly extract the arteries when the intensity densities are evenly distributed 

along the vessel. However, uneven intensity distribution is commonly encountered 

in coronary CTA, because of the concentration attenuation of the contrast agent and 

acquisition noise. In this case, the Yang et al., approach can only extract the 

proximal segments of the arteries, since distal segments have relatively lower 
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intensity values and lack image contrast. In addition, we also found that the TP and 

OM rates of the proposed method tend to decrease when approaching the distal and 

small segments of the arteries. However, clinically significant coronary lesions are 

usually identified in the main and proximal branches of the arteries, which can be 

well defined by the proposed method. Nevertheless, we can conclude that our 

technique is able to delineate the vessel boundaries in clinically important coronary 

segments with a level of variability similar to those obtained through manual 

segmentation.  

Two CTA studies were affected by the presence of kissing vessels (i.e., datasets 

#7 and #11). The slice-by-slice correction scheme was subsequently applied after 

the first step of the segmentation. Fig. 3.23 illustrates the 3D surface reconstruction 

image before and after applying the slice-by-slice correction algorithm. Fig. 3.24(a) 

shows the first slice, which contains the cross sectional segments of the coronary 

arteries. The false positives, i.e., the kissing vessel artifacts, were identified and 

then tracked in Figs. 3.24(b)–(e). The boundaries of the coronary arteries are shown 

in red, and the green curve represents the kissing vessel structures. In Fig. 3.24(f), 

we illustrate the initial segmentation of the axial image shown in Fig. 3.24(e) prior 

to the correction.  

 

                                      (a)                                                         (b) 

Figure 3.23: The comparison (a) before and (b) after the correction process (datasets #7). The 

touching non-arterial vessel (within the blue circle) has been removed. 
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     (a)                                      (b)                                   (c) 

         

              (d)                                 (e)                                      (f) 

Figure 3.24: Transaxial slices illustrate the slice-by-slice correction algorithm. (a) The first 

slice contains the artery (delineated in red), (b) The artery is tracked through slices, (c) The 

binary image obtained from the first stage segmentation, this is the first slice that contains the 

kissing vessel (arrowed), (d) and (e) Kissing vessel is identified and tracked over slices 

(depicted in green contours), (f) The original segmentation in same transaxial slice as shown in 

(e).  

Instead of using the entire volume to quantify the performance of the slice-by-

slice correction, we conduct the assessment on a 2D axial image basis. The resulting 

segmentation with and without the slice-by-slice correction is illustrated in Fig. 

3.25, where the boundaries of the artery before and after correction are depicted in 

black and blue respectively, and the manual segmentation is shown in red. The four 

metrics, defined in Eq. (3.21), were used to quantify the performance and the results 

are shown in Table 3.6. It can be observed from the table that the FP rate, which is 

primarily caused by the kissing vessels, is dramatically reduced after the application 

of the slice-by-slice correction algorithm (reduced from 294% to 22.8% for arterial 
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segments containing kissing vessels, e.g., the vessel segment shown in Fig. 3.23(a), 

within the circle).  

 

    

    (a)                                                          (b) 

Figure 3.25: The efficiency of the proposed slice-by-slice correction algorithm demonstrated by 

cross sectional view image. (a) 3D volume data, and (b) Cross sectional view image randomly 

taken from the 3D volume data, illustrating the resulting segmentations with and without the 

correction step are shown in blue and black, respectively. The red contour represents the 

reference boundaries of the vessel obtained through manual delineation. 

 

Table 3.6: Comparison of the segmentation results before and after the application 

of the correction scheme 

 

Rate Before 

correction 

After 

correction 
TP (%) 

(%) 

82.4 85.3 

FN (%) 17.6 14.7 

FP (%) 294 22.8 

OM 0.380 0.820 
 

3.5 Conclusions 

Accurate segmentation of vascular structures is an essential and fundamental step 

for various clinical tasks, such as stenosis grading and surgical planning. In this 

chapter, we presented a computer vision system which contributes towards the 

development of the proposed framework for segmentation of coronary arteries in 

3D CTA images. In particular, a novel two-step algorithm was proposed to 
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efficiently segment coronary arteries from CT images by making use of both global 

and local intensity statistics. The global energy was designed as a normalised CDF 

based on the histogram of the input image data, which adapts its contribution to the 

overall active contour energy by considering the spatially varying properties of the 

artery. The kissing vessels were identified and tracked throughout the axial slices in 

the second stage of the segmentation based on a multiregion competition algorithm. 

Experimental results show that the proposed approach is able to correctly segment 

the major branches of the arterial tree, with an average voxelwise distance of 0.73 

voxels to the manually delineated ground truth. Furthermore, in the presence of 

kissing vessel artifacts, the overall performance of the segmentation can be 

significantly improved by the slice-by-slice correction scheme. The FP rate from 

these cross sections containing kissing vessels was reduced from 294% to 22.8%. 

In Chapter 4, we will present a quantitative vascular shape analysis framework 

for coronary arteries, based on the segmentation results obtained from this chapter, 

aiming at characterising the geometric parameters of the coronary arteries. This will 

provide the cardiologist with meaningful information in the assessment of the 

severity of the luminal stenosis caused by atherosclerotic plaques, and potentially 

the means for evaluation of the functional significance of coronary stenoses by 

carrying out image-based haemodynamic analysis of the blood flow in the arteries 

.   
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Chapter 4 

3D Quantitative Vascular Shape Analysis for 

Coronary CT Images 

In this chapter, we present an automated framework for quantitative vascular 

shape analysis in coronary CT angiographies. The segmented coronary arteries 

obtained from the previous chapter are used to construct the luminal surface for 

analysis. These two chapters naturally provide a complete toolkit for quantitative 

coronary analysis in CTA images, which are the key components in developing 

computer-aided diagnostic systems for the assessment of the severity of coronary 

stenosis. Followed by this introduction, the outline of the proposed framework is 

firstly presented in Section 4.1. Next, we describe the proposed method in detail in 

Sections 4.2-4.4. This is followed by the presentation and analysis of experimental 

results obtained from both synthetic and clinical datasets, demonstrating the 

efficiency and accuracy of our approach in Section 4.5. The chapter ends with the 

conclusions of the presented work in Section 4.6. 

4.1 Algorithm Outline  

Fig. 4.1 shows the block diagram of the proposed approach. It commences with 

the segmentation of the arteries in coronary CT images, which has been previously 

discussed in Chapter 3. Then, the binary volumetric image data is converted to its 

equivalent mesh domain representation by extracting the zero isosurface using 

marching cube algorithm [143]. Next, we apply the mesh contraction algorithm 

[144], to define the initial location centreline locations of the arterial trees. The 

resulting centreline data, C0, are represented by two separate arrays, holding the 

coordinates of the centreline points (nodes) and the sets of indices, which define the 

adjacent points for each node, respectively. Based on the initial centreline (C0), 

bifurcation points are automatically detected by finding the centreline nodes with 
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more than two connected neighbours. Next, for each constituent vessel of the 

bifurcation, two endpoints located prior and distal to that bifurcation are selected 

and the associated cross sections are determined, respectively. In the following step, 

an initial tube model is constructed by using the original centreline and the 

associated cross sections, where the remaining cross sections along the centreline of 

the tube are obtained through linear interpolation between the two endpoints. In the 

following step, the algorithm alternates between registering the tube on the vessel 

surface and estimating the cross sectional shape of the tube, based on the current 

model. Once the fitting process is completed, the central axis of the tube model is 

considered as the resulting centreline for each of the constituent vessel segments of 

the bifurcation, and the tube surface can be used as the reference vessel. 

 

Figure 4.1: Flow chart of the proposed framework. 

4.2 Model Initialisation 

In the first step of the proposed method, each constituent branch of the bifurcation 

requires the determination of two endpoints for the initialisation of the tube model. 

The endpoints should be located within the ‘normal’ regions of the vessel of interest 

to ensure the correct generalisation of the model and speed up the convergence of 

the tube registration process. Subject to the assumption that healthy vessel cross 
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sections are approximately circular, we employ the normalised circularity metric to 

rule out abnormal segments of the vessels, such as those containing bifurcations and 

aneurysms. To initialise the tube centreline, two endpoints are initially selected one 

node ahead and distal to the bifurcation point on the original centreline, respectively. 

When the selected points are located within abnormal regions, a rectification 

procedure automatically determines their appropriate location by moving them 

(backwards or forwards) along the initial centreline until the circularity criterion is 

met. Once the end points are determined, we initialise the central axis of the tube 

model using the initial centreline and determine the cross sections through linear 

interpolation between the two ends. The green planes shown in Fig. 4.2 are potential 

ending cross sections determined by the proposed scheme in the ‘normal’ segments 

of the artery.  

 

Figure 4.2: The 3D diagram illustrates the possible locations of the ending cross sections for 

construction of the tube model at an arterial bifurcation. The semi-transparent structure 

represents the vessel surface, while the possible ending cross sections are depicted in green. The 

black curves are associated with the intersections between the vessel surface and the ending 

cross sections. The bifurcation point is represented by black dot.  

4.3 Construction of the Deformable Tube Model 

To characterise the morphology of the bifurcation and explore the full 3D 

information of the reference surface, a closed surface representing the reference 

vessel’s boundaries is required. In this research, we define the tube model, R(v,θ), 
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in terms of its central axis and the corresponding cross sections. The points v={vi, 

i=1,…,N} represent the path of the N control points (moving nodes), where N is 

adaptively chosen to ensure the distance between adjacent moving nodes is less than 

0.5 voxels, and θ={i, i=1,…,N} is an array consisting of the parameters of the 

associated cross sections. In this research, the cross section of the tube model is 

approximated as the best fitting ellipse. Hence, at the i-th moving node vi, the 

parameter vector is defined as θi={ai,bi,u1i,u2i,φi}, where ai and bi represent the semi 

diameters of the axes of the ellipse, u1i,and u2i 
denote the origin of the ellipse, and φi 

is the tilt angle. The central axis of the tube is defined using a B-spline curve with N 

moving nodes, and the surface of the tube can be reconstructed from its 

circumferences (i.e., the cross sections along its centreline) by using the ball 

pivoting algorithm.  

The tube registration problem is solved by minimising a generic active contour 

energy functional, defined as follows: 

 ConExtInt EEEE   

where η and γ are constants, controlling the influence of each energy term on the 

total tube energy. The internal energy, EInt, is comprised of the elasticity 

(v´(s)=dv/ds, where v(s) represents the medial axis and s is the parameterisation 

variable) and the stiffness of medial axis (v´´ (s)=d
2
v/ds

2
): 

  
s
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where the constants α and β are the weights for the elasticity and stiffness, 

respectively.  

The external energy functional, EExt, is derived from the fitting error between the 

tube model and the desired vessel segment. This poses a strong constraint on the 

tube based on its position with respect to the vessel surface, making the tube deform 

and follow the course of the vessel of interest. In this research, we define the 

external energy of the tube as follows: 

   s
Ext dsFE )),(( θsv 
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where F(v(s),θ) is a scalar function, returning the similarity score between the tube 

model and the desired branch. The metric is defined as the weighted directional 

distance between the fitting tube and the vessel surface, which will be discussed 

later on in Section 4.4.2.  

The elastic force defined in the internal energy favours small distances between 

adjacent centreline points, which will eventually shrink the curve to a single point. 

To prevent shrinking, an additional constraint, which encourages equal spacing 

between the centreline points, is defined as follows:  


2

))(( ddECon  sv 

where d(v(s)) denotes the distance between the control point v(s) and its successive 

neighbour along the centreline, and d is the average distance between centreline 

points. 

 

4.4 Optimisation Procedures for Tube Registration 

In this research, the reference surface for each constituent branch of a bifurcation 

is constructed through the registration of a deformable tube model to the desired 

branch. In contrast to conventional tubular models using fixed cross sections, the 

proposed approach adaptively updates the shape of the tube model, thus resulting in 

a more robust and accurate estimation. To this end, the method alternates between 

updating the cross sectional shape of the tube and registering the tube model to the 

desired branch. 

4.4.1 Estimation of the shape of each Cross Section 

The circular cross sectional tube is the most popular model to approximate 

vascular structures in the literature [118, 120, 145-148]. Vessels, however, are 

elastic bodies, which can accommodate local deformations of the lumen due to 

changes in blood flow and intraluminal pressure within the artery. Such 

deformations cannot be accurately represented using circular cross sections. Hence, 

we use an elliptical cross sectional tube model to approximate the vessel surface, 

which provides sufficient degrees of freedom to accommodate the potential 
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deformations and facilitates accurate estimation of the vessel cross sections. An 

ellipse can be defined in parametric form as: 
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where x denotes a point located on the circumference of the ellipse, u is the centre 

of the ellipse, a and b represent the semi-lengths of its axes, φ denotes the tilt angle, 

i.e., the angle between the x-axis of the local coordinate system and the major axis 

of the ellipse, and t is an angular parameter varying between 0 to 2π. The minimum 

distance of an arbitrary point, p= [p1, p2]
T
, to the circumference of the ellipse can be 

found by:
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Let Pi= [(p11, p12), (p21, p22), ..., (pm1, pm2)]
 T

,
 
  (m>U, where U≥5 with the lower 

value representing the number of free parameters of the ellipse) to be the 

intersection points, found by slicing the vessel surface using a perpendicular plane 

at the location of each moving node. The best fit ellipse, for which the sum of the 

squares of the distances to the given points is minimum, can be found by solving the 

following nonlinear least squares problem [149]:  
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In order to produce a smooth and anatomically correct generalisation of the tube 

model, we further constrain the area of the fitting ellipse, by limiting the lengths of 

its axes, based on its neighbouring slices. Specifically, we restrict the length of the 

axes of the ellipse to lie in the range of [1-c, 1+c] with respect to its adjacent cross 

sections. The constant c (fixed to 0.2 in this thesis) is determined based on the 
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viscoelastic properties of the vessel in [150], where the authors conducted a series 

of in vitro experiments to validate the ability of their computational fluid dynamic 

(CFD) model in simulating blood flow within the vessel by considering the 

deformation of the vessel wall. 

Let τ= [t1,…, tm, a, b, u1, u2, φ]
T
 denote the unknown parameters, which need to 

be determined. By taking into consideration the constraints imposed on the axes of 

the ellipse, we set up the constrained nonlinear least squares problem as follows: 
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The subscript i denotes the i-th moving node along the central axis of the tube 

model. The solution of the constrained nonlinear least squares problem in Eq. (4.8) 

can be obtained using a subspace trust regions method [151] and the interior 

reflective Newton method [152].  

4.4.2 Calculation of the Tube Energy 

By discretising the energy functional defined in Eq. (4.1), the tube energy can be 

rewritten as: 

 )()()(),,(
1

1 iCon

N

i

iExtiIntNTotal EEEE ννννν  


 

where  



Chapter 4.   3D Quantitative Vascular Shape Analysis for Coronary CT Images 

 

94 

 


22

1

2

11

2

1

||)(||

)(

|2|||

dE

,FE

E

iiCon

iiExt

iiiiiInt











vv

θv

vvvvv 



and  

 






N

i

ii
N

d
2

2

1 ||
1

1
vv 

Here, vi denotes the moving node of the tube centreline, and the external energy is 

calculated by F(vi,θi), which returns the weighted sum of squared errors between the 

estimated cross sections θi and the vessel boundaries intersected by the cross section 

at the location of the moving node vi. Due to the irregular geometry of the vessel 

cross sections at the location of the bifurcation, as shown in Fig. 4.3, not all of the 

intersection points belong to the desired branch, rather a subset of the intersection 

points may belong to another vessel branch. Hence, modelling the tube cross 

sections using all of the intersection points may introduce inaccuracies in defining 

the reference vessel surface. To address this issue, we make use of directional 

information to measure the difference between the model and the vessel boundaries, 

where the intersection points belonging to the desired vessel surface are assigned 

higher weights.  

                

                                  (a)                                         (b) 

Figure 4.3: Illustration of the intersection points taken from the vessel bifurcation. (a) The 3D 

view shows the intersection points in the vicinity of the vessel bifurcation, (b) The intersected 

points of (a) shown in a 2D projection image. The black dots are the vessel boundary points, 

while the red dot is the position of the centreline point at the cross section. Points on the right 

side of the centreline location belong to the right vessel surface, and exhibit normal shape. Their 

left hand side counterparts belong to the side branch of the bifurcation, and are characterised by 

an irregular shape. 
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A vessel bifurcation is defined as the subdivision of a vessel into two branches. 

As depicted in Fig. 4.4(a), it can be considered as a single object delineated by the 

left, middle and right contours, respectively [153]. In Fig. 4.4(b), we extend this 

concept to 3D images, where a bifurcation comprises three surfaces, namely the 

left, middle and right surfaces, respectively. As an example, let us consider the 

vessel segments shown in Fig. 4.3(a), the objective being to fit the tube model to the 

distal main branch (the right branch) over the bifurcation. To this end, the tube 

surface needs to be accurately registered onto the right surface of the vessel, as its 

left counterpart belongs to another constituent vessel of the bifurcation. However, it 

should be noted that the terms ‘left’ and ‘right’ surface are ambiguous in 3D space, 

as the definitions of ‘left’ and ‘right’ are relative to the viewpoint. In order to 

correctly register the tube model onto the desired surface, we propose a viewpoint-

independent procedure to determine the surface of interest in an automated fashion.  

 

   

                                   (a)                                                         (b) 

Figure 4.4: Representation of the vessel bifurcation in (a) 2D, and (b) 3D images, respectively. 

The vessel bifurcation is treated as a single segment delineated by three contours/surfaces. 
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Figure 4.5: Illustration of the proposed scheme for the determination of the desired surface. The 

semi-transparent structure represents the vessel surface. The intersection plane, defined by the 

endpoints PA and PB together with the bifurcation point PC, is shown in green. The black curve 

depicts the intersection curve between the plane and the vessel surface near the bifurcation. The 

cross section taken at endpoint PA, denoted by CrossA, is delineated by the blue contour, and 

the red line shows the x-axis direction of the cross section at PA.      

As illustrated in Fig. 4.5, we firstly find the intersection curve (Cinter, shown in 

black) between the vessel surface and the intersection plane (i.e., the green plane), 

defined by the two endpoints (PA and PB) together with the bifurcation point (PC), 

in the vicinity of the bifurcation area. Then, the orientation of the x-axis of the cross 

section at PA (denoted by CrossA) coincides with the direction of the line segment 

(shown in red), defined as the intersection between the plane CrossA and the curve 

Cinter. Next, we project the endpoint PB onto the plane CrossA (denoted by PB´), 

and the weight distribution is subsequently determined based on the sign of the x 

coordinate of the projection point PB´. Specifically, when PB´ is located on the left-

hand side of plane CrossA, the ‘left’ constituent branch is considered as the desired 

branch, where it is assumed that the positive direction of the x-axis of a plane points 

to the ‘right’.  Consequently, the intersection points located on the left half plane of 

the cross section are assigned higher weights, and vice versa. In order to deal with 

the torsion of 3D vessels, the technique of rotation minimising frames [154] is 
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employed to determine the local reference frame for each point of the centreline 

axis of the tube. Based on the local frame, we define the directional weights as: 
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where  is an angular parameter as illustrated in Fig. 4.6(a), φ is the tilt angle of the 

estimated ellipse at the current cross section, and σ indicates the variance of the 

normal distribution, which is chosen to be equal to 60 degrees (see Fig. 4.6(b)). The 

weights assigned for fitting the left and right surfaces are shown in Figs. 4.6(c) and 

(d), respectively. 

    

(a)                                                          (b) 

 

                               (c)                                                          (d) 

Figure 4.6: The directional weights scheme used in the registration of the tube to the desired 

surface in the bifurcation. (a) The definition of the angular coordinate system, (b) The weight 

distribution as a function of the angle, when fitting the right hand side surface, (c) and (d) 3D 

plots of the distribution of weights for the left and right surfaces, respectively. The estimated 

cross section is shown in blue and the height of the plot at each point indicates the relative 

magnitude of the weights. 
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Given the parameter vector of the cross sectional model θi={ai,bi,u1i,u2i,φi}, i.e., 

the best fit ellipse approximating the cross sectional shape of the vessel at the i-th 

moving node, and the directional weights, the goodness of the fit for each cross 

section at the moving node vi can be expressed as: 
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where P = {(pj1, pj2), j=1,...,g}, denote the intersection points as defined in the 

previous section, wj is the weight associated with the direction tj, and g denotes the 

number of points on the intersection.  

4.4.3 Minimisation of the Tube Energy Functional  

Rather than minimising the overall energy functional defined in Eq. (4.1), it is 

possible to examine the effect of the moving nodes within the model, by minimising 

the energy functional at each node in turn, and allowing the model to move as a 

whole to fit the vessel surface through an iterative process. One way of doing so is 

through the use of an exhaustive search algorithm [155]. Exhaustive search, or 

known as Brute-force search, is one of the simplest ways to solve computationally 

hard optimisation problems. It is a greedy search, scanning each possible solution in 

the space of candidate solutions (known as the search space), and terminates when a 

local optimum is reached. However, the optimal locations of the centreline obtained 

by means of the conventional greedy algorithm take place at each moving node, 

without considering the effect of the current node on the total energy of the 

solution.  

Dynamic programming (DP), on the other hand, is a serial multistage decision 

process connected in series, which ensures the global optimality of the solution 

[155]. DP firstly decomposes the problem to be solved as a number of single stage 

processes, and then combines these single stage (suboptimal) solutions to reach an 

overall solution. By doing so, it translates a complex problem as a series of sub-

problems, which is easier to solve. This principle is illustrated in the example of 

Fig. 4.7, which describes a typical shortest path problem in a network.  



Chapter 4.   3D Quantitative Vascular Shape Analysis for Coronary CT Images 

 

99 

 

 

Figure 4.7: Schematic diagram illustrating a multiple stage decision process using a weighted 

network. Boldfaced arcs constitute the optimal path. 

The graph was drawn for simplicity in a 5-stage arrangement, with the cost 

between the adjacent state variables at vi and vi+1, denoted by Ei(vi,vi+1). For each 

state variable, vi, in the i-th decision stage, m possible choice of solutions are given. 

The shortest path, associated with the minimum cost of a sequence connecting v0 

and vk+1, can be found using the recursive formulation as follows: 
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where Sk(vk+1) is the total cost of the path up to the (k+1)-th stage. Eq. (4.13) states 

that the minimal (shortest) path from the starting source up to the stage vk+1, can be 

found by considering the (minimum) costs between the state variables vk and vk+1 , 

and the optimal path from the starting variable v0 to vk. Such recursive solution 

provides an intuitive method for modelling the DP process, however, in practice the 

problem is usually solved numerically in an iterative manner for efficiency 

considerations. In addition to the cost matrix, whose elements are corresponding to 

the optimum cost (Sk), a position matrix, recording the position of the state variables 

which yield the optimum cost (minimising Eq. (4.13)), is needed. The optimal path 

can be found by back tracing in the position matrix. The above procedure forms a 

single iteration, with a computational complexity of O(nm), where n denotes the 

number of decision stages of the dynamic process.  
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DP has been reported as an alternative approach to solving the variational 

problem in active contour like energy functionals [156, 157]. In this thesis, we 

follow the terminology and notation of the work by Amini and his co-workers 

[158], and the tube energy can be then expressed as the sum of triple-interaction 

potentials as follows: 
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where, 
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The optimal value function, Si, representing the optimal path up to the moving node 

vi+1 can be determined by two adjacent moving nodes on the tube centreline as 

follows: 
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where the moving node vi serves as the state variable in the i-th decision stage and 

is only allowed to move within the search space. For fixed values of vi and vi+1, the 

value of the function Si(vi+1,vi) is determined by finding the minimum value of the 

right-hand side of Eq. (4.16), when moving the node vi-1 over the space of its 

possible positions. In each decision stage, the optimal value function incorporates 

information from three successive moving nodes, and hence, the global optimal 

solution can be obtained recursively in terms of the consecutive nodes on the 

centreline. The computational complexity of the DP problem is O(nm
2
), which is 

inefficient for the solution of the tube registration problem when the solution space 

(m) is large. To remedy this problem, we propose the application of a hybrid 

optimisation strategy, combining local greedy search and dynamic programming, 

which ensures the global optimality of the solution, while maintaining the efficiency 

of the proposed algorithm at an acceptable level.   
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For each moving node on the centreline, Num suboptimal locations, associated 

with the lowest energy in the search space, are firstly determined using the 

exhaustive search algorithm. The node energies are obtained by the sum of the 

individual energy functions as defined in Eq. (4.10). The search space is defined as 

a four voxels width square grid with a step size of 0.2 voxels, which is 

perpendicular to the tangential direction of the centreline at each moving node (see 

Fig. 4.8). Next, dynamic programming is applied to determine the global optimal 

path of the centreline among all possible paths connecting these suboptimal 

solutions. The above procedure constitutes a single iteration, and the optimisation 

process terminates when the tube energy does not change with time, or the 

maximum number of iterations is reached. 

 

Figure 4.8: 3D schematic diagram illustrating the search space of the tube model registration 

problem. The optimal location of the central axis is shown in black. The green cross sections 

represent the search space at each moving node, shown by blue dots. The stars denote the 

possible movement of each moving node. Note that these grids were displayed in coarse 

resolution for visualisation purposes.   

4.5 Experiments and Discussion 

In this section, we apply our method to both synthetic and clinical images to 

demonstrate the efficiency and accuracy of the proposed method in defining the 
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centreline and reference vessel surface over the vessel bifurcation. We firstly 

compare the proposed image-driven energy functional with its volume domain 

counterparts, i.e., Wong and Chung’s method [118] and the tube model proposed by 

Kang et al., [120], to show the benefits offered by the proposed energy in fitting the 

tube model to the desired vessel segment. The comparison was carried out using 

synthetic 3D vascular images, which allow the testing of these energies on various 

types of vessel segments with known optimal solutions (i.e., ground truth data). 

Next, we validate our method in clinical CTA images and compare it against the 

approach reported by Antiga et al., [54], for the determination of the centreline 

location in a vessel bifurcation.  

4.5.1 Experiments on Synthetic Images 

The synthetic images were created using the locus of the vessel’s central axis and 

associated cross sections (for simplicity, the circular cross sectional tube model was 

used in the construction of the synthetic data). The tubes were represented by a 

binary volume, in both the mesh and volume domains, in order to derive the image-

based energy terms for both volume domain methods and the proposed technique.  

      

                    (a)                                 (b)                      (c) 

Figure 4.9: Examples illustrating a synthetic tube image. (a) The volume of the tube, (b) An 

example of the cross sectional image of the tube represented in the voxel domain, where pixels 

labelled as one represent the tube and zero for the background, and (c) illustrate the cross 

section taken at a bifurcation (linear interpolation was applied to increase the resolution). The 

semi-transparent blue structures shown in (a) represent the vessel surface and the green planes 

are the cross sections. The blue contours shown in (b) and (c) are associated with the 

intersections between the vessel surface and the cross section. 



Chapter 4.   3D Quantitative Vascular Shape Analysis for Coronary CT Images 

 

103 

 

Fig. 4.9 illustrates examples of synthetic tubular images. The semi-transparent 

surface represents the boundary of the tube, and the blue curves are the centrelines 

of the tube. The volume domain representations were illustrated in Figs. 4.9(b) and 

(c), with cross sectional views, where pixels labelled as one represent vessels and 

zero for the background. Since the purpose of this experiment is to compare the 

performance of the aforementioned image-driven energies in measuring the fitness 

of the tube model at bifurcation areas, the central axis of the tube model was 

initialised using the optimal solution for all of the methods. In terms of the 

associated cross sections, they are determined by linear interpolation between two 

ending cross sections, located prior and distal to the bifurcation, for both Wong and 

Chung’s and Kang et al., methods. We follow the procedure described in Section 

4.4.1 to determine the cross sections for the proposed tube model. 

In the previously reported methods, the image-driven energies are generally 

defined by the ‘goodness’ of the fit between the tube and the vessel of interest in 

each cross section. This can be formulated either as the fitting error or defined as a 

degree of overlapping metric, where a unity measurement represents 100% 

overlapping. To conduct a fair comparison between these metrics, we utilise the 

fitting error as the ‘goodness’ measurement for all the energies. Firstly, we present 

their performance in measuring the ‘goodness’ of the fitness in a normal (single-

branch) vessel cross section. In Wong and Chung’s method, the ‘goodness’ of the 

fit is measured using the weighted average value calculated based on a set of 

sampling points. As illustrated in Fig. 4.10(a), the sampling points, shown as stars, 

are evenly spaced on the concentric circles, with the radius of the outmost circle 

equal to the radius of the tube model. The values at these sampling points are 

determined by linear interpolation of the binary volume. The calculation of Kang et 

al., image energy is illustrated in Fig. 4.10(c), where the image energy is obtained 

based on the misclassification error by measuring the overlapping rate between the 

cross sections of the tube (the area within the blue circle, with right-slanted lines) 

and the vessel. For the proposed image energy metric, which is shown in Fig. 

4.10(e), the weighted distance between the vessel’s boundary (shown in blue) and 
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the fitting ellipse (delineated by the red contour) is calculated to measure the fitness  

 

          
                       (a)                                                        (b) 

         
                        (c)              (d) 

             

                              (e)                (f) 

Figure 4.10: Examples illustrating the calculation of image-based energies in a normal vessel 

cross section using (a) Wong and Chung’s energy, (c) Kang et al., energy, and (e) The proposed 

image energy. (b), (d) and (f) delineate the change in the magnitude of the image energies with 

respect to the distance of the moving node from the optimal solution at the normal vessel 

segment for Wong and Chung’s energy, Kang et al., energy, and the proposed energy 

formulation, respectively.  
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between the model and the vessel surface. Figs. 4.10 (b), (d) and (f) depict the 

change of magnitude of the image-driven energies with respect to the distance of 

the control point from the optimal position at the bifurcation area. In this 

experiment, the control point is only allowed to move on a square grid, 

perpendicular to the tube centreline at each control point. The radius of the grid was 

set to three voxels, and the grid size was chosen to be 0.2 voxels. Linear 

interpolation was applied for image upsampling in the calculation of the image 

energies for the volume domain methods. It can be seen that the fitting error 

increases as the centre of the tube cross section moves away from the optimal 

solution, which indicates that all of these algorithms enable accurate registration of 

the tube model to the vessel boundaries in the normal portion of the vessels. 

In Fig. 4.11, we present the previous measurements obtained at the locations of 

vessel bifurcations. Both Wong and Chung’s (Fig. 4.11(b)) energy and Kang et al., 

metric (Fig. 4.11(d)), have a flatten region near the optimal location. This is due to 

the fact that both of these image-driven energies are based on the degree of 

overlapping between the tube model and the vessel segment. At a vessel bifurcation, 

the cross sectional shape of the vessel, as shown in Fig. 4.11(c), deviates from being 

circular, and thus, the same fitting error is found when the cross section of the tube 

model is located anywhere within the interior of the vessel area. In this case, the 

internal energy of the tube model becomes the dominant contributor in these two 

methods in the vicinity of bifurcations, and thus, the location of the tube is almost 

entirely determined by this energy term. This may result to erroneous estimation of 

the reference surface and vessel centrelines, since the internal energy favours a 

‘straight’ tube. On the contrary, only a small number of local minima were 

identified around the optimal position in the proposed image-driven energy 

formulation. As shown in Fig. 4.11(e), our image-driven energy generally increases 

with the distance from the optimal position. Therefore, the proposed model is 

capable of producing accurate estimation of vessel centrelines and the reference 

surface. As previously discussed in Section 2.4, image upsampling (interpolation) is 

usually required for the calculation of the image-based energy in volume domain 

methods, when the in-plane resolution is insufficient.  
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                                     (a)                                                      (b) 

       
                         (c)                                                      (d) 

        

                                  (e)                                                        (f) 

Figure 4.11: Examples illustrating the calculation of image-based energies near the vessel 

bifurcation using (a) Wong and Chung’s energy, (c) Kang et al., energy, and (e) The proposed 

image energy. (b), (d) and (f) delineate the change in magnitude of image energies with respect 

to the distance of the moving node from the optimal solution at the bifurcation area for Wong 

and Chung’s energy, Kang et al., energy, and the proposed energy, respectively. The grey area 

shown in (c) denotes the cross sectional area of the tube located in the interior of the vessel 

cross section.  
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Table 4.1: Effect of interpolation methods on image energy 

 

  Interpolation 

Method 
Wong and Chung’s Energy Kang’s et al., Energy 

Nearest neighbour 0.2083 0.1773 

Linear 0.0727 0.1600 

Cubic 0.0275 0.1629 

Cubic spline  0.0043 0.1501 

 

 

In Table 4.1, we present a comparison of different interpolation methods in the 

calculation of both Wong and Chung’s image-driven energy and the external energy 

proposed by Kang and his colleagues. The experiment was performed on the vessel 

cross section shown in Fig. 4.9(b), and the width of the cross section was set to its 

optimal value. It can be observed from Table 4.1 that Wong and Chung’s image-

based energy varies in the range of 0.0043 to 0.2083 for different interpolation 

methods. The maximum value is almost 50 times greater than the minimum, 

indicating that their method is sensitive to the choice of interpolation scheme. In 

addition, image upsampling is a computationally expensive operation with the 3D 

linear interpolation taking approximately 0.4s, while the proposed image energy can 

be calculated within 3ms for the same cross section. This indicates that the 

execution time may significantly increase, when the size of the solution space is 

large.  

4.5.2 Experiments on Clinical Images 

The same clinical datasets, used previously in Section 3.4, were utilised to 

quantify the performance of the proposed technique. Two distance metrics, namely, 

the Mean Square Error (MSE) between the ground truth centreline data and the 

central axis of the fitting tube, and the MSE between the fitting tube surface and the 

vessel boundaries, are used to validate the performance of the previously reported 

algorithms. The tuning parameters of the proposed method are empirically 

determined based on a training set, which consists of three CT studies randomly 
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selected from the whole CTA data. In Table 4.2, we show the optimal parameters 

settings for the proposed algorithm.  

Table 4.2: Parameter settings of the tube registration algorithm 

Maximum number of iterations, iter 20 

Number of suboptimal solutions for each node, Num 10 

Elasticity weight, α 0.2 

Stiffness weight, β 0.2 

Constrained energy weight, γ 0.15 

External energy weight, η 1 

Axis constraint, c 0.2 

Radius of the search space, rad 4 

Grid size of the searching space, ds 0.2 

Stop criterion, eps 10
-6

 

Circularity criterion for selection of endpoints, comp 0.9 

 

Clearly, the choice of parameters in the proposed method can influence its 

performance. For instance, the elasticity weight α controls the degree of stretching 

(length) of the centreline. Small values of α would increase the resistance of the 

centreline curve, while large values may result in shortening of the centreline. The 

effect of the centreline smoothness (stiffness) parameter β is illustrated in Fig. 4.12, 

when β is set to relatively small values. The image based energy term dominates the 

tube fitting process, thus leading to a jagged tube centreline (see Fig. 4.12(a)). 

Conversely, when β takes large values, the smoothness constraint becomes the 

major contributor to the total energy, thus resulting in a ‘straight’ tube, as shown in 

Fig. 4.12(b).   

     

(a)                                                  (b) 

Figure 4.12: The tube centreline obtained by using extreme values for the weights of the 

smoothness constraints. The tube centrelines obtained by using the standard parameter settings, 
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listed in Table II, are shown in red. The black curves are the centrelines obtained with (a) low, 

and (b) high weights for the smoothness (stiffness) parameter β.  

 
                                            (a)                                            (b) 

                                                                                              
                                        (c)                                             (d) 

Figure 4.13: Comparison of the tube fitting results in terms of centreline fitting and surface 

fitting errors. Plots (a) and (b) correspond to the influence of parameter ds, while plots (c) and 

(d) correspond to the influence of parameter rad, respectively. 

The search space of the proposed method is defined as a square grid, described by 

the window’s radius (rad) and step size (ds), centred at each moving point along the 

centreline. We use the vessel segment of Fig. 4.5(a) to evaluate the performance of 

the tube fitting process with respect to the rad and ds parameters. It can be seen in 

Figs. 4.13(a) and (b) that the results change dramatically as the search space step ds 

increases. This is because a small step size for the search space (i.e, finer resolution) 

allows a larger number of alternative locations for the node to move and thus 

improves the overall performance. Large values for the step size (i.e., coarser 

resolution), however, may result in the node making large and potentially erratic 

movements. On the other hand, the influence of parameter rad, as shown in Figs. 

4.13(c) and (d), to the fitting results is not as significant, since the minimum value 

of the local energy for each node is usually found within a small distance from its 
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initial position. In theory, the choice of parameter rad should not introduce 

significant changes in the results. However, this parameter still needs to be chosen 

at the appropriate scale, with the optimal value being the width of the vessel, at the 

vessel bifurcation. The reason for this is that a large value for the parameter rad can 

increase the probability for erroneous movement of the centreline and subsequently 

increase the computational cost of the optimisation procedure. Since the initial 

centreline is already near the optimal position, we set the radius of the search space 

to four voxels in order to improve the efficiency of the proposed algorithm.  

 

      

  (a)                                                           (b) 

         

                               (c)                                                                (d) 

Figure 4.14: Tube registration/fitting results obtained from major bifurcations of coronary 

arteries: (a) Main vessel in a bifurcation, (b) A highly curved side branch, (c) A complex 

bifurcation, and (d) A tapering vessel. The semi transparent structure represents the vessel 

surface (blue surface). The fitting tube is represented by its central axis (in red) and the outer 

surface (in black) is reconstructed from the cross sections. The blue line denotes the initial 

centreline estimations.  
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Fig. 4.14 illustrates the results obtained from the application of the proposed 

method on four clinical datasets, where the semi-transparent structures (shown in 

blue) are the arterial lumen surfaces, obtained from the vessel segmentation, and the 

original centrelines are shown in blue. The central axis of the fitting tube is 

delineated in red, while the corresponding surface is represented in black. Fig. 

4.14(a) shows the fitting of the proposed tube model on the main vessel in the 

bifurcation. Fig. 4.14(b) illustrates the registration of the fitting tube onto a highly 

curved side branch. Fig. 4.14(c) depicts the result obtained in the neighbourhood of 

a complex bifurcation, while the ability of our method in fitting a tapering vessel is 

demonstrated in Fig. 4.14(d).  

Fig. 4.15 depicts the correlation between the tube energy (shown in blue) and the 

MSE of the fitted centrelines (red curves) with varying parameter settings. 

Parameter rad is fixed to the standard value since it has little influence on the fitting 

results. We assume that parameters α and β have equal values and evaluate their 

effect when they take the values of {0.05, 0.2, 0.5}. The grid size parameter takes 

the values of {0.1, 0.5, 1}, while the remaining parameters are set to their standard 

values. Note that to facilitate comparison, the values of the MSE and the tube 

energy were normalised between 0 and 1. By observing the results of Fig. 4.15, we 

can see that there is a high degree of correlation between the MSE of the centreline 

and the total tube energy, apart from the cases of Figs. 4.15 (c), (f), (h) and (i). This 

is because the combination of high smoothness constraints and large search space 

step size imposes a limit on the possible locations of the tube centreline. 

Nevertheless, the results provide sufficient evidence that for an appropriate choice 

of parameters, minimising the energy functional of the entire tube is equivalent to 

minimising the MSE of the fitting tube, and thus, it is reasonable to terminate the 

tube registration process, when the tube energy stops decreasing.   
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      (a)        (b)                                   (c) 

 
   (d)                     (e)                         (f) 

 
                 (g)        (h)             (i) 

Figure 4.15: Correlation between the tube energy and the MSE of the centreline for different 

parameter settings. The x-axis of the plot corresponds to the number of iterations, while the y-

axis corresponds to the normalised MSE and tube energy values. The tube energy and MSE are 

plotted in blue and red colours, respectively. Plots (a)-(c) show the MSE and tube energy with 

parameters rad=2, α=β=0.05, ds={0.1, 0.5, 1}, respectively, plots (d)-(f) for rad=2, α=β=0.2, 

ds={0.1, 0.5, 1}, and plots (g)-(i) for parameters rad=2, α=β=0.5, ds={0.1, 0.5, 1},  

respectively.  

We also compared the performance of the proposed method using two tube 

models, i.e., both circular and elliptical cross sectional tubes, with the centreline 

extraction algorithm reported by Antiga et al., in the determination of vessel 

centrelines near bifurcations. For the circular cross sectional model, we initialise the 

tube in a similar way as in Wong and Chung’s method, where the central axis of the 

tube is defined as the initial centreline of the arteries and the corresponding width of 
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the cross sections along the centreline is determined by linear interpolation between 

the diameters estimated at the two endpoints. The tuning parameters for the circular 

cross sectional tube were determined in the case of the elliptical tube, with the help 

of the same training set. The VMTK toolkit [159] was used to perform the 

centreline extraction algorithm in [54], and the 3D slicer [160] was employed to 

interactively select the end points for each vessel segment.  

 

Figure 4.16: Comparison of the centrelines extracted at the vicinity of the bifurcations using the 

various methods.  

As can be observed in Fig. 4.16, the average MSE of the initial centrelines near 

the bifurcation is approximately 1.71 voxels. The error can be reduced by 36% on 

average with the Antiga et al., method (the MSE was found at 1.05 voxels). For the 

proposed algorithm, the circular cross sectional tube has a similar performance to 

the Antiga et al., method, where the mean MSE for all the test datasets was 0.92 

voxels. A further improvement on performance is achieved (i.e., the MSE is 

reduced by 62.3% on average compared with the initial centrelines), when using the 

elliptical cross section tube model. The box and whisker plots of the centreline 

fitting errors of these models for these datasets are presented in Fig. 4.17. It can be 
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seen that the dispersion of the centreline fitting errors when using the elliptical cross 

section tube model is the least. This indicates that the proposed elliptical cross 

section tube model has a higher degree of reproducibility and is more insensitive to 

the input datasets. The maximum fitting error of our method, when using the elliptic 

cross section tube model, was found to be equal to 0.86 voxels, which implies that 

the proposed model is able to estimate the locations of the centrelines over the 

region of the bifurcation with sub-voxel accuracy. 

 

Figure 4.17: Centreline fitting errors for the clinical datasets obtained using the various models. 

The proposed approach was implemented in MATLAB (R2010b) on a standard 

specification PC (Dell Precision T3500, Inter(R) Xeon(R) CPU at 2.67GHz), and 

the average execution time was found to be 61.3 seconds for fitting each constituent 

branch of a bifurcation. VMTK, on the other hand, requires roughly 100s to carry 

out the same process (when implemented using the 3D slicer). 

4.6 Conclusions 

The luminal area and the centrelines of arteries are the key parameters for 

performing quantitative analysis of the abnormal coronaries in clinical practice. As 
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previously discussed in Chapter 2.4, conventional methods were designed for 

analysis of ‘straight’ segments of the vessels, and have limitations in defining both 

the centreline and the reference surface for vessel bifurcations. To address these 

issues, we propose a dedicated algorithm to simultaneously determine the reference 

surface and the centreline for arterial bifurcations based on deformable tube model. 

Followed by outlining the work flow of the proposed algorithm in Section 4.1, we 

continue with our discussion regarding the initialisation of the tube model in 

Section 4.2. In Section 4.3, we detailed the construction of the explicit tube model 

and defined the tube energy that would be used to guide the tube model registration 

process. This is followed by presentation of the hybrid optimisation scheme, 

combining local search and dynamic programming, in Section 4.4. Experimental 

results on both synthetic and clinical datasets were given in Section 4.5.  

Compared to state-of-the-art algorithms, the proposed method offers a number of 

advantages. Firstly, it works directly on the mesh domain, which alleviates the 

requirement for image upsampling. Secondly, contrary to conventional circular 

cross sectional tube models, which use linear interpolation to determine the width 

along the tube, the proposed method estimates the tubular cross sections based on 

partial information about the vessel surface to be fitted. Specifically, the cross 

sections of the tube are adaptively estimated by finding the best fitting ellipse to the 

intersection points (obtained by slicing the vessel surface using the cross section) 

belonging to the desired constituent branch of the bifurcation. Thirdly, a weighted 

directional distance metric is employed to measure the fitness between the tube and 

the vessel of interest in the energy calculation, which facilitates tube registration at 

the desired location of the bifurcation. In addition, we propose the use of a hybrid 

optimisation method to minimise the tube energy functional. In particular, a local 

greedy search is used to determine the initial solutions, which are then optimised 

through dynamic programming. The proposed optimisation strategy ensures the 

global optimality of the solution, and permits the incorporation of hard constraints 

posed to the tube within a natural and direct framework. 

The efficiency of our method was demonstrated on both synthetic and clinical 

datasets, with encouraging results. Experiments on synthetic tube images have 
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shown that the proposed image-driven energy is more efficient and accurate in 

measuring the fitness of the tube model at bifurcation areas. For the real clinical 

data, the proposed method can produce smooth and morphologically correct 

centrelines and reference surfaces for both the main vessel and the side branch in 

the region of a bifurcation. The fitting results show that the proposed method leads 

to an improvement of 62.3% in accuracy (on average), when compared to the 

original centreline locations.  

The application of the proposed tube model allows for the local geometric 

parameters of the vessel bifurcation to be easily and robustly estimated, which in 

turn can be used as a starting point for further clinically relevant researches. The 

next chapter of this thesis (Chapter 5) will be dedicated to the conclusions of this 

research and present a detailed discussion of possible future directions for this 

work. 
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Chapter 5 

Conclusions and Future Work 

5.1 Introduction 

In the final chapter of this thesis, we conclude our current research and make 

recommendations regarding possible extensions and future directions. The goal of 

this project has been to develop an automated system for quantitative vascular shape 

analysis of coronary arteries based on coronary CT images, which would assist the 

clinician in the diagnosis of coronary heart disease and the reporting of the 

angiographic results. Existing systems are commonly designed based on single-

branch vascular models, thus lacking flexibility in the assessment of atherosclerotic 

lesions located in bifurcations. The proposed framework, by contrast, is capable of 

producing reliable reference surface and centreline data for diseased segments of 

coronary arteries at both normal branch and bifurcation sites, which provides 

clinically meaningful measurements for quantification of the severity of the stenotic 

lesions. Additionally, the proposed techniques can be operated in a fully automated 

fashion, which minimises the interaction from users and reduces the inter- and intra-

user variability in the quantification of atherosclerotic lesions. In contrast with 

conventional techniques based on 2D images, the proposed framework performs the 

analysis in 3D space, thus eliminating the fore-shortening and out of plane 

magnification artifacts which are usually encountered in conventional 2D based 

approaches. The algorithms were integrated in a MATLAB based GUI, which 

allows for non-technical users to access the full functionality of the proposed 

system.  

The aims of this thesis have been two-fold: 

    Firstly, development of an automated segmentation framework dedicated 

to the extraction of the coronary arteries in 3D contrast enhance coronary 
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CT images, which defines the physical bounds of the coronary arteries for 

various clinical tasks.  

    Secondly, introduction of a reproducible and robust vascular shape 

analysis technique to estimate the coronary geometries, based on the 

resulting segmentation (obtained from Chapter 3). Emphasis has been on 

the arterial bifurcations, since existing systems are commonly designed 

based on singe straight branch vessel model and have limitations in 

accurately estimating coronary geometries in the vicinity of bifurcations.  

Followed by this introduction, the remaining sections of this chapter are 

organised as follows: In section 5.2, we present the conclusions related to the 

coronary artery segmentation techniques, described in Chapter 3. In section 5.3, the 

conclusions drawn from the development of the dedicated algorithm for quantitative 

vascular shape analysis in Chapter 4 are presented. This is followed by presentation 

of the contributions of this thesis in Section 5.4. Possible extensions and 

recommendations for future research are given in Section 5.5.  

5.2 Coronary Artery Segmentation 

In Chapter 3, we intend to develop a fully automated algorithm dedicated to the 

extraction of the coronary arteries in 3D contrast enhanced CTA images. This 

chapter is comprised of a series of algorithms towards this end. Specifically, we 

firstly described an automated pre-processing framework, based on morphological 

operations and second-order derivative information, which defines the region of 

interest and creates an initial segmentation of the coronary arteries for subsequent 

processing. Then, we present a two-stage segmentation algorithm to detect the 

coronary arteries. In the first stage of the segmentation, the initial segmentation of 

the coronary arteries was refined using a generalised active contour model. Possible 

outliers, such as kissing vessel artifacts, are removed in the second stage of the 

segmentation by using a slice-by-slice correction algorithm. The various of active 

contours based segmentation techniques were firstly applied to synthetic vascular 

images to evaluate the performance of the proposed model. The use of the synthetic 
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images permits generation of vascular images under various conditions, such as 

varying brightness, noise level and kissing vessels, with pre-determined ground 

truth segmentation. Experiments on synthetic images have shown that the proposed 

method is capable of producing satisfactory segmentation in the presence of 

changing brightness conditions and kissing vessels, by taking both global and local 

image statistics into account.  

In the case of clinical datasets, we compare the proposed technique and active 

contour model reported by Yang and her colleagues [88] with respect to the 

manually delineated reference data (i.e., a binary volume data, with voxels labelled 

as one representing coronary arteries, and zeros for anything else). For both 

methods, the tuning parameters were determined by using a training set, which 

consists of three CT volumetric images, randomly selected from the whole 12 

datasets. Compared with Yang et al., active contour model, the presented method is 

less sensitive to the image brightness changes, which is agreed with the conclusions 

drawn from the synthetic images. It enables the extraction of the major branches of 

the coronary arterial tree with a voxel-wise error at 0.73 voxels to the manually 

delineated ground truth data. We also found that the TP and OM rates of the 

proposed method tend to decrease when approaching the distal and small segments 

of the arteries. However, clinically significant coronary lesions are usually 

identified in the main and proximal branches of the arteries [5], which can be well 

defined by the proposed model. Nevertheless, we can conclude that our technique is 

able to delineate the vessel boundaries in clinically important coronary segments 

with a level of variability similar to those obtained through manual segmentation.  

In terms of the kissing vessel artifacts, two CT studies were identified with the 

presence of kissing vessels, and the slice-by-slice correction scheme was applied on 

the initial segmentation of the arteries. The results demonstrate that the erroneous 

segmentations caused by kissing vessels have been significantly reduced, with the 

false positive rates reduced from 294% to 22.8% for those segments distorted by the 

kissing vessels. 



Chapter 5.   Conclusions and Future Work 

 

120 

 

5.3 Quantitative Vascular Shape Analysis 

In Chapter 4, we developed an automated algorithm, with particular focus on 

arterial bifurcations, for the construction of the reference surface and the associated 

centreline for the diseased portions of the arteries based on dynamic tube model 

fitting. To this end, we aim to register a deformable tube model to each constituent 

branch of a bifurcation, which facilitates the estimation of the reference surface and 

the locations of centreline data. Extensive experiments, based on both synthetic and 

clinical datasets, have been undertaken to demonstrate the benefits offered by using 

the proposed technique.  

Firstly, we compare the performance of the proposed image-energy with its 

volume domain counterparts, i.e., the deformable tube energies reported in [118, 

120], in measuring the fitness of the tube model at both normal vessel segments and 

bifurcation locations using synthetic images. Experimental results demonstrated that 

the proposed image-driven energy outperforms than other energy terms in terms of 

the efficiency and accuracy, particularly in the vicinity of bifurcations. Hence, the 

use of the directional distance metric as the image-based energy could potentially 

improve the overall performance of the proposed in bifurcation regions. For the 

clinical datasets, twelve coronary CT studies were used to validate the performance 

of the proposed approach. The evaluation was conducted by comparing the resulting 

centreline data, obtained using various techniques (described in Section 4.5.2), with 

the manually annotated gold standard. It was found that, in general, the centreline 

errors are reduced by an average of 62.3% in the regions of the bifurcations, when 

compared to the results of the initial solution obtained through the use of mesh 

contraction method [144]. The maximum fitting error of the estimated centreline to 

the ground truth data was found at 0.86 voxels. From these observations, we can 

draw the conclusion that the new method is capable of estimating vessel centrelines 

and reference surfaces with a high degree of agreement to those obtained through 

manual delineation. Since presented algorithm is fully automated, which minimises 

the interactions from the user, it allows for robust and reproducible estimation of the 

geometrical parameters of the segmented arteries.  
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5.4 Contributions of the Thesis 

The novelties of this research, i.e., those that form the basis of the thesis, are to be 

found in two main areas, associated with the segmentation and quantitative vascular 

shape analysis of the coronary arteries in coronary CT images, described in 

Chapters 3 and 4, respectively. Specifically, the contributions of this thesis are 

summarised as follows:  

 A novel algorithm is proposed for the segmentation of coronary arteries in CT 

images based on the framework of active contours. In the proposed method, 

both global and local intensity information are utilised in the energy 

functional. Particularly, the global term is defined as a normalised cumulative 

distribution function (CDF), which contributes to the overall active contour 

energy in an adaptive fashion based on image histogram information, to 

deform the contour away from local stationary points. The local image 

energy, on the other hand, enables to deal with varying brightness conditions 

along the vessel. Experimental results obtained from clinical datasets have 

shown that this method is capable of extracting the major branches of arterial 

trees with an average distance of 0.73 voxels to the manually delineated 

ground truth data. The proposed technique leads to an improvement of 31.8% 

in accuracy (in terms of the voxel-wise distance to the ground truth data), 

when compared with segmentation results using the active contour model 

developed by Yang and her co-workers [88] (Aspects of this work are 

published in [161-163]). 

 A new algorithm is developed to suppress kissing vessel artifacts (i.e., vessels 

in close proximity to each other), which cannot be distinguished with 

conventional methods. In particular, a slice-by-slice correction scheme, based 

on multiple regions competition, is applied to identify and track the kissing 

vessels throughout the transaxial images of the CTA data. Results on CTA 

images have shown that by using the proposed slice-by-slice scheme, the 

erroneous segmentation caused by kissing vessels is dramatically reduced in 

terms of misclassified voxels (the false positive rate reduces from 294% to 
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22.8% for those arterial segments affected by kissing vessel artifacts). 

(Aspects of this work are published in [162, 163]). 

 A dedicated algorithm is proposed to perform quantitative vascular shape 

analysis of the coronary arteries, with focus on vessel bifurcations. 

Specifically, we propose the estimation of the centreline and the reference 

surface by registering an elliptical cross sectional tube onto the desired 

constituent branch in each major bifurcation of the arterial tree. The 

registration problem is solved through the use of a hybrid optimisation 

method, combining local greedy search and dynamic programming, which 

ensures the global optimality of the solution and permits the incorporation of 

any hard constraints posed to the tube model within a natural and direct 

framework. This technique works directly on mesh domain, thus alleviating 

the need for image upsampling, usually required in conventional volume 

domain approaches. We demonstrate the efficiency and the accuracy of our 

method on both synthetic images and clinical coronary CTA images. 

Experimental results show that the proposed method is capable of estimating 

vessel centrelines and reference surfaces with a high degree of agreement to 

those obtained through manual delineation. The centreline errors are reduced 

by an average of 62.3% in the regions of the bifurcations, when compared to 

the results of the initial solution obtained through mesh contraction algorithm 

(Aspects of this work are published in [164]). 

5.5 Recommendations for Future Work 

5.5.1 Improvements Regarding Coronary Segmentation 

1. Coupling local shape constraints to the proposed segmentation framework 

In this thesis, we extracted the coronary arteries solely based on intensity 

(appearance) information. This is not sufficient in the presence of coronary 

pathologies and image artifacts, where intensity features are usually ambiguous. In 

order to more robustly detect the coronary arteries, we propose the incorporation of 

shape priors into the proposed segmentation framework. As previously discussed in 
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Chapter 2, conventional parametric shape models require a large training set to 

cover the variability of vessels, which is difficult to obtain in practice, and are not 

straightforward to be encoded/parameterised as a signed distance function [94]. To 

remedy this problem, it is possible to use non-parametric models to locally describe 

the shape of current segmentations. Qian and his colleagues proposed a non-

parametric vesselness metric, which is based on the analysis of local intensity 

patterns centred at each voxel, offering an alternative for the detection of vascular 

geometries in medical images [165]. By introducing the shape information using 

Qian et al., vesselness measurement, the active contour would expand quickly when 

it is located within a vessel, on the other hand, when the shape of the current 

segmentation strongly deviates from being vascular, the shape prior would provide 

a penalised force to pull it back. Hence, through the combination of the shape 

information of the current segmentation, the accuracy of the presented segmentation 

framework could be potentially improved with respect to the presence of spurious 

intensity features.  

2. Clinical validation of the proposed segmentation framework with invasive 

standard 

In this research, the accuracy and capability of the proposed system was 

quantified by comparing the segmented arteries with manual delineation, which 

lacks validation with an invasive standard such as cardiac catheterisation. In order 

to determine the true clinical applicability of the proposed framework, a comparison 

of the diagnostic results obtained through the proposed algorithms with the actual 

diagnosis based on standard invasive procedure is required to carry out in a per-

vessel and per-patient basis.    

5.5.2 Improvements for Quantitative Shape Analysis 

The tube registration problem, discussed in Chapter 4.4, was solved in a 2D 

cross-section basis, where the tube energy was minimised at each cross section in 

turn, and by allowing the model to move as a whole to fit the vessel surface through 

an iterative process. The robustness of the proposed algorithm can be further 

improved, if the full 3D information about the vessel is utilised in the registration 
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process. To this end, further work will be directed towards constructing the tube 

model by a series of short tubular segments (i.e., a generalised cylinder with varying 

diameters), which allows more robust and accurate approximation of vessel 

geometries [77-79]. In order to ensure the smoothness of the estimated reference 

surface, we propose that the tube model is designed in such a way so that the 

adjacent tube segments are overlapping, as shown in Fig. 5.1. Hence, the optimal 

configurations for each tube segment can be determined by simultaneously 

minimising the fitting error between the current tube segment and the desired vessel 

surface, and the inter-tube differences within the overlapping area, which maintains 

the global smoothness of the solution.  

 

Figure 5.1: 2D schematic diagram showing the construction of a dynamic tube model by using 

tubular segments. T1 and T2 denote two successive tubular segments, respectively, and the 

overlapping area between these two tubes is shown in grey.  

5.5.3 Detection of Vulnerable Plaques 

Recent studies suggest that vulnerable plaques, mainly made of fibrotic 

components, are particularly unstable and prone to rupture, and thus, there is a 

higher likelihood that they may lead to further complications, such as heart attack 

and stroke. In contrast with calcified plaques, which usually exhibit hyper-densities 

in CT angiographies, fibrotic plaques (also known as soft plaques) cannot always be 

discriminated from the arterial lumen due to the absence of strong intensity features. 

Hence, there is a great interest in developing dedicated algorithms for quantification 

and characterisation of soft plaques in coronary arteries. Textural features, which 
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are powerful descriptors in the modelling of local image appearance, have been 

reported to differentiate different tissues in CT images [166]. Thus, the capability 

and flexibility of existing approaches, relying on (first-order) intensity features 

alone, could be potentially improved by taking both of these sets of features into 

account. Instead of using conventional deterministic methods, which may lead to 

inaccurate estimation, when the pre-assumed criterion does not hold, we propose 

employing particle filter based methods, allowing for the incorporation of multiple 

hypotheses in a natural and straightforward framework, for detecting the presence 

of soft plaques. 

5.5.4 Quantification of Functional Significance of Atherosclerotic Lesions 

Various clinical studies indicate that although coronary CTA has particular 

strengths in excluding the presence of significant coronary diseases, it performs less 

well in terms of its positive predictive accuracy, often resulting in unnecessary 

catheterisation. This is mainly because coronary occlusions, with no significant 

effects on the function of coronary circulation, cannot be distinguished from those 

associated with a higher risk of developing myocardial ischemia by means of static 

coronary CT images. Fractional Flow Reserve (FFR), a technique measuring 

pressure differences between a stenotic artery and its normal proximal segments, is 

the current golden standard for diagnosis of myocardial ischemia [167]. 

Complications associated with the conventional invasive FFR procedure, however, 

restrict its application to a certain groups of patients with hypertension and 

hypercholesterolemia. Recent advances in image-based blood flow analysis have 

provided a non-invasive alternative for the assessment of the functional significance 

of the coronary lesions. Preliminary research suggested that diagnostic results 

obtained from virtual FFR based on coronary CT angiograms have a high degree of 

correlation with conventional FFR [168].  

Through the application of Computational Fluid Dynamics (CFD) in simulating 

blood flow in the cardiovascular system, haemodynamic parameters, such as 

velocity, stress/pressure as well as shear stress distribution, can be estimated in 

silicon, which could provide the clinician with essential information in determining 
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the associated risk for a patient. Functional information, obtained from a patient-

specific geometric model of the artery, may potentially enhance the diagnostic 

capability of standard coronary CT in high risk patients, without changing the 

imaging protocol. The framework presented in this thesis allows the construction of 

patient-specific models of coronary arteries, which in turn could be used as a 

starting point for analysing the fluid mechanical properties of blood flow in the 

coronary circulation. 
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