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Abstract 

Locally Adaptive 2D-3D Registration 
using Vascular Structure Model for 

Liver Catheterization 
 

Jihye Kim 

Department of Electrical Engineering and Computer Science 

and Engineering 

College of Engineering 

Seoul National University 

 

Two-dimensional–three-dimensional (2D–3D) registration between 

intra-operative 2D digital subtraction angiography (DSA) and pre-

operative 3D computed tomography angiography (CTA) can be used 

for roadmapping purposes. However, through the projection of 3D 

vessels, incorrect intersections and overlaps between vessels are 

produced because of the complex vascular structure, which make it 

difficult to obtain the correct solution of 2D–3D registration. To 

overcome these problems, we propose a registration method that 

selects a suitable part of a 3D vascular structure for a given DSA 

image and finds the optimized solution to the partial 3D structure. 

The proposed algorithm can reduce the registration errors because 
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it restricts the range of the 3D vascular structure for the registration 

by using only the relevant 3D vessels with the given DSA. To search 

for the appropriate 3D partial structure, we first construct a tree 

model of the 3D vascular structure and divide it into several subtrees 

in accordance with the connectivity. Then, the best matched subtree 

with the given DSA image is selected using the results from the 

coarse registration between each subtree and the vessels in the DSA 

image. Finally, a fine registration is conducted to minimize the 

difference between the selected subtree and the vessels of the DSA 

image. In experimental results obtained using 10 clinical datasets, the 

average distance errors in the case of the proposed method were 

2.34 ± 1.94 mm. The proposed algorithm converges faster and 

produces more correct results than the conventional method in 

evaluations on patient datasets. 

Keywords: 2D-3D registration, Vascular structure model, 

Subtree, Skeletonization, Catheterization 

Student Number: 2013-30228 
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Chapter 1.  Introduction 

1.1 Background 

Interventional radiology (IR) procedures are minimally invasive 

surgical procedures that inflict less pain and procedure-related 

morbidity and mortality than conventional open surgery [1]. It 

provides image-guided diagnosis and treatment of diseases using X-

rays, CT, ultrasound, MRI, and other imaging modalities. The images 

from the modalities aid radiologists in planning interventions and 

guiding catheter-directed procedures.  

Interventional radiology includes various therapies to treat 

cancers, hypertension, stenosis and other many diseases. In 

interventional oncology, there are drastic advances over the past 

three decades. Interventional radiologists can offer an appropriate 

treatment such as transarterial therapies, percutaneous ablation, and 

portal vein embolization according to the status of cancer patients [2].  

The Transarterial chemoembolization (TACE), one of the most 

effective intra-arterial treatment for hepatocellular carcinoma, 

consists of the injection of anticancer drugs into the hepatic artery 

and the administration of embolizing agents to block the arterial 
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supply to the tumors [3].  

Portal vein embolization (PVE) is the treatment for the patients 

who needs the resection of the majority of the functional liver mass 

(up to 70 percent). PVE induces hypertrophy of the future liver 

remnant before resection by redirecting portal blood to the non-

tumor-liver [4]. The portal venous system is accessed 

percutaneously by the Seldinger technique. A 22-gauge needle is 

placed into a distal branch of the right portal venous system. Then, a 

vascular sheath is placed into the right portal vein branch to aid 

subsequent catheter exchanges. The catheter moves through the 

portal venous system and the targeted branches are embolized. 

 

(a) 

 

(b) 

Figure 1 (a) Demonstration of interventional radiology (Photo by 

Oakwood Healthcare) (b) Fluoroscopic image of TIPS in progress 

(Photo by Samir, 2009) 
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The above procedures should be progressed under fluoroscopic 

guidance which shows real-time moving images based on X-ray 

techniques. For example, the PVE procedure is accompanied with a 

portography which is a radiography performed with an angiographic 

flush catheter placed within the main portal vein or splenic vein. 

Anteroposterior and craniocaudal projections are obtained as needed 

to delineate the portal venous anatomy. Selective left and right portal 

venography is performed [5]. 

During intervention, an image guidance is provided by 

angiography, which is an image technique to visualize blood vessels. 

Angiography is based on X-ray, but ordinary X-rays doesn’t 

display clearly blood vessels. Hence, blood vessels are highlighted 

through the use of radio-opaque contrast agents injected via a 

 

(a) 

 

(b) 

 

(c) 

Figure 2 Conventional angiographic images and DSA image: (a) mask 

image for DSA (b) targeted angiographic image (c) DSA image obtained 

by subtracting mask image (a) from (b) 
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catheter [6]. Conventional angiography produces images that contain 

the contrast-enhanced blood vessels in addition to other tissue and 

objects such as bone. Digital subtraction angiography (DSA) is a 

computed-adjusted angiographic sequence with only the blood 

vessels visible. In DSA, distracting visual images are removed on the 

screen by first making a mask image before contrast injection and 

then subtracting the mask from the final image of the vessels under 

contrast injection.  

In addition to two-dimensional (2D) image guidance by 

conventional angiography or DSA, three-dimensional (3D) computed 

tomography angiography (CTA) or magnetic resonance angiography 

(MRA) can aid the procedure. CTA and MRA are less invasive than 

traditional angiography and has notable diagnostic advantage. [6] 

Volumetric rendering from CTA or MRA scans allow vessel viewing 

from multiple, arbitrary angles [7]. The pre-operative CTA or MRA 

images can be used to plan the intravascular interventions [8] [9]. It 

is important to recognize and understand the status of anatomy 

before interventions. In addition, the pre-operative 3D images can 

aid in guiding catheter-directed procedures by visualizing the 3D 

vascular structure. The pre-operative 3D images can be viewed in a 

multiplanar format, which reduces the number of selective 

catheterizations and angiographic runs. It eventually reduces the 

amount of iodinated contrast medium used for highlighting vessels 
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and the fluoroscopy time during interventions when CT images are 

used as an adjunct to 2D fluoroscopy or DSA [10]. In addition, the 

3D imaging information is projected onto the fluoroscopic image, i.e., 

3D roadmapping. Figure 3 shows stent-graft deployment for 

infrarenal abdominal aortic aneurysm using preoperative CTA as a 

3D roadmap overlaid on live fluoroscopy. In A, markers are displayed 

on the renal arteries to be preserved (red and blue circles). One 

inferior right accessory renal artery was covered and one lower left 

accessory renal artery embolized before stent-graft deployment to 

avoid endoleaks. Two guidewires are visible in the projection of the 

aortic lumen. Next, in B, positioning of the stent-graft using CTA as 

a roadmap enables a view of the aortic neck without requiring a 

standard angiogram. Subsequently, deployment of the first two struts 

of the stent-graft under 3D CTA roadmap control in C. Finally, 

deployment of the entirety of the aorto-bi-iliac component of the 

stent-graft.  
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1.2 Problem statement  

Since 2D angiography images scan the limited areas near the catheter, 

it is difficult to figure out the overall structure of the vasculature and 

the location of the catheter. Moreover, geometric information is lost 

through projection, which makes it difficult to recognize the 

connectivity between vessels. Computed tomography angiography 

 

Figure 3 Stent-graft deployment for infrarenal abdominal aortic aneurysm 

using preoperative CTA as a 3D roadmap overlaid on live fluoroscopy 

[11] 
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(CTA) data can compensate for these limitations of 2D angiography 

because they provide the overall 3D vascular structure. Hence, it can 

be used for making a roadmap that shows the currently traversed 

vessel and the distal vessel tree. 

However, to utilize the 3D CTA data effectively, an accurate 

registration between 2D angiography and 3D CTA images is needed. 

The 3D vascular structure is overlaid on 2D angiographic images 

during the procedures. The 3D roadmap gives interventional 

radiologists useful information only when the 3D vascular structure 

is projected with the similar direction and angulation as the 2D 

angiographic images are produced. Therefore, the registration 

process is needed to find the appropriate transformation factors 

matching 3D CTA data to 2D angiographic image.  

In this thesis, we propose a novel 2D-3D registration algorithm 

between DSA image and 3D CTA scans with high accuracy by finding 

an appropriate parts from 3D vascular structure and computing 

transformation factors only with a partial structure related with a 

given DSA image.  
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1.3 Main contributions 

We propose a method that finds a currently traversed area in a 3D 

vascular structure for a given DSA image and registers the 3D 

vessels to the 2D vessels on the DSA by using the subtree structure 

of the 3D vessels. We improve the accuracy of the registration by 

dividing a 3D vascular tree model into several subtrees and using 

only one of the subtrees in the registration process. The 3D vascular 

structure is very complex, and therefore, the projection of the entire 

 

Figure 4 The 3D roadmap is superimposed on the live fluoroscopy [12]. 

The gray scale background is the fluoroscopy, the red colored overlay is 

the arterial tree and the blur colored overlay represents the targeted liver 

tumor 
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structure causes a considerable number of overlapped vessels and 

incorrect intersection points. This leads to a false local minima in the 

registration process, particularly when a DSA image shows only a 

part of the vascular structure. We overcome these problems by 

dividing the 3D structure into several subtrees and using only the 

relevant part of the given DSA image. To search for the appropriate 

part of the DSA image, we first construct a tree model of the 3D 

vascular structure considering their connectivity and divide it into 

several subtrees. Subsequently, the best matched subtree for the 

given DSA image is selected according to the dissimilarity measure 

from the coarse registration between each subtree and the DSA 

image. Finally, fine registration is conducted for the selected subtree 

by using a distance metric. Then, by restricting the range for the 

registration process, we obtain better convergence and higher 

accuracy than the registration using all the 3D vessels.  

The proposed method consists of four main steps, as shown in 

Figure 5. First, we analyze the pre-operative 3D CTA and the intra-

operative 2D DSA. From the 3D CTA, a 3D vascular structural model 

is constructed and divided into several subtrees. During intervention, 

a 2D vessel centerline is computed from the 2D DSA. Next, the best 

matched subtree for a 2D vessel centerline is selected by comparing 

the dissimilarity among the subtrees. Finally, fine registration is 

conducted for the selected subtree.  
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1.4 Contents organization 

The remainder of this thesis is organized as follows: The next section 

introduces the previous works of 2D-3D registration methods. 

Section 3 describes a method of constructing the 3D vascular 

structure model. Section 4 explains the locally adaptive registration 

 

Figure 5 Process of the proposed 2D-3D registration 
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algorithm using the 3D model. Section 5 discusses the experimental 

results and is followed by Section 6 that presents the conclusion. 
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Chapter 2.  Related Works 

2.1 Overview 

The registration methods can be classified according to nine criteria: 

dimensionality, nature of registration basis, nature of transformation, 

domain of transformation, interaction, optimization procedure, 

modalities, subject, and object. [13] We focused on 2D-3D 

registration for endovascular interventions and categorized the 

registration methods into 3 groups according to the object or 

application: head, cardiac, and liver, which are most actively studied 

areas in vascular image registration. Each group is classified into 

rigid and non-rigid registration by the nature of transformation. Most 

registration algorithms for neurovascular focus on only rigid 

transformation because of the non-deformable property of head. On 

the contrary, many researches in cardiac application suggests rigid 

and non-rigid registration methods because handling respiratory 

motions is very important issues in the cardiac application.  
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Figure 6 Registration criterion description from [13]  
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Markelj et al. [14] has provided an extensive review of the 

existing 2D–3D registration methods. Matl et al. has focused on 

vascular image registration [15] and they provided a web-based 

interactive app which visualized the classification of vascular image 

registration. 

2.1.1  Definitions 

A registration can be defined based on geometrical transformations, 

which are mappings of points from the space 𝑋𝑋 of one view to the 

space 𝑌𝑌 of a second view. [16] The transformation 𝒯𝒯 applied to a 

point 𝑋𝑋 represented by the column vector x produces a transformed 

point x′, 

x′ = 𝒯𝒯(x). 

If the point y  in 𝑌𝑌  corresponds to x , then a successful 

registration will make x′ equal, or approximately equal, to y. Any 

nonzero displacement 𝒯𝒯(x) − y is a registration error.  

We define a 2D-3D registration as a registration mapping 3D 

scans into 2D X-ray images. Images obtained by X-ray projection 

are two-dimensional views of three-dimensional objects by 

projecting X-rays from a three-dimensional scene onto a two-

dimensional plane. Therefore, to define a registration between 2D X-
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ray images and 3D scans, the transformation is defined as a 

perspective transformations based on a pinhole camera model as 

shown in Figure 7. A ray from a point 𝑃𝑃  in the world scene is 

projected through the pinhole 𝑂𝑂 onto an image plane Π. 

The perspective projection is explained in the following equation 

using homogenous coordinates [17]:  

𝒑𝒑 =
1
𝑍𝑍
ℳ𝑷𝑷 

where ℳ is a 3 × 4 homogeneous perspective projection matrix, 

𝑷𝑷 = (𝑋𝑋,𝑌𝑌,𝑍𝑍, 1)T is a coordinate vector of a point 𝑃𝑃 in world coordinate 

system and 𝒑𝒑 = (x, y, 1)T is a coordinate vector of its image 𝑝𝑝 in the 

image plane Π. (Figure 7) 

The perspective projection parameters can be divided into the 

intrinsic parameters and extrinsic parameters. The intrinsic 

 

Figure 7 The perspective projection equations are derived from the 

collinearity of the point 𝑷𝑷, its image 𝒑𝒑, and the pinhole  𝑂𝑂 [17] 
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parameters relate the camera’s coordinate system to the idealized 

coordinate system and the extrinsic parameters relate the camera’s 

coordinate system to a fixed world coordinate system. Hence, the 

perspective projection matrix ℳ is defined as follows:  

ℳ = 𝒦𝒦(ℛ | 𝑡𝑡) 

where 𝒦𝒦 is the calibration matrix which consists of the intrinsic 

parameters of the camera, ℛ  is a rotation matrix and 𝑡𝑡  is a 

translation vector. Since a rotation matrix ℛ  is defined by three 

independent parameters and 𝑡𝑡  consists of three parameters, we 

obtain a set of six extrinsic parameters that define the position and 

orientation of the camera relative to the world coordinate frame. 

The intrinsic parameters can be obtained by acquiring images of 

a suitable calibration object, or they can be estimated using the 

source to image distance (SID) and the field of view (FOV) obtained 

from the X-ray set and assuming that the center of the image 

intensifier is exactly perpendicular to the X-ray source. [18] Since 

most X-ray set provide information for the latter approach, the 

calibration matrix 𝐾𝐾  can be assumed to be given before the 

registration process.  

Therefore, many researches of 2D-3D registration aim to find 

appropriate extrinsic parameters, ℛ  and 𝑡𝑡 , which is a rigid 

registration. Then, a rigid 2D-3D registration algorithm finds 

appropriate ℛ and 𝑡𝑡 which satisfy the following equation: 
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𝒯𝒯′ = arg min
𝒯𝒯

ℇ 

,where 𝒯𝒯(𝑃𝑃) = ℛ𝑃𝑃 + 𝑡𝑡 and ℇ denotes an energy function or cost 

function of registration, which represents a registration error.  

To improve the accuracy of a registration method, a non-rigid 

registration algorithm can be introduced, which deals with local 

deformations while a rigid registration consider only a global 

transformation. In non-rigid registration, the transformation is 

defined as a set of displacement vectors. Non-rigid registration 

process can reduce registration errors by compensating local 

deformation when the global deformation is fixed.  

2.1.2  Intensity-based and feature-based registration 

Image registration can be classified into intensity-based and 

feature-based approaches [19]. Feature-based 2D-3D registration 

methods finds the transformation that minimizes the distances 

between 3D features and corresponding 2D features. On the contrary, 

intensity-based 2D-3D registration methods use information 

contained in voxels and pixels of 3D and 2D images, respectively 

[14]. Figure 8 shows the geometrical setup of image-based and 

feature-based 2D-3D registration. 

In intensity-based 2D-3D registration, the similarity measure is 
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calculated using pixel-wise comparison. To achieve dimensional 

correspondence between 2D and 3D images, most intensity-based 

2D-3D registration methods use simulated X-ray projection images 

called digitally reconstructed radiographs (DRRs). These are 

produces from CT images using ray-casting [20]. The 2D-3D 

registration iteratively optimizes the similarity measure calculated 

between 2D image and a DRR produced from CT images with the 

current transformation. Intensity-based registration needs no 

feature extraction or segmentation, and therefore, it does not suffer 

from segmentation errors. However, the DRR generation requires the 

high computational cost, which makes the registration slow.  

In contrast to intensity-based registration, feature-based 2D-

3D registration methods finds the transformation that minimizes the 

 

(a) 

  

(b) 

Figure 8 Overview of image-based (a) and Feature-based (b) 2D-3D 

registration [14] 
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distances between 3D features and corresponding 2D features. The 

features can be points, curves, or surface in accordance with 

applications. Therefore, feature-based registration methods should 

accompany suitable segmentation algorithm to extract features. The 

accuracy of segmentation has a decisive effect on the accuracy of a 

registration. In contrast to intensity-based registration, feature-

based registration processes only features, not whole image. Hence, 

the computation cost for registration is relatively low.  

2.2 Neurovascular applications 

Registration methods for neurovascular applications can be 

categorized into 3 groups: intensity-based, feature-based and 

hybrid methods. Most feature-based registrations define the cost 

function as the Euclidean distance between center points which are 

obtained from 3D scans and 2D images, respectively. [21], [22], [23], 

[24]. In [25], the distance function is defined as the Euclidean 

distance function which takes into account both for the 2D spatial 

distance and the difference in tangent orientations.  

Intensity-based registration methods find an appropriate 

transformation which maximizes the similarity between a 2D image 
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and a projection image. Kerrien et al. [26] and Hentschke et al. [27] 

used normalized cross correlation in order to compute the similarity 

between a DSA image and a Maximum Intensity Projection (MIP) of 

the 3D scans.  Hipwell et al. [28] compared the performance of the 

following six measures to quantify the similarity between X-ray 

image and DRR which is computed from 3D MRA: normalized cross 

correlation [29], gradient correlation [30], entropy of the difference 

image [31], mutual information [32], pattern intensity [33], and 

gradient difference [34]. The most accurate and robust registrations 

were obtained using pattern intensity, gradient difference and 

gradient correlation. Mitrović et al. [35] split the registration process 

into two step. The initial step found in-plane translation parameters 

by machine-based or template matching and the final step evaluated 

four intensity-based 3D-2D registration methods.  

McLaughlin et al. compared an intensity-based algorithm and a 

feature-based algorithm [23] [24] [36]. In [36], they evaluated an 

intensity-based algorithm using the gradient difference and an 

iterative closest point-based algorithm. In phantom studies, the ICP-

based algorithm was more reliable, but with more complicated clinical 

data, the gradient difference algorithm was more robust.  
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Hybrid approach uses both the intensity information and the 

extracted features. Chan et al. [37] and Lau et al. [38] segmented 

3D vascular structure from 3D volume and extracted the skeleton. 

Then, a binary volume was reconstructed by the set of spheres with 

the centers on the skeleton points and radii which represents 

distance to the closest boundary. A projected image was generated 

by the projection of spheres and the similarity between a DSA and a 

projection image of the binary volume is computed using the sum of 

squared differences.  

Florin et al. [39] and Sundar et al. [40] defined the similarity 

 

Figure 9 The projection of the 3D MRA segment projected on the DSA 

image before (left) and after (right) registration [38] 
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measure using the distance transform. The difference between the 

3D scans and the 2D image is computed by the distance between the 

projection of the extracted skeleton from 3D scans and the skeleton 

extracted from 2D image. To approximate the distance, the distance 

transform for the 2D skeleton is computed. Then, the distance is 

defined as the sum of values in the distance transform at the 

projected points of 3D skeleton.  

Mitrović et al. [41] [42] matched a 3D vasculature model to 

intensity gradients of 2D image. The skeleton is extracted from 3D 

volume and the orientation and radii of the points on the skeleton is 

obtained using Hessian analysis. The 3D skeleton is projected onto 

2D image and the orientation in the 2D plane is computed by the 

projection parameters. Subsequently, the similarity is defined based 

on the orientation and the intensity gradients of 2D image.  

2.3 Liver applications 

Registration algorithm for liver applications follow the strategy of 

minimizing the distance between the vessels of a 2D image and the 

projection of 3D vessels. Groher et al. [43] detects the branching 

points of the thickest 2D and 3D vessels as root nodes and finds the 
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x–y translation in the initialization step. Subsequently, they optimizes 

the transformation parameters by using the difference between 

centerlines and the projection of 3D vessels. Further, they use 

topological information such as the degree of bifurcation points in 

order to enhance the accuracy of the registration algorithm.  Jomier 

et al. [44] proposed the sum of the Gaussian-blurred intensity values 

in the 2D image at the projected points of 3D model as a registration 

metric. Groher et al. improved the registration accuracy using a 

probability map [45]. They computed a probability for each pixel to 

be registered using vesselness measure and error with 

corresponding 3D points. Subsequently, they extracted 2D vessels 

based on the probability map and evaluated the similarity only for 

points on 2D vessels.  
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Groher et al. proposed non-rigid registration algorithm for liver 

applications [46] [47]. In [46], Groher et al. found a set of 3D 

displacement vectors which minimize the distance between the 2D 

points and corresponding projected 3D points with two regularization 

terms, the length preservation of vessel structures and smoothness 

of deformation. [47] defined data term with radii of centerline points 

of 3D volume, which leads to decrease the runtime compared to [46] 

with maintaining similar accuracy. 

Although these algorithms show a high accuracy and a robust 

convergence, they assume that the contrasted vessels in DSA have a 

similar range to that of the 3D vessels from CTA scans. However, in 

 

Figure 10 Global overview of Ambrosini’s registration process: 

vessels/catheter extraction and 2D/3D registration 
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the liver application, a contrast medium is injected, and only the 

limited areas near the catheter are displayed in the angiography 

images while the catheter is moved through the vascular structure. 

Ambrosini et al. [48] overcame this problem by selecting an 

appropriate leaf vessel centerline from the 3D vascular structure 

according to the shape similarity with the catheter centerline. This 

method selects the appropriate vessel centerline in most cases and 

shows a high accuracy in the registration results. However, it fails to 

find a correct solution when a small part of the catheter is visible on 

the image or the shape of the catheter does not have a predominant 

feature. 
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Figure 11 Results of Ambrosini’s registration algorithm: Projection of the 

3DRA blood vessel (in green) with the catheter (in black) and the contrast 

agent (in purple). Initial position (left). Registered position with Powell 

(middle). Registered position with brute force (right). (a) The 

registration is correct. Here the catheter is long enough to give 

information. (b) The catheter part is too short. Powell registered with a 

good distance metric but the result is wrong. Brute force is correct. (c) 

As a long part of the aorta is missing in the 3DRA, Powell stops in a local 

minimum while brute force is more exhaustive and reach the global 

minimum  

 

(a)

(c)

(b)
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2.4 Cardiac applications  

2.4.1 Rigid registration 

A registration can be defined based on geometrical 

transformations, which are mappings of points Registration methods 

for neurovascular applications can 

In cardiac application, it is important to deal with breathing 

motion. Electrocardiogram (ECG) gating is used to obtain the X-ray 

image at the desired cardiac phase, for example, at end diastole which 

is the most quiescent phase of the cardiac cycle [49]. 

Pre-operative 3D data is reconstructed during mid-to-end 

diastolic phase, which coronary artery displacement is relatively 

small. Then, a single frame is selected from intra-operative 

fluoroscopy sequence by matching the acquisition cardiac phase of 

the 3D volume using ECG signal. [50] Corresponding acquisition 

cardiac phase from the CT volume is expressed using a percentage 

interval between two consecutives R-wave (R-R interval) from the 

QRS complex. The QRS peak is automatically detected using the first 

and second derivative of a curve fitted onto the ECG signal, to identify 
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inflexion points corresponding to the QRS peak. From the QRS peak 

detected, the RR-interval is matched with the RR-interval store in 

the DICOM header of the CT acquisition. Therefore, when we assume 

that a 3D volume and a 2D image of 2D-3D registration process are 

obtained by the above explained phase alignment, the registration of 

cardiac application can be defined as a registration between a single 

3D volume and a single 2D image.  

Many registration methods of cardiac application were presented 

for a 3D volume and a 2D image with the phase alignment [50] [51] 

 

Figure 12 Cardiac gating using the ECG signal [50]. The percentage from 

the R-R interval of the ECG signal is used to synchronize the current 

cardiac phase with fluoroscopy with the MSCT acquisition. Remaining 

motion is due to the respiratory functions of the patient. 
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[52] [53] [54] [55] [56]. Similar to other applications, the 

registration methods compute the appropriate transformation to 

match a 3D volume and a 2D image by minimizing the distance 

between the extracted 2D vessel skeleton and the projection of the 

extracted 3D vessel skeleton. Ruijters et al. [53] used a distance-

based cost function using distance transform. A distance transform 

is computed for the projected 3D data and the similarity is defined of 

the sum of all pixel values of the distance transform with weighted 

by the vesselness measure. [57]  

Dibildox et al. [55] converts the 2D-3D registration into 3D-3D 

registration problem by reconstructing 3D vessel centerline model 

from the biplane X-ray images using an adaptive 3D epipolar 

geometry algorithm. Then, the extracted 3D centerlines from 3D 

CTA and the reconstructed 3D vessel centerline model are 

represented as Gaussian mixture models and the distance measure 

for the registration is defined as the distance between two Gaussian 

mixture models.  

 

- 29 - 

 



Metz et al. constructed 4D (3D+t) coronary models and registers 

the model to X-ray image sequence [58] [59]. Instead of matching 

3D and 2D data at one time point, they match multiple sequential 

time-points of the 4D coronary model to multiple sequential X-ray 

images simultaneously. First, a 3D centerline model of the coronary 

arteries is derived from a phase in the cardiac cycle with minimal 

motion. Deformation of the coronary arteries is subsequently derived 

from the 4D CTA data by a non-rigid registration. Finally, the 

derived 4D model is applied in a 2D+t/3D+t registration procedure 

which minimizes normalized cross correlation between X-ray images 

 

Figure 13 Metz’s 4D model creation and 2D+t/3D+t registration approach 

[58]  
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and DRRs of the coronary model.  

  

2.4.2 Non-rigid registration 

The coronary motion is a complex combination of rigid and non-

rigid deformations caused by both cardiac and respiratory activities. 

To overcome the problems caused by the dynamic coronary motion, 

non-rigid registration algorithms were proposed for cardiac 

applications [60] [61] [62] [63]. 

Rivest-Hénault et al. [61] proposed a non-rigid registration 

algorithm which consists of global alignment and local non-rigid 

registration. In global alignment, an affine transformation is computed 

to minimize the distance between 2D centerlines and the projection 

of 3D vessel skeleton. The distance is defined as the sum of pixel 

values of distance transform at the projected location of 3D skeleton. 

Then, a local non-rigid registration compensate local deformations 

with a distance measure and regularization constraints that maintain 

the smoothness and a certain degree of rigidity of the vessels. 

Hadida et al. [62] enforces temporal consistency using a Hidden 

Markov Model and considers multiple hypotheses simultaneously 
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during the optimization process using particle filtering [64]. Kim et 

al. [63] used the thin plate spline robust point matching with energy 

function which consists of distance term, smoothness term and 

robustness control term.  

 

 

Figure 14 Progression of a non-rigid registration [61]. (First row) From 

left to right: sample input image, and position of the centerline after 0 and 

50 iterations. (Second row) From left to right: position of the centerline 

after 350 and 1200 iterations. 
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Chapter 3.  3D Vascular Structure Model 

3D vascular structure model is constructed from pre-operative CTA 

data. The constructed model is used for 2D-3D registration process 

during intervention. We segment 3D vessels from pre-operative 

CTA data, and extract skeletons from segmented 3D vessels. The 

skeletons are converted into a tree model, and finally, the tree model 

is divided into several subtrees.  

By constructing model before intervention, we don’t need to 

analyze 3D data during intervention, which can reduce the 

computation time for 2D-3D registration.  

The model should correctly represent the connectivity between 

vessels because it decides the accuracy of the registration process. 

Therefore, we apply the skeletonization algorithm which computes 

the subvoxel precise skeleton using the fast marching method [65]. 

Moreover, we separate a tree model into several subtrees 

considering their connectivity. 
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3.1  Vessel segmentation 

To construct a vascular structure model, we first segment 3D 

vessels from CTA. In this section, we introduce vessel segmentation 

algorithm, and then, explain our segmentation algorithm.   

 

3.1.1 Overview 

The vessel segmentation methods can be classified as follows: 

Region-growing algorithms, active-contours and centerline-based 

approaches. [66]  

Region-growing approaches incrementally segment an object by 

recruiting neighboring voxels based on some inclusion criteria from 

seed points or regions located inside a vessel. Region-growing 

approaches are widely applied in many segmentation methods 

because of their computational efficiency and simplicity.  

Active contours are popular techniques of image segmentation. 

Active contours evolve an interface through external forces derived 

from the image and internal forcers constraining the contour 

geometry and its regularity. [67] They can be defined by the 
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integration of various internal and external forces.  

Centerline-based techniques focus on directly extracting the 

vessel centerline while the region-growing and active contour 

methods aim at explicitly and directly detecting vessel contours. 

They improve the robustness of segmentation algorithm by 

computing the localization of the center of the vessel, the estimation 

of its direction and scale. In most cases, a rough volume segmentation 

can be obtained directly by enriching the centerline with the 

underlying scale information.  

The centerline can be extracted by direct centerline tracking 

which starts from a given seed point and iteratively find successive 

centerline positions. On the other hand, the centerline extraction 

problem can be formulated as minimal path optimization between start 

and end points. The cost metric is designed to estimate centerline 

locations and a popular feature for the cost metric is the Hessian-

based vesselness measure [57]. The metric is used in [68], [69], 

[70] and many other centerline extraction methods.  
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3.1.2 Vesselness filter 

The Hessian-based vesselness measure is a popular metric for 

vessel segmentation. The measure was proposed from [57], [71] and 

[72]. The measure proposed by Frangi et al. [57] are used in our 

vessel segmentation method.  

The vesselness measure for each pixel is computed to represent 

a possibility that a pixel can be on a tubular shaped structure. 

Therefore, the vesselness filter is appropriate for detecting tubular 

shapes such as vessels.  

The vesselness measure is obtained with eigenvalues of Hessian 

matrix for several scales. The second derivative of a Gaussian kernel 

at scale 𝑠𝑠  generates a probe kernel that measures the contrast 

between the regions inside and outside the range (−𝑠𝑠, 𝑠𝑠)  in the 

direction of the derivative. (Figure 15, left) The eigenvalue 

decomposition extracts three orthonormal directions which are 

invariant up to a scaling factor when mapped by the Hessian matrix. 

In particular, a spherical neighborhood centered at 𝐱𝐱𝑜𝑜 with radius 1 

will be mapped by Hessian matrix onto an ellipsoid whose axes are 

along the directions given by the eigenvectors of the Hessian and the 
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corresponding axis’ semi-lengths are the magnitudes of the 

respective eigenvalues. (Figure 15, right) 

If 𝜆𝜆𝑘𝑘 denotes the eigenvalue with the 𝑘𝑘-th smallest magnitude 

(|𝜆𝜆1| ≤ |𝜆𝜆2| ≤ |𝜆𝜆3|), we can derive two geometric ratios based on the 

second order ellipsoid. The first ratio accounts for the deviation from 

a blob-like structure:  

𝑅𝑅𝐵𝐵 =
Volume/(4𝜋𝜋

3 )

�Largest Cross Section Area
𝜋𝜋 �

3/2 =
|𝜆𝜆1|

�|𝜆𝜆2𝜆𝜆3|
    

The second ratio is essential to distinguish between plate-like 

and line-like structures: 

 

Figure 15 (Left) The second order derivative of a Gaussian kernel probes 

inside/outside contrast of the range (-s,s). (Right) The second order 

ellipsoid describes the local principal directions of curvature 
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𝑅𝑅𝐴𝐴 =
(Largest Cross Section Area)/𝜋𝜋
(Largest Axis Semi − length)2 =

|𝜆𝜆2|
|𝜆𝜆3|

 

The second ratio will be zero only in line-like structures. In 

addition to the two geometric ratios, the measure of second order 

structureness 𝑆𝑆 is defined for extracting background pixels which 

has small derivatives, and thus small eigenvalues: 

𝑆𝑆 = ��𝜆𝜆𝑗𝑗2
𝑗𝑗≤𝐷𝐷

 

Where 𝐷𝐷 is the dimension of the image. Then, the vesselness 

filter for scale 𝑠𝑠 can be defined as the combination of two ratios and 

second order structureness. The response of the filter is maximal 

only if all three criteria are fulfilled. The vesselness filter for scale 𝑠𝑠 

can be defined as follows: 

𝑉𝑉(𝑠𝑠) =  �
0                                                                           , if 𝜆𝜆2 > 0 or 𝜆𝜆3 > 0

�1− exp �− 𝑅𝑅𝐴𝐴2

2𝛼𝛼2
�� exp �− 𝑅𝑅𝐵𝐵2

2𝛽𝛽2
� �1 − exp �− 𝑆𝑆2

2𝑐𝑐2
��  , otherwise   

where α , β , and 𝑐𝑐  denote the thresholds to control the 

sensitivity of the filter to the measures 𝑅𝑅𝐴𝐴, 𝑅𝑅𝐵𝐵, and 𝑆𝑆, respectively. 

The vesselness measure is calculated at different scales, and the 

final estimate of vesselness is obtained as follows: 

𝑉𝑉(𝑥𝑥) =  max
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚≤𝑠𝑠≤𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉(𝑠𝑠, 𝑥𝑥).   
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Figure 16 shows the result obtained by computing the vessleness 

measure for 3D aortoiliac MRA dataset. The last image yields the 

small and large vessels can be detected using the vesselness 

measure.  

3.1.3 Vessel segmentation 

In this thesis, we apply the region-growing approach for vessel 

segmentation and use the vesselness measure as the metric to find 

vessel candidate area.  

To extract vascular structure from a CTA scan, first we 

compute the vesselness measure for each voxel of the CTA scan. 

 

Figure 16 Maximum intensity projections of the vesselness for MRA 

image at four scales. The first four images show the vesselness obtained 

at increasing scales. The last image is the result after the scale selection 

procedure. 
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Subsequently, we binarize the volume data using a threshold for the 

vesselness measure. We set the threshold to 0.05 for the CTA scan. 

Finally, we perform a 3D connected component analysis and detect 

the largest connected component as a 3D vessel. compared the 

detection accuracy results. 

3.2 Skeleton extraction 

3.2.1 Overview 

The skeleton, or medial axis of an object is the set of all points having 

more than one closest point on the object’s boundary. It was 

introduced by Blum [73] for modeling new descriptors of shape. In 

2D-3D vessel registration, the skeletons of vessels are extracted 

from segmented vessels, and used as features to compute the 

similarity between 2D and 3D vessels. 

The thinning is a frequently used techniques to construct an 

approximation of skeleton. It erodes the surface voxels of object until 

the skeleton remains. To preserve topology of the original structure, 

thinning technique removes only simple points which doesn’t change 
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the topology when deleted [74]. Davies [75] and Lee [76] proposed 

efficient methods to detect simple points. Selle et al. [77] used 

topology-preserving thinning algorithm to extract skeleton from 

segmented vessels. In addition, to remove irrelevant skeleton lines, 

they apply thresholding with steepest gradient for the distance to the 

boundary.  

Gülsün et al. extract skeleton from CTA or MRA data using graph-

based optimization algorithm [78]. They designed medialness filters 

with respect circular/elliptic vessel cross-section property and 

constructed the full vessel skeleton tree using minimum-cost path 

detection with a saliency measure computed from length and radius 

information. 

3.2.2 Skeleton extraction based on fast marching method 

We apply an automatic skeletonization algorithm based on fast 

marching method proposed by Van Uitert et al. [65] to extract the 

skeleton from the segmented vessels. Although there are many 

algorithms for computing the skeletons [77], [78], we apply the 

method proposed in [65] because it is suitable for constructing a 

graph model. The skeleton computed by this method consists of 
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several branches, each of which can be defined as a node of a graph 

where a branch is a set of connected voxels on the skeleton. Further, 

the connectivity between branches is decided during the 

skeletonization, and therefore, it is easy to construct the tree model 

hierarchically. 

Van Uitert et al. constructs the skeleton of vessels using fast 

marching method. When we solve level set problem which evolves 

only outwards and positive evolution speed, it can be represented by 

an Eikonal equation:  

|∇𝑇𝑇|𝐹𝐹 = 1, 𝑇𝑇 = 0 on Γ,   

where 𝑇𝑇  denotes the arrival time function, 𝐹𝐹  represents the 

speed of the evolution function, and Γ stands for the initial isosurface 

at time zero.  

An efficient method to numerically evaluate the solution of the 

equation is the fast marching method. [79] The algorithm processes 

the voxels in a sorted order based on increasing values of 𝑇𝑇. The 

discretization of an Eikonal equation is given by  

max�𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘
−𝑥𝑥 , 0�2 + min�𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘

+𝑥𝑥 ,  0�
2

+ max�𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘
−𝑦𝑦 , 0�

2
+ min�𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘

+𝑦𝑦 , 0�
2

+ max�𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘
−𝑧𝑧 , 0�2 min�𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘

+𝑧𝑧 , 0�2 = 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘
−2  

where 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘
−𝑥𝑥  and 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘

+𝑥𝑥  are values resulting from backward and 
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forward difference calculations at point (𝑖𝑖, 𝑗𝑗,𝑘𝑘) respectively.  

The main steps of the skeletonization algorithm are as follows: 

The point with the largest distance from the object’s boundary is 

computed using the Euclidean distance field, which is used as an input 

for the fast marching propagation. The geodesic distance inside the 

object starting at the maximum point is computed using fast marching 

propagation.  

If 𝑑𝑑 denotes the distance value of the Euclidean distance field 

and 𝐷𝐷 represents the maximum value of the field dataset, then the 

speed is given by 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  �
𝑑𝑑
𝐷𝐷
�
2

. 

Using the speed image, the fast marching algorithm computes the 

geodesic distance from the start point to each voxel. Then, the 

furthest point from the global maximum distance point is used as the 

start point of the branches, and the remaining points of the branch 

are determined by performing a gradient descent back-tracking 

procedure satisfying the following equation on the fast marching 

time-crossing map: 

𝑑𝑑𝑪𝑪
𝑑𝑑𝑑𝑑

= −
∇𝑇𝑇

|∇𝑇𝑇| ,𝑪𝑪(0) =  𝒑𝒑𝑓𝑓 , 
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where 𝑪𝑪(𝑡𝑡)  denotes the centerline and 𝒑𝒑𝑓𝑓  represents the 

furthest geodesic distance point.  

The above process is repeated to determine further branches 

which form the skeleton of the object. All points in the previously 

calculated branches are used as start points for the fast marching 

method. The geodesic distance furthest point from this initial set of 

start points that is found by the fast marching method will now be the 

furthest point from the current skeleton and the start point of the new 

branch. From this start point, another branch of the skeleton can be 

determined by gradient descent in the time-crossing map. this 

 

 

Figure 17 Skeletons extracted by [63] (Left) Descending aorta, renal and 

mesenteric arteries (Right) Brain blood vessels 
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challenge, we measured and compared the detection accuracy results. 

3.3 Graph Construction 

The constructed skeleton is represented as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) in 

Figure 18. Each branch 𝐵𝐵𝑖𝑖 (a white node in Figure 18) becomes a 

node of 𝐺𝐺 , and then, 𝑉𝑉  is defined as 𝜌𝜌 ∪ {𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑛𝑛} , where 𝑛𝑛 

denotes the number of branches and 𝜌𝜌 represents an empty node for 

the root of G (a black node in Figure 18). 𝐸𝐸 denotes a set of edges, 

which are contact points between branches.  

The skeletonization procedure finds the shortest path from the 

point with the furthest geodesic distance to the previously 

constructed branches, and the path becomes a new branch 𝐵𝐵𝑖𝑖 . 

Therefore, the contact point between 𝐵𝐵𝑖𝑖 and one of the previously 

constructed branches, 𝐵𝐵𝑗𝑗, is detected without additional computation. 

𝐵𝐵𝑖𝑖 becomes a child node of 𝐵𝐵𝑗𝑗, and the contact point between 𝐵𝐵𝑖𝑖 and 

𝐵𝐵𝑗𝑗  becomes an edge connecting two nodes. Thus, the graph 𝐺𝐺 is 

constructed simultaneously while extracting skeletons. 
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3.4 Generation of subtree structures from 3D tree 

model 

After the tree construction, we divide the tree model into several 

subtrees on the basis of the following rules:  

• A subtree is connected.  

• ⋃ 𝑆𝑆𝑇𝑇𝑖𝑖 = 𝐺𝐺𝑚𝑚
𝑖𝑖 , where 𝑚𝑚 denotes the number of subtrees and 𝑆𝑆𝑆𝑆𝑖𝑖 

represents a subtree. 

 

Figure 18 Tree model for 3D vascular structure 
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• 𝑆𝑆𝑇𝑇𝑖𝑖 ∩ 𝑆𝑆𝑇𝑇𝑗𝑗 =  ∅ or 𝑒𝑒𝑘𝑘, where 𝑒𝑒𝑘𝑘 ∈ 𝐸𝐸. 

   

The trees are divided according to the length of vessels and the 

connectivity. Hence, a weight for each node is computed on the basis 

of the length before the subtree separation. The weight of a node is 

defined as the number of skeleton voxels in the node and its 

descendants. The weight for a node is initialized as the number of 

voxels included in the node. Next, the weight is updated by adding 

the weight of a child node to the weight of its parent node while going 

up from each leaf node to the root node 𝜌𝜌. Through this process, the 

weight of a node 𝑁𝑁 is updated as the number of voxels of a subtree 

whose root node is 𝑁𝑁, and the weight of the root node 𝜌𝜌 becomes 

the number of all voxels on the skeleton. After updating the weights 

of all nodes in G, the nodes are sorted in the descending order of the 

weights.  

Algorithm 1 is the pseudocode for a tree update, which inserts a 

new node corresponding to a new branch with a weight and updates 

the weights of its ancestor nodes. All points in the previously 

constructed branches have indexes stored index list L, and the 

intersection point index idx between a new branch and one of the 
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previously constructed branches is computed during the construction 

of a new branch.  

 
 
 
 

Algorithm 1. Pseudocode for a tree update 
 

 
Given an intersection point index 𝑖𝑖𝑖𝑖𝑖𝑖  and a length 𝑙𝑙  of a new 

branch, along with the index list 𝐿𝐿 
 
// find a parent node 𝑁𝑁𝑝𝑝 using 𝑖𝑖𝑖𝑖𝑖𝑖 
𝑖𝑖 ← 0   
while 𝑖𝑖𝑖𝑖𝑖𝑖 > 𝐿𝐿[𝑖𝑖] do 
   𝑖𝑖 ← 𝑖𝑖 + 1 
end 
𝑁𝑁𝑝𝑝  ←  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  
𝐿𝐿[𝐿𝐿. 𝑒𝑒𝑒𝑒𝑒𝑒 + 1]  ← (𝐿𝐿[𝐿𝐿. 𝑒𝑒𝑒𝑒𝑒𝑒] + 𝑙𝑙)  
 
// make a node for a new branch 
initialize a new node 𝑁𝑁 
𝑁𝑁.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑁𝑁𝑝𝑝  
add 𝑁𝑁 to the list of child nodes of 𝑁𝑁𝑝𝑝 
𝑁𝑁.𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ←  𝑙𝑙  
 
// update weights 
𝑁𝑁𝑢𝑢𝑢𝑢  ←  𝑁𝑁𝑝𝑝  
while 𝑁𝑁𝑢𝑢𝑢𝑢 is not null do 

   𝑁𝑁𝑢𝑢𝑢𝑢.𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ←  𝑁𝑁𝑢𝑢𝑢𝑢.𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 + 𝑙𝑙  
   𝑁𝑁𝑢𝑢𝑢𝑢  ←  𝑁𝑁𝑢𝑢𝑢𝑢.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
end 
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To divide a tree into subtrees, all nodes of G are initially set as 

𝑆𝑆𝑆𝑆0, and the child nodes of the root node 𝜌𝜌 are inserted into a priority 

queue. Subsequently, the node with the largest weight in the priority 

queue is selected as the root node of a new subtree. Then, all 

descendants of the selected node are updated as 𝑆𝑆𝑆𝑆1, and the child 

nodes of the selected node are inserted into the priority queue. This 

process is repeated while the number of subtrees is smaller than a 

given number, which is set to 6 in our implementation. The parameter 

study about the number of subtrees is explained in Section 5.5. 

Algorithm 2 shows the pseudocode for separating a tree G into a 

 

Figure 19 Separation of a tree. (a) Segmented 3D vessels from CTA. (b) 

Their skeleton divided into six subtrees. 

 

(a) (b)
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given number, max_num, of subtrees after the tree construction. 

Figure 19 shows the 3D vessels and their skeleton, which is 

separated by the proposed method. In Figure 19 (b), each color 

represents a subtree. The tree is divided exactly on a junction point, 

and each subtree is connected. Then, one of the subtrees can have a 

similar range with the given DSA image since the injection medium is 

inserted near the junction point and flows into the closely connected 

vessels. Figure 20 shows that the DSA image and the projection of 

the subtree can display a similar range.  

 

Figure 20 DSA image and projection of 3D vascular centerlines. (a) DSA 

image. (b) Projection of the corresponding 3D subtree for the DSA image. 

(c) Projection of the whole tree. 

 

(a) (b) (c)
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Algorithm 2. Pseudocode for subtree separation 

 
 
Given the tree 𝐺𝐺 
 
initialize a priority queue 𝑃𝑃𝑃𝑃 
set the label of every node as 0 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← 1  
push every child node of 𝜌𝜌 into 𝑃𝑃𝑃𝑃 
 
// pop the node with the largest weight among the child nodes of 

the root node 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝑃𝑃𝑃𝑃. 𝑝𝑝𝑝𝑝𝑝𝑝()  
 

// repeat while the number of subtrees is smaller than 
max_num 

while 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑚𝑚𝑚𝑚𝑚𝑚_𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑃𝑃𝑃𝑃 is not empty do  
 

push every child node of 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 into 𝑃𝑃𝑃𝑃  
initialize a queue 𝑄𝑄 

𝑄𝑄.𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)   
 
  // update the labels of all descendants 

while 𝑄𝑄 is not empty do  
     𝑛𝑛𝑖𝑖 ←  𝑄𝑄.𝑝𝑝𝑝𝑝𝑝𝑝()  
     Set the label of 𝑛𝑛𝑖𝑖 as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
     for each child node 𝑛𝑛𝑐𝑐 of 𝑛𝑛𝑖𝑖 

 𝑄𝑄.𝑝𝑝𝑝𝑝𝑝𝑝ℎ(𝑛𝑛𝑐𝑐)  
     end 

end 
 
  // pop the node with the largest weight 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝑃𝑃𝑃𝑃.𝑝𝑝𝑝𝑝𝑝𝑝()  
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ← 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1  

end 
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Chapter 4.  Locally Adaptive Registration 

To use 3D CTA data as a roadmap during an intervention procedure, 

an accurate registration between the CTA and the DSA images is 

necessary. During an intervention, a catheter moves through an 

artery and contrast medium is injected near the catheter. Then, the 

injected area is projected to produce new DSA images. Through this 

process, very limited areas of the vascular structure are displayed in 

the DSA. Therefore, it is difficult to match the DSA with the entire 

3D vessel structure. In this study, we overcome this problem by 

comparing the DSA with the 3D subtrees constructed as discussed in 

the previous section, not with the entire structure. By running the 

registration process with only a part of the structure, we can find the 

correct transformation parameters for the given DSA image. 

The method consists of three steps. First, we extract vessel 

centerlines from the DSA images (Section 4.1). Subsequently, we 

find the best matched subtree with vessel centerlines (Section 4.2). 

Finally, a rigid registration between the 2D centerlines and the 

selected subtree is conducted (Section 4.3). 
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4.1  2D centerline extraction 

To find the best matched subtree with DSA, the centerlines are 

extracted from DSA, and the dissimilarity between the centerlines 

and each subtree is computed. The subtree with the smallest 

dissimilarity is selected as the matched subtree with the current DSA.  

We consider two cases of input image. First, we use a single DSA 

image which is manually selected from DSA sequence. The chosen 

image should have dominant features suitable for 2D-3D registration. 

Next, we assume that input images are given from actual intervention. 

Then, we obtain image sequence which consists of several 

angiographic image frames. Moreover, the image quality of 

angiographic sequence are usually very low because of low dose 

radiation. Prolonged exposure to X-ray radiation adversely affects 

the human body, and therefore, physicians prefer to obtain X-ray 

images with the lowest possible radiation dose. Hence, we consider 

very low dose X-ray angiographic image sequence as an input for 

2D-3D registration.  

In Section 4.1.1, we explain the centerline extraction from one 

2D DSA image, and then, in Section 4.1.2, we extend the centerline 

 

- 53 - 

 



extraction algorithm in order to apply to low dose angiographic image 

sequence.  

4.1.1 Extraction from a single DSA image 

The centerlines of the 2D DSA are extracted in a way similar to 

that used for the 3D skeleton. The 2D vesselness measure [57] is 

calculated for each pixel, and we binarize the image data with a 

threshold for the vesselness measure. Then, we perform a 2D 

connected component analysis and detect the largest connected 

component as a 2D vessel. The threshold for the 2D vesselness 

measure is set to 0.7. Further, the centerline is extracted by the 

augmented fast marching method [65]. Figure 21 shows a process of 

the centerline extraction process. The images in Figure 21 are 

inverted for clear visibility. The centerlines extracted by the above 

process (Figure 21 (d)) are used as features for 2D-3D registration 

in next section.  
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4.1.2 Extraction from angiographic image sequence 

During intervention, a 2D angiographic image sequence is obtained, 

and 2D features are extracted from the sequence for a 2D-3D 

registration. First, we enhance the image quality by temporal filtering. 

Next, a DSA image is obtained by subtracting a mask image obtained 

before contrast medium injection from each frame, followed by 

binarization with a threshold for the vesselness measure. After 

performing a connected component analysis, we remove the 

components, which are small and far from the center of the image. 

Next, all the images are merged into a single image by an OR 

operation and we designate the largest connected component in the 

merged image as being 2D vessels. Lastly, the centerlines, which are 

 

Figure 21 2D centerline extraction process. (a) Input DSA image. (b) 

Vesselness measure. (c) Vessel segmentation. (d) Centerline extraction. 

 

(a) (b)                        (c)                         (d)
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used as features for the 2D-3D registration, are extracted by 

implementing the fast marching method [65]. 

The temporal filtering is defined to be the first-order recursive 

equation proposed by Aach et al. [80]. 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(𝑡𝑡 − 1) + 𝐾𝐾(𝑡𝑡) ∙ [𝑦𝑦(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 1)]                       (1) 

Here, 𝑦𝑦(𝑡𝑡) is the original noisy signal of a pixel at time 𝑡𝑡 and 

𝑥𝑥(𝑡𝑡) is the filtered signal. This equation is applied to every pixel. The 

filter gain 𝐾𝐾(𝑡𝑡) is updated using the following rule. 

𝐾𝐾(𝑡𝑡) = 𝐾𝐾(𝑡𝑡 − 1)/[𝐾𝐾(𝑡𝑡 − 1) + 𝛼𝛼(𝑡𝑡)]                             (2) 

Here, 𝛼𝛼(𝑡𝑡) represents the continuity probabilities defined as a 

monotonically decreasing function of |𝑦𝑦(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 1)|/𝑠𝑠(𝑡𝑡) . To 

compensate for the motion between frames, we use the motion 

compensated signal 𝑦𝑦′(𝑡𝑡)  obtained by using a block-matching 

algorithm [81] in the place of 𝑦𝑦(𝑡𝑡) in Eq. (1) and (2). 

Figure 22 shows the process of 2D feature extraction from the 

image sequence. Through the process, we obtain one image with 2D 

vessel centerlines such as Figure 22 (f), which are used for 2D-3D 

registration in next section. 
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Figure 22 2D centerline extraction from angiographic image sequence 

(a) Input 2D angiographic images

(b) Temporal filtered images

(c) DSA images

(d) Vessel segmentation on each frame

(e) Merged vessels (f) Centerline extraction

 

- 57 - 

 



4.2  Coarse registration for the detection of the best 

matched subtree 

To find the best matched subtree with DSA, the centerlines are 

extracted from DSA, and the dissimilarity between the centerlines 

and each subtree is computed. The subtree with the smallest 

dissimilarity is selected as the matched subtree with the current DSA.  

The dissimilarity is defined as the difference between a projected 

subtree and the 2D centerlines. To be accurate, the dissimilarity of 

𝑆𝑆𝑆𝑆𝑘𝑘 is the mean of the distance differences between points on the 

projected subtree and the corresponding points on the 2D centerlines. 

In Section 3, 𝑆𝑆𝑆𝑆𝑘𝑘 is defined as a set of branches labeled k, and 

each branch consists of voxels on a part of the 3D skeleton. Hence, 

𝑆𝑆𝑆𝑆𝑘𝑘 can be re-defined as a set of voxels on the skeleton with the 

label k. Thus, we can define the dissimilarity of 𝑆𝑆𝑆𝑆𝑘𝑘 as follows:  

𝑓𝑓(𝑘𝑘) =
1
𝑛𝑛𝑘𝑘

 � ‖Φ(T𝑥𝑥𝑖𝑖) −  𝑦𝑦𝑖𝑖‖,
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑆𝑆𝑘𝑘

                                                              (3) 

where 𝑛𝑛𝑘𝑘  denotes the size of 𝑆𝑆𝑆𝑆𝑘𝑘 , Φ represents a projection 

function, T indicates a 4 × 4 transformation matrix, and 𝑦𝑦𝑖𝑖 denotes 

the closest point on the 2D centerlines to Φ(T𝑥𝑥𝑖𝑖). The dissimilarity 
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is used as the cost function for a coarse registration between the 2D 

centerlines and a subtree. By the coarse registration, the 

dissimilarity of each subtree is minimized, and then, the subtree with 

the smallest dissimilarity is selected as the best matched subtree. 

The registration in the selection step is only concerned with the 

translation transformations for the fast computation, and a rigid 

registration is conducted in the subsequent step. Therefore, when a 

parameter set for 𝑆𝑆𝑆𝑆𝑘𝑘 to be optimized is given as 𝑃𝑃T,𝑘𝑘 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧� ∈

ℝ3, T in Eq. (3) is defined as T = �
1 0
0 1

0 𝑡𝑡𝑥𝑥
0 𝑡𝑡𝑦𝑦

0 0
0 0

1 𝑡𝑡𝑧𝑧
0 1

�.  

The function Φ ∶  ℝ3  → ℝ2 projects a 3D point onto a detector 

plane and is determined by using the information in the DICOM header 

[48]. Then, we draw a ray from a source to each voxel 𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑘𝑘 and 

directly compute a location to be projected on the 2D plane [82]. It 

is considerably more efficient to project the skeleton directly than to 

use a ray-casting algorithm [83] because the skeleton is only a small 

portion of the entire 3D volume. 

We need to find the closest point of the 2D centerlines for each 

projected point in order to calculate Eq. (3) whenever the 

transformation of a subtree is changed. This can be considerably 
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faster by using a distance transform [84]. We compute a distance 

transform for the 2D centerlines by using the algorithm in [85], and 

the computation is requested only once because the 2D centerline is 

reference data and therefore, not changed. The distance transform 

for the 2D centerlines is denoted as DTcls. Then, Eq. (3) is defined 

as follows:  

𝑓𝑓(𝑘𝑘) =
1
𝑛𝑛𝑘𝑘

 � DTcls�Φ(T𝑥𝑥𝑖𝑖)�
𝑥𝑥𝑖𝑖∈𝑆𝑆𝑆𝑆𝑘𝑘

                                                              (4) 

For each subtree, we optimize 𝑃𝑃T,𝑘𝑘 by using the cost function, 

Eq. (4). The parameters are initialized to zero. We use the Nelder–

Mead optimizer as the optimization algorithm, which shows a good 

performance for the 2D–3D registration among the local optimization 

algorithms [61]. The final value of the cost function through the 

optimization becomes the dissimilarity for each subtree, and then, the 

subtree with the smallest dissimilarity is chosen as the best matched 

subtree to the DSA data. The parameter for the selected subtree 𝑆𝑆𝑆𝑆𝑘𝑘, 

𝑃𝑃T.𝑘𝑘
′ = [𝑡𝑡𝑥𝑥′ , 𝑡𝑡𝑦𝑦′ , 𝑡𝑡𝑧𝑧′ ] is used as the initial parameter value in the next step. 
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4.3  Fine registration with selected 3D subtree 

In Section 4.2, we concerned ourselves only with the translation 

transformation for the fast computation, and in order to obtain more 

correct results, we now conduct a rigid registration for the selected 

subtree. Eq. (4) is used as the cost function, but the transformation 

matrix T in Eq. (4) is re-defined as T = TT ∙ TR, where TT denotes 

a translation matrix and TR represents a rotation matrix. Given a 

parameter set 𝑃𝑃 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧 , 𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧� ∈ ℝ6, the matrices are defined 

as follows: 

TT = �
1 0
0 1

0 𝑡𝑡𝑥𝑥
0 𝑡𝑡𝑦𝑦

0 0
0 0

1 𝑡𝑡𝑧𝑧
0 1

�  and  

TR = �

   cos (𝑟𝑟𝑧𝑧) sin (𝑟𝑟𝑧𝑧)
−sin (𝑟𝑟𝑧𝑧) cos (𝑟𝑟𝑧𝑧)

0 0
0 0

0            0
0            0

1 0
0 1

� �

cos (𝑟𝑟𝑦𝑦) 0
0 1

−sin (𝑟𝑟𝑦𝑦) 0
0 0

sin (𝑟𝑟𝑦𝑦) 0
0 0

   cos (𝑟𝑟𝑦𝑦) 0
0 1

� �

1 0
0   cos (𝑟𝑟𝑥𝑥)

0 0
sin (𝑟𝑟𝑥𝑥) 0

0 −sin (𝑟𝑟𝑥𝑥)
0 0

cos (𝑟𝑟𝑥𝑥) 0
0 1

� 

The initial value of 𝑃𝑃  is set as [𝑡𝑡𝑥𝑥′ , 𝑡𝑡𝑦𝑦′ , 𝑡𝑡𝑧𝑧′ , 0,0,0]  when 𝑃𝑃T.𝑘𝑘
′ =

[𝑡𝑡𝑥𝑥′ , 𝑡𝑡𝑦𝑦′ , 𝑡𝑡𝑧𝑧′ ] is obtained in the previous section and the Nelder–Mead 

optimizer is used.   
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Figure 23 shows how the proposed registration algorithm works. 

The green lines represent the projected subtree, which is selected 

as the best match by the proposed method. The first image is a 

projection after the initial placement, the second after the selection 

step, and the third after the rigid registration. 

 

 

Figure 23 Results of the proposed algorithm. The blue line denotes the 

centerline of the 2D vessels in the DSA, and the green line represents the 

projection of the corresponding subtree to the DSA. From left to right, the 

projection is computed after the initial alignment, the subtree selection, 

and the fine registration. 

 

 

- 62 - 

 



Chapter 5.  Experimental Results 

5.1 Materials 

Ten breath-hold DSA datasets were tested to verify that the 

proposed algorithm found the appropriate subtree and computed the 

correct transformation parameters. Each DSA dataset had the 

corresponding CTA scans, and we used four CTA scans obtained 

from different patients (Table I). All datasets were obtained using a 

C-arm CT scanner of Siemens. The number of slices per CTA scan 

ranged from 343 to 441, and each slice had a size of 512 × 512. The 

pixel spacing and the slice interval were all 0.4 mm. DSA datasets 

had a pixel spacing of 0.216 to 0.308 mm and primary and secondary 

angles of 0° to 30°. The resolution of all DSA datasets was 1024 × 

1024. The proposed method was implemented in MATLAB and tested 

on an Intel i7 desktop system with a 3.40-GHz processor and 8-GB 

memory. 
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In addition, to verify the proposed algorithm for low-dose image 

sequence, we tested four breath-hold low dose angiographic image 

sequences. We used the same CTA scan explained in the above 

paragraph, and for each CTA scan, one corresponding image 

sequence was tested. Each sequence contained 50-80 frames and 

the resolution of each frame was 512×512. Low-dose images were 

acquired using 2% of the X-ray radiation dose that is used for 

acquiring high-dose images. The scan parameters for each dataset 

are summarized in the following table. 

Table I. CTA and DSA datasets 

CTA 1 2 3 4 

Number of DSA 
datasets 

1 2 2 5 

Dataset number 1 2–3 4–5 6–10 
 

 
 

Table II. The scanning parameters of the datasets 

Datasets 1 2 3 4 

X-ray tube current (mA) 65 65 65 65 

Image area dose product 
(Gym2) 5.1 3.69 2.23 1.86 

Pixel spacing (mm) 0.433 0.578 0.433 0.578 

 

 
 

 

- 64 - 

 



5.2 Phantom study 

We validate the correctness of the algorithm with the simulated DSA 

images. The images are obtained by projecting CTA scans with 

changing transformation parameters. To generate a simulated DSA 

image, we project CTA scans onto a 2D plane twice by using the DRR 

 

Figure 24 Comparison of the image quality between a high-dose image 

(left column) and a low-dose image (right column) 
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computation in [83]. First, we project the data without preprocessing 

and then, obtain the simulated X-ray image with all vessels of the 

CTA data projected (Figure 25 (a)). Next, we set the value of 

vessels that we want to display on the DSA as zero. To find the region 

to be simulated, we choose the seed randomly on the subtree to be 

projected and run the region growing algorithm from the seed. Since 

we assign the minimum value on the intersection point between 

subtrees, the region growing does not flow into other subtrees. After 

changing the value of CTA data, we project it with the same 

parameter as in the first projection (Figure 25 (b)). Lastly, we 

subtract the second projection image from the first projection image. 

Thus, we obtain the simulated DSA image with vessels contrasted 

only in a limited scope. Figure 25 (c) shows the DSA image obtained 

by using the above procedure. Following the procedure, six simulated 

datasets are obtained. We construct two pairs of simulated X-rays 

and CT images, and for each pair, we obtain three datasets by 

changing the translational and rotational parameters. 
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The proposed method finds the appropriate subtree and 

computes the transformation parameters for a simulated DSA image. 

Then, the result image is obtained by projecting the selected subtree 

according to the transformation parameters. To measure the 

accuracy of the results, we define the junction points of the vascular 

centerlines as the anatomical feature points. For each simulated DSA 

image, 5–10 junction points are selected manually as the feature 

points. We limit the number of feature points to less than 10 because 

the DSA image shows only a small part of the vasculature, and it is 

difficult to find more than 10 feature points in one image. 

Subsequently, in the registered result image, the corresponding 

points to the feature points of the DSA image are found, and then, the 

 

Figure 25 Simulated DSA construction. (a) DRR without vessel selection. 

(b) DRR after vessel selection. (c) Simulated DSA. 

 

(a) (b) (c)

 

- 67 - 

 



error measure of the validation of the proposed algorithm can be 

defined by the distance between the feature points and the 

corresponding points as follows: 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
1
𝑛𝑛
�‖𝑟𝑟𝑖𝑖 − 𝑝𝑝𝑖𝑖‖,
𝑟𝑟𝑖𝑖∈Ω

                                                                                (5)  

where Ω denotes the set of the feature points in the reference 

image, 𝑛𝑛 represents the number of feature points, and 𝑝𝑝𝑖𝑖 indicates 

the corresponding points of 𝑟𝑟𝑖𝑖 in the 2D projection image. Table III 

shows 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 for each simulated DSA image. 

In another method of the validation of the proposed method, since 

the simulated DSA is constructed with the predefined transformation 

parameters, we can verify the capture range of the proposed method. 

The capture range is defined as the portion of parameter space within 

which the registration algorithm can be expected to converge to the 

correct solution [16]. We execute the proposed algorithm from a 

 

Table III. Accuracy assessment results of simulated DSA images 

Dataset 1 2 3 4 5 6 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (mm) 1.492 0.505 1.7462 0.452 0.631 0.760 
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large number of starting positions with respect to the predefined 

transformation parameters and determine the registration converged 

to the correct solution when the error 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is smaller than 3 mm. 

The capture range for each dataset is determined as the largest 

successful translational and rotational parameters through 

approximately 100 registrations. Table IV shows the average of the 

capture range for each pair. 

 

5.3 Performance evaluation 

5.3.1 Evaluation for a single DSA image 

We tested the proposed method for 10 clinical datasets. We 

Table IV. Capture range of simulated DSA images 

Dataset Pair 1 (1–3) Pair 2 (4–6) 

Translational  
parameters (mm) 

57.3 69.3 

Rotational  
parameters (degree) 

30.7 32.3 
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evaluated the correctness of the proposed method by dividing it into 

two steps: subtree selection and fine registration.  

In the subtree selection step, the dissimilarity of each subtree is 

computed and the subtree with the smallest one is chosen as the 

appropriate subtree for the DSA image. Table V shows the 

dissimilarity of all subtrees for each dataset, and the selected subtree 

is written in bold type. 

In the case of dataset 2, subtree 5 is selected because the 

dissimilarity of subtree 5 is the smallest among the six subtrees. 

Figure 26 shows the DSA and all subtrees for dataset 2, and we can 

confirm that the subtree selected in the selection step of the 

proposed method correctly corresponds to the DSA.  
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Table V. Dissimilarity comparison between subtrees 

Dataset 
number 

Subtree 

1 2 3 4 5 6 

1 95.743 66.224 16.146 14.556 18.161 22.520 

2 89.814 63.392 44.013 16.897 6.09 28.897 

3 54.643 14.659 17.327 22.313 27.776 3.592 

4 27.668 13.584 16.886 11.685 9.830 14.749 

5 49.689 34.196 67.671 37.672 8.891 43.214 

6 43.276 37.096 20.502 31.874 57.096 42.504 

7 46.516 31.155 115.553 23.681 30.638 9.905 

8 41.169 30.027 81.615 11.688 28.380 10.002 

9 54.921 25.154 67.687 30.278 44.366 32.262 

10 49.857 63.092 86.706 17.040 35.869 7.115 

 

 

 

Figure 26 DSA and subtrees of the 3D vascular structure. The subtrees 

are labeled 1, 2, 3, 4, 5, and 6 from left to right, and top to bottom. The 

selected subtree is displayed in the red box. 
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Figure 27 describes the convergence of the subtrees for dataset 

2. Each subtree converges through the optimization process. The 

dissimilarity of subtree 5 starts from 84.76 and finally stops at 6.09, 

which is the smallest value among the six subtrees. Hence, subtree 

5 is selected as the best matched subtree.  

Next, we verify the accuracy of the fine registration step by 

considering the distance errors between the centerline of the DSA 

and the projected centerline of the registered subtree. The distance 

error is measured in the same way as in the phantom study. The 

junction points on the centerlines of the DSA image are defined as 

the anatomical feature points, and Eq. (5) is applied. Table VI 

summarizes the distance errors of the 10 datasets. For all the 

datasets, the errors before the registration process range from 

 

 

Figure 27 Convergence graph of each subtree for dataset 2 
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16.688 to 55.770 mm, and the average value is 40.114 ± 12.694 mm. 

After the registration process, the average value of the errors 

becomes 2.337 ± 1.940 mm, ranging from 0.087 to 6.169 mm. 

Further, Figure 28 shows the DSA overlaid with vascular tree 

structures. Figure 28 (c) shows that the entire vascular tree was 

accurately overlaid on the DSA after fine registration by using only 

the subtree structures shown in Figure 28 (b). In contrast, Figure 28 

(f) shows the overlaid image with a relatively large difference 

between the DSA and the whole tree. The 2D centerlines are too 

short to find a correct transformation, and this leads to errors in the 

registration process. 

Table VI. Accuracy assessment results of registration for a single image 

Dataset Initial error (mm) 
Error after fine 

registration (mm) 

1 55.770±0.532 1.654±0.928 

2 29.547±1.080 1.778±0.808 

3 32.741±2.331 5.571±3.215 

4 16.688±0.177 0.087±0.173 

5 43.083±0.548 1.157±1.230 

6 51.141±2.668 1.342±0.742 

7 41.243±1.456 1.757±1.096 

8 55.634±1.959 2.361±1.648 

9 55.431±2.274 3.830±2.711 

10 29.649±1.945 6.169±4.198 
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Figure 29 shows the convergence graph for datasets 2 and 8, 

including the selection step and the fine registration step. For dataset 

8, the final dissimilarity in the selection step is 10.002. Subsequently, 

in the fine registration step, the optimization process starts with the 

addition of the translation parameters computed in the selection step 

to the rotation parameters. Then, the final dissimilarity reaches 3.419 

 

Figure 28 DSA image overlaid with vascular tree structures. (a), (d) 

Original DSA image. (b), (e) DSA image overlaid with the selected subtree 

after fine registration. (c), (f) DSA image overlaid with the entire vascular 

tree after fine registration. 

 

(a)                         (b)                               (c)

(d)                             (e)                               (f)
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through fine registration. 

For the evaluation of the computational performance of the 

proposed method, we measured the total processing time. The total 

processing time, averaged over multiple tests for all the datasets, 

was 95.3 ± 15.6 s. It took 76.0 ± 12.4 s for the subtree selection and 

19.3 ± 4.4 s for the fine registration. 

 

5.3.2 Evaluation for angiographic image sequence 

We tested the proposed method for four low-dose angiographic 

image sequences. Figure 30 shows the results for dataset 3. After 

 

Figure 29 Convergence graph for datasets 2 and 8 
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2D-3D registration, the 3D vascular structure are registered with 

vessels on a 2D angiographic image. The error measure is defined as 

the distance between the feature points and the corresponding points, 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. Table VII summarizes the distance errors of the 4 datasets. For 

all the datasets, the errors before the registration process range from 

28.994 to 53.270 mm, and the average value is 41.608 ± 8.678 mm. 

After the registration process, the average value of the errors 

becomes 3.168 ± 1.211 mm, ranging from 2.358 to 4.566 mm. 

Although the image quality of the input 2D image sequence in 

comparison with a DSA image used in previous section, the proposed 

method still produces highly accurate registration results. 

 

 

Table VII. Accuracy assessment results of registration for image sequence 

Dataset Initial error (mm) 
Error after fine 

registration (mm) 

1 28.994±0.706 2.358±2.198 

2 40.401±1.417 4.566±2.026 

3 43.766±0.499 1.631±2.032 

4 53.270±1.682 4.115±3.944 
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5.4 Comparison with other methods 

We compared the accuracy of the proposed method with two 2D–3D 

registration methods. The first is the registration algorithm based on 

the distance transform using an entire tree [5], and the second is the 

state-of-the-art registration algorithm for liver catheterization 

[24]. Ruijters defines the cost function as the multiplication of the 

 

Figure 30 The result of the proposed algorithm for image sequence. The 

red line represents the projection of the corresponding subtree into the 

input angiographic sequence. The leftmost image is the projection of the 

selected subtree before the registration and (b) shows the projection 

after the registration. (c) is the projection of the whole 3D tree after the 

registration process 

 

(a) (b) (c)
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vesselness measure and the distance transform. Since Ruijters’ 

method [5] uses the whole skeletons of the 3D vessels in the 

optimization process, it is difficult to find the exact transformation for 

the current input DSA image, which has a very small part of the 

vessel structures. In contrast, the proposed method and Ambrosini’s 

method [24] find the best matched part from the entire structure and 

then, compute the transformation parameters with the partial 

structure. They remove irrelevant vessels from the projection image 

of the 3D vessels, and thus, the corresponding points between the 2D 

and the 3D vessels are defined correctly, which enables the 

optimization process to find the correct solution.  

However, Ambrosini’s method [24] finds the best matched leaf 

vessel centerline in a 3D tree corresponding to the catheter in the 2D 

fluoroscopic image. When the catheter does not have a predominant 

feature or is too short, the method fails to find the correct leaf 

centerline. Moreover, since the cost function for the registration uses 

only the catheter and its corresponding leaf vessel centerline, the 

accuracy of matching vessels is relatively lower than that of the 

proposed method.  
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Table VIII shows the distance errors obtained using Eq. (5) of 

the proposed method, Ruijters’ method, and Ambrosini’s method for 

the same datasets. The average error in the case of Ruijters’ method 

is 53.290 ± 37.378 mm, which indicates that it is difficult to find the 

correct solution with a whole 3D tree in liver catheterization. The 

proposed method and Ambrosini’s method [24] show considerably 

lower average errors, 2.337 ± 1.940 mm and 12.505 ± 12.441 mm, 

respectively. However, Ambrosini’s method [24] failed to find the 

appropriate centerline for dataset 5 because the catheter is too short; 

 

 
Table VIII. Accuracy comparison of registration 

Dataset 
Proposed method  

(mm) 
Ruijters et al.  

[5] (mm) 
Ambrosini et al. 

[24] (mm) 

1 1.654±0.928 75.872±0.522 9.259±1.510 

2 1.778±0.808 20.015±2.037 4.299±0.957 

3 5.571±3.215 23.159±3.769 11.585±3.247 

4 0.087±0.173 4.810±1.167 9.238±1.089 

5 1.157±1.230 135.320±3.853 48.692±0.801 

6 1.342±0.742 70.486±13.108 7.714±3.553 

7 1.757±1.096 12.156±8.408 10.013±3.305 

8 2.361±1.648 62.501±1.993 6.864±2.935 

9 3.830±2.711 59.180±7.561 14.122±3.210 

10 6.169±4.198 69.397±21.469 3.265±0.663 
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this causes a large error. Further, for datasets other than dataset 10, 

the proposed method shows lower errors than Ambrosini’s method. 

The proposed algorithm had errors of less than 7 mm for all datasets. 

This comparison demonstrated that the proposed method is 

successfully devised to find a suitable part for a given DSA image and 

to accurately register 3D vessels to the DSA image. 

Figure 31, Figure 32 and Figure 33 show the results from the 

proposed method and Ambrosini’s method. The left column displays 

the results by the proposed method and right column shows the 

results by Ambrosini’s method. In the first row, 2D features used for 

the registration methods are displayed as blue line. The proposed 

method uses the 2D vessel centerlines extracted from DSA image 

and Ambrosini et al. use the catheter centerlines extracted from 2D 

angiographic image. The second row shows which partial vascular 

structures from 3D vessels are selected for the proposed method and 

Ambrosini’s method, respectively. The proposed method finds the 

best matched subtree with extracted 2D vessel centerlines. On the 

contrary, Ambrosini et al. selects the best matched leaf vessel 

centerline by computing the shape similarity between leaf vessel 
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centerline and the extracted 2D catheter centerline. Last rows show 

the final results of two methods. The entire tree is transformed by 

the registration result, and overlaid onto DSA image and angiographic 

image, respectively.  

As shown in Table VIII, the proposed method shows lower errors 

than Ambrosini’s method except for dataset 10. Figure 31 shows 

the results for dataset 4 for which both the proposed method and 

Ambrosini’s method have successful registration results. On the 

whole tree, 3D vessels and 2D vessels are correctly registered 

although there are slightly unmatched vessels which are decided on 

the features used for selecting the suitable partial structure. Dataset 

5 used the same CTA scan with dataset 4, but 2D images are obtained 

at different view, which induces very different results. Figure 32 

shows the results for dataset 5. In this dataset, the proposed method 

succeeds in selecting an appropriate subtree and obtains a good 

registration results. On the contrary, Ambrosini’s method fails to find 

a suitable leaf vessel centerline because the shape of the catheter is 

a straight line. It makes difficult to select a correct vessel centerline 

from 3D structure. Therefore, the registration error of Ambrosini’s 

method becomes very large, 48.692, while the registration of the 
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proposed error is only 1.157. 

Figure 33 represents the results for dataset 10 which has lower 

registration error in Ambrosini’s method. Both methods succeed to 

find a suitable partial structures from whole 3D structure. However, 

the proposed method computes the transformation with the subtree 

located at the upper area of 3D structure, which induces relatively 

large errors in lower area. On the other hand, Ambrosini’s method 

computes the transformation with the vessel centerline located at the 

center of 3D structure. It makes smaller errors in final registration 

results. 
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Figure 31 Comparison with Ambrosini’s method for dataset 4. Left column 

is the result of the proposed method and right column is the result of 

Ambrosini’s method.  
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Figure 32 Comparison with Ambrosini’s method for dataset 5. Left column 

is the result of the proposed method and right column is the result of 

Ambrosini’s method.  
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Figure 33 Comparison with Ambrosini’s method for dataset 4. Left column 

is the result of the proposed method and right column is the result of 

Ambrosini’s method.  
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In addition, we verified that the comparison between registration 

errors are statistically significant using the Kruskal-Wallis test. The 

Kruskal-Wallis test is used to evaluate differences among three or 

more treatment conditions using ordinal data from an independent 

measures design. The test is an alternative to the single-factor 

analysis of variance (ANOVA). However, the ANOVA requires 

numerical scores that can be used to calculate means and variances. 

The Kruskal-Wallis test, on the other hand, simply requires that you 

are able to rank-order the individuals for the variable being 

measured [86].  

We run the Kruskal-Wallis test for the accuracy results from 

three registration methods in Table VIII. The box plot, Figure 34, 

visualize the summary statistics for each method. Each registration 

method has different error range and the ranges hardly overlap one 

another. The numerical analysis shows more specifically that three 

registration methods have statistically significant differences. With 

𝑑𝑑𝑑𝑑 = 2, the chi-square table lists a critical value of 5.99 for α = 0.05. 

The chi-square value obtained from the Kruskal-Wallis test for 

registration methods is 20.77, and it is much greater that the critical 

value. In addition, the 𝑝𝑝-value of the test is 0.00003, which is very 
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low. Therefore, we can conclude that there are statistically 

significant differences among three registration methods. 

 

 

5.5 Parameter study 

The performance of the proposed method is decided by the number 

of subtrees. It is possible to select a suitable subtree for a given DSA 

image only when the subtrees are constructed with an appropriate 

range. The tree should be divided into subtrees that are sufficiently 

small to be a subset of the centerlines of the DSA or to have a similar 

range. In contrast, the computational time for the selection step is 

 

Figure 34 Box plot of registration errors for the proposed method, 

Ruijters’ and Ambrosini’s method 
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increased as the number of subtrees increases although the 

computational time for each subtree is decreased. To decide the 

optimal number of subtrees, we tested five datasets by changing the 

number of subtrees from 3 to 7 and evaluating the results of the 

proposed registration methods by using Eq. (5). 

First, we checked the success rate, which is the percentage of 

the dataset matched with the correct subtree in the selection step. 

The success rates were 60, 20, 60, 100, and 100(%) for three, four, 

five, six, and seven subtrees, respectively. In the cases of six and 

seven subtrees, the correct subtrees were found for all datasets in 

the selection step. This leads to the high accuracy of the results after 

the registration process. Figure 35 shows the accuracy of the 

 

Figure 35 Errors according to the number of subtrees 
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proposed method with respect to the number of subtrees. As the 

number of subtrees increases, the error 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 calculated using Eq. (5) 

decreases because the appropriate subtree for a given dataset is 

selected, and the registration process optimizes the parameters with 

the selected subtree. 
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Chapter 6.  Conclusion 

In this paper, we presented a 2D–3D registration algorithm between 

pre-operative 3D CTA scans and intra-operative 2D DSA images 

for liver catheterization. The proposed approach improves the 

accuracy of the registration by detecting the areas of interest in the 

3D vascular structure used for the registration process. The 

structure constructed from the 3D CTA scans is divided into several 

subtrees with respect to their connectivity. In the registration 

process, the dissimilarity of each subtree with a given 2D DSA is 

computed on the basis of the distance difference between the 

centerlines from the DSA and a projection of the 3D subtree. Then, 

the subtree with the smallest dissimilarity is selected as the best 

matched subtree. Subsequently, a fine registration between the 

selected subtree and the 2D centerlines is conducted. 

The overall vascular structure is very complex, which induces a 

large number of overlaps and false crossings in the projection onto a 

2D detector plane. Thus, it is difficult to match the 3D vascular 

structure with the projected vessels. Moreover, a DSA displays only 
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a part of the vascular structure where a catheter currently moves. 

Therefore, the ranges to be displayed in the CTA and DSA images 

are very different. The cost function should be designed with this 

condition. However, the complex structure of vessels leads to a false 

local minima in the optimization. From this viewpoint, the proposed 

algorithm has novel features. By separating a structure into several 

parts, the range of a 3D subtree becomes similar to that of a DSA 

image. The projection of one subtree preserves its shape without any 

overlaps between other subtrees and reduces false junctions. 

Therefore, the proposed method finds the correct subtree to be 

matched with a given DSA image. Subsequently, the fine registration 

is conducted with only the relevant vessels with the DSA image, and 

thus, the registration accuracy is improved considerably. 

The experimental results of this study demonstrate that the 

proposed algorithm can accurately identify an appropriate subtree 

and find the correct transformation parameters. The proposed 

method shows good accuracy and convergence with a simple cost 

function because it focuses only on the interested part of vessels. 
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초    록 

 
혈관 조영술은 X-ray 등의 영상 기술의 도움을 받아 최소한의 

침습만으로 질병을 진단 및 치료함으로써 환자의 신체적 부담감을 

줄이고 효율적인 치료를 가능하게 하는 진단 및 치료 방식이다. 시술을 

위해서는 카데터를 신체 내의 치료가 필요한 위치까지 이동시켜야 

하는데 카데터의 경로를 판단할 수 있도록 혈관이 조영된 2D X-ray 

영상이 주로 사용된다. 이 때 혈관의 전체적인 구조나 연결 관계는 2D 

영상만으로는 판단이 어렵기 때문에 시술 전 촬영된 3D 혈관 조영 

영상을 현재의 2D 영상 위로 투영시키는 로드맵 기술이 사용될 수 있다. 

정확한 로드맵 생성을 위해서는 현재 투영되고 있는 2D 영상과 시술 전 

획득한 3D 영상 간의 정합 알고리즘이 필수적으로 요구된다. 그러나 

복잡한 3D 혈관을 2D로 투영시키는 과정에서 혈관의 연결관계 파악이 

힘들어지고 이는 정확한 정합 결과를 구하기 어렵게 만든다. 본 

논문에서는 이러한 문제점을 해결하기 위하여 전체 3D 혈관 구조로부터 

현재의 2D 영상에 매칭되는 일부의 혈관 영역 만을 선택하고 선택된 

영역만을 기준으로 정합을 수행하게 된다. 이는 2D 영상과 연관된 

영역만을 정합에 이용함으로써 정합의 정확도를 크게 향상시킬 수 있게 

된다. 2D 영상에 적절한 3D 혈관 영역을 찾기 위해서, 우선 3D 

영상으로부터 혈관을 분할하고 이로부터 혈관의 센터라인을 추출해낸다. 

이를 트리 모델로 구성한 뒤 혈관의 연결관계를 고려하여 여러 개의 
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서브트리로 나누게 된다. 그리고 시술 중에 획득한 2D 영상과 가장 

적합한 서브트리를 찾기 위하여, 2D 영상으로부터 추출한 2D 혈관의 

센터라인과 서브트리 각각과의 정합 과정을 수행하게 된다. 각 

서브트리에대한 정합 수행 후 가장 유사도가 높은 서브트리가 2D 

혈관과 매칭되는 3D 혈관 영역이라 판단한다. 마지막으로, 선택된 

서브트리에 대하여 서브트리와 2D 혈관 센터라인 간의 정밀 정합을 

수행하게 된다. 일부 영역만으로 계산된 정합 파라미터는 전체 혈관 

구조에 대해서도 정확한 정합 결과를 보여준다. 또한, 2D 혈관과 

대응되는 일부 영역만으로 정합을 수행함으로써 정합 과정의 수렴 

속도는 빨라지고 정확도는 높아지게 된다. 총 10개의 환자 데이터에 

대해 제안된 알고리즘을 검증한 결과 평균 정합 오차 2.34 ± 1.94 

mm를 얻을 수 있었다. 제안된 정합 알고리즘은 기존에 제안된 2D-3D 

정합 알고리즘과 비교하여 매우 높은 정합 정확도를 보이는 것을 확인할 

수 있다.  

주요어 : 2D-3D 정합, 혈관 구조, 혈관 분할, 혈관조영술 
학   번 : 2013-30228 
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