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Clinical diagnosis in a wide range of diseases increasingly relies on medical imag-
ing data. The acquired images contain a wealth of information, which could potentially
also improve guidance during minimally invasive interventions. To date, visual feedback
during these procedures is often limited to interventional modalities such as X-ray or
ultrasound imaging. Efficiently utilizing the additional information from the preopera-
tively acquired imaging data may have several advantages, such as reduced intervention
time, radiation dose and contrast agent usage, or reduced procedural failure.

To fully employ the preoperative imaging data during the intervention the integrated
visualization of the image and instruments is needed. Such a visualization requires that
the spatial relation between the image and the instruments is known. This relation is
often determined indirectly by finding the position of the instruments with respect to a
patient coordinate system (often directly related to the coordinate system of the imaging
system) and finding the relation between this coordinate system and the preoperatively
acquired imaging data (Figure 1.1).

A popular approach to find the relation between the diagnostic image and the patient
coordinate system is to align the preoperatively and intraoperatively acquired images by
means of image registration techniques. If the target organ is a static structure, such as
a bone in orthopedic surgery, it is sufficient to determine the position and orientation
of the imaging data with respect to the patient in the intervention room. For soft tissue
interventions, such a rigid alignment is often not sufficient, as the tissue is moving non-
rigidly due to cardiac motion, respiratory motion or the impact of such motions on the
structure of interest.

X
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Y
p

Z
p

X-ray source

Detector

Isocenter
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Catheter position
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c
, z

c
) ?

Figure 1.1: Image guidance for interventions relies on knowing the spatial relation between the preoperative
imaging data and instruments. This relation is often determined indirectly by finding the position (xc , yc , zc ) of
the instrument(s) and the position (xp , yp , zp) and orientation (α, β , γ) of the preoperative imaging data with
respect to the patient coordinate system (Xp , Yp , Zp ).
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Figure 1.2: (a) The heart is a double pump serving two circuits. The right side of the heart serves the pulmonary
circuit; the left side the systemic circuit. The arrows indicate the direction of the blood flow. (b) The heart with
the coronary arteries and veins, which form the blood supply for the heart tissue itself.

The goal of the work described in this thesis is to develop and validate techniques
to make 3D coronary computed tomography angiography available during percutaneous
coronary interventions. The accurate alignment of the preoperative image with the in-
traoperative situation is very challenging due to the fast and extensive motion of the
coronary arteries caused by the cardiac cycle. The main focus of our work is therefore
on this alignment problem.

In the remainder of this chapter we provide further information on coronary artery
disease, its diagnosis and treatment, challenges encountered during interventions and
an overview of the proposed approach to relate diagnostic imaging data of the coronary
arteries to the intraoperative situation.

1.1 The Cardiovascular System: Heart and Coronary Arteries

The cardiovascular system is the delivery system of the body (Marieb, 2007). The heart,
blood vessels and blood are the main components of this system. They transport oxygen
and nutrients to and waste materials from all organs in the body. The heart is the motor
of this system and pumps the blood around through the vessels (Figure 1.2(a)). It is a
double pump, which serves two circulations: the pulmonary and systemic circuit. The
right side of the heart is involved in the pulmonary circuit serving gas exchange. It
pumps oxygen-depleted and carbon dioxide-rich blood from the heart to the lungs and
returns oxygen rich blood to the left side of the heart. The left side serves the systemic
circuit and pumps the oxygen rich blood into the aorta from which it is transported to
the body tissues to exchange gases and nutrients. The myocardium is accommodated by
the coronary circulation, a subsystem of the systemic circuit (Figure 1.2(b)). It consists
of the left and right coronary arteries, which supply oxygen rich blood to the cardiac
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Figure 1.3: (a) A schematic view of a healthy artery wall and its three layers: adventitia, media and intima. (b)
Atheromateuos plaque builds up just below the intima layer causing lumen narrowing and (c) optionally leading
to thrombus formation.

muscle, and veins to transport the deoxygenated blood back to the heart. It is essential
that this circulation functions well, as a reduction of myocardial blood supply will affect
heart function and may eventually lead to myocardial infarction, commonly referred to
as a heart attack.

1.2 Coronary Artery Disease

Coronary artery disease (CAD) is one of the main causes of death worldwide (Brown and
O’Connor, 2010) and is caused by atherosclerosis in the coronary arteries. Atheroscle-
rosis is the process in which fatty deposits (also called plaque) build up just below the
intima layer inside the vessel wall (Woolf, 1998, Chapter 32). This plaque build up may
narrow the lumen, i.e. the cavity through which the blood flows, thus hampering the
blood supply to the myocardium. Besides, plaque may rupture, which causes obstruction
of the blood flow due to blood clot formation (thrombus). Figure 1.3 gives an illustration
of the progression of atherosclerosis in the vessel wall.

1.3 Diagnosis of Coronary Artery Disease

The first symptoms of coronary artery disease occur at moments when the heart is work-
ing harder and needs more oxygen, such as during exercise, in periods of emotional
stress or after large meals. Corresponding symptoms are chest pain, referred to as angina
pectoris, and shortness of breath. When CAD progresses these symptoms may become
predictable and always occur when, for example, a certain amount of exercise is per-
formed. These predictable chess pain is called stable angina. A more extreme, but often
first symptom of CAD is a heart attack (Davies, 2001).

The diagnosis of CAD is based on medical and family history, risk factors and the
results of a physical exam and diagnostic tests and procedures. The physician can, for
example, make an electrocardiogram to measure the electrical activity of the heart, per-
form a stress test to see how the heart performs during physical activity, or test blood
to check enzymes, cholesterol level, and other risk factors. When there is a reasonable
assumption that the coronary arteries are severely narrowed, imaging techniques may be
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(a) (b)

Figure 1.4: Typical set-up of (a) a normal angiography room, with a Siemens Artis zee biplane X-ray system and
(b) a angiography room enabled for magnetic navigation. In (b) the two magnets left and right of the table
generating the magnetic field are clearly visible (images copyright Siemens AG).

applied to determine if significant lesions (narrowing larger than 50%) are present, and
whether treatment of the lesions is necessary.

1.3.1 Conventional coronary angiography

Conventional coronary angiography (CCA) is a procedure to visualize the coronary ar-
teries by contrast injection and X-ray imaging. A catheter (long thin flexible tube) is
inserted into a blood vessel in the upper thigh via an incision in the groin and trans-
ported through the vascular system to the ostium (beginning) of the coronary arteries
(Grech, 2011). Subsequently, through this catheter contrast material is injected into the
coronary artery to visualize the vessel lumen by X-ray imaging. Sometimes a biplane
X-ray system with two X-ray sources and two detectors is used (Figure 1.4(a)), resulting
in two X-ray images, (quasi-)simultaneously acquired from different orientations. Exam-
ples of coronary angiograms of a left and right coronary artery can be found in Figure
1.5.

1.3.2 Computed tomography angiography

Computed tomography is an imaging modality in which an X-ray source and detector are
deployed to measure the attenuation of the tissue at different orientations around the
patient. A 3D image is derived from these measurements by computational techniques.
Computed tomography angiography (CTA) combines computed tomography with con-
trast injection, enabling the visualization of the vessel lumen. The temporal and spatial
resolution of modern computed tomography make it possible to image the fast moving
anatomy of the heart with good image quality and minimal motion artifacts. For this rea-
son, CTA is increasingly used for the diagnosis of CAD (Weustink et al., 2010). Moreover,
CTA is less invasive than CCA and provides, next to information about vessel narrow-
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Figure 1.5: Examples of X-ray coronary angiograms of a (a) left and (b) right coronary tree visualizing the lumen
of the coronary arteries by contrast injection and X-ray imaging. Clearly visible are the catheter, the guidewire
and some metal sternum stitches. The remaining arrows indicate some of the branches of the coronary tree:
RCA = right coronary artery, PDA = posterior descending artery, PL = posterolateral branch, LAD = left anterior
descending artery, OM = obtuse marginal branch and D = diagonal branch.

ing, information about the composition of the plaque, such as the presence of calcium
(Hoffmann et al., 2006; Lehman et al., 2009).

1.4 Treatment of Coronary Artery Disease

Three main therapies for the treatment of coronary artery disease can be distinguished
(Kasper et al., 2005):

(i) Medication: patients diagnosed with coronary artery disease often receive medica-
tion to reduce heart rate and blood pressure (beta-blockers), prevent blood clother
(asperine), lower cholesterol (statins, calcium channel blockers), relieve symptoms
(nitrates), etc.

(ii) Minimally invasive coronary interventions: if a vessel is severely narrowed, min-
imally invasive procedures to widen the vessel can be applied. Angioplasty is a
procedure in which vessels are widened by inflation of a balloon at the side of the
lesion, often combined with stent implantation. It was initially described by inter-
ventional radiologist Charles Dotter and is often also referred to as percutaneous
coronary intervention (PCI, Section 1.5).

(iii) Coronary artery bypass surgery: certain cases are in general less suited for PCI
treatment, such as long, heavily calcified stenoses in tortuous vessels or at bifurca-
tions (Grech, 2011). In these cases, coronary artery bypass surgery needs to be per-
formed. In this procedure, blood flow to parts of the myocardium behind the lesion
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Figure 1.6: A computed tomography angiography scan of the coronary arteries. (a) Volume rendering, (b)
Transversal view, (c) Coronal view, (d) Sagittal view.

is restored by grafting arteries or veins from other parts of the body to these areas.
It is therefore often also called coronary artery bypass grafting (CABG). CABG is far
more invasive than coronary angioplasty, as the chest needs to be opened by the
surgeon to be able to reach the heart.

1.5 Percutaneous Coronary Intervention

The target application for our work is PCI. Figure 1.7 gives an overview of this proce-
dure. Similar to CCA, a guide catheter, i.e. a thin long, flexible plastic tube, is inserted
into a blood vessel in the upper thigh1 and moved towards the ostium of the coronary
artery. This guide catheter is used to inject contrast fluid into the coronary arteries for
visualization purposes and serves as a transport canal for the guidewire that is moved
through the coronary artery to the site of the lesion. Once the guidewire is in place, a
hollow balloon catheter is positioned over the guidewire and transported to the site of
the lesion. At its target location, the vessel can be widened by inflation of the balloon.
Often an expandable wire mesh tube (stent), which keeps the vessel open, is initially po-
sitioned over the balloon and employed during balloon inflation. During the procedure
the cardiologist controls the guidewire and catheters with his finger tips at the end of
the wire near the leg. As the whole procedure takes place percutaneously, X-ray imaging
is applied to visualize the vessels and equipment. Due to the projective nature of X-ray
imaging, the cardiologist needs to make a mental picture of the actual 3-dimensional
(3D) situation inside the patient. The use of a biplane X-ray system facilitates this, as
two images acquired from different orientations are available.

Even though procedural success rates of over 98% have been reported for PCI, cer-
tain lesions remain challenging to treat. Increasing success rate for these cases might
increase the number of patients eligible for PCI treatment over the more invasive revas-
cularisation procedure by CABG. Lower procedural success and higher complication rates
have, for example, been reported for complex vascular anatomies, bifurcating lesions and
chronically totally occluded vessels (Tsuchida et al., 2007; Hoye et al., 2005).

1Or less usual in the radial or brachial artery in the arm.
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Figure 1.7: Percutaneous coronary intervention with stent placement: (a) a balloon catheter is transported to
the lesion site, (b) the vessel is widened and a stent is deployed by inflation of the balloon and (c) bloodflow is
increased due to artery widening (images made available by the National Institutes of Health, adapted).

Magnetic navigation in which the tip of the guidewire is magnetically steered through
difficult branching points or highly tortuous vessel segments is a promising technique to
increase the success rate in these cases (Ramcharitar et al., 2007, 2008, in press, Figure
1.4(b)). Such a system relies on a 3D coronary roadmap, which can be derived intra-
operatively from biplane coronary angiography or preoperatively from coronary CTA. A
dynamic roadmap is preferred and accurate alignment of the roadmap with the intraop-
erative situation is essential (Haase et al., 2008, Chapter 42).

Being able to cross the lesion with a wire is an essential requirement for PCI to be
successful. In the chronically occluded case, crossing the lesion is difficult, especially in
the presence of calcium (Serruys, 2006). Knowing the composition of the plaque at the
location of the guidewire is expected to help the surgeon in finding his way through the
occlusion. Moreover, when for example, radiofrequency or laser ablation is needed to
reopen the total occlusion, knowledge of the location and orientation of the guidewire
is essential to prevent dissection or perforation of the vessel wall. Information about the
composition of the lesion could potentially be derived from CTA. To this end, accurate
alignment of the CTA image with the intraoperative situation and accurate tracking of
the guidewire is required.

1.6 Integration of Diagnostic and Interventional Information

From the previous section it is clear that a dynamic roadmap and information about
plaque composition from CTA may increase procedural success rate in challenging cases.
Additionally, this information could potentially reduce intervention time and thus the
amount of contrast dye used and radiation dose delivered to the patient.

A popular approach for aligning preoperatively acquired 3D or 4D images to the
intraoperative situation is by 2D/3D registration of the preoperative data to the intraop-
erative X-ray images. Those methods could be either extrinsic, based on, for example,
a stereotactic frame or bone implanted markers, or intrinsic, based on image informa-
tion (Markelj et al., in press). For successful integration of the preoperatively acquired
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information, the position of the instruments should be derived as well, but in this thesis
we only address the alignment of the preoperative imaging data with the intraoperative
situation.

1.6.1 Previous work on the alignment of 3D preoperative coronary CTA

data with intraoperative 2D X-ray angiography images

A limited amount of work on the alignment of coronary CTA with 2D X-ray sequences has
been presented previously. Turgeon et al. (2005) proposed a static registration technique
to align rotational angiography data to intraoperative X-ray angiography. Their approach
is based on segmentation of the coronary arteries from the preoperative imaging data and
comparison of the intraoperative angiography images with projections of the resulting
coronary model. The method was evaluated in a simulation study using both mono- and
biplane X-ray data.

Alignment based on coronary segmentation is a reasonable approach, due to dif-
ferences in contrast fluid injection between CTA and X-ray acquisitions. In the former,
contrast fluid is injected intravenously in the arm, whereas for the latter, it is injected
directly in the coronary artery. Therefore, in a CTA scan, all blood cavities, such as the
cardiac chambers, coronary arteries and aorta are enhanced, in contrary to the X-ray
images, in which only the coronary arteries are enhanced. Projection of both chambers
and arteries will result in low contrast projection images, not very well suitable for an
intensity based registration approach.

Another approach based on segmentation of the 3D data was proposed by Ruijters
et al. (2009). This method additionally employs vessel enhancement filtering on the 2D
X-ray images to generate a fuzzy segmentation of the coronary arteries. They show that
this approach, together with stochastic optimization, leads to more robust registration
results. Again, only static registration at a predefined time point in the cardiac cycle was
considered.

The disadvantage of these static approaches is that information from the CTA data
can only be used at the time point in the cardiac cycle at which the registration was per-
formed, whereas one would preferable have access to this information for the complete
cardiac cycle.

1.6.2 This thesis

The goal of the work described in this thesis is to develop and evaluate techniques that
permit the integration of preoperative CTA in the interventional setting. To this end,
we create coronary motion models from CTA and register these to intraoperative X-ray
angiography sequences. This strategy consists of the following steps:

(i) Derivation of a 3D coronary lumen segmentation from the CTA images. This
step is based on first locating the coronary centerlines in the CTA data. In Chapter
2 a minimum cost path approach is developed for this purpose and evaluated based
on manually annotated centerlines. In Chapter 3 a publicly available framework for
the objective evaluation of coronary centerline extraction techniques is proposed.
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After centerline extraction, the lumen is automatically detected by application of
an existing segmentation technique (Schaap, 2010, Chapter 5).

(ii) Derivation of a motion prior describing the dynamics of the coronary arteries

over the cardiac cycle. In Chapter 4 we propose a registration technique for mo-
tion estimation from dynamic medical imaging data, which can, among others, be
used for coronary motion estimation from 4D CTA images. For cases in which only
3D CTA is available, a method to estimate a patient-specific motion model based on
shape models and regression is proposed in Chapter 5.

(iii) Alignment of the CTA data with the X-ray images by 2D+t/3D+t registration.

In Chapter 6 all components are put together for the dynamic alignment of preop-
erative CTA with the intraoperative situation. The performance of the here outlined
strategy is then evaluated on clinical data.

The thesis concludes with a discussion on the results and future research directions
(Chapter 7).
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Abstract

This chapter describes the application and large-scale evaluation of minimum cost path ap-
proaches for coronary centerline extraction from computed tomography coronary angiography
(CTCA) data. Two different cost functions are applied. The first is based on a frequently used
vesselness measure and intensity information, and the second is an existing cost function based on
region statistics. User interaction is minimized to one or two mouse clicks distally in the coronary
artery. The starting point for the minimum cost path search is automatically determined using a
newly developed method that finds a point in the center of the aorta in one of the axial slices. This
step ensures that all computationally expensive parts of the algorithm can be precomputed. The
performance of the aorta localization procedure was demonstrated by a success rate of 100% in
75 images. The success rate and accuracy of centerline extraction was quantitatively evaluated on
48 coronary arteries in twelve images by comparing extracted centerlines with a manually anno-
tated reference standard. The method was able to extract 88% and 47% of the vessel centerlines
correctly using the vesselness/intensity and region statistics cost function respectively. For only the
proximal part of the vessels these values were 97% and 86% respectively. Accuracy of centerline
extraction, defined as the average distance from correctly automatically extracted parts of the cen-
terline to the reference standard, was 0.64 mm for the vesselness/intensity and 0.51 mm for the
region statistics cost function. The interobserver variability was 99% for the success rate measure
and 0.42 mm for the accuracy measure. Qualitative evaluation using the best performing cost func-
tion resulted in successful centerline extraction for 233 out of the 252 coronary arteries (92%) in
63 additional CTCA images. The presented results, in combination with minimal user interaction
and low computation time show that minimum cost path approaches can effectively be applied as
a preprocessing step for subsequent analysis in clinical practice and biomedical research.
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2.1 Introduction

Coronary artery disease (CAD) is currently one of the main causes of death in the world
(World Health Organization, 2007). To date, conventional coronary angiography (CCA)
is the gold standard method for the diagnosis of CAD. However, CCA is an invasive tech-
nique with a low, but not negligible, risk of procedure related complications and only
provides information about the coronary lumen. Computed tomography coronary an-
giography (CTCA) is a non-invasive technique that allows both the evaluation of the
coronary lumen and vessel wall (Cademartiri et al., 2007). It provides information re-
garding the presence, extent, and type (non-calcified or calcified) of coronary plaques.
Such non-invasive, comprehensive plaque assessment may be relevant to improve risk
stratification as compared to current approaches where only the severity of stenosis and
the amount of calcium is measured (Leber et al., 2006).

Different visualization techniques for the evaluation of CTCA images are used in clini-
cal practice, among which are multi-planar reformatting and curved planar reformatting
(CPR), both depending on the centerline of the vessel of interest (Cademartiri et al.,
2007). The manual definition of these centerlines is a laborious task and therefore re-
liable (semi-)automatic coronary artery centerline extraction is relevant in clinical prac-
tice. Furthermore, vessel centerlines can serve as a starting point for automatic quanti-
tative vascular image analysis such as stenosis grading and measuring calcium volume.

Although much work has been done on vessel segmentation and centerline extrac-
tion, the centerline extraction of coronary arteries remains a challenging problem, owing
to the small size of the vessels, reconstruction artifacts caused by irregular heartbeats of
the patient and the presence of pathology.

For segmentation and centerline extraction of vessels from 3D medical image data
region growing (Boskamp et al., 2004; Lavi et al., 2004; Eiho et al., 2004; Bartz and
Lakare, 2005; Hennemuth et al., 2005; Metz et al., 2007) and tracking methods (Wink
et al., 2000a; Aylward and Bullit, 2002; Wesarg and Firle, 2004; Wong and Chunga,
2007) are quite popular. Some of them take, next to intensity information, directional
(Aylward and Bullit, 2002; Wong and Chunga, 2007) or shape information (Boskamp
et al., 2004; Lavi et al., 2004; Hennemuth et al., 2005) into account to guide or restrict
the growing or tracking process. Next to seeding the algorithm, additional user interac-
tion may be required in some of these methods to remove unwanted structures from the
segmentation. Nain et al. (2004) and Yang et al. (2007) applied deformable models for
segmentation of the coronary arteries.

A disadvantage of above methods is that they are likely to have problems in the
presence of imaging artifacts such as irregular heart beat artifacts or severe pathology,
e.g. calcifications or occlusions. In these areas local image information is not sufficient
to extract the vessel of interest, and as a consequence these algorithms may terminate
prematurely.

Other approaches were presented by Szymczak et al. (2006), who applied tree build-
ing to predetermined centerline candidate points and by Bülow et al. (2004), who com-
bined region growing and tree building.

Minimum cost path approaches need at least the start and end point of the vessel, but
are able to cross pathological regions and regions suffering from bad image quality (Wink



16 CHAPTER 2. CORONARY CENTERLINE EXTRACTION

et al., 2000b, 2001, 2002; Olabarriaga et al., 2003; Wink et al., 2004; Li and Yezzi, 2007).
Wink et al. (2002) demonstrated the application of minimum cost path approaches to
coronary artery centerline extraction in 3D MRA data. Furthermore, they proposed a
method in which scale is included as an additional dimension in the cost image(Wink
et al., 2004). Olabarriaga et al. (2003) applied a minimum cost path technique for the
extraction of coronary artery centerlines from CTCA data, but in their work the method
was only evaluated on small vessel segments, using a limited number of images and
with a reference standard based on annotations of only one observer. Deschamps and
Cohen (2001) proposed to solve the minimum cost path problem by application of fast
marching methods and Li and Yezzi (2007) extended this method to 4D, where the fourth
dimension is related to the local radius of the vessel.

A method based on fuzzy connectedness was presented by Wang and Smedby (2007),
which is comparable to minimum cost path approaches, but uses the weakest link to
determine the costs of a certain path.

Finally, some authors presented probabilistic methods to extract vessel centerlines
from medical image data (Florin et al., 2005; Schaap et al., 2007; Lesage et al., 2008;
Friman et al., 2008a). Instead of choosing the best configuration after every iteration
of the tracking process, the best vessel configuration is chosen retrospectively, thus tak-
ing into account multiple configurations during tracking. Next to be able to cross low
quality or high pathological regions more easily, these methods can easily take into ac-
count geometric information or changing intensity distributions along the path. The
major drawback of these methods is their computational complexity, which makes them
currently less practical in a clinical setting.

The focus of this work is on finding as much of the coronary artery centerline within
the vessel of interest as possible. To this end, centerlines are extracted using a minimum
cost path approach. Two cost functions are evaluated. The first one is an extension of
the cost function of Wink et al. (2002) and Olabarriaga et al. (2003). In their work only
second order image information is used, but we add intensity information as a second
feature. The second cost function evaluated is the one proposed by Li and Yezzi (2007),
which is based on region statistics.

The contribution of this work is threefold. First, to minimize user-interaction and
facilitate real-time centerline extraction, a method is proposed and evaluated to auto-
matically find a starting point for the extraction algorithm in the center of the aorta.
Saur et al. (2008) presented a method to find such a point based on a ray propagation
approach. Their method was developed simultaneously with the method presented here.
Second, the parameters for computation of the cost images are optimized using leave-
one-image-out cross validation. Third, a thorough evaluation of the extraction results
is performed quantitatively on 48 vessels in twelve images and qualitatively on another
252 vessels in 63 images. The reference standard used in the quantitative evaluation
is derived from vessel centerlines manually annotated by two observers, which makes a
comparison of the results with the interobserver variability possible.

Information about the data, the methods applied, parameter optimization and the
conducted evaluation experiments can be found in Section 2.2. Results are reported in
Section 2.3 and the discussion and conclusions are presented in the last section.
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Figure 2.1: The reference standard centerline (c) is derived from centerlines manually annotated by two
observers (m1 and m2) using a triangularization approach.

2.2 Materials and Methods

2.2.1 Imaging data and reference standard

CTCA images of 75 patients who were referred for CT coronary angiography at Erasmus
MC, Rotterdam, The Netherlands, were selected. CTCA scans were acquired between
December 2004 and January 2007 using a 64 slice (47 cases) and dual-source (28 cases)
computed tomography scanner (Somatom Sensation 64 and Definition, Siemens Medical
Solutions, Forchheim, Germany). Images were reconstructed using retrospective ECG
gating with a B20f (1 case), B26f (8 cases), B30f (63 cases) or B46f (3 cases) kernel.
Mean voxel size of the reconstructed images is 0.32x0.32x0.40 mm3.

From the 62 images in which no severe breathing artifacts (n = 6) were present
and which where not of patients who underwent coronary artery bypass surgery (CABG,
n = 7), twelve images were randomly selected. In these images manual centerline de-
lineation of the left anterior descending coronary artery (LAD), left circumflex artery
(LCX), right coronary artery (RCA) and a randomly selected fourth coronary artery was
performed by two observers. Next to the spatial locations of the centerline points the
radius of the vessel at three or four points along the centerline was defined. The center-
lines were annotated between the start and end point of the vessel, beforehand defined
and approved by both observers. The start point was placed in the coronary ostium of
the corresponding arterial tree and the end point was placed at the most distal point
inside the vessel. The remaining 63 images (including the images with artifacts and the
images of CABG patients) were used to perform an additional qualitative evaluation of
the method.

The manually annotated centerlines of both observers were resampled equidistantly
(0.1 mm) using a third degree polynomial for interpolation between consecutive anno-
tated points. The radius at every point on the centerlines was linearly interpolated along
the polynomial between the manually defined radii. Correspondence between points on
both centerlines was determined using a triangularization of the area between the two
centerlines and the average centerline was defined as the path through the mid-points
of the triangle edges between the manually annotated centerlines (Figure 2.1). The ra-
dius for every point on the reference standard was defined as the average radius of the
corresponding points on both centerlines.

Lengths of the resulting paths (mean ± standard deviation) are 136 mm ± 29 mm
for the LAD, 116 mm ± 30 mm for the LCX, 170 mm ± 40 mm for the RCA and 93 mm
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± 30 mm for the fourth vessel. The number of points annotated by the observers was on
average 29 for the LAD, 26 for the LCX, 33 for the RCA and 23 for the fourth vessel.

To demonstrate the variability of image quality and the presence of calcium in the
twelve images used for the quantitative evaluation, each image was visually assessed
by a radiologist with three years experience in cardiac CT. Image quality was classified
as good in five images, as adequate (presence of artifacts but evaluation possible with
moderate confidence) in three images and as poor (presence of image-degrading artifacts
and evaluation possible with low confidence) in four images. Presence of calcium was
scored as absent in two images, modest (presence of calcified spots) in eight images and
severe (presence of extensive calcifications) in two images.

2.2.2 Minimum cost path approach

Coronary artery centerlines are extracted using a minimum cost path approach. This
has the advantage that given an appropriate cost function, the resulting path is guar-
anteed to be the globally optimal solution and that additional user interaction can be
incorporated easily by subdividing the path into different sub paths. As the cumulative
costs for a certain path depend on both the length of the path and the costs along the
path, it is important that the costs are sufficiently large outside the vessel of interest and
relatively low on the vessel centerline. Better adherence to these requirements enables
more successful and accurate centerline detection. The centerlines are determined using
Dijkstra’s algorithm (Dijkstra, 1959) and subsequently smoothed using a Gaussian kernel
(σ=1 mm).

Start point detection

Automatic start point detection decreases the amount of user-interaction needed and fa-
cilitates pre-computation of cumulative cost images. In a cumulative cost image, voxel
values represent the minimum cumulative costs to travel from the starting point to the
location of the voxel concerned. Once the end point is provided by the user, the final
centerline is determined by following the path of steepest descent to the starting point
of the vessel, which can be determined real-time. Only when centerline extraction fails
and the user thus has to provide extra points along the centerline, additional computa-
tions are required as parts of the centerline need to be determined using a conventional
minimum cost path search.

A point in the center of the aorta in the neighborhood of the coronary ostia is used
as the start point for centerline extraction. Near this location, the descending aorta
appears as a bright, round structure in the top left quarter of the axial slices of the CTCA
image and its direction is orthogonal to the axial slices of the image. A slice based voxel
classification method is proposed that incorporates this a priori information for finding
an appropriate start point. Hereto, an image A is constructed which assigns to every voxel
x a measure which is related to the likeliness that it corresponds to the aorta center. This
measure A(x ) is the product of three terms: S(x ) related to the size of the object, L(x )

related to the location of the object and R(x ) related to the shape (i.e. roundness) of the
object (see Figure 2.3).
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To determine S(x ), the input image is divided into two classes: contrast filled (fore-
ground) regions, which are defined by a lower (Imin) and upperbound (Imax ) on intensity,
and other (background) structures. The shortest Euclidian distance to the background
class D(x ) is calculated for every foreground voxel and S(x ) is subsequently modeled
with the following Gaussian function:

S(x ) = exp

�

−
(D(x )− µs)

2

2σ2
s

�

(2.1)

with µs a parameter which should be set to a typical value of the aorta radius and σs a
parameter which controls the range of radii taken into account.

The location term L(x ) is modeled as a Gaussian function on the clockwise rotation
angle Θ(x ) between the positive x-axis and the vector from the center of the heart c(z)

to the voxel concerned:

L(x ) = exp
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with µl a parameter which should be set to a rotation angle corresponding to a typical
location of the aorta and σl a parameter which controls the range of rotation angles
taken into account. The center of the heart c(z) in slice z is approximated by searching
for the center of the biggest disc surrounded by the lungs. Resulting center points in
the axial slices are smoothed in the z-direction using a Gaussian kernel with standard
deviation σz to ensure continuity between adjacent slices.

The shape term R(x ) relates to the roundness of objects in the image, and is derived
from the standard deviation of D(y) for all voxels with |x− y|= r, with r smaller than or
equal to the minimal expected aorta radius. When x is in the center of a round structure
the distance values of the voxels lying on this circle are expected to be equal and the
standard deviation of these values, defined as stdc(x ), is therefore expected to be low.
The roundness term R(x ) is defined as follows:

R(x ) = 1−
1
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(2.3)

with ar and br parameters to control the steepness and location of the center of the error
function (Figure 2.2).

High values of A(x ) should appear at approximately the same location in several
consecutive slices. Therefore, these values are smoothed along the z-direction using
a Gaussian kernel with standard deviation σb . To keep computation time low, voxel
classification is performed on a downsampled version of the original image (max. 1283

voxels). The extracted aorta point, used as the start point for the extraction algorithm, is
the center of the voxel having the maximum value in A(x ).

Cost functions

Two different cost functions for the minimum cost path approach are considered: a ves-
selness/intensity cost function and a cost function based on region statistics.
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Figure 2.2: An example of the roundness term R(x ) of A(x ) with ar = 2.0 and br = 1.0, as used in the
experiments.

(a) Input image (b) Size S(x) (c) Location L(x) (d) Roundness R(x) (e) Resulting A(x)

Figure 2.3: Example of A(x ) values in a slice of one of the CTCA images. For illustrational purposes, manually
drawn outlines are overlayed. The cross corresponds to c(z) for the current slice.

The vesselness/intensity cost function is defined as:

C(x ) =
1

V (x ) T (x ) + ε
, (2.4)

with V (x ) the multi-scale vesselness measure proposed by Frangi et al. (1998), T (x )

an intensity measure and ε a small positive value to avoid singularity of the function
when V (x ) T (x ) approaches zero. The vesselness measure V (x ) is based on the eigen-
values λi of the Hessian matrix of the image computed at each voxel position x using
Gaussian derivate operators. Frangi et al. use the theory developed by Lindeberg (1996)
to normalize the Hessian matrix with σ2. It is not clear if this normalization will yield
optimal centerline extraction results, because there is additional smoothing of the data
intrinsically induced by the CT acquisition process and the response of the Gaussian
derivatives can be distorted by neighboring structures. Moreover, even though the nor-
malization would be optimal to give locally the best response, it still does not imply that
this normalization is optimal for finding the globally best coronary centerline. We there-
fore compute the Hessian matrix using unnormalized Gaussian derivative operators and
subsequently weigh the eigenvalues: λ

′

i
= w jλi , with w j the weighting factor for scale

j ∈ {1,2, ..., J} and J the number of scales applied. The intensity measure T (x ) is added
to the cost function to ensure the bronchi will have high cost values and to improve the
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(a) Input image (b) Vesselness (c) Intensity measure (d) V/I cost image

(e) Delta mu measure (f) Delta var measure (g) RS cost image

Figure 2.4: Example showing the different terms and the resulting cost image derived from these terms for both
the vesselness/intensity (VI, top row) and the region statistics (RS, bottom row) cost function for a slice in one of
the CTCA images.

contrast of the cost image. It is defined as a Sigmoid function:

T (x ) =
1

1+ exp
�

−as(I(x )− bs)
� (2.5)

with I(x ) the intensity of the input image and as and bs parameters to control the steep-
ness and center of the transformation function respectively.

The region statistics cost function P(x , r) is defined as (Li and Yezzi, 2007)

P(x , r) =ω+
l1

1+δ2
µ(x ,r)

+
l2

1+δ2
σ2(x ,r)

, (2.6)

with

δµ = |µ(x , r)−µ(x , r − 1)| (2.7)

and

δσ2(x , r) = |σ2(x , r)−σ2(x , r − 1)| (2.8)

where µ(x , r) and σ2(x , r) are the average intensity and variance of intensity values on
the surface of the sphere positioned at x with radius r. The parameters l1 and l2 control
the way in which both terms are weighted and ω is a non-negative constant.

Examples of the different terms and the resulting cost images derived from these
terms for a slice in one of the images can be found in Figure 2.4.
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Dimensionality reduction

To reduce memory and computational demands in the interactive part of the method,
the 4D cumulative cost image resulting from the region statistics cost function is reduced
to a 3D image. To this end we assume that for each 3D voxel the radius having minimal
cumulative costs is the most plausible radius at that 3D position. Moreover, we assume
that it is not possible that two vessels with different diameters are crossing the same voxel
in the image. The dimensionality reduction of the cumulative cost image is subsequently
achieved by taking for every voxel in the 3D image the minimum over all radii of the
cumulative cost values.

2.2.3 Experiments

Start point detection

The start point for centerline extraction was determined in all 75 images using the al-
gorithm described in Section 2.2.2. Parameter settings were determined experimentally
using the twelve images for which a manually annotated reference standard was created.
Settings for Imin, Imax, µs, µl were determined based on inspection of the intensity values
of the contrast material, the variation in aorta sizes and the variation in aorta locations in
the twelve images. All other parameters were empirically determined in order to obtain
visually reasonable results for the twelve selected images. It was observed that the results
are very robust against small changes in these parameter settings. The following settings
were used: Imin = 176HU, Imax = 776HU, µs = 15.0mm, σs = 5.0mm, µl = 1.25π,
σl = 0.3π, σz = 0.8mm, ar = 2.0, br = 1.0, r = 8.0mm and σb = 0.8mm.

Centerline extraction: quantitative evaluation

Parameter training and quantitative evaluation were performed using a leave-one-image-
out cross validation on the twelve images (48 coronary arteries) for which a manual
reference standard was available. In every step the method was trained on eleven images
(44 vessels) and tested on one image (four vessels). The parameter settings used for
the testing part of the cross validation were in every step determined on the training
data in a two-step coarse-to-fine approach. Parameter ranges and sampling step sizes
used are presented in Table 2.1. Parameter ε of Equation 2.4 was set to 10−4 for all
experiments. For the vesselness filter used in the vesselness/intensity cost function,
three (exponentially distributed) scales were chosen: 0.8 mm, 1.26 mm and 2.0 mm,
corresponding to the size of the coronary arteries as reported by Dodge et al. (1992).
Furthermore, in the training process, different combinations of values for the eigenvalue
weighting factors w j were used. These weighting factors were uniformly sampled on
the surface of a unit sphere, because the result of the minimum cost path algorithm is
not affected by multiplication of the cost function with a constant. Therefore, the ratios
of the different weight combinations are important and not their absolute values. The
corresponding x-, y- and z-coordinates of the sampled points determine the weighting
factors for scale one, two and three respectively. This sphere sampling approach was also
used to determine different combinations of parameter values forω, l1 and l2 in Equation
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Table 2.1: Ranges and step sizes used for parameter optimization in the leave-one-image-out cross validation
experiments.

Min Max Coarse steps Fine steps

α 0.1 1.0 0.3 0.1

β 0.1 1.0 0.3 0.1

c 30 360 30 10

w j - - 22 comb. 31 comb.

as -224 HU 276 HU 100 HU 50 HU

bs 5 HU 20 HU 5 HU 1 HU

ω, l1, l2 - - 126 comb. 979 comb.

2.6. The minimum radius, maximum radius and radius step-size for the computation of
Equation 2.7 and 2.8 was set to 1 mm, 7 mm and 0.5 mm respectively.

Centerline extraction was performed between the automatically found aorta point
and the manually defined end point of the vessel. For the region statistics cost function,
the start and end points were placed at all possible radius positions, eliminating the need
to define the radius of the vessel at its start and end point.

Additionally, centerline extraction was quantitatively evaluated for only the clinically
most relevant part of the vessels by extracting the first 7 cm of the vessels using the
parameter settings following from the leave-one-image-out experiments on the complete
vessels (Hong et al., 2005).

Centerline extraction: qualitative evaluation

To further demonstrate the robustness of the method, a qualitative evaluation was per-
formed on the remaining 63 images using the cost function that performed best in the
quantitative evaluation. Centerline extraction was performed between the automatically
found aorta point and a manually defined end point, which was placed as distally as
possible inside the vessel of interest. Parameters were set to the combination of values
which were most frequently optimal in the quantitative evaluation (see Table 2.2). For all
images the centerlines of four vessels (LAD, LCX, RCA and fourth) were extracted. Visual
inspection of the resulting centerlines was performed and a second point was manually
added when the path did not seem to follow the vessel of interest for more than 50%. In
those cases where the native coronary artery was replaced by bypass surgery, the second
point was placed at the start of the coronary artery bypass. Resulting new paths were
again inspected and centerline extraction was marked as failed when the new path still
did not follow more than 50% of the vessel of interest.

Evaluation measures

The part of the extracted centerlines from the aorta point to the ostium was disregarded
in the evaluation, because the aorta is not included in the clinical evaluation of the
coronary arteries.
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Two evaluation measures were implemented: one to determine the success rate of
the method and one to determine its accuracy. Both were determined using equidistantly
resampled centerlines with a sampling distance of 0.1 mm. Correspondence between
points on the automatically extracted centerline and the reference standard was deter-
mined using a triangularization approach. The set containing all points of the automat-
ically extracted centerline and the set containing the points of the reference standard
centerline are denoted with Na and Nr respectively. Let Ca ⊆ Na be the set of points
for which the distance to the corresponding point in Nr is smaller than or equal to the
radius defined at that corresponding point and let Cr ⊆ Nr be the set of points having
correspondence with points in Ca. The success rate Ms of the method was defined as:

Ms =

�

�Ca

�

�

�

�Na

�

�

, (2.9)

with |X | the cardinality of set X .
The accuracy Ma of the method was only determined for those parts of the centerline

lying within the radius of the reference standard. The rationale behind this approach is
that the magnitude of the distance to the reference centerline is no longer relevant when
the tracking simply failed. Let T be the set of triangles resulting from the triangulariza-
tion procedure for which the points from Na are an element of Ca. The accuracy measure
Ma was subsequently defined as:

Ma =

∑

t∈T area(t)

d
�

�Cr

�

�

, (2.10)

in which area(t) stands for the area of triangle t and d is the sampling distance of the
centerlines. Intuitively, Ma measures the average distance of the automatically extracted
centerline to the reference standard in successfully extracted parts of the vessel and is
therefore zero in cases of a perfect extraction, and larger otherwise. Success rate and
accuracy is averaged over multiple vessels using measures Ms and Ma respectively:

Ms =

∑

i

�

�Ca,i

�

�

∑

i

�

�Na,i

�

�

Ma =

∑

i

∑

t∈Ti
area(t)

d
∑

i

�

�Cr,i

�

�

(2.11)

Since the focus of this work is finding as much of the coronary artery centerlines
within the vessel of interest as possible, optimization was performed using the success
rate measure Ms.

Implementation

Computation of the cost images, parameter training and centerline extraction was im-
plemented using C++ and ITK (Yoo et al., 2002a) and carried out using a grid of eight
computing nodes running the Linux operating system and each equipped with two dual-
core AMD Opteron 2216 2400 MHz processors and 16 GB memory. Aorta detection
is implemented using C++ and MeVisLab (MeVisLab, Software for Medical Image Pro-
cessing and Visualization) and carried out on a PC running the Windows XP operating
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Figure 2.5: Examples of correctly found aorta points.

system and equipped with a Pentium 4 3.6 GHz processor and 4 GB memory. In the
optimization part of the leave-one-image-out experiments for the region statistics cost
function the images were downsampled with a factor two to keep computation time and
memory usage manageable. We assume that the optimization results are not affected by
this downsampling, as the intrinsic resolution of the CTCA data is approximately 1 mm
(Rollano-Hijarrubia et al., 2006). The evaluation part of the leave-one-image-out experi-
ments was performed on the full resolution data, to prevent potential degradation of the
accuracy caused by downsampling, and to allow a fair comparison with the results of the
vesselness/intensity cost function.

2.3 Results

2.3.1 Start point detection

The automatic detection of a start point in the aorta worked successfully in all 75 images.
Examples of the results are shown in Figure 2.5.

2.3.2 Centerline extraction: quantitative evaluation

Illustrations of the optimization landscape for both cost functions can be found in Figure
2.6. This figure shows the success rate Ms for varying α and β , orω and l1 while keeping
the other parameters fixed at their optimal values. Training results can be found in Table
2.2 and 2.3, which list the most frequent optimal combination of parameter settings for
the eleven training images. Centerline extraction results for the leave-one-image-out
experiments can be found in Table 2.4 and 2.5. Results on only the proximal part of the
vessels are presented in Table 2.6. A histogram showing the distribution of the success
rate measure Ms for both cost functions can be found in Figure 2.7.

It can be seen from Table 2.4 that the vesselness/intensity cost function results in
a much larger success rate (88%) than the region statistics cost function (47%). The
reason becomes clear when looking at Figure 2.7, where it can be seen that around
half of the centerline extractions failed using the region statistics cost function. For
the vesselness/intensity cost function, only three of the 48 extractions failed completely.
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Table 2.2: Most frequent best combination of parameter settings for the leave-one-image-out experiments
using the vesselness/intensity cost function.

α β c w1 w2 w3 as bs

0.5 0.4 230 0.99 0.10 0.10 4 HU -59 HU

Table 2.3: Most frequent best combination of parameter settings for the leave-one-image-out experiments
using the region statistics cost function.

ω l1 l2

0 0.23 0.97

Table 2.4: Average overlap results (Ms ) in % for automatic centerline extraction compared to the interobserver
variability.

LAD LCX RCA 4th All

Vesselness/intensity 96 78 84 96 88

Region statistics 70 28 37 62 47

Interobserver 99 98 100 100 99

Table2.5:Average accuracy results (Ma ) in mm for automatic centerline extraction compared to the interobserver
variability.

LAD LCX RCA 4th All

Vesselness/intensity 0.61 0.53 0.77 0.61 0.64

Region statistics 0.49 0.40 0.50 0.62 0.51

Interobserver 0.42 0.43 0.43 0.39 0.42

Table 2.6: Average overlap (Ms ) and accuracy results (Ma ) for automatic centerline extraction for the proximal
part (first 7 cm) of the vessels.

Overlap (%) Accuracy (mm.)

Vesselness/intensity 97 0.79

Region statistics 86 0.50
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Figure 2.6: Illustrations of the optimization landscape for both the vesselness/intensity and region statistics
cost function.
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Figure 2.7: Histogram showing the distribution of success rate (Ms ) values for centerline extraction using both
cost functions for (a) the complete coronary arteries and (b) only the proximal part of the vessels.

With respect to the accuracy, it can be noticed from Table 2.5 that the region statistics
cost function performs better (0.51 mm) when compared to the vesselness intensity cost
function (0.64 mm). By looking at the results for the proximal parts of the vessels in
Table 2.6 it can be seen that the region statistics cost function is performing much better
on these parts than on the complete coronary arteries. From Table 2.6 it is also apparent
that especially in these parts of the vessels where the diameter is relatively large, the
region statistics cost function performs better with respect to accuracy.

Examples of correctly extracted coronary artery centerlines using the vessel-
ness/intensity cost function, the reference standard as created by the three observers
and corresponding curved multi-planar reformatted images can be found in Figure 2.8.
Examples of (partly) incorrectly extracted coronary artery centerlines for both cost func-
tions can be found in Figure 2.9.
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Figure 2.8: Examples of successfully extracted coronary artery centerlines using the vesselness/intensity cost
function. The first column shows the reference standard (light gray tubes) and the automatically extracted
centerlines. The other columns show the automatically extracted centerlines projected onto CPR images based
on the reference standard centerline. The color coding of the extracted centerline indicates the distance from the
automatically extracted centerline to the reference standard. Arrows in the CPR images indicate: 1) successfully
crossed low contrast region caused by extreme pathology, 2) decreased extraction accuracy at location where
the radius of the vessel is relatively large, and 3) and 4) centerline traversing a stent and a calcified region, due
to false positive responses of the vesselness filter.
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0 mm 2 mm

Figure 2.9: Some examples where centerline extraction was (partly) incorrect. Renderings are similar to those
in Figure 2.8. The two leftmost images show results for the vesselness/intensity cost function. The other two
images show results for the region statistics cost function.

Table 2.7: Number and percentage of successful and number of failed centerline extractions for the different
categories in the qualitative evaluation.

1 pt. 2 pt. Failed Total Success

Breathing artifacts 16 19 5 24 79%

Bypasses 18 25 3 28 89%

Other cases 172 189 11 200 95%

Total 206 233 19 252 92%

2.3.3 Qualitative evaluation

Qualitative evaluation was performed using the vesselness/intensity cost function, which
was the cost function yielding highest success rate values in the quantitative evaluation.
Parameters were set to the values listed in Table 2.2. Centerlines were successfully ex-
tracted for 233 out of the 252 vessels (92%). For 206 vessels the user-defined end point
was sufficient to extract the centerline successfully. For another 27 images, the method
succeeded after providing a second point inside the vessel. For the remaining 19 vessels,
centerline extraction failed. For the images with coronary artery bypasses, three one-click
centerlines were marked as failed because the path followed the native coronary artery
and not the bypass. After definition of the second point at the start of the bypass, all by-
pass centerlines were successfully extracted. An overview of the results can be found in
Table 2.7. Overlap and accuracy for the 233 correctly extracted centerlines was visually
comparable to the results of the quantitative evaluation.

2.3.4 Computation times

The running time of the proposed aorta detection method was on average 45 seconds.
Pre-computation of the 3D vesselness/intensity cost image and the 4D region statistics
cost image took on average 10 and 200 minutes respectively. Pre-computation of the
cumulative cost image takes an additional computation time of 5 and 50 minutes respec-
tively. All these steps can be done as a fully automated preprocessing step, after which
centerlines can be presented real-time when the end point is provided by the user.
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All computation times reported correspond to single-threaded implementations of the
method. Moreover, computation times reported for the vesselness/intensity cost func-
tion are based on computation on the full resolution images, while computation times
reported for the region statistics cost function are based on the downsampled versions
of the volumes. Only our implementation for the region statistics cost function was opti-
mized for speed. Parallelization of the cost image computation may further increase the
computation time.

2.4 Discussion and Conclusions

The application of minimum cost path approaches for coronary centerline extraction from
CT coronary angiography was evaluated. Two different cost functions were considered.
The first cost function was based on a vesselness measure and intensity information, and
the second cost function, based on region statistics, was recently proposed by Li and
Yezzi (2007).

User interaction is limited to one mouse click per coronary artery. The start point for
the extraction algorithm was determined using a method to automatically find a point in
the center of the aorta in one of the axial slices. This method found a suitable start point
in all 75 evaluated images.

Quantitative evaluation of centerline extraction using the minimum cost path ap-
proach and both cost functions was performed using leave-one-image-out cross valida-
tion in which also parameter optimization took place. For the vesselness/intensity cost
function, this optimization procedure confirmed the settings proposed by Frangi et al.
(1998) for the vesselness filter. Furthermore, it was found that the vesselness measure
computed at the smallest scale (σ = 0.8mm) resulted in the highest success rate of the
method, which was reflected in a large value for weighting factor w1. Further inspection
of the extraction results revealed that using higher weighting factors for the larger scales
resulted in incorrect extractions due to false positive responses of the vesselness filter,
e.g. at the borders of the heart. For the region statistics cost function it turned out that
setting ω to zero yielded highest success rate values for the complete coronary arteries.

The leave-one-image-out cross validation showed that 88% of the vessel centerlines
was extracted correctly using one user-defined point and the vesselness/intensity cost
function. For three cases centerline extraction failed, because the wrong vessel was fol-
lowed. High cost values for a part of the vessel of interest and a substantial difference
in vessel lengths caused the integrated costs along the path through the wrong vessel to
be smaller than the integrated costs along the vessel centerline of interest. Retrospec-
tively clicking one additional point in the vessel of interest would resolve this problem,
but leads to additional computations, as the precomputed cumulative cost image can not
be used for the extraction of the complete coronary centerline. Using the region statis-
tics cost function the method was able to extract 47% of the centerlines correctly. As
can be seen in Figure 2.4, the region statistics cost function results in a large number
of low costs regions inside the heart, often resulting in paths with smaller cumulative
costs through these regions. The interobserver variability for the success rate measure
was 99%. Considering the proximal parts of the vessels only, the region statistics cost
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function performed better with respect to the success rate measure (86%) compared to
extraction of the complete coronary arteries.

It can be noticed that the vesselness/intensity cost function, which yields high suc-
cess rate measures, is performing worse on the accuracy measure. On the other hand,
the region statistics cost function results in a higher accuracy, but is less successful in
extracting large coronary arteries. This difference can, for example, be noticed in Figure
2.9, where the correctly extracted centerlines by the region statistics cost function are
better aligned with the center of the vessels than the centerlines extracted by the vessel-
ness/intensity cost function. The accuracy difference between centerline extraction with
the two cost functions was especially large in the parts of the vessel with relatively larger
diameters. This is probably owing to the incorporation of the radius of the vessel in
the 4th dimension of the cost image. For the vesselness/intensity measure, on the other
hand, the influence of the large scales is minimized by the optimization procedure, and
the path will therefore follow high vesselness responses of the small scales, which can
make the path twist through the vessel or easily traverse tubular calcified plaques. The
latter also causes a decrease in the success rate of the method. Other causes for small
errors are jumps to nearby vessels or adjacent structures in the image having low cost
values.

Qualitative evaluation on 63 images confirmed the robustness of the minimum cost
path approach in combination with the vesselness/intensity cost function. For 233 out of
the 252 vessels (92%) centerlines were extracted successfully. In the other nineteen cases
the method failed, which was mainly caused by severe pathology such as chronic total
occlusions and irregular heart beat artifacts. The proposed method performed slightly
worse for coronary artery bypasses when compared to native coronary arteries (89%
instead of 95%), which may be caused by the fact that often more pathology is present
in these images. In images with severe breathing artifacts the method was still able to
extract 79% of the vessel centerlines correctly.

There are a number of ways to potentially improve the success rate and accuracy of
centerline extraction. With respect to the vesselness/intensity cost function, adding a
gradient term may allow to differentiate true and false positives of the vesselness filter at
larger scales, potentially improving the accuracy in the vessel sections with larger diam-
eter. Additionally, increasing cost values in calcified regions utilizing calcium detection
as preprocessing step, may improve the results as well. Recently proposed methods, for
example based on oriented flux computations (Law and Chung, 2009) could potentially
be used as well to address these problems. The success rate for the region statistics cost
function may improve considerably by adapting the cost function to make the costs larger
for large contrast filled regions, forcing the extracted centerlines to follow the surface of
the heart instead of taking a Euclidian shorter path through the heart chambers. Combi-
nation of both cost functions can potentially fully exploit their advantages, yielding high
success rates and accurate centerline extractions. Additionally, it is possible to improve
the accuracy of the extracted centerlines by segmentation of the coronary lumen using
the initial extracted centerline and a subsequent derivation of the central axis of this seg-
mentation. Note that in this work Dijkstra’s algorithm (Dijkstra, 1959) is used to solve
the minimum cost path problem. Using fast marching methods as was used, for example,
in the work of Li and Yezzi (2007) may potentially improve the accuracy of both methods
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slightly and eliminate the need to smooth the paths after centerline extraction.
The method is evaluated on data from two different scanner types of the same vendor

and acquired at the same institution. Although this is a limitation of the study, it is
expected that similar performance can be achieved in unseen images of similar resolution
as CT values are calibrated. Minor tuning of parameter settings may be required, e.g. as
a consequence of different contrast injection protocols, scan parameter settings, and the
use of different reconstruction kernels.

In this work, a distinction was made between interaction time and pre-computation
time, the former considered more important in clinical practice than the latter. The
conventional minimum cost path approach in which the path is computed after manual
definition of the start and end point of the vessel by the user can take up to 30 seconds
per vessel for a 3D cost function and three minutes for a 4D cost function, depending
on the image quality and the amount of pathology present. The presented aorta detec-
tion method is easy to implement and facilitates pre-computation of all expensive parts
of the extraction algorithm, making it possible to extract coronary artery centerlines
real-time after user interaction. Furthermore, the presented dimensionality reduction
method makes it possible to follow the same approach for 4D cost images. Although the
time needed for pre-computation of the cumulative cost image is relatively large, in the
majority of the clinical and research situations this does not cause a problem, because
there is sufficient time between reconstruction of the CTCA data and evaluation of the
data. Note that computation of the 4D region statistics cost function, which we opti-
mized for speed, is computationally much more expensive than computation of the 3D
vesselness/intensity cost function. Multi-threaded implementation of this software can
on the other hand still speed up the cost image computation. With respect to the ves-
selness/intensity cost function, pre-computation of the cost image was performed using
software that was not optimized for speed and it can therefore still be sped up consid-
erably, e.g. by computation of the cost image on a region of interest or by using GPU
accelerated software.

In conclusion, a minimum cost path approach using intensity and second order image
information is very well able to extract coronary artery centerlines from CTCA data and
can be a helpful tool in a wide range of research and clinical situations, especially when
user-interaction and computation time are minimized using the methods presented in
this work.
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Abstract

Efficiently obtaining a reliable coronary artery centerline from computed tomography angiog-
raphy data is relevant in clinical practice. Whereas numerous methods have been presented for
this purpose, up to now no standardized evaluation methodology has been published to reliably
evaluate and compare the performance of the existing or newly developed coronary artery cen-
terline extraction algorithms. This chapter describes a standardized evaluation methodology and
reference database for the quantitative evaluation of coronary artery centerline extraction algo-
rithms. The contribution of this work is fourfold: 1) a method is described to create a consensus
centerline with multiple observers, 2) well-defined measures are presented for the evaluation of
coronary artery centerline extraction algorithms, 3) a database containing thirty-two cardiac CTA
datasets with corresponding reference standard is described and made available, and 4) thirteen
coronary artery centerline extraction algorithms, implemented by different research groups, are
quantitatively evaluated and compared. The presented evaluation framework is made available to
the medical imaging community for benchmarking existing or newly developed coronary centerline
extraction algorithms.
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3.1 Introduction

Coronary artery disease (CAD) is currently the primary cause of death among American
males and females (Rosamond et al., 2008) and one of the main causes of death in the
world (World Health Organization, 2009). The gold standard for the assessment of CAD
is conventional coronary angiography (CCA) (Cademartiri et al., 2007). However, be-
cause of its invasive nature, CCA has a low, but non-negligible, risk of procedure related
complications (Zanzonico et al., 2006). Moreover, it only provides information on the
coronary lumen.

Computed Tomography Angiography (CTA) is a potential alternative for CCA
(Mowatt et al., 2008). CTA is a non-invasive technique that allows, next to the as-
sessment of the coronary lumen, the evaluation of the presence, extent, and type (non-
calcified or calcified) of coronary plaque (Leber et al., 2006). Such non-invasive, com-
prehensive plaque assessment may be relevant for improving risk stratification when
combined with current risk measures: the severity of stenosis and the amount of calcium
(Cademartiri et al., 2007). A disadvantage of CTA is that the current imaging protocols
are associated with a higher radiation dose exposure than CCA (Einstein et al., 2007).

Several techniques to visualize CTA data are used in clinical practice for the diag-
nosis of CAD. Besides evaluating the axial slices, other visualization techniques such
as maximum intensity projections (MIP), volume rendering techniques, multi-planar re-
formatting (MPR), and curved planar reformatting (CPR) are used to review CTA data
(Cademartiri et al., 2007). CPR and MPR images of coronary arteries are based on the
CTA image and a central lumen line (for convenience referred to as centerline) through
the vessel of interest (Kanitsar et al., 2002). These reformatted images can also be used
during procedure planning for, among other things, planning the type of intervention
and size of stents (Hecht, 2008). Efficiently obtaining a reliable centerline is therefore
relevant in clinical practice. Furthermore, centerlines can serve as a starting point for lu-
men segmentation, stenosis grading, and plaque quantification (Marquering et al., 2005;
Wesarg et al., 2006; Khan et al., 2006).

This chapter introduces a framework for the evaluation of coronary artery centerline
extraction methods. The framework encompasses a publicly available database of coro-
nary CTA data with corresponding reference standard centerlines derived from manually
annotated centerlines, a set of well-defined evaluation measures, and an on-line tool for
the comparison of coronary CTA centerline extraction techniques. We demonstrate the
potential of the proposed framework by comparing thirteen coronary artery centerline
extraction methods, implemented by different authors as part of a segmentation chal-
lenge workshop at the Medical Image Computing and Computer-Assisted Intervention
(MICCAI) conference (Metz et al., 2008b).

In the next two sections we will respectively describe our motivation of the study
presented in this chapter and discuss previous work on the evaluation of coronary seg-
mentation and centerline extraction techniques. The evaluation framework will then
be outlined by discussing the data, reference standard, evaluation measures, evaluation
categories, and web-based framework. The chapter will be concluded by presenting the
comparative results of the thirteen centerline extraction techniques, a discussion of these
results, and a conclusion about the work presented.
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3.2 Motivation

The value of a standardized evaluation methodology and a publicly available image
repository has been shown in a number of medical image analysis and general com-
puter vision applications, for example in the Retrospective Image Registration Evalua-
tion Project (West et al., 1997), the Digital Retinal Images for Vessel Extraction database
(Staal et al., 2004), the Lung Image Database project (Armato et al., 2004), the Mid-
dlebury Stereo Vision evaluation (Scharstein and Szeliski, 2002), the Range Image Seg-
mentation Comparison (Hoover et al., 1996), the Berkeley Segmentation Dataset and
Benchmark (Martin et al., 2001), and a workshop and on-line evaluation framework for
liver and caudate segmentation (van Ginneken et al., 2007).

Similarly, standardized evaluation and comparison of coronary artery centerline ex-
traction algorithms has scientific and practical benefits. A benchmark of state-of-the-art
techniques is a prerequisite for continued progress in this field: it shows which of the
popular methods are successful and researchers can quickly apprehend where methods
can be improved.

It is also advantageous for the comparison of new methods with the state-of-the-
art. Without a publicly available evaluation framework, such comparisons are difficult to
perform: the software or source code of existing techniques is often not available, articles
may not give enough information for re-implementation, and if enough information is
provided, re-implementation of multiple algorithms is a laborious task.

The understanding of algorithm performance that results from the standardized eval-
uation also has practical benefits. It may, for example, steer the clinical implementation
and utilization, as a system architect can use objective measures to choose the best algo-
rithm for a specific task.

Furthermore, the evaluation could show under which conditions a particular tech-
nique is likely to succeed or fail, it may therefore be used to improve the acquisition
methodology to better match the post-processing techniques.

It is therefore our goal to design and implement a standardized methodology for
the evaluation and comparison of coronary artery centerline extraction algorithms and
publish a cardiac CTA image repository with associated reference standard. To this end,
we will discuss the following tasks below:

• Collection of a representative set of cardiac CTA datasets, with a manually anno-
tated reference standard, available for the entire medical imaging community;

• Development of an appropriate set of evaluation measures for the evaluation of
coronary artery centerline extraction methods;

• Development of an accessible framework for easy comparison of different algo-
rithms;

• Application of this framework to compare several coronary CTA centerline extrac-
tion techniques;

• Public dissemination of the results of the evaluation.
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3.3 Previous work

Approximately thirty papers have appeared that present and/or evaluate
(semi-)automatic techniques for the segmentation or centerline extraction of human
coronary arteries in cardiac CTA datasets. The proposed algorithms have been evaluated
by a wide variety of evaluation methodologies.

A large number of methods have been evaluated qualitatively (Bartz and Lakare,
2005; Bouraoui et al., 2008; Carrillo et al., 2007; Florin et al., 2004, 2006; Hennemuth
et al., 2005; Lavi et al., 2004; Lorenz et al., 2003; Luengo-Oroz et al., 2007; Nain et al.,
2004; Renard and Yang, 2008; Schaap et al., 2007; Szymczak et al., 2006; Wang and
Smedby, 2007; Wesarg and Firle, 2004; Yang et al., 2005, 2006). In these articles
detection, extraction, or segmentation correctness have been visually determined. An
overview of these methods is given in Table 3.1. Other articles include a quantitative
evaluation of the performance of the proposed methods (Bülow et al., 2004; Busch et al.,
2007; Dewey et al., 2004; Larralde et al., 2003; Lesage et al., 2008; Li and Yezzi, 2007;
Khan et al., 2006; Marquering et al., 2005; Metz et al., 2007; Olabarriaga et al., 2003;
Wesarg et al., 2006; Yang et al., 2007). See Table 3.2 for an overview of these methods.

None of the abovementioned algorithms has been compared to another and only
three methods were quantitatively evaluated on both the extraction ability (i.e. how
much of the real centerline can be extracted by the method?) and the accuracy (i.e. how
accurately can the method locate the centerline or wall of the vessel?). Moreover, only
one method was evaluated using annotations from more than one observer (Metz et al.,
2007).

Four methods were assessed on their ability to quantify clinically relevant measures,
such as the degree of stenosis and the number of calcium spots in a vessel (Yang et al.,
2005; Dewey et al., 2004; Khan et al., 2006; Wesarg et al., 2006). These clinically
oriented evaluation approaches are very appropriate for assessing the performance of
a method for a possible clinical application, but the performance of these methods for
other applications, such as describing the geometry of coronary arteries (Lorenz and von
Berg, 2006; Zhu et al., 2009), can not easily be judged.

Two of the articles (Dewey et al. (2004) and Busch et al. (2007)) evaluate a commer-
cially available system (respectively Vitrea 2, Version 3.3, Vital Images and Syngo Cir-
culation, Siemens). Several other commercial centerline extraction and stenosis grading
packages have been introduced in the past years, but we are not aware of any scientific
publication containing a clinical evaluation of these packages.

3.4 Evaluation framework

In this section we will describe our framework for the evaluation of coronary CTA cen-
terline extraction techniques.

3.4.1 Cardiac CTA data

The CTA data was acquired in the Erasmus MC, University Medical Center Rotterdam,
The Netherlands. Thirty-two datasets were randomly selected from a series of patients
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Table 3.3: Image quality of the training and test datasets.

Poor Moderate Good Total

Training 2 3 3 8

Testing 4 8 12 24

who underwent a cardiac CTA examination between June 2005 and June 2006. Twenty
datasets were acquired with a 64-slice CT scanner and twelve datasets with a dual-source
CT scanner (Sensation 64 and Somatom Definition, Siemens Medical Solutions, Forch-
heim, Germany).

A tube voltage of 120 kV was used for both scanners. All datasets were acquired with
ECG-pulsing (Weustink et al., 2008). The maximum current (625 mA for the dual-source
scanner and 900 mA for the 64-slice scanner) was used in the window from 25% to 70%
of the R-R-interval and outside this window the tube current was reduced to 20% of the
maximum current.

Both scanners operated with a detector width of 0.6 mm. The image data was ac-
quired with a table feed of 3.8 mm per rotation (64-slice datasets) or 3.8 mm to 10 mm,
individually adapted to the patient’s heart rate (dual-source datasets).

Diastolic reconstructions were used, with reconstruction intervals varying from
250 ms to 400 ms before the R-peak. Three datasets were reconstructed using a sharp
(B46f) kernel, all others were reconstructed using a medium-to-smooth (B30f) kernel.
The mean voxel size of the datasets is 0.32× 0.32× 0.4mm3.

Training and test datasets

To ensure representative training and test sets, the image quality of and presence of
calcium in each dataset was visually assessed by a radiologist with three years experience
in cardiac CT.

Image quality was scored as poor (defined as presence of image-degrading artifacts
and evaluation only possible with low confidence), moderate (presence of artifacts but
evaluation possible with moderate confidence) or good (absence of any image-degrading
artifacts related to motion and noise). Presence of calcium was scored as absent, modest
or severe. Based on these scorings the data was distributed equally over a group of 8 and
a group of 24 datasets. The patient and scan parameters were assessed by the radiologist
to be representative for clinical practice. Table 3.3 and 3.4 describe the distribution of
respectively the image quality and calcium scores in the datasets.

The first group of 8 datasets can be used for training and the other 24 datasets
are used for performance assessment of the algorithms. All the thirty-two cardiac CTA
datasets and the corresponding reference standard centerlines for the training data are
made publicly available.
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Table 3.4: Presence of calcium in the training and test datasets.

Low Moderate Severe Total

Training 3 4 1 8

Testing 9 12 3 24

3.4.2 Reference standard

In this work we define the centerline of a coronary artery in a CTA scan as the curve that
passes through the center of gravity of the lumen in each cross-section. We define the
start point of a centerline as the center of the coronary ostium (i.e. the point where the
coronary artery originates from the aorta), and the end point as the most distal point
where the artery is still distinguishable from the background. The centerline is smoothly
interpolated if the artery is partly indistinguishable from the background, e.g. in case of
a total occlusion or imaging artifacts.

This definition was used by three trained observers to annotate centerlines in the
selected cardiac CTA datasets. Four vessels were selected for annotation by one of the
observers in all 32 datasets, yielding 32× 4= 128 selected vessels. The first three vessels
were always the right coronary artery (RCA), left anterior descending artery (LAD), and
left circumflex artery (LCX). The fourth vessel was selected from the large side branches
of these main coronary arteries and the selection was as follows: first diagonal branch
(14x), second diagonal branch (6x), optional diagonal coronary artery (6x), first obtuse
marginal branch (2x), posterior descending artery (2x), and acute marginal artery (2x).
This observer annotated for all the four selected vessels points close to the selected ves-
sels. These points (denoted with ’point A’) unambiguously define the vessels, i.e. the
vessel of interest is the vessel closest to the point and no side-branches can be observed
after this point.

After the annotation of these 128 points, the three observers used these points to
independently annotate the centerlines of the same four vessels in the 32 datasets. The
observers also specified the radius of the lumen at least every 5 mm, where the radius
was chosen such that the enclosed area of the annotated circle matched the area of the
lumen. The radius was specified after the complete central lumen line was annotated
(see Figure 3.3).

The paths of the three observers were combined to one centerline per vessel using
a mean shift algorithm for open curves: The centerlines are averaged while taking into
account the possibly spatially varying accuracy of the observers by iteratively estimating
the reference standard and the accuracy of the observers. Each point of the resulting ref-
erence standard is a weighted average of the neighboring observer centerline points, with
weights corresponding to the locally estimated accuracy of the observers (van Walsum
et al., 2008).

After creating this first weighted average, a consensus centerline was created with the
following procedure: The observers compared their centerlines with the average center-
line to detect and subsequently correct any possible annotation errors. This comparison
was performed utilizing curved planar reformatted images displaying the annotated cen-
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(a) (b) (c) (d)

Figure 3.1: An example of the data with corresponding reference standard. (a) axial view of data (b) coronal
view (c) sagittal view and (d) a 3D rendering of the reference standard.

terline color-coded with the distance to the reference standard and vice-versa. The three
observers needed in total approximately 300 hours for the complete annotation and cor-
rection process.

After the correction step the centerlines were used to create the reference standard,
using the same mean shift algorithm. Note that the uncorrected centerlines were used to
calculate the inter-observer variability and agreement measures (see Section 3.4.5).

The points where for the first time the centerlines of two observers lie within the
radius of the reference standard when traversing over this centerline from respectively
the start to the end or vice versa were selected as the start- and end point of the reference
standard. Because the observers used the abovementioned centerline definition it is
assumed that the resulting start points of the reference standard centerlines lie within
the coronary ostium.

The corrected centerlines contained on average 44 points and the average distance
between two successive annotated points was 3.1 mm. The 128 resulting reference stan-
dard centerlines were on average 138 mm (std. dev. 41 mm, min. 34 mm, max. 249 mm)
long.

The radius of the reference standard was based on the radii annotated by the
observers and a point-to-point correspondence between the reference standard and
the three annotated centerlines. The reference standard centerline and the corrected
observer centerlines were first resampled equidistantly using a sampling distance of
0.03 mm. Dijkstra’s graph searching algorithm was then used to associate each point
on the reference standard with one or more points on each annotated centerline and vice
versa. Using this correspondence, the radius at each point of the reference standard was
determined by averaging the radius of all the connected points on the three annotated
centerlines (see also Figure 3.2 and Figure 3.3). An example of annotated data with
corresponding reference standard is shown in Figure 3.1. Details about the connectivity
algorithm are given in Section 3.4.3.

3.4.3 Correspondence between centerlines

All the evaluation measures are based on a point-to-point correspondence between the
reference standard and the evaluated centerline. This section explains the mechanism
for determining this correspondence.
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Figure 3.2: An illustrative example of the mean shift algorithm showing the annotations of the three observers
as a thin black line, the resulting average as a thick black line, and the correspondences that are used during the
last mean shift iteration in light-gray.

Figure 3.3: An example of the annotations of the three observers in black and the resulting reference standard
in white. The crosses indicate the centers and the circles indicate the radii.

Before the correspondence is determined the centerlines are first sampled equidis-
tantly using a sampling distance of 0.03 mm, enabling an accurate comparison. The
evaluated centerline is then clipped with a disc that is positioned at the start of the ref-
erence standard centerline (i.e. in or very close to the coronary ostium). The centerlines
are clipped because we define the start point of a coronary centerline at the coronary
ostium and because for a variety of applications the centerline can start somewhere in
the aorta. The radius of the disc is twice the annotated vessel radius and the disc normal
is the tangential direction at the beginning of the reference standard centerline. Every
point before the first intersection of a centerline and this disc is not taken into account
during evaluation.

The correspondence is then determined by finding the minimum of the sum of the
Euclidean lengths of all point-point connections that are connecting the two centerlines
over all valid correspondences. A valid correspondence for centerline I, consisting of an
ordered set of points pi (0 ≤ i < n, p0 is the most proximal point of the centerline), and
centerline II, consisting of an ordered set of points q j (0≤ j < m, q0 is the most proximal
point of the centerline), is defined as the ordered set of connections C = {c0, . . . , cn+m−1},
where ck is a tuple [pa,qb] that represents a connection from pa to qb, which satisfies the
following conditions:

• The first connection c0 connects the start points: c0 = [p0,q0].

• The last connection cn+m−1 connects the end points: cn+m−1 = [pn−1,qm−1].
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• If connection ck = [pa,qb] then connection ck+1 equals either [pa+1,qb] or
[pa,qb+1].

These conditions guarantee that each point of centerline I is connected to at least one
point of centerline II and vice versa.

Dijkstra’s graph search algorithm is used on a matrix with connection lengths to de-
termine the minimum Euclidean length correspondence. See Figure 3.2 for an example
of a resulting correspondence.

3.4.4 Evaluation measures

Coronary artery centerline extraction may be used for different applications, and thus
different evaluation measures may apply. We account for this by employing a number
of evaluation measures. With these measures we discern between extraction capability
and extraction accuracy. Accuracy can only be evaluated when extraction succeeded; in
case of a tracking failure the magnitude of the distance to the reference centerline is no
longer relevant and should not be included in the accuracy measure.

Definition of true positive, false positive and false negative points

All the evaluation measures are based on a labeling of points on the centerlines as true
positive, false negative or false positive. This labeling, in its turn, is based on a cor-
respondence between the points of the reference standard centerline and the points of
the centerline to be evaluated. The correspondence is determined with the algorithm
explained in Section 3.4.3.

A point of the reference standard is marked as true positive TPRov if the distance to at
least one of the connected points on the evaluated centerline is less than the annotated
radius and false negative FNov otherwise.

A point on the centerline to be evaluated is marked as true positive TPMov if there is
at least one connected point on the reference standard at a distance less than the radius
defined at that reference point, and it is marked as false positive FPov otherwise. With
‖.‖ we denote the cardinality of a set of points, e.g. ‖TPRov‖ denotes the number of
reference points marked true positive. See also Figure 3.4 for a schematic explanation of
these terms and the terms mentioned in the next section.

Overlap measures

Three different overlap measures are used in our evaluation framework.

Overlap (OV) represents the ability to track the complete vessel annotated by the human
observers and this measure is similar to the well-known Dice coefficient. It is defined as:

OV =
‖TPMov‖+ ‖TPRov‖

‖TPMov‖+ ‖TPRov‖+ ‖FNov‖+ ‖FPov‖
. (3.1)

Overlap until first error (OF) determines how much of a coronary artery has been ex-
tracted before making an error. This measure can for example be of interest for image



3.4. EVALUATION FRAMEWORK 45

guided intra-vascular interventions in which guide wires are advanced based on preoper-
atively extracted coronary geometry (Ramcharitar et al., 2009). The measure is defined
as the ratio of the number of true positive points on the reference before the first error
(TPRof) and the total number of reference points (TPRof + FNof):

OF =
‖TPRof‖

‖TPRof‖+ ‖FNof‖
. (3.2)

The first error is defined as the first FNov point when traversing from the start of the
reference standard to its end while ignoring false negative points in the first 5 mm of the
reference standard. Errors in the first 5 mm are not taken into account because of the
strictness of this measure and the fact that the beginning of a coronary artery centerline
is sometimes difficult to define and for some applications not of critical importance. The
threshold of five millimeters is equal to the average diameter annotated at the beginning
of all the reference standard centerlines.

Overlap with the clinically relevant part of the vessel (OT) gives an indication of how
well the method is able to track the section of the vessel that is assumed to be clinically
relevant. Vessel segments with a diameter of 1.5 mm or larger, or vessel segments that
are distally from segments with a diameter of 1.5 mm or larger are assumed to be clini-
cally relevant (Leschka et al., 2005; Ropers et al., 2006). The point closest to the end of
the reference standard with a radius larger than or equal to 0.75 mm is determined. Only
points on the reference standard between this point and the start of the reference stan-
dard and points on the (semi-)automatic centerline connected to these reference points
are used when defining the true positives (TPMot and TPRot), false negatives (FNot) and
false positives (FPot). The OT measure is calculated as follows:

OT=
‖TPMot‖+ ‖TPRot‖

‖TPMot‖+ ‖TPRot‖+ ‖FNot‖+ ‖FPot‖
. (3.3)

Accuracy measure

In order to discern between tracking ability and tracking accuracy we only evaluate the
accuracy within sections where tracking succeeded.

Average inside (AI) is the average distance of all the connections between the reference
standard and the automatic centerline given that the connections have a length smaller
than the annotated radius at the connected reference point. The measure represents
the accuracy of centerline extraction, provided that the evaluated centerline is inside the
vessel.

3.4.5 Observer performance and scores

Each of the evaluation measures is related to the performance of the observers by a
relative score. A score of 100 points implies that the result of the method is perfect,
50 points implies that the performance of the method is similar to the performance of
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Figure 3.4: An illustration of the terms used in the evaluation measures (see Section 3.4.4). The reference
standard with annotated radius is depicted in gray. The terms on top of the figure are assigned to points on the
centerline found by the evaluated method. The terms below the reference standard line are assigned to points
on the reference standard.

the observers, and 0 points implies a complete failure. This section explains how the
observer performance is quantified for each of the four evaluation measures and how
scores are created from the evaluation measures by relating the measures to the observer
performance.

Overlap measures

The inter-observer agreement for the overlap measures is calculated by comparing the
uncorrected paths with the reference standard. The three overlap measures (OV, OF, OT)
were calculated for each uncorrected path and the true positives, false positives and false
negatives for each observer were combined into inter-observer agreement measures per
centerline as follows:

OVag =

∑

(‖TPRi
ov‖+ ‖TPMi

ov‖)
∑

(‖TPRi
ov‖+ ‖TPMi

a‖+ ‖FPi
ov‖+ ‖FNi

ov‖)

OFag =

∑

‖TPRi
of‖

∑

(‖TPRi
of‖+ ‖FNi

of‖)

OTag =

∑

(‖TPRi
ot‖+ ‖TPMi

ot‖)
∑

(‖TPRi
ot‖+ ‖TPMi

ot‖+ ‖FPi
ot‖+ ‖FNi

ot‖)
,

where i = {0,1,2} indicates the observer.
After calculating the inter-observer agreement measures, the performance of the

method is scored. For methods that perform better than the observers the OV, OF, and OT
measures are converted to scores by linearly interpolating between 100 and 50 points, re-
spectively corresponding to an overlap of 1.0 and an overlap similar to the inter-observer
agreement value. If the method performs worse than the inter-observer agreement the
score is obtained by linearly interpolating between 50 and 0 points, with 0 points corre-
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Figure 3.5: Illustration of how the measures are converted to scores for (a) an overlap measures and (b) the
accuracy measure.

sponding to an overlap of 0.0:

ScoreO =

(

(Om/Oag) ∗ 50 Om ≤ Oag

50+ 50 ∗
Om−Oag

1−Oag
Om > Oag,

where Om and Oag define the OV, OF, or OT performance of respectively the method and
the observer. An example of this conversion is shown in Figure 3.5(a).

Accuracy measure

The inter-observer variability for the accuracy measure AI is defined at every point of the
reference standard as the expected error that an observer locally makes while annotating
the centerline. It is determined at each point as the root mean squared distance between
the uncorrected annotated centerline and the reference standard:

Aio(x) =

q

1/n
∑

(d(p(x), pi))
2,

where n= 3 (three observers), and d(p(x), pi) is the average distance from point p(x) on
the reference standard to the connected points on the centerline annotated by observer
i.

The extraction accuracy of the method is related per connection to the inter-observer
variability. A connection is worth 100 points if the distance to the reference standard is
0 mm and it is worth 50 points if the distance is equal to the inter-observer variability
at that point. Methods that perform worse than the inter-observer variability get a de-
creasing amount of points if the distance increases. They are rewarded per connection
50 points times the fraction of the inter-observer variability and the method accuracy:

ScoreA(x) =

¨

100− 50(Am(x)/Aio(x)) Am(x) ≤ Aio(x)

(Aio(x)/Am(x)) ∗ 50 Am(x) > Aio(x),
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where Am(x) and Aio(x) define the distance from the method centerline to the reference
centerline and the inter-observer accuracy variability at point x . An example of this
conversion is shown in Figure 3.5(b).

The average score over all connections that connect TPR and TPM points yields the
AI observer performance score. Because the average accuracy score is a non-linear com-
bination of all the distances, it can happen that a method has a lower average accuracy
in millimeters and a higher score in points than another method, or vice versa.

Note that because the reference standard is constructed from the observer center-
lines, the reference standard is slightly biased towards the observer centerlines, and thus
a method that performs similar as an observer according to the scores probably performs
slightly better. Although more sophisticated methods for calculating the observer per-
formance and scores would have been possible, we decided because of simplicity and
understandability for the approach explained above.

3.4.6 Ranking the algorithms

In order to rank the different coronary artery centerline extraction algorithms the evalu-
ation measures have to be combined. We do this by ranking the resulting scores of all the
methods for each measure and vessel. Each method receives for each vessel and measure
a rank ranging from 1 (best) to the number of participating methods (worst). A user of
the evaluation framework can manually mark a vessel as failed. In that case the method
will be ranked last for the flagged vessel and the absolute measures and scores for this
vessel will not be taken into account in any of the statistics.

The tracking capability of a method is defined as the average of all the
3(overlap measures)× 96 (vessels) = 288 related ranks. The average of all the 96 accu-
racy measure ranks defines the tracking accuracy of each method. The average overlap
rank and the accuracy rank are averaged to obtain the overall quality of each of the
methods and the method with the best (i.e. lowest) average rank is assumed to be the
best.

3.5 Algorithm categories

We discern three different categories of coronary artery centerline extraction algorithms:
automatic extraction methods, methods with minimal user interaction and interactive
extraction methods.

3.5.1 Category 1: automatic extraction

Automatic extraction methods find the centerlines of coronary arteries without user in-
teraction. In order to evaluate the performance of automatic coronary artery centerline
extraction, two points per vessel are provided to extract the coronary artery of interest:

• Point A: a point inside the distal part of the vessel; this point unambiguously defines
the vessel to be tracked;
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• Point B: a point approximately 3 cm (measured along the centerline) distal of the
start point of the centerline.

Point A should be used for selecting the appropriate centerline. If the automatic extrac-
tion result does not contain centerlines near point A, point B can be used. Point A and
B are only meant for selecting the right centerline and it is not allowed to use them as
input for the extraction algorithm.

3.5.2 Category 2: extraction with minimal user interaction

Extraction methods with minimal user interaction are allowed to use one point per vessel
as input for the algorithm. This can be either one of the following points:

• Point A or B, as defined above;

• Point S: the start point of the centerline;

• Point E: the end point of the centerline;

• Point U: any manually defined point.

Points A, B, S and E are provided with the data. Furthermore, in case the method ob-
tains a vessel tree from the initial point, point A or B may be used after the centerline
determination to select the appropriate centerline.

3.5.3 Category 3: interactive extraction

All methods that require more user-interaction than one point per vessel as input are
part of category 3. Methods can use e.g. both points S and E from category 2, a series of
manually clicked positions, or one point and a user-defined threshold.

3.6 Web-based evaluation framework

The proposed framework for the evaluation of CTA coronary artery centerline extraction
algorithms is made publicly available through a web-based interface at
(http://coronary.bigr.nl). The thirty-two cardiac CTA datasets, and the corresponding ref-
erence standard centerlines for the training data, are available for download for anyone
who wishes to validate their algorithm. Extracted centerlines can be submitted and the
obtained results can be used in a publication. Furthermore, the website provides several
tools to inspect the results and compare the algorithms.

3.7 MICCAI 2008 workshop

This study started with the workshop ’3D Segmentation in the Clinic: A Grand Challenge
II’ at the 11th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) in September 2008 (Metz et al., 2008b). Approximately
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100 authors of related publications, and the major medical imaging companies, were
invited to submit their results on the 24 test datasets. Fifty-three groups showed their
interest by registering for the challenge, 36 teams downloaded the training and test
data, and 13 teams submitted results: five fully automatic methods, three minimally
interactive methods, and five interactive methods. A brief description of the thirteen
methods is given below.

During the workshop we used two additional measures: the average distance of all
the connections (AD) and the average distance of all the connections to the clinical rel-
evant part of the vessel (AT). In retrospect we found that these accuracy measures were
too much biased towards methods with high overlap and therefore we do not use them
anymore in the evaluation framework. This resulted in a slightly different ranking than
the ranking published during the MICCAI workshop (Metz et al., 2008b). Please note
that the two measures that were removed are still calculated for all the evaluated meth-
ods and they can be inspected using the web-based interface.

3.7.1 Fully automatic methods

• AutoCoronaryTree (Tek et al., 2008; Gulsun and Tek, 2008): The full centerline
tree of the coronary arteries is extracted via a multi-scale medialness-based vessel
tree extraction algorithm which starts a tracking process from the ostia locations
until all coronary branches are reached.

• CocomoBeach (Kitslaar et al., 2008): This method starts by segmenting the ascend-
ing aorta and the heart. Candidate coronary regions are obtained using connected
component analysis and the masking of large structures. Using these components
a region growing scheme, starting in the aorta, segments the complete tree. Fi-
nally, centerlines within the pre-segmented tree are obtained using the WaveProp
method (Marquering et al., 2005).

• DepthFirstModelFit (Zambal et al., 2008): Coronary centerline extraction is ac-
complished by fitting models of shape and appearance. A large-scale model of
the complete heart in combination with symmetry features is used for detecting
coronary artery seeds. To fully extract the coronary artery tree, two small-scale
cylinder-like models are matched via depth-first search.

• GVFTube’n’Linkage (Bauer and Bischof, 2008b): This method uses a Gradient Vec-
tor Flow (Xu and Prince, 1998) based tube detection procedure for identification
of vessels surrounded by arbitrary tissues (Bauer and Bischof, 2008c,a). Vessel
centerlines are extracted using ridge-traversal and linked to form complete tree
structures. For selection of coronary arteries gray value information and centerline
length are used.

• VirtualContrast (Wang and Smedby, 2008): This method segments the coronary
arteries based on the connectivity of the contrast agent in the vessel lumen, us-
ing a competing fuzzy connectedness tree algorithm (Wang and Smedby, 2007).
Automatic rib cage removal and ascending aorta tracing are included to initialize
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the segmentation. Centerline extraction is based on the skeletonization of the tree
structure.

3.7.2 Semi automatic methods

• AxialSymmetry (Dikici et al., 2008): This method finds a minimum cost path
connecting the aorta to a user supplied distal endpoint. Firstly, the aorta surface
is extracted. Then, a two-stage Hough-like election scheme detects the high axial
symmetry points in the image. Via these, a sparse graph is constructed. This graph
is used to determine the optimal path connecting the user supplied seed point and
the aorta.

• CoronaryTreeMorphoRec (Castro et al., 2008): This method generates the coro-
nary tree iteratively from point S. Pre-processing steps are performed in order to
segment the aorta, remove unwanted structures in the background and detect cal-
cium. Centerline points are chosen in each iteration depending on the previous
vessel direction and a local gray scale morphological 3D reconstruction.

• KnowledgeBasedMinPath (Krissian et al., 2008): For each voxel, the probability of
belonging to a coronary vessel is estimated from a feature space and a vesselness
measure is used to obtain a cost function. The vessel starting point is obtained
automatically, while the end point is provided by the user. Finally, the centerline is
obtained as the minimal cost path between both points.

3.7.3 Interactive methods

• 3DInteractiveTrack (Zhang et al., 2008): This method calculates a local cost for
each voxel based on eigenvalue analysis of the Hessian matrix. When a user selects
a point, the method calculates the cost linking this point to all other voxels. If a
user then moves to any voxel, the path with minimum overall cost is displayed.
The user is able to inspect and modify the tracking to improve performance.

• ElasticModel (Hernández Hoyos et al., 2008). After manual selection of a
background-intensity threshold and one point per vessel, centerline points are
added by prediction and refinement. Prediction uses the local vessel orientation,
estimated by eigen-analysis of the inertia matrix. Refinement uses centroid infor-
mation and is restricted by continuity and smoothness constraints of the model
(Hernández Hoyos et al., 2005).

• MHT (Friman et al., 2008b): Vessel branches are in this method found using a
Multiple Hypothesis Tracking (MHT) framework. A feature of the MHT framework
is that it can traverse difficult passages by evaluating several hypothetical paths. A
minimal path algorithm based on Fast Marching is used to bridge gaps where the
MHT terminates prematurely.

• Tracer (Szymczak, 2008): This method finds the set of core points (centers of
intensity plateaus in 2D slices) that concentrate near vessel centerlines. A weighted
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graph is formed by connecting nearby core points. Low weights are given to edges
of the graph that are likely to follow a vessel. The output is the shortest path
connecting point S and point E.

• TwoPointMinCost (Metz et al., 2008a): This method finds a minimum cost path
between point S and point E using Dijkstra’s algorithm. The cost to travel through
a voxel is based on Gaussian error functions of the image intensity and a Hessian-
based vesselness measure (Frangi et al., 1998), calculated on a single scale.

3.8 Results

The results of the thirteen methods are shown in Table 3.5, 3.6, and 3.7. Table 3.6 shows
the results for the three overlap measures, Table 3.7 shows the accuracy measures, and
Table 3.5 shows the final ranking, the approximate processing time, and amount of user-
interaction that is required to extract the four vessels. In total 10 extractions (< 1%)
where marked as failed (see Section 3.4.6).

We believe that the final ranking in Table 3.5 gives a good indication of the relative
performance of the different methods, but one should be careful to judge the methods
on their final rank. A method ranked first does not have to be the method of choice for
a specific application. For example, if a completely automatic approximate extraction of
the arteries is needed one could choose GVFTube’n’Linkage (Bauer and Bischof, 2008b)
because it has the highest overlap with the reference standard (best OV result). But if one
wishes to have a more accurate automatic extraction of the proximal part of the coronary
arteries the results point you toward DepthFirstModelFit (Zambal et al., 2008) because
this method is highly ranked in the OF measure and is ranked first in the automatic
methods category with the AI measure.

The results show that on average the interactive methods perform better on the over-
lap measures than the automatic methods (average rank of 6.30 vs. 7.09) and vice versa
for the accuracy measures (8.00 vs. 6.25). The better overlap performance of the inter-
active methods can possibly be explained by the fact that the interactive methods use the
start- and/or end point of the vessel. Moreover, in two cases (MHT (Friman et al., 2008b)
and 3DInteractiveTrack (Zhang et al., 2008)) additional manually annotated points are
used, which can help the method to bridge difficult regions.

When vessels are correctly extracted, the majority of the methods are accurate to
within the image voxel size (AI < 0.4mm). The two methods that use a tubular shape
model (MHT (Friman et al., 2008b) and DepthFirstModelFit (Zambal et al., 2008)) have
the highest accuracy, followed by the multi-scale medialness-based AutoCoronaryTree
(Tek et al., 2008; Gulsun and Tek, 2008) method and the CocomoBeach (Kitslaar et al.,
2008) method.

Overall it can be observed that some of the methods are highly accurate and some
have great extraction capability (i.e. high overlap). Combining a fully automatic method
with high overlap (e.g. GVFTube’n’Linkage (Bauer and Bischof, 2008b)) and a, not nec-
essarily fully automatic, method with high accuracy (e.g. MHT (Friman et al., 2008b))
may result in an fully automatic method with high overlap and high accuracy.
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3.8.1 Results categorized

Separate rankings are made for each group of datasets with corresponding image qual-
ity and calcium rating to determine if the image quality or the amount of calcium has
influence on the rankings.
Separate rankings are also made for each of the four vessel types. These rankings are
presented in Table 3.8. It can be seen that some of the methods perform relatively
worse when the image quality is poor or an extensive amount of calcium is present
(e.g. CocomoBeach (Kitslaar et al., 2008) and DepthFirstModelFit (Zambal et al., 2008))
and vice versa (e.g. KnowledgeBasedMinPath (Krissian et al., 2008) and VirtualContrast
(Wang and Smedby, 2008)).

Table 3.8 also shows that on average the automatic methods perform relatively worse
for datasets with poor image quality (i.e. the ranks of the automatic methods in the P-
column are on average higher compared to the ranks in the M- and G-column). This is
also true for the extraction of the LCX centerlines. Both effects can possibly be explained
by the fact that centerline extraction from poor image quality datasets and centerline
extraction of the (on average relatively thinner) LCX is more difficult to automate.

3.8.2 Algorithm performance with respect to ostium distance

For a number of coronary artery centerline extraction applications it is not important
to extract the whole coronary artery; only extraction up to a certain distance from the
coronary ostium is required (see e.g. (Wang et al., 2004; Hong et al., 2005)).

In order to evaluate the performance of the methods with respect to the distance
from the ostium, charts are generated that demonstrate the average performance over
all 96 evaluated centerlines for each of the methods at a specific distance from the os-
tium (measured along the reference standard). Figure 3.6(a) shows these results for
the automatic methods, Figure 3.6(b) shows the results for the methods with minimal
user-interaction, and Figure 3.6(c) shows the results for the semi automatic methods.

The graphs show that all the evaluated methods are better able to extract the prox-
imal part of the coronary arteries than the more distal part of the vessels. Moreover,
they show that after approximately 5 cm the accuracy of almost all the methods is rela-
tively constant. Furthermore, the graphs again demonstrate the fact that the automatic
methods are on average more accurate than the semi automatic or interactive methods.

3.8.3 More statistics available online

Space limitations prevent us to incorporate more statistics here, but the on-line evalu-
ation framework (http://coronary.bigr.nl) provides the possibilities to rank the methods
based on different measures or scores, create statistics on a subset of the data and cre-
ate overview tables for specific measures, categorized on image quality or score. It is
for example possible to create Table 3.5, 3.6, and 3.7 for a specific subset of the data
or to create Table 3.8 with a measure or score of choice, instead of the overall ranks.
The website also contains the most recent version of the results. The on-line results
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(a) Fully automatic centerline extraction methods.
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(b) Semi automatic centerline extraction methods.
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(c) Interactive centerline extraction methods.

Figure 3.6: The algorithm performance of each method with respect to the distance from the ostium averaged
over all 96 evaluated vessels over the first 175ṁm. Overlap: the fraction of points on the reference standard
marked as true positive. Accuracy: the average distance to the centerline if the point is marked true positive.
Each of the three graphs shows in light-gray the results of all the thirteen evaluated methods and with the
other lines the results of the respective algorithm category. The graphs also show in black (dotted) the average
accuracy and overlap for all thirteen evaluated methods.
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are different from the results reported in this chapter because of recent submissions and
improvements in implementation of the different methods.

3.9 Discussion

A framework for the evaluation of CTA coronary artery centerline extraction techniques
has been developed and made available through a web-based interface at:
(http://coronary.bigr.nl). Currently thirty-two cardiac CTA datasets with corresponding
reference standard centerlines are available for anyone how wants to benchmark a coro-
nary artery centerline extraction algorithm.

Although the benefits of a large-scale quantitative evaluation and comparison of coro-
nary artery centerline extraction algorithms are clear, no previous initiatives have been
taken towards such an evaluation. This is probably because creating a reference stan-
dard for many datasets is a laborious task. Moreover, in order to get a good reference
standard, annotations are needed from multiple observers and combining annotations
from multiple observers is known to be difficult (Warfield et al., 2004) and until recently
unexplored for three-dimensional curves (van Walsum et al., 2008). Furthermore, an
appropriate set of evaluation measures has to be developed and a representative set of
clinical datasets have to be made available. By addressing these issues we were able to
present and use the proposed framework.

A limitation of the current study is the point-based vessel selection step for fully
automatic methods. Because the coronary artery tree contains more vessels than the four
annotated vessels this selection step had to be included, but it introduced the problem
that fully automatic methods can extract many false-positives but still obtain a good
ranking. This fact combined with the presented results of the fully automatic methods
for the four evaluated vessels makes us believe that a future evaluation framework for
coronary artery extraction methods should focus on the complete coronary tree. An
obvious approach for such an evaluation would be to annotate the complete coronary
artery tree in all the 32 datasets, but this is very labor intensive. An alternative approach
would be to use the proposed framework for the quantitative evaluation of the four
vessels and to qualitatively evaluate the complete tree. In this qualitative evaluation an
observer should score if any vessels are falsely extracted and if all vessels of interest are
extracted.

A further limitation of this study is that all the data have been acquired on two CT
scanners of the same manufacturer in one medical center. We aim to extend the collection
of datasets with datasets from different manufacturers and different medical centers.
Further studies based on this framework could extend the framework with the evaluation
of coronary lumen segmentation methods, coronary CTA calcium quantification methods
or methods that quantify the degree of stenosis.

3.10 Conclusion

A publicly available standardized methodology for the evaluation and comparison of
coronary centerline extraction algorithms is presented in this chapter. The potential of
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Table 3.7: The accuracy of the thirteen evaluated methods. The average distance, score and rank of each
method are shown for the accuracy when inside (AI) measure. The column ’Cat.’ indicated the method category.

AI

Cat. mm score rank

MHT (Friman et al., 2008b) 3 0.23 47.9 1.58

Tracer (Szymczak, 2008) 3 0.26 44.4 2.52

DepthFirstModelFit (Zambal et al., 2008) 1 0.28 41.9 3.33

KnowledgeBasedMinPath (Krissian et al., 2008) 2 0.39 29.2 8.36

AutoCoronaryTree (Tek et al., 2008) 1 0.34 35.3 5.18

GVFTube’n’Linkage (Bauer and Bischof, 2008b) 1 0.37 29.8 8.02

CocomoBeach (Kitslaar et al., 2008) 1 0.29 37.7 5.04

TwoPointMinCost (Metz et al., 2008a) 3 0.46 28.0 8.80

VirtualContrast (Wang and Smedby, 2008) 1 0.39 30.6 7.74

AxialSymmetry (Dikici et al., 2008) 2 0.46 26.4 9.60

ElasticModel (Hernández Hoyos et al., 2008) 3 0.40 29.3 8.29

3DInteractiveTrack (Zhang et al., 2008) 3 0.51 24.2 10.91

CoronaryTreeMorphoRec (Castro et al., 2008) 2 0.59 20.7 11.59

this framework has successfully been demonstrated by thoroughly comparing thirteen
different coronary CTA centerline extraction techniques.
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Abstract

A registration method for motion estimation in dynamic medical imaging data is proposed.
Registration is performed directly on the dynamic image, thus avoiding a bias towards a specifi-
cally chosen reference time point. Both spatial and temporal smoothness of the transformations
are taken into account. Optionally, cyclic motion can be imposed, which can be useful for visual-
ization (viewing the segmentation sequentially) or model building purposes. The method is based
on a 3D (2D+time) or 4D (3D+time) free-form B-spline deformation model, a similarity metric
that minimizes the intensity variances over time and constrained optimization using a stochastic
gradient descent method with adaptive step size estimation. The method was quantitatively com-
pared with existing registration techniques on synthetic data and 3D+t computed tomography data
of the lungs. This showed subvoxel accuracy while delivering smooth transformations, and high
consistency of the registration results. Furthermore, the accuracy of semi-automatic derivation of
left ventricular volume curves from 3D+t computed tomography angiography data of the heart
was evaluated. On average, the deviation from the curves derived from the manual annotations
was approximately 3%. The potential of the method for other imaging modalities was shown on
2D+t ultrasound and 2D+t magnetic resonance images. The software is publicly available as an
extension to the registration package elastix.
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4.1 Introduction

4.1.1 Background

Dynamic imaging data are increasingly available due to ongoing advancements in med-
ical imaging techniques (Li et al., 2008a). Motion estimation of the anatomy of interest
from these images is often desirable, e.g. to quantify motion-related markers of dis-
ease, to construct motion and deformation models for therapeutic or surgical planning
and guidance, or to remove motion to allow the analysis of intensity features at cor-
responding anatomical locations over time. Examples of motion quantification are the
measurement of the distensibility of blood vessels or aneurysms (e.g. Li et al., 2008b;
Ganten et al., 2008), the quantification of lung function (e.g. Reinhardt et al., 2008;
Boldea et al., 2008) and the quantification of left ventricular function of the heart (e.g.
Mahnken et al., 2009). The application of motion and deformation models in image-
guided interventions was, for example, discussed by Hawkes et al. (2005). Motion re-
moval has been applied, for example, in the analysis of perfusion CT or perfusion MRI
images (e.g. Xue et al., 2008; Milles et al., 2008).

Manual motion estimation from a time series of images is a tedious task. Correspond-
ing landmark positions in time need to be determined and depending on the application
of interest the number of required landmarks may be very large. Image registration meth-
ods are often applied to automate this process. In these methods, the correspondence
between the anatomy at different time points is found by minimizing a landmark based,
segmentation based or intensity based similarity measure (Maintz and Viergever, 1998;
Hill et al., 2001). These registration procedures must be sufficiently robust to handle the
challenges inherent to dynamic imaging, such as fast moving anatomy, motion artifacts
(Li et al., 2008a), and varying contrast to noise ratio over time, e.g. due to the applica-
tion of dose reduction techniques such as ECG-derived pulsing windows in CT coronary
angiography (Weustink et al., 2009).

4.1.2 Previous work on motion estimation

In this work we focus on intensity based registration approaches, which work directly on
the input images without the need for preprocessing techniques to extract features from
the images. There is a vast amount of work on the application of intensity-based im-
age registration techniques for motion estimation. Next to these approaches, groupwise
registration techniques have been proposed for the simultaneous alignment of multiple
images from different patients (e.g. for atlas building), which is closely related to the
alignment of different time point images without taking the temporal continuity of the
data into account. We distinguish the existing techniques by the basic components of a
registration approach: the transformation model, cost function and optimization strategy.
Details about these categorizations are outlined below. An overview is given in Table 4.1.
Besides these three categories, the table also reports the support for constraints on cyclic
motion.

Several models can be used to describe the transformation that aligns the images. We
discriminate between methods using an Eulerian approach, in which all deformations are
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described with respect to the neighboring time point, and methods using a Lagrangian
approach, in which deformations are described with respect to a chosen reference frame.
In the latter approach the reference frame is often chosen to be directly related to one
of the time points of the input image, but sometimes also defined implicitly, e.g. as the
mean of the population. Most existing methods use a Lagrangian transformation model
which can either take or not take into account the temporal smoothness of the deforma-
tions (respectively denoted with nD+t and nD in Table 4.1; see also Figure 4.1 for an
illustration). However, the majority of these methods only force the deformations to be
smooth, viz. continuous and differentiable, in the spatial domain. Note that nD+t trans-
formation models have not only been applied in motion estimation methods presented
in Table 4.1, but also in inter-patient and intra-patient alignment of dynamic imaging
sequences (Perperidis et al., 2005; Lopez et al., 2008; Schreibmann et al., 2008; Peyrat
et al., 2010).

The cost function, or dissimilarity metric, computes the dissimilarity between the
images to measure the quality of the current transformation estimate. We distinguish
three different approaches, often related to the chosen transformation model. The first
is a consecutive approach in which the similarity is determined between the images of
consecutive time points. The second is a reference approach in which the similarity
is determined between the image to be registered and a chosen reference image. The
last one is a global approach, in which the imaging data of all time points are taken
into account in the computation of the cost function. A disadvantage of the first two
approaches is that a limited amount of available image information is used during the
registration procedure. The individual registrations only exploit the information present
in the reference image and the image to be registered, whereas the other images may also
contain valuable information. Moreover, by choosing a single reference time point, the
registration result can be biased towards this image. In the global cost functions all image
information is taken into account simultaneously, potentially leading to more robust and
consistent registration results, without a bias towards a certain reference image.

Finally, we distinguish two kinds of optimization approaches for finding the optimal
transformation. While the first approach optimizes the cost function for every time point
separately, the second approach performs this optimization for all time points simultane-
ously, which we call a global approach. The optimization approach used is often related
to the chosen cost function and transformation model. For global cost functions, a global
optimization approach is needed. The same holds for the Lagrangian nD+t transfor-
mation model that takes temporal smoothness into account. When a consecutive or
reference cost function is applied, the optimization is most often performed in a pairwise
manner.

In certain cases it is known a priori that the anatomical motion has a cyclic nature.
When this knowledge is taken into account during the acquisition procedure, e.g. by
ECG-gating or respiratory gating, one might want to incorporate this into the registration
procedure. Two different approaches can be distinguished. In the first approach, a term is
added to the cost function to penalize non cyclic transformations. In the other approach,
cyclic motion is enforced by adapting the transformation model. To the best of our
knowledge, only the first approach has been used in previous work.
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4.1.3 Proposed method

In this work, we focus on the estimation of anatomical motion from dynamic medical
imaging data. For this, we assume that physiologically motion is smooth (continuously
differentiable) over time. Finding this smooth motion is, for example, useful for the
construction of statistical motion models (Chapter 5, Metz et al., 2010) or motion visu-
alization. The amount of smoothness depends on the expected motion of the anatomy of
interest and the expected distortion of the motion due to pathology. Whereas the motion
of the anatomy is expected to be smooth, the appearance of the moving anatomy in the
reconstructed image may be non-smooth because of imaging artifacts. In our registration
approach, we use a Lagrangian nD+t transformation model parametrized by B-splines.
The search space for the transformation that minimizes the dissimilarity metric is thereby
reduced to those transformations that are both spatially and temporally smooth.

With respect to the cost function, we choose the global approach to eliminate a bias
towards a chosen reference frame and use as much image information as possible. The
use of a global cost function automatically leads to the choice for a global optimization
routine.

A Lagrangian nD+t transformation model, a global cost function, and a global opti-
mization routine have previously been addressed in literature for motion estimation in
4D medical imaging data (see Table 4.1), but never jointly in one framework. We addi-
tionally propose a cyclic version of the B-spline transformation model and investigate its
influence on the registration results.

The method is evaluated quantitatively on a 2D+t synthetic image, 3D+t computed
tomography (CT) images of the lungs and 3D+t computed tomography angiography
(CTA) images of the heart. Further examples are presented on 2D+t ultrasound (US)
images of the carotid artery and 2D+t magnetic resonance (MR) images of the lungs.

To summarize, the main contributions of this work are:

• The development and evaluation of a registration method for motion estimation
combining a Lagrangian nD+t B-spline transformation model, a global cost func-
tion and global optimization strategy.

• The possibility to include a cyclic motion constraint that is strictly enforced by the
transformation model.

• The quantitative comparison of the proposed technique with three well-known
techniques.

Furthermore, the software developed for this publication is publicly available.

4.2 Method

The proposed method is based on a 3D (2D+time) or 4D (3D+time) free form B-spline
deformation model, incorporating both the spatial and time dimensions. It aims to min-
imize the image intensity changes over time. An implicit reference frame is used to
eliminate the need to choose a reference time point image. The following subsections
describe the different components of the approach.
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4.2.1 Transformation

A B-spline transformation model is used (Rueckert et al., 1999) because the compact sup-
port of B-splines keeps the running time reasonably low for higher dimensional imaging
data. We restrict the deformations to only take place in the spatial domain and thereby
search for those deformations that spatially align the different time point images. The de-
formation is regularized by assuming smoothness of the deformation in both the spatial
and temporal direction of the data.

The D-dimensional input image is denoted with I(y) where y = (x T, t)T ∈ Rs ×

R denotes a coordinate in I which consists of a spatial location x ∈ Rs and temporal
location t ∈ R. D = s+ 1 equals the dimension of the spatiotemporal image data.

The B-spline based coordinate transformation Tµ is defined as follows:

Tµ(y) = y +
∑

yk∈Ny

pk β
r(y − yk) (4.1)

with yk the control points, β r(y) the r-th order multidimensional B-spline polynomial
(Unser, 1999), pk the B-spline coefficient vectors, and Ny the set of all control points
within the compact support of the B-spline at y. The control points yk are defined on
a D-dimensional regular grid, overlaid on the image. The parameter vector µ consists
of the collection of the first D − 1 elements of each pk. The last element of every pk

is fixed to zero making sure that only deformations in the spatial domain are allowed.
This is in contrast to the work of Perperidis et al. (2005) and Peyrat et al. (2010), where
deformations in the temporal directions are allowed.

Optionally, cyclic motion can be enforced by letting the B-spline polynomials wrap
around in the temporal direction (see Figure 4.1(a) and 4.1(b)). This is achieved by
adapting the definition of the control point neigbourhood Ny . A prerequisite for cyclic
motion is that the number of time points of the image should be a multiple of the tem-
poral B-spline control point spacing.

In the remainder of the chapter the notation Tµ(y) is interchanged with Tµ(x , t) for
convenience of notation.

4.2.2 Dissimilarity metric

Because we are working with monomodal dynamic imaging data, our method is based
on the assumption that after correct registration the intensity values at corresponding
spatial locations over time are equal. This can effectively be measured by computing the
variance of intensity values at corresponding spatial locations over time (Bhatia et al.,
2007). The dissimilarity metric, or cost function, is therefore defined as:

C(µ) =
1

|S ||T |

∑

x∈S

∑

t∈T

�

I(Tµ(x , t))− Iµ(x )
�2

(4.2)

with Iµ(x ) the average intensity value over time after applying transformation Tµ:

Iµ(x ) =
1

|T |

∑

t∈T

I(Tµ(x , t)) (4.3)
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Figure 4.1: (a) nD+t B-spline grid, (b) cyclic nD+t B-spline grid and (c) nD B-spline grid used in reference time
point, consecutive time point and groupwise registration approaches (see section 4.3.1). In the cyclic version
(b), the grid points at the temporal border (open nodes) are direct neighbors.

and S and T the set of spatial and temporal voxel coordinates respectively.

4.2.3 Zero average displacement constraint

The registration is performed directly on the D-dimensional input image, and does not
require a reference image. This results in an underconstrained optimization problem,
because multiple solutions exist for the minimization of the dissimilarity metric (Equation
4.2). A translation of the image volume will, for example, not change the metric value.
We therefore constrain the average deformation in time to be the identity transform, like
Bhatia et al. (2004) and Balci et al. (2007a) did for groupwise registration:

1

|T |

∑

t∈T

Tµ(x , t) = x . (4.4)

The next subsection explains how this constraint is enforced in the optimization proce-
dure.

4.2.4 Optimization

For the final solution we need to determine those transform parameters that minimize
the dissimilarity metric:

µ̂ = arg min
µ

C(µ) subject to (4.4) . (4.5)

Hereto, we use an adaptive stochastic gradient descent optimizer (ASGD) (Klein et al.,
2009). The main advantage of this optimizer compared with conventional gradient-
based optimizers is that it applies random sampling of the data in the computation of
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the derivatives, which causes a significant reduction in computation time. This sampling
strategy is applied to select the voxel locations in S and the temporal indices in T . Note
that new samples are drawn at each iteration of the optimization.

The ASGD optimizer requires that the derivative of the cost function with respect to
µ is known, which follows from differentiating Equation (4.2):

∂ C

∂ µ
=

2

|S | |T |

∑

x∈S

∑

t∈T

�

I(Tµ(x , t))− Iµ(x )
�

·

 

∂ I(Tµ(x , t))

∂ µ
−
∂ Iµ(x )

∂ µ

!

(4.6)

=
2

|S | |T |

∑

x∈S





∑

t∈T

�

I(Tµ(x , t))− Iµ(x )
� ∂ I(Tµ(x , t))

∂ µ

−
∂ Iµ(x )

∂ µ

∑

t∈T

�

I(Tµ(x , t))− Iµ(x )
�



 (4.7)

Substituting Equation 4.3 in the last term of 4.7 results in:

∂ C

∂ µ
=

2

|S | |T |

∑

x∈S

∑

t∈T

�

I(Tµ(x , t))− Iµ(x )
� ∂ I(Tµ(x , t))

∂ µ
(4.8)

To apply the constraint that the average deformation over the time series is zero (see
Section 4.2.3), we follow the approach of Balci et al. (2007a): we subtract the mean from
each derivative vector, causing the sum of B-spline coefficients to be zero. We therefore
use for every element i of ∂ C/∂ µ the following equation to determine the constrained
update:

∂ C

∂ µi

′

=
∂ C

∂ µi

−
1

|Qi |

∑

q∈Q i

∂ C

∂ µq

(4.9)

where Qi denotes the collection of all elements of µ over time that correspond to the
same spatial grid point location and direction as element i.

4.2.5 Inverse transformation

The zero average displacement constraint described in Section 4.2.3 implicitly defines
a reference frame that lies in the center of the dynamics described by the image. After
registration all time point images are aligned in this reference frame. Depending on the
type of application the registration procedure is used for, it might be useful to know
transformation T i j

µ
which maps coordinates from time point i to time point j. To be able

to define this transformation, the inverse mapping T−1
µ

, which maps coordinates from
the input image coordinate frame to the reference frame, needs to be known.
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Because the inverse of a B-spline transformation cannot be derived in closed-form,
an additional subsequent optimization procedure is applied, formulated in a way similar
to the registration procedure. The inverse transformation T−1

µ̂
is derived by searching for

a B-spline transformation Tν that cancels Tµ̂, by minimizing the following cost function:

F(ν ) =
1

|Y |

∑

y∈Y

‖Tν (Tµ̂(y))− y)‖2 . (4.10)

with Y the set of voxel locations. The result Tν̂ of this minimization is used as an estimate
of T−1

µ̂
. To make sure an accurate inverse can be estimated one should prevent foldings

in the transformations resulting from the forward registration procedure. In this work
we do this by choosing appropriate grid spacings, but one could also consider adding
a penalty term which incorporates constraints on the Jacobian of the transformations
(Chun et al., 2010; Sdika, 2008). As the inverse of a B-spline transformation cannot be
modelled exactly with another B-spline transformation, we choose a smaller grid spacing
for the inverse transform than was used for the forward transform that aligns all time
point images to yield more accurate results.

The (D-1)-dimensional transformation T i j that aligns time point image i with time
point image j can now be derived by combining the forward transform at time point j

and the inverse transformation at time point i:

T
i j

µ̂
(x ) =

h

Tµ̂

�h

T−1
µ̂
(x , t i)

i

x
, t j

�i

x
(4.11)

where [.]x selects the (D-1)-dimensional part of the D-dimensional transformation T .

4.2.6 Implementation details

Linear interpolation in the spatial domain is used for the derivation of intensity values at
non grid-point positions in the images.

A multi-resolution strategy is employed to improve the capture range and robustness
of the registration. In the lower resolutions the image is convolved with a Gaussian ker-
nel. The standard deviation of this kernel and the spacing of the B-spline grid in the
spatial directions of the image are reduced with a factor two in the next resolution level.
This multi-resolution approach is used for both the registration procedure to align the
time point images and the optimization procedure to find the inverse B-spline transfor-
mation.

The method has been implemented as an extension to the open source registration
package elastix (Klein et al., 2010) and is freely available for download1.

4.3 Experiments and results

Three types of experiments were conducted to evaluate the proposed method. First, we
applied our approach to a synthetic image to compare the results with existing registra-

1http://elastix.isi.uu.nl
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tion approaches (Section 4.3.3). Second, the performance of the method was quantita-
tively evaluated using publicly available 3D+t CT data of the lungs (Section 4.3.4) and
3D+t CTA data of the heart (Section 4.3.5). And third, further examples are presented
on a 2D+t ultrasound image of the carotid artery and a pediatric 2D+t MR image of the
lungs (Section 4.3.6).

For the experiments on the synthetic image, the cardiac CTA data and the examples
on ultrasound and MRI images, parameter settings were empirically determined. For the
experiments on the CT data of the lungs, parameter settings were tuned on the publicly
available POPI-model (Vandemeulebroucke et al., 2007). Resulting parameter settings
and image dimensions are listed in Table 4.2. Parameter files are online available in the
parameter file database of the elastix website1.

4.3.1 Registration approaches

In the experiments described in Section 4.3.3 and Section 4.3.4, the proposed regis-
tration method is compared with existing registration approaches. The details of these
approaches are outlined in the following paragraphs. The B-spline control point spacing,
number of resolution levels, and number of iterations were chosen to be the same as the
settings used for the proposed method to make a fair comparison possible.

Reference time point registration method

In the reference time point registration method the individual time point images are
independently registered to the image of a chosen reference time point. The method
uses a Lagrangian (nD) transformation model, a reference cost function and a pairwise
optimization strategy. Furthermore, a mean squared difference metric was used, which
is strongly related to the proposed variance metric.

Consecutive time point registration method

The consecutive time point registration method registers all individual time point images
to the image of the neighbouring time point. It uses a Eulerian transformation model,
a consecutive cost function and a pairwise optimization strategy. When the time point
at which the registration is started is not equal to zero, registration is performed in two
directions, to minimize the propagation of registration errors. A mean squares metric
was used as the cost function.

Groupwise registration method

The groupwise registration approach simultaneously aligns the individual time point im-
ages. The method uses a Lagrangian (nD) transformation model, a global cost function
and a global optimization strategy. The variance metric (Equation 4.2) is used as a cost
function and the zero average displacement constraint (Equation 4.4) is applied. This
approach is most similar to the proposed method, but does not impose smoothness of
the deformations in the temporal direction of the image nor cyclic motion.
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4.3.2 Evaluation measures

We used two evaluation measures for the synthetic experiment and the experiment on
the lung data: the primary measure is the accuracy of the registration results and the
secondary measure is the temporal smoothness of the transformations. Whereas smooth-
ness on its own does not reflect the quality of the registration, the relation between
registration accuracy and smoothness is relevant, as it can be useful when deciding on
the right registration strategy for the application of interest. With equal, or slightly worse
accuracy, a smoother result is often preferred.

The accuracy for transformation parameters µ was defined as the mean target regis-
tration error (mTRE) (van de Kraats et al., 2005) between a set of landmark collections
P = {P1, P2, . . . , PT} for time points {1 . . . T} and landmarks transformed from a reference
time point r to all time points for which the landmarks are available:

mTRE(µ) =
1

T |P1|

∑

t 6=r

∑

pt,i∈Pt








T r t
µ
(pr,i)− pt ,i








 , (4.12)

with pt ,i landmark i in time point t and r the reference time point.
The smoothness of transformation Tµ was measured as the irregularity of the land-

mark trajectories:

mIrr(µ) =
1

T |P1|

T
∑

t

∑

pt,i∈Pt
















∂ 2T r t
µ
(pr,i)

∂ t2
















2

, (4.13)

with pt ,i landmark i at time point t and r the reference time point. Higher values mean
more irregular/less smooth trajectories. We computed the derivatives using finite differ-
ences to be able to compute the irregularity for all considered registration procedures.

The standard deviation of TRE and irregularity values were also derived.

4.3.3 Quantitative evaluation on synthetic data

The 2D+t synthetic example consists of a 64×64×64 pixel image containing a circle
with a Gaussian profile with a standard deviation of 3 voxels. The circle follows a cosine
shaped trajectory over time in the Y-direction of the image, i.e. the center of the circle
over time is (xc , yc + α cos (2πt/w)), with α = 3, xc = yc = 15.5 mm and w = 32
mm. The cosine is positioned in such a way that the deformation over time is cyclic. The
contrast between the tube and the background is 1000 and Gaussian noise was added
with a standard deviation of 150 resulting in a contrast-to-noise ratio of 20

6
. A cross

section of the resulting 2D+t image is shown in Fig. 4.2. Seven registration procedures
were tested. The first four are the consecutive and reference approach (Section 4.3.1)
using both time 0 and 31 (halfway the time dimension of the data) as reference time
point. The fifth is the groupwise registration method (Section 4.3.1). The last two
approaches are the non-cyclic and cyclic version of the proposed registration method.
After registration both the accuracy (Equation 4.12) and irregularity (Equation 4.13) of
the transformations were determined.
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Figure 4.2: Registration results for the experiment on a synthetic image. A cross section of the input image is
shown in the left top image. The other images show the trajectory resulting from the registration procedure
as a solid line. The reference standard is plotted with a dashed line and the title of the plot lists the mean and
standard deviation of the accuracy in mm and irregularity in mm/τ2 of the registration results.

The X-displacements and Y-displacements found by the different registration proce-
dures are plotted in Figure 4.2. The dashed line shows the reference curve. The titles of
the plots show both the accuracy and irregularity. It can be noticed that the 2D reference
method works reasonably well with respect to the accuracy, but the resulting trajectory
is not smooth. The 2D consecutive method is distracted by the image noise and delivers
inaccurate results. Among the non-temporally smooth methods the groupwise registra-
tion method performs best with respect to both accuracy and smoothness, which may be
caused by the more robust global dissimilarity metric. The proposed temporally smooth
method has the highest accuracy and delivers the most smooth trajectories of all meth-
ods. Accuracy is even slightly improved by imposing cyclic motion.

4.3.4 Quantitative evaluation on 3D+t CT data of the lungs

Four quantitative experiments were performed on clinical 3D+t CT data of the lungs.
The first two experiments assess the accuracy, smoothness, and consistency of the reg-
istration results. In the third experiment, the influence of the spatial grid spacing used
to obtain the inverse transformation was investigated. In the last experiment, the transi-
tive consistency of the method is evaluated and compared with the reference registration
method. The publicly available POPI-model (Vandemeulebroucke et al., 2007) and DIR-
lab data were used (Castillo et al., 2009). Both consist of 3D+t CT scans of the lungs
and corresponding landmarks in two or more time points of the image. For the DIR-lab
data 300 landmarks in time point 0 (inspiration) and 5 (expiration) and 75 landmarks
for each time point between time point 0 and 5 were available. For the POPI-model 37
landmarks for all ten time points were available. Parameter settings were tuned on the
POPI image and subsequently used for all six images.
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Accuracy

Registration accuracy was evaluated by computation of the TRE (Section 4.3.2) between
the reference landmark positions and the landmark positions propagated from time point
0 (DIR-lab data) or time point 1 (POPI model) to all other time points. The reference time
point for these propagations was chosen according to previously published work on this
data. The results of the proposed method are compared with the reference time point,
consecutive time point and groupwise registration methods described in Section 4.3.1.
For the proposed method, registration was always performed on the complete 4D im-
age and using a lung mask. For the POPI-model the provided mask was used. For the
DIR-lab images the masks were created by thesholding, connected component analysis
and morphological closing using a spherical structuring element with a diameter of 9
voxels. During the registration procedure the sample locations x are drawn from a di-
lated version of these masks (kernel radius of 13 voxels). Moreover, Tµ(y) should lie
within the non-dilated mask to be taken into account for the computation of the variance
metric. Registration was performed for grid point spacings of one, two and three time
points in the time-dimension and with and without applying the cyclic motion constraint
to quantify the effect of the temporal and cyclic smoothness on the results.

Results for the 300 two-time-point landmarks of the DIR-lab data are presented in
Table 4.3. Results for the 75 landmarks in six time points of the DIR-lab data and for
the 37 landmarks in ten time points of the POPI-model are listed in Table 4.4. For
comparison, the initial TRE and the best published results on the POPI-model (Kabus
et al., 2009) using 3D B-spline registration and on the DIR-lab data (Castillo et al., 2010)
using a four-dimensional optical flow method based on trajectory modeling are included
in the tables. Both tables show that the proposed method can achieve subvoxel accuracy,
yielding TRE values that are similar to the best published results on the same data. The
results for the proposed method without the use of the cyclic motion constraint show
that temporal smooth deformations can be achieved by compromising only slightly on
registration accuracy. Enabling the cyclic motion constraint helps for DIR-lab case 1, but
decreases the accuracy for the other cases.

The average running time on the DIR-lab data is around 40 minutes for the 3D refer-
ence, consecutive and groupwise registration approaches and around 1 hour, 1 hour and
15 minutes, and 1 hour and 30 minutes for the proposed method while using a temporal
spacing of 3, 2 and 1 time points respectively (AMD Opteron® 2216 2400 MHz). The
increase in computation time while using smaller temporal grid spacings is mainly due
to the larger size of µ. A visualization of the imaging data before and after registration
is shown in Figure 4.3.

Smoothness

The registration results of Section 4.3.4 were subsequently used to determine the
smoothness of the landmark trajectories by computing their irregularity (Equation 4.13).
The results are shown in a bar chart in Figure 4.4. Every bar represents one of the regis-
tration approaches and every group of bars represents a certain test image. The proposed
method results in the most smooth trajectories. It can be seen that increasing the tem-
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a

Figure 4.3: Registration result for a 3D+t CT image of the lungs. Left and middle: input image. Right: registration
result. Image (a) and (b) show the dotted lines in the left image over time.
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Figure 4.4: Irregularity of landmark trajectories using different registration approaches. Values are averaged
over 75 landmarks for the DIR-lab images and over 37 landmarks for the POPI-model. Lower values mean
smoother results.

poral spacing of the B-spline grid improves the temporal smoothness. The inclusion of
the constraint on cyclic motion reduces the irregularity even further for larger temporal
control point spacings. Furthermore, it can be noticed that the 3D reference registration
method performs worst in this sense.

Inverse transformation

An experiment was conducted in which different spatial control point spacings for com-
putation of the inverse transformation were tested. The result of the proposed method
using a temporal control point spacing of 2.0 time points and the cyclic motion con-
straint from the previous sections was used as the forward transformation. Evaluation
was performed on the POPI model. We tested spatial control point spacing for the inverse
computation ranging from 13.0 mm (the spacing of the forward transform) to 7.0 mm.
Subsequently, we computed the accuracy and irregularity of the results (Section 4.3.2),
and the inverse errors. The multi-resolution strategy was the same as was used for the
forward registration procedure. The inverse error was defined as the average magnitude
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Figure 4.5: Results of the inverse experiment. The figures show the influence of the spatial control point spacing
on the accuracy (TRE), irregularity (Irr) and inverse error. The solid lines represent the mean and the dashed lines
show the mean +/- the standard deviation.

of the transformation vector after subsequent transformation with the forward and in-
verse transform. Errors were computed for all voxel positions within the mask used in
the registration. Results are shown in Fig. 4.5. The dashed lines show the mean +/- the
standard deviation of the TRE and irregularity values.

Transitive consistency

The registration results of the reference registration approach (Section 4.3.1) will depend
on the chosen reference image. The choice of different reference images may thus lead
to inconsistent results, where we define registrations transitive consistent when for all
i, j ∈ T and all x ∈ S :

T i j(T ki(x )) = T k j(x ) . (4.14)

In the proposed method all time points are aligned simultaneously without the use of a
reference time point, but there still remains an inconsistency, which is caused by errors
in the approximation of the inverse transform.

To assess the inconsistency of both the reference time point and proposed cyclic ap-
proach, we performed an experiment on the POPI image. We computed the inconsistency
errors as:

E i j(x ) =
�

�

�

� T i j(T ki(x ))− T k j(x )
�

�

�

� (4.15)

for all k ∈ {1..T}, all voxel positions and all i 6= j. For the 3D reference approach, T i j

were computed by pairwise 3D registration for all i, j. For the proposed method the T i j

were computed according to Equation 4.11. Similar settings were used for both registra-
tion approaches. Results of these experiments are shown in a histogram in Fig. 4.6 with
a solid line for the consecutive registration approach and a dashed line for the proposed
registration method. The dotted vertical lines indicate the average inconsistency error
for both approaches. The inconsistencies for the proposed registration approach are in
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Figure 4.6: Histogram of the inconsistency results for the consecutive registration approach (solid line) and for
the proposed registration method (dashed line). For visualization purposes the maximum value at the x-axis was
set to 1.0 and the maximum value at the y-axis was set to 0.05. The dashed vertical lines indicate the average
error for both approaches.

general smaller, which is apparent from the peak in the left of the histogram and the
smaller average error value. The consistency errors for the 3D reference method could
decrease with methods such as proposed by Christensen and Johnson (2001) and Geng
et al. (2005).

4.3.5 Quantitative evaluation on 3D+t CTA data of the heart

An experiment was performed to assess the accuracy of semi-automatic derivation of left
ventricular volume curves from 3D+t CTA data of the heart. To this end, the left ventricle
was manually annotated for 5 patients at 10 time points in the cardiac cycle. The curves
describing the left ventricular volume over the cardiac cycle were determined from these
manual annotations. Subsequently, these curves were also generated by propagating the
end-diastolic manual annotation to all other time points using the transformation result-
ing from the registration procedures. The proposed method was used both with and
without imposing cyclic motion. Registration was performed in a two-step approach.
First the registration was performed on the whole 4D image. Subsequently, an atlas
based segmentation of the heart surface at end-diastole (Kirisli et al., 2010) was propa-
gated to the whole sequence using the resulting transformation. In the second step the
4D registration was performed while using the 4D heart mask for computation of the dis-
similarity metric, to be able to handle the non-smooth sliding motion of the heart along
the lung surface.

The left ventricular volume curves derived from semi-automatically determined left
ventricle surfaces and the manual measurements can be found in Figure 4.7. The aver-
age and standard deviation of the volume error was 3.02% (± 2.46%) and 3.02% (±
2.49%) for the cyclic and non cyclic registration approach respectively. An example of
the imaging data before and after registration is shown in Figure 4.8.

4.3.6 Further examples on clinical data

To show the potential of the proposed registration method on other imaging modalities,
registration was performed on a 2D+t ultrasound (US) image of the carotid artery and a
pediatric 2D+t magnetic resonance (MR) image of the lungs.
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Figure 4.7: Left ventricular volume curves derived from 3D+t CTA data. Circles: manual measurements, solid
line: proposed method with cyclic motion constraint.
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Figure 4.8: Registration result for a 3D+t CTA image of the heart. Left: input image, right: registration result.
Image (a) and (b) show the dotted lines in the left image over time. The time varying noise levels, which are
caused by variation of dose over the cardiac cycle (ECG-pulsing) (Weustink et al., 2009), are clearly visible and
make the registration more challenging. Note that the left side of images (b) falls outside the heart mask used in
the registration.

The US image of the carotid artery was acquired to measure the distensibility of the
carotid artery (Gamble et al., 1994). This requires the accurate estimation of the vessel
wall deformation. Images before and after registration are shown in Fig. 4.9.

The MR image of the lungs was acquired to analyze lung function in cystic fibrosis
patients, which requires measuring the compression and decompression of the lungs
over the respiratory cycle (Failo et al., 2009). The input image and the results after
registration are shown in Fig. 4.10. The resulting images still show some misalignment,
visible on the right side in image (a), caused by the anatomy moving in and out the field
of view.



82 CHAPTER 4. NONRIGID REGISTRATION OF DYNAMIC MEDICAL IMAGING DATA

a

b
a

b

a

b

Figure 4.9: Registration result for a 2D+t ultrasound image of the carotid artery. Left and middle: input image,
right: registration result. Image (a) and (b) show the dotted lines in the left image over time.

a

b
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Figure 4.10: Registration result for a pediatric 2D+t MRI image of the lungs. From left to right: input image (first
three), registration result (last two). Image (a) and (b) show the dotted lines in the left image over time.

4.4 Discussion

A registration method for motion estimation in dynamic medical imaging data combining
a Lagrangian nD+t B-spline transformation model, a global cost function and global
optimization strategy has been proposed and quantitatively evaluated.

In a synthetic experiment we compared the proposed approach with other existing
registration approaches. It is demonstrated that the temporal smoothness and the con-
straint on cyclic motion help the registration when images are distorted by noise. Fur-
thermore, the proposed method yields temporally smooth (continuously differentiable)
transformations.

Quantitative experiments on 3D+t CT data of the lungs showed that the method was
able to derive the dynamics from the images with subvoxel accuracy, which is comparable
to previously published results of other state of the art image registration methods on the
same data. Furthermore, it shows that temporally smooth results can be achieved by only
compromising slightly on registration accuracy. The temporal smoothness of the results
can be regulated by adapting the temporal control point spacing, which can be chosen
in such a way that it takes into account the expected smoothness of the motion of the
anatomy. This prevents the method to fit the transformation to errors in the imaging
data, such as acquisition artefacts. Furthermore, cyclic motion can be enforced. We
showed that this was only beneficial for one of the DIR-lab cases. A possible explanation
for the decrease in accuracy for the other cases can be that the data is not as cyclic as
expected, which is also suggested by the relatively low temporal smoothness for the non-
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cyclic results of DIR-lab case 5 (see Figure 4.4). The use of cyclic motion constraints
should therefore be considered carefully for the application of interest. It should be
noted that previously published results on the DIR-lab data are not directly comparable
to the values derived in this work, because only a subset of 300 from the approximately
1200 3D landmarks is publicly available. We do, however, expect these 300 landmarks
to be a representative subset and the results therefore to be representative as well. Also,
we computed all TRE values in world coordinates, while Castillo et al. (2010) round
the transformed landmark coordinates to the closest voxel coordinate first. If we would
follow their approach, the average values for our results would be the same and the
standard deviations would be around 0.4 mm larger. In an experiment on the POPI
model, we showed that the proposed method outperforms the often used reference time
point method with respect to registration consistency. This is caused by the use of a
global cost function, avoiding a bias towards a specifically chosen reference time point.

Further quantitative experiments on 3D+t CTA data of the heart showed the ability
of the method to semi-automatically determine left ventricular volume curves with only
a deviation from manually derived curves of approximately 3%. These deviations may be
partly explained by errors in the manual annotations, because outlining the left ventricle
is especially challenging at the location of the atrioventricular valves during fast moving
phases of the cardiac cycle. Furthermore, contrary to the registration method, temporal
continuity is not taken into account during manual annotation.

Examples on 2D+t ultrasound and MR images showed the potential of the method
for other imaging modalities. Because the method is publicly available as an extension
to elastix, it can readily be applied by other researchers to various types of dynamic
medical imaging data.

We also described an approach to approximate an inverse B-spline transformation,
which was used to find the relation between time points in the input image. Based on
the application of interest one can choose to perform analyses on the registered image
directly or relatively to a chosen reference time point. The errors of the inverse trans-
formation were shown to be very small and even smaller when choosing a somewhat
smaller spatial grid spacing for obtaining the inverse transformation than was used in
the forward registration procedure. The accuracy was almost not affected by this smaller
spacing, but a small effect on the smoothness of the results was noticed.

The method builds upon groupwise registration approaches, with the main difference
that the smoothness in the temporal direction of the data is incorporated and that the
transformations can be constrained to be cyclic. The advantage of this approach is that
the alignment of the data does not depend on a chosen reference time point. Although
the deformations between the time points and the used implicit reference frame might
be larger than the deformations between consecutive time frames, this does not seem to
affect registration robustness. This is most probably an effect of the temporal smoothness
which helps to find these larger deformations. Additionally, these deformations are still
relatively small compared with the inter-patient differences in group-wise registration.
The error introduced when establishing the relation between time points in the input
image through application of the inverse transformation was shown to be much smaller
than the consistency errors made using the 3D reference registration approach.

Additional constraints on the transformation can be taken into account by adding ex-
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tra penalty terms to the cost function (Bistoquet et al., 2008; Mansi et al., 2009; Sdika,
2008). These penalty terms could, for example, ensure inverse consistent transforma-
tions or impose biomechanical constraints on the transformations. This depends on the
application, and is not pursued in our work.

It should be mentioned that the assumption of constant intensity over time does not
hold in perfusion imaging, where contrast flow can cause the same anatomy to have a
different appearance over time. The development of a similarity metric that accounts
for contrast influx would therefore be an interesting future research direction as our
groupwise nD+t B-spline framework can accommodate different similarity measures,
which may be selected based on different assumptions.

4.5 Conclusions

A registration method combining a Lagrangian nD+t B-spline transformation model, a
global cost function and global optimization strategy for motion analysis in dynamic
medical imaging data was proposed. It takes smoothness into account in both the spa-
tial and temporal direction of the data. Moreover, it can enforce the transformations to
be cyclic. Registration accuracy and smoothness were assessed using a synthetic image,
publicly available imaging data of the lungs and imaging data of the heart. On the syn-
thetic image, the best results with respect to accuracy and smoothness were achieved
using the proposed method while imposing cyclic motion. On the lung data, the accu-
racy was found to be comparable to previously reported results and the smoothness was
found to be best when using the proposed approach. Furthermore, it was shown that
the proposed method performs better than the reference time point registration method
with respect to the consistency of the registration results. Regarding the cardiac CTA
data, semi-automatically derived left ventricular volume curves showed a deviation of
approximately 3% with respect to the curves derived from manual annotations. Further
examples were shown on a 2D+t US image of the carotid artery and a 2D+t MR image of
the lungs. The software is publicly available as an extension to the registration package
elastix.
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Abstract

State of the art cardiac CT enables the acquisition of imaging data of the heart over the entire
cardiac cycle at high temporal resolution. However, due to the harmful effect of ionising radiation,
these acquisitions are not always justifiable. Prospective electrocardiogram gating is therefore in-
creasingly applied to reduce the patient dose, but this technique often limits reconstruction to a
single 3D image. However, estimating the shape of the cardiac structures throughout the entire car-
diac cycle is still useful for certain applications. We present a method to predict the motion of the
cardiac structures for the entire cardiac cycle from shape information of a single phase. Motion pre-
diction was performed by principle component regression via statistical shape and motion models.
Our prior hypothesis in this approach is that the motion of the heart is at least partially explained
by its shape. The second objective of this work is therefore to evaluate if shape-dependent motion
prediction results in more accurate results than shape-independent motion prediction. Quanti-
tative evaluation on 150 4D computed tomography angiography (CTA) images by leave-one-out
experiments showed a significant increase in the accuracy of the estimated shape sequences com-
pared to shape-independent motion prediction. The point-to-point and point-to-surface errors of
the estimated shapes were 2.4 ± 0.6 mm and 1.4 ± 0.3 mm respectively.
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5.1 Introduction

Statistical shape models have been widely applied for medical image segmentation
(Heimann and Meinzer, 2009), since their introduction by Cootes et al. (1995). It is
not surprising that these techniques have also been extensively applied for cardiac appli-
cations, most often for the delineation of the left ventricle. In this area, where artifact
free image acquisition is challenging due to the fast moving anatomy, prior knowledge
about plausible shapes may be beneficial for robust image segmentation. Examples are
the delineation of the left ventricle in multi-slice computed tomography (MSCT) (van
Assen et al., 2008; Fritz et al., 2005), magnetic resonance images (Shang and Dossel,
2004) and ultrasound images (Mitchell et al., 2002). Segmentation of more cardiac
structures have also been addressed, for example, all four cardiac chambers in the work
of Fritz et al. (2006), or the four chambers, myocardium and great vessels from 3D com-
puted tomography (Ecabert et al., 2008). In the work Frangi et al. (2002), an automatic
landmarking procedure for statistical modelling was presented and applied to the left
and right ventricle in magnetic resonance images. These shape models are often point
distribution models describing the statistics of the spatial distribution of anatomically
corresponding landmarks from a set of training shapes.

State of the art image acquisition techniques make the acquisition of 4D images of
the heart over the entire cardiac cycle possible at high temporal resolution (Li et al.,
2008a). The application of statistical models for the segmentation of these sequences
has therefore been investigated. Straightforward solutions are to create a separate model
for every cardiac phase (Zhang et al., 2010d) or to train a single 3D model from shapes
of all cardiac phases (Ordas et al., 2007). Although the latter approach is suited for
segmentation, it does not allow to make the distinction between inter- and intra-patient
shape variation, which is needed for the analysis or prediction of cardiac motion. Another
approach is to perform statistical analysis on 4D landmark coordinates to derive a model
of cardiac shape and motion. This approach was applied by Perperidis et al. (2005)
for segmenting the left ventricle, right ventricle and myocardium. Zhang et al. (2010d)
applied a two step approach to find both the left and right ventricle in MRI. In this
method, first the whole sequence of shapes was segmented using a 4D shape model
and subsequently, the segmentations for the individual time points were refined using
per-phase 3D shape models.

4D statistical shape models have not only been used for cardiac application, but also
for other anatomies, for example in respiratory motion modeling of the liver (Blackall
et al., 2001) and motion modeling of the lungs (Ehrhardt et al., 2010).

Instead of modelling the coordinates of a set of landmarks, it is also possible to con-
struct statistical models that describe the deformation with respect to a chosen reference
image. This approach was used by Rueckert et al. (1999) to construct statistical deforma-
tion models describing the variability of 3D brain structures among a patient population.
A similar approach was performed by Lapp et al. (2004) for 3D and 4D cardiac segmenta-
tion. Related to this work, Chandrashekara et al. (2003) performed statistical analysis on
the registration parameters to substantially decrease the degrees of freedom in nonrigid
registration of images at different cardiac phase.

Except for the method of Chandrashekara et al. (2003), the above mentioned meth-
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ods have been used for image segmentation, hence the statistical models were fit to
imaging data of the same dimensionality as the data from which the models were de-
rived. However, in some situations only sparse information is available and the goal is
then to reconstruct the full segmentation or motion from this information. For example,
to minimize patient dose in computed tomography angiography (CTA), prospective gat-
ing techniques are increasingly applied, where data is solely acquired during a certain
period of the cardiac cycle. In this case reconstruction is often limited to one 3D image.
It is still useful to estimate the motion during the cardiac cycle from the available sparse
data, for example, in the dynamic alignment of preoperative 3D CTA to intraoperative
2D+t X-ray in image guided interventions (Metz et al., 2009a). It is worth to mention
that it is not obvious to use the predicted motion for direct diagnosis, rather for image
analysis in which a motion prior is beneficial.

Some authors have investigated the prediction of cardiac motion or deformation from
sparse temporal data. Ablitt et al. (2004) used partial least squares regression to predict
breathing induced motion from navigator echoes. In the work of Hoogendoorn et al.
(2009) and Figueras et al. (2010) cardiac shapes for the complete dynamic sequence
were predicted from shape information available at a subset of phases throughout the
cardiac cycle. In their work, shape variation between subjects and shape variation due to
the cardiac cycle were explicitly decoupled by the application of bilinear models. Cardiac
motion was therefore assumed to be independent of the shape of the heart. Motion pre-
diction for non-cardiac applications was performed by Liu et al. (2010), using canonical
correlation analysis to estimate dense motion fields of the lungs from sparsely sampled
4D shape information. Davatzikos et al. (2001) presented a general method to estimate
anatomical deformation, in which principal component analysis is performed on vectors
containing both the shape and deformation parameters. A least squares minimization
approach was proposed to estimate the most likely deformation given the shape of the
anatomical structure of interest. This method has been evaluated on synthetic images.

The combination of shape models and multi-variate regression has also been applied
for non-motion related applications. For example, to estimate the shape of anatomical
structures based on the shape of the neigboring structures. In the work of de Bruijne
et al. (2007) a neighbor-conditional shape model based on ridge regression was used to
quantify vertebral morphology. Yang et al. (2008) proposed to use partial least squares
regression for the prediction of neighboring bone structures in the shoulder, which was
also used in the work of Rao et al. (2008) for the prediction of brain structures. In
Jeong et al. (2008) principal component regression was used to automatically outline the
prostate based on known neighboring structures. In the work of Iglesias and de Bruijne
(2007), principle component regression was used to determine vertebrae outlines in
lateral X-ray images from small number of manually annotated landmarks.

In this chapter, we investigate cardiac motion prediction from 3D shape information
extracted from a single phase CTA image. To this end, we build statistical shape and
motion models of the heart and predict the motion from the shape by application of
principal component regression. In contrast to the work of Hoogendoorn et al. (2009)
and Figueras et al. (2010), we do not enforce independence between the shape and the
motion of the heart. Instead, our method exploits any possible correlation between shape
and motion of the heart and we evaluate the influence of this correlation on the accuracy
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of the predicted surfaces.
The contribution of this work is three-fold:

(i) We present a framework for cardiac motion prediction based on linear regression
which takes into account the possible correlation between the shape and motion of
the heart.

(ii) To construct a training set, we present a fully automatic procedure to extract
anatomically corresponding landmarks from ECG-gated 4D CTA.

(iii) We investigate the value of taking into account shape-dependent motion by assess-
ing the contribution of shape-related motion to the accuracy of the motion predic-
tion.

The method is quantitatively evaluated by leave-one-out experiments on 150 4D CTA
images by computing point-to-point and point-to-surface errors between the estimated
4D cardiac shapes and the reference standard. This work is an extension of a previously
published MICCAI conference paper (Metz et al., 2010). Klinder et al. (2010) simultane-
ously developed a similar method for respiratory motion prediction, which was published
concurrently.

5.2 Method

The proposed 4D motion prediction method builds upon the theory of statistical models
and linear regression. In Section 5.2.1, we describe how we apply these techniques for
cardiac motion prediction. In Section 5.2.2 and 5.2.3, we explain how to train the model
on 4D CTA images. An overview of the method is given in Figure 5.1.

5.2.1 Shape-conditional motion prediction

The method consists of independent shape and motion models (Section 5.2.1), which
are related using linear regression (Section 5.2.1).

Representation of shape and motion

Having P 4D segmentations of the individual structures of the heart, each segmentation
S is represented by a sequence of T shapes st :

S = 〈s1, . . . , sT 〉 , (5.1)

one for each phase in the cardiac cycle. Each shape consists of a collection of K landmarks
points, which are stored in a column vector:

st = (x1, y1, z1, . . . , xK , yK , zK)
τ . (5.2)

The landmark points are located on the surfaces at anatomically corresponding locations
both over time and between patients. To be able to model both shape and motion vari-
ation, we first define a reference phase r. This phase should correspond to the phase in
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Figure 5.1: Overview of the cardiac motion prediction framework. Model building (left): (1) Landmarks are
determined in a number of 4D CTA images by atlas segmentation of a reference time point (Section 5.2.2) and
4D registration (Section 5.2.2), (2) pose and heart rate variances are removed by aligning the landmark sets
(Section 5.2.3) and (3) a shape and motion model is derived by performing PCA on the landmark coordinates
and motion vectors (Section 5.2.1). Motion estimation (right): (1) Landmarks are determined in a 3D CTA scan by
atlas segmentation, (2) The derived landmarks set is aligned with the mean landmark set of the shape model
and (3) Motion is estimated by principle component regression (Section 5.2.1). For both procedures atlases are
needed in which anatomically corresponding landmarks are determined (center, Section 5.2.2).

which the 3D shape information used for motion prediction is available at a later stage.
Each shape sequence is now represented by a reference shape sr and a motion vector
m (with size 3T K), describing the displacements from shape sr to the shapes at all T

phases:

m = ((s1 − sr)
τ, . . . , (sT − sr)

τ)τ . (5.3)

Motion prediction by principle component regression

To estimate the motion vectors from the shape landmark coordinates we apply a linear
regression technique. Even though the underlying relation might be non-linear, a linear
model is still desirable as in general the number of training data is much smaller than
the number of parameters used. Using a non-linear model increases the risk of over-
fitting substantially and will most probably result in high variance of the estimated model
parameters.

By assuming a Gaussian distribution of the shape vectors sr and motion vectors m

respectively, their joint distribution can be written as a normal distribution P(m, sr) =

N(µZ ,ΣZ ) with mean

µZ =

�

m̄

s̄r

�

(5.4)
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and covariance

ΣZ =

�

Σmm Σms

Σsm Σss

�

, (5.5)

where Σss and Σmm are the covariance matrices of shape and motion respectively, and
Σms = Σsm is the covariance matrix between shape and motion. Following a linear re-
gression approach, the motion for a given shape s∗

r
can be predicted by computing the

mean of the conditional distribution P(m|s∗
r
) (Izenman, 2008):

m∗ = m̄+ΣmsΣ
−1
ss
(s∗

r
− s̄r) (5.6)

Multiple methods have been proposed to further regularize linear regression. Because
the landmark locations are most probably highly correlated, we chose to use principle
component regression and hence reduce the number of input and output variables by
principle component analysis (PCA) on the shape and motion vectors respectively. A
shape sr can then be represented by the mean shape s̄r and a linear combination of the
modes of variation described by a parameter vector p:

sr ≈ s̄r +Φp , (5.7)

where the columns of matrix Φ contain the highest eigenvectors resulting from the PCA
corresponding to a certain percentage α of the shape variance to retain in the model. In
a similar way, after PCA on the motion vectors, a motion sequence m can be written as
the mean motion m̄ and a linear combination of the modes of variation:

m ≈ m̄+Ψq , (5.8)

where the columns of matrix Φ contain the highest eigenvectors resulting from the PCA
corresponding to a certain percentage β of the motion variance to retain in the model.
In this work β is fixed to 95%.

Next, we use shape parameter vector

p∗ = ΦT (s∗
r
− s̄r) . (5.9)

to predict motion parameter vector q∗ (Hastie et al., 2009). Replacing the original shape
and motion vectors of Equation 5.6 by their respective parameter vectors gives

q∗ = ΣqpΣ
−1
pp

p∗ , (5.10)

with q∗ the parameter vector representing the estimated motion. To ensure that the mo-
tion is plausible, q∗ is isotropically scaled such that it lies within ±3 standard deviations
of the motion model and the associated motion sequence m∗ is derived with Equation
5.8. The final estimated shape sequence S∗ is computed by combining the actual shape
in the available cardiac phase (s∗

r
) with the estimated motion sequence m∗:

S∗ = 〈s∗
r
+m∗1, . . . , s∗

r
+m∗

T
〉 . (5.11)
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5.2.2 Landmarking

For computation of the shape and motion model described in Section 5.2.1, training
segmentations Sp (with 1 ≤ p ≤ P), consisting of anatomically corresponding landmark
sets st , need to be determined for a number of 4D training images. Manual annotation
of these landmarks would be very time-consuming. Therefore, we propose an automated
procedure to derive such a training set from electrocardiogram (ECG) gated computed
tomography angiography (CTA). The procedure consists of:

(i) Determination of anatomically corresponding landmark positions between patients
in one 3D (reference) phase of the cardiac cycle.

(ii) Determination of anatomically corresponding landmark positions over time within
patients.

We obtain the landmark correspondence between patients by multi-atlas segmentation
of the end-diastolic frame of the image sequences, resulting in the landmark sets sr

(Section 5.2.2). To this end, anatomically corresponding landmarks are defined in the
atlases (Section 5.2.2).

The temporal correspondence is then achieved by propagating the landmark set sr

from the end-diastolic phase to all other phases in the cardiac cycle by a 4D registration
procedure, resulting in the complete shape sequences Sp (Section 5.2.2).

Determination of anatomically corresponding landmark positions between

patients

We propose to use multi-atlas segmentation to derive anatomical landmark correspon-
dence between patients. To this end we represent the manual segmentations by a number
of surface landmarks a j, with 1 ≤ j ≤ J and J the number of atlases available. These
landmarks are located at anatomical corresponding locations among the atlases (see Sec-
tion 5.2.2). We now define a transformation T j

u
(x ) which maps a point x from atlas j to

the patient image at the reference phase. Note that this transformation is defined in the
opposite direction as is common in multi-atlas segmentation, as we want to transform
landmarks instead of label images1. We subsequently look for that transformation that
optimally aligns the atlas and patient image:

û = arg min
u

C(u) (5.12)

in which C denotes a cost function measuring the quality of the fit between the trans-
formed patient and atlas image. In this work mutual information is used to compute
these costs, and the nonrigid registration procedure was performed as described by Kirisli
et al. (2010). By applying the resulting optimal transformation T

j

û(x ) to the atlas surface
landmarks, we map the points from atlas j to the patient image:

a′
j
= T j

u
(a j) (5.13)

1In conventional multi-atlas segmentation transformation T(x ) maps points from the patient image to the
fixed image. The labels are then propagated by transforming every voxel location of the patient image to the
atlas image and looking up the label for that voxel.
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Figure 5.2: Atlas landmarking procedure: surface creation from manually annotated contours, creation of
common space and mean surfaces, and transformation of mean surfaces back to atlases.

The final landmark set for a training image is then derived by averaging the J landmark
sets a′

j
:

sr =
1

J

J
∑

j=1

â j . (5.14)

During the registration procedure, the cost function C is only computed on voxels that
lie inside the heart surface. This ensures that neigboring structures located at different
relative positions to the heart between patients, such as the ribs and spine, do not affect
the quality of the alignment of the heart structures.

Anatomical landmark correspondence in atlases

A prerequisite for the landmarking procedure (Section 5.2.2) is the availability of
anatomically corresponding landmarks in the J atlases. Each input atlas used in this
work consists of a 3D end-diastolic CTA image and manually annotated contours of the
following cardiac structures: pericardium, aorta (Ao), endocardium left ventricle (en-
doLV), epicardium left ventricle (epiLV), right ventricle, left atrium (LA) and right atrium
(RA) (Kirisli et al., 2010). To establish corresponding landmarks on these annotated
surfaces, we apply the following steps:

(i) Mapping the J atlases to a common space.

(ii) Averaging the J atlas surfaces per structure in this common space.

(iii) Distributing landmarks across the resulting average surfaces.

(iv) Mapping the surface landmarks back to the individual atlases.

An overview is given in Fig. 5.2 and details of the procedure are described below. The
procedure is similar to the method presented by Frangi et al. (2002), but we directly use
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a non-rigid transformation to align the atlases, perform pairwise alignment instead of a
groupwise alignment, and define the similarity metric differently.

The first step of the atlas landmarking procedure, the creation of the common space,
is based on pairwise alignment of the atlases. We perform a simultaneous alignment
of the surfaces instead of aligning the intensity images, as the alignment is then only
influenced by the structures of interest. Registration based on the intensity images is not
preferred as the position and orientation of the heart with respect to the surrounding
anatomy differs between patients. The surrounding anatomy will therefore deteriorate
the quality of the alignment of the heart structures.

In order to register the manual segmentations, we first convert the annotated sets of
2D contour as available from the work of Kirisli et al. (2010) to 3D soft mask images by
the following procedure.

We first fit a 3D surface to the manually annotated contours, which we denote with
b. Subsequently, a signed distance function f (x ) to this surface is determined, where x

is a 3-dimensional voxel position in the mask image:

f (x ) =

¨

d(x , b) if x outside b

−d(x , b) if x inside b
(5.15)

with d(x , b) the closest distance of x to surface b. A soft mask image is then computed
according to:

g(x ) = erf(− f (x )/σg) (5.16)

with σg a parameter controlling the slope of error function erf(.). In this work σg was set
to 0.8 mm. The values of g(x ) are minus one outside the surface, one inside the surface
and smoothly vary from minus one to one at the border of the surface. By applying this
error function, aliasing effects in the mask images are prevented.

Let gic(x ) be the soft mask image for atlas i and cardiac structure c. Furthermore,
let T i j

v
(x ) be a B-spline transformation (Rueckert et al., 1999) aligning atlas i and j,

described by a parameter vector v . The pairwise alignment of two atlases i and j is
now performed by finding that parameter vector v̂ that minimizes the sum of squared
differences between the masks:

Di j(v) =

C
∑

c=1

∑

x∈X

�

gic(x )− g jc

�

T i j
v
(x )
��2

, (5.17)

with X the set of voxels in the image and C the number of cardiac structures. Registration
parameter settings are adopted from Kirisli et al. (2010).

The transformation T i(x ) to map atlas i to the common space is determined by aver-
aging all pairwise transformations T

i j

v̂
(x ):

T i(x ) =
1

J

J
∑

j=1

T
i j

v̂
(x ) . (5.18)
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These transformations are used to transform all atlas surfaces b to the common space,
after which their signed distance functions are determined and averaged per structure:

f ′
c
(x ) =

1

J

J
∑

j=1

f ′
ic

, (5.19)

with f ′
ic

the signed distance function of surface c and atlas i, created in the common
space, and f ′

c
the signed distance function of the average surface of structure c. The

mean surface is extracted at the zero level set of f ′
c
. A landmark set a is generated

by sampling surface points at approximately equally distributed locations. Finally, these
landmarks are mapped back to the individual atlases by pair-wise registration of the soft
masks of the mean surfaces and the soft masks of the surfaces in the individual atlases.
The landmark set in atlas ji is denoted with a j.

Determination of anatomically corresponding landmark positions over time

After determining landmark set sr for a training image by multi-atlas segmentation of the
image at phase r (Section 5.2.2), the next step is to propagate the landmarks to anatom-
ically corresponding locations throughout the entire cardiac cycle to form the landmark
sequence S. We use the method presented in Metz et al. (2010) which was shown to per-
form well on (among others) cardiac data for the extraction of left ventricular volume
curves. The method searches for the 4D B-spline transformation that aligns all time point
images with reference phase r. To this end, it aims to minimize the variance of intensity
values at corresponding voxel locations over time. Displacements in the time dimension
are not allowed. Due to the 4D B-spline parametrization of the transformation, both
spatial and temporal smoothness is achieved. Additionally, the motion is enforced to be
cyclic, which implies that there is a smooth transition in the transformation between the
last and first frame of the sequence.

A two-step approach is applied. First, the 4D registration is performed on the whole
4D image and the surface of the pericardium is subsequently propagated to the entire
sequence using the resulting transformation. In the second step, the 4D registration is
performed, while computing the dissimilarity metric only inside the pericardial surface,
to account for non-smooth sliding motion of the heart along the lung surface. The result-
ing transformation is applied to sr to propagate the landmarks to the complete sequence.

For the experiments performed in this work, the spatial and temporal B-spline control
point spacing were set to 15 mm and 1 time point (5% of the cardiac cycle) respectively.
Per resolution level, 2000 iterations were performed. The number of spatial samples used
to compute the dissimilarity metric was set to 2000 and the temporal number of samples
was set to 5. For efficiency, quadratic B-splines were used for the parameterization of the
transformation.

5.2.3 Alignment of landmark sequences

After application of the procedure described in Section 5.2.2, we have a set of land-
marked 4D imaging data. Directly creating the statistical models from these landmark
sequences would include the following undesired variations in the model:



96 CHAPTER 5. CARDIAC MOTION PREDICTION BY PRINCIPLE COMPONENT REGRESSION

systole diastole systole

ECG signal
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Figure 5.3: The change of left ventricular volume with respect to the ECG signal. By aligning the left ventricular
volume curves, we implicitly align the ECG signals of the patients.

(i) Temporal variations due to, for example, different patient heart rates.

(ii) Variations due to the position and orientation of the patient in the scanner and the
position and orientation of the heart within the patient.

In the following sections, we describe how these variances are removed from the training
data.

Removing heart rate variations: temporal alignment

The landmark sequences derived by the procedure described in Section 5.2.2 are not
sampled at physiologically corresponding temporal positions. This is, among others,
caused by the ECG-gated reconstruction procedure: every time point image has been
reconstructed at regular locations of the RR interval. Because the QT interval is, for
example, known to be non-linearly related to the heart rate (Bazett, 1920), the linear
scaling of the RR interval as pursued in the reconstruction procedure is not sufficient to
remove non-linear variations.

We propose to remove this variation by determining physiologically corresponding
temporal positions among the training sequences and interpolating the landmark se-
quences at these new temporal positions. Ideally, this interpolation is achieved by re-
lating the ECG-signals, which are unfortunately not always available or stored in an
unknown vendor-specific format. We therefore implicitly align the ECG signals of the pa-
tients by aligning their related left ventricular (LV) volume curves (Figure 5.3). Aligning
LV volume curves was proposed previously by Peyrat et al. (2010) for image registration,
but details of their curve alignment approach were not published. Figure 5.4(a) shows
the LV curves for the training data used in this work before alignment.

The non-linear alignment of the curves consists of an groupwise registration proce-
dure in which all curves are aligned with the mean curve. In the first iteration of the
algorithm, the mean curve is chosen to be the curve which is closest to the average of
all input curves. In subsequent iterations, the mean curve is determined by averaging all
aligned curves. This procedure is repeated a number of iterations.

The alignment of two curves is performed using a 1D registration procedure. We first
define the transformation model Tw (t) to be a third order polynomial parameterized
by four control points (Figure 5.6(a)). The first and last control point are fixed at 0%
and 100% of the RR interval respectively. The positions of the intermediate two control
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Figure 5.4: Left ventricular volume during the cardiac cycle before (a) and after alignment of the volume curves
(b) in ml. Each line represents a patient.

points are optimized to optimally align the two curves (Figure 5.6(b) shows examples
of possible transformation). We denote a left ventricular volume curve with zi(t) and
define the similarity metric as the normalized cross correlation N between zi and the
reference curve zr :

N (zi , zr) =
1

T − 1

T
∑

t=1

(zi(Tw (t))− z̄i)(zr(t)− z̄r)

σzi
σzr

, (5.20)

with z̄i and σzi
the mean and standard deviation of the values of curve zi respectively.

Normalized cross correlation ensures that the absolute volume differences due to, for
example, different sizes of the heart are not influencing the alignment. To derive curve
values zi(Tw (t)) at non-grid positions, linear interpolation is applied. Optimization is
performed by exhaustively searching for the optimal positions of the two free control
points.

The result of this iterative alignment procedure is shown in Figure 5.4(b). We perform
five alignment iterations and discretize the temporal axis at 1% intervals for the possible
positions of the two control points that determine the transformation of the curve.

After convergence of the curve alignment, the 4D landmark sets S are resampled
according to the new time point positions using cubic interpolation.

Removing position and orientation variations: spatial alignment

The variances in the training landmark sequences due to patient and heart position and
orientation are removed by Procrustes analysis (Goodall, 1991) on the P landmark sets
sr . This alignment procedure optimizes the translation, rotation and isotropic scaling of
the shapes. The resulting transformation is applied to the entire sequences S.
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Figure 5.5: Images excluded from the experiments after visual inspection because of segmentation failure.
Left: high noise dataset with artifacts caused by artificial valve. Right: large anatomical deviation due to aortic
aneurysm.

5.3 Experiments and results

5.3.1 Imaging data

To derive the training landmark sequences, 170 retrospectively ECG gated 4D CTA images
were collected. The scans were made for clinical diagnosis or research purposes and
represent large variability in anatomy and pathologies. Images were acquired between
September 2006 and March 2010 using a Siemens Definition or Siemens Definition Flash
scanner. Reconstructions were made at every 5% of the cardiac cycle, resulting in 20
images per sequence. The field of view used for the reconstruction was 256x256 and
the resulting voxel size is approximately 0.7x0.7x0.9 mm3. The number of slices is on
average 140. The slice thickness is 1.5 mm. Histogram equalization was performed
on the CTA images, because a preliminary study revealed a positive effect on the 4D
registration results.

For the multi-atlas based landmark propagation to the end-diastolic image, the eight
manually segmented 3D atlases of Kirisli et al. (2010) were used.

5.3.2 Landmark propagation

The procedure described in Section 5.2.2 was performed to automatically determine
anatomically corresponding landmarks in the 170 4D CTA images. The quality of the
resulting surface sequences was scored by the first author as sufficient or insufficient
for inclusion in the model by visual inspection. Surfaces were only scored insufficient in
case of large errors. Consequently, twenty of the 170 landmark sequences were excluded
from model building, resulting in a total number of 150 landmark sequences. Failures
were caused by artifacts in the data, such as caused by the presence of a pacemaker, and
large anatomical deviations from the atlases due to pathologies, for example, large aortic
aneurysms. See Figure 5.5 for some examples. The following number of landmarks were
used for the Ao, endoLV, epiLV, pericardium, LA, RA and RV respectively: 968, 2434, 3465,
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Figure 5.6: Left ventricular volume curve alignment: the temporal transformation is described by a third order
polynomial which is based on the position of two control points (a). Examples of possible transformations of the
solid curve are shown in (b).

7383, 1768, 1748 and 3084. The pericardium was only used to mask the computation
of the dissimilarity metric in the 4D registration procedure (Section 5.2.2). All other
structures were used for model building and motion prediction.

5.3.3 Accuracy of shape-conditional and mean motion

The motion of the four chambers and the aorta was predicted simultaneously based on
the end-diastolic segmentation, by applying the conditional model described in Section
5.2.1. The end-diastolic phase (viz. at 70% of the RR-interval) was chosen as the ref-
erence phase r. Subsequently, 3D surface landmarks were determined at this reference
time point by multi-atlas segmentation. The resulting landmark set was aligned (trans-
lation, rotation and isotropic scaling) with the mean shape s̄r of the shape model, after
which the motion was predicted (Equation 5.10). The predicted motion was combined
with the atlas-segmented 3D shape according to Equation 5.11, after which the 4D shapes
were mapped back to the patient space using the inverse of the alignment transforma-
tion.

The accuracy of the motion prediction was evaluated in nested leave-one-out exper-
iments on the training landmark sequences. The training data is repeatedly (150 times)
divided into a set of 149 training shapes and one testing shape. The optimal value of α
(the percentage of shape variance to retain) for a specific testing shape was determined
by performing an inner leave-one-out experiment on the respective 149 training shapes.
To this end, variances from 5% to 100% with steps of 5% were tested and the best per-
forming α value is stored. To keep the running time within reasonable limits, only 30
of these inner leave-one-out iterations were performed per testing shape. After these 30
iterations the most often optimal α value was selected to be used for motion prediction
in the outer leave-one-out iteration.

The performance of our method was compared to the accuracy achieved by overlay-
ing the mean motion m̄ on the atlas segmented 3D shape:

Sm = 〈s∗
r
+ m̄1, . . . , s∗

r
+ m̄T 〉 , (5.21)
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Figure 5.7: Histogram of optimal shape variance percentages selected for motion prediction (a) and influence
of percentage of shape variance retained on the accuracy (point-to-point error in mm) of motion prediction
averaged over 150 patients (b).

where we denote with Sm the shape sequence resulting from this approach. When it is
assumed that the shape and motion of the heart are uncorrelated, Sm would maximize
the prediction accuracy based on single phase shape information.

The accuracy is expressed in the average root mean squared point-to-point and point-
to-surface distance to the training shapes (as derived by the procedure described in
Section 5.2.2) per structure and time point. Next to the accuracy of mean and shape-
conditional motion, we list the point-to-point and point-to-surface distances between the
surface at the reference time point and the surfaces at all other time points to give insight
in the magnitude of the motion. To test if shape-dependent motion prediction was signif-
icantly better than shape-independent motion prediction, a paired t-test was performed
between the per structure point-to-point errors of the mean motion and the predicted
shape-conditional motion in which the number of patients was used as the sample set
size.

Results of the predictor optimization based on the variance of the shape model are
shown in Figure 5.7(a) and 5.7(b). The first figure shows a histogram of the optimal
percentages selected and the second shows how much the average root mean squared
point-to-point error over all patients depends on the percentage of variance retained in
the shape model. The most often optimal percentage of variance to retain was 85% with
a corresponding number of shapes modes of 30 or 31. It can be noticed from Figure
5.7(b) that the accuracy is not very much influenced by slight changes in this value, as
the graph is relatively flat between 75% and 95%.

Table 5.1 and 5.2 show the accuracy of the estimated shapes over all phases and
averaged over the systolic phase respectively. Figure 5.8 shows per structure the average
accuracy for the mean motion (dotted) and shape-conditional motion (solid) over the
cardiac cycle. The tables and graphs show that shape-conditional motion prediction,
as proposed in this work, performs better than shape-independent motion prediction
by application of the mean motion. Additionally, the paired t-test showed that these
differences are statistically significant. Resulting p-values are smaller than 0.01 for all
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Figure 5.8: Accuracy of shape-conditional motion (solid) and mean motion (dotted) reported separately for all
structures in mm.

structures.

5.3.4 Training set size

In this experiment, we investigated the dependency of the accuracy of the estimated
shape sequences on the training set size. K-fold cross validation was performed. First,
the data was randomly partitioned into K = 10 subsets. Subsequently, for every training
set size, all possible combinations of subsets were used as training data and for each
of these combinations a randomly selected hold out subset was used to compute the
accuracy of the model. Based on the results of the experiment described in Section
5.3.3 we used the modes describing 85% of the variance of the shape model as motion
predictors. The accuracy was determined as the root-mean-squared (RMS) point-to-point
(p2p) error averaged over all patients and structures. The results for both the mean and
shape-conditional motion are shown in Figure 5.9. Two important observations can
be made from this figure. The first one is that the accuracy of motion prediction by
application of the mean motion does not substantially change by adding training data.
Adversely, the accuracy of shape-conditional motion prediction improves when adding
more training data. In addition, the results indicated that it is probably beneficial to
add even more training data, as the downward trend in the graph is still visible at the
maximum amount of training data tested.
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Figure 5.9: Relation between the number of training shapes and the accuracy. The dashed and solid line
show the mean RMS p2p errors (mm) of the mean and shape-conditional motion respectively. RMS errors were
computed per dataset over all cardiac structures.

5.3.5 Visualization of the relation between shape and motion

To visualize the relation between shape and motion, we performed the following ex-
periment. Using all available data, we built both the shape and motion models for the
endocardium of the left ventricle. We then varied the shape by using values of -3, 0 and
+3 standard deviations as the parameters for the first and second mode of variation of
the shape model and predicted the motion for this shape. Note that parameter values of
zero will generate the mean shape and result in a prediction of the mean motion by defi-
nition. We visualized the shape-dependent motion differences by coloring the magnitude
of displacement (point-to-point distance) between diastole and systole on visualizations
of the predicted systolic shape. Figure 5.10 shows these visualizations together with the
end diastolic shapes (in grey) from which the motion is predicted. Two different views
for every shape are given. The two first modes explain mainly how elongated the left
ventricle is. It can be noticed that a less elongated left ventricle shows a more isotropic
contraction than an more elongated one.

5.4 Discussion

We presented a method to predict cardiac motion from the shape of the heart at end-
diastole and evaluated its performance by leave-one-out experiments on 150 cardiac
shape sequences. The main novelty of the presented framework is that it enables to
incorporate the correlation between the shape and motion of the heart, which was shown
to significantly improve the accuracy of the predicted cardiac shape over the entire heart
cycle. This result is relevant for applications in which 4D shape models of the heart are
beneficial, e.g. in relating 3D preoperative cardiac data to 2D+t intraoperative X-ray
angiography.
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3 0 33 0 3

Figure 5.10: Relation between shape and motion: the grey surfaces show the end diastolic shape for a
given mode configuration; the colored surface shows the predicted systolic shape and the magnitude of the
displacement between the end-diastolic and systolic shape. The two first modes mainly explain how elongated
the left ventricle is. Furthermore, it can be noticed that a less elongated left ventricle shows a more isotropic
contraction than a more elongated one.

In a qualitative experiment, we visualised the correlation between the shape and
motion of the heart by showing the first two modes of variation of the shape model and
its impact on the predicted motion (Figure 5.10). For the first mode, it is clearly visible
that a less elongated left ventricle shows a more isotropic contraction. The proposed
method enables to gain more insight into these kind of correlations.

We specifically developed our approach for cardiac motion prediction based on a
single frame only. In principle, the method could also be adapted to situations in which
multiple time frames are available. Previous work on the same topic by Hoogendoorn
et al. (2009) and Figueras et al. (2010) is especially suited for these situations in which
multi-phase shape information is known. The best possible estimate of these methods for
cases in which only a single 3D shape is knwon is the mean motion. With the presented
method, shape information at a single phase can be used for patient-specific cardiac
motion prediction, which in our experiments was shown to perform significantly better.

To extract the training landmark sequences from 4D CTA data, we proposed a fully
automatic approach based on multi-atlas based segmentation and 4D registration. Al-
though this procedure was only applied to CTA data, the method can potentially be used
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to derive motion models from other modalities such as dynamic MRI as well.
Motion prediction was performed by principal component regression. The selection

of the predictors was thus based on retaining a certain percentage of the variance of the
shape model. Although the actual value of this parameter was optimized, other selection
methods may result in a better performance, as the parameters explaining the highest
variations in the shape model are not necessarily the best predictors of the motion. In-
vestigation of predictor selection and other prediction techniques, such as partial least
squares regression (Geladi and Kowalski, 1986), are subject to future work.

In the experiments, we assumed that the temporal position of the predicting 3D shape
within the temporally aligned space of the training data is known. In real clinical situa-
tions, this might not be the case. If, however, an ECG signal is recorded, this relation can
be determined by relating the recorded ECG signal to the aligned left ventricular volume
curves of the training shapes (see Figure 5.3). Small errors in this procedure are expected
to cause only minor changes in accuracy, as the heart is relatively stable at end-diastole.
After estimating the motion, the resulting 4D shape should be mapped back from the
mean space of the groupwise curve alignment to the patient space using the ECG signal.
These ECG signals are always recorded during interventions and cardiac image acqui-
sition, which does therefore not impose additional requirements for application of the
proposed method. In future work, we would like to investigate the application of motion
prediction in the alignment of preoperatively acquired 3D CTA data to intraoperatively
acquired 2D+t X-ray images.

The method was evaluated by computing the errors with respect to the surfaces de-
rived by multi-atlas registration and 4D registration. Errors introduced by the procedure
to extract these training surfaces from the data are therefore not included in the pre-
sented results, but both the multi-atlas segmentation and 4D registration procedure have
been evaluated before on cardiac data (Kirisli et al., 2010; Metz et al., 2010).

It can be deduced from the training set size experiment (Figure 5.9) that the use
of more training data in building the model might still improve the accuracy of motion
prediction. This can be explained by the high variability of cardiac shape and motion,
and the pathological nature of the training data.

5.5 Conclusions

A method was presented to predict cardiac motion from the end-diastolic shape of the
heart. Furthermore, a framework was proposed to derive landmark sequences to train
the method from a set of 4D CTA images. It was shown that the proposed shape-
conditional approach significantly improved the accuracy of the predicted motion com-
pared to shape independent motion prediction by application of the mean motion.
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Abstract

In this chapter, we investigate the feasibility of a 3D+t/2D+t registration strategy to relate pre-
operative CTA to intraoperative X-ray angiography. To achieve this we use the methods introduced
in the previous chapters for creating a patient-specific 4D model of the geometry and motion of the
coronary arteries. Subsequently, we temporally register this preoperative model to the intraopera-
tive imaging data by means of ECG alignment. In the final step of the method, we spatially align
the temporally aligned model to the intraoperative imaging data. A nonlinear conjugate gradient
optimizer is used to optimize a similarity metric based on 3D coronary centerlines projected onto
the X-ray image and a fuzzy segmentation of vessel structures in this image. The spatial alignment
is simultaneously performed on multiple X-ray images within a temporal window, also taking into
account motion due to respiration. We evaluate the approach by comparing projected centerlines
with manually annotated 2D centerlines in the X-ray images. In the experiments we show that the
proposed registration approach has advantages over the more classic 3D/2D approach in terms of
registration success and reproducibility.
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6.1 Introduction

Percutaneous coronary intervention (PCI) is an often used minimally invasive procedure
to reopen coronary arteries which are narrowed due to advanced atherosclerosis. The
procedural success rate of PCI is very high (>98%; Tsuchida et al., 2007; Hoye et al.,
2005), but certain cases remain difficult to treat and might therefore be referred for
coronary artery bypass grafting (CABG). CABG is far more invasive as the chest of the
patient needs to be opened. Additional risks, such as uncomfortable sternotomy, infec-
tions, pulmonary emboli and stroke are inherent to this type of major surgery (Grech,
2011).

In PCI, narrowing or occlusion of coronary arteries is treated by moving a guidewire
from a blood vessel in the upper thigh to the site of the lesion. Once the guidewire is
in place, a hollow balloon catheter is positioned over the guidewire and the vessel is
widened by inflation of the balloon. Often, at the same time, an expandable wire mesh
tube (stent) is implanted to keep the vessel open. The procedure is performed percuta-
neously and (biplane) X-ray imaging is applied to visualize the vessels and equipment.
Due to the projective nature of X-ray imaging, the cardiologist needs to make a mental
picture of the actual 3D situation inside the patient.

Reduced procedural success and higher complication rates have been reported for
complex vascular anatomies, bifurcating lesions and chronically totally occluded vessels
(Tsuchida et al., 2007; Hoye et al., 2005). Using additional information from a pre-
operative CTA scan is potentially beneficial in these cases. A vessel roadmap from CTA
can, for example, be used to magnetically steer the guidewire through difficult branching
points (Ramcharitar et al., 2007, 2008, in press). Likewise, information about the com-
position of the plaque, such as the location of calcium inside the lesion, may be useful
when crossing chronic total occlusions, especially when applying radio frequency or laser
ablation.

To be able to use the additional information from CTA, accurate alignment of the
preoperative image with the intraoperative situation is essential. This alignment is often
determined automatically using 3D/2D registration. An extensive overview of 3D/2D
registration approaches is given in the work of Markelj et al. (in press); here we focus
specifically on vascular applications.

Most work in this area is on neurological applications, where the vasculature can be
considered as static (e.g. Bullitt et al., 1999; Groher et al., 2007; Hipwell et al., 2003;
McLaughlin et al., 2005). A small amount of work was presented on the alignment
of preoperative cardiac data to intraoperative 2D imaging modalities. Imamura et al.
(2002) rigidly register 3D CTA to 2D X-ray images to guide endovascular stent grafting.
In the work of Chen et al. (2007), CT scans are rigidly registered to dual-energy digital
radiography to evaluate the applicability of this modality for calcium detection. Only a
few studies have been dedicated to 3D/2D coronary artery registration. Turgeon et al.
(2005) proposed a static registration technique to align rotational angiography data to
intraoperative X-ray angiography. Their approach is based on segmentation of the coro-
nary arteries from the preoperative imaging data and comparison of the intraoperative
angiography images with projections of the resulting coronary model. The method was
evaluated in a simulation study using both mono- and biplane X-ray data. Another ap-
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proach based on segmentation of the 3D data was proposed by Ruijters et al. (2009).
This method employs vessel enhancement filtering on the 2D X-ray images to generate
a fuzzy segmentation of the coronary arteries. They show that this approach, together
with a stochastic optimization procedure, leads to more robust registration results.

In previous work, we also performed static ECG-gated registration of the coronary ar-
teries using an intensity based approach (Metz et al., 2009b). The disadvantage of static
approaches is that information from the CTA data can only be used at the time point in
the cardiac cycle at which the registration was performed, whereas one would preferable
have access to this information for the complete cardiac cycle. We therefore investigated
the derivation of coronary motion models from 4D CTA data to apply for dynamic regis-
tration of CTA and X-ray angiography (Metz et al., 2009a). A similar dynamic approach
was used by Figl et al. (2010) to guide robotic minimally invasive bypass surgery. They
register 4D coronary CTA images to stereo endoscopic images using a photo-consistency
measure. Derivation of heart motion from CTA and MRA was performed before, for ex-
ample by Wierzbicki et al. (2004), but their focus was only on the big cardiac structures.
For coronary motion estimation from CTA, Laguitton et al. (2006) proposed a technique
to track the coronary arteries in time by comparison of local image based features. In
the work of Yang et al. (2010) coronary centerline trees are first extracted in all phases
of the 4D CTA data and subsequently motion estimation is performed by a point match-
ing algorithm. Lastly, Zhang et al. (2010b,c,a) presented different approaches based on
image registration and local tracking methods to estimate coronary motion.

Another application of 3D/2D registration concerns the vasculature of the liver
(Jomier et al., 2006; Groher et al., 2007; Zikic et al., 2008; Groher et al., 2009). Es-
pecially the work by Zikic et al. (2008) and Groher et al. (2009, 2010) is of interest as
they propose a registration method that incorporates nonrigid deformation due to res-
piratory motion. As the coronary arteries are also affected by the cardiac motion, we
expect their motion to be faster and the nonrigid motion component to be larger. Intro-
ducing knowledge about the coronary motion derived from preoperative imaging data
may therefore be beneficial.

In this chapter we investigate the feasibility of a 3D+t/2D+t registration approach
for aligning preoperative 4D coronary CTA with intraoperative X-ray angiography. The
method depends on extraction of a patient specific coronary motion model, which is sub-
sequently aligned with the intraoperative X-ray images. Motion modeling is performed
from 4D CTA by centerline extraction at the end-diastolic time point and motion estima-
tion by image registration. Alignment of the model with the X-ray data is performed for
multiple time points simultaneously.

6.2 Method

Registration of coronary CTA and X-ray angiography is a challenging task due to the
complex combination of different sources of misalignment. We consider transformations
caused by the following elements:

(i) Patient pose: the position and orientation of the patient with respect to the imag-
ing coordinate system preoperatively differs from the situation intraoperatively. For
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Figure 6.1: Dynamic segmentation from 4D CTA: centerlines are extracted from the end-diastolic time point
and propagated to the other time points using the result of a 4D registration procedure.

example, the height of the table with respect to the isocenter of the imaging system
and the position and orientation of the patient on the table are different.

(ii) Cardiac cycle: the contraction and expansion of the heart muscle causes the coro-
nary arteries to deform nonrigidly.

(iii) Respiratory cycle: the heart also moves due to breathing motion. This motion
is mainly in the inferior-posterior direction, but movement in the other directions
and rotation of the heart have been reported as well (Shechter et al., 2004, 2006).
Moreover, it has also been shown that small nonrigid deformations of the heart take
place during the respiratory cycle (Shechter et al., 2004).

We base our approach on creating a patient specific 4D coronary model that captures the
motion of the cardiac cycle (Section 6.2.1). This 4D coronary model is then matched
temporally to the intraoperative situation, after which the spatial alignment takes place
via a 3D+t/2D+t registration procedure (Section 6.2.2). Motion due to the respiration is
assumed to be mainly rigid, allowing us to include it in the optimization of the position
and orientation of the preoperative image.

6.2.1 4D coronary modeling

The patient specific 4D coronary models are derived from 4D CTA by segmentation and
motion estimation. 4D CTA data is reconstructed at regular intervals, capturing the shape
of the coronary arteries at different temporal positions in the RR-interval. Our approach
consists of extracting the shape of the coronary arteries at the end-diastolic time point
and their motion from the complete image sequence. By combining these two, a 4D
coronary model is derived (Figure 6.1).
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For the segmentation at the end-diastolic time point, the user has to manually anno-
tate the start and end points of the vessels. These points are used as initialization of the
centerline extraction method presented in Chapter 2 using the vesselness/intensity cost
function. In case of failure, one extra point along the vessel is annotated and used as an
intermediate point in the extraction process. The resulting centerlines are used to ini-
tialize the segmentation method presented in Schaap (2010, Chapter 5) to automatically
find the arterial lumina. From the segmentations, we then derive more accurate center-
lines (see Schaap, 2010, Section 5.3.5). Motion estimation is performed by application of
the registration method described in Chapter 4 on the 4D CTA data. Parameter settings
used are outlined in Chapter 5 . The resulting transformation is applied to propagate
the centerlines to the complete cardiac cycle. We denote the 4D centerline model with
Q = {Q t |0≤ t ≤ 1}, where Q t is the set of centerlines at time point t.

6.2.2 Alignment of 4D coronary model to X-ray sequence

We model the alignment of the 4D coronary model with the interventional situation by
two separate transformations. The first transformation T

temp
µ (t) maps a time point 0 ≤

t ≤ 1 from the 4D coronary model to the corresponding time point in the X-ray sequence.
The second transformation T

spat
ν (x , t) takes care of the position and orientation of the

model at X-ray time point t and maps a coordinate x ∈ R3 from the 4D coronary model
to the coordinate system of the intraoperative imaging system. The vectors µ and ν hold
the parameter values of the respective transformations.

Temporal alignment and T temp
µ

Temporal alignment is performed to account for different heart rates during CTA acquisi-
tion and intervention. We estimate a transformation T

temp
µ (t) to map temporal positions

of the 4D coronary model to corresponding temporal positions in the X-ray sequence. As
the cardiac cycle non-linearly relates to the heart rate (Bazett, 1920), we define T

temp
µ (t)

to be a third order polynomial:

T temp
µ
(t) = at3+ bt2 + ct + d . (6.1)

Furthermore, we only allow an ascending T
temp
µ and we keep the R-peak at a fixed loca-

tion:

T temp
µ
(0) = 0 (6.2)

T temp
µ
(1) = 1 , (6.3)

reducing the number of parameters in µ to be estimated to two. An example of a trans-
formation is shown in Figure 6.2(a).

Parameter vector µ contains the mapped values T
temp
µ (t) for temporal positions

t = 1/3 and t = 2/3. Optimization is performed by searching exhaustively for the
mapped values that maximize the normalized cross correlation between the deformed
ECG curve of the CTA acquisition and the ECG curve of one cardiac cycle during the in-
tervention, while taking into account that T

temp
µ (1/3) < T

temp
µ (2/3). To deform the ECG
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Figure 6.2: (a) Example of temporal alignment transformation. A third order polynomial is used to describe
the transformation and the R-peak position is kept constant. (b) Examples of g(a, ga) for different values of ga

(indicated on the lines of the graph).

signal corresponding to the 4D coronary model, we determine the inverse of Equation
6.1. Resulting transformations allow for local temporal contraction or expansion of the
ECG signal. This ECG alignment step is identical to one step of the iterative procedure
described in Section 5.2.3 for the alignment of left ventricular volume curves.

The ECG signals used in the alignment are extracted from the DICOM tags of the
imaging data. As the CTA data is acquired during multiple cardiac cycles, the ECG signals
that are recorded during the CTA acquisition are averaged. This is achieved by first
finding the locations of the R-peaks and detecting irregular heart beats using the Modular
ECG Analysis System (MEANS) (van Bemmel et al., 1990) and subsequently averaging of
the ECG signals of the regular heartbeats. Assuming that the variances in the heart rate
during the CTA acquisition are low, we linearly scale the separate ECG signals to align
the R-peaks before averaging. For the X-ray angiography images, R-peaks are detected
in the same way, but in this case we just select one cycle from the sequence for both the
temporal and spatial alignment.

After ECG alignment we resample our 4D coronary model at the time point positions
of the X-ray sequence using T

temp
µ (t). To this end we invert Equation 6.1 and derive non-

integer time point positions of the 4D coronary model by spline interpolation. We denote
the temporally aligned model with Q∗ = {Q∗

t
|0 ≤ t ≤ 1}, where Q∗

t
is the 3D coronary

model at X-ray time point position t.

Spatial alignment and T spat
ν

The second transformation T
spat
ν (x , t) describes the spatial alignment of coronary model

Q∗
t

with the intraoperative situation at X-ray time point position t. In this registration
procedure, we employ information from multiple time points in a temporal window W

simultaneously, thereby adding as much information as possible to the registration prob-
lem (Figure 6.3). We also take into account heart motion over time due to respiration
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4D coronary
segmentation 0% 40% 70% 100%

0% 40% 70% 100%X-ray images

W

Figure 6.3: Registration is performed for |W | X-ray images simultaneously adding as much information to the
registration as possible. In this image we assume that the sequences have been temporally aligned.

by defining a rigid transformation for both the start and end point of this temporal win-
dow. The rotation and translation of the model at intermediate time points are obtained
by spherical linear interpolation (Shoemake, 1985) and linear interpolation respectively.
This approach results in twelve degrees of freedom to be determined: six rotations and
six translations. Three rotations and three rotations for the start of the temporal window
and three rotations and three translations for the end of the temporal window.

The spatial transformation T
spat
ν (x , t) is therefore defined as:

T spat
ν
(x , t) = Rν (t) x +mν (t) (6.4)

with Rν (t) a rotation matrix derived from the three rotation angles at time point t and
mν (t) the translation vector at time point t. For convenience in the initialization pro-
cedure, we define the translation parameters orthogonal to and along the projection
direction. The translation vector is therefore defined as:

mν (t) = x t qx + yt q y + zt qz , (6.5)

with ‖qx‖ = 1, ‖q y‖ = 1 and ‖qz‖ = 1 the vectors perpendicular to and in the direction
of the projection directions (Figure 6.4) and x t , yt and zt the translation parameter
values at time point t derived from ν . Rotations are defined around the main axis of the
imaging system’s coordinate system (Figure 6.4).

The quality of the fit is measured by a similarity metric S(ν ) and based on fuzzy
segmentation of the X-ray images and distance transforms of the projected 4D centerline
model Q∗, inspired by the work of Ruijters et al. (2009). Let us denote with P the per-
spective projection matrix describing the geometry of the imaging system and with Ωt

the 2D image domain of the X-ray image at time point t. Furthermore, we define a func-
tion D

�

y, Y
�

, which returns the closest distance of voxel y to the set of 2D centerlines
Y . The similarity metric is then defined as:

S(ν ) =
∑

t∈W

∑

y∈Ωt

g
�

D
�

y, P T spat
ν

�

Q∗
t
, t
���

F(y, t) . (6.6)

The function g(a) controls the neighborhood of the projected centerlines taken into ac-
count and equals one when a is zero and decreases with increasing a:

g(a) = 2−
2

1+ exp
�

−a2/ga

� (6.7)
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Figure 6.4: Overview of the parameters that need to be determined in the spatial registration step. Note that
the axes of the translation parameters are shifted along the projection direction for visualization purposes;
the origin is at the isocenter of the imaging system. The three translation directions (qx , q y , qz ) are defined
perpendicular to and along the projection direction. Rotations α, β , γ are defined with respect to the patient
coordinate system.

with ga a parameter controlling the steepness of the function (see Fig. 6.2(b) for exam-
ples). F(y, t) denotes the fuzzy segmentation of the X-ray image at time point t taking
values between zero and one. We apply a multiscale vesselness filter on the input images
(Frangi et al., 1998) to obtain this fuzzy segmentation. The differences between our
metric and the metric proposed by Ruijters et al. (2009) are the use of temporal window
W and a smooth function to transform the squared distance transform values.

The optimization procedure consists of finding a set of parameters that maximizes
the similarity metric:

ν̂ = argmax
ν

S(ν ) (6.8)

We use a nonlinear conjugate gradient optimizer (Dai, 2001; Klein et al., 2007) and
derive the derivative of our metric using finite differences. Furthermore, we apply a
multi-resolution approach in which parameter ga is lowered to half its value after each
resolution step. Parameter scaling is performed to ensure a good behaviour of the opti-
mizer. To this end, we set the scales in such a way that one degree of rotation corresponds
to one millimeter translation. Initialization of the model is performed by first moving the
center of gravity of Q∗

t
to the origin of the intraoperative coordinate system and subse-

quent manual initialization of x t and zt (Equation 6.5) while observing only the X-ray
image at the center of the temporal window. Start and end translation for the window
are thus initially equal. All remaining parameters are initially set to zero.
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Table 6.1: Patient and intervention characteristics. Listed are which coronary tree is involved (L=left, R=right),
the frame-rate of the X-ray acquisition, the number of X-ray images of the cycle on which the registration is
performed, the heart rate (HR) of the patient during the CTA acquisition and intervention, and the number of
days between CTA acquisition and intervention.

Patient 1 2 3-1 3-2 4-1 4-2 5 6 7 8 9 10

Tree R L L L R R L L L R L R

Interval (days) 5 14 46 177 4 77 161 149 50 15 66 10

X-ray data

Framerate (fps) 15 15 15 15 15 15 30 15 15 15 15 15

# frames cycle 12 18 12 11 12 13 21 11 9 12 13 10

Heart rate (bpm)

CTA 69 60 91 91 77 77 71 53 135 78 54 78

X-ray 75 50 75 82 75 69 86 82 100 75 69 90

6.3 Experiments and results

6.3.1 Imaging data

We collected thirteen X-ray angiography sequences of eleven patients for which also ret-
rospectively ECG gated 4D CTA images were available. The X-ray images of the two
patients for which multiple sequences were collected were from different intervention
dates. One of the patients was excluded, because the 4D segmentation failed due to
streaking artifacts caused by a pacemaker. The experiments were thus performed on
twelve datasets of 10 patients. Patient and intervention information such as the coronary
tree involved, the heart rate of the patient and the interval between the CTA and X-ray
acquisition are listed in Table 6.1.

X-ray images were acquired using a Siemens Axiom Artis biplane system, but as no
calibration data was available, only monoplane experiments using the sequences of the
primary C-arm are considered. Acquisition took place between August 2007 and Novem-
ber 2009. The size of the X-ray images was 512x512 voxels with a voxel size of approx-
imately 0.22x0.22 mm2. From every X-ray sequence we selected one contrast enhanced
cardiac cycle to be used in the experiments.

CTA images were acquired using a Siemens Definition or Siemens Definition Flash
scanner. Reconstructions were made at every 5% of the cardiac cycle, resulting in 20
3D images per sequence. The field of view used for the reconstruction was 256x256
voxels and the resulting voxel size was approximately 0.7x0.7x0.9 mm3. The average
number of slices was 140. The slice thickness was 1.5 mm. Histogram equalization was
performed on the CTA images, because a preliminary study revealed a positive effect on
the 4D registration results. On the X-ray sequences a very basic background subtraction
was performed by subtracting from every voxel value the median intensity value over
time.
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Figure 6.5: Examples of ECG signals used in the temporal alignment. Black line: reference ECG of a cardiac
cycle from the X-ray sequence. Light grey: CTA ECG signal before alignment. Dark grey: CTA ECG signal after
alignment.

6.3.2 Evaluation of registration

Temporal alignment

Before spatial registration, the 4D coronary model is aligned temporally with the X-ray
sequence as described in Section 6.2.2. Inspection of the ECG alignment revealed that
for some patients the shape of the ECG from the CTA acquisition and the intervention
differs. Only for case 8 this caused the ECG alignment to fail completely, resulting in an
incorrect resampling of the 4D coronary model. Three examples of the ECG alignment
are shown in Figure 6.5.

Spatial alignment and evaluation methodology

After temporal alignment and manual initialization, we performed the spatial alignment
of the 4D coronary model with the interventional situation as described in Section 6.2.2.

The following parameters were set empirically: the maximum number of iterations
for the conjugate gradient optimizer to 100, the maximum number of iterations for the
internal line search optimizer to 20, the number of resolution levels to four and the value
of ga in the coarsest level to 1000. Three scales were used for the vesselness filter: 0.8,
1.3 and 2 mm.

For evaluation purposes, we manually annotated the vessels included in the 4D coro-
nary model in every X-ray image of the sequence. See Figure 6.6 for examples of these
annotations. To measure the quality of the registration we compute for every point
along an annotated centerline segment the closest distance to a corresponding projected
centerline and report the average and standard deviation of these distance values. Corre-
spondence between the projected and annotated centerlines is determined by searching
for every annotated 2D centerline segment the projected centerline that is on average
closest.

Experiment 1: registration accuracy

In the first experiment, we evaluate the registration performance of the presented
method. The window W is set to cover the entire cardiac cycle. Table 6.2 shows the
resulting centerline distances.
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Figure 6.6: Examples of manual annotations overlaid in white on the corresponding X-ray image.

Table 6.2: Average centerline distance in mm before and after registration. The second column indicates the
coronary tree involved.

Patient Tree Before After

1 Right 3.9 ± 3.5 1.7 ± 1.3

2 Left 1.9 ± 1.4 1.4 ± 1.1

3-1 Left 4.8 ± 3.7 2.8 ± 2.8

3-2 Left 3.1 ± 2.1 1.3 ± 1.0

4-1 Right 5.2 ± 4.7 2.8 ± 2.1

4-2 Right 6.4 ± 4.0 1.8 ± 1.4

5 Left 3.7 ± 2.7 1.4 ± 1.2

6 Left 3.9 ± 3.2 2.5 ± 2.5

7 Left 2.9 ± 2.1 2.4 ± 2.2

8 Right 4.2 ± 2.8 3.0 ± 3.0

9 Left 2.9 ± 1.9 1.3 ± 1.1

10 Right 6.2 ± 5.9 5.1 ± 5.8

Figure 6.7 shows for four cases the average and standard deviation of the distance
values over time. In case 10 registration failed completely. For the other three cases
shown, it can be noticed that both the mean and standard deviation of the distance
values decreases considerably with respect to the manual initialization.

Figure 6.8 and 6.9 show for four cases and multiple time points the coronary center-
lines projected onto the corresponding X-ray image before and after registration.

Experiment 2: effect of initialization

To investigate the effect of the initialization on the outcome of the registration, in the
second experiment we performed 10 additional registrations per data set using different
initializations. The initializations were randomly generated near the manual initializa-
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Figure 6.7: Accuracy over time for four cases. Asterisks (light grey): mean (standard deviation) of 2D centerline
distance values before registration (after initialization). Boxes (dark grey): mean (standard deviation) of 2D
centerline distance values after registration. The title of the plots shows the patient number and tree involved
(L=left, R=right).

tion as follows. Given the initialization values used in experiment 1, all 12 parameters
were perturbed with a random value in the range of [−5◦, 5◦] and [-3 mm, 3 mm] while
keeping corresponding parameters for the start and the end of the temporal window
equal. Registration was performed using a temporal window covering the complete car-
diac cycle. Figure 6.10 shows the resulting values for the parameters. Per patient both
the parameter for the start (left) and end (right) of the temporal window are shown.
Furthermore, per patient we indicated if registration involved the left (L) or right (R)
coronary tree. For visualization purposes we mean-centered the parameter values, which
means that we subtract from every value the per-patient average of that parameter. It
can be noticed that for the datasets having the worst accuracy (compare Table 6.2), vari-
ation in the parameter values is largest. Furthermore, it can be noticed that the variance
of translation parameter y is relatively large. This parameter reflects the translation in
the direction of the projection direction, which has less influence on the appearance of
the projected model than the other parameters.
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(a) 3-2 (L), 25%, before (b) 3-2 (L), 50%, before (c) 3-2 (L), 75%, before (d) 3-2 (L), 100%, before

(e) 3-2 (L), 25%, after (f) 3-2 (L), 50%, after (g) 3-2 (L), 75%, after (h) 3-2 (L), 100%, after

(i) 4-2 (R), 25%, before (j) 4-2 (R), 50%, before (k) 4-2 (R), 75%, before (l) 4-2 (R), 100%, before

(m) 4-2 (R), 25%, after (n) 4-2 (R), 50%, after (o) 4-2 (R), 75%, after (p) 4-2 (R), 100%, after

Figure 6.8: Results of the registration. Projected centerlines from the 4D coronary model before (a)-(d), (i)-(l) and
after (e)-(h), (m)-(p) registration are overlaid in white. Captions indicate the patient number, the tree involved
(L=left, R=right) and the percentage of the RR-interval at which the image was made.
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(a) 5 (L), 25% before (b) 5 (L), 50% before (c) 5 (L), 75% before (d) 5 (L), 100% before

(e) 5 (L), 25% after (f) 5 (L), 50% after (g) 5 (L), 75% after (h) 5 (L), 100% after

(i) 10 (R), 25%, before (j) 10 (R), 50%, before (k) 10 (R), 75%, before (l) 10 (R), 100%, before

(m) 10 (R), 25%, after (n) 10 (R), 50%, after (o) 10 (R), 75%, after (p) 10 (R), 100%, after

Figure 6.9: Results of the registration (continued). Projected centerlines from the 4D coronary model before
(a)-(d), (i)-(l) and after (e)-(h), (m)-(p) registration are overlaid in white. Captions indicate the patient number, the
tree involved (L=left, R=right) and the percentage of the RR-interval at which the image was made.
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Figure 6.10: Parameters resulting from registration using different initializations. The parameter values are
centered around their per-patient mean. Per patient both the parameter for the start (left) and end (right) of the
temporal window is given. Furthermore, it is indicated if registration involved the right (R) or left (L) coronary
tree.
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Experiment 3: comparison of 3D+t/2D+t and 3D/2D registration

In the last experiment we performed additional registrations in which the width of the
temporal window was set to one time point, thus performing a normal 3D/2D regis-
tration. To this end, the 10 initializations per dataset from experiment 2 were used.
Evaluation was performed for both the 3D+t/2D+t and the 3D/2D approach on the
initialization time point only.

Results are shown in Figure 6.11. The accuracy of the registration is shown in Figure
6.11(a) where every dot represents one registration result. Black dots represent the
3D+t/2D+t method in which the complete cardiac cycle was used for registration and
grey dots the 3D/2D method where only the initialization time point was used in the
registration. For every patient the tree involved (L=left, R=right) is indicated. The
variance of the accuracy is in nine of the 12 cases smaller for the 3D+t/2D+t method
than for the 3D/2D method. In some cases (e.g. case 4-2) the 3D+t/2D+t is able to
align the model to the X-ray data whereas the 3D/2D method failed. However, it can
also be noticed that in some cases the accuracy is better for the 3D/2D method. This
may be explained by the fact that only the position and orientation of the model for
the initialization time point needs to be optimized whereas for the 3D+t/2D+t method
the other time points are taken into account as well. The method therefore finds those
parameters that give on average the best fit. Figure 6.11(b) shows a boxplot of the
differences between the 3D/2D method and the 3D+t/2D+t method. To this end, we first
compute the per-patient mean and standard deviation over all initializations. We then
compute the difference between the means and standard deviations of both methods and
create the boxplot from these differences. We also performed a Wilcoxon test on these
12 difference values which showed that they are not significantly different. This might
be caused by the small number of samples used to perform the test and the fact that the
results in cases where both methods fail are quite random. The figures show however
that there is a small trend to better average results and that the standard deviation is
lower in the majority of cases.

6.4 Discussion

In this chapter we investigated the alignment of preoperative 4D coronary CTA data with
intraoperative X-ray angiography using 4D models describing coronary geometry and
motion. We showed that this approach is able to substantially improve over an initial
alignment derived from the C-arm configuration and a subsequent manual translation
of the model. Furthermore, we observed that the proposed 3D+t/2D+t approach could
find a correct alignment in some of the cases where the 3D/2D approach failed. We
also showed that for nine of the 12 cases 3D+t/2D+t registration is more robust to
initialization than 3D/2D registration.

Although we showed the feasibility of the proposed approach, there were still some
cases in which registration failed or delivered suboptimal results. There are different
possible causes for these errors.

In the first place, there may be errors in the CTA-derived 4D coronary models. Very
diseased vessels could disturb the results of the centerline extraction and lumen seg-



124 CHAPTER 6. ALIGNMENT OF 4D CORONARY CTA WITH MONOPLANE X-RAY ANGIOGRAPHY: A FEASIBILITY STUDY

1 2 3-1 3-2 4-1 4-2 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
Accuracy

Dataset

A
ve

ra
g

e 
ce

n
te

rl
in

e 
d

is
ta

n
ce

 (m
m

)

R L L L R R L L L R L R

(a)

 

-2

-1

0

1

2

3

4

5

 

Average

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

Standard deviation

(b)

Figure 6.11: Comparison between 3D+t/2D+t and 3D/2D registration. (a) Accuracy results for both methods.
Black dots represent 3D+t/2D+t registration results, grey dots 3D/2D results. In every column the coronary tree
involved is indicated (L=left, R=right). (b) A boxplot of the differences between the per-patient average and
standard deviation of accuracy values.

mentation. Furthermore, accurately aligning the relatively small coronary arteries using
image registration is very challenging and small errors in the motion estimates are there-
fore likely (and in fact have been observed for our data). Also, X-ray images can be
considered as real-time snapshots of the vasculature at a certain cardiac phase whereas
the time point images of the 4D CTA are effectively an average over a temporal window,
in our case comprising 5% of the cardiac cycle.

Another factor contributing to the difference between the 4D coronary model and the
actual situation may be that even with an identical ECG signal cardiac motion may be
different. In addition, patient stress and the presence of instruments inside the coronary
arteries may alter coronary shape and motion. Also, coronary anatomy and motion can
change between the CTA acquisition and the intervention due to disease progression.
This can especially be a factor when the time between the CTA acquisition and interven-
tion is relatively large, such as in case 3-2, 5 and 6. Differences in heart rate might also
contribute to different motion patterns. Lastly, the breathing motion is known to cause
small nonrigid deformations of the coronary arteries as well. In this work, we only took
rigid breathing motion into account.

In the second step of our method, the 4D coronary model is temporally related to the
intraoperative situation by ECG-alignment. For some patients, differences between the
shape of the ECG signal of the CTA acquisition and the intervention were observed. For
case 8, this resulted in complete failure of the temporal alignment. For some other cases,
this introduced small deviations in the temporal alignment. Furthermore, when the ECG
signal is relatively flat, alignment will mainly depend on the R-peaks and may be less
reliable at intermediate locations.

In the spatial alignment of the method, a 3D+t/2D+t registration approach is used
in which the similarity metric is based on fuzzy segmentation of the coronary arter-
ies. This segmentation includes false positive responses which could disturb the regis-
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tration. The catheter is, for example, often visible in the X-ray images and results in
very large responses of the vesselness filter due to its tubular shape and contrast. Fur-
thermore, multiple vessels may project on top of each other in the X-ray images which
decreases the amount of valuable information that can be used by the registration algo-
rithm. Next to over-projection, the method does not take a per vessel correspondence
between the 4D coronary model and the 2D fuzzy segmentation into account. Align-
ing non-corresponding vessels could therefore result in relatively high similarity metric
values and consequently local maxima in the optimization landscape.

There is much potential for improving the method. The use of biplane data is ex-
pected to improve the spatial optimization procedure, overcoming issues due to over-
projection and correspondence free registration. The availability of accurate calibration
data for these biplane acquisitions is a prerequisite for this. The fuzzy segmentation of
the X-ray angiography images could be improved by preventing non-vessel objects to
appear in the segmentation results.

Differences between the preoperative 4D coronary model and the intraoperative sit-
uation, e.g. due to the presence of instruments in the vessels and breathing induced
nonrigid motion, can potentially be dealt with by applying a nonrigid registration ap-
proach such as proposed by Zikic et al. (2008) and Groher et al. (2009, 2010) in which
every vessel of the coronary model is separately aligned nonrigidly to the intraoperative
situation.

An alternative for the temporal alignment based on ECG signals is to optimize the
value of the two temporal parameters simultaneously with the spatial parameters. The
temporal alignment is then driven by the same similarity metric as the spatial alignment
eliminating the need for using ECG signals, which might have a different shape between
CTA and X-ray acquisition and can be disturbed by noise.

6.5 Conclusion

We investigated the feasibility of a 3D+t/2D+t registration approach to align preopera-
tive CTA and intraoperative X-ray angiography data. It was shown that this approach has
advantages over the more classic 3D/2D approach in terms of registration success and
reproducibility. Even though there is room for improvement with respect to registration
success and accuracy, our experiments show the potential of the proposed methodology.
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7.1 Summary

In this thesis we described the development and evaluation of techniques to align preop-
erative coronary CTA data with intraoperative X-ray angiography. We proposed a strategy
based on patient specific modeling of coronary artery geometry, motion, and deforma-
tion. These coronary models were derived from 4D cardiac CTA by extracting their shape
at the end-diastolic phase of the cardiac cycle and estimating their motion and deforma-
tion by image registration. Subsequently, the models were aligned to the intraoperative
X-ray images employing information from multiple time points simultaneously.

In the first chapters we presented techniques to create the patient specific 4D coro-
nary models. We described in Chapter 2 the application and evaluation of a minimum
cost path approach for coronary centerline extraction from 3D CTA. Quantitative evalu-
ation on 48 coronary arteries showed a success rate of 88% and accuracy of 0.64 mm.
Additional experiments showed successful centerline extraction for 233 out of the 252
evaluated coronary arteries (92%) in 63 additional CTA images.

Next to our work on coronary centerline extraction, several other methods for this
purpose have been proposed in literature. However, as no standardized evaluation
methodology was available, the reliable evaluation and comparison of the performance
of these existing and newly developed methods was difficult. In Chapter 3, we described
the development of a standardized evaluation methodology and reference database for
the quantitative evaluation of coronary artery centerline extraction algorithms. This
framework consists of a publicly available database with thirty-two CTA images, a ref-
erence standard derived from manual annotations and well-defined evaluation mea-
sures. The applicability of the framework was shown by evaluating and comparing thir-
teen coronary artery centerline extraction algorithms, implemented by different research
groups. Currently, the framework has over 100 subscriptions and its use is required for
publishing results in high quality medical imaging journals.

By application of the method described in Chapter 2 or one of the methods evaluated
in Chapter 3 a static segmentation of the coronary tree can be derived, for example, at
the end-diastolic phase of the cardiac cycle. However, to create a coronary model over
the complete cardiac cycle, the motion and deformation of the arteries needs to be known
as well. In this work, this is estimated by means of image registration. In Chapter 4 we
proposed a method for motion estimation in dynamic medical imaging data. The method
performs a groupwise registration, thus avoiding a bias towards a specifically chosen ref-
erence time point. Furthermore, it takes both spatial and temporal smoothness of the
transformations into account and is able to enforce cyclic motion. The method is based
on a 3D (2D+time) or 4D (3D+time) free-form B-spline deformation model, a similarity
metric that minimizes the intensity variances over time and constrained optimization us-
ing a stochastic gradient descent method with adaptive step size estimation. Quantitative
evaluation showed subvoxel accuracy and high consistency of the registration results.

If dynamic imaging data is available, combining a static coronary segmentation and
a motion estimate derived by image registration is a reasonable approach to create 4D
coronary models. However, the increase in radiation dose associated with these dynamic
acquisitions is not always justifiable. Prospective electrocardiogram gating is therefore
increasingly applied to reduce the patient radiation dose, often limiting reconstruction
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to a single 3D image. In Chapter 5 we therefore presented a method to predict the
motion of the cardiac structures for the entire cardiac cycle from shape information of
a single phase. Motion prediction was performed by principle component regression via
statistical shape and motion models. Our prior hypothesis in this approach was that the
motion of the heart is at least partially explained by its shape. Quantitative evaluation on
150 4D computed tomography angiography (CTA) images showed a small but statistically
significant increase in the accuracy of the estimated shape sequences compared to shape-
independent motion prediction.

Finally, in Chapter 6 we investigated the feasibility of the 3D+t/2D+t registration
for registering CTA data to X-ray angiography data. We applied methods from the pre-
vious chapters for patient specific 4D modeling of the coronary arteries and aligned this
preoperative model temporally to the intraoperative situation by means of ECG align-
ment. In the last step, the temporally aligned 4D coronary model was used to perform
the spatial alignment. A non-linear conjugate gradient optimizer was used to optimize
a similarity metric based on centerline projection and fuzzy X-ray segmentation. This
spatial alignment was simultaneously performed on multiple X-ray images within a tem-
poral window, also taking into account rigid motion due to respiration. We evaluated the
approach by comparing projected centerlines with manually annotated 2D centerlines in
the X-ray images. In the experiments we showed that the proposed registration approach
has advantages over the more classic 3D/2D approach in terms of registration success
and reproducibility.

In conclusion, the proposed registration strategy based on coronary motion modeling
is promising for aligning preoperative CTA to intraoperative X-ray angiography.

7.2 Future perspectives

Accurate alignment of preoperative CTA and intraoperative imaging data for PCI is very
challenging due to a complicated mix of motion from different sources. In this thesis
we presented several steps towards this alignment. Additional research is still needed to
improve both registration success and accuracy. For the latter, demands are high as the
diameter of the coronary arteries is relatively small.

The ultimate goal of the work in this thesis is the integrated visualization of preop-
erative imaging data and instruments during PCI interventions. This may be beneficial
in difficult cases, especially for cases in which the arteries are totally occluded. Success-
ful treatment of these chronic total occlusions depends, according to Serruys (2006), on
the availability of the following techniques: remote steering of the wire, forward look-
ing imaging techniques, such as optical coherence tomography (OCT) or intravascular
ultrasound (IVUS), and application of ablative power. For the treatment of chronic total
occlusions a device integrating these techniques is needed. However, for coronary in-
terventions such a device is currently not available and several technological challenges
need to be addressed before it can be realised. Integration of preoperative CTA comple-
ments these techniques, as it provides a roadmap for navigation, and may also be used
to complement intracoronary imaging, as it allows the visualization of plaque further
ahead. Whether the integration of CTA data will be possible with sufficient accuracy to
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be used for navigating the guidewire, replacing intracoronary imaging, remains to be
investigated.

In Chapter 6 we suggested several approaches to improve upon our current results.
Some progress could be made in the first part of the approach to derive more accurate
4D coronary models from CTA. Next, temporal alignment on ECG data might not be op-
timal and may be replaced or succeeded by temporal alignment based on the imaging
data. In the spatial alignment, improvements could be made in the fuzzy segmentation
of the X-ray images, in which mainly excluding the catheter might be beneficial. Ambi-
guity introduced by the projective nature of X-ray angiography, such as multiple vessels
projecting on top of each other, and limitations in the capture range could be decreased
by using biplane data. Finally, differences between the preoperative model and intraop-
erative situation will persist due to, for example, the introduction of instruments in the
vessels, progression of disease between CTA acquisition and intervention and non-rigid
motion due to respiration. Per-vessel non rigid alignment of the coronary arteries may be
used to solve these remaining differences (Zikic et al., 2008; Groher et al., 2009, 2010).

In future research it would also be interesting to compare alternatives for the align-
ment of the 4D coronary models to the intraoperative situation. One of these alterna-
tives is to reconstruct a 4D coronary model from biplane X-ray angiography and match
this model to the preoperative 4D coronary model. Another approach is to create an
intraoperative dynamic coronary model from a coronary artery or vessel segment by ap-
plication of a magnetic tracking device, recording world coordinate positions of the tip of
the guidewire during a pull-back of the wire through the vessel of interest (Jeron et al.,
2009). Such a model can then be aligned with the preoperative 4D coronary model,
but this might be challenging as the intraoperative model contains smaller parts of the
coronary tree and in the case of total occlusions will only include the artery proximal to
the lesion.

Application of our approach in clinical practice also requires tracking of the anatomy
after the initial alignment of the 4D CTA model with the X-ray angiography images.
We did not address this topic, which mainly requires breathing motion compensation,
in our work. The limited visibility of the cardiac structures in the X-ray images when
no contrast agent is introduced makes this a challenging topic. Several approaches can
be envisioned, the most straightforward would be applying a similar methodology as
we did, i.e. modeling the heart motion because of breathing. Whether this approach
is feasible, and whether heart motion as function of breathing state can be modeled as
easily, remains to be investigated. Other approaches, such as image-based or electro-
magnetic tracking of the instruments (guidewires and catheters) could also be pursued.
The combination of these types of approaches with the work described in this thesis
would provide the technology to build a prototype cardiac image guidance system.

The techniques presented in this thesis are not only useful for the specific applica-
tion of the registration of coronary CTA and X-angiography. A similar approach could,
for example, be applied on respiratory gated CTA, which might be useful for radiother-
apy applications. Klinder et al. (2010), for example, perform motion prediction using
respiratory gated CT using a similar approach as we presented in Chapter 5.

Whereas the application of motion prediction seems to be mainly relevant in image
guided interventions, the other techniques presented in this thesis do have applications
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in the diagnostic field. Centerline extraction is for example useful for (semi)automated
analysis of coronary CTA data. Extracted centerlines are, for example, useful for visu-
alization purposes, such as the creation of curved planar reformatted images. They can
also be used as initialization for lumen segmentation, in a first step of automated steno-
sis quantification. Motion estimation by image registration as presented in Chapter 4
is useful for all kinds of applications and we showed applications on various imaging
modalities and anatomies.

In conclusion, in this thesis we developed and evaluated techniques which are im-
portant towards the integration of CTA imaging data during interventional cardiology
procedures.
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Markelj, P., Tomaževič, D., Likar, B., Pernuš, F., in press. A Review of 3D/2D Registration Methods for Image-
Guided Interventions. Med. Image Anal.

Marquering, H. A., Dijkstra, J., de Koning, P. J. H., Stoel, B. C., Reiber, J. H. C., 2005. Towards Quantitative
Analysis of Coronary CTA. Int. J. Cardiovasc. Imaging 21 (1), 73–84.

Marsland, S., Twining, C., Taylor, C., 2003. Groupwise Non-Rigid Registration Using Polyharmonic Clamped-
Plate Splines. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol. 2879 of Lect. Notes
Comput. Sci. pp. 771–779.

Marsland, S., Twining, C., Taylor, C., 2008. A Minimum Description Length Objective Function for Groupwise
Non-Rigid Image Registration. Image Vision Comput. 26 (3), 333–346.

Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A Database of Human Segmented Natural Images and Its
Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proc. Int. Conf.
Comput. Vision. pp. 416–423.

McLaughlin, R. A., Hipwell, J., Hawkes, D. J., Noble, J. A., Byrne, J. V., Cox, T. C., 2005. A Comparison of a
Similarity-Based and a Feature-Based 2-D-3-D Registration Method for Neurointerventional Use. IEEE Trans.
Med. Imaging 24 (8), 1058–1066.

Metz, C., Baka, N., Kirisli, H., Schaap, M., van Walsum, T., Klein, S., Neefjes, L., Mollet, N., Lelieveldt, B.,
de Bruijne, M., et al., 2010. Conditional Shape Models for Cardiac Motion Estimation. In: Proc. Int. Conf.
Med. Image Comput. Comput. Assist. Interv. Vol. 6361 of Lect. Notes Comput. Sci. pp. 452–459.

Metz, C., Schaap, M., Klein, S., Neefjes, L., Capuano, E., Schultz, C., van Geuns P.W. Serruys T. van Walsum,
R., Niessen, W., 2009a. Patient Specific 4D Coronary Models From ECG-gated CTA Data for Intra-operative
Dynamic Alignment of CTA With X-ray Images. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist.
Interv. Vol. 5761 of Lect. Notes Comput. Sci. pp. 369–376.

Metz, C., Schaap, M., Klein, S., Weustink, A., Mollet, N., Schulz, C., Geuns, R., Serruys, P., Niessen, W.,
2009b. GPU Accelerated Alignment of 3-D CTA With 2-D X-Ray Data for Improved Guidance in Coronary
Interventions. In: Proc. IEEE Int. Symp. Biomed. Imaging. pp. 959–962.

Metz, C., Schaap, M., van der Giessen, A., van Walsum, T., Niessen, W., 2007. Semi-Automatic Coronary
Artery Centerline Extraction in Computed Tomography Angiography Data. In: Proc. IEEE Int. Symp. Biomed.
Imaging. pp. 856–859.

Metz, C., Schaap, M., van Walsum, T., Niessen, W., 2008a. Two Point Minimum Cost Path Approach for CTA
Coronary Centerline Extraction. Midas J. - Proc. MICCAI Workshop - Grand Challenge Coronary Artery
Tracking, <http://hdl.handle.net/10380/1510>.

Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G., Niessen, W.,
2008b. 3D Segmentation in the Clinic: A Grand Challenge II - Coronary Artery Tracking. Midas J. - Proc.
MICCAI Workshop - Grand Challenge Coronary Artery Tracking, <http://hdl.handle.net/10380/1399>.

MeVisLab, Software for Medical Image Processing and Visualization. http://www.mevislab.de.



142 BIBLIOGRAPHY

Miller, E., Matsakis, N., Viola, P., 2000. Learning From One Example Through Shared Densities on Transforms.
In: Proc. IEEE Conf. Comput. Vision Pattern Recognit. pp. 464–471.

Milles, J., van der Geest, R. J., Jerosch-Herold, M., Reiber, J. H. C., Lelieveldt, B. P. F., 2008. Fully Auto-
mated Motion Correction in First-Pass Myocardial Perfusion MR Image Sequences. IEEE Trans. Med. Imaging
27 (11), 1611–1621.

Mitchell, S., Bosch, J., Lelieveldt, B., van der Geest, R., Reiber, J., Sonka, M., 2002. 3-D Active Appearance
Models: Segmentation of Cardiac MR and Ultrasound Images. IEEE Trans. Med. Imaging 21 (9), 1167–
1178.

Mowatt, G., Cummins, E., Waugh, N., Walker, S., Cook, J., Jia, X., Hillis, G. S., Fraser, C., 2008. Systematic
Review of the Clinical Effectiveness and Cost-Effectiveness of 64-Slice or Higher Computed Tomography
Angiography as an Alternative to Invasive Coronary Angiography in the Investigation of Coronary Artery
Disease. Health Technol. Assess. 12 (17), iii–iv, ix–143.

Nain, D., Yezzi, A., Turk, G., 2004. Vessel Segmentation Using a Shape Driven Flow. In: Proc. Int. Conf. Med.
Image Comput. Comput. Assist. Interv. Vol. 3216 of Lect. Notes Comput. Sci. pp. 51–59.

Olabarriaga, S., Breeuwer, M., Niessen, W., 2003. Minimum Cost Path Algorithm for Coronary Artery Central
Axis Tracking in CT Images. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol. 2879 of
Lect. Notes Comput. Sci. pp. 687–694.

Ordas, S., Oubel, E., Leta, R., Carreras, F., Frangi, A., 2007. A Statistical Shape Model of the Heart and Its
Application to Model-Based Segmentation. In: Proc. SPIE Med Imaging: Image Process. pp. 65111K–1–
65111K–11.

Perperidis, D., Mohiaddin, R., Rueckert, D., 2005. Construction of a 4D Statistical Atlas of the Cardiac Anatomy
and Its Use in Classification. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol. 3750 of
Lect. Notes Comput. Sci. pp. 402–410.

Peyrat, J., Delingette, H., Sermesant, M., Xu, C., Ayache, N., 2010. Registration of 4D Cardiac CT Sequences
Under Trajectory Constraints With Multichannel Diffeomorphic Demons. IEEE Trans. Med. Imaging 29 (7),
1351–1368.

Ramcharitar, S., Patterson, M. S., van Geuns, R. J., van der Ent, M., Sianos, G., Welten, G. M. J. M., van
Domburg, R. T., Serruys, P. W., 2007. A Randomised Controlled Study Comparing Conventional and Magnetic
Guidewires in a Two-Dimensional Branching Tortuous Phantom Simulating Angulated Coronary Vessels.
Catheter. Cardiovasc Interv. 70 (5), 662–668.

Ramcharitar, S., Patterson, M. S., van Geuns, R. J., van Meighem, C., Serruys, P. W., 2008. Technology Insight:
Magnetic Navigation in Coronary Interventions. Nat. Clin. Pract. Cardiovasc. Med. 5 (3), 148–156.

Ramcharitar, S., Pugliese, F., Schultz, C., Ligthart, J., de Feyter, P., Li, H., Mollet, N., van de Ent, M., Serruys,
P. W., van Geuns, R. J., 2009. Integration of Multislice Computed Tomography With Nagnetic Navigation
Facilitates Percutaneous Coronary Interventions Without Additional Contrast Agents. J. Am. Coll. Cardiol.
53 (9), 741–746.

Ramcharitar, S., van der Giessen, W. J., van der Ent, M., Serruys, P. W., van Geuns, R. J., in press. Randomized
Comparison of the Magnetic Navigation System vs. Standard Wires in the Treatment of Bifurcations. Eur.
Heart J.

Rao, A., Aljabar, P., Rueckert, D., 2008. Hierarchical Statistical Shape Analysis and Prediction of Sub-Cortical
Brain Structures. Med. Image Anal. 12 (1), 55–68.

Rao, A., Sanchez-Ortiz, G. I., Chandrashekara, R., Lorenzo-Valdés, M., Mohiaddin, R., Rueckert, D., 2002.
Comparison of Cardiac Motion Across Subjects Using Non-Rigid Registration. In: Proc. Int. Conf. Med.
Image Comput. Comput. Assist. Interv. Vol. 2488 of Lect. Notes Comput. Sci. pp. 722–729.



BIBLIOGRAPHY 143

Reinhardt, J. M., Ding, K., Cao, K., Christensen, G. E., Hoffman, E. A., Bodas, S. V., 2008. Registration-Based
Estimates of Local Lung Tissue Expansion Compared to Xenon CT Measures of Specific Ventilation. Med.
Image Anal. 12 (6), 752–763.

Renard, F., Yang, Y., 2008. Image Analysis for Detection of Coronary Artery Soft Plaques in MDCT Images. In:
Proc. IEEE Int. Symp. Biomed. Imaging. pp. 25–28.

Rietzel, E., Chen, G. T. Y., 2006. Deformable Registration of 4D Computed Tomography Data. Med. Phys.
33 (11), 4423–4430.

Rollano-Hijarrubia, E., Stokking, R., van der Meer, F., Niessen, W., 2006. Imaging of Small High-Density Struc-
tures in CT: A Phantom Study. Acad. Radiol. 13 (7), 893–908.

Ropers, D., Rixe, J., Anders, K., Küttner, A., Baum, U., Bautz, W., Daniel, W. G., Achenbach, S., 2006. Usefulness
of Multidetector Row Spiral Computed Tomography With 64- x 0.6-mm Collimation and 330-ms Rotation
for the Noninvasive Detection of Significant Coronary Artery Stenoses. Am. J. of Cardiol. 97 (3), 343–348.

Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S. M., Ho, M., Howard, V.,
Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nichol, G., O’Donnell, C., Roger,
V., Sorlie, P., Steinberger, J., Thom, T., Wilson, M., Hong, Y., 2008. Heart Disease and Stroke Statistics
– 2008 Update: Report From the American Heart Association Statistics Committee and Stroke Statistics
Subcommittee. Circulation 117, 25–146.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., Hawkes, D. J., 1999. Nonrigid Registration Using
Free-Form Deformations: Application to Breast MR Images. IEEE Trans. Med. Imaging 18 (8), 712–721.

Ruijters, D., ter Haar Romeny, B. M., Suetens, P., 2009. Vesselness-Based 2D-3D Registration of the Coronary
Arteries. Int. J. Comput. Assist. Radiol. Surg. 4 (4), 391–397.

Saur, S., Kühnel, C., Boskamp, T., Székely, G., Cattin, P., 2008. Automatic Ascending Aorta Detection in CTA
Datasets. In: Proc. Bildverarb. für der Med. pp. 323–327.

Schaap, M., 2010. Quantitative Image Analysis in Cardiac CT Angiography. Ph.D. thesis, Erasmus University
Rotterdam.

Schaap, M., Manniesing, R., Smal, I., van Walsum, T., Niessen, W., 2007. Bayesian Tracking of Tubular Struc-
tures and Its Application to Carotid Arteries in CTA. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist.
Interv. Vol. 4792 of Lect. Notes Comput. Sci. pp. 562–570.

Scharstein, D., Szeliski, R., 2002. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence
Algorithms. Int. J. Comput. Vision 47, 7–42.

Schreibmann, E., Thorndyke, B., Li, T., Wang, J., Xing, L., 2008. Four-Dimensional Image Registration for
Image-Guided Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 71 (2), 578–586.

Schroeder, W., Martin, K., Lorensen, B., 1997. The Visualization Toolkit: An Object-Oriented Approach to 3-D
Graphics (2nd Edition). Prentice Hall.

Sdika, M., 2008. A Fast Nonrigid Image Registration With Constraints on the Jacobian Using Large Scale
Constrained Optimization. IEEE Trans. Med. Imaging 27 (2), 271–281.

Serruys, P. W., 2006. Fourth Annual American College of Cardiology International Lecture: A Journey in the
Interventional Field. J. Am. Coll. Cardiol. 47 (9), 1754–1768.

Shang, Y., Dossel, O., 2004. Statistical 3D Shape-Model Guided Segmentation of Cardiac Images. In: Proc.
Comp. in Cardiol. pp. 553–556.

Shechter, G., Ozturk, C., Resar, J. R., McVeigh, E. R., 2004. Respiratory Motion of the Heart From Free Breathing
Coronary Angiograms. IEEE Trans. Med. Imaging 23 (8), 1046–1056.



144 BIBLIOGRAPHY

Shechter, G., Resar, J. R., McVeigh, E. R., 2006. Displacement and Velocity of the Coronary Arteries: Cardiac
and Respiratory Motion. IEEE Trans. Med. Imaging 25 (3), 369–375.

Shoemake, K., 1985. Animating Rtation With Quaternion Curves. In: Proc. Annu. Conf. Comput. Graphics and
Interact. Tech. - SIGGRAPH. pp. 245–254.

Staal, J., Abràmoff, M., Niemeijer, M., Viergever, M., van Ginneken, B., 2004. Ridge-Based Vessel Segmentation
in Color Images of the Retina. IEEE Trans. Med. Imaging 23 (4), 501–509.

Sundar, H., Litt, H., Shen, D., 2009. Estimating Myocardial Motion by 4D Image Warping. Pattern. Recognit.
42 (11), 2514–2526.

Szymczak, A., 2008. Vessel Tracking by Connecting the Dots. Midas J. - Proc. MICCAI Workshop - Grand
Challenge Coronary Artery Tracking, <http://hdl.handle.net/10380/1406>.

Szymczak, A., Stillman, A., Tannenbaum, A., Mischaikow, K., 2006. Coronary Vessel Trees From 3D Imagery: A
Topological Approach. Med. Image Anal. 10 (4), 548–559.

Tek, H., Gulsun, M. A., Laguitton, S., Grady, L., Lesage, D., Funka-Lea, G., 2008. Automatic Coro-
nary Tree Modeling. Midas J. - Proc. MICCAI Workshop - Grand Challenge Coronary Artery Tracking,
<http://hdl.handle.net/10380/1426>.

Tsuchida, K., Colombo, A., Lefèvre, T., Oldroyd, K. G., Guetta, V., Guagliumi, G., von Scheidt, W., Ruzyllo,
W., Hamm, C. W., Bressers, M., Stoll, H.-P., Wittebols, K., Donohoe, D. J., Serruys, P. W., 2007. The Clinical
Outcome of Percutaneous Treatment of Bifurcation Lesions in Multivessel Coronary Artery Disease With the
Sirolimus-Eluting Stent: Insights From the Arterial Revascularization Therapies Study Part II (ARTS II). Eur.
Heart J. 28 (4), 433–442.

Turgeon, G.-A., Lehmann, G., Guiraudon, G., Drangova, M., Holdsworth, D., Peters, T., 2005. 2D-3D Registra-
tion of Coronary Angiograms for Cardiac Procedure Planning and Guidance. Med. Phys. 32 (12), 3737–3749.

Unser, M., 1999. Splines: A Perfect Fit for Signal and Image Processing. IEEE Signal. Process. Mag. 16 (6),
22–38.

van Assen, H., Danilouchkine, M., Dirksen, M., Reiber, J., Lelieveldt, B., 2008. A 3-D Active Shape Model Driven
by Fuzzy Inference: Application to Cardiac CT and MR. IEEE Trans. Inf. Technol. Biomed. 12 (5), 595–605.

van Bemmel, J. H., Kors, J. A., van Herpen, G., 1990. Methodology of the Modular ECG Analysis System
MEANS. Methods Inf. Med. 29 (4), 346–353.

van de Kraats, E., Penney, G., Tomazevic, D., van Walsum, T., Niessen, W., 2005. Standardized Evaluation
Methodology for 2-D-3-D Registration. IEEE Trans. Med. Imaging 24 (9), 1177–1189.

van Ginneken, B., Heimann, T., Styner, M., 2007. 3D Segmentation in the Clinic: A Grand Challenge. In: Proc.
3D Segmentation in the Clinic: A Grand Challenge workshop, Int. Conf. Med. Image Comput. Comput.
Assist. Interv. pp. 7–15.

van Walsum, T., Schaap, M., Metz, C., van der Giessen, A., Niessen, W., 2008. Averaging Center Lines: Mean
Shift on Paths. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol. 5241 of Lect. Notes
Comput. Sci. pp. 900–907.

Vandemeulebroucke, J., Sarrut, D., Clarysse, P., 2007. The POPI-Model, a Point-Validated Pixel-Based Breathing
Thorax Model. In: Proc. Int. Conf. Comput. in Radiat. Ther.

Wang, C., Smedby, O., 2007. Coronary Artery Segmentation and Skeletonization Based on Competing Fuzzy
Connectedness Tree. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol. 4791 of Lect. Notes
Comput. Sci. pp. 311–318.



BIBLIOGRAPHY 145

Wang, C., Smedby, O., 2008. An Automatic Seeding Method For Coronary Artery Segmentation and Skele-
tonization in CTA. Midas J. - Proc. MICCAI Workshop - Grand Challenge Coronary Artery Tracking,
<http://hdl.handle.net/10380/1434>.

Wang, J. C., Normand, S.-L. T., Mauri, L., Kuntz, R. E., 2004. Coronary Artery Spatial Distribution of Acute
Myocardial Infarction Occlusions. Circulation 110 (3), 278–284.

Warfield, S., Zou, K., Wells, W., 2004. Simultaneous Truth and Performance Level Estimation (STAPLE): An
Algorithm for the Validation of Image Segmentation. IEEE Trans. Med. Imaging 23 (7), 903–921.

Wesarg, S., Firle, E., 2004. Segmentation of Vessels: The Corkscrew Algorithm. In: Proc. SPIE Med Imaging:
Image Process. pp. 1609–1620.

Wesarg, S., Khan, M. F., Firle, E. A., 2006. Localizing Calcifications in Cardiac CT Data Sets Using a New Vessel
Segmentation Approach. J. Digital Imaging 19 (3), 249–257.

West, J., Fitzpatrick, J. M., Wang, M. Y., Dawant, B. M., Maurer, C. R., Kessler, R. M., Maciunas, R. J., Bar-
illot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P. A., Napel,
S., Sumanaweera, T. S., Harkness, B., Hemler, P. F., Hill, D. L., Hawkes, D. J., Studholme, C., Maintz, J. B.,
Viergever, M. A., Malandain, G., Woods, R. P., 1997. Comparison and Evaluation of Retrospective Inter-
modality Brain Image Registration Techniques. J. Comput. Ass. Tomogr. 21 (4), 554–566.

Weustink, A. C., Mollet, N. R., Neefjes, L. A., Meijboom, W. B., Galema, T. W., van Mieghem, C. A., Kyrzopoulous,
S., Eu, R. N., Nieman, K., Cademartiri, F., van Geuns, R.-J., Boersma, E., Krestin, G. P., de Feyter, P. J., 2010.
Diagnostic Accuracy and Clinical Utility of Noninvasive Testing for Coronary Artery Disease. Ann. Intern.
Med. 152 (10), 630–639.

Weustink, A. C., Mollet, N. R., Neefjes, L. A., van Straten, M., Neoh, E., Kyrzopoulos, S., Meijboom, B. W., van
Mieghem, C., Cademartiri, F., de Feyter, P. J., Krestin, G. P., 2009. Preserved Diagnostic Performance of Dual-
Source CT Coronary Angiography With Reduced Radiation Exposure and Cancer Risk. Radiology 252 (1),
53–60.

Weustink, A. C., Mollet, N. R., Pugliese, F., Meijboom, W. B., Nieman, K., Heijenbrok-Kal, M. H., Flohr, T. G.,
Neefjes, L. A. E., Cademartiri, F., de Feyter, P. J., Krestin, G. P., 2008. Optimal Electrocardiographic Pulsing
Windows and Heart Rate: Effect on Image Quality and Radiation Exposure at Dual-Source Coronary CT
Angiography. Radiology 248 (3), 792–798.

Wierzbicki, M., Drangova, M., Guiraudon, G., Peters, T., 2004. Validation of Dynamic Heart Models Obtained
Using Non-Linear Registration for Virtual Reality Training, Planning, and Guidance of Minimally Invasive
Cardiac Surgeries. Med. Image Anal. 8 (3), 387–401.

Wink, O., Frangi, A., Verdonck, B., Viergever, M., Niessen, W., 2002. 3D MRA Coronary Axis Determination
Using a Minimum Cost Path Approach. Magn. Reson. Med. 47 (6), 1169–1175.

Wink, O., Niessen, W., Verdonck, B., Viergever, M., 2001. Vessel Axis Determination Using Wave Front Prop-
agation Analysis. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol. 2208 of Lect. Notes
Comput. Sci. pp. 845–853.

Wink, O., Niessen, W., Viergever, M., 2000a. Fast Delineation and Visualization of Vessels in 3-D Angiographic
Images. IEEE Trans. Med. Imaging 19, 337–346.

Wink, O., Niessen, W., Viergever, M., 2000b. Minimum Cost Path Determination Using a Simple Heuristic
Function. In: Proc. Int. Conf. Pattern Recog. pp. 998–1001.

Wink, O., Niessen, W., Viergever, M., 2004. Multiscale Vessel Tracking. IEEE Trans. Med. Imaging 23 (1), 130–
133.

Wong, W., Chunga, A., 2007. Probabilistic Vessel Axis Tracing and Its Application to Vessel Segmentation With
stream surfaces and minimum cost paths. Med. Image Anal. 11 (6), 567–587.



146 BIBLIOGRAPHY

Woolf, N., 1998. Pathology: Basic and Systemic. W.B. Saunders.

World Health Organization, 2007. The Top Ten Causes of Death - Fact Sheet N◦ 310.

World Health Organization, 2009. The Top Ten Causes of Death - Fact Sheet N◦ 317.

Xu, C., Prince, J. L., 1998. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans. Image Process. 7 (3), 359–
369.

Xue, H., Guehring, J., Srinivasan, L., Zuehlsdorff, S., Saddi, K., Chefdhotel, C., Hajnal, J. V., Rueckert, D., 2008.
Evaluation of Rigid and Non-Rigid Motion Compensation of Cardiac Perfusion MRI. In: Proc. Int. Conf. Med.
Image Comput. Comput. Assist. Interv. Vol. 5242 of Lect. Notes Comput. Sci. pp. 35–43.

Yang, D., Lu, W., Low, D. A., Deasy, J. O., Hope, A. J., Naqa, I. E., 2008. 4D-CT Motion Estimation Using
Deformable Image Registration and 5D Respiratory Motion Modeling. Med. P 35 (10), 4577–4590.

Yang, G., Bousse, A., Toumoulin, C., Shu, H., 2006. A Multiscale Tracking Algorithm for the Coronary Extraction
in MSCT Angiography. In: Proc. IEEE Eng. Med. Biol. Soc. pp. 3066–3069.

Yang, G., Zhou, J., Boulmier, D., Garcia, M.-P., Luo, L., Toumoulin, C., 2010. Characterization of 3-D Coronary
Tree Motion from MSCT Angiography. IEEE Trans. Inf. Technol. Biomed. 14 (1), 101–106.

Yang, Y., Tannenbaum, A., Giddens, D., 2007. Automatic Segmentation of Coronary Arteries Using Bayesian
Driven Implicit Surfaces. In: Proc. IEEE Int. Symp. Biomed. Imaging. pp. 856–859.

Yang, Y., Zhu, L., Haker, S., Tannenbaum, A. R., Giddens, D. P., 2005. Harmonic Skeleton Guided Evaluation of
Stenoses in Human Coronary Arteries. In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. Vol.
3749 of Lect. Notes Comput. Sci. pp. 490–497.

Yoo, T., Ackerman, M., Lorensen, W., Schroeder, W., Chalana, V., Aylward, S., Metaxes, D., Whitaker, R., 2002a.
Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The Insight
Toolkit.

Yoo, T., Ackerman, M. J., Lorensen, W. E., Schroeder, W., Chalana, V., Aylward, S., Metaxes, D., Whitaker, R.,
2002b. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The
Insight Toolkit. In: Proc. Med. Meets Virtual Reality. pp. 586–592.

Zambal, S., Hladuvka, J., Kanitsar, A., Bühler, K., 2008. Shape and Appearance Models for Automatic Coro-
nary Artery Tracking. Midas J. - Proc. MICCAI Workshop - Grand Challenge Coronary Artery Tracking,
<http://hdl.handle.net/10380/1420>.

Zanzonico, P., Rothenberg, L. N., Strauss, H. W., 2006. Radiation Exposure of Computed Tomography and Direct
Intra-Coronary Angiography: Risk Has Its Reward. J. Am. Coll. Cardiol. 47 (9), 1846–1849.

Zhang, D., Risser, L., Friman, O., Metz, C., Neefjes, L., Mollet, N., Niessen, W., Rueckert, D., 2010a. Nonrigid
Registration and Template Matching for Coronary Motion Modeling From 4D CTA. In: Proc. Int. Workshop
Biomed. Image Regis. Vol. 6204 of Lect. Notes Comput. Sci. pp. 210–221.

Zhang, D., Risser, L., Metz, C., Neefjes, L., Mollet, N., Niessen, W., Rueckert, D., 2010b. Coronary Artery Motion
Modeling From 3D Cardiac CT Sequences Using Template Matching and Graph Search. In: Proc. IEEE Int.
Symp. Biomed. Imaging. pp. 1053–1056.

Zhang, D., Risser, L., Vialard, F.-X., Edwards, P., Metz, C., Neefjes, L., Mollet, N., Niessen, W., Rueckert, D.,
2010c. Coronary Motion Estimation From CTA Using Probability Atlas and Diffeomorphic Registration. In:
Proc. Int. Workshop Med. Imaging and Augm. Reality. Vol. 6326 of Lect. Notes Comput. Sci. pp. 78–87.

Zhang, H., Wahle, A., Johnson, R. K., Scholz, T. D., Sonka, M., 2010d. 4-D Cardiac MR Image Analysis: Left
and Right Ventricular Morphology and Function. IEEE Trans. Med 29 (2), 350–364.



BIBLIOGRAPHY 147

Zhang, Y., Chen, K., Wong, S., 2008. 3D Interactive Centerline Extraction. Midas J. - Proc. MICCAI Workshop -
Grand Challenge Coronary Artery Tracking, <http://hdl.handle.net/10380/1417>.

Zhu, H., Ding, Z., Piana, R. N., Gehrig, T. R., Friedman, M. H., 2009. Cataloguing the Geometry of the Human
Coronary Arteries: A Potential Tool for Predicting Risk of Coronary Artery Disease. Int. J. Cardiol. 135 (1),
43–52.

Zikic, D., Groher, M., Khamene, A., Navab, N., 2008. Deformable Registration of 3D Vessel Structures to a
Single Projection Image. In: Proc. SPIE Med Imaging: Image Process. pp. 691412–1–691412–12.

Zöllei, L., Learned-Miller, E., Grimson, E., Wells, W., 2005. Efficient Population Registration of 3D Data. In:
Proc. Int. Workshop Comput. Vision Biomed. Image Appl. pp. 291–301.





Samenvatting



150 SAMENVATTING

In dit proefschrift beschreven we de ontwikkeling en evaluatie van technieken voor
het relateren van diagnostische CTA-scans aan intraoperatieve röntgenangiografie beel-
den. We introduceerden een strategie gebaseerd op het modelleren van de patiënt-
specificieke vorm en beweging van de kransslagaderen. Deze bewegingsmodellen wer-
den geëxtraheerd uit 4D cardiale CTA-beelden door de vorm van de kransslagaders op
één tijdpunt te bepalen en de beweging met behulp van registratie af te leiden uit de
complete 4D scan. Vervolgens werden deze modellen gerelateerd aan de intraoperatieve
röntgenangiografie beelden, waarbij gelijktijdig meerdere tijdpunten werden meegeno-
men.

In de eerste hoofdstukken presenteerden we technieken die toegepast kunnen wor-
den om een model van de kransslagaderbeweging te maken. In hoofdstuk 2 beschreven
we de toepassing en evaluatie van kortstepadalgoritmes voor het vinden van de centrale
as van de kransslagaders in 3D CTA-beelden. We toonden met een kwantitatieve eva-
luatie op 48 kransslagaders aan dat de methode in 88% van de gevallen de centrale as
correct lokaliseerde. De gevonden locatie week gemiddeld 0.64 mm af van de daad-
werkelijke locatie. Een extra evaluatie op 252 kransslagaders in 63 andere CTA-beelden
liet zien dat de methode in 233 van de 252 gevallen in staat was de kransslagaders te
lokaliseren.

Naast ons werk uit hoofdstuk 2 zijn in de literatuur meerdere methoden beschreven
voor het (semi-)automatisch vinden van de kransslagaders in CTA-scans. Er was echter
geen gestandaardiseerde manier om deze methodes en nieuw te ontwikkelen methodes
te evalueren en vergelijken. In hoofdstuk 3 presenteerden we daarom een gestandaar-
diseerd evaluatieraamwerk voor methodes die de centrale as van de kransslagaders in
CTA-beelden vinden. Dit raamwerk bestaat uit 32 publiek beschikbare CTA-scans, een
referentiestandaard die is afgeleid uit het handmatig aangeven van de centrale assen en
duidelijk gedefinieerde evaluatiematen. We vergeleken 13 verschillende technieken die
door onderzoeksgroepen wereldwijd geïmplementeerd zijn en lieten daarmee de toepas-
baarheid van het raamwerk zien. Op dit moment staan meer dan 100 teams ingeschreven
om gebruik te kunnen maken van de data en de evaluatiemethode. Voor het publiceren
van nieuwe resultaten in toonaangevende wetenschappelijke tijdschriften is het noodza-
kelijk dit raamwerk te gebruiken voor het evalueren van de beschreven methode.

Gebruikmakend van de methodes uit hoofdstuk 2 of één van de methodes die ge-
evalueerd zijn in hoofdstuk 3 kan een statisch model van de kransslagaderen worden be-
paald, bijvoorbeeld voor de einddiastole fase van de hartslag. Om een dynamisch model
voor de complete hartcyclus te maken moet echter ook de beweging van de kransslag-
aders worden bepaald. In hoofdstuk 4 presenteerden we een methode die de beweging
van anatomie in medische beelden kan bepalen. De methode bepaalt de beweging voor
alle tijdpunten gelijktijdig zodat er geen voorkeur naar een bepaald tijdpunt ontstaat en
houdt zowel rekening met spatiële en temporele gladheid van het resultaat. Daarnaast
kan de methode afdwingen dat de afgeschatte beweging cyclisch verloopt. De methode
gebruikt een 3D (2D+tijd) of 4D (3D+tijd) B-spline transformatiemodel, een similari-
teitsmaat die de variatie van de intensiteit over tijd meet en begrensde optimalisatie met
een stochastische gradiëntdalingsmethode waarin de stapgrootte automatisch wordt bij-
gesteld. Kwantitatieve evaluatie toonde aan dat de methode de beweging kan vinden
met een afwijking die kleiner is dan de grootte van de voxels in het beeld en consistente
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resultaten oplevert.
Het bepalen van een 4D kransslagadermodel door de vorm van de slagaders te vin-

den op één tijdpunt van de hartslag en die te combineren met een bewegingsmodel is
een voor de hand liggende aanpak wanneer dynamische beelden beschikbaar zijn. De
toename in de stralingsdosis voor het maken van deze dynamische beelden is echter niet
altijd te verantwoorden. Er wordt daarom steeds meer gebruik gemaakt van prospec-
tieve gating tijdens het scannen. Dit betekent dat alleen gescand wordt in een vooraf
bepaalde fase van de hartslag, in plaats van tijdens de hele hartslag. Dit levert een aan-
zienlijke vermindering van de stralingsdosis op, maar er kan tegelijkertijd maar één 3D
beeld gemaakt worden. Daarom ontwikkelden we in hoofdstuk 5 een methode voor het
voorspellen van hartbeweging op basis van de vorm van het hart. Deze methode is geba-
seerd op hoofdcomponentenregressie en statistische modellen van zowel de vorm als de
beweging van het hart. Onze hypothese was dat de beweging van het hart in tenminste
bepaalde mate afhangt van zijn vorm. Kwantitatieve evaluatie op 150 4D CTA-beelden
toonde aan dat het op deze manier meenemen van de vorm in het voorspellen van de
beweging een kleine, maar significante verbetering opleverde ten opzichte van vormon-
afhankelijke bewegingsafschatting.

In het laatste hoofdstuk onderzochten we de haalbaarheid van een 3D+tijd/2D+tijd
registratie methode voor het relateren van diagnostische CTA-scans aan de röntgenangio-
grafie beelden van een interventie. We pasten de methodes uit de voorgaande hoofdstuk-
ken toe voor het modelleren van de beweging van de kransslagaders en registreerden dit
4D kransslagadermodel temporeel met de intraoperatieve situatie door het relateren van
ECG signalen. Daarna bepaalden we de positie en oriëntatie van het model ten opzichte
van de patiënt. Een niet-lineaire geconjugeerde gradiënt-methode werd gebruikt voor
het optimaliseren van een similariteitsmaat op basis van het projecteren van de centrale
assen uit het model en een grove segmentatie van de röntgenbeelden. De registratie werd
gelijktijdig uitgevoerd voor alle röntgenbeelden binnen één hartslag, waarbij ook de ro-
tatie en verplaatsing van het hart door de ademhaling werd meegenomen. De methode
werd geëvalueerd door geprojecteerde assen uit het kransslagadermodel te vergelijken
met handmatig, in de röntgenbeelden aangegeven, assen. We lieten zien dat de gepre-
senteerde strategie voordelen heeft ten opzichte van een 3D/2D registratie methode wat
betreft het succespercentage en de reproduceerbaarheid van de resultaten.

Ten slotte concluderen we dat de gepresenteerde registratie methodologie, gebaseerd
op het modelleren van de kransslagaderbeweging, een veelbelovende strategie is voor het
relateren van preoperatief gemaakte CTA beelden en intraoperatieve röntgenangiografie.
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