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Resumo 

O alinhamento de imagens é o processo que permite estabelecer uma correspondência 

espacial entre o mesmo elemento de tecido representado em duas ou mais imagens, em 

diferentes momentos, de diferentes perspectivas, e/ou de diferentes modalidades. O 

processo computacional do alinhamento implica a determinação de uma transformação 

geométrica entre sistemas de coordenadas. 

Esta transformação geométrica é calculada pela optimização de um critério de alinhamento, 

usualmente através de uma procura iterativa na qual uma estimativa inicial da transformação 

é gradualmente refinada por um processo numérico de optimização (Hill, Batchelor, Holden, 

& Hawkes, 2001; Zitova & Flusser, 2003). Em cada iteração uma medida de semelhança entre 

as imagens que se pretendem alinhar é calculada até que seja atingido um mínimo ou um 

máximo. No entanto, tais algoritmos de optimização podem convergir para uma solução 

incorrecta, i.e. para um extremo local, sendo muitas vezes pouco robustos face à existência 

destes extremos locais.  

Alguns autores têm sugerido uma mudança de paradigma para o problema do alinhamento de 

imagens médicas, motivados principalmente pelos custos computacionais e pela robustez 

limitada face à presença de extremos locais (e.g. Chou & Pizer, 2013; Hoff, Komistek, Stefan, 

& Walker, 1998; Zhang et al., 2008). Nestes casos, o problema do alinhamento é encarado 

como um problema de regressão a partir de uma estratégia de aprendizagem, substituindo o 

cálculo da transformação por uma optimização iterativa. Em muitos destes trabalhos, as 

Redes Neuronais Artificiais, ou simplesmente Redes Neuronais, são o modelo de regressão 

escolhido para inferir os parâmetros da transformação geométrica.  

No entanto, a literatura existente sobre métodos de alinhamento baseados em regressão 

deixa muitas questões em aberto, como quais as características das imagens (image features) 

a usar, qual o melhor modelo de regressão, bem como a relevância clínica dos mesmos. A 

investigação do alinhamento baseado na regressão é assim o principal tópico desta tese, 

focando-nos concretamente no alinhamento 3D/2D da angiografia por Tomografia 

Computadorizada com a angiografia por raios-X. Neste contexto é frequente a exigência da 

integração da informação obtida no período pre-operatório (e.g. imagens angiográficas 3D) 

com as imagens intra-operatórias. Por outro lado, o alinhamento de imagem por regressão 

nestas intervenções guiadas por imagem é exequível, uma vez que o processo de 

aprendizagem pode decorrer aquando do planeamento cirúrgico, o que ocorre antes do 

alinhamento propriamente dito. 
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Três questões de investigação foram assim formuladas: 

 Como é influenciado o alinhamento pelas características das imagens (image 

features) usadas no processo de aprendizagem? 

 Serão as redes neuronais um modelo de regressão adequado ao problema proposto? 

 O alinhamento de imagem por regressão constitui uma solução clinicamente relevante 

para o alinhamento 3D/2D da angiografia por Tomografia Computorizada com a 

angiografia por raios-X angiografia das artérias coronárias, durante as intervenções 

guiadas por imagem? 

Estas questões foram respondidas nos vários capítulos desta tese, sendo que o Capítulo 2 não 

incide directamente em nenhuma delas apesar do seu importante contributo. Este apresenta 

uma revisão de literatura das publicações sobre o alinhamento de imagem por regressão no 

contexto da imagem médica. A síntese das principais características dos métodos analisados 

também é realizada.  

A primeira questão de investigação é abordada pelo Capítulo 3 e pelo Capítulo 5. O Capítulo 3 

permite-nos compreender que a informação acerca da intensidade da imagem, associada a 

certas características, leva a uma muito boa aprendizagem. Mas o Capítulo 5 mostra-nos que 

esta dependência na intensidade não é compatível com o alinhamento de imagens 2D reais de 

angiografia. Por outro lado, algumas características não são afectadas pelas diferenças entre 

as imagens simuladas (usadas durante o treino) e as imagens reais, mas não contêm 

informação suficiente, pelo que não permitem obter resultados suficientemente precisos.  

A segunda questão acerca das Redes Neuronais é estudada pelo Capítulo 4, onde diferentes 

modelos de regressão são comparados para este problema de alinhamento concreto. 

O Capítulo 5 aborda a terceira e última questão de investigação, ou seja, a relevância clínica 

do alinhamento de imagem por regressão na integração automática da angiografia por 

Tomografia Computorizada com a angiografia por raios-X das artérias coronárias. Para este 

problema em particular, o método proposto com a sua actual configuração não é 

suficientemente preciso para ser usado na prática clínica. A principal dificuldade reside nas 

diferenças substanciais entre as imagens de treino (imagens de raios-X simuladas a partir de 

modelos 3D) e as imagens obtidas durante as intervenções (angiografias por raio-X). Tal 

significa que outros tipos de características têm que ser encontradas, mais robustas às 

diferenças entre as imagens, tais como a presença de cateteres nas imagens de raios-X ou a 

inexistência de vasos não visíveis durante oclusões totais crónicas (das artérias) coronárias, ou 

modelos 3D incompletos devido a uma visibilidade insuficiente nas angiografias por 

Tomografia Computadorizada (e.g. causada por ruído ou artefactos de movimento). 
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Os trabalhos recentes de Chou, Frederick, Mageras, & Chang (2013) e Chou & Pizer (2013) 

também sugerem algumas estratégias interessantes para melhorar a precisão, como as 

regressões em múltipla escala por um “treino hierárquico” (i.e. indo de um intervalo mais 

amplo para um intervalo mais estreito no que respeita às transformações usadas no treino) e 

correcção das diferenças de intensidade entre imagens simuladas e reais pela 

correspondência dos seus histogramas. 

Por último, é recomendado testar o método de alinhamento por regressão desenvolvido 

noutras aplicações em que os dados de treino disponíveis sejam representativos dos dados de 

teste. Dois exemplos potencialmente interessantes são o alinhamento 3D/2D realizado em 

biopsias com agulha, guiadas por imagem, na coluna (van de Kraats, 2005; van de Kraats et 

al., 2006) e a correcção de movimento em tempo real de séries temporais de imagens (Luca, 

Tanner, & Székely, 2012). 

 

Palavras-chave 

Alinhamento de imagem 3D/2D, intervenções guiadas por imagem, artérias coronárias, 

regressão, Redes Neuronais, Perceptrão Multicamada, gold standard. 
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Abstract 

This thesis focuses on the development and evaluation of a registration-by-regression 

approach for the 3D/2D registration of coronary Computed Tomography Angiography (CTA) 

and X-ray angiography. This regression-based method relates image features of 2D projection 

images to the transformation parameters of the 3D image by a nonlinear regression. It treats 

registration as a regression problem, as an alternative for the traditional iterative approach 

that often comes with high computational costs and limited capture range. 

First we presented a survey of the methods with a regression-based registration approach for 

medical applications, as well as a summary of their main characteristics (Chapter 2). Second, 

we studied the registration methodology, addressing the input features and the choice of 

regression model (Chapter 3 and Chapter 4). For that purpose, we evaluated different options 

using simulated X-ray images generated from coronary artery tree models derived from 3D 

CTA scans. We also compared the registration-by-regression results with a method based on 

iterative optimization. Different image features of 2D projections and seven regression 

techniques were considered. The regression approach for simulated X-rays was shown to be 

slightly less accurate, but much more robust than the method based on an iterative 

optimization approach. Neural Networks obtained accurate results and showed to be robust to 

large initial misalignment. 

Third, we evaluated the registration-by-regression method using clinical data, integrating the 

3D preoperative CTA of the coronary arteries with intraoperative 2D X-ray angiography images 

(Chapter 5). For the evaluation of the image registration, a gold standard registration was 

established using an exhaustive search followed by a multi-observer visual scoring procedure. 

The influence of preprocessing options for the simulated images and the real X-rays was 

studied. Several image features were also compared. The coronary registration–by-regression 

results were not satisfactory, resembling manual initialization accuracy.  

Therefore, the proposed method for this concrete problem and in its current configuration is 

not sufficiently accurate to be used in the clinical practice. The framework developed 

enables us to better understand the dependency of the proposed method on the differences 

between simulated and real images. The main difficulty lies in the substantial differences in 

appearance between the images used for training (simulated X-rays from 3D coronary models) 

and the actual images obtained during the intervention (real X-ray angiography). We suggest 

alternative solutions and recommend to evaluate the registration-by-regression approach in 

other applications where training data is available that has similar appearance to the 

eventual test data. 
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Keywords 

3D/2D image registration, image guided interventions, coronary arteries, regression, Neural 

Networks, Multiple Layer Perceptron, gold standard. 
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In Praise Of Learning 

 

Learn the elementary things! 

For those whose time has come 

It is never too late! 

Learn the ABC. It won’t be enough, 

But learn it! Don’t be dismayed by it! 

Begin! You must know everything. 

You must lake over the leadership. 

 

Learn, man in the asylum! 

Learn, man in the prison! 

Learn, woman in the kitchen! 

Learn sixty year olds! 

You must take over the leadership. 

Seek out the school, you who are homeless! 

Acquire knowledge, you who shiver! 

You who are hungry, reach for the book: 

it is a weapon. 

You must take over the leadership. 

 

Don’t be afraid to ask, comrade! 

Don’t be talked into anything. 

Check for yourself! 

What you do not know yourself 

you don’t know. 

Scrutinize the bill, 

it is you who must pay it. 

Put your finger on each item, 

ask: how did this get there ? 

You must take over the leadership. 

 

Bertolt Brecht
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Chapter 1 Introduction 

 

Image registration is the process of establishing a spatial correspondence between the same 

element of tissue represented in two or more images, at different times, from different 

viewpoints, and/or by different modalities. The computational process of registration yields a 

geometric transformation between coordinate systems. 

This geometric transformation is computed by optimizing a registration criterion, usually by 

an iterative search in which an initial estimate of the transformation is gradually refined by a 

numerical optimization procedure (Hill et al., 2001; Zitova & Flusser, 2003). In each iteration, 

a similarity measure between the images to be registered is computed until a minimum is 

reached. However, these optimization algorithms frequently converge to an incorrect 

solution, i.e. to a local optimum, leading to a small capture range. Different strategies have 

been implemented when the initial position is not close to correct alignment and to avoid 

possible local extremes, bringing the registration parameters within the capture range. 

Additionally to this problem, the use of image interpolation, in each iteration for the widely 

used voxel-based methods, can lead to high computational costs. An established approach to 

avoid false local optima improving the registration speed is the use of hierarchical multi-

resolution and/or multi-scale search strategies. But such solutions are not suitable for all 

image data, because some image features may be suppressed and other non-corresponding 

image features may become more similar (Markelj, Tomaževič, Likar, & Pernuš, 2012).  

Mainly motivated by the computational costs and limited capture range, some image 

registration methods have been presenting a different solution (e.g. Chou & Pizer, 2013; Hoff, 

Komistek, Stefan, & Walker, 1998; Zhang et al., 2008). They propose a paradigm change of 

the registration problem for medical applications. Instead of computing the transformation of 

the registration by an iterative optimization, they treat the registration as a regression 

problem by a learning strategy. In many cases, Artificial Neural Networks or simply Neural 

Networks (NNs) are chosen to infer the regression model. They have an excellent ability to 

learn the relationship between input and output from a data set without any prior knowledge, 

and without any assumptions about the statistical distribution of the data (Haykin, 1999).  

However, the existing literature on registration-by-regression methods leaves many open 

questions, such as the choice of input features, the choice of regression model, and the 

clinical applicability.  

The investigation of the regression-based registration is the main topic of this Thesis. It 

focused on the 3D/2D registration of coronary CTA and X-ray angiography in the image guided 

context. The image guided interventions often require integration of preoperative image with 
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intraoperative images, which makes suitable a learning process during the intervention 

planning, before the registration is required. Three research questions are thus formulated 

attending different aspects: 

 How is the registration influenced by the image features used in the learning process? 

 Are Neural Networks an adequate regression model for this problem? 

 Is the registration-by-regression method a clinically relevant solution for 3D/2D 

registration of coronary CTA and X-ray angiography during image-guided 

interventions? 

The outline of this Thesis is as follows. In Chapter 2 we present a survey of the publications 

with a regression-based registration approach for medical applications, as well as a summary 

of their main characteristics. Chapter 3 presents in detail the framework of the 3D/2D image 

registration-by-regression method proposed in this thesis. The method is evaluated using 

simulated X-ray images and compared with a conventional registration method based on 

iterative optimization, developed for the specific application. In Chapter 4, a comparative 

evaluation of different regression techniques is performed for the application considered. In 

Chapter 5 we treat the extension of Chapter 3 to real X-ray images. Our aim is to integrate of 

3D preoperative CTA of the coronary arteries with intraoperative 2D X-ray angiography images 

with the registration-by-regression method proposed. For the evaluation of the image 

registration, a gold standard registration was established using an exhaustive search followed 

by a multi-observer visual scoring procedure. Several image features were compared as well 

as different image preprocessing options. Finally the summary of the Thesis is presented in 

Chapter 6. 
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Perseverance 

Say not that work is e'er ill-spent,  

Say not that effort fails or seems;  

Say not that he o'er labour bent  

Is one in the world's many dreams. 

 

Alexander Search 
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Chapter 2  

Medical Image Registration based on Regression:  

a survey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the manuscript: 

Medical Image Registration based on Regression: a survey. Gouveia, A. R., Freire, L., Almeida, 

P., & Klein, S., submitted.  
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Abstract  

 

In this chapter, we present a survey on regression-based image registration approaches for 

medical applications, as well as a summary of their main characteristics inspired by the 

classification proposed by Maintz & Viergever (1998). We adapted the criteria used by these 

authors, and we considered a) three aspects regarding the methodology of the registration-

by-regression framework, namely the type of features, the regression model, and the role of 

the regression in the entire process, and b) five more general aspects, namely the application 

of the work, the object imaged, the transformation nature, the evaluation of the registration 

and the motivation for the approach. 

This survey aims to provide insight into the different formulations of registration-by-

regression methods, to give an overview of the applications for which this has been proposed, 

and to compare to what extent the different approaches have been evaluated. The main 

conclusion is that, while results on simulated data show promising accuracies, few 

registration-by-regression methods have been evaluated using real clinical data. 
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2.1 Introduction 

“Image registration is the process of overlaying two or more images of the same scene taken 

at different times, from different viewpoints, and/or by different sensors” (Zitova & Flusser, 

2003). It is often required in different areas, such as remote sensing, computer vision, and 

medical imaging among others, being a crucial step for the image analysis in multi-view, 

multitemporal and multimodal circumstances (Zitova & Flusser, 2003). In the specific context 

of medical image analysis, one may find many applications of image registration, such as to 

combine the information from multiple imaging modalities (e.g., anatomical body structure 

from magnetic resonance image (MRI) with functional and metabolic body activities from 

positron emission tomography (PET), or relating preoperative images and surgical plans to the 

physical space of the operating room during image-guided surgery, or even relating an 

individual’s anatomy to a standardized atlas (Hajnal, Hawkes, & Hill, 2001; Zitova & Flusser, 

2003). 

Most medical image registration algorithms use an iterative approach, in which an initial 

estimate of the geometric transformation required to bring the images into correspondence is 

gradually refined by a numerical optimization procedure (Hill et al., 2001). In each iteration, 

a similarity measure between the images to be registered is computed until a minimum or a 

maximum value is reached. However, these optimization algorithms can convergence to an 

incorrect solution, i.e., to a local optimum of the similarity measure’s energetic landscape. 

As a result, such algorithms may have a small capture range (i.e., large transformations 

cannot be recovered). Additionally, for the extensively used intensity–based registration 

methods, the use of image interpolation algorithms in each iteration implies high 

computational costs. Motivated by these disadvantages, image registration methods replacing 

iterative optimization by other strategies have been proposed in the literature. Among these 

works, several authors have explored the use of regression models for this purpose. 

In this chapter, we present a survey on regression-based registration approaches proposed for 

medical applications. We provide a summary of their main characteristics and we classify the 

methods according to the three main methodological components: the choice of features, the 

regression model, and the way the regression takes part of the registration process. We also 

define five criteria to classify the presented methods, using a methodology inspired by the 

classification proposed by Maintz & Viergever (1998). To limit the scope of this survey, 

approaches for motion tracking are not included. 

In the literature we find many reviews on image registration methods, either for generic 

applications (Glasbey & Mardia, 1998; Salvi, Matabosch, Fofi, & Forest, 2007; Zitova & 

Flusser, 2003), or for medical imaging context (Brown, 1992; Elsen, Pol, & Viergever, 1993; 

Hill et al., 2001; Maintz & Viergever, 1998; Maurer & Fitzpatrick, 1993; Oliveira & Tavares, 
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2014; Wyawahare, Patil, & Abhyankar, 2009) and for specific transformation nature (Sotiras, 

Davatzikos, & Paragios, 2013), or even for specific applications (Markelj et al., 2012), or 

focused on methods for medical images inspired by computational intelligence (Ramirez, 

Durdle, & Raso, 2003). However, to the best of our knowledge, no survey specifically 

dedicated to registration-by-regression methods can be found in the literature.  

 

2.2 The image registration process 

The term registration means to spatially align two or more images of the same or different 

subjects, acquired with the same or different imaging modalities, and also the registration of 

images with the coordinate system of a treatment device or tracked localizer (Hill et al., 

2001).  The spatial alignment implies the computation of a geometric transformation that 

relates corresponding points in the involved images. This transformation can denote two 

different mappings (Hill et al., 2001). One is a spatial mapping, which relates the position of 

features, in one image or coordinate space, with the position of the corresponding features in 

another image or coordinate space. The other relates both the position of corresponding 

features and the intensity information of corresponding positions. The first maps the 

coordinate systems of the images and the second maps an image to another image. This more 

complete mapping needs resampling and interpolation.  

The image registration survey presented by Zitova & Flusser (2003) classifies the existing 

methods into feature-based methods and area-based . The former are recommended if the 

images contain enough distinctive and easily detectable -features, whereas the latter are 

best suited for the images without clearly identified features (Zitova & Flusser, 2003). The 

feature-based registration requires selection of a number of well-defined landmarks, which 

may be difficult to achieve automatically in the case of noisy medical images. However, in 

some cases this is solved by the interactive selection by an expert user (e.g. based on 

anatomical criteria) or by introducing extrinsic features, rigidly positioned with respect to the 

patient. Area-based methods depend on the intensity information of pixels (or voxels) of the 

images to be registered, considering the entire image or just a predefined region of interest. 

In the medical context, area-based image registration methods are usually named as voxel-

based or intensity-based. In this work, we adopt this last term. 

Different steps can be identified during the image registration process. Registration based on 

features relies on an initial identification of features (e.g. points or curves) or on the 

extraction of those features (e.g. by segmentation); then, the correspondence (or matching) 

between the features of the images to be registered is established by feature descriptors, 

similarity measures or spatial relationships among the features (Zitova & Flusser, 2003). For 

intensity-based methods, this correspondence estimation is performed by computing a 
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correlation between images or a template matching. Based on the feature or intensity 

information, a spatial coordinate transformation is estimated. Then, one image is mapped 

onto the coordinates of the other by image interpolation. Most medical image registration 

algorithms use an iterative approach, in which an initial estimate of the transformation is 

gradually refined by a numerical optimization procedure (Hill et al., 2001). In each iteration, 

the current estimate of the transformation is used to calculate a similarity measure. The 

optimization algorithm then makes another estimate of the transformation and evaluates the 

similarity measure again. This process continues on a trial-error basis until the algorithm 

converges, which means that no further transformation can be found that results in a better 

value of the similarity measure, to within a preset tolerance.  

The registration methods focused on this survey propose a change of paradigm from an 

iterative optimization to a regression approach. The geometric transformation is estimated by 

a regression model, using a learning-based strategy. These methods are described in detail in 

the next section.  

 

2.3 Regression approaches in image registration methods  

Generally, image registration methods based on regression relate images or image features to 

the corresponding spatial transformations. In a library-based or template matching style, a 

training set is generated and the regression model is estimated by a learning process. Then 

the registration takes place by the computation of the transformation parameters using the 

function previously obtained. Mathematically, the regression approaches predict an output Y 

(e.g. transformation parameters) with a regression model   given an input vector   

          (e.g., the image features), such as       . To estimate the parameters of the 

prediction model  , a set of N measurements        , i.e. the training set, is used.  

We find in the literature some authors adopting this regression approach, however their 

methods can differ in many aspects. They can use different inputs, such as points coordinates 

(e.g., Ryan, Heneghan, & de Chazal, 2004) or Fourier coefficients (e.g., Abche, Yaacoub, 

Maalouf, & Karam, 2006); different outputs, such as transformation parameters (e.g., 

Gouveia, Metz, Freire, & Klein, 2012a) or deformations coefficients (e.g., Kim, Wu, Yap, & 

Shen, 2012); and different regression models like MLP ( e.g., Zhang et al., 2008) or k-NN ( 

e.g., Hoff, Komistek, Dennis, Gabriel, & Walker, 1998). The way the regression takes part in 

the registration process, referred in this chapter as the role in the overall registration 

process, also differs. The registration-by-regression method can be used on its own (e.g., Liu, 

Yan, & Zhang, 2006), or as part of a more comprehensive multi-stage registration process 

(e.g., as initialization method or as refinement stage) (e.g., Li, Gao, Wu, & Li, 2010). In  
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Table 2.1 Regression approaches in medical image registration methods: the registration methodology. 
Papers from the same research group describing largely the same method were grouped per row. 

 

Features Model Role 

(a) Yan et al. (2004) 

Points 

 
Entire process 

(b) Zhang et al. (2008) PA  Fine reg. 

(c) Liu et al. (2006) Entire process 

(d) Li et al. (2010) 

Points 

 
Initialization 

  ICP reg. 

(e) Wang et al. (2003) Entire process 

(f) Wachowiak et al. (2002) Points 

 

Entire process 

     Ryan et al. (2004) 
(g) Heneghan et Maguire (2002) 

     Heneghan et al. (2002) 
Points 

 
Entire process 

(h) Qi, Gu & Xu (2008)  
     Qi, Gu & Zhao (2008) 

Image 

 Similarity 
Measure 

computation 

(i) Kim et al. (2012,2010) Signature 
Vectors 

 

Initialization 

(j) Chou et al (2013,2011,2010) 
    Chou et Pizer (2013) 

Image 
Difference 

 Entire process 

(k) Gouveia et al. (2012a,2012b) 

2D moments, 
eigenvalues, 
eigenvectors 

 
Entire process 

(l) Freire et al. (2010a,2010b) Fourier 
Coefficients 

 Entire process 

(m) Abche et al. (2006) 

(n) Banks et al. (1996) 

Fourier 
Coefficients 

 Initialization 

(o) Hoff et al. (1998) 

Image difference 

 
number of pixels 

 

Initialization 

For the models: MLP means Multi-Layer Perceptron, NNs means Neural Networks, SVR means Support 
Vector Regression and k-NN means k Nearest Neighbours. For inputs/outputs:    means transformation 
parameters and    means the rotation parameters. For the role: PA means Principal Axis alignment, reg. 
means registration and ICP means Iterative Closest Point. 
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Table 2.2 Regression approaches in medical image registration methods: application, object imaged, 
transformation nature, evaluation and motivation. 

 Application 
Object 
imaged 

Transf. 
nature 

Evaluation Motivation 

(a) Yan et al. (2004) 3D Surface 
Spine 
model 

Rigid Simulated  Speed 

(b) Zhang et al. (2008) 3D Surface 
Spine 
model 

Rigid Simulated  Speed 

(c) Liu et al. (2006) 3D Surface 
Ears 

model 

Rigid 
+ 

Scaling 
Simulated  Speed 

(d) Li et al. (2010) 3D Surface 
Head 
model 

Rigid Simulated  Speed 

(e) Wang et al. (2003) 
3D/3D 

PET to MRI 
Brain Rigid 

Simulated 
Real 

- 

(f) Wachowiak et al. (2002) 
2D/2D 

MRI and CT 
Brain 
Spine 

Elastic Simulated  Complexity 

      Ryan et al. (2004) 
(g) Heneghan et Maguire (2002) 
     Heneghan et al. (2002) 

2D/2D 
Retinal images 

Eye 
Rigid 
Affine 

Non-rigid 
Real  Versatility 

(h) Qi, Gu & Xu (2008)  
     Qi, Gu & Zhao (2008) 

3D/2D 
CT/MRI to X-ray 

Brain 
Thorax 

Rigid 
Non-rigid 

Simulated  Speed 

(i) Kim et al. (2012,2010) 
3D/3D 

MRI 
Brain Elastic 

Simulated 
Real 

 Speed 

 Accuracy 

(j) Chou et al (2013,2011,2010) 
     Chou et Pizer (2013) 

3D/2D IGRT 
CT to X-ray 

Head-and-neck 
Lung 

Rigid 
Non-rigid 

Simulated 
Real 

 Speed 

(k) Gouveia et al. (2012a,2012b) 
3D/2D IGT 
CT to X-ray 

Heart 
(Coronary 
arteries) 

Rigid Simulated  Range 

(l) Freire et al. (2010a,2010b) 
3D/3D 
fMRI 

Brain 
Rigid 
Affine 

Simulated 
Real 

 Speed 

(m) Abche et al. (2006) 
2D/2D 

MRI 
Brain 

Rigid 
+ 

Scaling 
Simulated  Accuracy 

(n) Banks et al. (1996) 
3D/2D 

Model to X.-ray 
Knee 

implants 
Rigid 

Simulated 
Real (in vitro) 

 Range 

(o) Hoff et al. (1998) 
3D/2D 

Model to X-ray 
Knee 

implants 
Rigid 

Simulated 
Real (in vitro) 

 Range 

For the applications: PET means positron emission tomography, MRI means magnetic resonance image, 
CT means computed tomography and fMRI means functional magnetic resonance image. 
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Section 2.3.1, we classify the methods according to these characteristics (all related to the 

registration methodology) and, when it is possible, we cluster the methods by their 

similarities on methodology aspects, describing what is common and what is not. Table 2.1 

gives a schematic overview of all methods that are discussed, according to this 

categorization.  

Next to this categorization on methodological properties, we adopted the criteria used by 

Maintz & Viergever (1998) to classify the literature on registration-by-regression with respect 

to the medical context of the work. Five items were considered: the medical application of 

the work, such as Image-Guided Treatments (IGT) (e.g., Yan et al., 2004); the object imaged, 

such as the brain (e.g., Wachowiak, Smolíková, Zurada, & Elmaghraby, 2002), the 

transformation nature, such as rigid (e.g., Banks & Hodge, 1996); some details about the 

evaluation of the registration, like if real clinical images are used (e.g., Freire, Gouveia, & 

Godinho, 2010b) and if the quantification of the error is performed (e.g., Chou, Frederick, 

Mageras, Chang, & Pizer, 2013); and the motivation of the registration-by-regression 

approach, such as registration speed (e.g., Qi, Gu, & Xu, 2008). In Sections 2.3.2 and 2.3.3, 

we briefly discuss and classify the methods using these criteria, and a schematic summary is 

presented in Table 2.2.  

 

2.3.1 Registration methodology 

Table 2.1 indicates schematically the inputs/outputs used, the regression model, and the 

role in the overall registration process. 

A common registration-by-regression methodology was presented for the surface registration 

of 3D models (H. Liu et al., 2006; Yan et al., 2004; Zhang et al., 2008) (Table 2.1 – a, b, c). 

Their goal was not necessarily finding the transformation between surfaces explicitly from the 

used regression model but to find the closest surface to a reference surface by computing the 

distances between them, as for C. Yan et al. (2004) and Zhang et al. (2008). These authors 

used a Neural Network (NN) to create a distance function that maps 3D corresponding points, 

on the surface to be registered and the reference surface, to the distance between surfaces. 

Yan et al. (2004) (Table 2.1.a) treated the 3D surface registration of spine models for its 

application in an image-guided scenario. Firstly, a surface extraction of two vertebrae bodies 

of a human spine is performed from a semi-automatic segmentation of the vertebrae in 

computed tomography (CT) images. Then, a Multi-layer Perceptron (MLP) with two hidden 

layers is used to model a distance function          which measures the distance of any 

spatial point         of a surface from the reference surface.  
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Zhang et al. (2008) (Table 2.1.b) proposed a 3D surface-based registration very similar to the 

previous approach. They only differed by a coarse registration based on principal axis 

alignment, before the fine registration and after the surface extraction. According to the 

authors, it is a computationally inexpensive procedure but capable of giving good starting 

points. Still for 3D surface registration, Liu et al. (2006) (Table 2.1.c) proposed a method 

where the rotation and translation matrices can be computed directly from the NN. In this 

case, and before the 3D surface registration, a mesh Principal Component Analysis (PCA) was 

used to analyze vertex data on the models and to extract the principal directions of the three 

largest spreads of the distributions of these vertices. Then, a MLP with only one hidden layer 

was used. The vertices’ coordinates of the reference surface are the inputs and the distance 

between surfaces is the output. The connections between the layers (i.e. input, hidden and 

output layers) are defined in such a way that the weight matrix between the input and the 

hidden layer is the unknown registration matrix when the NN converges 

Another 3D surface registration was proposed by Li, Gao, Wu, & Li (2010) (Table 2.1.d) but in 

this case using a NN relating the coordinates of corresponding points. This method is used as 

initialization procedure for a fine registration based on the Iterative Closest Point (ICP) 

method, commonly used for the registration of 3D shapes (Zhang et al., 2008). The 

corresponding pairs between surfaces to be matched were found according to the target 

points’ curvature and color information. The NN differs from the previously used (H. Liu et 

al., 2006) by eliminating the distance computation. Therefore it is a MLP without any hidden 

layers, where inputs and outputs are the corresponding points’ coordinates of the surface to 

be aligned and the reference surface, respectively. In this way, the initial estimate for the 

transformation is found by the computation of the weight matrix.  

Other authors (W. F. Wang & et al, 2003) (Table 2.1.e) used a MLP to also relate the 

coordinates of corresponding points but for a 3D/3D multi-modal registration, namely for 

registration of 3D PET images to 3D MRI. They tested various and more complex MLP 

topologies than Li, Gao, Wu, & Li (2010) (Table 2.1.d), previously mentioned. The 

corresponding points were chosen taking into consideration anatomic criteria.  

The same registration methodology of the last two works was used by Wachowiak, Smolíková, 

Zurada, & Elmaghraby (2002) (Table 2.1.f) but including elastic deformations. 2D Elastic 

registration based on landmarks was performed by a set of corresponding points manually 

selected from the image to be registered and from the reference image. They compared 

different NN, such as radial basis function networks, multi-layer perceptron networks with 

backpropagation and backpropagation with Bayesian regularization, using different levels of 

complexity. The input and output units are the corresponding points’ coordinates. 

Following previous approaches, we find in the literature some authors relating corresponding 

points by a regression model for the registration of images of the retina with different 
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ophthalmological purposes (Heneghan, Maguire, Ryan, & de Chazal, 2002; Heneghan & 

Maguire, 2002; Ryan et al., 2004) (Table 2.1.g). In the case of Ryan et al. (2004) the method 

comprises (1) the marking of control points (i.e., landmarks) in a reference image and a 

distorted image, (2) the matching of control points across the two images and then (3) the 

registration based on (2). Given a set of k matching control points in both images, the 

transformation parameters are estimated from the coordinates of the k matched control 

points in the reference image and in the distorted image. An affine transformation is used as 

the basis for the automatic matching of pairs of control points across two images, providing a 

good first order model of the transformation required for registration. But two other 

transformations are considered for more general geometric distortion correction (i.e., the 

bilinear and second order polynomial transformation), other than rotation, translation and 

scale. These authors applied the method in three different situations: the inter-modality 

image registration of an optical image and a fluorescein angiogram, temporal registration of 

two color fundus photographs images of an infant eye, and intra-modality registration of a set 

of seven standard field optical photographs. The preceding works (Heneghan et al., 2002; 

Heneghan & Maguire, 2002) are very similar, but fewer applications were considered for the 

evaluation of the method.  

As well as the 3D surface registration methods proposed by C. Yan et al. (2004) and Zhang et 

al. (2008) referred before, Qi, Gu, & Xu (2008) and Qi, Gu, & Zhao (2008) (Table 2.1.h) used a 

regression model to compute the similarity measure values, rather than directly computing 

the transformation. With their approach, they avoided the time consuming generation of the 

2D projections, a necessary procedure for 3D/2D image registration based on intensity. In a 

pre-operative stage, a 3D model is obtained from brain MRI images and simulated X-ray 

projection images (i.e., digitally reconstructed radiographs - DRRs) were rendered according 

to their real coordinates and position of the focal point of the X-ray scanner. In the intra-

operative stage, the similarity metric between the pre-operative DRRs and the X-ray is 

computed; the Support Vector Regression (SVR) is trained by relating the transformation 

parameters previously applied to the rendered DRRs and the corresponding similarity metric 

values. Therefore, the time-consuming source is not the DRR rendering but the similarity 

measure computation and SVR learning, which are both performed during the intervention.  

Other authors also used SVR but in a different context (Kim, Wu, Yap, & Shen, 2010; Kim et 

al., 2012) (Table 2.1.i). They presented a learning-based initialization for image registration 

of a population of subjects with respect to a template. The method starts with a training 

stage using the SVR to learn the correlation between image appearances from different 

subjects and their respective deformations. When an individual image needs to be registered, 

this learned correlation model automatically predicts an initial deformation field, which is 

then used to generate a corresponding intermediate template for registration refinement. 

Which means the registration will be performed onto a template much more similar to the 
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subject than without this initialization step. Thus, the registration algorithm only needs to 

estimate residual deformations, which allows to reduce the computational time and to avoid 

the local minima as the authors enhanced. To compute brain image appearances, they use 

PCA to capture the principal modes of brain deformations (i.e. brain outlines and boundaries 

along the different brain interfaces) using a finite set of parameters, which leads to low-

dimensional features (referred as signature vectors). 

A regression strategy was also studied for image registration in Image-Guided Radiation 

Therapy (IGRT). Chou, Frederick, Chang, & Pizer (2010) (Table 2.1.j) proposed a regression-

based matching methodology for patient re-positioning, which was inspired by a machine 

learning strategy (Cootes, Edwards, & Taylor, 2001), and later adapted to 3D/2D registration 

(Chou et al., 2011, 2013; Chou & Pizer, 2013). First, in the training stage, a range of 

transformations for patient movements is applied to a CT image in the planning position. 2D 

projections (DRRs) of transformed and non-transformed images are obtained and the intensity 

differences of DRRs with relation to the non-transformed DRR are computed. Then, a 

regression function is computed relating these intensity differences with the transformation 

values. This procedure was performed as a “hierarchical training”, i.e. it was performed from 

large to small scales of training considering different transformation ranges, and leading to 

multi-scale regressions. In the treatment stage, the learned regression model is applied 

iteratively to the successive residuals between the DRR of the transformed CT and the 2D 

real-time projection, leading to the registration transformation. This method was firstly 

tested on simulated images of head-and-neck CTs, and considering a rigid transformation. In 

further works, this matching methodology, referred as CLARET, i.e. Correction via Limited-

Angle Residues in External Beam Therapy, was adapted and its application extended to 

deformable registration and to real images (Chou et al., 2011, 2013; Chou & Pizer, 2013).  

The registration-by-regression presented by (Gouveia et al., 2012a) (Table 2.1.k) for an 

image-guided application bears some similarities with the works just described. They treat 

the registration of 3D preoperative coronary CTA images to 2D intraoperative X-ray images 

like a nonlinear regression problem. The regression function is determined in a supervised 

learning stage using MLP; it relates image features (2D geometric moments, eigenvalues and 

eigenvector from PCA) of 2D projection images to the transformation parameters of the 3D 

image. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery 

tree models derived from 3D CTA scans. This method has shown to be slightly less accurate 

than a conventional registration method based on iterative optimization, but much more 

robust. The same authors also investigated other regression methods for this problem, 

performing a comparative evaluation (Gouveia, Metz, Freire, & Klein, 2012b).  

Another methodology treating the registration as a regression problem proposed in the 

literature is a MLP using Fourier coefficients as inputs and transformation parameters as 

outputs (Abche et al., 2006; Freire, Gouveia, & Godinho, 2010a; Freire et al., 2010b), for 
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fMRI and MRI images. The works of Freire, Gouveia, & Godinho, (2010a, 2010b) (Table 2.1.l) 

focused on 3D fMRI time series registration for motion correction. For the learning of the 

MLPs, an image training set was obtained by applying geometric transformations of typical 

motion amplitudes encountered in fMRI studies. The Fourier transform was applied on the 

images and the coefficients extracted. They did not use the overall image information, 

instead they confined to small subsets extracted from the images’ 3D Fourier spaces. 

Different subsets’ sizes were studied, which were comprised to the first octant of Fourier 

space (including the DC component). In these works, one MLP per each transformation 

parameter was used. Freire et al. (2010a) trained 6 different MLP for a 3D rigid geometric 

transformation, and in Freire et al. (2010b) 12 different MLP were used for a 3D affine 

geometric transformation (with 3 parameters for scaling and 3 parameters for shearing).  

A similar approach was proposed by Abche et al. (2006) (Table 2.1.m) for the registration of 

2D MRI images, but computing the transformation by using only one MLP. Considering 

translation, rotation and scaling parameters, the MLP had 5 output units. They studied the 

influence of the number of coefficients used (the window size considered on the Fourier 

space) and the influence of noise. Elhanany et al. (2000) proposed an identical method but 

not for medical images, paying a special attention to the relation between the method 

robustness and image noise. According to the authors, the noise introduction in the training 

set improves generalization and the NN becomes less sensitive to distorted inputs. 

Two 3D/2D image registration methods based on template matching shall also be referred 

(Banks & Hodge, 1996; Hoff et al., 1998). In these methods, a library is first constructed by 

the features representing the 2D projections of the 3D object, for a predefined set of 

transformations, and the corresponding out-of-plane transformation values. Then, the out-of-

plane transformation parameters of a given 2D projection are determined by a shape 

matching using the library 2D templates. Finally, the remaining and not yet computed 

parameters are obtained by a perspective imaging model. 

Banks & Hodge (1996) (Table 2.1.n) studied the 3-D total knee replacement (TKR) kinematics 

during dynamic activities. This was achieved by imaging the knee joint as it moves, using X-

ray fluoroscopy to obtain a sequence of images in which the prosthesis is projected. For this 

purpose, the silhouettes contours of the 2D projections were represented by Fourier 

coefficients, and together with the correspondent out-of-plane rotations, built a library. An 

initial estimation of the out-of-plane rotation of an unknown projection was yielded by 

computing a weighted average of the library coefficients interpolating between the three 

closest coefficients. 

A similar method but with several new contributions in order to improve its accuracy is 

presented by Hoff, Komistek, Stefan, & Walker (1998) (Table 2.1.o). Their goal was to 

determine the relative pose (position and orientation) of two knee implant components with 
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respect to each other, under in vivo conditions, from X-ray fluoroscopy images. For the 

library, the 2D projections of the 3D models were represented as binary images after being 

centered, scaled to a constant area, and rotated so that their principal axis was aligned with 

the horizontal axis. To find the best match of a given 2D image, after the same preprocessing 

described, the image was systematically subtracted from each library entry and a “score” 

(i.e. the number of unmatched pixels) was generated for each. The best match corresponds 

to the smallest number of unmatched pixels. 

Differently, Roche, Malandain, Pennec, & Ayache (1998) did not propose a new registration 

concept, but instead they used the regression idea to propose a new similarity measure to be 

optimized in an iterative scheme for multimodal registration. Addressing the cases when a 

functional correlation can be assumed, the degree of functional dependence between the 

images is considered as matching criterion. The evaluation of this functional dependence is 

reduced to a regression problem and the correlation ratio is used as similarity measure. 

Minimal assumptions regarding the nature of the function itself are made. The same authors 

expand this method performing the registration of intraoperative 3D US images with 

preoperative MR images by incorporating multivariate information from the MR data (Roche, 

Pennec, Malandain, & Ayache, 2001). They correlate the US intensity with both the MR 

intensity and the MR gradient magnitude, once the US images enhance the interface between 

anatomical structures; they also incorporate a robust intensity-based distance measure in 

order to handle with a variety of US artifacts.  

 

2.3.2 Application, object imaged and transformation nature 

Table 2.2 indicates schematically and in more detail the applications, object imaged and 

transformation natures. 

The methods described in this survey use image registration for different applications. Most of 

them focus on IGT (Table 2.2 - a, b, c, h, j, k, n, and o), either for 3D surface matching 

(Table 2.2 – a, b, c, d) or for 3D/2D registration (Table 2.2 – h, j, k, n, o).  

In the majority of the cases, the imaged objects were bone structures (Table 2.2 – a, b, c, d, 

f, h, j, m, n, o), like the knee (Table 2.2 – n, o) or the spine (Table 2.2 – a, b, f). Most of the 

works described used rigid (Table 2.2 – a, b, d, e, h, k, l, m, n, o), rigid with scaling (Table 

2.2 – c, j), or affine transformations (Table 2.2 – g, l). The rigid transformation was used 

specially for the bone structures (Table 2.2 – a, b, d, h, l, n, o). However, some authors (5 

out of 15) implemented their methods also considering non-rigid transformations (Table 2.2 – 

g, h, j) and some developed their methods originally for elastic deformations (Table 2.2 - f, 

i). 
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2.3.3 Motivation and evaluation 

Table 2.2 indicates schematically the motivation and evaluation of the methods described. 

The two main motivations of the cited works, and corresponding applications, are the high 

computational effort of iterative methods, which compromises the registration speed, and 

their small capture range.  

When a learning strategy is used by inferring a regression model, the computation of the 

registration transformation is potentially very fast. The training or learning process, which 

usually occurs before the registration and when time is not a constraint, usually takes longer. 

All the works showed good or at least promising results, considering the range, the speed 

and/or the accuracy. Moreover, most works compared the registration results of their method 

with a popular alternative method for that application (Table 2.2 – b, c, d, g, h, i, j, k, l, n). 

However, only some of them (7 out of 15) registered clinical data (Table 2.2 – e, g, i, j, l, n, 

o), which is crucial for applicability in clinically relevant situations.  

Five works (5 out of 15) presented a quantitative evaluation using real data and the 

experiments presented by (Heneghan et al., 2002; Heneghan & Maguire, 2002; Ryan et al., 

2004) report a limited number of results. Below, the evaluation of the registration is 

described in more detail for Freire, Gouveia, & Godinho (2010a, 2010b) and for Chou et al. 

(2011, 2013, 2010) and Chou & Pizer (2013), in which regression assumes the principal role in 

image registration (Table 2.2 - j and l). 

The method proposed in Freire, Gouveia, & Godinho (2010a, 2010b) focused on 3D fMRI time 

series registration for motion correction and their motivation was to develop a fast 

registration method that accomplishes a prospective registration relying on a limited number 

of Fourier coefficients of the images to be aligned. For simulated images, the error was 

computed and compared to an intensity-based registration method and yielded a similar 

accuracy. For real images, the error analysis was performed by the inspection of the 

evolution of the estimates of the parameters for all frames and for both methods, since they 

did not have a ground truth. The NN motion estimates presented a more irregular general 

behavior then the iterative method. And when affine registration was considered, there was a 

bias due to the presence of functional activation. The authors suggested that activation must 

be simulated and learned by the NN. 

Chou et al. (2011, 2013, 2010) and Chou & Pizer (2013) studied 3D/2D registration methods in 

Image-guided Radiation Therapy (IGRT). Their methods showed to be fast and to have good 

results in localizing a tumor under rigid motion in the head and/or neck, and under 

respiratory deformation in the lung. They evaluated their methods with simulated and real 

images. The evaluation of real images performed in Chou & Pizer (2013) included the 
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quantification of the registration error computed on the 3D tumor centroid. According to the 

authors, the accuracy obtained in real-time, together with the low dose requirements thanks 

to the small number of 2D projection images required, indicate the high potential of the 

method.  

 

2.4 Conclusion 

This chapter presents a survey of registration-by-regression methods that use a learning 

strategy to infer a regression model for registration. The methodologies used in the methods 

studied inferred the regression model mainly by relating points to points, especially on the 3D 

surface registrations, and by relating the images or image features to the transformation 

parameters. In these last cases, strategies for data reduction were also implemented. The 

Neural Networks, and specially the MLPs, were the most used models. The regression 

approach was indicated as an initialization for some cases, but the majority of the authors 

used it for the entire registration.  

Several applications and objects were studied by these methods. The 3D surface and the 

3D/2D registrations in an image-guided context outstand, as well as the bone structures as 

imaged objects. Regarding the nature of transformation, most authors used rigid 

transformation, while 5 out of 15 used non-rigid transformations.  

Some approaches are promising because of their good results with simulated data, but more 

studies with real data are needed. It should also be noted that some methods are rather 

specific for the applications and transformations used, and thus may not be straightforward 

to generalize to other settings (e.g., going from rigid to non-rigid transformations). 

Considering the methodological aspects, the ability to model non-rigid transformations, and 

the experiments performed with clinical validation, works that stand out are Kim et al. (2010, 

2012), Chou et al. (2013) and Chou & Pizer (2013). 

The two main motivations for the regression approach were a fast registration and a larger 

capture range. But although many authors compared the results of the proposed methods 

with a well-established iterative method for the application in study, they did it mainly for 

simulated data. Only in few works, the evaluation of the registration-by-regression methods 

was performed with clinical data. Future work in this research field should therefore aim at 

further understanding the strengths and weaknesses of the registration-by-regression 

paradigm when applied to clinical data, and thus moving forward towards clinical 

applicability of these promising methods. 



20 

Work 

 

Thou wast not put on earth to ask 

If there be God, or life or death. 

Seize then thy tools and to thy task 

And give to toil each panting breath. 

 

Thy tools thou hast, nor needst to seek 

Thy health or faith or useful art, 

The strength to toil, the power to speak, 

A mighty mind or kindly heart. 

 

Alexander Search 
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Chapter 3  

3D/2D Image Registration by Nonlinear Regression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the manuscript: 

3D/2D image registration by nonlinear regression. Gouveia, A. R., Metz, C., Freire, L., & 

Klein, S. (2012). 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (pp. 

1343–1346).  
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Abstract 

We propose a 3D/2D registration method that treats image registration as a nonlinear 

regression problem instead of using an iterative traditional approach. The nonlinear 

regression function is determined in a supervised learning stage and relates image features of 

2D projection images to the transformation parameters of the 3D image by nonlinear 

regression. The method is compared with a conventional registration method based on 

iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from 

coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was 

performed, and the alignment quality was measured by the mean target registration error 

(mTRE). The regression approach has shown to be slightly less accurate, but much more 

robust than the method based on an iterative optimization approach. 
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3.1 Introduction 

Image guided interventions often require integration of preoperative image with 

intraoperative images. A well-known example is the registration of preoperative 3D CT images 

and intraoperative 2D X-ray images (Figure 3.2). Most methods proposed in the literature are 

based on simulated X-ray projection images – digitally reconstructed radiographs (DRRs) – 

computed from the preoperative CT scan. In these methods, the image registration 

parameters are estimated by iteratively optimizing a similarity measure, measuring the 

difference between the DRR and the X-ray image (Markelj et al., 2012). Due to local maxima 

of the similarity measure, such iterative optimization procedures usually have a small capture 

range and therefore require initialization close to the searched pose (Markelj et al., 2012; 

Van De Kraats, Penney, Tomaževič, & Van Walsum, 2005).  

In this chapter, we present a robust 3D/2D registration method that addresses the capture 

range drawback. Our approach treats image registration as a nonlinear regression problem 

instead of using an iterative traditional approach. The nonlinear regression function is 

determined in a supervised learning stage and relates a DRR image to the 3D transformation 

parameters of the 3D object.  

The proposed method is based on image features but not in the common meaning of being a 

point-to-point, curve-to-curve or surface-to-curve registrations. Instead, the registration 

parameters are obtained from a more similar to library-based approach where a library of 2D 

template is generated for a predefined set of transformation parameters. Each library 

template represents the expected 2D appearance of a 3D geometric feature for a particular 

transformation. The template that is most similar to the 2D geometric feature is then aligned 

with the 2D data to define the remaining unknown transformation parameters. In 3D/2D 

registration, templates like 2D silhouettes (Hermans, Claes, Bellemans, Vandermeulen, & 

Suetens, 2007), Fourier descriptors of a 2D silhouette (Banks & Hodge, 1996) and shock graph 

representation of the projected 3D shape (Cyr, Kamal, Sebastian, & Kimia, 2000) can be 

found in the literature, with different searching and/or matching schemes. 

To the best of our knowledge, no such approach to the 3D/2D registration problem has been 

previously presented in the literature. The method proposed is quantitatively evaluated, and 

compared with a conventional iterative optimization-based registration method (Metz et al., 

2011). 



24 

3.2 Methods 

3.2.1 Registration by regression 

Our proposed 3D/2D registration method consists of a nonlinear regression model (Figure 3.1) 

that relates image features of the 2D projection image to the (translation and rotation) 

transformation parameters of the 3D image required to render both images “matched”. A 

training phase takes place before the intervention (e.g. surgery), when data are available and 

time constraints are not an issue. After the learning process, the nonlinear function is known 

and we are able to compute the transformation parameters for the 2D images acquired during 

the intervention. 

 

Figure 3.1 Registration-by-regression model. 

 

The training set required for the learning process of our approach is a set of simulated 2D 

images (DRRs) obtained by manual transformations of the pre-interventional 3D image 

followed by projection. The features extracted from the DRR and its corresponding 

transformation parameters form an input-output pair in the training set. During the 

intervention, the image features of the 2D projection image (Figure 3.2) are computed and 

fed as input to the regression function, which returns the estimated 3D translation and 

rotation parameters of the 3D image. 
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Figure 3.2 Geometry of a C-arm device, which makes 2D projection images of a 3D object. 

 

The formulation we propose for the 3D/2D registration is similar to the viewpoint 

determination problem described in Liang & Chung (2008), where the solution is determined 

by an interpolation function considering input-output examples from 2D perspective 

projection of a 3D scene. 

3.2.2 Input features 

In this chapter we consider two different sets of image features. The first set consists of the 

three 2D (geometric) moments of the images (Liao, 1993). The moment of order zero, {M00}, 

represents the total mass of a given image (or the area in the case of a binary image). The 

first order moments, {M01,M10}, represent the centre of mass of the image and yield 

information about the object position; whereas the second order moments, {M02,M11,M20}, also 

known as moments of inertia, contribute for its orientation. 

The second set of features consists of the eigenvalues and eigenvectors computed from a 

Principal Component Analysis (PCA), on the pixels of the object of interest after a coarse 

segmentation of the image into object and background objects. The PCA was performed in 

two ways (which will be compared in the Section 3.3.5): a) on the 2D pixel position vectors 

(x,y) and b) on a combination of the pixel locations and their corresponding intensity values, 

i.e., a 3D vector with x, y and I(x,y) as variables, where I(x,y) is the intensity value of the 

point at position (x,y). In both cases, PCA was preceded by computing the z-score of the 

features, where we used an identical mean and standard deviation for x and y, to not loose 

pose information in this normalization procedure. The normalization is necessary since the 

pixel intensities I(x,y) have a different range than the pixel positions x and y. 
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3.2.3 Nonlinear Regression Model 

As a regression model we use Neural Networks (NN), which have a great ability of modelling 

complex (nonlinear) functions and are considered universal approximators (Haykin, 1999). The 

central idea of this nonlinear model is to extract linear combinations of the inputs as derived 

features, and then model the output as a nonlinear function of these features (Hastie, 

Tibshirani, & Friedman, 2009). 

By applying a set of labelled training input-output examples (i.e., a set of inputs and 

corresponding desired responses), a neural network learns by the modification of its 

processing units or synaptic weights. The synaptic weights are optimized in such a way that 

the difference between the desired response and the actual response of the network is 

minimized.  

The NN used is a two-stage regression model represented in a simplified and schematic way 

by the diagram below (Figure 3.3). 

 

Figure 3.3 The network has an input layer, an intermediate layer (the hidden layer) and an output layer 
with ,   and   units   ,    and   , respectively. 

 

First, the outputs of the hidden layer, working as derived features (Hastie et al., 2009),   , 

are computed as a function of linear combinations of the inputs,   , and afterwards the 

outputs    are modeled as a function of linear combinations of   , as shown by 
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) Equation 3.1 

and 
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) Equation 3.2 

or simply 

𝑓𝑘, 𝑘  1   𝐾 
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𝑋𝑖, 𝑖  1   𝑃 



27 

        
   (   

    ∑    
   [  

   (   
    ∑   

     

 

   

)]

 

   

) Equation 3.3 

 

for   1     and            , for   1     and            , and    1    .   
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are activation functions,    
   

 denotes the synaptic weights connecting the output of neuron   

to the input of neuron  ,    
   

 denotes the synaptic weights connecting the output of neuron 

  to the input of neuron  , and the indexes (1) and (2) correspond to the connections 

between input-hidden layers and hidden-output layers, respectively.  

To determine the function we must find the unknown parameters, i.e. the synaptic weights, 

which are achieved by the minimisation of the difference between the output    and the 

desired response, considering all neurons   and all examples of the training set.  

 

3.3 Experiments and Results 

3.3.1 Imaging data 

In this work we focused on the registration of 3D preoperative coronary CTA and 2D 

intraoperative X-ray angiography. To evaluate the new registration method in a controlled 

setting, we do not use real X-ray images in our experiments, but simulated projection images 

of the coronary vessel tree, with known ground truth transformation. To this end, we made 

coronary segmentations at end-diastole of ten patients (Metz et al., 2011) to obtain binary 

vessel tree models (Figure 3.4. c). From these 3D models, DRRs were generated (Figure 3.4.d) 

using the computation procedure described in Metz, Schaap, Klein, et al. (2009). The 

projection geometry for the computation of the DRRs as well as the initial orientation of the 

preoperative data were derived from an interventional X-ray image, thereby mimicking a 

clinically relevant view. The field of view and voxel size of CTA were 256x256 voxels and 

0.7x0.7x0.9 mm3, respectively, and the field of view and voxel size of the DRR images were 

512x512 voxels and 0.22x0.22 mm2, respectively.  
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Figure 3.4 Coronary CTA slice (a), coronary 3D CTA with segmented coronary (b), 3D model (c), and DRR 
obtained from the model (d). 

 

 

 

Figure 3.5 DRR obtained as represented in the previous figure but in more detail and shown in grey and 
colour scale. The DRR intensity depends on the ray length crossing the vessels: as much ray crosses the 
vessel, higher the intensity attenuation and lower the final intensity of the ray. The greater attenuation 
corresponds to the darker and blue regions, in the grey and coloured image respectively, and it is due to 
a thicker vessel region or to a bend of the vessel in 3D space. 

 

For each patient, 11000 DRRs were generated, 10000 to train the regression model and 1000 

to test the performance of our method. The transformations were drawn from a uniform 

distribution, with a wide yet relevant range, i.e. between -10 and 10 degrees for rotations 

and between -10 and 10 mm for translations. 
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3.3.2 Implementation details of features extraction and regression model 

In order to select the points in the object for the computation of the PCA features, we 

segmented the DRR using a threshold value manually chosen. It should be noted that this step 

was trivial, since we used simulated projections of the vessel tree, which do not suffer from 

vessel-like structures in the background, as it can be seen in Figure 3.5. With real X-ray 

images, this is a major challenge, not yet addressed in this chapter. 

The NN was designed following the general recommendations in the literature (Haykin, 1999; 

Sarle, 2005). Topology used is feed-forward, specifically a Multi-Layer Perceptron (MLP) with 

one hidden layer. The training algorithm is backpropagation (the generalization of the 

Widrow-Hoff learning rule) with conjugate gradient (MLP-CG) as the optimization technique 

(Molller, 1993). The weights are randomly initialized within small ranges ([-1,1]). The 

resampling technique used is the holdout method; the training set of 10000 images was split 

in two sets of 70% and 30% for training and validation1, respectively (Cortez, 2008; Flexer, 

1996). Additionally, we computed the average results obtained from 3 runs of the 

experiments in order to avoid random influences as recommended.  

The activation functions for the hidden and output layers are the sigmoid (hyperbolic 

tangent) and linear functions, respectively. For the hidden layer, we performed an initial 

exploratory experiment to determine the number of units that yielded the best results (see 

Section 3.3.5), based on a trial-and-error approach. For this purpose, we used the data from 

the first patient. The output layer has one output unit per registration parameter, following 

general recommendations, which means our problem has one MLP per transformation 

parameter, i.e. our registration tool comprises six independent MLPs. All units are fully 

connected with each unit of the next layer.  

In order to get a good generalization, the early stopping was considered. For a proper use by 

the NN, the input and output vector elements are rescaled (Haykin, 1999), to a range 

between -1 and 1. 

The Neural Network was implemented in MatLab, version 7.11.0.584 (R2010b) 64 bits 

(MatLab, 2010). 

 

                                                 

1 We considered three data sets: a training set to train the regression model, a validation set 

for testing purposes in the tuning experiments, and a testing set to compute the registration 

performance. 



30 

3.3.3 Conventional 3D/2D registration method 

The registration method described in this chapter was compared to the method based on 

iterative optimization proposed in Metz et al. (2011), which was specifically designed for the 

application considered. This method uses a nonlinear conjugate gradient optimizer and a 

similarity metric based on a distance transform of a projection of the 3D coronary 

segmentation onto the X-ray image, and a fuzzy segmentation of vessel structures in the 2D 

image. As with our method, this fuzzy segmentation step became trivial, because we only 

used DRRs of the binary vessel tree, instead of real X-rays. 

 

3.3.4 Evaluation methodology 

The evaluation of the registration approaches was performed by the computation of the mean 

target registration error (    ) before and after registration. This enables us to assess 

registration success or failure and the consequent capture ranges for both registration 

approaches. The mean target registration error (    ) is computed as the mean distance to 

the ground truth (pose of the centerline tree at the known transformation parameters) of all 

center points of the 3D vessel centerline trees: 

        
 

 
∑‖               ‖

 

   

 Equation 3.4 

where   is the resulting transformation of one of the registration methods to assess,       is 

the known transformation and    are points on the centerline of the 3D vessel tree. All 

reported      values in the following sections were computed on the test set of 1000 

images, which were not used to train the regression model. 

 

3.3.5 Optimization and parameter settings 

Prior to the evaluation of the proposed registration method, some experiments were 

performed in order to optimize the method. To this end, the image set of one of the patients 

was used, whereas the sets of the nine remaining patients were used for the evaluation in 

Section 3.3.6. 

Based on these tuning experiments, we set the number of hidden units to twice the number 

of input units (Appendix A). The stopping epoch (i.e., the epoch when the validation error 

started to grow) was tuned separately for each MLP. The effect of using different features 

(Section 3.2.2), individually and combined, was investigated and the results are summarised 

in Table 3.1. Individually, Set 1 was the best contributor to the registration, being especially 
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valuable for finding the translation parameters. Though Set 2 gave the worst results 

individually, when combined with Set 1 it helped to decrease the registration errors. The 

configuration Set1+Set3 was found to be the optimal combination of feature sets. In this 

configuration, the input layer of the neural network has thus 18 units: 6 moments, 3 

eigenvalues and 3x3 components of the eigenvectors. This combined feature set (Set1+Set3) 

was used in all following experiments. 

From Table 3.1 it can also be observed that a problematic transformation in the 3D/2D 

registration is the translation along the source-detector axis. Since the projection is in the y-

axis direction, the corresponding translation parameter has less influence on the appearance 

of the projected model than the other parameters (Edwards, Hawkes, Penney, Clarkson, & 

London, 2001). Reduced performance in this direction has also been reported for the 

conventional registration approach described in Section 3.3.3 (Metz et al., 2011) and it is 

shown in Figure 3.6. In this figure the results per transformation parameter for the optimal 

configuration mentioned before (Set1+Set3) and for this conventional registration approach 

are shown. 

Additional tuning experiments were performed to understand how large should be the training 

set. Four training set dimensions were considered and the results presented in Figure 3.7. 

Registration quality improved slightly with increasing training size. Since the training is a 

preoperative task, with no time constraints, our selection criteria were the accuracy and 

robustness of the registration and, therefore, we used the largest training set. 

 

Table 3.1 Registration results for the feature sets considered: moments set (1), the eigenvalues and 
eigenvectors of the points in the object of interest (2) and the eigenvalues and eigenvectors set for the 
same points and corresponding intensity values (3). 

Parameters Set 1 Set 2 Set 3 
Set 1 + Set 2 Set 1 + Set 3 

 Moments Eigen [X Y] Eigen [X Y I(x,y)] 

 mean std mean std mean std mean std mean std 

RX (º) 0,29 0,29 3,01 2,31 0,23 0,36 0,13 0,15 0,05 0,05 

RY (º) 0,30 0,26 2,84 2,14 0,36 0,43 0,12 0,12 0,07 0,08 

RZ (º) 0,41 0,39 1,79 1,47 0,25 0,22 0,14 0,18 0,07 0,09 

TX (mm) 0,15 0,12 4,86 2,94 2,68 2,45 0,04 0,06 0,02 0,03 

TY (mm) 1,36 1,54 5,04 2,87 5,02 2,88 0,65 1,08 0,33 0,52 

Tz (mm) 0,12 0,11 4,70 3,00 0,73 0,82 0,07 0,08 0,03 0,04 

mTRE (mm) 1,45 1,55 9,76 3,02 6,31 2,85 0,69 1,09 0,35 0,55 

mTRE (mm)  
(mTRE<2mm) 

0,87 0,50 1,70 0,37 1,34 0,46 0,48 0,37 0,30 0,29 

Parameters errors are given for rotations and translations (RX, RY and RZ – rotations in degrees around x-, 
y- and z-axis, respectively, and Tx, Ty and Tz – translations in x, y and z directions in mm, respectively) 
and computed from absolute values of errors; mean TRE errors (mTRE) for all registrations performed 
are presented, as well as just considering the successful registrations (i.e. mTRE<2mm). All reported 
results are based on the test set of 1000 images. 
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Figure 3.6 Registration results per transformation parameter for the feature set with best performance. 
Parameters errors are given for rotations and translations: RX, RY and RZ – rotations in degrees around x-, 
y- and z-axis, respectively, and Tx, Ty and Tz – translations in x, y and z directions in mm, respectively). 
The reported results are based on the test set of 1000 images. 

 

 

 

Figure 3.7 Registration results for different dimensions of the NN training set for Patient 0. Mean TRE 
errors (mTRE) for registrations performed are presented. 
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3.3.6 Test results 

The results of the 3D/2D experiments for all patients and for both methods are summarized in 

Figure 3.8, Figure 3.9 and Figure 3.10. 

Considering these registration results, the regression method was less accurate for the 

majority of datasets compared to the iterative optimization based registration method, with 

a median error larger for 7 of the 9 datasets (Figure 3.8). However, the number of outliers for 

both approaches clearly showed a higher robustness relatively to outliers for the regression 

approach (Figure 3.8). That robustness of the regression method is also stressed in Figure 3.10 

and Figure 3.9 where the      values before registration against the      values after 

registration are shown, for each patient and for all patients, respectively. 

 

 

 

Figure 3.8 Comparison of the registration method by regression (RM) to the conventional registration 
method (CM), for each patient (labeled from 1 to 9). The number of points with      > 14mm that fall 
outside the plot is indicated below the correspondent labels. 
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Figure 3.9 Comparison of the registration method by regression to the conventional registration method, 
considering the results for each patient (labeled from 1 to 9). The plot shows the      values before 
registration against the      values after. 
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Figure 3.10 Comparison of the registration method by regression to the conventional registration 
method, considering the results for all patients. The plot shows the      values before registration 
against the      values after. 
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3.4 Discussion 

The results presented in this chapter show that the proposed regression-based 3D/2D 

registration approach remains robust in case of large misalignments. It could be used either 

stand-alone, or as an initialization step for a conventional 3D/2D registration to improve the 

final accuracy. 

In the literature some other work can be found with registration approaches based on neural 

network (Abche et al., 2006; Elhanany et al., 2000; Freire et al., 2010a; Yan et al., 2004; 

Zhang et al., 2008). However, the problem formulation is different (i.e., the function to be 

determined does not relate the same input-outputs that we do), the applications are 

different and most of them do not compare the results with a conventional method. The most 

similar approach (Freire et al., 2010a) presents a method designed for 3D rigid-body 

registration of fMRI time series, which relies on a limited number of Fourier coefficients of 

the images to be aligned. 

 

3.5 Conclusion 

We have proposed a novel approach for 3D/2D image registration, based on nonlinear 

regression. Promising results were demonstrated for the registration of coronary vessel trees. 

Compared with a conventional approach, the number of misregistrations was reduced 

substantially. The following work includes the implementation and evaluation of different 

regression (other than NN), in Chapter 4 and experiments using real X-ray images in Chapter 

4. 
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Seeker Of Truth  

seeker of truth 

follow no path 

all paths lead where 

 

truth is here  

 

E. E. Cummings  
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Chapter 4  

Comparative evaluation of regression methods for 

3D/2D image registration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on the manuscript: 

Comparative Evaluation of Regression Methods for 3D/2D Image Registration. Gouveia, A., 

Metz, C., Freire, L., & Klein, S. (2012). In A. E. Villa, W. Duch, P. Érdi, F. Masulli, & G. Palm 

(Eds.), Artificial Neural Networks and Machine Learning – ICANN 2012 (Vol. 7553, pp. 238–

245). Springer Berlin Heidelberg.   
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Abstract 

 

We perform a comparative evaluation of different regression techniques for 3D/2D 

registration-by-regression. In registration-by-regression, image registration is treated as a 

nonlinear regression problem that relates image features of 2D projection images to the 

transformation parameters of the 3D image. In this chapter, we evaluate seven regression 

methods: Multiple Linear and Polynomial Regression (LR and PR), k-Nearest Neighbour (k-NN), 

Multi-Layer Perceptron with conjugate gradient optimization (MLP-CG) and Levenberg-

Marquardt optimization (MLP-LM), Radial Basis Function networks (RBF) and Support Vector 

Regression (SVR). The experiments are performed with simulated X-ray images (DRRs) of nine 

vessel trees, so that we have a ground truth and can compute the mean target registration 

error (mTRE). MLP-LM and RBF obtained the highest accuracy but in general all methods were 

robust to large initial misalignment. 
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4.1 Introduction 

Medical interventions can often benefit from the integration of preoperative (diagnostic) and 

intraoperative imaging data. Accurate and fast image registration is required to find the 

relation between the preoperative and the intraoperative images of the patient in the 

intervention room. A good example is the registration of preoperative 3D computed 

tomography angiography (CTA) images and intraoperative 2D X-ray images, for percutaneous 

coronary interventions. Most methods presented in the literature are based on simulated X-

ray projection images – digitally reconstructed radiographs (DRRs) – computed from the 

preoperative CTA scan. In these cases, the difference between the DRR and the X-ray image is 

iteratively measured until a similarity metric is optimized (Markelj et al., 2012). This image 

registration approach, with such an iterative optimization procedure, usually has a small 

capture range because of the local maxima of the similarity measure (Markelj et al., 2012; 

Van De Kraats et al., 2005). 

In our recently proposed registration-by-regression framework (Gouveia, Metz, Freire, & 

Klein, 2012a; Chapter 3), image registration is treated as a nonlinear regression problem, as 

an alternative for the iterative traditional approach. A Multi-Layer Perceptron (MLP) was used 

as the regression model relating the DRR image to the 3D transformation parameters of the 

3D object.  

In literature, few authors treat medical image registration as a regression problem. From 

those works, we conclude that the most common regression method used is MLP (Freire et 

al., 2010a; Zhang et al., 2008). Wachowiak, Smolíková, Zurada, & Elmaghraby (2002) studied 

different Neural Networks, including RBF networks. Image registration using SVR (Qi, Gu, & 

Zhao, 2008) and k-NN (Banks & Hodge, 1996) are also found. Although these works use 

regression for the registration problem, the application, the features used, and the function 

determined by the regression are different from our approach. Both Qi et al. (2008) and Banks 

& Hodge (1996) addressed 3D/2D registration: the first had a very different registration 

formulation and the second used regression to obtain an initial estimate of the rotation 

parameters.  

In this chapter we perform a comparative evaluation of seven different regression techniques 

for the 3D/2D registration-by-regression problem, particularly for the registration of DRRs 

generated from coronary artery tree models derived from 3D CTA scans. The performances of 

registration-by-regression using Multiple Linear Regression, k–Nearest Neighbour, Multi-Layer 

Perceptron, Radial basis Function Network, and Support Vector Regression are computed. This 

quantitative evaluation identifies the most accurate method for this registration problem. For 

comparison purposes, the results of a conventional registration method (i.e. based on 

iterative optimization) obtained in Gouveia et al. (2012a) and Chapter 3 are also reported. 
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4.2 Method 

4.2.1 Registration by regression 

The 3D/2D registration method used in this chapter is based on regression as presented in 

Gouveia et al. (2012a) and Chapter 3. The used regression model relates image features of 

the 2D projection image to the (translation and rotation) transformation parameters of the 3D 

image required to bring both images (2D and 3D) into spatial correspondence. Before the 

intervention (e.g. surgery), a set of simulated 2D images (DRRs) is generated by applying 

random transformations of the pre-interventional 3D image followed by projection of its 

coronary artery segmentation. A set of features extracted from the DRR and their 

corresponding transformation parameters form an input-output pair in the training set for the 

learning process. During the intervention, the image features of the 2D projection image are 

computed and fed as input to the regression function, which returns the estimated 3D 

translation and rotation parameters of the 3D image. 

Mathematically, given an input vector            , we want to predict an output Y with a 

model  : 

       Equation 4.1 

To estimate the parameters of the prediction model   we use a set of measurements         

for   {1    } (the training data). For each transformation parameter (three rotation 

angles, three translations) an independent regression model is trained. 

 

4.2.2 Input features 

In Gouveia et al. (2012a) and Chapter 3 different sets of image features were compared. In 

this chapter, we use the best performing set, which consists of two types of features: 1) 2D 

geometric moments and 2) the eigenvalues and eigenvectors computed from a Principal 

Component Analysis (PCA).  

The 2D geometric moments included are the moment of order zero (representing the total 

mass of a given image), the two first order moments (representing the centre of mass of the 

image, yielding information about the object position) and the three second order moments 

(or moments of inertia, sensitive to changes in orientation). The PCA features are computed 

on the pixels of the object of interest after a coarse segmentation of the image into object 

and background objects, as described in Gouveia et al. (2012a) and Chapter 3. The PCA is 

performed on a combination of the pixel locations and their corresponding intensity values, 

i.e., a 3D vector with x, y and I(x,y) as variables, where I(x,y) is the intensity value of the 

point at position (x,y). PCA was preceded by computing the z-score of the features, where we 
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used an identical mean and standard deviation for x and y, to prevent loosing pose 

information in this normalization procedure. The normalization is necessary since the 

intensities I(x,y) have a different unit than the pixel positions x and y.  

In total, the input vectors have 18 units (i.e. P = 18 input features) which were standardized 

by z-score for a proper use by the regression techniques (Hair, Black, Babin, Anderson, & 

Tatham, 2005; Haykin, 1999). 

 

 

4.2.3 Regression Models  

The following regression methods are compared in this chapter. 

 

4.2.3.1 Multiple Regression: Linear and Polynomial 

We considered two Multiple Regression cases. The first is Multiple Linear Regression (LR) 

where the model   in Equation 4.1 has the form: 

        ∑     

 

   
 Equation 4.2 

with    the model parameters to be trained (Hastie et al., 2009). 

The second model is the Polynomial Regression (PR) model, which uses basis expansions   
  

and interactions between variables     :   

        ∑     

 

   
 ∑        

 

   
 ∑   

    

 

   
 Equation 4.3 

Both regression models are linear in the parameters and we used the Least Squares Method 

(LSM) to compute the parameters   (Hastie et al., 2009). 
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4.2.3.2 k-Nearest Neighbour 

The k-nearest neighbour (k-NN) method makes predictions by averaging the responses    of 

the k nearest points    in the training set. The model can be written as: 

     
1

 
∑   

        

 Equation 4.4 

where       is the neighbourhood of   defined by the k nearest points    in the training set 

(Hastie et al., 2009). The metric used is the Euclidean distance. 

 

4.2.3.3 Multi-Layer Perceptron 

This Neural Network learns by the modification of its synaptic weights using the error back-

propagation algorithm (Haykin, 1999). A MLP with a hidden layer is considered with the 

hyperbolic tangent function as activation function. For the output layer a linear function is 

used. This MLP model for P input features and H hidden units is given by:  

       
    ∑  

   [    (   
    ∑   

     

 

   

)]

 

   

 Equation 4.5 

with      being the hyperbolic tangent function (Hastie et al., 2009; Haykin, 1999). The model 

parameters  ’s represent the synaptic weights connecting the output of neurons of one layer 

to the input of neurons of the following layer, and the indexes (1) and (2) correspond to the 

connections between input-hidden layers and hidden-output layers, respectively. 

The MLP was designed following the general recommendations in the literature (Hastie et al., 

2009; Sarle, 2005). Two optimization techniques for training are evaluated: conjugate 

gradient (MLP-CG) (Molller, 1993), as in Gouveia et al. (2012a) and Chapter 3, and Levenberg-

Marquardt (MLP-LM) (Hagan, 1994). All units are fully connected with each unit of the next 

layer. The weights are randomly initialized within a range [-1,1].The regularization parameter 

in the Levenberg-Marquardt method is initialized at 10-3 and increases by a factor of 10 until 

the change introduced by it results in a reduced performance value (Beale, Hagan, & Demuth, 

2012). In this case it decreases by a factor of 10-1. The algorithm is stopped if the parameter 

becomes larger than 1010 (maximum value allowed). 
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4.2.3.4 Radial Basis Function Network 

The RBF network has a similar architecture as the MLP. It has one hidden layer; the output 

layer has one unit and the activation function uses the linear case. However, the activation 

function of the hidden layer is different (i.e. a Gaussian function) as well as the way the 

inputs are connected to the units in this layer (i.e. the way the argument of the activation 

function is constructed). The argument of the activation function in RBF networks is the 

Euclidean distance between the input vector   and the synaptic weight vector (the RBF 

centre) of that neuron (Haykin, 1999; Sarle, 2005). The RBF network model can be written as 

       
    ∑   

     
 (  

   
‖    

   
‖)

 

 
    where   

    
√          

      
 , Equation 4.6 

where the        (or radius) parameter controls the amplitude of the Gaussian function (W. 

Wang, Xu, Lu, & Zhang, 2003), represented in Figure 4.1. The bias for the hidden layer (i.e. 

  
   

) adjustes the sensitivity of the neuron  . 

 

Figure 4.1 Gaussian function          
 used in a RBF network. 

 

The RBF uses the Orthogonal Least Squares as training algorithm where RBF centres are 

chosen one by one from the input data. Each selected centre maximizes the increment to the 

explained variance of the desired output (Chen, Cowan, & Grant, 1991). 

  

 √ log 0 5  0 5    √ log 0 5  0 5  
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4.2.3.5 Support Vector Regression 

In Support Vector Regression (SVR), a linear regression function   in a high N-dimensional 

feature space is computed as 

        ∑       

 

   

 Equation 4.7 

where the input data are mapped via a nonlinear transformation   according to the kernel 

function               
       (Basak, Pal, & Patranabis, 2007). The  -SVR model is used 

(Vapnik, 1995), which finds  ’s such that      has at most   deviation from the actually 

obtained targets for all the training data, being as flat as possible (i.e. small  ’s) (Smola & 

Schölkopf, 2004). The loss function considered is  -insensitive (Figure 4.2), a commonly used 

function (Smola & Schölkopf, 2004), and the kernel function is a RBF: 

            ‖     ‖
 

   0. Equation 4.8 

 

 

 

Figure 4.2 Linear SVM regression (left) and  -insensitive function (right). 
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4.3 Experiments and Results 

4.3.1 Imaging data 

We used 3D preoperative coronary CTA data with 2D intraoperative X-ray angiography of ten 

patients. To evaluate the regression methods in a controlled setting, we used simulated 

projection images of the coronary vessel tree (Figure 4.3), with known ground truth 

transformation, instead of real X-ray images. To this end, we made binary vessel tree models 

by segmenting coronary arteries at the end-diastole phase (Metz et al., 2011). From these 3D 

models, DRRs were generated using the computation procedure described in Metz, Schaap, 

Klein, et al. (2009). The projection geometry for the computation of the DRRs and the initial 

orientation of the preoperative data were derived from an interventional X-ray image, and so 

simulating a clinically relevant view.  

The size and voxel spacing of the CTA images were 256x256x[99-184] voxels and 0.7x0.7x[0.8-

1.0] mm3, respectively, and the size and pixel spacing of the DRR images were 512x512 pixels 

and 0.22x0.22 mm2, respectively. 

 

 

Figure 4.3 Coronary CTA slice (a), coronary 3D CTA with segmented coronary (b), 3D model (c), and DRR 
obtained from the model (d). 

 

For each patient, 11000 DRRs were generated, 10000 to obtain the regression model and 1000 

to test the performance of our method. The transformations were drawn from a uniform 

distribution, with a wide yet relevant range, i.e. between -10 and 10 degrees for rotations 

and between -10 and 10 mm for translations. 

 

4.3.2 Conventional 3D/2D registration method 

The different registration-by-regression models were compared to a method based on 

iterative optimization. This method was proposed by Metz et al. (2011) and it was designed 

for the application considered. It uses a nonlinear conjugate gradient optimizer and a 

similarity metric based on the distance transform of the projection of the 3D coronary 
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segmentation onto the X-ray image, and a fuzzy segmentation of vessel structures in the 2D 

image. 

 

4.3.3 Evaluation methodology 

The evaluation of the different registration approaches was performed by the computation of 

the mean target registration error (    ) before and after registration, which is a well-

known evaluation criterion for registration methods (Fitzpatrick & West, 2001). It computes 

the distance between corresponding points, to assess the accuracy of the registration. The 

     is computed as the mean 3D distance of the centreline tree at the ground truth 

position and orientation to the centreline tree at the position and orientation determined by 

the registration-by-regression method, given by 

        
 

 
∑‖               ‖

 

   

 Equation 4.9 

where T is the transformation resulting from one of the registration methods, Tgold is the 

known ground-truth transformation and pn are points on the centrelines of the 3D vessel tree. 

All reported      values in the following sections were computed on the test set of 1000 

images, which was not used for the construction of the regression models. 

 

4.3.4 Optimization and parameter settings 

Prior to the evaluation of the regression models, some experiments were performed to 

optimize k-NN, MLP, RBF and SVR. To this end, the image set of one of the patients (named as 

patient 0) was used, whereas the sets of the nine remaining patients were used for the 

evaluation in Section 4.3.5. For each patient, the set of 10000 images, for the construction of 

the regression model, was split in two sets of 70% and 30%. The set of 7000 images was used 

to train the regression models; the remaining 3000 images were considered for validation 

purposes, to select tuning parameters. The performance of the models was computed by the 

mean absolute difference between the model prediction and the known output for each 

regression. Table 4.1 presents the ranges used for the tuning parameters for each regression 

method, as well as the final values chosen for the parameters, representing a scheme of the 

optimization process. 

For the k-NN model, the search range for the optimal value of k was limited to [    ], based 

on experiments performed in patient 0 considering a coarse grid-search in a larger range. For 
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every patient and for each transformation parameter, the optimal value of   [    ] was 

chosen as the point where the validation error started to grow with increasing k.  

For the MLPs, we have tried several numbers of units for the hidden layer, 9, 18, 36, 54, 

using the image set of patient 0 (Appendix A). The number of hidden units was set to 36, 

which leads to a topology of P=18 input units, 36 hidden units and 1 output unit. The number 

of epochs was defined separately for each MLP by a stopping epoch (i.e., the epoch when the 

validation error started to grow) with a maximum of 1000. 

For RBF networks, a two-level grid-search for the spread of radial basis functions was 

performed for patient 0. First, a rough spread estimate    was computed as  

   
    

√ 
 Equation 4.10 

where      represents the maximum distance between the inputs (Haykin, 1999). The first-

level search set was defined as    0.5, 1, 1.5, 2, 3, 4, 5. Based on the result, the second-

level grid search was then defined as    0.5, 0.6, …, 1.4, 1.5. From this search, the value 

sp turned out to be optimal. For the remaining patients the spread was therefore set to   , 

computed on their respective input sets. The optimum number of RBF centres was 

determined for each patient (and each transformation parameter) as the point where the 

validation error started to grow, with a maximum of 1000 neurons. 

In the SVR case, the problem of optimal parameter selection is further complicated by the 

fact that SVM model complexity (and hence its generalization performance) depends on three 

parameters:  , C and   (Cherkassky & Ma, 2004). Parameter   is the width of the insensitive 

zone, parameter C a regularization parameter, determines the trade-off between the model 

complexity (flatness) and the degree to which deviations larger than   are tolerated in the 

optimization formulation, and   is the parameter of the kernel, in this case the inverse of the 

RBF spread. All three parameters are tuned simultaneously. We use a coarse-to-fine grid-

search as recommended by Chang & Lin (2011) and Hsu, Chang, & Lin (2010), considering 

exponentially growing sequences of the parameter values (Table 4.1). To assure the complete 

space is covered and considering the computational costs, we performed a wide range three-

level grid-search in patient 0 and the values obtained were used for the other patients. In the 

first level, we used ranges {              } for  , {            } for C and {            } 

for  . For the next levels, the limits of the search ranges were selected from the previous 

level as the nearest values of the parameters combination with best validation error in that 

level. A finer search was then performed increasing the parameters by exponential factors of 

1 and  0  5 for the second and the third levels, respectively. 

All regressions experiments were performed using MatLab, version 7.11.0.584 (R2010b) 64 bits 

(MatLab, 2010). For SVR we used version 3.1 of the LIBVSM tool (Chang & Lin, 2011). 
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Table 4.1 Parameters for the optimization of the regression models k-NN, MLP, RBF and SVR. 

 Patient 0 Patients 1 to 9 
For each regression 
(or parameter) 

k-NN 1st level search: range search 2nd level search: k 

  
Range search 
[0  000]  [1 50] 

  [1 50] 

MLP Number of hidden units   
 1    1 : 

 =36 
Maximum 
Epoch 

  {  1     5 } 

RBF Spread: 

   1 
(specific for each patient by 
Equation 4.10)  

Maximum 
number 
of neurons 

   {0 5   1 5       5} 

 

   {0 5 0     1 5} 

SVR Simultaneous tuning: 
 ,   and   

 

  {              } 
   {            } 
  {            } 

 

  {             } 
  {             } 
  {             } 

 

  {                } 
   {                } 
  {                } 

 

 

4.3.5 Results 

The      values of the different regression methods and of the conventional registration 

method, considering all patients except the one used for parameter optimization, are shown 

in (Figure 4.4). We also present, for all patients except the one used for parameter 

optimization (Figure 4.5) and for each of these nine patients (Figure 4.6 to Figure 4.8), the 

Regression Error Characteristic (REC) curves (Bi & Bennett, 2003) for all methods2. These REC 

curves are a customization of receiver operating characteristic (ROC) curves to regression and 

were previously used to compare regression models (Cortez, Portelinha, Rodrigues, Cadavez, 

& Teixeira, 2006; Pina & Zaverucha, 2008). They plot the error tolerance on the x-axis 

(expressed as mTRE in our case) and the accuracy of a regression function on the y-axis (i.e. 

                                                 

2 For these patients and for all methods, boxplot figures like Figure 4.4 are shown in Appendix A. 

       

   2-7.50 (0.0055) 213 (8192) 2-7.50 (0.0055) 

   2-6.25 (0.0131) 213 (8192) 2-7.25 (0.0066) 

   2-6.50 (0.0110) 213 (8192) 2-7.50 (0.0055) 

   2-7.50 (0.0055) 212 (4096) 2-8.00 (0.0039) 

   2-7.00 (0.0078) 213 (8192) 2-6.00 (0.0156) 

   2-6.75 (0.0093) 213 (8192) 2-8.25 (0.0033) 
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the percentage of points that lie within the tolerance). The REC curve estimates the 

cumulative distribution function of the error and the area over the curve (AOC) is a measure 

of the expected error for a regression model. 

 

Figure 4.4 Comparison of registration-by-regression results for all methods and considering all patients, 
except patient 0 (which was used for parameter optimization). The graphic also shows the initial mTRE 
before registration.  

 

 

 

Figure 4.5 REC curve for all methods and considering all patients, except patient 0 (which was used for 
parameter optimization) and AOC values. 
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Figure 4.6 REC curves for all methods and for each patient (1 to 3) and AOC values. 
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Figure 4.7 REC curves for all methods and for each patient (4 to 6) and AOC values. 
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Figure 4.8 REC curves for all methods and for each patient (7 to 9) and AOC values. 
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4.4 Discussion and Conclusion 

We compared different regression methods for the registration-by regression approach for 

3D/2D image registration of coronary vessel trees. Figure 4.4 shows that Neural Networks 

(MLP and RBF) and SVR behave similarly and perform better than Multiple Regressions and k-

NN. The registration-by-regression approach is less accurate but has a smaller variance when 

compared to the iterative registration approach, confirming the results obtained in Gouveia 

et al. (2012a) and Chapter 3 using the MLP-CG strategy  

The evaluation per patient (Figure 4.6 to Figure 4.8) shows that MLP-LM and RBF have the 

best performances for all patients except for patient 7 and 9 (Figure 4.8), followed by MLP-

CG and SVR. For patients 7 and 9, MLP-LM still gives the best result, followed by MLP-CG, SVR 

and finally RBF. For all patients, the worst results were obtained with k-NN and LR. The REC 

curve computed for all patients (Figure 4.5) also indicates the best and worst performance is 

MLP-LM followed by RBF and for k-NN/LR, respectively.  

In general, the MLP-LM gives the best results using an optimization strategy which performs 

better than the MLP-CG approach in Gouveia et al. (2012a) and Chapter 3. The relatively low 

performance of LR and PR suggests that a highly nonlinear regression model is required for 

the registration-by-regression method. 

Registration-by-regression with real X-ray images will be the focus of the next chapter 

(Chapter 5). 
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No meio do caminho 

No meio do caminho tinha uma pedra  

tinha uma pedra no meio do caminho  

tinha uma pedra  

no meio do caminho tinha uma pedra.  

Nunca me esquecerei desse acontecimento  

na vida de minhas retinas tão fatigadas.  

Nunca me esquecerei que no meio do caminho  

tinha uma pedra  

Tinha uma pedra no meio do caminho  

no meio do caminho tinha uma pedra.  

Carlos Drummond de Andrade  
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Chapter 5  

Registration-by-Regression of coronary CTA and  

X-ray angiography 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is adapted into the manuscript in Appendix C:  

Registration-by-regression of coronary CTA and X-ray angiography. Gouveia, A.R., Metz, C., 

Freire, L., Almeida, P., & Klein, S., submitted.  
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Abstract 

We evaluate the integration of 3D preoperative CTA of the coronary arteries with 

intraoperative 2D X-ray angiography images using a registration-by-regression method. In this 

approach, image registration is estimated by a nonlinear regression model that is trained with 

DRRs. Image features of 2D projection images are related to the transformation parameters of 

the 3D image. The simulated 2D images were generated from coronary artery tree models 

derived from 3D CTA scans. 

In this chapter we compared several image features: the 2D image moments and the 

geometric centers, the eigenvectors and eigenvalues from a PCA of the object imaged, and 

the projected images in the space of principal components. Moreover the influence of 

preprocessing options on simulated images used for the training set, as well as on real data, 

was studied. For the registration evaluation, a gold standard was developed from 9 X-ray 

angiography sequences from 7 different patients. The alignment quality was measured by the 

mean target registration error (mTRE).  

The coronary registration–by-regression results were not satisfactory, resembling manual 

initialization accuracy. The framework performed showed the inadequacy of the features 

used to solve the registration problem. It enabled us to better understand the dependency of 

the proposed method on the differences between simulated and real images. Alternative 

solutions are suggested. 
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5.1 Introduction 

Angioplasty, also called percutaneous coronary intervention (PCI), is a minimally invasive 

coronary intervention frequently used for the treatment of the coronary artery disease (CAD) 

(Kasper et al., 2005). The CAD results from the build-up of fatty deposits (or plaques) in the 

coronary arteries walls and the vessels become narrow and rigid, restricting the blood flow to 

the heart (Kasper et al., 2005). During PCI, the severally narrowed vessel is widen by inflation 

of a balloon at the location of the lesion. This is often combined with the placement of a 

stent (i.e. an expandable wire mesh tube) to prevent re-occlusion of the treated vessel 

segment (Meier, Bachmann, & Lüscher, 2003). X-ray imaging with contrast injection is the 

modality of choice for the guidance of PCI (Rivest-Hénault, Sundar, & Cheriet, 2012); it is 

used to visualize the vessels and guidewires, since the intervention is percutaneous. However, 

the navigation through the vascular system is particularly challenging in some situations since 

it is visualized by a projective imaging technique. This is especially the case for chronic total 

occlusions, in which to cross the lesion with a guidewire3 can be a difficult task. A better 

visualization of the pathological region and some information about the lesion density is 

desirable (Metz, 2011)  

Therefore, the integration of preoperative computed tomographic angiography (CTA) data, 

containing the occluded vessel segment, with the intraoperative X-rays can be very useful 

during the guidance and treatment of these pathologies. Any PCI can also benefit by 

increasing the accuracy of the stent placement, using pre-annotated CTA data, e.g., 

indicating plaque locations (Ruijters, ter Haar Romeny, & Suetens, 2009). Furthermore, the 

CTA can eventually give information about the density of the lesion contributing to the 

chronic total occlusions cases. 

Our motivation is to achieve the integration of 3D preoperative CTA of the coronary arteries 

with intraoperative 2D X-ray angiography images with a registration-by-regression method 

(Gouveia et al., 2012a; Chapter 3). Whereas image registration is usually estimated by 

iteratively optimizing a similarity measure, in this approach it is treated as a nonlinear 

regression problem. In this chapter we extend the work developed by (Gouveia, Metz, Freire, 

& Klein, 2012a; Chapter 3), where simulated images were used, to real X-ray images. 

Although with different formulations, we can find in the literature some authors adopting the 

regression solution for the 3D/2D registration problem (e.g. Chou & Pizer, 2013; Hoff, 

Komistek, Stefan, & Walker, 1998). However, to the best of our knowledge, no work with a 

                                                 

3 In a PCI, a guidecatheter is inserted into a blood vessel in the upper thigh via an incision in the groin 
and moved through the vascular system towards the beginning of the coronary artery. Then, the 
guidewire is introduced in the body using the guidecatheter as a transport canal, and it is moved 
through the coronary artery to the site of the lesion. 
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registration-by-regression approach studied the coronary registration and, even for other 

applications, very few works with such a regression approach are found in the literature using 

real images in a clinically relevant context.  

In general, for 3D/2D registration, a similarity measure is iteratively optimized between 

simulated X-ray projection images – digitally reconstructed radiographs (DRRs) – computed 

from the preoperative CT scan and an X-ray image (Markelj et al., 2012). Even for this more 

conventional iteratively-based approach, we cannot find in the literature many studies of 

3D/2D coronary registration. Turgeon et al. (2005) presented a quantitative evaluation for 

3D/2D coronary registration with simulated data, and some more recent works also included 

clinical data, as Metz, Schaap, Klein, et al. (2009), Metz et al. (2011) and Rivest-Hénault, 

Sundar, & Cheriet (2012), Metz et al. (2013), Baka et al. (2013), Baka et al. (2014), Aksoy et 

al. (2013). Although Ruijters, ter Haar Romeny, & Suetens (2009) considered clinical data, 

they only performed a qualitatively evaluation of the registrations (by an expert observer). 

For the experiments with real X-ray data, a ground truth registration is not available. 

Therefore we constructed a gold standard by means of an exhaustive search routine, 

matching the projected centerlines as good as possible to manually annotated vessels on the 

X-ray. Similarly to some of the studies mentioned (Metz et al., 2009; Ruijters et al., 2009; 

Turgeon et al., 2005), we registered coronary CTA to X-ray angiography considering a rigid 

transformation. However, we find deformations sources like cardiac and breathing motion 

leading to non-rigid misalignments. Addressing the possible time differences with respect to 

cardiac cycle between the CTA and the X-ray scans, we constructed a gold standard for each 

X-ray of the time-sequences collected and performed a systematic visual inspection with five 

observers to select the best matching X-ray phase. 

The main contributions of this work are: 

 the evaluation of the registration-by-regression approach for a clinical relevant situation, 

and particularly a 3D/2D problem; 

 the construction of a gold standard for 3D/2D coronary registration; 

 we provide insight in the influence of the choice of features on the accuracy of the 

registration-by-regression approach. 

The remainder of this chapter is structured as follows. In Methods, the next section, we 

explain the registration-by-regression methodology, the imaging data used, a detailed 

explanation of the gold standard proposed and the evaluation metrics. Next, three related 

experiments are described in Experiment I, Experiment II and Experiment III, where different 

features for the registration and/or different image preprocessing operations are evaluated. 

In Experiment I we used the best set of input features previously found and in Experiment II 

we extended the search to other related features, in combination with a variety of 
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preprocessing operations. In Experiment III, we tried a different kind of features and we also 

modified the imaged objects on the training dataset; an overall comparison of the features 

studied in the chapter was performed confined to one of the preprocessing options. The 

conclusion chapter summarizes the main developments of the work. 

 

5.2 Methods 

5.2.1 Registration by nonlinear regression 

In this chapter we use the 3D/2D registration by nonlinear regression method presented in 

Gouveia et al. (2012a) and Chapter 3, schematically represented in Figure 3.1. This regression 

model relates image features of the 2D projection images to the transformation parameters 

of the 3D image. Once the nonlinear regression function is computed, which takes place 

before the intervention, the estimate of the 3D transformation parameters of the 3D image 

can be obtained by applying the regression function to the features computed on the 

intraoperative X-ray. During the preoperative phase, the training set for the learning process 

is built comprising a set of input-output pairs: the features extracted from the simulated 2D 

images (DRRs) as inputs and the corresponding 3D transformation parameters as outputs. The 

simulated 2D images (DRRs) are generated by applying random transformations to the pre-

interventional 3D image (coronary CTA) followed by projection of its coronary artery 

segmentation. During the intervention, the image features of the intraoperative X-ray are 

computed and the 3D translation and rotation parameters of the 3D image are estimated. 

The regression model used is a feed-forward Neural Network, as described in detail in 

Sections 3.2.3 and 3.3.2. An additional study (Gouveia, Metz, Freire, & Klein, 2012b; Chapter 

4 ) compared different regression models for this registration-by-regression problem. It was 

concluded that the Multi-Layer Perceptron is a good choice, having the highest performances 

of all methods studied. In Experiment I and Experiment II (Sections 5.3 and 5.4), the MLP with 

Levenberg-Marquardt optimization was used, whereas in Experiment III (Section 5.5) the 

conjugate-gradient optimization was used because of the higher number of input units in this 

case. 
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5.2.2 Imaging data 

For this chapter, we performed the registration of 3D preoperative coronary CTA data with 2D 

intraoperative X-ray angiography using 9 time-sequences. These 9 X-ray angiography 

sequences were collected from 7 different patients, where the different sequences of the 

same patients correspond to different intervention dates. The regression function for the 

registration-by-regression method was obtained by using a training set of simulated projection 

images of the coronary vessel tree with known ground truth transformation. From the 

retrospectively ECG-gated 4D CTA images available, we segmented coronary arteries (at the 

end-diastole phase) and made binary vessel tree models (Metz et al., 2011), as it is shown in 

Figure 4.3. DRRs were generated using these 3D models with a computation procedure 

described in Metz, Schaap, Klein, et al. (2009). To represent a clinically relevant view, the 

projection geometry for the computation of the DRRs and the initial orientation of the 

preoperative data were derived from an interventional X-ray image.  

The CTA images were obtained in the end-diastole phase, more precisely at 70% of the 

cardiac cycle considering a R-wave peak-to-peak cycle. The X-rays images used for 

registration were the ones from the second-half of the cardiac cycle, i.e. from 50% to 100% of 

the cardiac cycle, which contained on average 6 time frames. 

CTA images were acquired using a Siemens Definition or Siemens Definition Flash and X-ray 

images using a Siemens Axiom Artis biplane system. As calibration data was not available for 

the X-ray acquisition, only monoplane experiments using the sequences of the primary C-arm 

were considered. The field of view of the CTA images used for the reconstruction was 

256x256x[99-184] voxels and the resulting voxel size was 0.7x0.7x [0.8-1.0] mm3; for DRR 

images and X-rays images the same quantities were 512x512 pixels and 0.22x0.22 mm2, 

respectively. 

For each patient, 11000 DRRs were generated, 10000 to obtain the regression model and 1000 

to test the performance of our method before the registration of real data. The 

transformations were drawn from a uniform distribution, with values between -13 and 13 

degrees for rotations and between -16 and 16 mm for translations. The transformations 

ranges used in this chapter differ from Chapter 3 (and Chapter 4) where we used ranges from 

-10 to 10 degrees and millimetres for rotations and translations, respectively. In these 

chapters, the regression methods were evaluated in a controlled setting, using simulated 

projection images of the coronary vessel tree; in the current chapter, we are using real X-ray 

images. The gold standard transformation parameters were computed according to the 

procedure described in Section 5.2.3.1. The transformation ranges were conditioned to those 

values to ensure the training set contains the transformation parameters of the X-ray images 

to be registered. 
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5.2.3 Evaluation of registration 

5.2.3.1 Gold standard 

A gold standard for evaluation of the registration-by-regression method is needed. A problem 

thereby is the occurrence of non-rigid deformation due to cardiac and respiratory motion. 

Particularly, time differences with respect to cardiac cycle could exist since we matched an 

end-diastolic 3D model to all frames of a X-ray time-sequence of the second half of the 

cardiac cycle. Therefore we constructed a gold standard for each X-ray frame, asking five 

observers to rank the quality of alignment.  

For each X-ray frame of the 9 X-ray time-sequences collected, we first manually annotated 

the centerlines of the coronary arteries. Then we implemented an exhaustive search for each 

X-ray frame based on the 2D distances between vessel centerlines, matching the projected 

centerlines as good as possible to manually annotated vessels on the X-ray. Then, 5 different 

observers analyzed the result of this full-search through a systematic visual inspection of the 

X-ray frame with both manually annotated and projected centerlines, in order to select the 

best matching X-ray phase. A score was attributed to each case, and we only used the most 

coincident X-ray frame with respect to the phase cycle of each time-sequence.  

For each X-ray frame the initial exhaustive search was done as following: 

(1) We started by manually annotating the centerlines in each X-ray angiography of all images 

collected. 

(2) We projected the vessel centerlines from the correspondent coronary artery 3D model (as 

explained in Metz, Schaap, Weustink, et al., 2009), after a given transformation has been 

applied. 

(3) We measured the shortest distance between annotated and projected centerlines. See 

Section 5.2.3.1.1 for details. 

(4) Second and third steps were then exhaustively repeated over a large range of 

rotations/translations of the 3D model to find which transformation minimizes the distance. 

See Section 5.2.3.1.2 for details. 

After having performed this procedure for all time frames of the X-ray sequence, a manual 

scoring was done, in which the X-ray time frames were ranked based on the quality of the 

alignment with the projected CTA centerlines. The observers were asked (a) to rank the 

images of the time-sequence on alignment quality, i.e. to order all images from best to worst 

match; and (b) to identify unsatisfactory alignments. The best case was accepted as a gold 

standard, but only if at least half of the observers scored the alignment as satisfactory. In 

further registration experiments, we only use this best case time frame, as only for that time 
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frame we can be confident about the gold standard, and we are sure that the registration is 

not hampered by non-rigid deformations introduced by cardiac and respiratory motion. 

Section 5.2.3.1.3 reports the results of the scoring procedure. 

 

5.2.3.1.1 Distance between annotated and projected centerlines 

The gold standard of 3D/2D coronary registration requires the determination of the shortest 

distance between annotated and projected centerlines. For this purpose, we first matched 

the segments of manually annotated centerlines to segments of projected centerlines4 and 

then distances between the centerlines were computed. Figure 5.1 shows an example of 

segments manually annotated on a X-ray image. 

 

Figure 5.1 Example of manual annotated segments (in white) in a X-ray image. 

 

Given a point on a manually annotated segment (Figure 5.2.a), we compute the distances to 

every point on a projected segment and take the minimum distance (Figure 5.2.b). This 

minimum distance calculation is repeated for every point of the annotated segment and the 

average distance over all points is calculated (Figure 5.2.b). In the same way, the average 

distance for all annotated segments to all projected segments is computed and the projected 

segment with minimum average distance is taken as the corresponding segment (Figure 

5.2.c).  

 

 

 

                                                 

4 The projected segments are determined by averaging all centerline points from different centerlines 
that are closer than 0.5 mm apart. 



65 

After segment matching, we can determine the distance for every point of every segment on 

the annotated centerline to the projected centerline, which is the minimum distance to the 

matched segment (Figure 5.2.d). The average and standard deviation over all the points of 

the annotated centerline is used as a measure of the misalignment between the X-ray and the 

DRR. 

 

 

Figure 5.2 Shortest distance determination between (a) a manually annotated centerline with two 
segments, named 1 and 2, to a projected centerline with two projected segments, named 1’ and 2’. (b) 
The distance of each point of 1 to each point of 1´is determined, the shortest distance of each point of 
1 is taken and the average distance for the shortest distances of the 4 points of segment 1 is computed 
(      ). (c) The average distances of all annotated segments to all projected segments are computed 
(      ,        ,        ,        ) and the segments are matched by closeness. (d) Considering the minimum 
distance of each point to the matched segment, the average and standard deviation is computed over 
the 7 points of the annotated centerline. 

  

(a) (c) 

(b) 

(d) 
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5.2.3.1.2 Search for the closest projected centerline  

For the exhaustive search of the closest projected centerline to the annotated centerline, we 

used a multi-resolution scheme for practical reasons, keeping the computation time within 

reasonable limits. A coarse-to-fine search was performed, with higher deviations and steps in 

the first 3 levels followed by smaller values in the final 3 levels (Table 3.1). Moreover, we 

manually initialized the parameters to limit the required search range. 

Table 5.1 Multi-resolution scheme for the closest projected centerline search. 

Levels 1 2 3 4 5 6 

 dev step dev step dev step dev step dev step dev step 

TX,TZ (mm)  10 1 - - - - 2 0.5 - - 0.3 0.1 

TY (mm) - - 10 1 - - 2 0.5 - - 0.3 0.1 

RX,RY,RZ (º) - - - - 0.5 0.05 0.1 0.05 0.05 0.02 0.02 0.005 

The search was performed within the range [                  ] by an indicated step, where     is the 
parameter value found for a manual initialization and       is the deviation for each of the 
transformation parameters. 

 

 

5.2.3.1.3 Gold standard results 

For each of the 9 time-sequences analyzed, all frames were ranked from best to worst match. 

When a frame was measured as the best frame for each observer, it got a score of 0; the 

second best got a score of 1, and so on. The final score was the sum of scores of a frame over 

all observers, and the ranking was established ordering the final scores from minimum to 

maximum, where a score of 0 means all observers have considered it the best alignment of all 

frames of the time-sequence. The values of the final scores and the ranking order are shown 

in Table 5.2. Simultaneously, for each frame, the alignment was classified as satisfactory or 

unsatisfactory; the number of observers which considered the alignment as satisfactory is 

presented (Table 5.2) over a total of 5. This analysis should be in a rigid alignment sense, 

defining as unsatisfactory alignments those which position and/or orientation of the 3D model 

is wrong (e.g. when a vessel bifurcation is not well rotated). Thus, local misalignments of the 

centerlines must be taken into account carefully because they could be due to non-rigid 

deformation. The quality of this local alignment will be captured by the ranking of the 

images. If an observer is not able to judge if the orientation is correct, then the alignment 

should be marked as unsatisfactory. 
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Table 5.2 Final scores and ranking of each frame of each time-sequence analysed 

 Time-sequences of X-rays 

 Quality of each alignment over the time-sequence: frames scores 

Ranking 1 2 3.1 3.2 4.1 4.2 5 6 7 

1 0 1 2 2 0 1 2 5 5 

2 7 7 5 5 8 5 5 6 6 

3 11 18 13 8 8 10 13 10 10 

4 16 19 15 15 19 14 15 13 12 

5 20 23 17 20 20 20 17 16 17 

6 21 23 24 25 20 29 23   

7  24 29   29    

8  32    32    

9  40        

10  41        

 Quality of the best scored alignment of each time-sequence 

#/5 5 5 5 5 4 5 5 4 2 

The lower the score the better the alignment, and number of observers in a total of 5 that judged as 
satisfactory the best scored alignment per time-sequence.  

 

For one of the time-sequences collected, none of the frames attained the gold standard 

criteria defined before. Even for its best case the number of satisfactory judgments was too 

low, i.e. only 2 in a total of 5 observers set it as an satisfactory alignment. Figure 5.3 shows 

the best and worst alignment for time-sequence 3.2, where although the best reached the 

gold standard criteria the worst did not. The same cases for the remaining time-sequences 

are shown in Appendix C. 
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Figure 5.3 Examples of two images used for the evaluation of the alignment quality. These are X-ray 
frames of the time-sequence 3.2 where the manual annotated centerline and the closest projected 
centreline (obtained by the full-search process) are highlighted in green and in pink, respectively. They 
represent the best (left) and the worst (right) alignment according to the ranking established.  

 

Since one of the time-sequences did not attain the gold standard criteria, in the remaining 

chapter just 8 time-sequences of 6 patients will be considered. 

 

5.2.3.2 Evaluation of registration 

The evaluation of the registration approaches was performed by the computation of the mean 

target registration error (    ) before and after registration (Fitzpatrick & West, 2001). The 

     is computed as the mean 3D distance to the gold standard position and orientation 

(computed as described in Section 5.2.3.1) of all points of the vessel centerline trees: 

        
 

 
∑‖               ‖

 

   

 Equation 5.1 

where T is the resulting transformation from the registration method to assess, Tgold is the 

known gold standard transformation and pn are points on the centrelines of the 3D vessel 

tree.  

     for simulated images were computed on the test set of 1000 images, which was not 

used for the construction of the regression models. For real data,      was determined for 

one X-ray of each time-sequence as defined before, in Section 5.2.3.1. The gold standard of 

simulated images is the known set of transformation parameters of the test images, and for 

real images it is the set obtained from the process of Section 5.2.3.1. 
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5.3 Experiment I 

In the registration–by-regression method a regression function is determined using a training 

set of simulated images. In previous chapters, the method was tested on simulated images, 

taking an unseen set for this purpose. However, in the present chapter, real images are also 

used and the problem becomes much more challenging. Preprocessing tasks like background 

elimination and vessel segmentation may be required to establish a correct relationship 

between images and allowing a successful registration. 

In this first experiment we tested the registration-by-regression method with real images, 

studying different preprocessing options. We used the best set of input features previously 

found for simulated images (Gouveia et al., 2012a; Chapter 3). 

 

5.3.1 Input features I 

The features extracted from the 2D projection images, either for DRRs in the training phase 

or for X-rays during the intervention, were 1) the 2D geometric moments of order 0, 1 and 2 

and 2) the eigenvalues and eigenvectors computed from a Principal Component Analysis (PCA) 

on the pixels of the object of interest, after image segmentation as described in Section 

5.3.2. This set was the best performing option obtained from a comparison study of different 

image features in Gouveia et al. (2012a) and Chapter 3 for this problem.  

The PCA was performed on 3D vectors with x, y and I(x,y) as variables, where I(x,y) is the 

intensity value of the point at position (x,y). Before the PCA computation and due to the unit 

difference between the intensities I(x,y) and the pixel positions x and y, a normalization was 

required. Therefore, a z-score was applied to the set of 3D vectors with an identical mean 

and standard deviation for x and y, to prevent loosing pose information.  

 

5.3.2 Image preprocessing I 

Two main preprocessing steps were implemented: the background subtraction and the vessel 

segmentation of coronary arteries. Vessel segmentation is mandatory since only the 

information in X-rays about the coronary arteries matters. However, the presence in the 

image background of some structures (i.e., like ribs, wires and other vessels) could influence 

the automatic vessel segmentation. Therefore we applied a background subtraction.  

We used the automatic segmentation method proposed by Frangi et al. (1998) which treats 

vessel enhancement as a filtering process searching for tubular geometrical structures. A 
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range of scales at which relevant structures are expected to be found were defined, since 

vessels appear in different sizes. For each of those scale values, named as  , the authors 

proposed to measure the contrast between the regions inside and outside the range        in 

the direction of the second derivative. This 2D vesselness filter was used for the background 

segmentation step and also for the vessel segmentation. 

 

5.3.2.1 Background subtraction 

For the background subtraction (Figure 5.4), we used the information of the X-ray sequence 

over time. Given a time-sequence of X-rays, we defined a vessel mask for each X-ray image 

using the 2D vesselness filter proposed by Frangi et al. (1998). We determined the intensity 

average over time of each pixel outside the mask, ignoring the pixels that lie inside the vessel 

mask. Then, the average was subtracted from the X-ray image chosen by the gold standard 

process (Section 5.2.3.1), and the resulting image was used as input for the vessel 

segmentation.  

 

   

   

(a) (b) (c) 

Figure 5.4 Background subtraction for X-rays of time-sequences 1 and 2 (in 1st and 2nd rows 
respectively): (a) original X-ray, (b) average over time, (c) resulting subtracted image. The white pixels 
in the final images, as well as black pixels in the average images, correspond to fixed structures for the 
automatic segmentation process, i.e. these pixels have never been considered background by the 
automatic function over the all sequence. The existence of these pixels leads to an enlargement of the 
intensity windows, giving a darker and brighter appearance, respectively. 
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The average was determined by dividing the sum of all time-sequence images backgrounds by 

the sum of the masks of all time-sequence images, represented by Figure 5.5.e and Figure 

5.5.c respectively.   

 

 

Figure 5.5 Determination of the image average over time.(a) Computation of vessel masks for each X-ray 
of the time-sequence, (b) sum of all masks. (c) Background determination for each X-ray, by setting to 0 
the intensity of the pixels inside the correspondent mask, and (d) sum of the backgrounds. (e) Image 
average resulting by the division of (d) by (b) (assuming as 1 the values smaller than 1). 

 

An alternative to this subtraction process would be the subtraction of the average over time 

using the entire images of the X-ray time-sequences, without the previous vessel masks 

(Figure 5.6.S2). Although this subtraction would also eliminate the static structures, it would 

interfere with the intensity inside the vessels since it does not use masks.  

  

(a) 

(c) 

(b) 

(d) 

(e) 
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(S1) 

  
(S2) 

 

 

  
(S1) 

  
 (S2) 

(a) (b) (c) 

Figure 5.6 Background subtraction with the average of the image backgrounds (S1) and with the average 
of entire images (S2), for the X-rays 1 and 2 presented in Figure 5.4 (i.e., of time-sequences 1 and 2 
respectively): (a) original X-ray, (b) average over time, (c) resulting subtracted image. The intensity 
windows of images (b) and (c) for S1 were modified in this figure, to a better comparison between S1 
and S2. For the remaining X-rays the same figures are shown in Appendix D. 
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5.3.2.2 Vessel segmentation 

The vessel segmentation comprises a mask computation process, with 3 options (named as 1, 

2, 3), followed by the preprocessing of intensity values inside the mask with 4 options (named 

as A, B, C, D). 

 

Three masks were determined (Figure 5.7) by: 

1) Using a manual segmentation; 

2) Using an automatic segmentation by a thresholding operation with a value t1; 

3) Using an automatic segmentation by a thresholding operation with a value t2. 

 

 

(1)  (2)  (3) 

Figure 5.7 Manual mask (1), automatic mask corresponding to threshold t1 (2) and automatic mask 
corresponding to threshold t2 (3) for X-ray 1. For the remaining X-rays the same figures are shown in 
Appendix E. 
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Option (1) was obtained by the analysis of two observers, and for options (2) and (3) we used 

the 2D vesselness filter (Frangi et al., 1998) with two different thresholds t1 and t2. Figure 

5.8 shows the manual masks for two X-ray images.  

  

Figure 5.8 Manual masks (colour lines) on images after background subtraction for X-ray 1 
(left) and X-ray 2 (right). The manual masks for the remaining X-rays are presented in 
Appendix F. 

 

We computed the automatic masks (2) and (3) in 4 steps: (i) outlier rejection where we 

applied a Z standardization (z-score) on the image, changed the mean and standard deviation 

from (0, 1) to (0.5, 0.25) respectively and eliminated the tails above 0.75 and below 0.25; (ii) 

vessel segmentation by applying the 2D vesselness filter on the output of the previous step; 

(iii) z-score normalization of the vessel segmentation result; (iv) and intensity thresholding by 

only considering the values above a specific value. The mask is a binary image whose pixels 

found in step (iv) have an intensity value 1 and the remaining an intensity value 0.The first 

step addresses the existence of intensity outliers after background subtraction noticed in the 

preceding section, and shown in Figure 5.4. The masks options (2) and (3), differ in their 

threshold values used in step iv. 
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Since the input features of Experiment I are dependent of the coronary arteries intensity, 

differences between intensity values must be carefully prevented. Therefore we considered 

different options for the intensity values of pixels that lie inside the mask:  

A) Using the X-ray image values; 

B) Using the values of the 2D vesselness filtered image, where the filter was applied on the 

background corrected X-ray image; 

C) Using the values of the 2D vesselness filtered image, where the filter was applied on a 

masked X-ray image, using the mask described above; 

D) Using the segmentations directly (totally ignoring intensity information) 

The option C is considered because the values of the filtered image could be corrupted 

because of the information outside the vessels. For options A, B and C some preprocessing 

operations were applied: a Z standardization (z-score) on the image pixels inside the mask, a 

mean and standard deviation change from (0, 1) to (0.5, 0.25) respectively and the 

eliminations of the tails above 1 and below 0. The final image assumes the intensity values 

determined by this process in the pixels within the mask and set to zero the remaining. In the 

case of option D the intensity within the mask is 1.  

Figure 5.9 and Figure 5.10 shows the 4x3 images obtained from the vessel segmentation 

process for one X-ray image in a grey and coloured scale, respectively. 
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Figure 5.9 Vessel segmentation results for X-ray 1 in grey scale considering the different combinations 
used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity values of 
pixels within the masks.  

 

 

Although the image preprocessing was designed for X-ray angiographies, the same 

preprocessing operations for the intensity values (A, B, C, D) must be applied on the DRR 

training set to obtain the regression model for the CTA/X-rays registration. For the mask 
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Figure 5.10 Vessel segmentation results for X-ray 1, now in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks. For the remaining X-rays, images are shown in Appendix G. 

 

determination, and once these images are simulated projections of the vessel tree without 

any structures in the background (as it is noticed in Figure 3.5), we segmented the images 

simply using a threshold value manually chosen.  
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5.3.3 Implementation details I 

For image preprocessing, the range of scales defined in the 2D vesselness filter (Frangi et al., 

1998) was {5,5.5,6,6.5,7,7.5,8}. These values were empirically chosen so that they will cover 

the range of the vessel widths. The remaining parameters required by the vesselness filter 

were chosen following the authors recommendations. In vessel segmentation, the thresholds 

values for the masks (determined by automatic segmentation) were empirically chosen: 0.1 

and 0.2 as t1 and t2, respectively. 

For each registration, 6 regression models were used, one per transformation parameter, 

using identical Neural Networks. Each one has one hidden layer with fully connected units and 

a topology [18:36:1]: 18 input units (i.e., 18 input features), 36 hidden units (from 

optimization studies in Chapter 3 and Chapter 4) and 1 output unit (the correspondent 

transformation parameter). The activation functions are the hyperbolic tangent and the 

linear functions for the hidden and output layers, respectively. The input units were 

standardized by a z-score (Haykin, 1999) and the weights were randomly initialized within a 

range [-1,1]. The number of epochs was defined separately for each MLP by a stopping epoch 

(i.e., the epoch when the validation error started to grow) with a maximum of 1000.  

For each patient, the set of 10000 images, for the construction of the regression model, was 

split in two sets: 7000 images to train the regression models and the remaining 3000 to select 

the stopping epoch. The performance of the models was computed by the mean absolute 

difference between the model prediction and the known output for each regression.  

The features computation, the image preprocessing and the implementation of NN were 

performed using MatLab, version 7.11.0.584 (R2010b) 64 bits (MatLab, 2010). The function for 

the 2D vesselness filter used was obtained from the MatLab Central - File Exchange5.  

 

5.3.4 Results I 

The results of the 3D/2D coronary registration-by-regression using as feature set the first 

three 2D geometric moments and the eigenvalues and eigenvectors (from the PCA on the 

pixels of the object of interest) are presented in this section. The      before and after 

registration is computed as defined in 5.2.3.2, for simulated images on the test set of 1000 

unseen images and for real data on one X-ray per time-sequence selected from gold standard 

procedure (Section 5.2.3.1). 

                                                 

5 This function was written by Marc Schrijver in 2001 and re-written by D.Kroon in 2009, updated in Mars 
of 2010. It can be found in http://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-
based-frangi-vesselness-filter. 

http://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
http://www.mathworks.com/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter
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5.3.4.1 Simulated data 

In this chapter, we enlarged the range of the transformation parameters (Table 5.3) for 

training purposes with respect to the previous work, as explained in Sections 5.2.2 . The 

mTRE became higher, as it is shown in Table 5.3 and in Figure 5.11 for one patient’s data, 

where values from the previous chapter and current values are compared. The mTRE values 

were computed on the test set considering the DRR without any of the preprocessing steps 

described in Image preprocessing I (Section 5.3.2). 

Table 5.3 Ranges of the transformation parameters used for the training 
set currently and in the previous chapters, and respective means and 
standard deviations of mTRE values before and after the registration. 

 Previously Presently 

Rotations range (º) [-10,10] [-13,13] 

Translations range (mm) [-10,10] [-16,16] 

Initial mTRE (mm) 10 (3) 17 (4) 

Final mTRE (mm) 0.35 (0.55) 2.17 (2.80) 

The values presented were computed for Patient 1. 

 

 

Figure 5.11 Comparison of the transformation parameters ranges used currently and in the previous 
chapters for the training set. The values presented were computed before and after the registration for 
Patient 1. 

 

The registration results using simulated images and considering the different preprocessing 

options for the intensity values, defined for this Experiment I (Section 5.3.2), are presented 

in Figure 5.12. The option which ignored the intensity information (D) had the worst results, 

whereas option A was in general the most accurate, which included the intensity values of the 

image without any vesselness filter (as B and C included).  
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Figure 5.12 Comparison of the preprocessing options applied to the DRRs of the training set for each 
patient, labelled as A, B, C and D. The mTRE values before the registration (initial mTRE) are also 
shown. 

  



81 

5.3.4.2 Real data 

Figure 5.13 and Figure 5.14 summarize the results of 3D/2D coronary registration-by-

regression with X-ray angiographies after the image preprocessing defined for Experiment I 

has been applied (Section 5.3.2), with different masks (1, 2, 3) and intensity values (A, B, C, 

D). The grey map presents in an overall way the magnitude of 3D mTRE for real data up to 50 

mm. Additionally, mTRE values from a manual registration were also displayed in the plots 

(Figure 5.14), which contextualizes the registration results. These manual values were 

computed before the registration but after a manual initialization and would be the 

initialization position for an iteratively approach. The manual initialization was performed on 

the projection plan (XY) while observing a X-ray image, after moving the centre of gravity of 

the model to the origin of the intraoperative coordinate system (Metz, 2011). 

 

 

Figure 5.13 Grey map with coronary 3D/2D registration results for Experiment I. 8 X-rays of 6 patients 
were used for all preprocessing options, labelled with a number from {1, 2, 3} for the masks and a letter 
from {A, B, C, D} for the intensity values (as defined in Section 5.3.2.2). Only mTRE below 50 mm are 
shown. 
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The mTRE values obtained were very high and just half of the X-rays presented at least one 

value at the range of the manual mTRE, i.e. just for half of the X-rays the registration-by-

regression got the accuracy of a manual initialization (Figure 5.14). Furthermore, for 5 of the 

8 X-rays, the majority of preprocessing options resulted in mTRE values above 50 mm, as it is 

noticed by white spots in the grey map (Figure 5.13).  

 

 

Figure 5.14 Coronary 3D/2D registration results for Experiment I with mTRE values from a manual 
registration. 8 X-rays of 6 patients were used for all preprocessing options, labelled with a number from 
{1, 2, 3} for the masks and a letter from {A, B, C, D} for the intensity values. Only mTRE below 50 mm 
are shown. 
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5.3.5 Discussion I 

When we performed the registration-by-regression of 3D CTA with X-rays angiographies, the 

definition of the transformation parameters range came as an inherent limitation of the 

registration method proposed. The larger is the range, the higher will be the probability of 

the transformation parameters belonging to the range and, consequently, more general the 

learning will be. However, if the training set dimension and the model complexity is 

maintained, the training performance will be lower and the regression model less accurate, 

as it happened in our case (Figure 5.11). But improving the dimension and the complexity of 

the model was not feasible, because of computational constraints. Some authors overcame 

this limitation using a coarse-to-fine range strategy (Cyr et al., 2000) or using this approach 

as an initialization (Hermans et al., 2007). 

The registration-by-regression of 3D CTA with X-rays angiographies using this features set was 

not successful, not even being as accurate as a manual initialization (Figure 5.14). This is 

mainly justified by the differences between the angiographies and DRRs computed from CTA, 

and also by the incapacity of the features set in use to deal with them. These differences are 

a problem reported in the literature for the iteratively approaches of 3D/2D registration using 

DRRs (Penney et al., 1998), where a good similarity measure should be able to achieve 

accurate registrations despite of these differences. Some differences are intrinsic to image 

formation, i.e. are caused by the inherent dissimilarity between CTA and X-ray images, and 

other are related to the imaged object, when for example interventional instruments are 

present. 

As inherent differences, we can usually find overlaid structures and different contrast 

acquisition processes described in the literature (Imamura, Ida, & Sugimoto, 2002). In our 

case, the DRRs were rendered from a 3D CTA-derived coronary model. In the DRRs rendered 

from CTAs (and not from models), the coronary arteries are difficult to visualize because of 

the high intensity structures being over-projected on them (Metz, Schaap, Klein, et al., 

2009). This procedure however just addresses one side of the problem, the DRR construction, 

and not the formation of the X-ray images. 

Because of the differences between DRRs and X-ray images, image segmentation with 

different masks and different options for intensity values was considered. The automatic 

masks for some X-rays had serious problems. By their observation, it is obvious the confusion 

between the vessels and the catheters (which look like vessels) in some images by the 2D 

vesselness filter used, as well as a deficient background elimination. A more dedicated 

solution for the segmentation of catheters could be studied. Additionally, the 2D 

segmentation algorithm proposed by Schneider & Sundar (2010) could also be implemented, 

which showed to be more robust against the background artifacts than Frangi’s vesselness. A 
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parameter optimization for the vesselness filter used could also be tried for each X-ray 

image, since we chose similar parameters for all X-ray cases.  

Although the differences just mentioned between DRRs and X-rays are likely an important 

error source for the registration-by-regression method and the proposed solutions didn’t solve 

them (Figure 5.13), the way the features rely on the intensities and on the vessels size are a 

crucial factor. If we restrict the analysis to the binary images (option D) and in particularly to 

the manual mask option (1D), we realize the results with real images were still not good. And 

for this specific case, the existing differences are the size of the masks and/or the 

presence/absence of some tiny vessels. Of course that in this case the learning itself is not so 

accurate because the information about the intensities is not contributing for the regression 

model, as we can see by the analysis of the results computed on the test set of simulated 

images (Figure 5.12).  

In fact, this high sensitivity of the features in use on minor details between the DRRs and X-

ray images is probably one of the main problems that justifies the bad results. Therefore, 

although these features allowed reaching an accurate regression model for simulated images, 

as it was studied in Gouveia et al. (2012a) and Chapter 3, their information is not adequate 

when the regression model is used for the registration of real images and a new set of 

features must be found. 
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5.4 Experiment II 

In Experiment I, the registration-by-regression method with real images didn’t perform well 

for the set of features used. In the current experiment, new sets of features were studied to 

find a robust solution to deal with the differences between the simulated images (used for 

the learning process to compute a regression model) and the real X-rays angiographies. We 

tested the registration-by-regression method with simulated and real images for the features 

sets studied, applying the same preprocessing options as in the previous experiment. 

 

5.4.1 Input features II 

Additionally to the features of the previous experiment, we have also considered in this 

experiment the geometric centre, or centre of mass, of the 2D image, computed as (Liao, 

1993): 

   
   

   

 and    
   

   

 . Equation 5.2 

 

This is the point where all mass of the image could be concentrated without changing its first 

order moment, and can be used as a reference point to describe the position of the object 

imaged.  

Thus, four features were combined as shown in Table 5.4. The first combination (F1) 

corresponds to the feature set used in Experiment I.  

Table 5.4 Features and respective combinations for Experiment II. 

 Moments Eigenvectors Eigenvalues Geometric Centers #features 

F1        18 

F2       12 

F3      9 

F4     
  11 

F5      2 
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5.4.2 Image preprocessing II 

The image preprocessing applied in this experiment was the same as in the preceding one, 

described in Section 5.3.2. After a background subtraction, the vessels were segmented on 

the images. For that purpose, masks were determined by manual and automatic 

segmentation, labeled as options 1, 2 and 3, respectively; and then four possibilities for the 

intensity values of pixels that lie inside the mask were considered, named as A, B, C and D 

(Section 5.3.2.2). 

5.4.3 Implementation details II 

All the implementation details of the current experiment were similar to Experiment I but a 

remark must be done about the MLP topology (Table 5.5), particularly about the number of 

hidden units used. When this parameter was studied (Chapter 3), the optimum number of 

hidden units was set to the double of the number of input units. In this Experiment II, we 

studied different but yet similar features sets. Even if the number of features in each set is 

different and there are new features included, the features number and nature do not differ 

that much. For that reason, the same criterion was used to choose the number of hidden units 

in the current experiment except for the feature set labelled as F5 where we considered 10 

hidden units since we expected that 4 hidden units would be too few. 

Table 5.5 Topology of MLPs used in Experiment II. 

 
Units of 

input:hidden:output 
layers 

F1 18:36:1 

F2 12:24:1 

F3 9:18:1 

F4 11:22:1 

F5 2:10:1 

 

 

5.4.4 Results II 

The results of the 3D/2D coronary registration-by-regression for the features sets F1, F2, F3, 

F4, and F5 are presented in this section. The      before and after registration is computed 

as defined in 5.2.3.2, for simulated images on the test set of 1000 unseen images and for real 

data on one X-ray per time-sequence selected from gold standard procedure (Section 

5.2.3.1). 
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5.4.4.1 Simulated data 

The registration results for the features sets studied (from F1 to F5) and for the different 

preprocessing options for the intensity values (A, B, C, D) are shown below, where each 

boxplot is based on all patients’ results. Figure 5.15 presents the comparison between the 

preprocessing options for each feature set and Figure 5.16 presents the comparison between 

the features sets for each preprocessing option.  

 

Figure 5.15 Comparison of the preprocessing options (A, B, C, D) applied to DRRs for each feature set 
(F1 to F5). All patients were considered and the mTRE values before the registration (initial mTRE) are 
also shown. 

 

Unlike the feature set F1, analysed in detail in Experiment I, the other sets do not present a 

pronounced difference between the preprocessing option D and the remaining ones (Figure 

5.15) due to the lack of the first three moments and their strong intensity dependence. For 

F5, which corresponds to the geometric center of the image, the differences are almost 

inexistent. The non-contribution of moments also explains the high mTRE values for options 

F2 to F5 for all preprocessing options, since the information hold by the moments revealed to 

be determinant for a high accuracy of the registration of simulated images as discussed in 

Section 3.3.5. 
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Figure 5.16 Comparison of the features sets (F1 to F5) for each preprocessing options (A, B, C, D) 
applied to DRRs. All patients were considered and the mTRE values before the registration (initial 
mTRE) are also shown. 

 

Besides feature set F1, the set with best results for simulated images was F4 (Figure 5.16), 

i.e., geometric center and eigenvectors from the PCA on the pixels of the object of interest. 

When binary images were used, the results of F4 and F5 become very close. 

 

5.4.4.2 Real data 

The grey maps of Figure 5.17 gives an overall view of the 3D/2D coronary registration-by-

regression with real data over the features sets in study. The 3D mTRE values up to 20 mm 

are presented for all preprocessing operations applied in X-ray angiographies. These were 

defined in Section 5.3.2 and regards to different masks (1, 2, 3) and intensity values (A, B, C, 

D). 

From the observation of darker and lighter spots, we conclude the geometric center (feature 

set F5) obtained the highest number of values under 20 mm whereas the feature set of 

Experiment I, and the most accurate for simulated images, obtained the lowest frequency, 

just 7 in 96 values.  
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Figure 5.17 Grey maps with 
coronary 3D/2D registration 
results for each features sets 
(F1 to F5) compared in 
Experiment II. 8 X-rays of 6 
patients were used for all 
preprocessing options, labelled 
with a number from {1, 2, 3} for 
the masks and a letter from {A, 
B, C, D} for the intensity values. 
Only mTRE below 20 mm are 
shown. 
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This global view allows us to qualify the robustness of features sets over the preprocessing 

options, more than evaluate the accuracy of the methods for real images. For feature sets F2, 

F3 and F4 there is clearly a higher frequency of results under 20 mm for option D, i.e. for 

binary images, not being evident if there is any difference between the masks. However, that 

difference does not exist for F5, where the results of option D seems to be similar to option 

A, B and C, and the main variety is observed across masks 1, 2 and 3. This robustness of 

geometric center with relation to intensity was to be expected because the intensity options 

for pixels values do not change the geometric position of the object in the overall image.  

 

5.4.5 Discussion II 

The performance of the registration-by-regression of real images improved with the new 

features sets proposed. However results are still not satisfactory. 

We confirmed that the best solution for simulated images is not necessarily the best solution 

for real images. For the features sets studied, the set composed by moments, eigenvectors 

and eigenvalues was clearly the most accurate when only DRRs were involved, but this same 

set was the worst when the X-ray images were registered by the regression model DRRs-built. 

On the contrary, the best features for real data were the geometric centers, very robust to 

the intensity values, but not providing the information needed for a good learning to the 

model.  

The balance between the quality of learning and the robustness to the difference between 

simulated and real images was not achieved. A different feature nature should be 

investigated to better understand the limitations of the problem in study. 
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5.5 Experiment III 

In this experiment, for the CTA/X-rays registration-by-regression problem we used a different 

feature approach and we modified the imaged objects on the training dataset to provide 

different information to the regression model than before. The purpose was the registration 

of real images but the results for a test set of simulated images are also reported. We used 

binary images, either simulated or real, and performed a manual segmentation on X-rays. 

Restricting the problem to these intensity values and this vessel segmentation, we intended 

to control some of the differences between DRRs and X-rays. 

So far, the features studied in this work introduced valuable information to the regression 

model, i.e. quantities with a geometric nature about translation and rotation. However, the 

registration results were not as accurate as we expected and a different direction in the 

feature search was followed in this experiment. 

Moreover, modifications in the dataset were implemented attending the presence/absence of 

vessels in simulated and real images, i.e. some vessels clearly identified in the X-rays of a 

patient did not appear in the correspondent DRRs and vessels identified in DRRs did not 

appear in the correspondent X-rays. This difference is clearly identified by the visualization of 

the images, for example in  Figure 5.18, and varies case by case. 

 

 

Figure 5.18 X-rays and correspondent DRR (of training set) with closer transformation 
parameters. For patient 1 (1st row), there are two tiny vessels on the left of the DRR image 
not present in X-ray image; and for patient 2 (2nd row), for example one vessel on the inferior 
right part of the X-ray image does not appear in DRR. 
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5.5.1 Input features III 

In this experiment the features used to feed the NN were the projected images in the space 

of principal components (Shlens, 2005). Considering each image one observation and each 

image pixel one variable, we defined a MxN dataset with N observations and M variables each, 

where each image in a matrix format is firstly transformed into an 1xM array. A principal 

component analysis (PCA) was applied to this dataset and, after the determination of the 

rank-ordered variance, the meaningful principal components were selected ensuring a 

variance representation above 50% of the analysed dataset. 

 

5.5.2 Image preprocessing III 

In this experiment we used binary images, both from simulated and real images, i.e. images 

with intensity values 0 and 1. As we are only interested in the information contained in the 

coronary arteries for image registration, a procedure for vessel segmentation was necessary. 

For the X-ray angiographies, the masks were determined by manual segmentation from the 

analysis of two observers, and for the DRRs by a segmentation with manual threshold, a trivial 

process giving the images concerned. These preprocessing procedures correspond to the “1D” 

option for X-rays and “D” option for DRR of image preprocessing options in the previous 

experiment (Section 5.3.2). 

 

5.5.3 Training set preprocessing 

Two modifications were exclusively implemented on simulated images in order to introduce 

information into the regression model for the eventual absence of parts of the coronary 

arteries in real images, when compared to the simulated images. The first is the application 

of a binary erosion to the image to remove the tiniest vessels present, followed by a binary 

dilation operation to restore the vessel size (Gonzalez & Woods, 2008). The second is the 

elimination of a part of the image, with a random size and position. Additionally, a Gaussian 

filter was applied to the binary images creating a blurring effect and differentiating the 

borders from the inner regions.  

Therefore, for each of the 6 patients in study, 9 training sets were considered with different 

combinations of preprocessing operations, schematized in Table 5.6. For an easier 

comparison, these different training sets will be labelled as Fp and numbered from 1 to 9, 

indicating the preprocessing operation (Table 5.6). Two different standard deviations for the 

Gaussian filter were set; the cases of unmodified and unfiltered images were also studied.  
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Table 5.6 Combinations used for preprocessing 
operations applied, resulting in 9 different 
training sets per patient. 

 Gaussian filter 

  

Operations - 1 2 

- Fp1 Fp2 Fp3 

Erosion/dilation Fp4 Fp5 Fp6 

Elimination of vessel parts Fp7 Fp8 Fp9 

 

 

 

Figure 5.19 Resulting images from the training set preprocessing options defined for Experiment III for a 
DRR of patient 1. The order of the images presented corresponds to the order of options in Table 5.6. 
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5.5.4 Implementation details and parameters optimization III 

Considering the preprocessing operations applied to the images referred in the previous 

section, some parameters were defined. The erosion and dilation operations were performed 

by using a disk-shape structuring element with a specific radius for each patient. These values 

were empirically determined and set as {    0 5 5  } pixels for patients 1 to 6, respectively. 

On the other hand, the elimination of parts of the vessels was implemented by removing a 

circle with a random diameter up to 1/3 of the image size, randomly centred within the 

coronary arteries. About the filters 1 and 2 (Table 5.6), we used two low-pass Gaussian filters 

with different standard deviations, where  was empirically defined as 10 and 20 pixels. 

The images preprocessing and the implementation of NN were performed using MatLab, 

version 7.11.0.584 (R2010b) 64 bits (MatLab, 2010). 

 

5.5.4.1 Input features computation 

For each of the 9 training sets per patient defined in Section 5.5.3, the PCA-based features 

were derived: 

(1) We decreased the number of pixels per image for practical computational reasons, by 

downsampling the images from 512x512 to 128x128 which resulted in images with 16384 

pixels. We set the 11000 images on the MxN format, i.e. we transformed the 128x128 images 

in 1x16384 vectors and then we constructed a 16384x11000 dataset.  

(2) Then, the dataset was split in three sets: 16384x7000, 16384x3000 and 16384x1000. The 

first set was used to train the regression model, the second set was used for validation 

purposes and the last one for testing the registration performance on simulated unseen 

images.  

(3) Before the PCA computation, a z-score transformation is applied to each variable over all 

the observations of the training set. The PCA is computed on the z-score output and a set of 

principal components and the respective cumulative percentages obtained. The remaining 

data was centred and scaled using the z-score parameters found before, and then it was 

projected using the principal components. 
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5.5.4.2 Regression model implementation 

Globally, we proceed similarly to the previous experiments regarding the implementation 

options of the Neural Networks. We considered 6 MLPs per registration, one per 

transformation parameter. Each one has one hidden layer with fully connected units and 1 

output unit (the corresponding transformation parameter). 

After the PCA computation and dataset projection, we had 16384 features per observation. 

Each one of these features corresponds to a principal component which represents a 

percentage of the variance of the original data. To decide how many principal components 

will be necessary for the regression model, and therefore what percentage of the total 

variance of original data will be considered in it, we used the cumulative percentage 

variances associated with the principal components. We searched for the best cumulative 

percentage in the range {50   0   0   0   0 }, also leading to the number of input 

units. Simultaneously, we looked for the optimum number of hidden units considering the 

range {  1    } as possibilities. This process was necessary for each of the 9 training sets 

studied per patient and for each of the 6 patients, leading to an exhaustive search. To limit 

computation time, the tuning was only performed for one of the transformation parameters, 

the translation parameter in x, and its results were extended to the other transformation 

parameters. The search ranges were defined after some preliminary tests.  

For the tuning process we analysed the mean absolute difference between the model 

prediction and the known output, for translations in xx and computed on the validation set. 

This set was also used to select the stopping epoch for each MLP run occurred during and 

after the tuning with a maximum of 1000 and 3000 epochs, respectively.  
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5.5.5 Results III 

5.5.5.1 Tuning parameter results 

The cumulative percentages and the number of input and hidden units obtained by the search 

process are presented in Table 5.7 for every dataset of every patient. 

Table 5.7 Cumulative percentages, number of input units and number of hidden units for all datasets 
from 1 to 9 and for all patients named from 1 to 6. 

 Cumulative percentage (%) 

 Datasets 

Patients 1 2 3 4 5 6 7 8 9 

1 60 90 90 70 90 80 50 70 90 

2 50 70 90 50 60 90 50 70 90 

3 50 70 80 50 70 80 50 50 80 

4 60 50 90 50 70 90 50 60 90 

5 50 90 90 50 60 90 50 80 90 

6 50 70 70 50 70 50 50 60 70 

 Input units 

 Datasets 

Patients 1 2 3 4 5 6 7 8 9 

1 155 160 58 148 138 36 101 65 65 

2 107 48 45 105 33 52 115 54 53 

3 147 45 27 147 45 27 161 21 33 

4 206 22 50 88 52 53 135 39 59 

5 121 150 37 108 23 38 133 82 46 

6 114 54 20 108 77 13 127 41 24 

 Hidden units 

 Datasets 

Patients 1 2 3 4 5 6 7 8 9 

1 16 16 32 8 8 32 32 16 32 

2 16 32 16 32 32 16 32 32 32 

3 32 8 32 32 8 32 32 8 16 

4 16 16 16 32 32 32 32 16 8 

5 32 32 32 32 32 32 32 32 32 

6 32 16 16 32 32 32 32 32 8 

 
 

5.5.5.2 Comparison of training set preprocessing operations 

The registration results, for simulated images and real images, with the different 

preprocessing options defined in this experiment are presented in Figure 5.20 and Figure 5.21 

respectively. 
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Figure 5.20 Registration results for simulated images for all patients comparing the different 
preprocessing operations labelled as 1 to 9, according to Table 5.6. The options (4,5,6) correspond to 
erosion/dilation operations and (7,8,9) to the elimination of parts of the vessels. The cases with similar 
blurring options are indicated in the image below by points on the lines. 

 

Figure 5.21 Registration results for all real images comparing the different preprocessing operations 
labelled as 1 to 9, according to Table 5.6. The options (4,5,6) correspond to erosion/dilation operations 
and (7,8,9) to the elimination of parts of the vessels. The cases with similar blurring options are 
indicated in the image below by points on the lines. 

 

From the mTRE distributions for X-ray angiographies (Figure 5.21), it is evident the blurring is 

not helping the registration of real images, although for simulated images it does (Figure 

5.20), i.e. as much blurred the DRRs are the better the registration performance.  

 

5.5.5.3 Comparison of all experiments’ feature sets for real data 

Figure 5.22 summarizes the more relevant results of 3D/2D coronary registration-by-

regression obtained in Chapter 5, comparing for the image preprocessing option 1D the results 

of all features considered in this chapter. The features introduced in Experiment III are 
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labelled in the table mentioned as Fp, followed by the number of the processing option 

(Table 5.6) defined in Section 5.5.2. The number of results at least as accurate as the manual 

registration improved considerably, and features like geometric center and eigenvectors from 

the PCA on the pixels of the object of interest (F4), projected images with elimination of 

parts of the vessels in DRRs (Fp7) and projected images with no modification of DRRs (Fp1) 

must be highlighted.  

 

Figure 5.22 Summary of the main coronary 3D/2D registration results for the 8 X-rays of 6 patients with 
mTRE values from a manual registration. The features sets of Chapter 5 are compared for the 
preprocessing option 1D defined in Image preprocessing I (Section 5.3.2); F1 corresponds to Experiment 
I, (F2, F3, F4, F5) to Experiment II, and (Fp1, Fp4, Fp7) to the options 1, 4 and 7 of Experiment III, 
respectively.  
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5.5.6 Discussion III 

In this experiment we studied a very different feature than before. Instead of using a 

geometric quantity, we used the intensity variability of a pixel in the image for different 

transformations. Of course, when we restricted the preprocessing options to the binary 

images, we are not using exactly the intensity variability but the variability of a pixel 

corresponding to the object imaged or to the background (0/1 intensity) for different 

transformations. And it would be of interest to see how this feature performs for the other 

intensity values options (A, B, and C). But to work just with binary images (with a manual 

mask) was the way to confine the problem to only a few differences between simulated and 

real images regarding to all differences discussed before.  

We also tested the influence of a training set artificially modified aiming to simulate one of 

the differences between real and simulated images, i.e. the eventual absence of parts of the 

coronary arteries. The results indicated the learning performance with this extra information 

was as good as before, and the results for the registration of real images did not differ either. 

However, even without some of the crucial differences between the X-rays and the DRRs, as 

the one related to the intensity values of the object imaged, the results were not promising. 

This regression model with a better feature set and considering the modification of the 

training set does not constitute a global solution for the 3D/2D registration of CTA with X-rays 

angiographies. But it could be an initialization solution to replace the need of manual 

initialization. 

In fact, the 3D/2D iteratively registration approaches based on DRRs usually requires 

initialization close to the searched pose because of the numerous local maxima of intensity or 

gradient-based similarity measures (Markelj et al., 2012). The initialization influence is 

investigated in the literature for 3D/2D registration applications (e.g. Aouadi & Sarry, 2008), 

and in particularly for the case of CTA/X-ray angiographies (e.g. Metz et al., 2011). The 

initialization can be accomplished by methods of patient positioning, less accurate, used in 

radiation therapy, like Khamene, Bloch, Wein, Svatos, & Sauer (2006) and Mu, Fu, & Kuduvalli 

(2008). Moreover, registration methods based on templates (Banks & Hodge, 1996; Cyr et al., 

2000; Hermans et al., 2007; Hoff et al., 1998), with some similarities with the registration-by-

regression approach in study, present some accuracy limitations which make them more 

suitable for initialization purposes (Markelj et al., 2012).  

The registration approach in study only used 6 transformation parameters – three rotations 

and three translations – which means we considered a rigid transformation. The presence of 

non-rigid deformations due to cardiac and respiratory motion is thus neglected. We took this 

into account when creating the gold standard, by selecting the X-ray time frame that most 

accurately matched the CTA-derived coronary artery model for further registration 
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experiments. This manual selection would have to be replaced by an automated procedure 

when implementing this method in clinical practice. Note that in principle the registration-

by-regression method could be extended to a non-rigid registration. For instance, instead of 

computing the features on the entire images, we could divide the images and compute the 

features on small patches, i.e. on small sub-blocks of the images. This could be an interesting 

direction for future research, and could be of interest also for other image registration 

applications than the currently studied 3D/2D registration problem. 

A final limitation of this experiment is related to the tuning of parameters. The topology of 

MLPs for all transformation parameters was obtained by a tuning process performed only for 

one of the transformation parameters. This procedure was motivated by time constraints 

since we tried for each different cumulative percentage variances (associated with the 

principal components) different number of hidden units. A better solution might be obtained 

by doing an exhaustive search for all parameters.  
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5.6 Conclusion 

Performing the interpolation of real X-ray images with the regression model obtained by a set 

of DRRs was a real challenge. Many problems were faced, solutions investigated and 

evaluated: (1) a real image segmentation with a not trivial mask computation and a 

problematic determination of vessel intensities, especially regarding the differences between 

the values for a DRR and a real-image, (2) a search for a features set which lead to a good 

learning (attaining an accurate model) and simultaneously is robust enough to deal with the 

inherent differences between real and simulated images, (3) the representativeness of a 

simulated dataset used for the construction of regression model. 

The validation of a registration method is essential, especially to its clinical relevance. This is 

the process which shows the application needs are met, regarding the accuracy and other 

performance criteria such as error tolerance, time and rate of failure (Hajnal et al., 2001). 

The accuracy assessment requires the knowledge of a gold standard or ground truth 

registration, which is difficult to achieve with clinical images (Hajnal et al., 2001). The 

construction of a gold standard to this nontrivial application was an important contribution of 

this work. 

The work presented in this chapter enabled us to know better the problem of registration of 

real images. The intensity information introduced into the regression model by certain 

features allowed a very good learning and an accurate training performance, however the 

nature of this intensity-dependence is not adequate for the registration of the X-rays. On the 

contrary, some features had a robust behavior to the differences between simulated and real 

images, but they did not contain sufficient information for a good learning.  

The registration-by-regression method for the automatic integration of coronary CTA with  

X-ray angiographies was not accurate with the tested feature sets. The results showed the 

inadequacy of the features used to solve this particular registration problem. The current 

work, rather than showing the registration approach is not able to achieve an accurate 

registration of images clinically relevant, pushes forward to other kind of feature solutions.  

Considering the framework developed with this investigation, a different direction could be 

considered for the regression-by-registration of CTA with X-rays of the coronary arteries. 

Analysing the iterative approaches, especially the cases where real images are used and the 

reported results are good, a different kind of features can be tried where the intensity 

information is carefully included. An example could be a distance transform inspired by the 

work of Ruijters, ter Haar Romeny, & Suetens (2009), weighted by the image intensity. The 

inclusion of the intensity must be done carefully and a better vesselness filter must be 

attempted, as for example from Schneider & Sundar (2010). Another idea to explore could be 

the use of vessels’ centerlines and vessels’ skeletons (Elizabeth Bullitt et al., 1999).   
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Sísifo 

Recomeça… 

Se puderes, 

Sem angústia e sem pressa. 

E os passos que deres, 

Nesse caminho duro 

Do futuro, 

Dá-os em liberdade. 

Enquanto não alcances 

Não descanses. 

De nenhum fruto queiras só metade. 

E, nunca saciado, 

Vai colhendo 

Ilusões sucessivas no pomar 

E vendo 

Acordado, 

O logro da aventura. 

És homem, não te esqueças! 

Só é tua a loucura 

Onde, com lucidez, te reconheças. 

Miguel Torga 
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Chapter 6 Summary and Future Perspectives 

This Thesis focused on the development and evaluation of a registration-by-regression 

approach for 3D/2D image registration of coronary vessel trees, where image registration is 

treated as a nonlinear regression problem, as an alternative for the traditional iterative 

approach.  

Below we present a summary of the Thesis: 

Chapter 2: A survey of the publications with a regression-based registration approach for 

medical applications is presented, as well as a summary of  their main characteristics inspired 

by the classification proposed by Maintz & Viergever (1998). We adapted the criteria used by 

these authors, and we considered a) three aspects regarding the methodology of the 

registration-by-regression framework, being the type of features, the regression model, and 

the role of the regression in the entire process, and b) five more general aspects, begging the 

application of the work, the object imaged, the transformation nature, the evaluation of the 

registration and the motivation for this approach. 

This survey aims to provide insight in the different formulations of registration-by-regression 

methods, to given an overview of the applications for which this has been proposed, and to 

compare to what extent the different approaches have been evaluated. A major conclusion 

here is that there are few registration-by-regression methods evaluated on real clinical data. 

Chapter 3: We propose a 3D/2D registration method that treats image registration as a 

nonlinear regression problem instead of using an iterative traditional approach. The nonlinear 

regression function is determined in a supervised learning stage and relates image features of 

2D projection images to the transformation parameters of the 3D image by nonlinear 

regression. The method is compared with a conventional registration method based on 

iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from 

coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was 

performed, and the alignment quality was measured by the mean target registration error 

(mTRE). The regression approach has shown to be slightly less accurate, but much more 

robust than the method based on an iterative optimization approach. 

Chapter 4: We perform a comparative evaluation of different regression techniques for 3D/2D 

registration-by-regression. In registration-by-regression, image registration is treated as a 

nonlinear regression problem that relates image features of 2D projection images to the 

transformation parameters of the 3D image. In this chapter, we evaluate seven regression 

methods: Multiple Linear and Polynomial Regression (LR and PR), k-Nearest Neighbour (k-NN), 

Multi-Layer Perceptron with conjugate gradient optimization (MLP-CG) and Levenberg-
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Marquardt optimization (MLP-LM), Radial Basis Function networks (RBF) and Support Sector 

Regression (SVR). The experiments are performed with simulated X-ray images (DRRs) of nine 

vessel trees, so that we have the ground truth and can compute the mean target registration 

error (mTRE). MLP-LM and RBF obtained the highest accuracy but in general all methods were 

robust to large initial misalignment. 

Chapter 5: We evaluate the integration of 3D preoperative CTA of the coronary arteries with 

intraoperative 2D X-ray angiography images using a registration-by-regression method. In this 

approach, image registration is estimated by a nonlinear regression model that is trained with 

DRRs. Image features of 2D projection images are related to the transformation parameters of 

the 3D image. The simulated 2D images were generated from coronary artery tree models 

derived from 3D CTA scans. 

In this chapter we compared several image features: the 2D image moments and the 

geometric centers, the eigenvectors and eigenvalues from a PCA of the object imaged, and 

the projected images in the space of principal components. Moreover the influence of 

preprocessing options on simulated images used for the training set, as well as on real data, 

was studied. For the registration evaluation, a gold standard was developed from 9 X-ray 

angiography sequences from 7 different patients. The alignment quality was measured by the 

mean target registration error (mTRE).  

The coronary registration–by-regression results were not satisfactory, resembling manual 

initialization accuracy. The framework performed showed the inadequacy of the features 

used to solve the registration problem. It enabled us to better understand the dependency of 

the proposed method on the differences between simulated and real images. Alternative 

solutions are suggested. 

 

In the introduction of this work, we formulated three research questions: 

 How is the registration influenced by the image features used in the learning process? 

 Are Neural Networks an adequate regression model for this problem? 

 Is the registration-by-regression method a clinically relevant solution for 3D/2D 

registration of coronary CTA and X-ray angiography during image-guided 

interventions? 

The question about the Neural Networks is answered by Chapter 4 with the comparison of 

regression models for this particular registration problem.  
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The first research question was addressed in Chapter 3 and Chapter 5. In Chapter 3 we 

realized that the intensity information associated with certain features allowed a very good 

learning and an accurate training performance. However chapter 5 showed that this intensity-

dependence was not adequate for the registration of real X-rays. On the other hand, some 

features were not affected by the differences between simulated images (used during 

training) and real images, but they did not contain sufficient information for a good learning, 

and therefore did not achieve a very high accuracy.  

Chapter 5 addressed the final question about the clinical application of the registration-by-

regression method. For this concrete problem, i.e. for the automatic integration of coronary 

CTA with X-ray angiographies, the proposed method in its current configuration is not 

sufficiently accurate to be used in practice. The main difficulty lies in the substantial 

differences in appearance between the images used for training (simulated X-rays from3D 

coronary models) and the actual images obtained during the intervention (real X-ray 

angiography).  This indicates that other types of image features need to be developed, more 

robust to the typical differences in appearance, such as the presence of catheters in X-ray, 

missing data in X-ray (i.e., vessels not visible on X-ray due to coronary chronic total 

occlusions), or incomplete 3D coronary models caused by insufficient visibility in (noisy, 

motion-blurred) CTA data. The recent works of Chou, Frederick, Mageras, & Chang (2013) and 

Chou & Pizer (2013) also suggest some interesting strategies to improve accuracy, like multi-

scale regressions by a “hierarchical training” (i.e. large to small scales of transformation 

ranges for training), and correction of intensity differences between simulated and real 

images by histogram matching.  

Finally, it is recommended to test the registration-by-regression framework in other 

applications, where training data is available that is representative for the test data. 

Potentially interesting examples of such applications are 3D/2D registration for image-guided 

needle biopsy interventions in the spine (van de Kraats, 2005; van de Kraats et al., 2006) and 

motion estimation from real-time image streams (Luca et al., 2012)  
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Appendices 

Appendix A 

 

Table A.1 Mean and variance results for the selection of the number of hidden units for the feature sets considered 
in Chapter 3. 

Mean 

Feature sets 
Set 1 Set 2 Set 3 

Set 1 + Set 2 Set 1 + Set 3 
Moments Eigen [X Y] Eigen [X Y I(x,y)] 

Units of 
input:hidden:output 

layers 
6:6:1 6:12:1 6:6:1 6:12:1 12:12:1 12:24:1 12:12:1 12:24:1 18:18:1 18:36:1 

RX (º) 0,380 0,289 3,032 3,012 0,254 0,234 0,156 0,131 0,069 0,053 

RY (º) 0,355 0,295 2,843 2,841 0,380 0,361 0,147 0,118 0,085 0,070 

RZ (º) 0,802 0,414 1,804 1,786 0,265 0,255 0,173 0,141 0,083 0,071 

TX (mm) 0,183 0,146 4,878 4,863 2,790 2,681 0,058 0,043 0,034 0,024 

TY (mm) 1,981 1,356 5,049 5,042 5,022 5,017 0,753 0,649 0,383 0,332 

Tz (mm) 0,135 0,115 4,675 4,698 0,793 0,738 0,083 0,069 0,034 0,033 

 

Variance 

Feature sets 
Set 1 Set 2 Set 3 

Set 1 + Set 2 Set 1 + Set 3 
Moments Eigen [X Y] Eigen [X Y I(x,y)] 

Units of 
input:hidden:output 

layers 
6:6:1 6:12:1 6:6:1 6:12:1 12:12:1 12:24:1 12:12:1 12:24:1 18:18:1 18:36:1 

RX (º) 0,119 0,085 5,330 5,322 0,136 0,128 0,034 0,023 0,006 0,003 

RY (º) 0,095 0,070 4,561 4,557 0,207 0,184 0,023 0,015 0,009 0,006 

RZ (º) 0,397 0,152 2,143 2,161 0,049 0,047 0,040 0,031 0,009 0,008 

TX (mm) 0,020 0,015 8,538 8,655 6,241 6,000 0,004 0,003 0,002 0,001 

TY (mm) 3,384 2,380 8,322 8,270 8,342 8,296 1,141 1,166 0,326 0,279 

Tz (mm) 0,016 0,013 8,963 9,001 0,713 0,670 0,007 0,006 0,002 0,002 
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Table A.2 Mean and variance results for the selection of the number of hidden units for the 
MLPs considered in Chapter 4.  

 Mean 

Units of 
Input:hidden:output 

layers 
18:9:1 18:18:1 18:36:1 18:54:1 

RX (º) 0,087 0,069 0,053 0,049 

RY (º) 0,119 0,085 0,070 0,068 

RZ (º) 0,108 0,083 0,071 0,071 

TX (mm) 0,042 0,034 0,024 0,024 

TY (mm) 0,650 0,383 0,332 0,332 

Tz (mm) 0,047 0,034 0,033 0,032 

  

 Variance 

Units of 
Input:hidden:output 

layers 
18:9:1 18:18:1 18:36:1 18:54:1 

RX (º) 0,009 0,006 0,003 0,004 

RY (º) 0,014 0,009 0,006 0,005 

RZ (º) 0,015 0,009 0,008 0,007 

TX (mm) 0,002 0,002 0,001 0,001 

TY (mm) 0,805 0,326 0,279 0,311 

Tz (mm) 0,003 0,002 0,002 0,002 
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Appendix B 

 

 

 

Figure B.1 Comparison of registration-by-regression results for all methods and for patients 1, 2 and 3. 
The graphic also shows the initial mTRE before registration.  
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Figure B.2 Comparison of registration-by-regression results for all methods and for patients 4, 5 and 6. 
The graphic also shows the initial mTRE before registration.  
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Figure B.3 Comparison of registration-by-regression results for all methods and for patients 7, 8 and 9. 
The graphic also shows the initial mTRE before registration.  
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Abstract 

We evaluate the integration of 3D preoperative computed tomography angiography (CTA) of the 

coronary arteries with intraoperative 2D X-ray angiographies by a recently proposed novel 

registration-by-regression method. The method relates image features of 2D projection images 

to the transformation parameters of the 3D image. We compared different sets of features and 

studied the influence of preprocessing the training set. For the registration evaluation, a gold 

standard was developed from 8 X-ray angiography sequences from 6 different patients. The 

alignment quality was measured using the 3D mean target registration error (mTRE). The 

registration–by-regression method achieved moderate accuracy (median mTRE of 15mm) on 

real images. It does therefore not provide yet a complete solution to the 3D-2D registration 

problem but it could be used as an initialization method to eliminate the need for manual 

initialization. 

Keywords 

3D/2D image registration, image guided interventions, coronary arteries, regression, neural 

networks. 
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1 Introduction 

Angioplasty, also called percutaneous coronary intervention (PCI), is a minimally invasive 

coronary intervention frequently used for the treatment of coronary artery disease (CAD) 

(Kasper et al., 2005). During a PCI, the clinician follows the path of the catheter in the 

patient’s body with the help of an imaging technique, usually X-ray imaging with contrast 

injection (Rivest-Hénault, Sundar, & Cheriet, 2012). Although PCI is a not trivial procedure 

(Markelj, Tomaževič, Likar, & Pernuš, 2012), it has very high success rate (Soon et al., 2007). 

Nevertheless, there are certain particularly challenging lesions such as bifurcation lesions and 

chronic total occlusions (CTO) (Metz, 2011). Magnetic navigation could potentially improve the 

success rate of such complicated procedures (Ramcharitar, van der Giessen, van der Ent, 

Serruys, & van Geuns, 2011; Serruys, 2006). However, this technique requires the availability of 

a 3D roadmap, derived from pre-interventional images (e.g. 3D CTA). This roadmap then needs 

to be related to the patient by image registration to intra-operative imaging data (e.g. x-ray 

imaging). Several authors (e.g., Ramcharitar, Patterson, van Geuns, van Meighem, & Serruys, 

2008) also highlight the importance of multi-slice CT in interventional cardiology because of 

the additional information it provides with respect to angiography. They point out its ability to 

accurately identify the vessel’s border (even the occluded vessel segments that are not seen 

angiographically), and to provide information about coronary plaque composition which may be 

helpful to facilitate crossing the lesion in the chronic total occlusions cases. Furthermore, any 

PCI can benefit of using pre-annotated CT data by increasing the accuracy of the stent 

placement, e.g., indicating plaque locations (Ruijters, ter Haar Romeny, & Suetens, 2009). To 

conclude, the registration of preoperative 3D computed tomographic angiography (CTA) data, 

containing the occluded vessel segment, with intraoperative 2D X-ray can be very useful for 

guiding the treatment of these pathologies. 

Generally, 3D/2D image registration is estimated by iteratively optimizing a similarity measure 

between simulated X-ray projection, computed from the preoperative CT scan, and an X-ray 

image (Markelj et al., 2012). However, such iterative optimization procedures usually have a 

small capture range due to local maxima of the similarity measure, and therefore require 

initialization close to the searched pose (Markelj et al., 2012; Van De Kraats, Penney, 

Tomaževič, & Van Walsum, 2005). We previously proposed a registration-by-regression 

approach for 3D/2D coronary registration (Gouveia et al., 2012a) addressing the capture range 

drawback, which showed promising results for simulated X-ray images (Digitally Reconstructed 

Radiographs - DRRs). It relates image features of 2D projection images to the transformation 

parameters of the 3D image by nonlinear regression in a supervised learning stage. Our 

motivation in the current work is the clinical extension of this registration-by-regression 

method. Thorough evaluation of a registration process is crucial for its clinical use (Jannin et 

al., 2002; Markelj et al., 2012). The most straightforward method for estimating the 

registration error is by a “ground truth” transformation, which may be obtained from a gold 
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standard registration system (Fitzpatrick, 2001). Although gold standards based on patients are 

the most difficult to establish according to the same authors, the other possibilities (e.g. 

computer simulations, phantoms or cadavers) cannot take into account all the true variability 

encountered in clinical situations (Jannin et al., 2002).  

Therefore, we implement the registration-by-regression methodology on real clinical data and 

we construct a gold standard based on patient data. The main contributions of this paper are: 

(1) The evaluation of registration-by-regression of 3D preoperative CTA of the coronary arteries 

with intraoperative 2D X-ray angiographies. 

(2) Exploring novel feature definitions (based on principal component analysis of projected 

image data) and by investigating various combinations of features. We provide insight in the 

influence of features on the accuracy of the method. 

(3) The construction of a gold standard for 3D/2D coronary registration by means of an 

exhaustive search routine, matching the projected centerlines to manually annotated vessels 

on the X-ray, followed by systematic visual inspection.  

 

2 Methods and materials 

2.1 Registration by nonlinear regression framework 

In this work we consider the 3D/2D registration by nonlinear regression method presented in 

Gouveia et al. (2012a) (Figure C.4). This regression model relates image features of the 2D 

projection images to the transformation parameters of the 3D image. Once the nonlinear 

regression function is computed, which takes place before the intervention (e.g., PCI), the 

estimate of the 3D transformation parameters of the 3D image can be obtained by applying the 

regression function to the features computed on the intraoperative X-ray. During the 

preoperative phase (Figure C.4), a 3D vessel tree model is obtained by the segmentation of 

coronary arteries from 4D CTA images; a set of   simulated 2D images (DRRs) is generated by 

applying random transformations  (   ), followed by projection. Then a training set is built 

comprising a set of N input-output pairs: the features extracted from the   simulated 2D 

images (DRRs) as inputs and the corresponding 3D transformation parameters ( (   )) as 

outputs. This training data is used for the learning process to estimate the parameters of the 

regression function ( ( ) in Figure C.4). During the intraoperative phase (Figure C.4), the 

image features of the X-ray acquired are computed and fed as input to the regression function 

(i.e., the interpolation step in Figure C.4), which returns the estimated 3D translation and 

rotation parameters of the 3D image (TX-ray). 
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Figure C.4 Registration-by-regression schematic model. 

The regression model used during the preoperative phase is the Multi-Layer Perceptron (MLP), a 

feed-forward Neural Network as described in detail in Gouveia et al. (2012a). For this 

regression problem with such images and input-output set, the MLP is an adequate choice with 

higher performance when compared with other suitable possibilities (Gouveia, Metz, Freire, & 

Klein, 2012b). 

 

2.2 Imaging data 

We performed the registration of 3D preoperative coronary CTA data with 2D intraoperative X-

ray angiography, using 8 time-sequences collected from 6 different patients. For two of those 

patients, two different time-sequences were considered for the registration using the same 

CTA data, which correspond to different intervention dates.  

CTA images were acquired using a Siemens Definition or Siemens Definition Flash scanner and 

X-ray images using a Siemens Axiom Artis biplane system. Calibration data was not available for 

the X-ray acquisition and thus only monoplane experiments using the sequences of the primary 

C-arm were considered. The field of view of the CTA images used for the reconstruction was 

256256[99-184] voxels and the resulting voxel size was 0.70.7[0.8-1.0] mm3; for DRR 

images and X-rays images the same quantities were 512512 pixels and 0.220.22 mm2, 

respectively. The CTA images were obtained in the end-diastole phase, more precisely at 70% 

of the cardiac cycle considering a R-wave peak-to-peak cycle. The X-rays images used for 

registration were the ones from the second-half of the cardiac cycle, i.e. from 50% to 100% of 

the cardiac cycle, which contained on average 6 time frames. 
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2.2.1  Image preprocessing 

We used binary images, either simulated or real. As we are only interested in the information 

contained in the coronary arteries for image registration, a procedure for vessel segmentation 

was necessary. For the X-ray angiographies, the masks were determined by manual 

segmentation from the analysis of two observers; Figure C.5 shows the manual masks for two X-

ray images. For the DRRs, the masks were determined by threshold based segmentation using a 

manually defined threshold value. Restricting the problem to binary images and using manual 

segmentations, differences in appearance between DRRs and X-rays were reduced, resulting in 

an idealized setting for experimentation.  

  

Figure C.5 Manual masks (colour lines) on X-ray 1 (left) and X-ray 2 (right). 

 

 

2.3 Construction of training data 

The regression function for the registration-by-regression method was calculated by using a 

training set of simulated projection images obtained from the application of known geometric 

transformations to the 3D coronary vessel tree. From the retrospectively ECG-gated 4D CTA 

images available, we segmented coronary arteries (at the end-diastole phase) and made binary 

vessel tree models (Metz et al., 2011). DRRs were generated using these 3D models with a 

computation procedure described in Metz, Schaap, Klein, et al. (2009). To represent a clinically 

relevant view, the projection geometry for the computation of the DRRs and the initial 

orientation of the preoperative data were derived from an interventional X-ray image. DRRs 

were generated using MeVisLab. 

For each patient, 11000 DRRs were generated, 10000 to obtain the regression model and 1000 

to test the performance of our method before the registration of real data. The 6 rigid 

transformation parameters were drawn from uniform distributions, with values between -13 
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and 13 degrees for rotations and between -16 and 16 mm for translations (to ensure the 

training set contains the transformation parameters of the X-ray images to be registered). 

 

2.3.1 Training set preprocessing 

Modifications in the dataset were implemented attending the presence/absence of vessels in 

simulated and real images, i.e. some vessels clearly identified in the X-rays of a patient did not 

appear in the correspondent DRRs and vessels identified in DRRs did not appear in the 

correspondent X-rays. This difference is clearly recognized by the visualization of the images, 

for example in Figure C.6, and varies case by case.  

Two modifications were exclusively implemented on simulated images. The first is the 

application of a morphological opening operation to the image to remove the tiniest vessels 

present (Gonzalez & Woods, 2008). The second is the elimination of a part of the image, with a 

random size and position, simulating occlusion. Additionally, a Gaussian filter was applied to 

the binary images creating a blurring effect and differentiating the borders from the inner 

regions 

 

 

 

Figure C.6 X-rays and correspondent DRR (of training set) with closer transformation parameters. For 
patient 1 (1st row), there are two tiny vessels on the left of the DRR image not present in X-ray image; 
and for patient 2 (2nd row), for example one vessel on the inferior right part of the X-ray image does not 
appear in DRR. 
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For each of the 6 patients in the study, 9 training sets were considered with different 

combinations of preprocessing operations, schematized in Table C.2. For an easier comparison, 

these different training sets will be labelled as P and numbered from 1 to 9, indicating the 

preprocessing operation (Table C.2). Two different standard deviations for the Gaussian filter 

were used; the cases of unmodified images and unfiltered images were also studied. Figure C.7 

shows the resulting images after the application of these operations on a DRR. 

 

Table C.2 Combinations used for preprocessing operations applied, resulting in 9 different training 
sets per patient. 

 Gaussian filter 

  

Operations - 1 2 

- P1 P2 P3 

Erosion/dilation P4 P5 P6 

Elimination of vessel parts P7 P8 P9 

 

 

Figure C.7 Resulting images from the training set preprocessing options for a DRR of patient 1. The order 
of the images presented corresponds to the order of options in Table C.2. 

P1 P2 P3 

P4 P5 P6 

P7 P8 P9 



140 

For these preprocessing operations applied to the images, parameters were defined. The 

erosion and dilation operations were performed by using a disk-shape structuring element with 

a specific radius for each patient. These values were empirically determined and set as 

{           } pixels for patients 1 to 6, respectively. On the other hand, the elimination of parts 

of the vessels was implemented by removing a circle with a random diameter up to 1/3 of the 

image size, randomly centred within the coronary arteries. About the filters 1 and 2 (Table 

C.2), we used two low-pass Gaussian filters with different standard deviations, where  was 

empirically defined as 10 and 20 pixels. 

 

2.4 Input features 

Two different feature approaches are considered in this work. One is to compute a limited 

number of features with a geometric nature, and the other is to use the entire projected 

images in the space of principal components.  

In the first case, we computed from the 2D projection images (a) the 2D geometric moments of 

order 0, 1 and 2; (b) the eigenvalues and eigenvectors computed from a Principal Component 

Analysis (PCA) on the pixels of the object of interest, after a coarse segmentation of the image 

into object and background objects (Gouveia et al. 2012a); (c) the geometric centre, or centre 

of mass, i.e. the point where all mass of the image could be concentrated without changing its 

first order moment, which can be used as a reference point to describe the position of the 

object imaged (Liao, 1993).  

These four features were combined as shown in Table C.3, where the first combination (F1) 

corresponds to the best performing feature set used in Gouveia et al. (2012a) for this problem.  

In the second case, the features were the projected images in the space of principal 

components (Shlens, 2005). These features will be referred in the text as PCA features and 

labelled as F6. Considering each image one observation and each image pixel one variable, we 

defined a MN dataset with N observations and M variables each, where each image in a matrix 

format is firstly transformed into an 1M array. A PCA was applied to this dataset and, after 

the determination of the rank-ordered variance, the highest V% principal components were 

selected, where the setting of V was optimized (Section 2.5).  

 

 



141 

Table C.3 Geometric features and respective combinations (F1 to F5); the mean and standard deviation of 
the number of PCA features (F6), computed over the different training preprocessing operations P1-P9 
and over all patients, is presented (mean,standard deviation). 

 Moments Eigenvectors Eigenvalues 
Geometric 

Centers 
#features 

F1        18 

F2       12 

F3      9 

F4     
  11 

F5      2 

F6 (PCA-based features) (70,47) 

 

For practical computational reasons image were downsampled from 512512 to 128128 before 

applying the PCA. 

 

2.5 Regression model  

For each registration, 6 regression models were constructed, one per transformation 

parameter, using identical Neural Networks with one hidden layer with fully connected units. 

The activation functions are the hyperbolic tangent and the linear functions for the hidden and 

output layers, respectively. The input units were standardized by a z-score (Haykin, 1999) and 

the weights were randomly initialized within a range [-1,1]. The number of epochs was defined 

separately for each MLP by a stopping epoch (i.e., the epoch when the validation error started 

to grow) with a maximum of 1000.  

For each patient, the set of 10000 images, for the construction of the regression model, was 

split in two sets: 7000 images to train the regression models and the remaining 3000 to select 

the stopping epoch. The performance of the models was computed by the mean absolute 

difference between the model prediction and the known output for each regression.  

For combinations F1 to F5 of geometric features (Table C.3), the MLP topologies are described 

in Table C.4. All cases have one output unit, which is the correspondent transformation 

parameter. From optimization studies of Gouveia et al. (2012a, 2012b), the optimum number 

of hidden units for combination F1 was set to the double of the number of input units. The 

remaining combinations are different but yet similar features sets. Even if the number of 

features is different and there are new features included, the features number and nature do 

not differ that much. Then the same criterion was used to choose the number of hidden units 
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for combinations F2, F3 and F4; for the feature set labelled as F5, we considered 10 hidden 

units since we expected that 4 hidden units would be too few. 

Table C.4 Topology of MLPs used for different combinations Table C.3 (i.e., number of input units : 
number of hidden units :number of output units). 

F1 F2 F3 F4 F5 

18:36:1 12:24:1 9:18:1 11:22:1 2:10:1 

 

For the PCA features, the cumulative percentage V was tuned (for each subject) in the range 

{                   }. Simultaneously, we looked for the optimum number of hidden 

units considering the range {       } as possibilities. To limit computation time, the tuning was 

only performed for one of the transformation parameters, the translation parameter in x, and 

its results were extended to the other transformation parameters. The search ranges were 

defined after some preliminary tests.  

Two optimization schemes for the MLP were used depending on the feature approach. For the 

combinations of geometric features, it was used the MLP with Levenberg-Marquardt 

optimization; whereas for the PCA features, we choose the conjugate-gradient optimization 

due to the much higher number of input units (Gouveia et al., 2012b). 

For the tuning process we analysed the mean absolute difference between the model 

prediction and the known output, for translations over the x direction and computed on the 

validation set. This set was also used to select the stopping epoch for each MLP run, which 

occurred during and after the tuning with a maximum of 1000 and 3000 epochs, respectively.  

The implementation of NN were performed using MatLab, version 7.11.0.584 (R2010b) 64 bits 

(MatLab, 2010). 

 

2.6 Gold standard definition 

A gold standard for evaluation of the registration-by-regression method is needed when 

registering real data. A problem thereby is the occurrence of non-rigid deformation due to 

cardiac and respiratory motion. Particularly, time differences with respect to cardiac cycle 

could exist since we matched an end-diastolic 3D model to all frames of a X-ray time-sequence 

of the second half of the cardiac cycle. Therefore, we constructed a gold standard for each X-

ray frame of the 8 time-sequences by implementing an exhaustive search based on the 2D 

distances between vessel centerlines, and asked five observers to rank the quality of 

alignment.  
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For each X-ray frame the initial exhaustive search was done as follows: (1) we started by 

manually annotating the centerlines in each X-ray angiography of all images collected; (2) we 

projected the vessel centerlines from the correspondent coronary artery 3D model (as 

explained in Metz, Schaap, Weustink, et al., 2009), after a given transformation has been 

applied; (3) we measured the average of shortest distances between annotated and projected 

centerlines; (4) second and third steps were then exhaustively repeated over a large range of 

rotations/translations of the 3D model to find which transformation minimizes the distance.  

After having performed this procedure for all time frames of each X-ray sequence, five 

different observers analyzed the result of this full-search through a systematic visual inspection 

of the X-ray frame with both manually annotated centerline and registered and projected 

centerline. A manual scoring was done, in which the X-ray time frames were ranked based on 

the quality of the alignment with the projected CTA centerlines. The observers were asked (a) 

to rank the images of the time-sequence on alignment quality, i.e. to order all images from 

best to worst match; and (b) to identify unsatisfactory alignments. The best case was accepted 

as a gold standard, but only if at least half of the observers scored the alignment as 

satisfactory. In further registration experiments, we only use this best case time frame, as only 

for that time frame we can be confident about the gold standard, and we are sure that the 

registration is not hampered by non-rigid deformations introduced by cardiac and respiratory 

motion. Figure C.8 shows the best and worst alignment for one of the time-sequences studied, 

where the best alignment was scored satisfactory and the worst not.  

 

  

Figure C.8 Examples of two images used for the evaluation of the alignment quality. These are X-ray 
frames of the time-sequence 3.2 where the vessel centerlines are highlighted: the green is the manual 
annotated centerline in X-ray and the pink is the closest registered and projected centerline from the CTA 
model (obtained by the exhaustive-search process). They represent the best (left) and the worst (right) 
alignment according to the established ranking.  
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2.7 Evaluation of registration 

The evaluation of the registration approaches was performed by the computation of the mean 

target registration error (    ) before and after registration (Fitzpatrick & West, 2001; Van 

De Kraats et al., 2005). The      is computed as the mean 3D distance to the gold standard 

position and orientation (computed as described in Section 2.6) of all points, pk, of the vessel 

centerline trees: 

    ( )  
 

 
∑‖ (  )       (  )‖

 

   

 Equation C.1 

where T is the resulting transformation from the registration method to assess and Tgold is the 

known gold standard transformation.  

     for simulated images were computed on the test set of 1000 images, which was not used 

for the construction of the regression models. For real data,      was determined for one X-

ray of each time-sequence as defined before, in Section 2.6. The ground truth of each 

simulated image is the known set of transformation parameters applied in order to generate it 

and, for real images, it is the set obtained from the process described in Section 2.6. 

 

3 Experiments and results 

We compared the effect of using different features F1-F6. Subsequently, the influence of the 

preprocessing options P1-P9 was investigated using feature set F6 (the PCA-based features). 

 

3.1 Comparison of input features 

The registration results for simulated and real images for each input feature studied (from F1 

to F6) are shown in Figure C.9, where each boxplot is based on all patients’ results. 

Additionally, mTRE values from a manual registration initialization are also displayed in the 

plot of real images results (the first column). The manual initialization was performed on the 

projection plane (XY) while observing the X-ray image, after moving the centre of gravity of 

the model to the origin of the intraoperative coordinate system (Metz, 2011). 

For simulated images, the F2 to F5 options yielded similar mTRE values but much higher than 

the F1 option, the only set with the contribution of the moments. Actually, the information 

held by the moments revealed to be determinant for a high accuracy of the registration of 
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simulated images as discussed in Gouveia et al. (2012a). However, this same feature set F1 

gave the worst results for real images. 

 

Figure C.9 Registration results for simulated (DRRs) and real (X-rays) images, for all patients, comparing 
the different input features studied (F1 to F6). The mTRE values before the registration (initial) and the 
mTRE values from a manual registration (manual) are also shown. 

 

 

3.2 Effect of training set preprocessing  

For the PCA features (F6) the registration results are presented in Figure C.10, for simulated 

and real images. Each boxplot is based on all patients’ results and corresponds to the different 

preprocessing options as defined in Section 2.3.1 (P1 to P9). For the real images plot, mTRE 

values from manual registration are also displayed. 
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Figure C.10 Registration results for simulated and real images for all patients comparing the different 
preprocessing operations labelled as P1 to P9, according to Table C.2, for the PCA features (F6). The 
options (P4,P5,P6) correspond to erosion/dilation operations and (P7,P8,P9) to the elimination of parts of 
the vessels. The cases with similar blurring options are indicated in the image below by points on the 
lines. The mTRE values before the registration (initial) and the mTRE values from a manual registration 
(manual) are also shown. 

 

From the mTRE distributions for X-ray angiographies (Figure C.10), it is evident the blurring is 

not helping the registration of real images, although for simulated images it does, i.e. the more 

blurred the DRRs are, the better the registration performance. On another hand, it is not clear 

if the erosion/dilation (F6-P4 to F6-P6) or the elimination of vessel parts (F6-P7 to F6-P9) 

introduce any improvement on the method performance. Therefore, for a better assessment, 

the registration results without considering the blurring pre-processing steps will be separately 

presented for each X-ray case in the next section. 
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3.3 Individual accuracies on real data 

Figure C.11 summarizes the results of 3D/2D coronary registration-by-regression obtained for 

all combinations of features (F1 to F5) in study and considering the most relevant cases of PCA 

features with image preprocessing (F6-P1, F6-P4 and F6-P7). Additionally, manual mTRE values 

were displayed in the plots (by horizontal lines), which contextualizes the registration results. 

The mTRE values obtained are high and for 2 of the 8 cases the X-ray images presented values 

above the range of the manual mTRE. Moreover, for the majority of the X-ray images, the 

registration-by-regression achieved the accuracy of a manual initialization. Comparing the 

different features options, the F1 set is the least accurate option although it presented the 

best results for simulated images as mentioned before. In fact, for all X-rays cases, its mTRE 

values were much higher than manual values. However, some features options like geometric 

center and eigenvectors from the PCA on the pixels of the object of interest (F4), PCA features 

with elimination of parts of the vessels in DRRs (F6-P7) and PCA features with no modification 

of DRRs (F6-P1) must be highlighted.  
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Figure C.11 Coronary 3D/2D registration results for the 8 X-rays of 6 patients with mTRE values from a 
manual registration (represented by the horizontal line). (F1, F2, F3, F4, F5) correspond to geometric 
features sets and (F6-P1, F6-P4, F6-P7) to the PCA features with the best preprocessing options (P1, P4 
and P7). The median of mTRE values are presented below the features labels. 
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4 Discussion 

The registration of 3D CTA with X-rays angiographies is a very challenging problem. The 

differences between the angiographies and DRRs computed from CTA are a problem reported in 

the literature for the iterative approaches of 3D/2D registration using DRRs (Penney et al., 

1998), where a good similarity measure should be able to achieve accurate registrations 

despite these differences. For a registration-by-regression approach, these differences are also 

an important challenge. Some differences are intrinsic to image formation, i.e. are caused by 

the inherent dissimilarity between CTA and X-ray images, while others are related to the 

imaged object, when for example interventional instruments are present. 

As inherent differences, we can usually find overlaid structures and different contrast 

acquisition processes described in the literature (Imamura, Ida, & Sugimoto, 2002). In our case, 

the DRRs were rendered from a 3D CTA-derived coronary model. In the DRRs rendered from 

CTAs (and not from models), the coronary arteries are difficult to visualize because of the high 

intensity structures being over-projected on them (Metz, Schaap, Klein, Weustink, et al., 

2009). This procedure however just addresses one side of the problem, the DRR construction, 

and not the formation of the X-ray images. 

The nature of the feature sets studied was different: on one side few geometric quantities and, 

on the other side, a high number of features representing the intensity variability of a pixel in 

the image for different transformations. Of course, when we restricted the preprocessing 

options to the binary images, we are not using exactly the intensity variability but the 

variability of a pixel corresponding to the object imaged or to the background (0/1 intensity) 

for different transformations. We performed some preliminary tests conducting to this work, 

where we used these geometric feature sets but considering image segmentation with 

automatic masks and different options for intensity values. Those tests showed that although 

the differences mentioned before between DRRs and X-rays are an important error source, the 

way the features rely on the intensities and on the vessels size are a crucial factor. Therefore, 

to work just with binary images (with a manual mask) was the way to confine the problem to 

only a few differences, allowing us to evaluate the capability of the features chosen, 

disregarding differences between DRR and X-rays. However, an automatic vessel segmentation 

method would be needed to make this approach fully automatic. Examples of such methods are 

the vesselness filter proposed by Frangi, Niessen, Vincken, & Viergever (1998) or the 

segmentation algorithm proposed by Schneider & Sundar (2010), which was designed to be 

more robust against the background artifacts. 

In this work, we tested several feature sets and it was found that the best solution for 

simulated images is not necessarily the best solution for real images. Among the various studied 

features, the set composed by moments, eigenvectors and eigenvalues (F1 in Section 3) was 
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clearly the most accurate when only DRRs were involved, but this same set was the worst when 

the X-ray images were registered by the regression model built from DRRs. The high sensitivity 

of these features on minor details between the DRRs and X-ray images (e.g. the vessels size) 

especially when including the moments and/or the eigenvalues (F1 and F2 in Section 3), is 

probably one of the main problems that justifies the poor results for this feature. 

For some features, we also tested the influence of artificially modifying the training set aiming 

to simulate the typical differences between real and simulated images, i.e. the eventual 

absence of parts of the coronary arteries. The results indicated the learning performance with 

this extra information was as good as before, and the results for the registration of real images 

did not differ either. 

The 3D/2D iterative registration approaches based on DRRs usually require initialization close 

to the searched pose because of the numerous local maxima of intensity or gradient-based 

similarity measures (Markelj et al., 2012). For the 3D/2D registration of CTA with X-rays 

angiographies, the proposed regression models, considering the best feature sets and the 

modification of the training set, could constitute an initialization solution to replace the need 

of manual initialization. We find in the literature registration methods with some similarities 

with the registration-by-regression approach in study, which are suitable for initialization 

purposes (Markelj et al., 2012). This is the case of the methods based on templates (Banks & 

Hodge, 1996; Cyr, Kamal, Sebastian, & Kimia, 2000; Hermans, Claes, Bellemans, 

Vandermeulen, & Suetens, 2007; Hoff, Komistek, Dennis, Gabriel, & Walker, 1998).  

Although with different formulations, we find in the literature some authors adopting the 

regression solution for the 3D/2D registration problem (e.g. Chou & Pizer, 2013; Hoff, 

Komistek, Stefan, & Walker, 1998). However very few works with such a regression approach 

use real images in a clinically relevant context. To the best of our knowledge, only one work 

used a resembling approach to partially solve (specifically) the 3D/2D coronary registration 

problem (Aksoy, Unal, Demirci, Navab, & Degertekin, 2013). This method decouples rotation 

and translation estimation into frequency and spatial domain, respectively. In a prior step, they 

built a library of DRRs obtained by generating different rotational poses of CTA vessels. These 

templates are compared with the segmented X-ray vessels in Fourier domain and the closest 

DRR found is used to compute the similarity measure to estimate the translation component. As 

for the majority of the 3D/2D coronary registration methods, the similarity measure (iteratively 

optimized) depends on the distance between 3D and 2D vessel centerline (Ruijters et al., 

2009). 

Regarding the evaluation of registration, most of 3D/2D coronary registration studies in the 

literature used clinical data (e.g., Baka et al., 2013; Metz et al., 2011, 2013; Metz, Schaap, 

Klein, Neefjes, et al., 2009; Metz, Schaap, Klein, Weustink, et al., 2009), and some used both 

clinical and computer simulated data (Baka et al., 2014; Rivest-Hénault et al., 2012; Ruijters et 
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al., 2009). Turgeon et al. (2005) considered computer simulated data generated from an 

excised human heart and Aksoy et al.(2013) considered images from a phantom vessel but also 

clinical data. Even though visual inspection was considered (Aksoy et al., 2013; Ruijters et al., 

2009), a quantitative evaluation was performed by all authors mentioned. Some computed 3D 

registration errors, but generally the evaluation metric was based on the projection distance 

(Van De Kraats et al., 2005), i.e. a 2D distance between the projection of a 3D centerline (from 

CTA or CTA model) at registration position, and the projection of the same centerline at gold 

standard position. For clinical validation, vessel centerlines were manually annotated on X-rays 

and served as the ground truth, rather than building a gold standard system to compute the 

ground truth transformation as we did and present in this work. 

Some authors considered non-rigid registration in temporal and spatial domain caused by 

cardiac and respiratory motion (Baka et al., 2013, 2014; Metz et al., 2011, 2013; Rivest-Hénault 

et al., 2012) or rigid registration at multiple points in the cardiac cycle (Metz, Schaap, Klein, 

Neefjes, et al., 2009). Other authors presented rigid solutions where coronary matching was 

performed in images acquired at one point in the cardiac cycle, i.e. at the same cardiac phase 

(Metz et al., 2009; Ruijters et al., 2009; Turgeon et al., 2005); a recent work developed a rigid 

method without having this source of temporal misalignment into account (Aksoy et al., 2013). 

Similarly to other authors (Metz et al., 2009; Ruijters et al., 2009; Turgeon et al., 2005), we 

registered coronary CTA to X-ray angiography considering a rigid transformation. The presence 

of non-rigid deformations due to cardiac and respiratory motion is thus neglected. However, we 

took this into account when creating the gold standard, by selecting the X-ray time frame that 

most accurately matched the CTA-derived coronary artery model for further registration 

experiments. This manual selection would have to be replaced by an automated procedure 

when implementing this method in clinical practice. 

Note that in principle the registration-by-regression method could be extended to a non-rigid 

registration. For instance, instead of computing the features on the entire images, we could 

divide the images and compute the features on small patches, i.e. on small sub-blocks of the 

images. This could be an interesting direction for future research, and could be of interest also 

for several image registration applications other than the currently studied. 

A final limitation of this experiment is related to the tuning of parameters. The topology of 

MLPs for all transformation parameters was obtained by a tuning process performed only for 

one of the transformation parameters. This procedure was motivated by time constraints since, 

for features in the principal components space, we tried different cumulative percentage 

variances and for each of those we still tried different numbers of hidden units. A better 

solution might be obtained by doing an exhaustive search for all parameters.  
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5 Conclusion 

We performed the interpolation of real X-rays with the regression model obtained by a set of 

DRRs in order to integrate 3D CTA with X-rays angiographies. For the registration-by-regression 

method we searched for an adequate feature set, which means a good learning (attaining an 

accurate model) and, simultaneously, to be robust enough to deal with the inherent 

differences between real and simulated. The information introduced into the regression model, 

by features like moments, allowed a very good learning and an accurate training performance. 

However, they are not adequate for the registration of the X-ray images. On the contrary, 

features like eigenvectors had a robust behavior to the differences between simulated and real 

images, but they did not contain sufficient information for a good learning. 

Thorough quantitative validation of a registration method is essential for clinical usage. The 

accuracy assessment requires the knowledge of a gold standard or ground truth registration, 

which is difficult to achieve with clinical images (Hawkes, 2001). The construction of a gold 

standard for registration of 3D CTA with 2D X-ray of the coronary arteries was an important 

contribution of this work. 

The registration-by-regression method for the automatic integration of coronary CTA with X-ray 

angiographies was not highly accurate with the tested feature sets (the best one with a median 

mTRE of 15mm). It does therefore not provide yet a complete solution to the problem but it 

could be an initialization solution to replace the need of manual initialization. More research 

into novel and robust image features is needed to make the framework suitable for clinical 

practice. Interesting directions to explore could be the use of vessels’ centerlines and vessels’ 

skeletons (Elizabeth Bullitt et al., 1999). The recent works of Chou, Frederick, Mageras, & 

Chang (2013) and Chou & Pizer (2013) also suggest some interesting strategies to improve 

accuracy, like multi-scale regressions by a “hierarchical training” (i.e. large to small scales of 

transformation ranges for training), and correction of intensity differences between simulated 

and real images by histogram matching.  

Additionally, it would be interesting to test the registration-by-regression framework in other 

applications, where training data is available that is representative for the test data. Some 

examples are 3D/2D registration for image-guided needle biopsy interventions in the spine (van 

de Kraats, 2005; van de Kraats et al., 2006) and motion estimation from real-time image 

streams (Luca, Tanner, & Székely, 2012). 
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Appendix D 

  

X-ray 1 

  

X-ray 2 

  

X-ray 3.1 

Figure D.12 Best (left) and worst (right) alignments according to the ranking established for time-
sequences 1, 2 and 3.1. The images are X-ray frames with manual annotated centerline in green and the 
closest projected centreline in pink.  
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X-ray 4.1 

  

X-ray 4.2 

  

X-ray 5 

Figure D.13 Best (left) and worst (right) alignments according to the ranking established for time-
sequences 4.1, 4.2 and 5. The images are X-ray frames with manual annotated centerline in green and the 
closest projected centreline in pink.  
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X-ray 6 

  

X-ray 7 

Figure D.14 Best (left) and worst (right) alignments according to the ranking established for time-
sequences 6 and 7. The images are X-ray frames with manual annotated centerline in green and the 
closest projected centreline in pink.  
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Appendix E 

 

  

(S1) 

  

(S2) 

(a) (b) (c) 

Figure E.15 Background subtraction with the average of the image backgrounds (S1) and with 
the average of entire images (S2), for the x-ray 3.1: (a) original x-ray, (b) average over time, 
(c) resulting subtracted image. 

 

 

 

  

(S1) 

  

(S2) 

(a) (b) (c) 

Figure E.16 Background subtraction with the average of the image backgrounds (S1) and with 
the average of entire images (S2), for the x-ray 3.2: (a) original x-ray, (b) average over time, 
(c) resulting subtracted image. 
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(S1) 

  

(S2) 

(a) (b) (c) 

Figure E.17 Background subtraction with the average of the image backgrounds (S1) and with 
the average of entire images (S2), for the x-ray 4.1: (a) original x-ray, (b) average over time, 
(c) resulting subtracted image. 

 

 

 

  

(S1) 

  

(S2) 

(a) (b) (c) 

Figure E.18 Background subtraction with the average of the image backgrounds (S1) and with 
the average of entire images (S2), for the x-ray 4.2: (a) original x-ray, (b) average over time, 
(c) resulting subtracted image. 
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(S1) 

  

(S2) 

(a) (b) (c) 

Figure E.19 Background subtraction with the average of the image backgrounds (S1) and with 
the average of entire images (S2), for the x-ray 5: (a) original x-ray, (b) average over time, (c) 
resulting subtracted image. 

 

 

 

  

(S1) 

  

(S2) 

(a) (b) (c) 

Figure E.20 Background subtraction with the average of the image backgrounds (S1) and with 
the average of entire images (S2), for the x-ray 6: (a) original x-ray, (b) average over time, (c) 
resulting subtracted image. 



166 

  



167 

Appendix F 

 

 

X-ray 2 

 

X-ray 3.1 

 

X-ray 3.2 

 

(1)  (2)  (3) 

Figure F.21 Manual mask (1), automatic mask corresponding to threshold t1 (2) and automatic mask 
corresponding to threshold t2 (3) for x-rays 2, 3.1 and 3.2. 
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X-ray 4.1 

 

X-ray 4.2 

 

X-ray 5 

 

X-ray 6 

 

(1)  (2)  (3) 

Figure F.22 Manual mask (1), automatic mask corresponding to threshold t1 (2) and automatic mask 
corresponding to threshold t2 (3) for x-rays 4.1, 4.2, 5 and 6. 
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Appendix G 

  

X-ray 3.1 X-ray 3.2 

  

X-ray 4.1 X-ray 4.2 

  

X-ray 5 X-ray 6 

Figure F.23 Manual masks (colour lines) on images after background subtraction for the x-rays indicated. 
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Appendix H 

 

Figure H.16 Vessel segmentation results for X-ray 2 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  
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Figure H.17 Vessel segmentation results for X-ray 3.1 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  
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Figure H.18 Vessel segmentation results for X-ray 3.2 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  
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Figure H.19 Vessel segmentation results for X-ray 4.1 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  
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Figure H.20 Vessel segmentation results for X-ray 4.2 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  
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Figure H.21 Vessel segmentation results for X-ray 5 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  
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Figure H.22 Vessel segmentation results for X-ray 6 in coloured scale, considering the different 
combinations used: columns (1,2,3) correspond to the mask options and rows (A,B,C,D) to the intensity 
values of pixels within the masks.  

 


