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Abstract

Cardiovascular disease (CVD) is one of the leading causes of death and

disability in the UK. There is therefore much interest in the early staging

of CVD to help improve patient outcomes through long-term treatments.

Whole-body magnetic resonance angiography (WBMRA) offers a quan-

titative assessment of whole body arterial atheromatous disease burden,

making it a useful diagnostic tool for CVD. However the large datasets

produced are very labour-intensive to examine, and there is an unmet

need for automated software tools to help clinicians with their diagnoses.

Towards this goal, this thesis proposes an automatic framework for the

processing and analysis of WBMRA data for grading stenoses. This in-

cludes registration of pre- and post-contrast volumes, automatic vessel

segmentation and tracking, and the measurement and grading of tracked

vessels.

We present the first quantitative comparison of vessel segmentation

techniques for WBMRA data, comparing five different algorithms using 3

ground truth vessel maps annotated manually following a clear protocol.

We find that a U-Net convolutional neural network algorithm outper-

forms previous, well established algorithms despite the limited amount

of training data.

To enable the development and validation of stenosis grading algo-

rithms, we also gathered ground truth stenosis annotations for 18 patients

with three trained clinicians. A thorough analysis of the inter- and intra-

rater variability revealed a higher disagreement between annotators than

expected for manually detecting and grading stenoses, which is largely

unexamined in the literature. The development of clear protocols for the

collection of this ground truth data, in close collaboration with clinical

partners, enables us to present good-practice guidelines for ground truth

collection from WBMRA data for algorithm development.

Finally, we present three stenosis detection algorithms tested against

synthetic vessels and well-characterised ground truth stenosis annota-

tions.
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Chapter 1

Introduction

This thesis focusses on the automated analysis of arteries in whole-body

magnetic resonance angiography (WBMRA) data, with the particular

aim of developing a system to assist clinicians diagnose stenoses in the

arterial lumen. This work was funded by Medical Research Scotland

and Toshiba Medical Visualization Systems Europe (now Canon Medical

Research Europe Ltd.), with the work carried out in collaboration with

Canon Medical and the Cardiovascular and Diabetes Medicine group at

Ninewells Hospital, Dundee, UK. Canon provided technical assistance

and training, with 12 months spent on placement within the company

over the course of the project, and the clinical team providing patient

data and ground truth annotation expertise.

In this chapter we will cover the background and motivation for arte-

rial analysis in WBMRA, from both a clinical and technical perspective,

before summarising the key contributions of this thesis and concluding

with an overview of the thesis organisation.

1.1 Background and Motivation

Each year cardiovascular disease (CVD) causes over 3.9 million deaths

in Europe; accounting for 45% of all deaths [10]. CVD is also the main

cause of death in men in all but 12 countries of Europe and is the main

cause of death in women in all but two countries. This places a large

burden on society, with an estimated cost to the EU economy of almost

e210 billion a year due to health care costs, productivity losses and the

informal care of people with CVD [10]. There is therefore much interest

in the early staging of CVD (identifying its severity and distribution,

similar to the grading of cancer) to improve patient outcomes through

long-term lifestyle changes and treatments.

1



Chapter 1. Introduction 2
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Figure 1.1 – Schematic of the contrast bolus tracking technique, where
the image is acquired as the contrast bolus (shown in white) passes
through the plane of interest (black dashed lines), generating high con-
trast in the vessel lumen (shown in light grey). (Adapted from [1])

Major adverse cardiovascular events (MACE) is a composite endpoint

with varying definitions which is commonly used in cardiovascular re-

search, and generally encompasses nonfatal stroke, nonfatal myocardial

infarction, and cardiovascular death [11]. Whole-body magnetic reso-

nance angiography (WBMRA), sometimes called whole body cardiovas-

cular magnetic resonance angiography (WB-CMRA), offers a quantita-

tive assessment of whole body arterial atheromatous disease burden in

a single non-invasive imaging study. It has been shown to be an effec-

tive tool for the stratification of cardiovascular disease [3], with Total

Atherosclerotic Score (TAS — a measurement of the overall atheroscle-

rotic burden of the arterial tree derived from the severity scoring of 26

main arteries) serving as a risk predictor of MACE independent of major

cardiovascular risk factors [12].

This validated quantitative score of whole body atheroma burden and

individual arterial disease sites allows identification of patients by site,

overall severity and burden of disease, and by the likelihood of rapidly

progressive disease which could guide clinical management planning. The

use of the whole body approach in case selection can aid in determining

which site may be most likely to show a beneficial effect of interven-

tion such as revascularisation or medical therapy, and aids in detecting

patients with more rapidly progressive disease.

1.1.1 Imaging Modality

In contrast-enhanced Magnetic Resonance Angiography (CEMRA), the

contrast in the arterial lumen is enhanced by injecting a contrast agent

into a vein in the arm and acquiring images using an MRI scanner as the

agent passes through the arteries of interest [1]. This technique gener-
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Figure 1.2 – (L) Schematic of WBMRA acquisition, showing image vol-
umes acquired at different stations with the patient table moved between
each scan [2]. (R) Example stitched image showing how the field-of-view
of each station. (Source: [3])

ates high contrast in the lumen (the channel where the blood is flowing),

providing a non-invasive, comprehensive imaging method for assessing

cardiovascular disease (CVD) throughout the entire body [13]. The crit-

ical factor in generating high contrast is to time the scan acquisition to

coincide with the peak contrast agent concentration in the area of inter-

est (Figure 1.1). The duration of the bolus peak may be less than the

duration of the sequence itself due to dispersion over time, with a previ-

ous study showing a peak time of just 7 – 13 seconds in the aorta [14]. If

the scan is mistimed this can lead to either poor arterial enhancement if

the scan is too early (often an issue in the extremities of the legs where

the optimal timing becomes harder to predict), or unwanted venous en-

hancement if it is triggered too late, leading to spurious enhanced vessels

in the dataset which are hard to distinguish from arteries.

Whole body scans are acquired in a number of stages, or body seg-

ments (head, abdomen, legs, feet), with the patient table moved between

each scan (Figure 1.2). The individual volumes can then be stitched to-

gether to give an overall view of the entire body. Typically two scans of

patient are acquired, pre- and post-contrast injection, allowing the two

to be subtracted to suppress static tissues and make the vessels more

easily observable.

The main challenge of these studies is the large imaging dataset which

is clinically time-consuming to examine manually in detail. The devel-
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opment of robust, automated quantitative analysis tools to help stage

CVD from WBMRA examinations and aid reporting of WBMRA —

something which is not currently satisfied by any existing software solu-

tion — would significantly assist in the clinical workflow and encourage

more widespread adoption of this technique for CVD assessment.

1.1.2 Example Clinical Diagnostic Workflow

The general outline of the typical diagnosis protocol at Ninewells Hospital

for CVD using MRA, from when the patient is admitted to the hospital

until the decision for treatment and/or intervention is made, is as follows:

1. The patient is referred to a radiology department with recorded

symptoms and request for a diagnostic scan.

2. A consultant radiologist determines the optimal scan routine to be

carried out based on symptoms and suspected diagnosis (such as

contrast-enhanced MRA for CVD quantification).

3. The patient is booked for a scan, which is performed using the

recommended scan routine.

4. The resulting data volumes are inspected by a qualified radiologist

for signs of CVD. This is typically done manually by examining

slice-by-slice in the axial, sagittal and coronal directions, with nar-

rowings in the lumen quantified by eye.

5. Results of the MRA assessment is discussed at a Multidisciplinary

Team Meeting (MDT), where treatment and possible intervention

is decided.

1.1.3 Existing Software Solutions

A number of commercial systems exist which aim to assist the diagnostic

process by providing semi-automated tools for vascular segmentation and

stenosis assessment:

Withinsight Automation Framework by Claron Technology Inc. [15],

a multi-modality tool offering atlas-driven segmentation and anal-

ysis and automatic whole-body vessel extraction.

COR Analyzer by Rcadia [16], a system for analysing Coronary CT

Angiography (cCTA) studies to identify significant stenotic lesions



Chapter 1. Introduction 5

in the coronary arteries, and has been given FDA clearance for

ruling out Coronary Artery Disease in coronary branch vessels.

VesselMASS RE by Medis Specials [17], a research tool for quantifying

vessel wall dimensions and plaque composition from MR images.

All of these typically require a high level of manual intervention and

user training, and the quantification tools may be restricted to certain

areas of the body. So whilst there have been a number of publications

relating to these tools, their use is still largely limited to providing a

decision aid as a second reader [18, 19], and they have seen very limited

adoption into clinical and diagnostic settings.

The focus of our work presented here was therefore to develop a fully

automated framework, requiring no manual intervention at any stage of

the pipeline, which both segments the full arterial tree from WBMRA

examinations and detects areas of stenosis within it. This framework was

developed in close collaboration with clinicians, guided by the demands

of the diagnostic task.

1.2 Contributions

In this thesis we put forward a fully automated framework for the process-

ing and analysis of WBMRA data for grading stenoses. We contribute

to the existing literature of automated analysis of WBMRA through

the quantitative comparison of vessel segmentation techniques, validated

against manual ground truth, and through quantifying the inter- and

intra-observer variability of manual stenosis grading by trained observers,

providing a clear protocol and recommended guidelines for collecting an-

notations to be used as ground truth data for algorithm development.

The key contributions of this thesis can be summarised as follows,

1. First quantitative comparison of vessel segmentation techniques for

WBMRA data, including the first application of a 3D convolutional

neural network to the task of automatic vessel segmentation in

WBMRA.

2. Quantification of the inter-observer variability for the task of man-

ually detecting and grading stenoses from WBMRA examinations

by trained clinicians.

3. Development of clear protocols for the collection of ground truth

data for vessel segmentation and stenosis severity in WBMRA vol-
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umes, putting forward good-practice guidelines for ground truth

collection from WBMRA data for algorithm development.

4. First fully automated framework for extracting and analysing arter-

ies in WBMRA examinations to be tested against well-characterised

ground truth stenosis annotations in real patient data.

1.3 Thesis Organisation

Figure 1.3 shows a schematic overview of the thesis as it relates to the

developed processing pipeline.

Chapter 2: Related Work. We review work related to the clinical use

of WBMRA for CVD diagnosis, with a concise review of technical

approaches to WBMRA analysis.

Chapter 3: Clinical and Technical Motivation. We first describe a

typical workflow which is followed when examining WBMRA data

clinically. We then describe a “paper-prototyping” exercise under-

taken in close collaboration with clinicians, which highlights the

clinical demands required of a diagnostic tool and the technical de-

velopments which must be pursued in order to fulfil that unmet

demand.

Chapter 4: Materials and Preprocessing Methods. We describe the

image data used in our work, and any preprocessing methods which

were common to all experiments using the data.

Chapter 5: Data Pre-Processing and Baseline Method Evalua-

tion. Here we examine the baseline pipeline on which this project

builds. This includes a qualitative comparison of two off-the-shelf

volume registration methods, and evaluation of a vessel calibre mea-

surement algorithm as described in [9].

Chapter 6: Automatic 3D Vessel Segmentation. We present the

first quantitative comparison of vessel segmentation methods for

WBMRA data, comparing three previous approaches with our own

3D Convnet and 2D U-Net algorithms.

Chapter 7: Ground Truth Stenosis Assessments and Variabil-

ity Analysis. The data collection exercise undertaken to collect

ground truth stenosis annotations is analysed in detail here. We
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describe the protocol developed, and examine the statistical dif-

ferences between annotators and the impact this may have on any

algorithms developed using such data.

Chapter 8: Automated Stenosis Grading. This chapter presents the

results of applying our developed pipeline, as described through-

out preceding chapters, to the task of detecting and quantifying

stenoses. We then present three stenosis detection algorithms, ap-

plied firstly to a large number of synthetic vessels with artificial

stenoses of known severity, then to the real data described in Chap-

ter 7.

Chapter 9: Conclusions, Discussion, and Future Work. The final

chapter summarises the main conclusions of this work, and suggests

future directions to be explored in order to build upon the results

we have presented.



Chapter 2

Related Work

2.1 Introduction

There exists a substantial volume of literature dedicated to the gen-

eral task of extracting and measuring vessel-like structures in volumetric

datasets [20,21]. This stems from the fact that many techniques, despite

having modality-dependant aspects, can generally be applied to many

modalities. As such, methods developed for CTA can typically be ap-

plied to MRA, with some techniques being 3D extensions of previously

derived 2D techniques from other areas. In this chapter we will there-

fore focus on the main areas relating to the technical work carried out in

developing our processing pipeline and algorithms.

We will begin with a brief discussion of the imaging modality of

WBMRA, how it is used for CVD quantification, and the importance

of ground truth annotations for algorithm development. We will then

examine three key areas central to developing our automated framework;

vessel segmentation, centreline extraction and vessel calibre measure-

ment. Finally we will examine the task of stenosis detection using these

techniques.

This chapter aims to give an overview of the current literature relating

to vascular analysis in WBMRA. Detailed descriptions of the techniques

used in our technical developments will be reserved for their appropriate

chapters.

9
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2.2 WBMRA for Cardiovascular Risk

Assessment

2.2.1 Imaging Modality: WBMRA

MRA is a non-invasive imaging modality that has been widely used for

stenosis detection and screening [22–24]. Early diagnosis of secondary

complications from, and better treatment planning of, Diabetes Mellitus

(DM) is also an area of active interest [25]. Indeed, it has recently been

shown that Whole-Body MRA can provide long-term prognostic infor-

mation regarding future cardiovascular events in patients with DM [26].

One of the major interests in future applications of WBMRA is the

potential for screening asymptomatic populations [25], where the use of

no ionizing radiation makes it safe and non-invasive, and scan times of

around an hour gives good patient tolerance. There are however cost-

effectiveness concerns for screening due to low expected prevalence of

significant cardiovascular pathology in asymptomatic populations, and

the fact that the large datasets are labour-intensive (and therefore ex-

pensive) to examine [25].

The image contrast in an MRA image is highly dependant on the

pulse sequence used, and the greylevel values in the image are therefore

not directly relatable to a physical property of the object, as in X-Ray

CT for example [27]. There are also a number of artefacts common

to all MRI techniques, such as bias field, close proximity to receiver

coils (particularly in the legs) causing signal loss, patient movement,

etc. [27], in addition to artefacts specific to WBMRA. For example the

multi-station technique requires acquisition from several discrete, easy-

to-overlap FOVs, so gradient distortions on the margins of the individual

FOVs can potentially lead to discontinuity artefacts [2].

2.2.2 Cardiovascular Risk Assessment

CVD is a broad term that encompasses four conditions [28],

1. Coronary heart disease: occurs when the blood flow to the heart

is restricted due to a build-up of fatty substances in the coronary

arteries.

2. Stroke: occurs when the blood supply to a region of the brain is

impeded and is a medical emergency.
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3. Peripheral arterial disease (or peripheral vascular disease): occurs

when the blood supply to the limbs becomes restricted.

4. Aortic disease: occurs when the aorta swells causing an aneurysm.

The most common is an abdominal aortic aneurysm (AAA) often

diagnosed by an ultrasound scan.

CVD risk assessments are typically carried out for the most at-risk

age group of the over 40 – 79. Initially, the risk of CVD is estimated

using the person’s age, sex, ethnicity, family history of CVD, blood pres-

sure, level of cholesterol, blood sugar levels, physical activity levels and

whether or not they are a smoker [28]. Guidelines vary, but the Amer-

ican College of Cardiology recommends calculating the 10-year risk for

heart disease every 4 – 6 years in patients 20 – 79 years old who are

free from heart disease and 30-year risk of developing heart disease for

patients 20 – 59 years of age who are free of heart disease and are not

at high short-term risk for heart disease [29]. This is so that effective

long-term lifestyle and dietary treatments can be recommended early to

reduce risk factors where needed. For patients older than 79 years of

age without known CVD, it is recommended to discuss ongoing risks and

benefits of primary preventive therapies where needed, as it is unknown

at what age periodic risk assessment should no longer be performed due

to many of the validated risk models only including patients up to 79

years of age [29].

The presence of peripheral arterial disease (PAD) is often a pre-cursor

to other cardiovascular conditions, such as coronary heart, disease, stroke

and aortic disease. Peripheral arterial disease is typically diagnosed via

a physical examination by a general practitioner. The ankle brachial

pressure index (ABPI) is often used to diagnose PAD and is calculated

by comparing the blood pressure in the upper arm and the ankles [30].

If the patient has PAD the blood pressure in the ankle will be lower

due to the obstructions to the blood flow. Further testing by means of

a radiology scan (MRA or CTA) may be required if, for example, the

ABPI score is normal but the patient expresses PAD symptoms or the

arterial disease is so advanced that it requires surgical intervention.

Atherosclerosis is a systemic disease, thus absence of plaque in one ter-

ritory cannot be equated to absence of plaque in another [31]. WBMRA

offers a systemic quantification of the global atherosclerosis burden within

the body, and the atheroma score from WBMRA has been shown to

correlate well with traditional cardiac risk factors, the prevalence of ob-
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structive coronary artery disease and future major adverse cardiovascular

events [31–33].

2.2.3 Ground Truth Annotations

One key issue which is central to all areas of medical image analysis is

that of obtaining ground truth annotations. Knowing the underlying

truth, whether it be the true medial axis of a vessel or the location

of a stenotic lesion, is essential for the development and validation of

image processing algorithms. However, there are often a number of issues

which complicate this process. The acquisition of such annotations is

typically very time consuming, and for many tasks it may be prohibitively

expensive or even not entirely possible to acquire the actual gold standard

labels for training [34]. There is also often significant inter- and intra-

observer variability, even between experienced clinicians [35, 36]. This

can place constraints on the accuracy of a potential algorithm due to

either lack of training data, or because there is no accurate consensus on

which to validate the algorithm’s performance.

A number of attempts have been made to tackle these issues. In the

case where there is a lack of a gold standard ground truth and instead

there are multiple noisy labels provided by multiple annotators, between

whom there may be significant disagreement, a probabilistic approach

has been put forward for supervised learning [34]. In [34] a Bayesian

framework is used to create an algorithm which iteratively establishes

a particular gold standard, measures the performance of the annotators

given that gold standard, and then refines the gold standard based on

certain performance measures, the results of which proved superior to

the commonly used majority voting baseline [34]. Another approach

has involved using deep learning to determine the spatial image features

needed for training a supervised classifier from a large amount of un-

labelled data [35]. An approach developed at tackling the issue of the

time and cost involved in gathering ground truth is to use a large num-

ber of annotations gathered from non-expert volunteers [37, 38], where

it has been found that for some applications label noise can be com-

pensated by a sufficiently large corpus of training data [39]. However,

these approaches must achieve high reliability to meet the definition of

“ground truth” [40, 41]. There has also been recent work focussed on

the automatic generation of annotations for non-medical classifiers with

large numbers of classes [42], and there is growing interest within the

medical image analysis community for techniques which allow a drastic



Chapter 2. Related Work 13

reduction to the typical number of annotations required at a parity of

performance [43].

2.3 Vascular Analysis

In this section we will discuss the methods used in the two key steps

of most vascular analysis frameworks; vessel segmentation followed by

vessel tracking via centrelines.

2.3.1 Vessel Segmentation

When using a subtracted CEMRA dataset, the first stage is often to

enhance the vessel-like structures within the data. This has the effect

of not only enhancing the structures of interest, but also suppressing

the signal from other anatomical features which aren’t of interest (e.g.

artefacts left after subtraction due to motion in the abdominal cavity).

One common technique employed is to look at the local curvature

by analysing the Hessian (local second derivative) [44, 45]. The main

concept underpinning eigenvalue analysis of the Hessian is to extract the

principal directions in which the local second order structure of the image

can be decomposed. From this, the direction of smallest curvature (along

the vessel) can be determined. For the application of enhancing vessels

in a 3D angiographic dataset, a “vesselness” measure is analysed at dif-

ferent scales, defined as a combination of three measures which differen-

tiate between blob-like structures, plate-like structures, and background

noise [44]. The response of this filter will be maximum at a scale which

approximately matches the size of the vessel being analysed. Therefore,

the final enhanced map is generated by integrating the vesselness mea-

sure provided by the filter response at different scales, which can then be

thresholded to produce a binary vessel tree.

Despite being a well established tool in both 2D and 3D vascular anal-

ysis, the multi-scale Frangi vesselness filter described above does have

some drawbacks. The main issue is that because it is only concerned

with elongated vessel-like structures it tends to give a weak response

around vessel junctions and bifurcations, often resulting in disconnected

branches [46]. Some recent work has been targeted at improving this

limitation in the case of 2D imaging using multi-scale invertible orien-

tation scores, obtained by correlating the input image with a specially

designed anisotropic wavelet, and applying the vesselness filters in this

domain [47]. Other filters have also been developed for the same purpose
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such as Optimally Oriented Flux (OOF), first reported in [48], which

evaluates a scalar measure of the flux flowing through a spherical sur-

face. Before computing this value, directional information is extracted

by projecting the gradient along “optimal” axes, and the flux then evalu-

ated. For each voxel a sphere with variable radius is built, centred on the

voxel, which produces an “OOF response” when touching an object edge,

and giving a positive response when inside a curvilinear structure. As

with Frangi, the goal is to obtain the principal eigenvalues for each voxel;

an enhanced map is obtained by the maximum response of the OOF fil-

ter evaluated at appropriate range of scales. This approach was found

to give a more robust enhancement of vessel like structures in medical

images, particularly around vessel junctions [49].

Another approach has been explored in the area of vessel enhance-

ment, where scale space theory has be utilised for smoothing and en-

hancing medical images by employing the diffusion equation; the original

image is the initial condition of the function, and the diffusion function

is specified either as scalar or tensor based. One such approach devel-

oped for MRA is based on the combination of a non-linear diffusion filter

with and Expectation Maximization (EM) technique. The non-linear

diffusion filter smooths the homogeneous regions while preserving edges,

whilst the EM technique finds the optimal statistical parameters based

on the probability distribution of the classes to discriminate the tissues

in the image. In this way the optimal contrast for enhancing vessels is

found, smoothing and dimming the embedded tissues around the vessels

while brightening the vessels themselves [50]. This method performed

considerably better than previously used nonlinear diffusion filter ap-

proaches, though a direct comparison with the simpler Frangi filter was

not made [50].

Another commonly used technique for vessel segmentation is the ap-

plication of level sets [51–54]. The key idea of level sets is to transform

the potentially complex evolution of one or multiple curves (e.g. a ves-

sel cross-section) over time, into the zero level of a higher dimensional

surface which evolves based on a potential field (or speed function) [55].

Figure 2.1 shows a schematic of how the surface and zero level set evolves

over time. One of the key advantages of this method is that it can very

easily describe shapes that change topology, e.g. when a shape splits in

two, such as a vessel bifurcation.

Most recent advances in medical image segmentation however have

been focussed on the use of convolutional neural networks. Deep CNN
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Figure 2.1 – Transformation of front motion into the level set frame-
work, where it is now an initial value problem. Here we can see how the
zero level set evolves over time.

approaches have been driving advances in many computer vision tasks,

such as image classification [56,57] and image segmentation [58,59]. Many

network models have been developed for these tasks, and it is a very

active area of research [60]. For medical image segmentation, the most

successful network structures are based on the “U-Net”, first proposed

by Ronneberger et al. [58]. Such deep networks typically require large

amounts of data to be train however, and many methods are developed

primarily for 2D images due to GPU memory constraints, and lack of

public 3D ground truth datasets with which to train. Prior to the work

presented in this thesis, no deep learning methods had been applied to

the task of vascular segmentation in WBMRA.

2.3.2 Vessel Tracking

The extraction of the vessel centrelines is a pre-processing stage which

in the case of three-dimensional angiography aims to reduce the 3D ves-

sel to a simpler one-dimensional representation, while still preserving

its topology. Centrelines are used in a number of applications, such as

registration, anatomical segmentation, stenosis quantification, and visu-

alization and surgery planning (e.g. vessel “fly-throughs” [61]).

The simplest methods rely on a binary segmentation of the vessels,

such from simple thresholding, and define the centrelines as the skeleton

of that image. One approach is to extract the skeleton through topolog-

ical thinning, iteratively removing boundary voxels whose removal does

not alter the object topology (i.e. retains the same connectivity as the

original object and does not introduce any breaks or cavities). One such

algorithm [62] involves first computing the distance transform of the ob-
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Figure 2.2 – Binary segmentation of descending aorta, renal,
and mesenteric arteries, with corresponding subvoxel precise skeleton.
(Source: [4])

ject [63], followed by the divergence of the distance transform gradient

using the average outward flux in the neighbourhood of the voxel. Fi-

nally, the binary image is thinned by removing the simple points ordered

by decreasing divergence. This skeletonization process is not invariant to

the order of the removal, hence the need to remove in the order of decreas-

ing divergence, and is typically followed by a post-processing smoothing

step [62].

One of the common issues encountered with some approaches is their

difficulty in dealing with abrupt variations in local artery direction and

sudden changes of lumen calibre, such as around stenoses. A number

of algorithms therefore make use of additional information, such as the

eigenvalues of the Hessian matrix, in order to identify the true vessel

points more reliably [64,65].

One approach which aims to get around the problem of many algo-

rithms which require a significant amount of user interaction, and also

calculate a discrete and often coarse representation of the vessel by using

a voxel grid, is based on a number of fast marching method propagations

to extract the skeleton at subvoxel precision [4]. By using a level set

method, a subvoxel precise distance field is used as an input, thereby

removing the skeleton from the constraint of being on the voxel grid and

hence generating subvoxel precise centrelines (Figure 2.2).

Finally, some methods also determine the centreline implicitly as part

of the segmentation process, such as in the case of snakes (a form of ac-
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Figure 2.3 – Finding the centreline of the vessel by region growing with
a volumetric limitation. (Source: [5])

tive contour) [5]. Here the lumen is segmented through iterative region

growing, constraining both the number of voxels added in each iteration

and limiting the data range to the expected level of the lumen. The

centre of the volume at each step is taken as a control point for a CR-

spline, eventually approximating the vessel centreline by integrating all

the control points (Figure 2.3). Finally, a second refinement step is used

where additional 2D region growing is applied in the cross-sections per-

pendicular to the extracted centreline, adjusting the control point to the

centre of the segmented area [5].

2.4 Vessel Calibre Measurement and Steno-

sis Estimation

In this section we will discuss the algorithms used for measuring the

calibre of tracked vessels in 3D data, and the methods developed for

detecting potential stenoses from these measurements.

2.4.1 Parametric Model Fitting

Parametric models try to fit a tube-like model into the lumen, exploiting

the fact that vessels are elongated and roughly tubular [66, 67]. These

have been shown to work well on regular and uniform vessels, but not

in the presence of stenoses where the cylindrical model isn’t suited to

picking up subtle calibre variations, and where natural anatomical varia-

tions deviate significantly from a cylinder. These methods also typically

require human intervention to label the start and end points of the vessel,

and to correct the fitting where it falls into a local minima.

One such example is the method for automated segmentation of the

carotid artery lumen from MRA using a deformable tubular 3D Non-
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Figure 2.4 – (a) Failed pathline detection in the presence of a severe
stenosis. The path takes a route around the stenosis, crossing into an-
other close vessel, rather than tracking across the stenosis. (b) even after
an intermediate point (green marker) was added to help the pathline de-
tection, the algorithm still fails to track across the stenosis. (Source: [6])

Uniform Rational B-Splines (NURBS) model, proposed in [6]. Here, a

fast marching level set method was used to determine the centreline along

which the NURBS model was initiated, with a gradient-based energy

minimization iteration scheme being used to deform the tubular model

within the lumen. However, in areas of complex vascular shapes manual

intervention was required to correct the pathline, and in the case of a

severe stenosis even the manual corrections failed to improve the result

(Figure 2.4).

2.4.2 Cross-Section Based Measurements

Cross-section based methods rely on finding the longitudinal axis (the

centreline) of the lumen and obtaining the perpendicular cross-section,

giving the lumen area and calibre at each point along the axis. How-

ever, small errors when estimating the centreline often lead to inaccurate

calibre measurements [68].

A graph-based method has been proposed to find the optimal cross

section boundary for vessel segmentation and stenosis quantification [7].

It was motivated by the problem that centreline-tracing approaches for

vessel segmentation incorporate the radius with the 3D voxel coordinates,

giving an approximate surface of the vessel when the tracking ends. How-

ever, this assumes a circular profile to the vessel which doesn’t hold true

in the presence of stenoses. The approach proposed by Zhu et al. finds

the optimal cross section boundary by transforming the cross section

voxels to nodes on a graph (Figure 2.5), thereby converting the optimal

boundary problem to finding the optimal path in the graph. However, the

orientation of the cross section is still highly dependant on the centreline,
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(a) Cross Section (b) Graph

Figure 2.5 – Transformation of Cross Section to Graph. (Source: [7])

since the vessel direction is calculated from the centreline point minus

the previous centreline point. Also, limited segmentation results have

been shown, with only a single simple phantom and two CT examples.

In these 2D cross-section techniques, the vessel calibre measurement

is calculated as either the diameter of the maximum inscribable circle

within the segmented lumen, or by using the cross-sectional area directly

[69].

2.4.3 GroBa

One method developed with the aim of overcoming some of the short-

comings outlined above is the GroBa technique [9], developed specifically

for MRA data. The key difference as compared to other techniques is the

method by which the vessel calibre is estimated. A “balloon” is initialised

as a single voxel on the centreline, which is grown via binary dilation un-

til either the length is twice the width, or no more neighbouring voxels

can be added. The vessel calibre is then computed from the equation

of a cylinder, using the calculated balloon volume and it’s half-diagonal,

i.e.

v = πr22h (2.1)

r2 = s2 − h2 (2.2)

where r is the unknown cylinder radius, h is the unknown half-height

and s is the known half-diagonal.

The main advantage of this approach is to essentially average over a

small volume of vessel, providing a more stable estimate of the calibre

variation along the vessel in the presence of noise. However the method

was only tested quantitatively against simple synthetic vessel models,

with only a qualitative evaluation of a single WBMRA dataset presented.
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Figure 2.6 – Types of stenosis, as described in [8].

2.4.4 Stenosis Detection

Stenoses can be described as having one of three morphologies as shown in

Figure 2.6 — concentric, eccentric, and multiple irregularities [8]. For our

data volumes all stenoses appear as concentric in all by the largest vessels

(primarily the aorta), due to low effective resolution of the technique as

compared to CTA.

A typical approach for detecting candidate stenoses is to look for local

max-min-max in the vessel calibre measurements, thresholding to remove

the candidates with small radius changes.

In [7], quantification is carried out using the average radius of the

two neighbouring local maxima, Rleft and Rright, assigning a grade based

on the normalised sum of the differences between the average radius of

the neighbouring maxima and each radial length around the optimal

boundary. This attempts to incorporate information about the variance

in shape into the stenotic grade assessment, though no clinical foundation

is provided for this.

Another manual approach is discussed in [69] for detecting cerebral

artery stenoses. Here, vessel diameters measured using a simple cross

section, rotating the vessel manually such that the centreline at the point

of interest runs along the z-axis and the cross section given by the x-y

plane. In the case of multiple intersections, the vessel section of interest is

selected manually. A level set is the fitted to the segmented cross section
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and the enclosed area calculated. Again, this approach requires too much

user interaction, with the interpretation of “healthy” vessel and stenosis

left to the user, so is unsuitable for a fully automated system.

In the case of CTA, where the majority of development has been fo-

cussed due to it being held as the gold standard for stenosis detection,

many algorithms have been developed specifically for the coronary ar-

teries [70]. Here, the best performing approach [53] employed a level set

technique to segment the vessels [71], while using an estimated expec-

tation of the vessel profile combined with a calcium segmentation step

to calculate the vessel narrowing. It was shown that automatic lumen

segmentation is possible with a precision similar to that obtained by ex-

perts, and the stenosis detection stage may be accurate enough to be

used as a “second-reader” in clinical practice. A number of similar ap-

proaches have been proposed for CTA for both semi-automated [72, 73]

and fully automated [18, 74, 75] vessel extraction and stenosis detection

in the coronary or carotid arteries, none of which reach the sensitivity

or specificity of a trained reader. Additional approaches include random

forests [76, 77], spatio-temporal tracking [78], cross-section area [79, 80],

and parametric intensity models [81]. In all cases these have been applied

only to coronary CTA, and to our best knowledge no stenosis detection

algorithms have been previously reported for WBMRA.

A number of commercial systems exist which aim to provide semi-

automated tools for vascular segmentation and stenosis detection, such

as the “Withinsight Automation Framework” by Claron Technology Inc.

[15], “COR Analyzer” by Rcadia [16], and “VesselMASS RE” by Medis

Specials [17]. Whilst there have been a number of publications relating

to these tools, their use is still limited to providing a decision aid as a

second reader or in some cases as a screening tool for ruling out healthy

patients [18,19].

2.5 Conclusions

The task of automatically tracking and measuring vessels is an area of

very active research, however many newly proposed methods still often

require a degree of manual input, or are localised to specific vascular re-

gions, such as the coronary arteries. Many of the published methods of

stenosis detection are also applied only to CTA due to its high resolution

and use clinically as a gold standard for diagnosis. A number of com-

mercial systems are available which offer automated or semi-automated
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tools for segmenting vessels and manually measuring stenoses, though

only one of these systems [15] is compatible with WBMRA. None of the

systems have been shown to offer a sensitivity comparable to a trained

clinician, so are typically used as “second-readers” and decision aids.

We can see WBMRA holds some unique challenges relating to de-

tecting small, localised stenoses in a large arterial tree containing a wide

range of vessel sizes and disease severities. We identified the greatest clin-

ical need which is not currently satisfied by any published methods as

being a fully automated system for identifying potential stenoses from a

WBMRA volume, tested on real patients with well-characterised ground

truth. To meet this aim, we first evaluated the performance of the GroBa

system [9] for extracting and measuring vessels in WBMRA (Chapter 5).

Taking this as our initial framework, we then identified which sections of

the pipeline we would work to improve through a combination of previ-

ously published algorithms and our own methods, in order to create a sys-

tem which could be applied to real patient data. As shown in Figure 1.3,

this resulted in using an improved off-the-shelf registration method de-

veloped by Canon for pre-processing (Chapter 5), the collection of vessel

segmentation ground truth and evaluation of existing segmentation meth-

ods against our own CNNs to improve upon GroBa’s Frangi filtering [44]

approach (Chapter 6), the use of the centreline algorithm described by

Robert Van Uitert et al. [4] which calculates centrelines from the binary

vessel map, developing a new method for tracking and extracting de-

tected vessels (Chapter 8), collecting stenosis ground truth using a well

defined annotation protocol (Chapter 7), and proposing a novel stenosis

measurement algorithm which was tested alongside existing rule-based

methods on our ground truth stenosis examples (Chapter 8).



Chapter 3

Clinical and Technical

Motivation

3.1 Introduction

At the outset of the project we undertook two exercises to both un-

derstand the current clinical practice for examining WBMRA data, and

to identify what the unmet demands are for diagnostic assistance soft-

ware. In this chapter we first discuss the diagnostic workflow employed

at Ninewells Hospital gathered from a shadowing session with one of

our clinical partners during a typical reading session. We then describe a

prototyping exercise that was undertaken in conjunction with our clinical

partners and Canon Medical, aiming to outline a potential final appli-

cation desired by clinicians and the technologies involved. This type of

exercise is often an important step in commercial software development,

laying the groundwork for transferring research out of the lab and into

general practice, and was used here to help target our technical work

towards the main areas needed to meet the clinical demands.

3.2 Typical Clinical Workflow

This section describes the typical diagnostic setup used at Ninewells Hos-

pital when examining WBMRA scans for signs of cardiovascular disease.

The data was collected when shadowing a typical afternoon session with

a trained radiologist, during which a list of patient scans are examined

in sequence.

23
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Figure 3.1 – Mockup of general layout and contents of left & right
monitors.

3.2.1 Computer and Software

Workstation

The workstation used consisted of three monitors; one standard consumer

monitor was used for viewing patient records and selecting scans from

the NHS databases. Two further monitors were used when examining the

scans themselves. These were calibrated widescreen displays, arranged

vertically, and capable of displaying high bit depth greyscale images.

These were viewed in a darkened room to minimise possible reflections.

Software

The software used when viewing the data volumes was Carestream Vue

PACS, running under Windows XP. A java-based program was used for

browsing the datasets and passing them to the viewing software from

linked medical records.

Figure 3.1 shows a mockup of the overall layout of the software across

the two monitors. The left-hand monitor shows the raw data slices of

the post-contrast dataset in the three orthogonal planes. Typically each

separate station for a given patient is loaded and examined in sequence,

not a single stitched volume. The post-contrast dataset is used as the ad-

ditional tissues give useful positional information when viewing isolated

slices.

The coronal, sagittal and axial planes are displayed simultaneously

on the right of the screen, and can be dragged into the main frame

to enlarge as required. The axes of the cutting planes can be moved

and oriented by clicking and dragging the lines in the smaller views to

the desired position/angle, with the brightness and contrast adjusted by
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right-clicking the mouse and dragging (brightness mapped to the x-axis

and contrast to the y-axis).

The right-hand monitor displays the coronal maximum intensity pro-

jection (MIP) of the subtracted dataset, and was used primarily for a

quick initial scan to identify potential problem areas, and for reference

purposes when examining the individual slices on closer detail. It also

gives a quick indication of the overall quality of the scan, clearly showing

any artefacts. This is also important for the final station where there

are typically 3 scans taken due to variances in the timing of the contrast

circulation, with only the best one being selected for examination.

3.2.2 Diagnostic Decision-Making

Each vessel on the main arterial tree is examined in sequence, starting on

the left of the image and following the main arterial path around. The

vessel paths are followed by manually scrolling backwards and forwards

through the data as the vessels move in and out of the given plane. This

is done by eye without the aid of any further measurement tools with

the initial decisions being based purely on training and experience. The

coronal/sagittal planes are oriented to show the vessel longitudinally to

gauge the amount of narrowing, with the cross-section from the axial

plane used for confirmation if needed. The MIP view is often only used

for general location information, except in the case of the calves where

the data can be of lower contrast, and the vessels are of smaller calibre.

Here, the MIPs are often more useful for locating potential stenoses.

Primarily, the vessel “wall” is examined; in practice this refers to the

outer surface of the lumen as the vessel wall itself generates no signal

in MRA (though it can sometimes appear as a dark region around the

vessel depending on the surrounding tissues and size of the vessel — see

Figure 3.2). A healthy vessel exhibits a smooth, continuous surface when

scrolled along the axial direction. Areas of stenosis appear as a disruption

in this surface, eating into the interior of the lumen. The smooth lumen

surface and slowly varying diameter of the vessel are the main features

which are examined visually, with the signal strength itself giving little

information due to variations in intensity from unrelated processes (blood

flow fluctuations, timing errors in tracking the contrast agent circulation,

etc.).

Identified stenoses are assigned a severity grade by eye; these are only

deemed clinically relevant above 50% diameter reduction, where they be-

gin to disrupt the haemodynamics within the vessel. No standardised or
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Figure 3.2 – Example of a grade 1 stenosis in the abdominal aorta.
Shows the characteristic dark vessel wall surrounding the bright lumen,
with the stenosis eating into the interior of the lumen.

widely accepted grading scale exists, with different different methodolo-

gies in use at different sites, sometimes varying between different studies.

The current scale used in a number of clinical studies at Ninewells ranges

from 0–4. with grades cutoffs at 50% for 1, 70-80% for 2, 90-95% for 3,

and 4 for a complete occlusion. Note that for the ground truth gathered

for this project (Chapter 7), a scale ranging from 0–5 (Table 5.2) was

chosen by clinicians due to the desire to detect stenoses before they be-

come haemodynamically relevant, allowing them to be tracked over time

and targeted earlier by existing long-term therapies.

Once detected, a stenosis grade is estimated by eye, looking at the

vessel before and after the stenotic region to determine the expected

width of the vessel. Occluded vessels often demonstrate many additional

small neovascular paths that have formed to bypass the occlusion and

ensure blood perfusion continues through the tissues, and this additional

context is often used to differentiated between a very high grade stenosis

(95%+) and a complete occlusion. Symmetry information from the op-

posite side of the body is also used for areas of complex disease or diffuse

vessel irregularities.

When reporting, the final grade given is based on the most severe

stenosis in that arterial segment, regardless of how many other stenoses

are present. Small arteries off of the main tree are typically not examined

as stenoses in these regions generally have a negligible impact on health

outcomes, since the area is often well supplied by a multitude of these

smaller vessels. Also there will be comparatively fewer vessels supplied
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by that smaller vessel, so there is a much lesser knock-on effect further

down the arterial path.

3.3 “Paper Prototype” of Software Tool

The aim of this prototyping exercise, undertaken with collaboration from

our clinical partners, was to explore what information may be useful to be

presented during the diagnosis process and how this information should

be displayed. For this task we created a “paper prototype”; a mock-up

interface which aims to encapsulate the main functionality of the target

clinical application. This iterative process allows the interface elements to

be rapidly changed and refined, with input from team members spanning

a range of disciplines from Dundee University, Ninewells Hospital and

Canon Medical.

Our approach was to create a mid-fidelity interface [82] in Microsoft

PowerPoint, which allowed interactivity with the main functions of the

envisioned program. We aimed to identify all the image analysis and

visualisation technology required to meet this end goal. Our target was

deliberately ambitious when formulating the target application with clin-

icians, incorporating as many broad features and functionalities as they

felt were needed regardless of whether or not they were feasible within

the scope of this project alone.

3.3.1 Key Features

Figure 3.3 shows example screens from the three main portions of the

developed interface; the patient database browser, MRA data viewer,

and automated CVD assessment window.

Based on our discussions with the clinicians, the following desirable

features and interactive functionalities were identified.

Data Inputs for Processing and/or Visualisation

1. Importing of MRA datasets; whole body (as separate stations), or

region of interest (e.g. run-off studies). 2D slice and 2D MIP views

desired. 3D volume rendering believed to be of limited diagnostic

use in the current clinical workflow.

2. Functionality to view other relevant tests such as blood tests, kid-

ney time-activity curves, etc., in conjunction with the imaging data.

3. Visualise functional data for other regions and/or organs, e.g. car-

diac assessment (perfusion, volumes), in addition to relevant studies
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(c) Automatic Stenosis Assessment

Figure 3.3 – Example screens from the interface prototype of a pro-
posed WBMRA vascular analysis program, showing the patient database
browser, MRA data viewer, and the automated CVD assessment.
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from other imaging modalities, e.g. X-ray CT, carotid vessel wall

thickness measurements from ultrasound, etc.

Display, Functionalities and Interactions

1. Automated WBMRA lumen assessment, with graded stenoses. The

areas examined, and measurements used, should be presented in an

easily readable way for the clinician to confirm.

2. Function to allow the confirmation/alteration/addition of stenosis

scores by clinician, presented as an ordered list with drop-down

menus.

3. Use of the WBMRA MIP image as an interactive navigational tool,

for displaying location of stenoses and possibly pulling up addi-

tional data relevant to the overall diagnosis, e.g. click/tap on kid-

ney to pull up kidney perfusion data.

4. Flexible interface to allow arrangement of data viewer windows as

needed, possibly with different modalities, e.g. viewing MRA and

CTA side-by-side. Current solutions which are available tend to

result in user overload, with too many windows to organise, and

are therefore not often used unless absolutely necessary.

5. Labelling of each stenosis grade on whole body MIP as a different

coloured spot, with the ability to toggle on and off different grades,

and switch between displaying all stenoses and just the worst steno-

sis per artery.

6. Possibility to integrate 3D vessel atlas (e.g. Zygote body model)

as a potential teaching/training aid.

7. Automatically orient data viewer to given stenosis of interest, al-

lowing the clinician to quickly validate the assigned grade without

having to manually locate it in all three axes.

8. 3D volume renders of limited vessels of interest may be useful aid

for surgery planning.

Outputs

1. Automated whole-body CVD assessment, presented as a list of

stenosis grades per artery with confidence levels, verified by clini-

cian.

2. Clinical flags for problem areas which could be tracked over time,

for assessing disease progression.

3. Generate a standardised report, populated by the results of the

program, which can be archived and viewed at a later time.
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4. Archival of automatically generated images of problematic areas

(cross-sections and MIPs) for easy display and discussion at Mul-

tidisciplinary Team Meeting (MDT).

3.3.2 Key Technologies

In order to meet the demands of the clinical tool outlined above, a number

of key technologies were identified. These could be grouped into two

categories; those requiring additional research to realise, and those which

relate to software development.

Software Development

Should a commercial software package be developed for assisting CVD

diagnosis from WBMRA data, the following functionality was highlighted

as being desirable:

1. Data viewer (similar to Canon Medical’s current Voxar3D viewer)

to display slices through the volume with associated interactive

tools (window level adjustment, etc.). Keeping as close as possible

to the current software in use would ease training and encourage

adoption.

2. Display of Curved Planar Reformation (CPR) views for visualisa-

tion of curved vessels in 2D.

3. Possible 3D rendering of segmented lumen for surgery planning.

4. Integration with other databases to access and display other rele-

vant tests to aid with the diagnosis (e.g. blood tests, X-Ray CT

etc.).

Areas of Further Research

The following areas were identified as needing further research in order

to realise the outlined prototype system:

1. An automatic vessel segmentation algorithm, optimised and vali-

dated using WBMRA data.

2. An automated stenosis detection algorithm leveraging either lo-

cal vessel calibre measurement algorithms or appropriate machine

learning techniques, validated against ground truth stenosis mea-

surements.
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3. A vessel landmark atlas for localising and naming vessels, enabling

generated CVD assessment reports with named vessel segments, in-

tegration with teaching aids (such as Zygote model), and potential

improvements to 3D vessel tracking.

Of these, the first two were determined to be the most important to

realise the core functionality of the system (automated stenosis detection

and grading), with the third providing additional features and potential

improvements to existing solutions for vessel tracking.

3.4 Conclusions

In this chapter we have outlined the workflow of a typical WBMRA di-

agnosis session through a shadowing session with a trained radiologist,

examining what decisions are made during the process and how these are

done. Using that information, alongside input from our clinical partners,

we developed a mid-fidelity paper prototype interface in Microsoft Pow-

erpoint of a diagnostic aid which would meet the clinical demands of this

task. Through this exercise of prototyping a user interface for clinicians

we identified a number of visualisation and image analysis technologies

which must be developed and/or refined in order to meet the goal of

aiding the diagnosis and grading of CVD from WBMRA examinations.

One of the most important aspects of such a diagnostic aid, empha-

sised strongly during our meetings with radiologists, is the need for a

fully automated tool. Manual and semi-automatic measurement tools

already exist, but these are rarely if ever used in practice due to the time

pressures of a clinical environment and additional training required, and

are often considered to give limited benefits over estimation by eye.

The key aim for a new diagnostic aid should therefore be to develop

a fully automated system which does not require any user interaction,

and which presents the results to clinicians in an intuitive way, allowing

interaction as needed for modifying or confirming the measured regions

of disease. It is also important that the underlying algorithms have been

throughly validated with well-characterised ground truth data so that

clinicians can be confident in the results presented.

The paper prototyping exercise highlighted a number of areas which

require further research, as detailed in Section 3.3.2. In this thesis we

target the two key research areas which arose; the need for an automatic

vessel segmentation algorithm optimised and validated using WBMRA

data, and an automated stenosis detection algorithm validated against
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ground truth stenosis measurements. To meet these challenges we gath-

ered ground truth segmentation maps (Chapter 6) and ground truth

stenosis annotations (Chapter 7), compared a number of common seg-

mentation techniques alongside bespoke convolutional neural networks

trained for WBMRA vessel segmentation (Chapter 6), and developed

and tested three automated stenosis detection algorithms for assigning

stenosis grades to segmented vessels (Chapter 8).



Chapter 4

Materials and Preprocessing

Methods

4.1 Introduction

Three datasets were used in the experiments presented in this thesis; one

set of raw WBMRA patient scans, and two sets of ground truth data

for technique development and performance analysis. No public datasets

for WBMRA currently exist, so all data used was acquired specifically

for this study or a companion project. This chapter will briefly describe

these datasets, how they were acquired, and what they were used for.

A more thorough description of the protocols used, and analysis of the

data quality and variability, will be provided in their respective chapters

as indicated.

4.2 WBMRA Datasets

For this study a total of 18 patient WBMRA datasets were used; 10 male,

8 female. These were previously acquired as part of the TASCFORCE

project [83] (ethics approval Tayside Committee on Medical Research

Ethics B, 13/07/2007, ref: 07/S1402/42) using a 3.0 Tesla MRI scanner

(Siemens Magnetom Trio), and acquired as 4 separate image volumes,

or “stations”, per patient. Station one comprises the head and neck,

station 2 the thorax and abdomen, station 3 the pelvis and thighs, and

station 4 the feet (see Figure 4.1). In addition, both a “pre-contrast”

and “post-contrast” volume were provided, whereby a gadolinium-based

contrast agent was injected prior to the acquisition of the second volume,

generating high contrast within the arterial lumen.

The datasets themselves were provided as a sequence of coronal slices

33



Chapter 4. Materials and Preprocessing Methods 34

Figure 4.1 – Maximum intensity projections of the four stations of a
typical patient, shown after digital subtraction of the pre-contrast from
the post-contrast volumes.

for each of the 4 stations, in the standard DICOM format. These had a

resolution in the coronal plane of 0.98mm×0.98mm, with a slice spacing

of between 0.98mm – 1.3mm.

The patient cohort consisted of 14 symptomatic peripheral arterial

disease (PAD) patients and 4 healthy volunteers. Patient datasets were

acquired as part of a previous WBMRA study on symptomatic PAD [84],

from which 18 were selected to provide a range of atheroma burden

severities according to a previously assigned standardised atheroma score

(SAS) [85]. All of the selected PAD patients had evidence of atheroscle-

rotic plaques at multiple sites. Healthy volunteers had no previous his-

tory of atherosclerotic disease and matched by age and gender frequencies

to the PAD patients. As the data was acquired for a previous study and

supplied in a fully anonymised state, information such as the age, gender,

etc. of each specific patient was not made available. The authority for

how the data could be handled also lay with the principle investigator of

the original study, and authorisation for releasing the datasets publicly

was not granted.

4.3 Ground Truth Vessel Segmentation

Segmentation ground truth was acquired as part of our project. A manual

segmentation protocol was created and applied to three of the patient

datasets, as described in Chapter 6.

The binary vessel segmentation volumes were saved as tiff stacks with

a separate file for each station, mirroring the structure of the original

data. Figure 4.2 shows the maximum intensity projections of these three

datasets, which were used to optimise and validate a range of segmenta-

tion algorithms as described in Chapter 6.
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Figure 4.2 – Maximum intensity projections of the three ground truth
segmentation sets created for this project.

4.4 Ground Truth Stenosis Assessments

The second ground truth set acquired for this project consisted of steno-

sis severity assessments for our 18 patients. This was done by recruiting

3 trained clinicians to examine 37 pre-defined arteries, assigning them

a score between 0 – 5 based on the maximum reduction in lumen di-

ameter (Figure 4.3). The developed annotation protocol is discussed in

Chapter 7, along with a detailed analysis of the variability discovered be-

tween the three trained annotators, each of whom had different clinical

backgrounds (research, diagnosis, and intervention) which lead to a high

variability in the lowest severity grade in particular. We also discuss the

implications this has for any system using such data as ground truth.

4.5 Data Preprocessing

Three preprocessing steps were applied to the raw patient volumes:

Data Interpolation - The patient volumes had a variable slice thick-

ness of between 0.98mm – 1.3mm.We therefore first applied a linear

interpolation in the slice direction to give an isotropic voxel dimen-

sion of 0.98mm × 0.98mm × 0.98mm. This allowed us to track
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Figure 4.3 – Total number of stenoses found per grade by each rater,
for all 18 patients.

and measure vessels in 3D without any geometric distortions due

to anisotropic voxels.

Volume Registration and Subtraction - Our data consisted of two

scans, a pre- and post-contrast scan, as described in Section 4.2.

Due to the significant scan times, and time between scans, volume

registration had to be applied to correct for any patient motion.

The registered pre-contrast volume was then subtracted from the

post-contrast volume to suppress static tissues. This process is

described in Chapter 5.2.

Voxel Masking - In MRA datasets, slices at the extreme edges of the

volume can typically show a number of artefacts (low signal-to-

noise ratio, intensity artefacts due to phase wrapping, etc.), as well

as being no longer overlapped by the companion scan due to the

registration process. A final artefact correction step was therefore

applied, masking border voxels to remove MR artefacts and tissues

not covered by the pre-contrast volume.

4.6 Conclusions

In this chapter we have described our patient dataset, and the ground

truth datasets used in the validation and testing of our WBMRA process-

ing pipeline. No public WBMRA datasets currently exist, therefore all

three datasets used in our study were acquired by ourselves and our clin-
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ical partners and are not public. A thorough description of the protocols

used, and analysis of the data characteristics, are provided in Chapters 5,

6, and 7. In the next chapter, we will discuss an evaluation of the baseline

methods which our work builds upon.



Chapter 5

Data Pre-Processing and

Baseline Method Evaluation

5.1 Introduction

This chapter will discuss the first experiments undertaken at the be-

ginning of this project. As described previously, the algorithms in our

pipeline are designed to work with digitally subtracted volumes whereby

the pre-contrast volume is subtracted from the post-contrast volume,

suppressing static tissues and leaving only information about where the

injected contrast agent has travelled. Since there is a significant time de-

lay between the two volume acquisitions, a volume registration step must

be carried out in order to minimise artefacts. Therefore, during an initial

industrial placement at Canon an evaluation of two registration software

packages was performed in order to determine which should be used for

this pre-processing stage. The resulting subtracted data is common to

all further experiments in this thesis and will thus be discussed here first

in Section 5.2.

Secondly in this chapter we examine the only previously published

method for automated lumen calibre measurement in WBMRA, set out

by Perez-Rovira et al. in [9]. Taking this method as our baseline, we

evaluate its performance in a range of synthetic tests (Section 5.3.2) in

order to determine its strengths and shortcomings.

38
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(a) Coronal view of without regis-
tration (Station 2)

(b) MIP after Siemens registration
applied

(c) Coronal view of without regis-
tration (Station 4)

(d) MIP after Siemens registration
applied

Figure 5.1 – (a) and (c) show the coronal views of the fused pre- and
post-contrast images, with (b) and (d) showing the coronal MIPs of the
corresponding section in the subtracted WBMRA data using the Siemens
software. Visualisations were created using Canon’s RWS software, with
blue regions in (a) showing areas of higher intensity in the pre-contrast
scan and yellow regions showing higher contrast in the post-contrast scan.

5.2 Data Pre-Processing: Volume Regis-

tration

When combining medical images acquired at different times errors are

typically introduced due to patient movement between the two acqui-

sitions. This can be a significant issue for WBMRA scans, which can

typically take around an hour, with errors caused by accidental motion

— such as the patient relaxing their shoulders or moving their leg — or

unconscious processes such as peristalsis waves in the intestine.

The patient volumes initially provided by Ninewells Hospital had been

processed using a commercial software package provided by the MRI

scanner manufacturer (Siemens). This automatically registers the pre-

contrast volume to the post-contrast volume, subtracts them, and then
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stitches the four stations into a single large volume. No information is

available from Siemens as to the exact algorithms used in their commer-

cial software, however based on the appearance of certain artefacts and

artificial markers inserted into the processed images we believe it to be

based on the method presented by Wachinger et al. in [86].

Figure 5.1 shows an example from stations 2 (abdomen) and 4 (feet)

which exhibit noticeable artefacts. In the left hand images the pre-

contrast dataset has been coloured blue and the post-contrast dataset

coloured yellow, and they are overlaid without any registration applied.

Where the data overlaps correctly, the blended result is greyscale. In this

way, contrast in the arteries shows as bright yellow, and bulk movements

can be visualised as a mirrored blue and yellow halo in the direction of

motion. The right hand images show a MIP of the same station after

registration by the Siemens software.

We can see that the current processing software used does not always

correct for movement accurately; in Figure 5.1a internal motion in the

abdominal cavity and expansion of the bladder leaves residual signal from

the organs in the subtracted dataset, and in Figure 5.1c the patients left

leg moved slightly between acquisitions, leaving a “shell” around the limb

in the subtracted view.

Volume registration for medical images can be a highly complex task,

and has been an area of extensive research for decades [87–91]. In con-

sultation with the clinical team and Ninewells and industry partners at

Canon it was concluded that the since the registration results were good

enough to be used for human diagnosis then any errors were unlikely to

become a limiting factor in our future research, and therefore developing

a bespoke solution should not be an aim of this project. However, it was

recognised that a more accurate registration of the pre-contrast volume

to the post-contrast volume may help reduce the artefacts left after the

subtraction stage, resulting in a cleaner reconstruction. Canon there-

fore provided its own internally developed registration program, named

“tmvsFire”, for comparison. This was a pre-compiled tool for Windows,

run from the command line. No access was given to the source code, so

only the information provided in the company-confidential user report is

detailed here.

This section will describe the qualitative tests carried out on our

WBMRA datasets to compare the performance of these two registration

solutions. Since no registration ground truth exists for our data, the main

focus of the study was to determine which of the two available solutions
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minimised artefacts in the subtracted volumes.

5.2.1 Materials and Methods

Siemens Registration Software

The clinical software in use at Ninewells hospital was provided with the

scanner by its manufacturer, Siemens. It is therefore treated as a black-

box since no information is provided as to the methods or parameters

used.

Canon’s “tmvsFire” Software

tmvsFire is a general purpose Windows command line tool created by

Canon Medical, implementing two registration algorithms; a global, “rigid”

algorithm, correcting for translation, rotation and/or scaling, and a lo-

cal, “non-rigid” algorithm for refining individual voxel positions. These

can be run either singly, or both in combination.

The registration framework is based on the method of Crum et al. [92],

which uses mutual information (MI) [93,94] as both the global similarity

metric and to calculate the forces used to drive a fluid deformation model,

and is combined with the fluid/elastic regularisation framework based on

Gaussian smoothing described by Thirion [95]. This information was

provided by the author of the tool in the user documentation [96], but

no access was given to the source code so this information is quoted here

verbatim and without further extrapolation as the exact implementation

and parameters were not provided.

The tool itself reads regular and enhanced DICOM files, writing the

resulting data as a series of regular format DICOM images. A registration

mask, provided as a bitmap (DICOM, MetaImage, ANALYZE or PGM

formats), can also be used to label voxels that should be ignored during

the registration calculations, such as where motion outside the area of

interest negatively affects the registration of important regions, however

this was found to be unnecessary for our data.

Datasets

As described in Section 4.2, the datasets to be processed consisted of 18

WBMRA datasets consisting of a pre- and post-contrast scan for each of

the 4 stations (head, abdomen, legs, feet). An additional subtracted and

stitched whole-body dataset was created using the standard Siemens re-
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construction software in use at Ninewells Hospital, to which the tmvsFire

results were compared.

Additional Software

MATLAB R2013b was used for creating the subtracted datasets, and

ImageJ 1.47v used for manual inspection of the registered volumes.

5.2.2 Registration Results

Data Preparation

The DICOM datasets used consist of a sequence of coronal slices for

each of the 4 stations, as previously described. When these were initially

supplied, it was found that they were anisotropic, having voxel dimen-

sions of 0.98mm× 0.98mm× 0.98− 1.3mm. As it is preferable to work

with isotropic data for vessel tracking and measurements in 3D, both the

pre- and post-contrast datasets were interpolated to a voxel dimension

of 0.98mm × 0.98mm × 0.98mm before being passed to tmvsFire. The

files processed by the Siemens software remained anisotropic, so were in-

terpolated using the same algorithm in order to be directly comparable

with the tmvsFire results.

tmvsFire Parameters

tmvsFire has a number of parameters that can be altered to change the

behaviour of the registration algorithm. Each parameter also has a built-

in default value, which been previously set empirically by the developer

after testing the algorithm across a range of proprietary X-ray CT and

MRI datasets in Canon’s databases during its development [96].

Listed below are the parameters that could be set at runtime, along

with the default values (shown in square braces):

Histogram Binning

-k — Use k-means binning [0]

Rigid

-R — Rigid registration [1]

-T — Translation limit [0]

-O — Rotation limit [30]

-M — Rigid metric [MI]

-SR — Multiscale (rigid) [(4,2,1)]
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(a) tmvsFire (b) Siemens

Figure 5.2 – Comparison between tmvsFire and Siemens registration
on a patient with significant leg movement between the pre- and post-
contrast scans.

Non-Rigid

-A — Fluid kernel scale-factor [0.95]

-B — Fluid kernel initial SD [19]

-b — Forcefield engine [MI]

-C — Constrain (zero) force field in x,y,z axis [0]

-D — Maximum displacement/iteration [1]

-d — Maximum MI decrease stop criteria [-0.05]

-E — Apply elastic constraint [1]

-L — Average improvement/step limit [-0.05]

-N — Maximum number of iterations [40]

-S — Multiscale (non-rigid) [(8,4,2,1)]

-V — Apply viscous constraint [1]

-Y — Elastic constraint kernel SD [0.05]

-Z — Fluid constraint minimum SD [5]

Figures 5.2 and 5.3 show example results of applying tmvsFire with

the above parameters, registering the pre-contrast to the post-contrast

volumes followed by subtraction of the pre-contrast volume from the post-

contrast volume. Visually, the results of the two programs were found

to be largely comparable across most patients with the main differences

occurring around areas of high motion. Figure 5.2 shows that tmvsFire
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(a) tmvsFire (b) Siemens

Figure 5.3 – Initial results of registering the post-contrast dataset using
default parameters. Subtraction was done using ImageJ, with the levels
adjusted by eye to match those of the stitched WBMRA dataset from
the Siemens software. The bladder (circled in red) is more accurately
registered by tmvsFire using the default settings.

provides a marked improvement around the region of movement in the

legs, reducing the residual artefacts and increasing vessel visibility. Sim-

ilarly, an improvement can be seen around the bladder in Figure 5.3.

The residual artefacts from the motion of the intestine are also slightly

improved in the tmvsFire image, though the kidneys appear similar.

A number of tests were carried out to attempt to optimise the tmvs-

Fire parameters for our particular datasets, however these proved in-

conclusive in the absence of ground truth and attempts to estimate the

quality of registration through metrics such as the number of connected

components in the subtracted volume after applying a threshold did not

offer consistent results across different patients.

Therefore, in the absence of quantitative data showing improvement

across all patients for a given parameter value, the parameters were left at

their recommended defaults. The decision on which algorithm to choose

to pre-process all of our data with therefore focused on a visual inspection

of three key areas which could potentially impact the performance of our

system:

1. Which algorithm leaves the least obtrusive artefacts due to motion?
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Figure 5.4 – MIPs of three stitched datasets, with the red arrows
highlighting stitching artefacts left in the overlap regions by the Siemens
software.

2. Does either algorithm introduce artefacts that affect the appear-

ance or contrast of the vessels themselves?

3. Is there a tangible benefit to using unstitched vs. stitched data?

Figures 5.2 and 5.3 demonstrate that the tmvsFire tool was able to

deal with motion artefacts better, and leave fewer non-arterial residual

signals in the subtracted volumes. A visual inspection of the arteries

in the processed volumes revealed that neither algorithm appeared to

introduce artefacts from registration that affected the arterial contrast.

However, the stitching algorithm used by the Siemens software did

introduce visible artefacts in the overlap regions. In order to connect

vessels between different stations they often have to be warped in the

overlap regions to prevent discontinuities (this can be noted in Figure 5.2,

where the two arteries at the top of each image enter at slightly differ-

ent angles). In the cases where this fails, the misaligned vessels could

introduce an artificial narrowing or occlusion of the vessel. In addition,

the software does not apply any normalisation to the vessel intensities

between stations, often resulting in sudden changes in vessel contrast

between stitched stations. Figure 5.4 highlights examples of these two

vessel artefacts.

5.2.3 Registration Conclusions

During an industrial placement at Canon a limited study was undertaken

to determine which of two volume registration programs should be used
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to pre-process all of our patient data volumes, the tmvsFire tool devel-

oped internally by Canon, or the commercial software used at Ninewells

hospital, supplied by Siemens. In additional to volume registration and

subtraction, the Siemens software incorporated a stitching algorithm to

combine all four stations into a single larger volume.

From the results of applying tmvsFire and the Siemens software to

our patient datasets we discovered that both achieved visually similar

results, with the largest differences being found in motion artefacts in the

abdominal region (station 2) and movement of the extremities (station

4). It was also found that the stitching algorithm of the Siemens software

could distort vessels in the overlap regions and produce sharp intensity

changes between data from different stations. For these reasons it was

decided that all subsequent work should be carried out on unstitched data

processed by the tmvsFire program in order to minimise artefacts in the

subtracted volumes. Registration was applied using tmvsFire with the

parameter values quoted in Section 5.2.2, and the resulting subtracted

volumes used for all experiments described throughout the rest of this

thesis.

5.3 Baseline Lumen Calibre Measurement

System: “GroBa”

Developed at Dundee University, “GroBa” is an automated vessel anal-

ysis and measurement system written in MATLAB [9]. It incorporates

a standard segmentation and vessel tracking pipeline, followed by a 3D

vessel calibre measurement approach based on growing “balloons” within

the segmented vessels, and was developed and validated on synthetic,

idealised vessels and a single WBMRA dataset without ground truth.

As the only system currently developed specifically for whole-body

MRA analysis, this approach was taken as the baseline method from

which we would build. In this chapter we assess the performance of the

system on both synthetic vessels and real data, and discuss a number

of further tests which were carried out to determine potential sources of

error in the approach.

5.3.1 GroBa Overview

GroBa is a lumen calibre measurement technique, based on growing bal-

loons within a segmented vessel. The aim of the technique was to develop
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Figure 5.5 – Schematic overview of GroBa system.

a method which could more easily cope with irregular, non-tubular ves-

sel structures such as stenoses or aneurysms as compared to previous

methods, while still obtaining accurate calibre measurements even in the

presence of noisy or otherwise inaccurate centrelines.

Figure 5.5 shows a general overview of the stages of the automated

system developed in [9], which segments the vasculature, obtains the

corresponding centrelines, measures the lumen calibre throughout each

segmented vessel and finally presents the calibre information as an HSV

(Hue, Saturation, Value) colour-space overlay on the MIP images.

In this section we will describe the methods used for each of these

stages.

Vessel Segmentation

The first stage of the pipeline is segmentation of the vessel lumen, in-

volving enhancement of vessel-like structures through an intermediate

vesselness map, followed by artefact reduction in the form of an abdom-

inal penalisation function and automatic thresholding to generate the

final binary segmentation map.

The method of vessel enhancement chosen was the Hessian analysis

based method developed by Alejandro Frangi [44]. This technique looks

at the local curvature of the image by analysing the Hessian (local sec-

ond derivative) [44, 45], extracting the principal directions in which the

local second order structure of the image can be decomposed through

eigenvalue analysis. From this, the direction of smallest curvature (i.e.

the direction along the vessel) can be determined.

To derive the vesselness function λk is first defined as being the eigen-

value with the k-th smallest magnitude, i.e. (|λ1| ≤ |λ2| ≤ |λ3|). There-

fore, for an ideal tubular structure in a 3D image:



Chapter 5. Data Pre-Processing and Baseline Method Evaluation 48

λ1 λ2 λ3 Orientation Pattern

N N N Noisy, No Preferred Direction

L L H− Plate-like Structure (Bright)

L L H+ Plate-like Structure (Dark)

L H− H− Tubular Structure (Bright)

L H+ H+ Tubular Structure (Dark)

H− H− H− Blob-like Structure (Bright)

H+ H+ H+ Blob-like Structure (Dark)

Table 5.1 – Possible patterns, governed by the value of the λk eigenvalues
(H=High, L=Low, N=Noisy (usually small), +/- indicate the sign of the
eigenvalue).

|λ1| ≈ 0

|λ1| � |λ2| (5.1)

|λ2| ≈ |λ3|

In other words, the curvature should be large in the two directions

(around the circumference of the vessel), and very small along the length

of the vessel. Table 5.1 shows the interpretation of the local structure

given the value of curvature in the three principle directions, with a visual

representation given in Figure 5.6.

In order to differentiate between blob- and plate-like structures, two

dissimilarity measures were proposed [44]

RA =
(Largest cross sectional area)/π

(Largest axis semi-length)2
=
|λ2|
|λ3|

(5.2)

where RA ∈ [0, 1] ⊂ < is the deviation from a plate-like structure, and

RB =
V olume/(4π/3)

(Largest cross sectional area/π)(3/2)
=

|λ1|√
|λ2λ3|

(5.3)

where RB ∈ [0, 1] ⊂ < is the deviation from a blob-like structure.

In order to distinguish geometric structures from simply background

noise a further “second-order structureness” measure was also defined as

S = ||H||F =
√
λ2

1 + λ2
2 + λ2

3 (5.4)
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Figure 5.6 – Isosurface representations of plate-like, line-like, and blob-
like structure, according to Table 5.1.

where ||H||F is the Frobenius matrix norm of the Hessian.

Combining these measures, a vesselness function was derived as being

[44]

V0(s) =


0 if λ2 > 0 or λ3 > 0(

1− exp

(
−R

2
A

2α2

))
exp

(
−R

2
B

2β2

)(
1− exp

(
− S

2

2c2

))
otherwise

(5.5)

where α, β and c are thresholds which control the sensitivity of the line

filter to the measures RA RB and S.

For the application of enhancing vessels in 3D angiographic datasets,

the vesselness measure in Equation (5.5) is analysed at different scales, s.

It logically follows that the response of the line filter will be maximum at

a scale which approximately matches the size of the vessel being analysed.

Therefore, the final estimate of vesselness is obtained by integrating the

vesselness measure provided by the filter response at different scales,

V0(γ) = max
smin≤s≤smax

V0(s, γ) (5.6)

where smin and smax are the minimum and maximum scales at which

relevant structures are expected to be found, chosen so that they cover

the range of relevant vessel widths.

Following the above enhancement procedure, a boost function is ap-
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Figure 5.7 – Visual representation of the “boost” function used for
abdominal suppression and boosting signal in the extremities. (Source:
[9])

plied [9]:

pi = vi

(
w − (w − 1) exp

(
−(x− c)2

2σ2

))
(5.7)

where vi is the vesselness value, w controls the penalisation applied to

the abdominal area and c denotes the centre of the region, of size σ. This

function was used as a method of suppressing residual signals left from

organs in the abdominal cavity after subtraction and correcting for the

loss of signal at the extremities which are typical due to difficulties in

tracking the contrast bolus during the scan (Figure 5.7). The values were

derived empirically by the authors and given as w = 3, c = 0.35, and

σ =
1

6
[9].

Finally, vascular tree is then segmented by applying a simple thresh-

old to this enhanced dataset. Since the whole body scan consists of 4

separate stations, with possible intensity differences due to scan timing,

the lower-leg scan is used to set the threshold value (lowest level of 4

stations), using t = b/3 where b is the max vesselness value.

Vessel Tracking via Centrelines

Arterial tracking in 3D is achieved through calculating the centrelines of

the segmented vessels. Using the previously calculated binary segmenta-

tion, a skeletonisation methodology based on level sets and fast-marching

techniques [4] is applied in order to obtain the corresponding centrelines

with sub-pixel accuracy.

Vessel Calibre Measurement

The GroBa system estimates the lumen calibre at each point along the

centreline using a “balloon-growing” technique. Making the simplifying

assumption that the fully inflated balloon has a cylindrical shape, this

technique iteratively grows a balloon within the segmented vessel until
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Figure 5.8 – Visual representation of the inflated balloon within the
segmented vessel (right). Using the cylindrical assumption the parame-
ters h and r are unknown, while the half-diagonal s and the volume v of
the balloon are known. (Source: [9])

the stopping criterion is reached; the height of the estimated balloon is

equal to twice its calibre.

The process begins by initialising the balloon as a single voxel on

the centreline, which is grown within the segmentation mask via binary

dilation in 1-voxel steps. At each step the diameter and height of the

balloon are estimated. First the position of the most distant voxel from

the balloon centre (i.e. the initial centreline point) is found, and the

euclidean distance between these two points is set as s, corresponding

to the three-dimensional diagonal of the cylindrical balloon (as shown in

Figure 5.8). The balloon diameter is then computed using the equation

of a cylinder and the Pythagoras rule:

v = πr22h (5.8)

r2 = s2 − h2 (5.9)

where v is the known volume (sum of all voxels), r is the unknown cylin-

der radius, h is the unknown half-height and s is the known half-diagonal.

From simple substitution and rearranging we get

v = 2πs2h− 2πh3 (5.10)

where now the only unknown is h, which can be obtained by finding the

roots of Equation (5.11):

− 2πh3 + 2πs2h− v = 0 (5.11)

The calibre of the vessel can then be estimated by assuming the balloon
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at the final iteration approximates a cylinder, and therefore:

calibre = 2

√
v

2πh
(5.12)

The main effect of this approach is to essentially average over a small

local region of the vessel, ensuring a more stable estimate of the calibre

variation along the vessel in the presence of image noise or local arte-

facts. It should also enable more accurate calibre measurements where

the estimated centrelines are noisy or otherwise inaccurate, and better

cope with irregular, non-tubular vessel structures such as stenoses.

Measurement Visualisation

The final step in the presented pipeline is to display the calculated vessel

calibres as an HSV colour overlay on the whole body MIP. This was cho-

sen to theoretically allow easy visualisation of the vessel sizes throughout

the body, with a sudden change in colour hue indicative of a local narrow-

ing of the vessel. However, in our prototyping exercise carried out with

clinicians (Section 3.3) it was found that this type of visualisation was

not useful in a diagnostic setting, with point-markers being preferred, so

we made no further examination or use of this visualisation approach.

5.3.2 GroBa Measurement Tests

Here we show the results of applying the GroBa system in a series of

experiments with synthetic vessels to test its accuracy under ideal condi-

tions. We also apply the system to a real WBMRA dataset, and compare

a small number of sample ground truth stenoses against the GroBa re-

sults and a semi-automated measurement system called “VesselMetrix”

(as described in Chapter 2).

We will first describe the data used.

Synthetic Lumina

Three types of synthetic vessel were created to test the mechanisms of the

GroBa measurement system under controlled conditions. These binary

vessel volumes consisted of the following morphologies:

Synthetic Vessel 1 A simple cylinder with an idealised, symmetric

stenosis on the central axis.

Synthetic Vessel 2 A noisy vessel with a ∼33% stenosis and ∼20%

aneurysm.
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Figure 5.9 – Illustration of the synthetic vessels (left), and correspond-
ing graphs showing the calculated diameters using both the cross-section
and GroBa technique.

Synthetic Vessel 3 A wide vessel with a large, off-axis ∼80% stenosis.

Figure 5.9 shows a 3D rendering of the three vessel types, along with

the corresponding graphs of the calculated vessel calibre. Also computed

are the diameter estimates using the cross-section technique, whereby

the area of a cross-sectional plane at each centreline point is calculated,

oriented perpendicular to the vessel direction, and the equivalent vessel

diameter computed by assuming a circular cross-section (i.e. diameter =

2
√
A/π ).

We can see that for Case 1, the simplest vessel type, GroBa calcu-

lates the correct maximum and minimum diameters when compared to

the known ground truth, providing a stable measure of the lumen calibre

at the expense of having a smoother transition between the two calibres.
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Figure 5.10 – A WBMRA dataset processed using the GroBa system,
showing (left to right) the original data, vessel enhancement (with ab-
dominal suppression), calculated centrelines, and the HSV overlay repre-
senting the lumen calibre (with the scale measured in voxels).

Case 2 highlights how the technique agrees well with the ground truth,

providing a more stable estimate as compared to the other two methods,

but also shows that for rapid changes in diameter which occur over a

spatially small section the smoothing effect also causes an inaccurate es-

timation of the true variation (underestimating the aneurysm by around

1 pixel in this case). Finally, Case 3 shows the technique to perform well

for non-symmetric, off-axis stenoses.

Real WBMRA Datasets

The GroBa pipeline was applied to a test WBMRA scan, provided by

Ninewells Hospital.

Figure 5.10 shows the outputs from each stage of the code. As can

be seen, the code performs as described in Section 5.3.1; when presented

with a new WBMRA dataset the vessels are first automatically enhanced

using the Frangi vesselness filter, segmented via simple thresholding and
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Stenosis
Grade

Equivalent Diameter
Reduction

0 No Stenosis

1 1–30%

2 31–50%

3 51–70%

4 71–99%

5 100% (Occlusion)

U Non-diagnostic

Table 5.2 – Stenosis grade scale used in this project, as designed by the
clinical team at Ninewells Hospital.

AxialSagittalCoronal

(a) Grade 1

Coronal AxialSagittal

(b) Grade 2

Figure 5.11 – Annotated stenosis examples for grades 1 and 2. (a)
shows the grade 1 (1-30%) stenosis in the abdominal aorta of the test
patient. (b) shows the grade 2 (31-50%) stenosis in the right popliteal
artery.

measured using the balloon-growing technique, with the final calculated

lumen calibres displayed as an HSV colour overlay on the original dataset.

A brief evaluation was carried out to manually compare the calibre

measurements obtained by the code on this real WBMRA dataset against

stenosis grades assigned by clinicians. The WBMRA dataset provided for

this evaluation was examined by a clinician at Ninewells Hospital, with

stenoses assigned a grade between 1 and 5 based on the visible diameter

reduction (see Table 5.2).

For this particular patient, two example stenoses were selected which

were visibly clear, and could easily be measured with the VesselMetrix

tool. These were assigned grades 1 and 2 on the severity score shown in

Table 5.2.
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Figure 5.12 – The top row shows the VesselMetrix measurements for
the grade 1 stenosis, calculated as an area stenosis of 16%. The bottom
row shows the measurements for the grade 2 stenosis, calculated to be
an area stenosis of 25%.

The examples stenoses are shown in Figure 5.11. In each case the

datasets were first opened in Voxar3D and the stenosis measured using

the semi-automatic tools in VesselMetrix. The volume was then cropped

and passed through the GroBa code. In order to handle the cropped

volume correctly the abdominal suppression code was deactivated be-

fore processing. Finally, the centreline and corresponding widths were

extracted, with the stenoses measured by averaging the “healthy” 5-8

measurements prior to the stenosis and dividing that by the minimum

diameter found.

The results for the VesselMetrix measurements are shown in Fig-

ure 5.12, with the GroBa results shown in Figure 5.13.

It can be seen that for the grade 1 stenosis in the large abdominal

aorta both VesselMetrix and GroBa correctly grade it to within the 1-

30% range, measuring a 16% area and 23% calibre stenosis respectively.

However, for the grade 2 stenosis, both methods appear to have difficul-

ties, with VesselMetrix estimating the area stenosis as 25% and GroBa

measuring the calibre stenosis as 15%, both placing them as grade 1.

5.3.3 Shortcomings of the Groba System

In this section we will examine the shortcomings of the GroBa system,

exploring its sensitivity to various types of errors.
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Figure 5.13 – The top row shows the GroBa results for the grade 1
stenosis, with the bottom row showing the same results for the grade
2 stenosis. In each case the left image shows the measured calibres (in
units of voxels) as an HSV colour overlay on the volume, with the graph
showing the actual GroBa measurements along vessel. From these it was
calculated that the grade 1 stenosis was 23% (at position 150) and the
grade 2 stenosis was 15% (at position 160).

Effect of the balloon’s initialisation position on measured calibre

One of the key benefits of the balloon-growing technique for calibre mea-

surement is that it should be stable to noisy centrelines, as opposed to

the cross-section technique which is very sensitive to the estimation of

vessel direction calculated from the centreline. The cross-section method

is however stable to the position of the centreline within the vessel since

it will return the same measurement regardless of where the centreline

point is on the cross-sectional plane. It would therefore be desirous for

the GroBa calibre measurement to return the same value regardless of

where the balloon is initialised within the vessel.

To test GroBa’s sensitivity to the seed position of the balloon we

calculate the calibre of the synthetic vessels described in Section 5.3.2

by initialising the balloons at every voxel in a single cross-section (Fig-

ure 5.14a) and then every voxel in the entire volume (Figures 5.14b).

We can see from the Figure 5.14 that there is a broad area within

the centre of the vessel which returns close to the same measurements

regardless of the initialisation position. However, as the seed voxel moves

closer to the vessel wall the measurements get smaller, with the worst

case being on the vessel boundary itself. The reason for this appears to

be due to the balloon not inflating fully as the stopping criterion (aspect
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(a) (b)

Figure 5.14 – (a) shows the cross-section through a symmetric synthetic
vessel (width 14 voxels), with the colour scale representing the calibre ob-
tained by initialising the balloon at that voxel in the plane. (b) shows
MIPs of two synthetic vessels shown in Section 5.3.2, with GroBa mea-
surements initialised at every voxel in the vessel. Note that the calibre
is consistently underestimated near the vessel boundary.

ratio 2:1) is triggered early due to non-symmetric expansion. Therefore

the balloon does not inflate fully into the vessel, causing an underestimate

of the true diameter.

Examples of balloons which have reached the stopping criterion when

initialised at the central and edge voxels are shown in Figure 5.15.We can

see that when the balloon is initialised very close to the vessel boundary

the stopping criterion is reached before the balloon has fully inflated into

the vessel. The same experiment was repeated using an increased height-

to-width ratio of 3 (Figure 5.16). We can see that now the balloons

inflate fully regardless of the initial seed voxel position. Furthermore,

when applied to the entire vessel (shown in Figure 5.17) the edge-effect

seen in Figure 5.14 is no longer present. Note however that increasing

the height-to-width ratio increases the length of the balloon, and there-

fore the amount of vessel that is being averaged, thereby decreasing the

method’s overall accuracy and response to rapid changes in calibre. Also,

the minimum ratio required to still allow the balloon to fully inflate will

be dependant on the vessel calibre, so a true solution to this issue would

likely involve using additional knowledge about the expected width of

the vessel, or the formulation of a more complex set of stopping criteria.

Effect of Vessel Junctions on Measured Calibre

It was recognised that the simple criterion used in the balloon expansion

stage does no take into account any information about the structure of

the vessel, and can therefore expand into branching vessels. Figure 5.18

shows the effect this has on the calculated calibre around vessel junc-

tions. It can be seen that the calibre is overestimated on either side of

the junction with an abrupt change seen downstream in main vessel, rep-
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(a) (b)

(c) (d)

Figure 5.15 – Axial and sagittal projections of the inflated balloons ini-
tialised at the edge (a and c) and centre (b and d) voxels, using the first (a
and b) and second (c and d) synthetic lumina described in Section 5.3.2.
In both cases the height-to-width ratio of the stopping criterion was 2.

resenting the point at which the stopping criterion is triggered before it

can inflate into the wider junction and (potentially) the other branching

vessel.

5.3.4 Effect of Vessel Direction with Respect To In-

flation

In the simple synthetic examples shown in Section 5.3.2, the vessel direc-

tion is roughly parallel to one of the x-,y-,z-axes of the dataset. It was

noted that the dilation method used in the original GroBa implemen-

tation expanded symmetrically in the x-, y-, z-directions of the dataset,

regardless of the vessel direction. This creates a growing cube from the

centreline seed voxel, with balloon voxels which fall outside the segmented

vessel being culled between each iteration.

To simulate the effect of a vessel running at 45 degrees to the di-

rection of inflation, the balloon inflation itself was rotated 45 degrees

and the previous experiment repeated for the first synthetic vessel type.

Figure 5.19 shows the result. Comparing to the analogous results in Fig-
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(a) (b)

Figure 5.16 – Results from the same experiment described in Fig-
ure 5.15, showing axial and sagittal projections of the inflated balloon
initialised at the edge (a) and centre (b) voxels with a height-to-width ra-
tio of 3. Here, only the results for the second synthetic vessel are shown.

(a) (b)

Figure 5.17 – MIPs of synthetic data, with GroBa measurements ini-
tialised at every voxel in the vessel with a height-to-width ratio stopping
criterion of 3. Note that when compared to Figure 5.14, the calibre is no
longer underestimated at the vessel boundary since the balloons inflate
fully within the vessel, regardless of their seed position.

ures 5.14 & 5.15 we can see that the edge effect is much more pronounced

(Figure 5.19c), and even when initialised at the centre of the vessel the

calibre is underestimated by 1 voxel, or around 10%, due to the ends

of the elongated balloon having an irregular shape and thereby breaking

the cylindrical assumption which assumes the faces are flat.

5.3.5 GroBa Conclusions

The purpose of this study was to examine the “GroBa” method for lumen

calibre measurement as a baseline for comparison to our own developed

methods.

First, the code was confirmed to perform as designed using synthetic
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Figure 5.18 – MIP of an artery extracted from the test patient dataset.
The left image shows the computed centreline for the main vessel, while
the right image shows the GroBa measurements (in voxels) computed
along the centreline, overlaid in HSV color, demonstrating the effect of
expanding into a junction off the main vessel.

(a) (b) (c)

Figure 5.19 – Results of experiment where the synthetic vessel direction
is at 45 degrees to the direction of expansion, showing the balloon shape
when initialised on a central voxel (a), edge voxel (b), and finally a cross
section of measured calibres initialised at every point in the plane (c).

and real WBMRA data (in the form of anonymised DICOM files). The

calibre measurement technique was then examined in a series of synthetic

tests to probe the reliability of the results. A positional bias was discov-

ered, whereby if the balloon was initialised close to the vessel boundary

the calibre would be underestimated. This was found to be mainly due

to the asymmetric inflation of the balloon triggering the simple stopping

criterion too early, before the balloon had fully inflated into the vessel.

Examining the measurements close to vessel junctions revealed that

the calibre tended to be overestimated around these regions, though this

is a shortcoming common to other techniques too.

The particular method used for inflating the balloon was also found

to affect the results in vessels which didn’t run parallel to the axes of the
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dataset, causing the “faces” of the balloon to be irregularly shaped rather

than flat, breaking the cylindrical assumption for the calibre estimation.

Finally, a comparison with ground truth annotations found that de-

spite the discovered issues, the system was able to properly grade a small

(< 30%) stenosis in a large vessel. When the results of this automated

system were compared with those achieved using the manual tools in

VesselMetrix, it was found that both had similar performance (and en-

countered similar difficulties) in measuring the small number of stenoses

examined here. A much broader comparison will be described in detail

in Chapter 8.

Our conclusions are therefore that although the GroBa method does

encounter some issues when applied directly to real stenosis examples,

the pipeline that has been designed specifically for WBMRA vessel anal-

ysis provides a good framework to build upon, and the GroBa calibre

method should be tested as a candidate measure for stenosis detection.

To this end, we targeted improvements in two key areas highlighted by

the prototyping exercise in Chapter 3.3.2; improvement to the vessel seg-

mentation algorithm, validated on ground truth WBMRA segmentation

maps (Chapter 6), and the development of stenosis grading algorithms,

tested on ground truth stenosis annotations (Chapters 7 and 8).



Chapter 6

Automatic 3D Vessel

Segmentation

6.1 Introduction

A critically important stage in our pipeline outlined in Figure 1.3 is

the accurate segmentation of the arteries of interest. Segmentation of

vascular structures is a common task to many medical applications [20,

97,98], and is a fundamental step in the the quantification of pathologies

such as stenoses.

Many vessel segmentation techniques have been proposed in the liter-

ature, as explored in [20,21], and discussed in Chapter 2.3. In this chapter

we examine three commonly used and well established techniques for ves-

sel segmentation — active contours and two vesselness filters — compar-

ing their results against our own method developed using a convolutional

neural network (Convnet), structured as a voxel-wise binary classifier

following the network structures used in other works such as [57]. This

work was presented at MIUA 2017, and constituted the first publication

of a deep learning segmentation network trained and tested on WBMRA

data, and the first quantitative comparison of these vessel segmentation

techniques for this application. Due to the poorer than expected per-

formance of the 3D Convnet, we then extend the study to include a 2D

U-Net architecture which we discuss in Section 6.6.

63
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Figure 6.1 – Maximum intensity projections of the four stations of pa-
tient 1, shown after digital subtraction of the pre-contrast from the post-
contrast volumes.

6.2 Datasets and Protocols

6.2.1 Patient Data

The data selected for this study consists of three whole-body volumes,

each of which are split into four “stations” as shown in Figure 6.1. These

were acquired at Ninewells Hospital in Dundee, UK, using a 3.0 Tesla

MRI scanner (Siemens Magnetom Trio), and are a subset of our full

WBMRA dataset described in Section 4.2.

Due to time and resource constraints, the arteries in each individual

station of 3 patient datasets were manually segmented by a single anno-

tator. This was a Master-level student with a background in anatomy,

who had previous experience annotating 2D X-ray images. Due to the

shortcoming of having only a single annotator and being unable to per-

form any inter-rater variability analysis of the manual segmentations,

the patient data was therefore chosen based on the visual quality of the

scans after the pre-processing stages described in Section 4.5, with the

three exhibiting the highest vessel contrast and lowest number of visible

artefacts being chosen in order to simplify the extremely complex and

time consuming segmentation task. To further aid with visualisation an

intensity equalisation step was applied in the axial direction, ensuring a

consistent vessel intensity across the entirety of each volume (detailed in

Section 6.3.5).

6.2.2 Ground Truth Segmentation

The aim of collecting manual ground truth segmentations is to create a

database of “true” vessel maps against which algorithms can be trained

and tested, giving a fair assessment of their performance.

Boccardi, et al. [99] discuss the importance of a validated procedure
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for segmenting anatomical features, in their case of the hippocampus.

Examining the protocols for 12 different published studies, they found

that there can be up to 2.5-fold difference in segmented volumes between

different approaches. Another study by Joskowicz et al. [36, 100] found

that segmentation volumes of a range of structures in CT (liver tumors,

lung tumors, kidneys, and brain hematomas) had between a 25–50%

variability in volume when examined by 11 radiologists following a strict

protocol.

The main challenges of manual segmentation occur where contrast

between the object of interest and the background is low, and where

the object boundaries are smooth and not clearly defined. Therefore, it

is imperative that a standardised protocol is followed during the data

collection process, making clear what the aims of the task are and how

decisions should be made regarding where the segmentation boundaries

should be placed, in order to minimise the possible variation in the data

not due to real variation in the object being annotated. No standardised

protocol for the manual segmentation of arteries in MRA exists in the

literature, so a bespoke protocol was developed as part of this study, as

detailed below.

6.2.3 Segmentation Protocol: Step-by-Step

The open source software package “3DSlicer” [101] was selected for this

task (version 4.5 at the time of use), as it was found to be easier to use by

the annotator than some of the alternative programs such as ITK-SNAP

and ImageJ, with the manual drawing tools providing an easy method of

segmenting the vessels and the visualisation tools giving a clear view of

the segmented surface in three dimensions.

The protocol was developed with guidance from the online training

and user manual available from the 3D Slicer website, incorporating the

use of the threshold tool as an effective starting point from which the

manual delineations were created.

The final step-by-step protocol followed by the annotator for each

data volume was as follows:

1. After pre-processing of the volumes as detailed in Section 6.2.1 the

dataset was loaded into the 3D Slicer software.

2. The “Editor” module was used to create a new “label map volume”,

which stores the assigned label for each voxel in the volume
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Figure 6.2 – Example of isosurface created by MakeModelEffect for
Station 1, giving a 3D rendering of the current segmentation volume.

3. Using the “Threshold Effect” tool, the software automatically de-

tects a threshold. This was manually manipulated by the user

according to each individual dataset. Viewed in cross-section, the

software highlights the area corresponding to the current threshold

as a colour overlay. This gives the user visual feedback on the ef-

fect of a change in threshold level, and was manipulated such that

the contours across multiple slices aligned as closely as possible to

those which would have been drawn manually. The criteria for this

was that the contour should trace the mid-point of the greyscale

transition between the bright vessel and dark background.

4. To visualise the current segmentation, the “MakeModelEffect” tool

was used. This creates a 3D representation of the label volume and

allows the user to quickly identify any mislabelled regions. An

example rendering of one such case is shown in Figure 6.2. It is

important to observe that smaller vessels do not appear complete

and must be manually manipulated. In addition to this, details

of the heart, lungs and associated vessels have been captured and

must be manually corrected.

5. To manually label any regions of artery which have been incorrectly

labelled as background, the “PaintEffect” tool was used. This acts

like a paintbrush in standard image editing programs, and allows

the user to manually label voxels as belonging to the current label

volume. So the user can add sections of vessel which were missed

by the threshold or otherwise inaccurate or incomplete.



Chapter 6. Automatic 3D Vessel Segmentation 67

Figure 6.3 – Example incorrectly labeled voxels around the outside
of the skull being removed using the “RectangleEffect” option of the
“EraseLabel” tool.

6. To correct any regions that were labelled as artery that are back-

ground voxels or belong to an irrelevant anatomical structure, the

“EraseLabel” tool was used. This can operate identically to the

“PaintEffect” tool, assigning the clicked voxels to the background

label, or using a rectangular selection tool to delete all enclosed

voxels at once from the segmentation (Figure 6.3).

7. Once the initial model has been generated, each slice was manu-

ally checked by eye to ensure the entire artery has been labelled

correctly (i.e. not over-segmented or under-segmented). Any mod-

ifications were made in the slice views (not 3D view).

8. Finally, the segmentation is considered complete if there is a con-

tinuous path through each of the segmented arteries. In addition,

it was determined that once arteries reached less than 2 voxels in

diameter or if sections of the arteries cannot be clearly identified,

that they are discounted from the segmentation as being too unre-

liable to label. An example of a completed segmentation volume is

shown in Figure 6.4.

Following the above procedure three patient datasets were manually

segmented over the course of eight weeks. Coronal MIPs of all resulting

segmentation maps are shown in Figure 6.5.
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Figure 6.4 – MIP of the first station of a patient dataset (left) and the
corresponding artery segmentation (right) after manual labelling.

6.3 Segmentation Methods

6.3.1 Active Contours

Segmentation using active contours, where an initial curve is evolved

using a cost function depending on local gradients (external forces) and

shape constraints (internal forces), was first proposed in [102] and has

been successfully applied to many segmentation problems [21, 103]. In

general, active contour methods are based on image gradient, detecting

edges and generating well-defined boundaries on which to evaluate the

internal and external energy.

The level set model tries to solve an optimisation problem defined by

embedding the active contour as a constant set (zero level) in a surface

φ that evolves in time with speed S, guided by the image gradients.

For our comparative study we chose the classic Chan-Vese model

[103]. It has been applied to the segmentation of objects whose edges are

not well defined by the gradient, and has a well defined implementation

for 3D segmentation as described in [104].

The Chan-Vese model is formulated as a “mean-curvature flow”-like

evolving active contour, where the stopping term depends not on the

gradient of the image, as in classical active contour models, but is instead

related to a particular segmentation of the image [103].

For 3D data, we define the bounded domain Ω ∈ Rn (in our case

n = 3), and the bounded image function I : Ω → R. Ω can be divided

into a set of connected domains by a curve C by Ω − C = ∪i∈IΩi. We

then define two different regions R1 = ∪i∈I1Ωi and R2 = ∪i∈I2Ωi that

represent the object support and the background support respectively.
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Fig. 3: A comparison of the maximum intensity projections of all patients from both the raw and ground truth volumes.

overlap, introducing an amount of redundancy to the data
being fed into the network. This approach resulted in long
training times, making it impractical to implement on a
large scale and also difficult to assess new architectures or
parameters.

This experiment attempts to improve upon the sampling
of volumes and instead opts to sub-sample the data in a
more regular, structured manner. It is hoped that giving
the network fewer samples in a more structured way as
to reduce redundancy will offer similar performance for a
much smaller footprint in terms of both memory & training
times. Doing so would allow for more rapid development
and evaluation of different network structures and param-
eters alongside making a large scale implementation more
feasible.

The strategy used for extracting training samples can
play a significant role in the resulting performance of a
network. A standard approach involves sampling an equal
number of patches from each class represented within the
data. In this instance the ground truth is a binary segmen-
tation mask of vessels and therefore consists of two classes;

vessel and background.
For the voxel-wise classifier, however, during the ex-

traction process voxels are considered to be one of three
categories: vessel, near-vessel, or background, with near-
vessel samples being defined as background samples lo-
cated within 3 voxels of a vessel. Voxels are then extracted
using the appropriate extraction map which dictates the
central locations of voxels for extraction.

The background extraction map is derived as the inverse
of the dilated ground truth. The near-vessel extraction map
is then obtained by subtracting the ground truth from the
dilated ground truth, leaving a region of background voxels
surrounding any vessels. The vessel extraction map is then
defined simply as the ground truth. All extraction maps
are then sub-sampled according to the step parameter. A
demonstration of this process and the sub-sampling effect
can be seen in Figure 5. The sub-sampling algorithm offsets
each axis from one another accordingly, maximising the
context of each extracted voxel. As the sub-sampling step
increased there became significantly fewer vessels which
were being extracted. Therefore, to maintain a balanced
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Figure 6.5 – Coronal MIPs of the three raw patient datasets and their
corresponding ground truth vessel maps, acquired using the described
annotation protocol.

The final energy functional E(φ, µ1, µ2) is then given by

E(φ, µ1, µ2) = λ1

∫
Ω

(I − µ1)2H(φ)dΩ

+ λ2

∫
Ω

(I − µ2)2(1−H(φ))dΩ

+ α

∫
Ω

H(φ)dΩ

+ β

∫
Ω

| 5H(φ)|dΩ

(6.1)

where µ1 and µ2 represent the mean value of the object support region

and background support region of image I respectively, and H(φ) is the

Heaviside function. Here, the first two terms measure the variations

around the mean intensity inside and outside the active contour, the

third term measures the area inside the contour and the fourth term

measures the length of the contour [104].
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6.3.2 Vessel Enhancement Filters

Frangi Filter

This classic method of enhancing vessel-like structures is based on calcu-

lating the local curvature by analysing the Hessian function [44], and has

been used extensively for vessel segmentation tasks across many imaging

modalities, including the GroBa method for WBMRA data. It was there-

fore chosen as the baseline filtering method for this comparison study,

and a full description of the method can be found in Section 5.3.1.

Optimally Oriented Flux

The “optimally oriented flux” filter, first published in [48], evaluates a

scalar measure of the flux flowing through a spherical surface. Before

computing this value, directional information is extracted by projecting

the gradient along “optimal” axes, and the flux measure then evaluated.

For each voxel a sphere with variable radius is built, centred on the voxel,

which produces an “OOF response” when touching an object edge. If

the voxel is inside the curvilinear structure the response will be positive,

otherwise it will be negative.

The outwardly oriented flux along the direction ρ̂ is firstly computed

by projecting the gradient v along ρ̂, with the flux then evaluated through

the spherical region Sr with radius r using the definition

f(x; r, ρ̂) =

∫
δSr

((v(x + h) · ρ̂)ρ̂) · n̂ dA (6.2)

where dA is the infinitesimal area of Sr, n̂ is the unit normal to the

surface at position h = rn̂.

As before, the goal is to obtain the principal eigenvalues of the in-

tensities in a neighbourhood of each voxel. Inside the vessel, when the

local spherical region with surface Sr touches the boundaries of the ob-

ject, v is oriented opposite to the direction of n̂, therefore the eigenvalues

λ1 ≤ λ2 � 0. The gradient of the image will be perpendicular to the

direction of the curvilinear structure, with a value of λ3 ≈ 0. In the case

where the voxel is in the background, v will have the same direction as

n̂, and therefore λ3 � 0.

To obtain the maximum response to the OOF while changing the

radius r, we evaluate the geometric mean of the eigenvalues, as
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M(x; s) =


√
|λ1(x, s)λ2(x, s)| λ1(x, s) ≤ λ2(x, s) < 0

0 otherwise
(6.3)

where s represents the scale factor. Similar to the Frangi approach, select-

ing the maximum response over an appropriate range of scales generates

the final map, which can be thresholded to produce a final segmentation.

6.3.3 Convolutional Neural Network

In recent years, deep Convnet approaches have been driving advances

in many computer vision tasks, such as image classification [56, 57] and

image segmentation [58, 59]. Many network models have been devel-

oped for these tasks, and it is a very active area of research [60]. The

network structure we chose was inspired by those explored in [57], and

recently applied to segmentation tasks in MRI [105–107]. To the best

of our knowledge, this is the reported results of applying a Convnet to

vessel segmentation in WBMRA, for which no public sets of manually

annotated vascular networks currently exist.

The final network structure is shown in Fig. 6.6, consisting of five

layers; 3 sets of convolutional and max-pooling layers, followed by two

fully connected layers. The output node of the final layer gives a sin-

gle binary output of vessel/non-vessel for the central voxel of the input

patch. This structure was arrived at after testing many deeper and shal-

lower networks, and it was found that a 5-layer network gave the best

performance given the small amount of data we had available for training.

Our network was implemented using Keras v1.1.0 and Theano v0.8.2.

All layer activation functions were “ReLU” except the final output node,

which was “sigmoid”. The “Adam” optimiser was used during training,

with “binary cross-entropy” selected as the loss function [108].

While this approach to voxel-wise classification has been shown to

be less computationally efficient than a fully convolutional network [59],

it allowed fine control over dataset balancing for our limited amount of

ground truth data, and the fully connected layer gave additional flexi-

bility to the network without increasing the required input volume size,

which is inherent to the operation of convolutional layers.
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Input	Subvolume
(27x27x27)

3D	Conv
(32,3,3,3)

Max-Pool
(2x2x2)

Max-Pool
(2x2x2)

3D	Conv
(64,3,3,3)

3D	Conv
(128,3,3,3)

Fully	Connected
(16) ->	(1)

Figure 6.6 – Structure of the 3D Convnet segmentation network. All
layer activation functions were ReLU except the final output node, which
was sigmoid. The Adam optimiser was used during training, with binary
cross-entropy selected as the loss function

6.3.4 Comparison Criterion: Dice Coefficient

There are many metrics used for evaluating the quality of segmentation in

medical images [109]. For our data, we have selected the Dice Similarity

Coefficient (DSC — also referred to as the F1-Measure). This is given

by

DSC =
2|X ∩ Y |
|X|+ |Y |

(6.4)

where |X| is the number of all the vessel voxels in the segmentation

obtained by the tested method and |Y | is the number of all the vessel

voxels in the ground truth.

6.3.5 Pre-Processing and Parameter Optimisation

Pre-Processing

As can be seen in Figure 4.1, the subtraction of the pre-contrast from the

post-contrast volume still leaves some tissues and non-arterial structures

behind, particularly in stations 1 and 2. The most problematic of these

are the lungs in station 1, which contain vessels which were not included

in the manual ground truth. For this reason, the small region around the

lungs and heart were masked out in both the original volumes and the

ground truth data, excluding this area from our analyses.

Another artefact which remained after subtraction was the variation

of lumen intensity along the length of vessels. These may arise due

to poor timing of the contrast agent during acquisition, or by inhomo-

geneities in the magnetic field (such as surface coil artefacts). A simple
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Figure 6.7 – Results of intensity equalisation on station 3 of patient 1.
The MIP of the raw volume is show on the left, and the equalised volume
on the right.

procedure was followed to correct these variations in each station, in the

form of a local intensity normalisation.

First we make the assumption that each axial slice contains an artery,

and they are the brightest objects present (which holds true for all regions

except for slices above the head and below the feet — these slices were

simple masked to zero after the procedure was applied). We then applied

a 7-slice sliding window axially, in which the local vessel intensity was

estimated from its histogram by choosing the highest frequency bin above

70% of the maximum intensity, with this value corresponding to the vessel

intensity estimate for the central slice. Once calculated for the entire

volume, Gaussian smoothing of the values was applied and then each

slice divided by its corresponding estimate. An example of the results of

this processing is show in Figure 6.7.

Active Contours

For the active contour method, the Toolbox implementation provided

by [104] was used. Values for the the smoothing weight term, image

weight term, and time step were fixed using a grid search optimisation

procedure across all patients, with β = 0.08, ∆t = 2.72, λ = 0.0002.

The final step was the initialisation of φ0. This choice was critical as

it affects the time and the speed of the evolution of the curve. So again

under the hypothesis that the highest intensity voxels belong to the ves-

sels, we took a set of seed points with high grey levels as φ0. To keep the

process completely automatic we used the multi-threshold formulation of

Otsu’s method for generating thresholds from grey-level histograms [110].

This was done using the Matlab “multithresh” function, which generates



Chapter 6. Automatic 3D Vessel Segmentation 74

Station Number SF / Radii α (Frangi) β (Frangi) σ (OOF)

1 1:1:15 0.5 0.5 0.4

2 1:1:10 0.5 0.5 0.5

3 3:0.25:5 0.5 0.5 0.5

4 1:0.5:4 0.5 0.5 0.4

Table 6.1 – Enhancement filter parameters. The scale factor (SF) and
radii values are written in the form minimum:step:maximum.

N − 1 thresholds that maximise the inter-class variance between N dif-

ferent classes (to a maximum of 20 for the Matlab function).

For each station we generated 10 thresholds on a patient pair, which

served as 10 different sets of seed points. The active contour method was

then applied using the above parameters, and the threshold generating

the highest Dice score recorded. This threshold was then applied to the

held-out volume to generate the initialisation of φ0, and the correspond-

ing Dice score recorded for that patient and station.

Enhancement Filters

The optimal parameters for the enhancement filters are shown in Ta-

ble 6.1. These were optimised for each station across all patients using a

grid search, with a fixed segmentation threshold.

The final segmentations were acquired by calculating the vesselness

map using the parameters in Table 6.1, then 20 thresholds automati-

cally calculated on each patient pair using the “multithresh” function

described previously. The threshold achieving the highest Dice score was

then applied to the held-out volume and the Dice score recorded.

Network Meta-Parameters

A number of network structures were explored during optimisation of

the network structure. Inspired by models discussed in [57] and [59],

we trained models consisting of 2 – 6 convolutional layers with 16 – 128

3 × 3 × 3 kernels, 1 – 3 max-pooling layers, and 1 – 2 fully-connected

layers. To help combat overfitting, l2 weight regularisation was used

for each convolutional layer [108], and 20% dropout used on the fully

connected layers [111]. All layer weights were initialised from a scaled

Gaussian distribution.

A single network was trained for each station, with training patches
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extracted from two patients and the trained model applied to the held-

out third patient in a 3-fold cross-validation setup.

The cubic patches were varied in size according to the network struc-

ture used, based on ensuring that the deepest layer still received a patch

large enough to perform meaningful calculations on. A minimum side

length of 15 voxels was needed to capture the thickest vessels, leading

to a side length range of 15 – 50 voxels for the network structures we

explored. For our final network, a patch size of 27 × 27 × 27 was found

to be optimal.

Finally, the number of training patches was chosen to maximise the

available data. For each station, the minimum number of ground truth

vessel voxels across all 3 patients was calculated, and this used as the

number of positive samples to be extracted from each patient.

The data was balanced by extracting an equal amount of background

samples. The position of the background samples were weighted to have

two-thirds from regions within 5 voxels of a vessel and one third sampled

randomly from the rest of the volume. This was found to improve the

networks tendency to over estimate the diameter of the vessels when the

background patches were sampled completely at random.

Data augmentation tests were carried out using rotation of the vol-

umes around the three primary axes, and horizontal mirroring (swapping

left and right sides of the body). Only rotation along the axial plane (i.e.

rotating around the vertical axis) was found to improve performance for

our network and data.

The total number of training samples used for each station were

136000 for station 1, 160000 for station 2, 28000 for station 3, and fi-

nally 24000 for station 4. During training, 5% of the training was data

held out for validation, and the best network weights saved as those giv-

ing the highest validation accuracy score after 20 epochs (the network

performance was found to typically converge after 8 – 12 epochs).

The networks were trained using an Nvidia Titan X Pascal GPU,

with training times of between 3 – 4 hours for each model (depending on

the station and number of training samples used).

6.4 Results

The results of applying the four automated strategies described in Sec-

tion 6.3 to all stations and patients are shown in Table 6.3, with the

corresponding segmentation results of patient 1 shown in Figure 6.8.
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Augmentation Station DSC Mean DSC

1 0.727

None 2 0.543 0.557

3 0.231

4 0.727

1 0.702

Mirroring 2 0.550 0.490

3 0.232

4 0.477

1 0.752

Rotation 2 0.552 0.575

(Axial) 3 0.303

4 0.692

1 0.743

Rotation 2 0.518 0.515

(Sagittal) 3 0.275

4 0.522

1 0.776

Rotation 2 0.487 0.465

(Coronal) 3 0.260

4 0.339

1 0.730

All Rotations & 2 0.522 0.528

Mirroring 3 0.288

4 0.572

Table 6.2 – Dice coefficients for after augmentation for the worst per-
forming dataset (patient 2).

It can be seen from Table 6.3 that for our case of only three pa-

tients, the OOF filter achieved the greatest mean DSC of 0.705. The

3D Convnet typically outperforms at least one of the other techniques,

except for station 2. The main reason for this appears to be because of

the additional artefacts left over from the imperfect volume registration

and subtraction procedure (particularly the kidneys and bladder). The

network approach had the most difficulty distinguishing between these
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Figure 4.28: Segmentation on all the station with the each method

60

Figure 4.28: Segmentation on all the station with the each method

60

ConvnetGround Truth Active Contours Frangi OOF

Figure 6.8 – Segmentation results for patient 1, shown as coronal pro-
jections.

artefacts and the arteries, causing it to over-segment station 2, resulting

in a lower Dice score.

Looking at the segmentation results in Figure 6.8, a number of obser-

vations can be made. The active contour method often produces broken

vessels, such as the right branch in station 2, and has the most difficulty

segmenting the finest vessels in station 4.

The Frangi and OOF enhancement filters produce visually similar

results, though the OOF performs better at rejecting non-vessel artefacts

(most noticeably in the brain and abdomen of station 1). Both filters do

exhibit difficulties segmenting the finest vessels, such as at the bottom of

station 2, and in different cases tend to either underestimate (Frangi in

station 2, OOF in station 4) or overestimate (Frangi and OOF in station

3) the true diameter of the vessels as compared to the ground truth.

The Convnet performs poorest at rejecting non-arterial artefacts in

station 2. This is likely due to it being a relatively shallow network,

which we recognise as a shortcoming of the particular network architec-
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Patient (Station) Level Set Frangi OOF 3D Convnet

1 (1) 0.785 0.697 0.795 0.727

1 (2) 0.837 0.817 0.812 0.618

1 (3) 0.647 0.702 0.657 0.605

1 (4) 0.672 0.780 0.843 0.806

2 (1) 0.803 0.689 0.794 0.752

2 (2) 0.712 0.722 0.674 0.552

2 (3) 0.353 0.323 0.281 0.303

2 (4) 0.662 0.776 0.844 0.692

3 (1) 0.572 0.665 0.663 0.567

3 (2) 0.504 0.488 0.469 0.422

3 (3) 0.803 0.747 0.835 0.845

3 (4) 0.618 0.843 0.791 0.697

Mean DSC 0.660 0.690 0.705 0.632

Table 6.3 – Dice Coefficients for each method

ture tested, with the lack of training data preventing us from training a

deeper network from scratch. It did however appear to have the highest

sensitivity to extracting fine, low contrast vessels as can be seen in the

lower half of stations 2 and 3.

6.5 Conclusions

In the above study we presented a quantitative comparison between four

automated vessel segmentation technique for WBMRA data, using three

manually segmented patient datasets. In this regime of limited ground

truth data, it has been found that the Optimally Oriented Flux filter

performed the best, with a mean DSC of 0.705. Visually, the Convnet

approach segments vessels most consistently, with the least number of

breaks, picking up finer vessels, and having the most consistently ac-

curate diameters when compared with the ground truth. However it

performed poorest at rejecting non-arterial artefacts, resulting in a lower

DSC overall. It was also noted that some of the fine vessels segmented

by the Convnet were not present in our ground truth. Due to having

ground truth from a single observer, we are unable to estimate the qual-

ity and reliability of the ground truth data, and therefore the impact of
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this on the DSC results cannot be easily estimated for our data. We are

not aware of any publicly available sets of manually annotated vascular

networks for WBMRA volumes.

The Convnet approach appears to be mainly limited by the lack of

training data, which prevented a deeper network from being properly

trained. One approach often used to ameliorate this issue is to fine-tune

a previously trained network such as GoogLeNet, a 22 layer network

trained on a database of 1 million natural images [112]. However, cur-

rently there are no pre-trained 3D networks available for medical data,

and thus the training of deeper networks will require either a much larger

database of ground truth segmentations, or a different network architec-

ture which can be more easily trained with fewer annotations such as a

U-Net [58].

6.6 Vessel Segmentation with a Fully Con-

volutional Neural Network

6.6.1 Introduction

The above comparison study was published at MIUA 2017 [113], and the

OOF method was used to produce all 18 segmentation maps used for the

analyses in Chapter 8. However, due to the poor performance of the Con-

vnet proposed in Section 6.3.3 we subsequently extended this comparison

to an additional network structure, namely the U-Net architecture first

published by Ronneberger et al. in [58].

In this section we will describe the network and parameters used,

compare the results against the previous methods, and discuss other

possible extensions to this work.

6.6.2 The U-Net Architecture

The U-Net structure was first proposed in [58] for use in biomedical image

segmentation. It is a “fully convolutional network” (using only convolu-

tional layers), and employs a symmetric encoder-decoder like structure

whereby a contracting path is used to capture context and a symmetric

expanding path enables precise localisation.

The architecture was designed with particular regards to improving

performance with very few training images, with the usual contracting

network supplemented by successive layers with upsampling operators,
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Figure 6.9 – The U-Net network architecture designed for our segmen-
tation task. All layers use same padding, ReLU activation function and
a stride of (1,1) unless otherwise stated. The number under each layer
indicates the number of features used at each step.

increasing the resolution of the output. Localisation performance was

further increased by combining high resolution features from the con-

tracting path with the upsampled layers at the same level.

A schematic of our U-Net network structure is shown in Figure 6.9.

The network consists of a series of 2D convolutional layers, with all layers

using the ReLU activation function except for the final output which

uses a sigmoid. Each convolution layer supports inputs with up to three

channels for handling RGB images. Since our data contains only a single

channel for intensity but is 3D in nature, we tested the network with two

different inputs; firstly using a single input channel, and secondly using

three slices. This allows us to compare the performance of the exact same

network structure when operating on a single 2D slice and three slices at

once, introducing some additional 3D spatial context.

6.6.3 Training

The training process followed the same strategy as for the 3D Convnet,

being split on a station-by-station basis using two patient volumes for

training and validation, before testing on the held out patient. Training

samples were extracted from the coronal plane in 64 × 64 × n patches,

where n is equal to the number of input channels, and were augmented

by 90 degree rotations. This resulted in between 1000–2000 training sam-

ples, depending on the original volume size, with 5% held for validation.

The “Adam” optimiser was used for training, with the Dice-coefficient

(Equation (6.4)) used as the loss function as described in [114], and the
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Figure 4.28: Segmentation on all the station with the each method

60

3D Convnet Ground TruthOOF U-Net

Figure 6.10 – Coronal MIP projections of the segmentation maps for
patient 1, calculated using the OOF, 3D Convnet, and U-Net methods.

best network weights determined to be those which gave the highest per-

formance on the validation set after 100 epochs.

6.6.4 Results

Table 6.4 shows the results of our U-Net network with a single input

channel as compared to the four previously tested techniques. We can see

that the U-Net achieves the top score in 9 out of the 12 station volumes,

outperforming the 3D Convnet on all stations but one despite operating

on 2D slices rather than 3D subvolumes. The U-Net also achieves the

best overall performance across the full dataset, with a mean Dice score

of 0.756 compared to the OOF mean Dice of 0.705.
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Patient (Station) Level Set Frangi OOF 3D Convnet U-Net

1 (1) 0.785 0.697 0.795 0.727 0.857

1 (2) 0.837 0.817 0.812 0.618 0.821

1 (3) 0.647 0.702 0.657 0.605 0.707

1 (4) 0.672 0.780 0.843 0.806 0.870

2 (1) 0.803 0.689 0.794 0.752 0.858

2 (2) 0.712 0.722 0.674 0.552 0.781

2 (3) 0.353 0.323 0.281 0.303 0.401

2 (4) 0.662 0.776 0.844 0.692 0.883

3 (1) 0.572 0.665 0.663 0.567 0.760

3 (2) 0.504 0.488 0.469 0.422 0.571

3 (3) 0.803 0.747 0.835 0.845 0.815

3 (4) 0.618 0.843 0.791 0.697 0.742

Mean DSC 0.660 0.690 0.705 0.632 0.756

Table 6.4 – Comparison of Dice coefficients for all five segmentation
methods, with the highest DSC for each station highlighted in bold.

Figure 6.10 shows the coronal MIP projections of the segmentation

maps for patient 1, calculated using the OOF, 3D Convnet, and U-Net

methods. It can be observed that the U-Net performs much better at

rejecting non-arterial artefacts than the 3D Convnet, particularly in sta-

tion 2, while exhibiting better vessel continuity when compared to the

OOF method.

To investigate the effect of adding 3D context to the network, we

processed the data again using the same framework and training param-

eters, but with three input channels containing three consecutive slices.

Input Dim. Patient Station 1 Station 2 Station 3 Station 4 Mean DSC Overall Mean

1 0.857 0.821 0.707 0.870 0.814

(64,64,1) 2 0.858 0.781 0.401 0.883 0.731 0.756

3 0.760 0.571 0.815 0.742 0.722

1 0.868 0.817 0.784 0.890 0.840

(64,64,3) 2 0.853 0.659 0.409 0.889 0.703 0.755

3 0.799 0.527 0.793 0.774 0.723

Table 6.5 – Dice Coefficients for 1-channel and 3-channel inputs into
our U-Net
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The results are shown in Table 6.5. It can be seen that the performance

of the network is almost identical despite the additional data in each

patch, with a mean Dice score of 0.756 for the 1-channel and 0.755 for

the 3-channel input.

6.6.5 Conclusions and Discussion

As an extension to the first segmentation study, we trained and tested a

second CNN architecture to the same data, following the fully convolu-

tional U-Net architecture described in [58]. Despite being trained with

2D slices, the network outperformed all previous approaches, attaining

an overall mean Dice score of 0.756. Adding two additional slices to the

input data by generating 64 × 64 × 3 training patches did not improve

the performance of the network. A recent study by Pinheiro et al. [115]

found similar results when comparing 2D U-Net and 3D V-Net networks

for brain lesion segmentation in MRI. The V-Net architecture [114] is

an extension of the U-Net design for volumetric data by using 3D ker-

nels for each convolution step. However, it was found in [115] that such

3D architectures require much more computational power than 2D and

produced no significant gain in the Dice coefficient in their experiments,

with the U-Net always outperforming the V-Net despite the underlying

3D nature of their data.

As a further extension to the work presented here, we would recom-

mend a thorough comparison of U-Net and V-Net architectures, alongside

more complex data augmentation techniques. In addition, supplying the

output of the OOF algorithm as an additional input into a CNN may

also improve performance in the presence of limited ground truth data.

This could be done as a single additional channel with the maximum

OOF response, or as multiple channels containing the OOF response at

each radius step.



Chapter 7

Ground Truth Stenosis

Assessments and Variability

Analysis

7.1 Introduction

An essential step in evaluating potential algorithms for automated steno-

sis detection is to have ground truth data on the location and severity of

stenoses in our patient scans, i.e. annotations by trained experts against

which the results of the automatic algorithms will be assessed. The best

performance that any system can meaningfully achieve is that its results

“look like a rater’s”, that is, the difference between the performance

(however quantified) of the system and that of any rater is comparable

to the inter-rater difference. The reliability of ground truth data can

therefore have a significant effect on the performance of the developed

algorithms and their subsequent evaluation [116].

There currently exists no public databases of ground truth stenosis

assessments for WBMRA, so this chapter covers the data collection task

that we undertook in order to gather the necessary ground truth for our

patient scans. There has also been no published studies of the variability

and repeatability of human assessment of stenoses in MRA data. The

purpose of this study was therefore twofold:

1. To gather manual assessment of stenosis locations and severities for

all of our 18 patient datasets.

2. To evaluate the inter- and intra-rater variability of stenosis de-

tection and classification from WBMRA examinations by trained

observers, assessing how this may affect the development and vali-

84
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dation of automated tools, and arriving at recommendations of how

one generates reliable ground truth for this task.

The stenosis annotations analysed in this study were acquired follow-

ing a clear protocol, with 18 patient datasets annotated by three clini-

cal radiologists (one accredited radiologist, one diagnostic radiologist in

training, and one interventional radiologist in training).

We will begin by examining some related studies in Section 7.2 which

highlight some of the difficulties of acquiring reliable data of this type,

and that there exists evidence in other studies of potentially high vari-

ability of human assessment that has not been adequately explored in

the literature. Section 7.3 covers the annotation tool that was used, and

the protocol that was developed for all three raters to follow. We analyse

the variability of the results in Section 7.4, followed by an expert review

of the high disagreement outliers in Section 7.5. Finally, we reanalyse the

variability after the expert review is taken into account in Section 7.5.1

and conclude by discussing the implications of our results for the devel-

opment of stenosis detection algorithms aimed at assisting or automating

this diagnostic process.

7.2 Related Studies

The importance of validation — the process of showing that an algorithm

performs correctly by comparing its output with a reference standard —

in the context of medical image analysis is well established. A num-

ber of good-practice proposals have been put forward [117, 118], such

as the framework for such reproducibility studies proposed by Jannin et

al. [117]. In this framework a validation hypothesis is first specified with

regards to expected clinical outcomes. The results of a given method are

then compared against a gold-standard reference which is treated as the

ground truth and the comparison results tested against the validation

hypothesis, giving the validation result. In many cases, such as ours,

such a gold-standard reference is either unavailable or is too difficult or

costly to obtain with the next-best approach commonly adopted being to

gather annotations from multiple trained annotators and then combined

for increased reliability when used as ground truth for machine learning

algorithms [119].

Generating sufficient ground truth for a reliable validation of ma-

chine learning algorithms for medical applications highlights a limitation

of these methods in relying on the availability of ground truth. A move in
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other areas of medical image analysis to leverage crowd-sourcing for an-

notations may be one solution but would have to achieve high reliability

to meet the definition of “ground truth” [37, 38, 40, 41]. The suitability

of crowd-sourced annotations remains an open question and depends on

the application. We also notice recent work on the automatic genera-

tion of annotations (auto-annotations) for non-medical classifiers with

large numbers of classes [42], and the growing interest of the medical

image analysis community for techniques allowing to reduce drastically

the number of annotations required at a parity of performance [43].

For radiological techniques, reproducibility studies are often concerned

with inter-study and inter-technique variability for clinical purposes [120–

122]. However recent comprehensive studies of segmentation in radiolog-

ical images found that segmentation volume variability for a large group

of radiologist-validated manual delineations is wide and differs signifi-

cantly between structures [100], with a mean variability of up to 56%. It

was concluded that “two and even three observers may therefore not be

sufficient to establish the full range of inter-observer variability for this

type of data, and therefore establish a reliable reference standard for the

evaluation of automatic segmentation algorithms” [36].

For stenosis assessment, an early study using x-ray angiography by

Fisher et al. [123] found that “When one angiographer reads a stenosis

of 50% or more in the left main coronary artery, it is estimated that

a second reader will report no lesion 18.6% of the time.”, highlighting

the variability between observers even when detecting hemodynamically

significant stenoses.

A study of the reproducibility of carotid atherosclerotic plaque using

MRA was carried out by Saam et al [124]. In this study the ground truth

was defined using ultrasound, and assessment of the lumen, wall, and

total vessel areas were used to determine modified American Heart Asso-

ciation lesion type (AHA-LT) on cross-sectional images. It was found

that “the use of different readers substantially increased variability”,

with intra-reader coefficients of variation (CV) between 2.4–6.1% and

inter-reader CV between 4.0–7.4%. The result was a recommendation

that the same platform and the same reader be used for scans of indi-

vidual subjects undergoing serial assessment, without any discussion of

the implications of such variability on the reliability of the assessments

themselves.

Another study by Planken et al. [125] assessed the variability of steno-

sis detection in forearm hemodialysis arteriovenous fistulae by multiphase
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contrast-enhanced magnetic resonance angiography (CE-MRA). 15 pa-

tients were examined by 2 observers using a 5-point stenosis scale, with

digital subtraction angiography (DSA) used as the gold-standard refer-

ence. Under these conditions inter-observer agreement for detection of

>= 50% stenoses was just 0.81. The results also showed an instance

where a vessel was assessed by one observer as having a stenosis of 75–

99% (above the hemodynamically significant 50% threshold) and by the

other as 0–20%. No further investigations were carried out to determine

why, and under what circumstances, such disparities of opinion may oc-

cur.

A study by Naguib et al. [126] assessed a number of factors relating

to the quality and reliability of a contrast-enhanced whole-body-MRA

system at 1.5T, including the assessment of stenoses. Here 18 patients

were assessed by 2 radiologists using a different 5-point grading scale.

A total of 534 arteries (60.00%) showed no stenosis, with 78 arteries

(8.76%) showing a stenosis of <= 50%, 46 (5.17%) showing a stenosis of

51–75%, 39 (4.38%) showing a stenosis of 76–99%, and 76 (8.54%) rated

as occluded. A total of 117 (13.15%) arteries were deemed not assessable.

In only one case of occlusion was another reference standard (DSA) used

to determine the underlying ground truth. Inter-observer variability was

only examined through the incorrect application of the standard Cohen’s

Kappa statistic to this ordinal data (which assumes the data to be cate-

gorical, i.e. unordered), split over 7 anatomical regions, where this gave

a range of κ = 0.75 − 1.0. This result was deemed to show “excellent

agreement between the two radiologists regarding stenosis detection and

grading in all levels, except the level of the pelvic arteries and the lower

leg region where the agreement was graded as good”, and no further

discussion of the implications of this variability was given.

It is within the above background that our study was designed, aiming

to examine the whole-body MRA scans of 18 patients with 3 trained

radiologists, producing a detailed statistical analysis of the intra- and

inter-rater variability for stenosis severity estimation and the resulting

implications for algorithm validation.

7.3 Annotation Tool and Protocol

A bespoke annotation plugin called the “Vessel Point Annotation” (VPA)

tool for the company-confidential image visualisation software “Research

Workstation” (RWS) was used for the annotation task, provided by
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Figure 7.1 – Main viewport of the RWS software, showing the naviga-
tion toolbar at the top left, and the 3 anatomical views and 3D rendering
in the main windows.

Stenosis
Grade

Lumen Diameter
Reduction

0 0% (Healthy)

1 1 – 29%

2 30 – 49%

3 50 – 69%

4 70 – 99%

5 100% (Occlusion)

Table 7.1 – Stenosis grade scale used during the vessel assessment.

Canon Medical Systems (Canon Medical Research Europe Ltd., Edin-

burgh, UK). The software displays the standard anatomical planes in

three viewports (sagittal, coronal, transverse) which can be navigated

independently (Figure 7.1). A crosshair in each viewport can be placed

at the desired annotation location, and a marker saved with a given la-

bel selected from a predefined list. For our study this label provided

the vessel name and stenosis severity, along with the exact 3-dimensional

coordinates of the marker in the patient coordinate space.

For the purposes of this study we asked the raters to grade the severity

of located stenosis on the scale shown in Table 7.1, based on a scale

used in previous clinical studies [3, 127]. We selected 37 arteries in total

(including left and right, where applicable) to be examined, based on
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Arteries Selected for Examination

01 External Carotid (R) 14 Abdominal Aorta 27 Profunda Femoris (L)

02 External Carotid (L) 15 Coeliac Trunk 28 Superficial Femoral (R)

03 Internal Carotid (R) 16 Superior Mesenteric 29 Superficial Femoral (L)

04 Internal Carotid (L) 17 Renal (R) 30 Popliteal (R)

05 Common Carotid (R) 18 Renal (L) 31 Popliteal (L)

06 Common Carotid (L) 19 Inferior Mesenteric 32 Anterior Tibial (R)

07 Vertebral (R) 20 Common Iliac (R) 33 Anterior Tibial (L)

08 Vertebral (L) 21 Common Iliac (L) 34 Peroneal (R)

09 Brachiocephalic 22 External Iliac (R) 35 Peroneal (L)

10 Subclavian (R) 23 External Iliac (L) 36 Posterior Tibial (R)

11 Subclavian (L) 24 Common Femoral (R) 37 Posterior Tibial (L)

12 Aortic Arch 25 Common Femoral (L)

13 Thoracic Aorta 26 Profunda Femoris (R)

Table 7.2 – Arteries identified for examination based on their clinical
relevance and visibility in our datasets.

their clinical relevance and their visibility in our datasets. These are

summarised in Table 7.2.

The key details of our annotation protocol are summarised below.

Created in close collaboration with the clinicians, it was adopted to en-

sure a consistent labelling procedure between raters:

Figure 7.2 – The VPA tool window, used to select details of the label
to be placed at designated location.

Annotation Workflow — Each station for a single patient was to be

examined sequentially, examining all arteries from Table 7.2 in each

anatomical plane. For each artery the position and severity of all
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found stenoses were to be marked using the annotation tool (Fig-

ure 7.2), with the stenosis severity judged by eye and assigned a

number from the grading scale shown in Table 7.1.

Figure 7.3 – Localising stenosis in each view and assigning Grade
marker.

Annotating Localised Stenosis — The crosshairs of the annotation

tool were localised in the arterial lumen at the point of maximum

stenosis in each of the orthogonal views, and a marker placed with

the corresponding vessel label and stenosis grade (Figure 7.3).

Stenoses in Overlapping Regions — Since data from the individual

stations was annotated separately, a stenosis may occur in the over-

lap regions between two stations. We asked that all stenoses are

annotated in each volume independently, regardless of whether they

appear in multiple stations.

Annotating Healthy Section of Vessel — Raters were asked to iden-

tify a single healthy region within each vessel wherever possible, in

order to give us a reference for how they would expect the vessel

to look in the absence of disease. This was done by placing two
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Figure 7.4 – Annotating a healthy region.
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Figure 7.5 – Total number of stenoses found per grade by each rater,
for all 18 patients.

markers indicating the beginning and end of a vessel region which

they considered to be normal (Figure 7.4).

Indicating Abnormal Regions — In cases where a vessel shows ab-

normalities which are not stenoses (diffuse disease where a single

point stenosis cannot be determined, aneurysms, etc.), this could

be indicated using two markers in the Grade menu, following the

same procedure as with the healthy sections. Multiple abnormal

regions could be defined in a single vessel if needed.

7.4 Annotation Results

In total, 666 arteries were examined across 18 patients by all 3 clinicians.

The histogram of all stenoses annotated is shown in Figure 7.5. We
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Rater
Group

Percentage
Agreement

Percentage
Agreement

(C)

Spearman
Corr

Spearman
Corr (C)

Krippendorff
Alpha

Krippendorff
Alpha (C)

Six Point Scale

1 & 2 73.9 76.6 0.462 0.566 0.314 0.432

1 & 3 72.7 76.3 0.478 0.570 0.374 0.481

2 & 3 88.6 90.7 0.502 0.704 0.496 0.697

All 69.4 72.5 - - 0.384 0.518

Three Point Scale

1 & 2 93.3 96.6 0.615 0.819 0.590 0.814

1 & 3 91.7 96.1 0.563 0.809 0.542 0.803

2 & 3 94.7 97.8 0.617 0.892 0.618 0.892

All 90.1 95.2 - - 0.580 0.834

Binary Scale

1 & 2 95.8 99.4 0.631 0.946 0.619 0.946

1 & 3 95.5 99.6 0.609 0.959 0.601 0.959

2 & 3 96.7 99.3 0.650 0.933 0.650 0.933

All 94.0 99.1 - - 0.622 0.946

Table 7.3 – Agreement, correlation, and reliability measures for differ-
ent rater groups. Columns marked (C) represent the numbers after the
outlier disagreements were corrected by the 4th rater. The upper set
uses the original grading scales, with the other two calculated using a
redefined number of grades; a 3 grade scale (combining 0+1, 2+3, and
4+5 grades), and a binary scale with the threshold set at 50% stenosis.
In all cases, p < 0.005.

can see significant differences between raters across all grades. In grades

2–5 there is a 2–3 times difference between the maximum and minimum

number of stenoses found, with the largest differences found in the Grade

1 category (< 30% diameter reduction); while raters 2 and 3 found similar

numbers of 41 and 42 respectively rater 1 found 238, almost 6 times as

many. These low grade stenoses can be very subtle and are typically

not recorded in a diagnostic setting. The large disparity in numbers can

therefore be attributed to the different backgrounds of each rater, where

rater 1 had more experience with identifying low grade stenoses as part

of previous research studies.

Figure 7.6 shows the distribution of stenosis grades throughout the

body, from which a number of observations can be made (note that the

numbers of grade 1 stenoses varies substantially between raters, hence

they were plotted as a separate bar). In general it was found that higher

grade stenoses occur in patients with a larger number of overall stenoses

(due to more advanced disease), and the majority of high grade stenoses

occur below the aortic bifurcation. We can also see that there is a consis-
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tent trend between raters of the highest concentration of > 30% stenoses

being located towards the extremities in the femoral, popliteal, and pos-

terior tibial arteries, with an additional spike in the coeliac trunk, which

is consistent with the expected distribution in peripheral arterial disease

patients [128].

The comparative statistics for each rater pair is given in the first

section of Table 7.3. These were calculated by assigning each vessel a

single grade based on the maximum stenosis present for each rater, and

calculating the statistics on those 666 artery grades. We can see that

we achieved an overall agreement of 69.4%, with 15% higher agreement

between raters 2 and 3 as compared to the pairs with rater 1. The average

Spearman correlation coefficient is 0.481, and the Krippendorff’s alpha

coefficient (valid for multi-class, ordinal, multi-rater data) is 0.384. A

general interpretation of this statistic is α >= 0.8 gives high reliability,

0.8 > α >= 0.667 gives low reliability, and data for which α < 0.667

is unreliable [129]. We can therefore see that, taken as a whole, our

combined annotation pool using the 6 point grading scale in Table 7.1 is

not reliable.

Table 7.4 shows the intra-rater variability, calculated from 3 patient

datasets which each rater examined a second time at the end of the

initial study. To avoid memory effects, the patients were chosen from

early in the study and examined around 3 – 4 months after their initial

examination, with the raters blinded to their first set of annotations. We

can see that rater 1 is the most consistent with a Krippendorf’s Alpha of

0.882, followed by rater 2 at 0.796 and rater 3 at 0.701. The percentage

agreement is between 80 – 82% on the six point scale, rising to 89 – 92%

for the three point scale. These lower than expected repeatability results

demonstrate the complexity of the annotation task being undertaken,

and need for consensus between multiple raters when formulating ground

truth assessments.

Finally, the disagreement between rater pairs is shown graphically

in the scatter plots of Figure 7.7, with the exact numbers given in the

inter-rater agreement matrices in Figure 7.8. This was again constructed

using the maximum stenosis grade per vessel, with the area of each circle

representing the number of cases on a logarithmic scale. Given the natu-

ral difference of opinion expected when distinguishing between adjacent

grades by eye, we would expect the data to be clustered around the line

of agreement by ±1 grade. However we can see that there are a number

of very high disagreement cases; for example for pair 2 there are 6 cases
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Rater
Percentage
Agreement

Spearman
Correla-

tion

Krippendorff’s
Alpha

Six Point Scale

1 80.2 0.884 0.882

2 82.0 0.797 0.796

3 82.0 0.700 0.701

Three Point Scale

1 91.9 0.861 0.862

2 89.2 0.766 0.764

3 91.0 0.721 0.722

Binary Scale

1 96.4 0.888 0.887

2 95.5 0.818 0.813

3 94.6 0.794 0.793

Table 7.4 – Intra-rater agreement, correlation, and reliability measures.
The upper set uses the original grading scales, with the other two cal-
culated using a redefined number of grades; a 3 grade scale (combining
0+1, 2+3, and 4+5 grades), and a binary scale with the threshold set at
50% stenosis. In all cases, p < 0.005.
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(a) Pair 1

(b) Pair 2

(c) Pair 3

Figure 7.7 – Scatter plots of the maximum assigned grade per artery
for all vessels across all patients, where the area of each dot represents
the number of cases on a logarithmic scale.
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(a) Pair 1

(b) Pair 2

(c) Pair 3

Figure 7.8 – Inter-rater agreement matrices for each annotator pair,
showing the exact numbers of each possible pairing which is shown graph-
ically in Figure 7.7.
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Min. Stenosis

Min. Difference

1 2 3 4 5

1 204 72 45 31 13

2 58 58 37 26 10

3 36 36 36 25 10

Table 7.5 – Number of disagreement cases, given the minimum severity
of stenosis involved, and the minimum number of grades between the
highest and lowest assessment.

where one rater has assigned a grade 5 stenosis, and the other has said

the vessel is healthy (grade 0). Given the unexpected spread of the data,

an additional review task was undertaken to provide a final vessel score

and explore the possible reasons for these high disagreement cases.

7.5 Expert Review of High Disagreement

Cases

A review procedure was undertaken with a consultant radiologist with

more than 20 years experience in MRA analysis. The task was to review

arteries which contained high levels of disagreement between at least two

raters, giving a final authoritative assessment of these cases. These ar-

teries were determined by first assigning each artery a single grade based

on the maximum stenosis present and then calculating the differences in

grades between raters. Table 7.5 shows the number of disagreement cases

tabulated by the minimum severity of stenosis involved, and the mini-

mum number of grades between the highest and lowest assessment. We

selected all examples containing a stenosis assessment of at least Grade

3, on which at least one rater disagreed by at least 2 grades, as being the

most severe and clinically relevant. There were 37 arteries in which such

disagreements occurred.

The review procedure was carried out using the same viewing software

employed during the initial assessment. For each example the original

datasets for that patient were presented to the reviewer, along with the

three previously assigned grades and corresponding maximum stenosis

locations. Using this information the reviewer gave his own assessment

of the maximum stenosis present in that artery, as well as his estimate
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of why the disagreements had occurred.

It was found that the likely causes of these high disagreement cases

could be grouped into eight categories given below (with the number of

occurrences given in parentheses). Note that not all disagreements could

be assigned a clear cause.

User Error with the Annotation Tool (6) These occurred where the

user had obviously selected the wrong vessel label for the stenosis

marker (e.g. selecting left common femoral instead or right com-

mon femoral).

Missed Stenoses (5) In a number of cases there were no artefacts or

other obvious confounding factors which could have led to a par-

ticular stenosis being missed. These missed stenoses were therefore

assumed to be observer errors.

Differences of Opinion (4) Some cases (particularly those in the grade

2 – 4 range) were found to be simply due to differences of opinion

as to how severe the stenosis was. This mainly affected thin ves-

sels where the resolution of the scan gave a restrictive number of

samples across the artery, making accurate grading difficult.

Image Artefacts (4) Movement or noise was found to impact the abil-

ity to assess certain vessels, particularly near the edge of the image

volumes. In some cases these could be worked around by referenc-

ing the overlap region of the next station in order to get a clearer

view, but not all raters may have done this.

Vessel Name Uncertainty (3) It has been shown in other studies that

the location at which a vessel name changes can have a high un-

certainty (> 20mm in many cases) [130], e.g. where the external

iliac becomes the common femoral. If a stenosis occurred around

these regions the same stenosis could have been assigned to different

vessels by different raters.

Poor Image Quality in Overlap Region (3) A few stenoses were found

in the overlap region between two stations. The image quality dif-

fered significantly between the two stations in this region for the

cases in which high disagreements occurred. It was therefore sus-

pected that a stenosis may have been missed if the user did not

check the area in both stations.
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Figure 7.9 – Maximum intensity projection with annotated stenosis
marker overlays, where the severity is given by the symbol and the raters
are differentiated by colour. Particular examples of disagreement cases
are circled in red.

Distal Vessels (2) Some stenoses occurred in the most distal regions of

the vascular tree, where both reduced vessel contrast and increased

noise made it difficult to assess the true extent of the stenosis. The

decision of where to stop assessing the vessel based on the image

quality may also have therefore led to certain raters missing very

distal stenoses.

Natural Narrowing and Slender Vessels (2) Finally, in some very

slender arteries the natural narrowing which can occur may appear

to create a stenosis but was assessed as healthy in the consensus.

Some examples of the above disagreement cases are shown in Fig-

ure 7.9, showing cases of natural narrowing being misclassified as pathol-

ogy, differences of opinion, and ambiguity of vessel naming, particularly

in areas of high disease. The complexity of the distribution of labels seen

in Figure 7.9, coupled with the uncertainty in annotation position found

in a similar study (> 20mm in many cases [130]), meant that a posi-

tional analysis could not be easily undertaken without significant time

spent with all three annotators, which was not possible for this study.

7.5.1 Results of Review Procedure

The histogram of the reassessed artery grades is shown in Figure 7.10.

We can see that the majority of these high disagreement cases occurred

at the extremes of the scale (< 30% and ≥ 70%), with only 4 of the 37

cases falling in the grades 2 – 3 range. The disagreement at the lowest

end of the severity range may have been due to a lack of familiarisa-

tion of the raters with assessing stenoses of less than 30% which are not
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Figure 7.10 – Histogram of grades assigned to all reassessed vessels by
4th expert rater.

Rater
Percentage
Agreement

Percentage
Overesti-

mated

Percentage
Underestimated

1 62.2 27.0 10.8

2 40.5 8.1 51.4

3 29.7 24.3 46.0

Table 7.6 – Statistics for percentage agreement, overestimation, and
underestimation of artery grades compared with the expert reassessment.

significant in clinical practice, while the higher number of high grade dis-

agreements likely stemmed from the patients with advanced PAD where

the assessment of both vessel name and stenosis severity becomes ex-

tremely difficult (as in the example shown in Figure 7.9).

Figure 7.11 shows the histogram of disagreements between each orig-

inal rater and our 4th expert, where positive numbers indicate that rater

underestimated the grade compared to the reassessment, and negative

numbers show they overestimated. Firstly we can see that rater 1 agreed

the most with the reassessment giving the same score 62.2% of the time,

followed by rater 2 then 3 with 40.5% and 29.7% respectively (Table 7.6).

We can also see that when they disagreed, rater 1 tended to overestimate

the true severity, while raters 2 and 3 tended to underestimate.

Using these reassessed grades we “corrected” the data by replacing

the rater’s grade with the reassessment if they disagreed by 2 grades

or more. The statistics for our new data pool is shown in Table 7.3 in
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Figure 7.11 – Histogram of disagreement with the 4th expert rater.
Histogram shows reassessed grade minus the original grade, so negative
numbers correspond to the original rater giving a higher severity than
the expert reassessment.

the columns labelled “Corrected”. We can see that this has a nominal

effect on the groupings involving rater 1 where the disagreements are

dominated by the grade 1 vs grade 0 disagreements (Figure 7.7). It has a

much greater effect on raters 2 and 3, where a small increase in agreement

(88.6% to 90.7%) leads to a large increase in the Spearman correlation

from 0.502 to 0.704. However, we can see that the corrected data from

all raters still has much lower reliability than desired, with just 72.5%

agreement and α = 0.518.

A further step was therefore taken, where the effect of re-binning the

data into a smaller grade scale was examined. Following advice from

our clinical partners we created a three point scale — combining grades

0 + 1, 2 + 3, and 4 + 5 — and a binary scale, setting a threshold at

grade 3 (50% stenosis). The results for these new scales are shown in

the middle and bottom sections of Table 7.3. We can see that moving

to a three point scale greatly increases the agreement between raters

from 69.4% to 90.1% in the original dataset, and from 72.5% to 95.2%

after corrections. Similarly the reliability score increases from 0.384 to

0.58, with the corrected data pushing above the desired 0.8 value with

α = 0.834. The binary scale shows an additional smaller improvement

beyond this, however note that the reliability of the uncorrected data is

still below 0.8 even on the binary scale.
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7.6 Conclusions

The purpose of this study was to assess the inter- and intra-rater vari-

ability of stenosis classification from WBMRA examinations, using data

acquired for the specific task of generating ground truth for software de-

velopment, and evaluate how this variability may affect the development

and validation of such tools.

Three clinicians of similar training experience examined 18 patients,

generating data with higher variability than anticipated with just a 69.4%

agreement when assessing the maximum stenosis grade per vessel, and

with intra-rater agreement between 80 – 82%. We found there was a

higher degree of disagreement in the low severity stenoses, particularly

those below 30%, with higher concordance among the higher grades.

Undertaking a review procedure of the highest disagreement cases

with a 4th expert rater significantly improved the overall agreement and

reliability of our data and revealed many of the reasons why such dis-

agreements can occur, however the reliability was still below the level at

which robust conclusions could be drawn. We therefore conclude that for

this task, using the experimental setup described here, a six point grad-

ing system is not suitable due to being too fine-grained for the stenosis

assessment method used (assessment by eye).

It was found that a three point grading scale led to a much bet-

ter consensus with our data. The agreement, correlation and reliability

statistics on this scale were greatly improved, with the reliability in par-

ticular rising above 0.8 when the additional review corrections were taken

into account. Further justification for such a scale can be seen by ob-

serving the arteries which contain the highest concentrations of severe

stenoses. From the stenosis-per-vessel figures in Figure 7.6, the highest

concentrations of high grade stenoses are in the femoral, popliteal, and

posterior tibial arteries. These were found to cover a range of 2–10mm

in diameter, in agreement with previous studies of similar populations;

6–10mm for the femoral [131], 5–8mm for the popliteal [132], and 2–4mm

for the posterior tibial arteries [133]. Our resolution range is 0.98–1.3mm

per pixel, giving these arteries of high interest an average diameter of 4–

5 pixels in our data. When assessing such arteries by eye a three point

grading system — “healthy”, “low severity”, “high severity” — is the

best which could be realistically expected to give consistent results.

Our results demonstrate that assessing the exact location and severity

of stenoses from WBMRA examinations is a complex clinical decision

presenting even substantial variations among multiple trained experts.
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The collection of ground truth to validate automatic stenosis detection

systems therefore requires great care, particularly with regards to the

development of a clear protocol and careful selection of the grading scale

to be used, and should be undertaken with multiple raters as has been

done in other large scale studies in other modalities [134].



Chapter 8

Automated Stenosis Grading

8.1 Introduction

In this chapter we will discuss the three algorithms which were devel-

oped for automatically analysing vessel segments and assigning a stenosis

severity score. The input to each algorithm is a pre-processed volume,

which has gone through the first four processing stages of the pipeline

shown in Figure 1.3, and the output is the stenosis grade based on the

maximum stenosis present. This approach, and the scale used, follows

the form of the ground truth we collected and we will analyse the results

on the same three scales which were derived in Chapter 7.

We will first introduce the three algorithms in Section 8.2, examining

the technical details of each. In Section 8.3 will then apply them to syn-

thetic data, constructed to mimic the expected form of the straightened

vessel subvolumes produced by our pipeline. We then apply these algo-

rithms to our 18 patient datasets in Section 8.3, using the ground truth

data as described in Chapter 7. Finally we will conclude with a discus-

sion of the results, analysing how they compare between the real and

idealised case, and what the reasons for the differences in performance

might be.

8.2 Stenosis Grading Algorithms

The input volume for each algorithm described here is in the form of a

straightened vessel subvolume which has been tracked in 3D space using

the centreline. An example of a typical tracked vessel produced by our

automated processing pipeline is illustrated in Figure 8.1.

105
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Figure 8.1 – An illustration of the pre-processing stages of our pipeline
before the stenosis grading algorithms are applied.

8.2.1 Cross-Sectional Area

The first algorithm is based on the cross-sectional area of the vessel,

from which the equivalent diameter is calculated at regular one-voxel

steps along the centreline.

The following procedure is followed for calculating the diameters for

each input volume:

1. The straightened vessel subvolume and its corresponding segmen-

tation mask are loaded.

2. At each step along the centreline — i.e. each axial slice of the

straightened volume — the number of non-zero voxels in that slice

of the segmentation mask is tallied.

3. The cross-sectional area for that slice is recorded as the total num-

ber of non-zero voxels at that position, and the equivalent diameter

calculated by assuming a circular vessel cross-section.

4. The slice position is incremented by one along the vessel axis and

the above procedure repeated.

This produces a vector of estimated diameters along the entire length of

the vessel volume. Once this has been calculated, the following algorithm

is used to derive the corresponding stenosis severity (as a percentage, with

0% being healthy):
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1. First, an estimate of the “healthy” diameter of that vessel at each

point along the vessel is estimated. This was done by first assuming

that only stenoses are present (no aneurysms), and therefore the

healthy parts of the vessel are its widest points. We also assume

that the stenoses are small in length compared to total length of

the vessel and the vessel may naturally taper towards one end.

2. A healthy estimate of the vessel diameter is derived from the lin-

ear least squares fit of the largest 50% of the diameter measures,

creating an expected “healthy” value at each point along the vessel.

3. For each slice along the vessel, the difference between the calculated

diameter and the estimated healthy area is calculated.

4. An estimation of the background noise for that vessel (set empir-

ically to be two standard deviations for our data) sets the lowest

threshold for which a stenosis can be detected.

5. If the largest difference between the calculated diameter and ex-

pected healthy diameter is higher than the estimated noise thresh-

old, then a stenosis was detected, i.e. the reduction in diameter

from the expected healthy value was larger than could be attributed

to image noise.

6. In order to prevent the detection of narrow outliers due to noise

or inaccuracies in the segmentation mask, the neighbouring points

on either side of the maximum stenosis are also considered to de-

termine if they too are above the threshold, using the assumption

that a true stenosis must be elongated by at least three voxels. If

all three points meet the above criteria then a stenosis is recorded.

7. If a stenosis is detected, the vessel is assigned a severity score by

the formula Sv = 1 − (As/Ah) where Sv is the stenosis score for

vessel v, As is the diameter at the point of maximum stenosis, and

Ah is the estimated healthy diameter at the same location. This

gives a number between 0 – 1, with 0 being completely healthy, and

1 being a complete occlusion of the vessel.

Figure 8.2 shows an example of the measurements obtained by this al-

gorithm, as applied to a synthetic vessel volume with an idealised stenosis

of 80%.
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Figure 8.2 – A graph of the calculated diameters of a vessel segment
with an idealised stenosis. The points used for the healthy estimate are
circled in blue, the line of best fit shown in green, and the sampled healthy
estimate points at each location shown in purple.

8.2.2 GroBa Calibre

The second algorithm uses the GroBa method to estimate the vessel

calibre, as explored in Chapter 5.3.

The algorithm follows the exact same steps as described for the cross-

section method, differing only in the measurements derived at each point

along the vessel. Instead of tallying the number of non-zero voxels in

the segmentation mask, a “balloon” is inflated from the seed point on

the centreline (the central voxel on the given slice). This is expanded

into binary volume until the standard stopping criteria is reached (the

balloon length is twice its width, or no more voxels can be added), and the

equivalent diameter derived from the equation of a cylinder, as described

in Chapter 5.3.

8.2.3 Convolutional Neural Network Model

The final approach was based on a convolutional neural network, moti-

vated by the recent successes of deep learning networks for many medical

imaging tasks [135].

There are no analytical methods by which the optimal structure of a

network can be determined a priori for a given problem, so a number of
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Figure 8.3 – Schematic of the CNN used

network structures were tested in order to determine the best match for

the complexity of our problem. It was found that if the network was too

shallow it would give unstable performance during training and often fail

to converge. Whereas deep networks were mismatched to the amount of

data we have available for training, causing it to rapidly overfit the data

and give very poor results in testing.

The final structure presented here was based on the best performing

network when applied to the real data as described in Section 8.4. A

schematic of the final network structure is shown in Fig. 8.3, which was

implemented using Keras and Tensorflow (tensorflow-gpu 1.1.0). It con-

sists of three sets of two convolutional layers followed by a max-pooling

layer, which connects two a fully connected layer of 16 nodes, and finally

a single fully connected node for the output severity rating.

All layer activation functions were “ReLU” except the final output

node, which was a customised ReLU function which gave zero response

below zero, a linear response between 0 and 1, and a saturated response

of 1 for all values above 1. This ensured an output value of between 0

and 1 corresponding to the maximum percentage stenosis present. The

stochastic gradient decent (SGD) optimiser was used during training,

with mean squared error selected as the loss function. While various

loss functions have been used with ordinal data in the literature, mean

squared error is commonly used as it has been previously shown to be

suitable for such data [136].

8.3 Stenosis Grading with Synthetic Data

We first tested our stenosis grading algorithms using synthetic data. This

was done in order to investigate how well they performed in the ideal case,
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where the difficulty of the problem could be controlled and the ground

truth is completely accurate.

We will first discuss how the synthetic data was generated, before

examining the performance of each algorithm, evaluated in the same

manner as the real ground truth data in Chapter 7.

8.3.1 Synthetic Data Generation

There are currently no synthetic vascular datasets available for WBMRA,

so we created our own from scratch. It is important to note that our tar-

get is not to create a realistic vascular tree, but rather the straightened

vessel segments produced by our processing pipeline, similar to the ex-

ample shown in Figure 8.1.

As such, the following assumptions were made when creating our

synthetic vessel volumes:

1. The vessel has been rectified, i.e. the curved path of the vessel in

3D space has been tracked using a centreline, and a “straightened”

volume produced by taking axial cross-sections at each step along

the centreline.

2. The vessel intensities have been normalised, and any inhomogeneities

due to MR artefacts removed.

3. The target vessel has been tracked between junction points, and

therefore no branches are present in the generated vessel.

4. There are no other abnormalities present apart from localised stenoses

(e.g. aneurysms).

The vessels were generated by initialising an elongated empty vessel

volume, then stepping through it slice by slice and at each cross-section

creating a circle of a given diameter and filling all enclosed voxels with

the desired intensity. This was then smoothed with a gaussian filter and

random noise added. In order to give a smooth appearance, the vessels

were created at a high resolution, and then downsampled to the desired

size of 68×17×17. This was found to give a visually similar structure to

the vessels seen in our real data.

Stenoses were added using the tapered cosine (or “Tukey”) window

function, adding a localised reduction in diameter along the vessel. This

was used to give a visually reasonable form to the stenosis, while having

easily tunable length, smoothness, and maximum severity.
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The following parameters were varied randomly between each gen-

erated vessel, with the parameter ranges given in brackets which were

determined empirically to reflect the true values seen in the real data:

1. Healthy diameter (4–9 voxels).

2. Natural taper along the length of the vessel (0–10%).

3. Centreline noise, i.e. displacement of the vessel centre at each slice

(order of 0.5–1.5 voxels, smoothly varying along the length).

4. Sigma of gaussian smoothing applied to the vessel (0.7–0.9).

5. Noise mean and variance, applied from a uniform distribution (0.003–

0.007 and 0.0001–0.0002 respectively).

6. Mean intensity of vessel (0.8–1.2).

7. Number of stenoses (0–5).

8. Severity of each stenosis (0–100%).

9. Stenosis length (8–24 voxels).

10. Stenosis Tukey alpha (0.8–0.99).

11. Stenosis location within the vessel.

In all cases, the ground truth grade was recorded as the severity of the

maximum stenosis present, given as the percentage diameter reduction.

Figure 8.4 shows example MIPs of the generated vessels. The first

row shows single stenoses of the listed severity, with the bottom row

showing a second example with multiple stenoses, the most severe of

which corresponds to the quoted severity.

8.3.2 Results

For our experiments we generated a set of ten thousand synthetic vessels,

which were analysed by all three algorithms. The dataset was balanced

to give equal numbers of vessels within the grade bins used for our real

ground truth annotations. For the CNN method, the network was trained

by splitting the data into 5 equal folds, with training set in each fold

consisting of 8000 vessels with 5% used for validation, and then after 50

epochs the network was tested on the held-out 2000 vessels.



Chapter 8. Automated Stenosis Grading 112

Figure 8.4 – Example MIPs of synthetic vessel volumes, containing
single (top) and up to 5 (bottom) stenoses.

Figures 8.5, 8.6 and 8.7 show the results as confusion matrices anal-

ysed at the three different scales used in Chapter 7 (6 point scale, 3 point

scale, and binary).

Firstly, it can be observed that both the cross-section and GroBa

methods exhibit a saturation effect whereby high-grade stenoses are often

classified as occluded. This happens due to the vessel becoming so thin

that the segmentation breaks (thinner vessels are disrupted to a greater

degree by smaller stenoses). Since both methods derive their measures

from the binary segmentation mask all such cases are classed as occluded.

This effect is seen most clearly on the 6 point scale. The GroBa method

also shows a wider spread of values at lower grades, and mis-classifies

a number of healthy vessels as high grades stenoses. This is likely due

to premature triggering of the stopping criterion (the 2:1 aspect ratio of

the estimated cylindrical balloon), leading to an underestimation of the

vessel calibre as explored in Chapter 5.3. The CNN method is able to

perform well over the entire severity range, achieving 74–92% accuracy

on stenoses below 50% and 62–68% accuracy on grades above 50%. In

nearly all cases, the CNN classifies correctly to within ±1 grade of the

true value.

Reducing the fidelity of our scale to 3 points, as we recommended

for our real ground truth data, the statistics improve, with a 57–96%

accuracy for the Groba method, 81–94% for the cross-section method,

and 86–94% for the CNN method. Similarly, reducing to a binary scale



Chapter 8. Automated Stenosis Grading 113

0 1 2 3 4 5

Predicted label

5

4

3

2

1

0

T
ru

e
 l
a
b
e
l

0.00 0.00 0.00 0.13 0.00 0.87

0.00 0.00 0.00 0.14 0.00 0.86

0.00 0.00 0.08 0.34 0.00 0.58

0.00 0.13 0.59 0.21 0.00 0.07

0.07 0.70 0.21 0.02 0.00 0.00

0.92 0.08 0.00 0.00 0.00 0.00

Cross-Section Method: <= 5 Stenoses

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2

Predicted label

2

1

0

T
ru

e
 l
a
b
e
l

0.00 0.06 0.94

0.03 0.81 0.15

0.92 0.08 0.00

Cross-Section Method: <= 5 Stenoses (3 Point Scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1

Predicted label

1

0

T
ru

e
 l
a
b
e
l

0.05 0.95

0.93 0.07

Cross-Section Method: <= 5 Stenoses (Binary Scale)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8.5 – Confusion matrices for synthetic experiments with multiple
stenoses (≤ 5), calculated with the cross-section method.

thresholded at 50% (the point at which stenoses are considered to be

haemodynamically relevant) improve to 85–95% for GroBa, 93–95% for

cross-sectional area, and 93–97% for the neural network, which are similar

to the inter-rater agreement of the three annotators in Chapter 7.

In summary, these results show that when applied to synthetic vessels

created to visually approximate the pre-processed subvolumes created

by our pipeline, all three techniques perform to the same level as the

clinicians on real data when examined on a binary scale. On the 3 point

scale, the CNN and cross-section methods perform comparably, however

the GroBa method has poor performance on the middle severity level,

achieving an accuracy of only 57%. On the 6 point scale, the CNN

method performs well over the entire range, achieving scores comparable

to those of the agreement between annotator pairs on real data. We can

therefore conclude that in principle, these methods (depending on the

fidelity of the desired grading scheme) should be able to perform similarly

to the real annotators used in our ground truth study provided that the

complexity of the real data is similar to that of our synthetic set, the

assumptions made in creating the synthetic dataset hold true (accurately

tracked between junctions, normalised intensities, similar levels of vessel
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Figure 8.6 – Confusion matrices for synthetic experiments with multiple
stenoses (≤ 5), calculated with the GroBa method.

contrast, etc.), and in the case of the CNN that there is enough data

to adequately train the network and capture the full range of variability

seen.

8.4 Stenosis Grading with Real Data

In this section we will describe the results of applying the three steno-

sis grading algorithms, validated with synthetic data, to real vessels for

which we have ground truth annotations. We will first describe the addi-

tional processing that was carried out in order to reduce artefacts and the

variability of our set, before examining the final results and discussing the

differences in performance when compared to our synthetic experiments.

8.4.1 Data Processing

Three additional aspects of the real data had to be addressed before

applying our stenosis grading algorithms; locating the vessels to be ex-

tracted, removing extraneous material which is not part of the vessel

of interest, and addressing the variable length of vessels for the CNN
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Figure 8.7 – Confusion matrices for synthetic experiments with multiple
stenoses (≤ 5), calculated with the convolutional neural network (CNN)
method.

method which requires a constant input size.

Locating Vessels of Interest

Automatically locating vessels with high accuracy is a complex task, with

most published techniques focussing on detecting vessel landmarks [137,

138], though this has been shown to have high inter-rater variability for

manual observers in WBMRA making ground truth validation difficult

[130]. We instead adopt an automated procedure based on leveraging the

annotation markers gathered during the ground truth collection exercise.

We adopt the following steps for extracting a given vessel of interest.

1. All annotation markers (healthy, abnormal, and stenosis) from all

three annotators are loaded for the given vessel using the vessel

label assigned by the annotators.

2. Outliers are removed based on their coordinate positions in order

to correct any wrongly assigned labels by the annotators.

3. A bounding box is calculated which encapsulates all the marker
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Figure 8.8 – Four typical examples of a localised vessel volume processed
with our pipeline, shown in the three standard planes.

coordinates, plus a border region of 5 voxels in case one of the

border markers denotes a localised stenosis.

4. The vessel subvolume is extracted from the patient data volume and

processed by our pipeline. This creates a segmentation mask (using

our chosen method of OOF + threshold as described in Chapter 6)

and corresponding centrelines for all vessels present in the subvol-

ume.

5. Each annotation marker is linked to its closest centreline point.

6. The longest centreline with a linked marker point is selected as

corresponding to the vessel of interest.

7. The vessel centreline is then tracked in 3D, and a stack of axial

cross-sections used to create the vessel subvolume.

Removing Extranous Material

Figure 8.8 shows four example vessels which have been processed by our

pipeline. It can be seen that there are significant differences when com-

pared to the idealised vessels of our synthetic dataset. In many cases

there are additional vessel branches, nearby vessels or high intensity tis-

sues outwith the tracked vessel of interest, and in some cases a significant

“wobble” to the main vessel due to poor centreline tracking.

An additional processing step was therefore carried out in order to re-

duce the impact of these artefacts and allow our algorithms to be applied
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without further modification. The approach taken was to extract only

the central vessel from the volume, which we refer to as a “coring” pro-

cedure, i.e. the “core” of the vessel is retained while all other extraneous

information is removed. This process consisted of three steps,

1. For each axial slice, a connected-component analysis is carried out

on the corresponding segmentation mask, and only the component

closest to the central voxel (i.e. the centreline point) is retained.

This is based on the assumption that the centreline has tracked

the vessel such that it is either inside or very close to the vessel of

interest.

2. The mean diameter of the vessel is estimated by applying the cross-

sectional area algorithm described in Section 8.2.1, taking the mean

of the areas.

3. Assuming a circular cross-section of the vessel, a circular mask is

created with an area equal to the previously calculated mean, and

on each slice all voxels outside that mask are set to zero on both the

raw data subvolume (for the CNN method), and the corresponding

segmentation volume (for the cross-section and GroBa methods).

Figure 8.9 shows a comparison of pre- and post-processed vessel sub-

volumes using this technique. We can see that our coring technique is

effective in removing extraneous information while retaining the vessel of

interest.

Variable Vessel Lengths

The GroBa and cross-sectional area algorithms can process vessels of

arbitrary lengths, however the CNN algorithm expects input volumes to

be of a constant dimension. The vessels which were included in our study

range from a few tens of voxels in length (such as the renal arteries)

to a few hundred voxels (such as the aorta and femoral arteries). We

therefore constructed our subvolumes to have a cross-section large enough

to encompass the aorta (17× 17). Splitting the vessels into equally sized

parts without resampling could not be done as the ground truth label

for each segment would no longer be know, therefore resampling was

necessary. To achieve this a linear resampling of the data along the

axial direction was performed, resizing each volume to a length equal

to the mean vessel length across the entire set (68). This ensured that

the volumes were all of equal size, and only involved resampling along a

single axis.
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Figure 8.9 – Typical examples of vessel volumes before (top) and after
(bottom) processing by our “coring” technique to remove all information
outside of the main vessel of interest.

8.4.2 Results

Vessel Tracking

We applied the data processing pipeline described in Section 8.4.1 to all

666 vessels for which we have ground truth annotations. A lower thresh-

old of 10 voxels was set (around half the shortest vessel), below which

the algorithm was deemed to have failed to detect a reliable vessel and

no subvolume was extracted. In around 6% of cases the algorithm failed

to extract a subvolume. Figure 8.10 shows a histogram of the vessels

which failed, and the grades which were assigned. These were spread

evenly across all patients, and across a range of vessels. A possible rea-

son for this can be seen in the grade histogram, where the majority of

failed extractions came from healthy vessels. For these cases very few

annotation points existed, typically just a single point at the start and

end of the vessel denoting a healthy section along its entire length. Since

these were often placed very close to junctions, it is likely that in many

of these cases a small centreline near the junction was picked which led

to a failed extraction. Other potential reasons are poor vessel tracking
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Figure 8.10 – Histograms of the vessels which were unable to be ex-
tracted using our method, separated by grade (top) and vessel label
(bottom).

leading to short, disjointed sections, poor vessel contrast in certain scans

(particularly towards the extremities) leading to inaccurate segmenta-

tions, and a lack of annotations for a particular vessel (sometimes just

one or none at all) due to them being deemed of non-diagnostic quality

by the annotators.

Stenosis Grading

All successfully processed vessels were analysed by the cross-section,

GroBa, and CNN stenosis grading algorithms. It was found that the

CNN algorithm could not be trained adequately from scratch using our

small number of extracted vessels. Shallower networks led to unstable

training performance which failed to converge, and varied markedly de-

pending on the random initialisation of weights. Deeper networks quickly

fell into sub-optimal solutions, classifying all subvolumes as a severity of
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Figure 8.11 – Confusion matrices for real vessel data, calculated with
the cross-section method.

zero.

In order to ameliorate these issues linked to training from scratch with

limited data, we adopt a pre-training step using the previously generated

synthetic vessels. Pre-trained networks are used in many areas of deep

learning research, particularly where very deep networks such as VG-

GNet [139] and GoogLeNet [140] can be trained on databases of millions

of natural images before being refined to a specific task through transfer

learning [141,142]. No such networks currently exist for 3D medical imag-

ing however, and so an alternative method is needed. Pre-training with

synthetic data has been used in a variety of applications, such as 3D scene

understanding [143], text localisation in natural images [144], object de-

tection [145], 3D face reconstruction [146], and segmentation inpainting

for plant root networks [147], among others. In a similar manner, we

opted to use the weights of the network trained on our synthetic vessel

dataset as our pre-trained network, allowing it to be trained to a stable

(albeit poor) solution with our limited real data. The re-training was

done in 6 folds, with the vessels from 3 patients being held for testing,

and the training set in each fold being balanced by data augmentation

through rotation and mirroring and 5% used for validation.
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Figure 8.12 – Confusion matrices for real vessel data, calculated with
the GroBa method.

The results of applying the cross-section, GroBa, and CNN stenosis

grading algorithms are shown in Figures 8.11, 8.12, and 8.13 respectively.

We can see that the performance of all three approaches is poor as com-

pared to our synthetic experiments. There is a tendency of all three

algorithms to classify most vessels as healthy, even those of high stenosis

grade. There are a number of possible reasons for this.

• The tracking approach we adopted is derived from the segmenta-

tion mask, and high grade stenoses have a tendency to disrupt the

segmentation. Therefore vessels which contain a severe stenosis

may only be tracked up to the point of stenosis and not through it,

giving the appearance of a healthy vessel.

• We have a limited number of vessel volumes for training the CNN

method, the majority of which are healthy (around 3/4), so our set

does not capture the full range of vessel and stenosis morphologies.

• The ground truth labels themselves also have inherent noise, as

described in Chapter 7.
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Figure 8.13 – Confusion matrices for real vessel data, calculated with
the convolutional neural network (CNN) method.

8.5 Conclusions

Here we have presented three different algorithms for grading stenosis

severity of vessel segments in WBMRA. Two are based on a set of rules

applied to a set of calibre measurements — cross-sectional area and

GroBa calibre — with the third using a convolutional neural network

to grade entire vessel segments based on the maximum stenosis present.

A set of ten thousand synthetic vessels were created, with a set of

randomly varied parameters which were chosen to give a close visual

resemblance to real vessels in our dataset. A number of simplifying

assumptions had to be made, such as no branches or non-stenotic ab-

normalities. Applying our algorithms to this synthetic set showed good

performance, achieving similar performance to the inter-rater agreement

between annotators on real data when examined at the binary level for

GroBa, the 3-point scale for the cross-section method, and the original

6-point scale for the CNN.

Applying the stenosis algorithms to real data showed much poorer

performance. All three had a tendency to over-classify vessels as healthy,

with false negative rates of 59%, 74%, and 73% for the cross-section,
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GroBa, and CNN methods respectively.

We conclude that while the methods performed well on synthetic

vessels, the real data produced by our processing pipeline is significantly

more complex. We believe the main limiting factors which contributed

to this was the difficulty tracking vessels in the presence of severe disease

and the paucity (and variability) of ground truth data available. We will

address each of these issues, and how we recommend improving upon

them in the future, in Chapter 9.4.



Chapter 9

Conclusions and Future Work

9.1 Introduction

In this chapter we will summarise the work presented in this thesis, dis-

cussing our main contributions along with the limitations of our work.

We will conclude with a discussion of how this work could be extended

in the future, and provide recommendations based on the results we have

presented.

9.2 Summary of Thesis

In this thesis we have proposed an automated framework for analysing

vessels in WBMRA examinations, and assigning them a grade based

on the maximum severity stenosis detected. This involved constructing

a processing pipeline which would take a pre- and post-contrast MRA

volume as it’s input, automatically segment the arteries, calculate their

centrelines to track them in 3D space, then detect stenoses within the

tracked vessel volumes.

To accomplish this, we first began with an interface prototyping ex-

ercise in collaboration with our clinical and industry partners, detailed

in Chapter 3. This allowed us to identify the key demands of the clinical

task, and the technologies needed to meet them. Here it was concluded

that the key factor from clinicians was that the tool should be be fully

automatic and require no manual intervention, and should be targeted

as a tool for flagging up areas of suspected disease so as to direct clini-

cians attention during the diagnosis process. This targeted our research

towards two key areas; a study of 3D vessel segmentation algorithms

validated on ground truth WBMRA vessel maps, and development of

automated stenosis detection algorithms validated against ground truth

124
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stenosis severity markings.

For this project, 18 whole-body patient datasets were provided, ac-

quired at Dundee’s Ninewells Hospital as part of a separate study [83],

and were selected to give a range of healthy volunteers and patients with

mild to severe peripheral arterial disease. The first task undertaken was

to compare two pre-packaged software solutions for volume registration

of pre- and post-contrast datasets, described in Chapter 5.2. We chose to

use the “tmvsFire” software developed by our industrial partner, which

gave the fewest artefacts after digital subtraction of the two datasets

subtraction. Setting this pre-processing step at the start ensured that

all future work would be carried out on the same set of subtracted data

volumes.

Next we evaluated a baseline method for vessel analysis in WBMRA

called the “GroBa” system, published in 2012. The performance of this

system had not previously been fully characterised, so a number of syn-

thetic test were carried out, alongside a comparison with a number of

manual stenosis measurements, as described in Chapter 5.3. It was found

to perform well for simple models, but a number of issues were high-

lighted when examining more complex and real-world examples. The

main limitations identified was the poor segmentation performance (us-

ing the Frangi filter), and issues with early triggering of the stopping

criteria resulting in a wrong estimation of vessel calibre.

In Chapter 6 we addressed the segmentation shortcomings of the base-

line system by performing a quantitative comparison between three pre-

viously published methods (Frangi, active contours, and OOF), and our

developed method using a convolutional neural network. We created a

detailed segmentation protocol which was followed to create three ground

truth vessel maps by a trained annotator with previous experience anno-

tating medical images. Our initial experiments revealed that the OOF

algorithm provided the best mean Dice score of 0.705 across all sta-

tions for our data, narrowly beating the CNN method due to the small

amount of training data available. Due to the chronology of the work

carried out in this project, the OOF method was used for all future work.

However, subsequent experiments revealed that a 2D U-Net architecture

outperformed the OOF method, achieving a mean Dice score of 0.756 as

described in Chapter 6.6.

A further ground truth data collection task was then undertaken in

Chapter 7 to manually annotate the locations of all stenoses within our 18

patient datasets. We constructed a clear annotation protocol in conjunc-
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tion with three trained clinicians, using research software provided by the

Canon Medical team. When comparing results between the three anno-

tators we found significant inter-observer variability even at the highest

severity levels. A fourth experienced clinical expert was asked to re-

view the 37 highest disagreement cases, providing a definitive assessment

of the true score alongside the likely reasoning for the disagreements.

These included user Error, image artefacts, poor image quality, natural

anatomical variability, and simple differences of opinion. Based on these

results we re-analysed the full dataset at three different levels of fidelity

— a 6 point, 3-point, and binary scale — and found that the annota-

tion approach that was taken (assessment by eye) was most suited to a

3-point severity scale, where inter-rater agreement improved from 72.5%

to 92.5%.

In Chapter 8 we present three algorithms for detecting stenoses within

tracked vessels; two rule-based methods using cross-sectional areas and

GroBa calibres, and one machine learning based method in the form of

an 8 layer CNN. We first constructed a synthetic experiment, generating

a dataset of ten thousand vessel volumes against which the algorithms

were applied. The parameters for these vessels were selected to give

a similar appearance to the real processed vessels given some simplify-

ing constraints (such as no junctions, and no abnormalities that aren’t

stenoses). All three algorithms gave good results when examined in the

same way as the ground truth annotations, achieving similar performance

to the inter-rater agreement between annotators on real data when exam-

ined at the binary level for GroBa, the 3-point scale for the cross-section

method, and the original 6-point scale for the CNN.

Applying our algorithms to the vessel volumes extracted from our 18

patients using the ground truth stenosis annotations we collected we get

poor performance. All methods tend to over-classify vessels as healthy

even in the binary case, with true negative and false negative rates of

70%/59%, 74%/74% and 89%/73% for the cross-section, GroBa, and

CNN methods respectively. The main issues which must be addressed

in future to improve this performance is the vessel segmentation and

tracking around areas of high stenosis, and increasing the amount of

ground truth data available for training.
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9.3 Contributions

In this thesis we put forward a fully automated framework for the process-

ing and analysis of WBMRA data for grading stenoses. We contribute

to the existing literature of automated analysis of WBMRA through

the quantitative comparison of vessel segmentation techniques, validated

against manual ground truth, and through quantifying the inter- and

intra-observer variability of manual stenosis grading by trained observers,

providing a clear protocol and recommended guidelines for collecting an-

notations to be used as ground truth data for algorithm development.

The key contributions of this thesis can be summarised as follows,

1. First quantitative comparison of vessel segmentation techniques for

WBMRA data, including the first application of a 3D convolutional

neural network to the task of automatic vessel segmentation in

WBMRA.

2. Quantification of the inter-observer variability for the task of man-

ually detecting and grading stenoses from WBMRA examinations

by trained clinicians.

3. Development of clear protocols for the collection of ground truth

data for vessel segmentation and stenosis severity in WBMRA vol-

umes, putting forward good-practice guidelines for ground truth

collection from WBMRA data for algorithm development.

4. First fully automated framework for extracting and analysing arter-

ies in WBMRA examinations to be tested against well-characterised

ground truth stenosis annotations in real patient data.

9.4 Limitations and Future Work

We will conclude by discussing the main limitations of our proposed sys-

tem, and possible solutions and extensions that could be explored in the

future. As discussed in Chapter 3.3, the target of assistive software tools

for CVD diagnosis in WBMRA data should focus on a fully automated

system which reduces the clinical workload by directing the attention of

clinicians to the areas of the vasculature which are detected to be abnor-

mal. In order for the system proposed in this thesis to meet that goal,

we have identified a number of areas which should be the focus of future

research.
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9.4.1 Vessel Segmentation

One of the main difficulties encountered when attempting to grade vessels

in our dataset was the issue of poor tracking around areas of high stenosis.

Our segmentation comparison was only validated against ground truth

vessel maps for three patients, due to the time investment required to

construct the protocol and manually annotate the large volumes, slice

by slice. The three patients chosen for annotation were also from the

healthy and low severity groups in order to simplify the annotation task,

however this also meant that pathology was not well captured in the

data. We therefore recommend that further ground truth data collection

should be targeted, acquired following the optimised protocol we have

presented. This would be especially useful for the application of deeper

neural networks.

Following our initial results from the U-Net network, we also recog-

nise that a deeper comparison of network architectures could improve

the segmentation performance further. One approach would be to in-

clude the output of the OOF algorithm as an additional input into a the

network, either as a single channel with the maximum OOF response or

multiple channels containing the OOF response at each radius step. A

thorough comparison of 2D U-Net and 3D V-Net architectures alongside

more complex data augmentation techniques may also yield improved

performance, though these would still be subject to the same constraints

imposed by the lack of training data, making further ground truth seg-

mentation collection the logical first target for future work.

9.4.2 Vessel Tracking

In this project we opted to use an off-the-shelf solution for automatic ves-

sel tracking which calculates vessel centrelines from binary segmentation

masks. It was seen in examples from our data that this often performed

poorly in some situations due to its reliance on the segmentation. In par-

ticular, stenoses tend to disrupt or break the normal path of the vessels

leading to inaccurate tracking through areas of severe disease. A more

sophisticated method will need to be developed to give robust tracking

in the presence of pathology.

Tracking across severe stenoses or occlusions also poses an issue, since

other contextual information must be leveraged in order to accurately

“reconnect” the centrelines across the broken vessels. A landmark-based

tracking system, following such work as presented in [137,148] may be one
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possible solution, or an atlas-based approach such as explored in [138].

However both approaches would need significant amounts of ground truth

in order to be robust to both the range of natural anatomical variations

and more importantly, the variability of pathology.

9.4.3 Ground Truth Stenosis Data

The ground truth collection exercise we carried out with clinicians for

annotating stenoses in WBMRA raised a number of unforeseen issues

which had not previously been reported or explored in the literature,

including 37 cases (almost 6% of examined vessels) which contained a

disagreement of at least 2 grades involving a stenosis considered to be

haemodynamically important (> 50%).

Further ground truth data is clearly needed to fully characterise the

range of pathology seen across the population, and provide more sub-

stantially more data for algorithm development. We recommend that

this should be a key target for future work, with annotation tasks car-

ried out following our proposed guidelines in Chapter 7, with all vessel

grades assigned following the consensus of multiple trained annotators

on a 3 point grading scale (healthy, low severity, high severity).

9.4.4 Automated Stenosis Grading

The three algorithms proposed in Chapter 8 gave promising results in

synthetic experiments, showing that they should work in principle if the

complexity of our synthetic data was comparable to that of the vessels

extracted from our 18 patients. When applied to the real data the final

performance of all three approaches was poor however. Through exam-

ining the appearance of the extracted vessels, and performance of our

processing pipeline in the presence of complex pathology, we deduce that

the key limiting factors to this study was the accuracy of vessel seg-

mentation and tracking (particularly in the presence of disease), and the

quantity and quality of ground truth data for training. Our proposals for

future developments in Sections 9.4.1, 9.4.2, and 9.4.3 above should help

improve these factors greatly. A greater pool of training data as proposed

in Section 9.4.3 would also allow the training of a more complex CNN

algorithm, and enable a more robust assessment of our proposed stenosis

grading algorithms a wider number of vessel examples.
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C. Wang, P. Kitslaar, G. Unal, A. Katouzian, M. Orkisz, C. Chen,

F. Precioso, L. Najman, S. Masood, D. Ünay, L. van Vliet,
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