5,256 research outputs found

    Statistical reasoning with set-valued information : Ontic vs. epistemic views

    Get PDF
    International audienceIn information processing tasks, sets may have a conjunctive or a disjunctive reading. In the conjunctive reading, a set represents an object of interest and its elements are subparts of the object, forming a composite description. In the disjunctive reading, a set contains mutually exclusive elements and refers to the representation of incomplete knowledge. It does not model an actual object or quantity, but partial information about an underlying object or a precise quantity. This distinction between what we call ontic vs. epistemic sets remains valid for fuzzy sets, whose membership functions, in the disjunctive reading are possibility distributions, over deterministic or random values. This paper examines the impact of this distinction in statistics. We show its importance because there is a risk of misusing basic notions and tools, such as conditioning, distance between sets, variance, regression, etc. when data are set-valued. We discuss several examples where the ontic and epistemic points of view yield different approaches to these concepts

    Covariant fuzzy observables and coarse-graining

    Full text link
    A fuzzy observable is regarded as a smearing of a sharp observable, and the structure of covariant fuzzy observables is studied. It is shown that the covariant coarse-grainings of sharp observables are exactly the covariant fuzzy observables. A necessary and sufficient condition for a covariant fuzzy observable to be informationally equivalent to the corresponding sharp observable is given.Comment: 19 page

    Risk-informed decision-making in the presence of epistemic uncertainty

    Get PDF
    International audienceAn important issue in risk analysis is the distinction between epistemic and aleatory uncertainties. In this paper, the use of distinct representation formats for aleatory and epistemic uncertainties is advocated, the latter being modelled by sets of possible values. Modern uncertainty theories based on convex sets of probabilities are known to be instrumental for hybrid representations where aleatory and epistemic components of uncertainty remain distinct. Simple uncertainty representation techniques based on fuzzy intervals and p-boxes are used in practice. This paper outlines a risk analysis methodology from elicitation of knowledge about parameters to decision. It proposes an elicitation methodology where the chosen representation format depends on the nature and the amount of available information. Uncertainty propagation methods then blend Monte-Carlo simulation and interval analysis techniques. Nevertheless, results provided by these techniques, often in terms of probability intervals, may be too complex to interpret for a decision-maker and we therefore propose to compute a unique indicator of the likelihood of risk, called confidence index. It explicitly accounts for the decision-maker's attitude in the face of ambiguity. This step takes place at the end of the risk analysis process, when no further collection of evidence is possible that might reduce the ambiguity due to epistemic uncertainty. This last feature stands in contrast with the Bayesian methodology, where epistemic uncertainties on input parameters are modelled by single subjective probabilities at the beginning of the risk analysis process

    UNIFYING PRACTICAL UNCERTAINTY REPRESENTATIONS: I. GENERALIZED P-BOXES

    Get PDF
    Pre-print of final version.International audienceThere exist several simple representations of uncertainty that are easier to handle than more general ones. Among them are random sets, possibility distributions, probability intervals, and more recently Ferson's p-boxes and Neumaier's clouds. Both for theoretical and practical considerations, it is very useful to know whether one representation is equivalent to or can be approximated by other ones. In this paper, we define a generalized form of usual p-boxes. These generalized p-boxes have interesting connections with other previously known representations. In particular, we show that they are equivalent to pairs of possibility distributions, and that they are special kinds of random sets. They are also the missing link between p-boxes and clouds, which are the topic of the second part of this study

    Relating Imprecise Representations of imprecise Probabilities

    Get PDF
    International audienceThere exist many practical representations of probability families that make them easier to handle. Among them are random sets, possibility distributions, probability intervals, Ferson's p-boxes and Neumaier's clouds. Both for theoretical and practical considerations, it is important to know whether one representation has the same expressive power than other ones, or can be approximated by other ones. In this paper, we mainly study the relationships between the two latter representations and the three other ones
    • 

    corecore