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PREFACE

These are the proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications
(ISIPTA ’07). ISIPTA meetings are a primary forum for presenting and discussing new advances in imprecise probabili-
ties. This research field has a very wide scope, at least as wide as that of probability itself, and it encompasses a number
of theories and applications that do not feel comfortable with using precise numbers to model chance or uncertainty in
general.

These approaches to imprecise probabilities may be characterised by different types of mathematical calculus and are
moreover based on a diversity of philosophical standpoints: a number of them regard precision as an idealisation and
imprecision as a more fundamental component of probability, while others regard imprecision more simply as a convenient
notion for sensitivity analysis, or for making robust inferences; some approaches interpret probability as subjective, while
others are focused on physical interpretations; some are founded on the requirement of self-consistency for probabilistic
inference, and still others do not stress this aspect and rather propose ad hoc methods. Many other distinctions are
possible, and the list could become very long.

What is perhaps more important here is that the ISIPTA meetings so far—and ISIPTA ’07 is no exception to this rule—have
welcomed all of these different approaches to imprecise probabilities. Indeed, it has been one the aims of past and present
ISIPTAs to increase awareness of the existence of different approaches to, and languages for, dealing with imprecise
probabilities, as well as to foster discussion among the different communities of researchers in this field. These aims stem
from a widespread belief that there currently is no single theory of imprecise probability that is consistently superior to
all the others in addressing the multiplicity of problems and controversies that pervade this complex field. This is why
SIPTA (http://www.sipta.org)—the international society that manages the ISIPTA conferences—has decided to
change the original name of the conferences from ISIPTA ’07 onwards: to emphasise that there are theories of imprecise
probability, rather than a single theory.

We have come to realise that this openness to different approaches also has its drawbacks: it can for instance make it
difficult to classify the ISIPTA meetings into one of the more usual categories for conferences. This was forced upon us
by one of the reviewers for ISIPTA ’07, who at a certain point in the review process wanted to know what the ISIPTA
meetings really are: “[are they conferences] where anything that is technically sound and may generate discussion can be
presented, no matter how premature [. . . ]? Or [are they conferences] where ‘accept’ means ‘this paper is not just sound,
but also interesting, and it tells a coherent story; a longer version would also be accepted for a journal’?”

Let us formulate our point of view on this matter, by indicating what we believe should be characteristic features of an
ISIPTA meeting. One of these is open-mindedness, for the reasons given above. Quality is another feature we feel strongly
about. For ISIPTA ’07 we have tried to select papers that are well-motivated, significant, original, and serious. To achieve
this, we have relied on a large group of Program Committee Members, who have subjected the submitted papers to a
very careful refereeing process. This process included—for the first time since the inception of the ISIPTAs—electronic
discussion between the reviewers of a paper (usually three, sometimes four in number) that lasted for two weeks. Our
reviewers have contributed very generously to this discussion, and have thus helped us make up our minds about some of
the more difficult papers. This is the right place to thank them for all their careful work, which has proven invaluable to
us. We also thank the contributors for their diligence in preparing submissions, and for their patience with our selection
process.

We want also to give our views on the important issue of selectivity. The well-established format of the ISIPTA meetings
has made the review process quite selective: there are no parallel sessions, and each paper is presented both in a plenary
session and as a poster. This has limited significantly the number of accepted papers, and it has obliged us to reject a few
valuable submissions. In spite of this, it should be stressed that we do not regard selectivity as important per se, because
quality and selectivity do not always see eye to eye. Moreover, we feel that stretching selectivity may have an adverse
effect on the diversity of the accepted papers, and more generally on their originality. We take this seriously as we have a
tradition of attaching great importance to originality. That is why in a number of ISIPTA proceedings you may find papers
that are not fully mature yet, or that are based on an ongoing research program, or that perhaps could be refined at the level
of didactical presentation. Moreover, these proceedings may well contain controversial papers, on which the reviewers
themselves had diverging views: we believe such contributions may sometimes be particularly important vehicles for
stimulating critical discussion at our meetings.

http://www.sipta.org


We believe that the 48 papers included in these proceedings show that at least some of the above-mentioned aims have
been realised for ISIPTA ’07. More generally speaking, we hope that we have succeeded in making ISIPTA ’07 an
interesting and stimulating conference to attend. We have been very much helped in our efforts by the invited speakers
(Terrence Fine: In the realm of probability: Limits to standard probability; and Glenn Shafer: Game-theoretic probability:
Theory and applications) and the people responsible for the tutorials (Scott Ferson: Risk analysis: Rough but ready tools
for calculations under variability and uncertainty.; George Klir: Generalised information theory; Enrique Miranda: An
introduction to the theory of coherent lower previsions; Teddy Seidenfeld: Decision theories for imprecise preferences
and imprecise probabilities). They have contributed their time and many talents in a very generous fashion. Copies of their
contributions are included in the electronic version of these proceedings (http://www.sipta.org/isipta07).

Finally, and as with all the previous ISIPTAs, the Programme Committee Board is exceptionally grateful to Serafı́n Moral,
who has overseen the electronic management of these papers, their submissions, reviews, and discussions, unselfishly
spending much of his time to make these proceedings possible.

—Gert de Cooman,1 Jiřina Vejnarová and Marco Zaffalon2

6 June 2007

1Gert de Cooman was supported by the Flemish BOF grant 01107505.
2Marco Zaffalon gratefully acknowledges support by the Swiss NSF grants 200020-109295/1 and 200021-113820/1.

http://www.sipta.org/isipta07
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Abstract

Credal networks are imprecise probabilistic graphical
models generalizing Bayesian networks to convex sets
of probability mass functions. This makes credal net-
works particularly suited to capture and model expert
knowledge under very general conditions, including
states of qualitative and incomplete knowledge. In
this paper, we present a credal network for risk evalu-
ation in case of intrusion of civil aircrafts into a no-fly
zone. The different factors relevant for this evalua-
tion, together with an independence structure over
them, are initially identified. These factors are ob-
served by sensors, whose reliabilities can be affected
by variable external factors, and even by the behavior
of the intruder. A model of these observation mecha-
nisms, and the necessary fusion scheme for the infor-
mation returned by the sensors measuring the same
factor, are both completely embedded into the struc-
ture of the credal network. A pool of experts, facil-
itated in their task by specific techniques to convert
qualitative judgments into imprecise probabilistic as-
sessments, has made possible the quantification of the
network. We show the capabilities of the proposed
network by means of some preliminary tests referred
to simulated scenarios. Overall, we can regard this ap-
plication as an useful tool to support military experts
in their decision, but also as a quite general imprecise-
probability paradigm for information fusion.

Keywords. Credal Networks, Information Fusion,
Sensor Management, Tracking Systems.

1 Introduction

In the recent times, the establishment of a no-fly zone
surveyed by the Air Force around important poten-
tial targets has become usual practice, also in neutral
states like Switzerland, because of the potential dan-
ger of terror threats coming from the sky. In this
paper we refer in particular to the Swiss case, where
no-fly zones are usually established to protect inter-

national conferences, like the World Economic Forum
in Davos, or to protect strategic buildings, like for
example nuclear power plants and dams.

A no-fly zone for the protection of a single strate-
gic object usually consists of a circular-shaped region
with a radius of several kilometers around the target
to defend. All the aircrafts flying in this region with-
out the required permissions are considered intruders.
The no-fly zone is usually divided in two concentric
regions: the external no-fly zone is a large region, with
many sensors, devoted to the identification of the in-
truder, while the internal no-fly zone is a small region,
containing the object to protect, where fire is eventu-
ally released if the intruder is presumed to have bad
aims.

But not all the intruders have the same intentions:
there are intruders with bad aims (or renegades), in-
truders with provocative aims, and erroneous intrud-
ers. Since only renegades represent a danger for the
protected object, the recognition of the intruder’s aim
plays a crucial role in the following decision, which, if
it is wrong, is clearly critical. This is the recognition
problem we address in this paper.

This problem is complex for many reasons: (i) the risk
evaluation usually relies on qualitative expert judg-
ments; (ii) it requires the fusion of the information
coming from different sensors, and this information
can be incomplete or partially contradictory; (iii) dif-
ferent sensors can have different levels of reliability,
and the reliability of each sensor can be affected by
exogenous factors, as geographical and meteorological
conditions, and also by the behavior of the intruder.
A short review of the problem and some detail about
these difficulties is reported in Section 2.

Nowadays, the problem is faced by military experts
without the support of any mathematical model. The
reason is partly the difficulty of finding a suitable
mathematical paradigm for this kind of problems.

In this paper, we propose credal networks (Section 3)



as a mathematical paradigm for the modeling of mil-
itary identification problems. Credal networks are
imprecise-probability graphical models representing
expert knowledge by means of sets of probability mass
functions, which are particularly suited for modeling
and doing inference with qualitative, incomplete, and
also conflicting information.

More specifically, we have developed a credal net-
work for the considered identification problem. This is
achieved by a number of sequential steps: determina-
tion of the factors relevant for the risk evaluation and
identification of a causal structure between them (Sec-
tion 4.1); quantification of this qualitative structure
by imprecise probabilistic assessments (Section 5.1);
determination of a qualitative model of the observa-
tion mechanism associated to each sensor, together
with the necessary fusion scheme of the information
collected by the different sensors (Section 4.2); quan-
tification of this model by probability intervals (Sec-
tion 5.2). An analysis of the main features of our
imprecise-probability approach to information fusion
is indeed reported in Section 6.

The credal network is finally used to evaluate the level
of risk, which is simply the probability of the risk fac-
tor conditional on the information collected by the
sensors in a given scenario. A description of the ap-
proximate procedure used to update the network, to-
gether with the results of a preliminary test, is re-
ported in Section 7.

Summarizing, we can regard this model as a practical
tool to support the military experts in their decisions
for this particular problem. But, at the same time,
this credal network can be regarded as a prototypical
modeling framework for general identification prob-
lems requiring information fusion.

2 Military Aspects

This section is focused on the main military aspects of
the identification problem. In particular, we explain:
(i) what are the possible intentions of the intruder, (ii)
what are the factors that are observed to determine
the intention of the intruder, (iii) what are the sensors
used to determine these factors.

We consider only civil aircrafts; military aircrafts and
flying weapons like rockets or cruise missiles are not
taken into consideration. For the possible intentions
of the intruder, four categories can therefore be con-
sidered: renegade, agent provocateur, erroneous in-
truder and damaged intruder. A renegade is an air-
craft that has entered the no-fly zone with the pur-
pose of attacking the protected object using itself as
weapon; terrorists belong to this category. The pur-

pose of an agent provocateur is the provocation of the
protection structure for demonstrative purposes. An
agent provocateur usually knows exactly what it is
doing and does not want to die. An erroneous in-
truder has no particular purpose: it has entered the
no-fly zone by mistake, because of bad preparation of
the flight or due to a bad level of training of the pilot.
Finally, a damaged intruder is an aircraft without bad
aims that is incurring an emergency situation due to
technical problems. A damaged intruder enters a no-
fly zone because it cannot avoid it or because it is in a
situation of panic. In our model, the intention of the
intruder is modeled as a random variable, called the
risk factor, whose possible values are the four cases
described above.

The intruder is assumed to be observed for a suffi-
ciently long time window, when it is flying in the ex-
ternal no-fly zone. The factors observed during this
period to determine its intention can be divided into
two categories: factors describing the flight behavior
and factors describing the reactions. For this first cat-
egory we consider: height, changes in height, absolute
speed, flight path and type of aircraft. These factors
are observed in a passive way, without any interaction
with the intruder. The factors belonging to the sec-
ond category are the transponder (mode 3/A), the re-
action to radio communication with the civil Air Traf-
fic Control (ATC), the reaction to radio communica-
tion with the Air Defence Direction Center (ADDC)
and, finally, the reaction to interception. The common
point of these factors is that they require an interac-
tion (code emission, radio communication or visual
contact) between the intruder and the civil or mili-
tary control.

All these factors are regarded as random variables,
taking only a finite number of possible values. Vari-
ables which are not intrinsically categorical, are dis-
cretized. For instance, regarding the height above the
ground maintained by the intruder during the obser-
vation period, we are not interested in the precise el-
evation of the aircraft, but on its flight level. Accord-
ing to military practice, the airspace is divided in four
levels: very low (0-150m), low (150-3’000), high

(3’000-7’000m) and very high (above 7’000m).

Many sensors can be used to determine the factors
described above. In our application the ADDC works
as a centralized decision center receiving all the infor-
mation collected by the sensors in order to evaluate
the intention of the intruder. The network formed by
the ADDC and all the sensors is called the identifi-
cation architecture. The sensors in the identification
architecture are divided in four main categories:

• Signals intelligence. Sensors belonging to this



category detect signals emitted by the intruder.
In our application, the only sensor of this type is
the secondary surveillance radar (SSR), that de-
tects the Mode 3/A (identification code) and the
Mode C (height) emitted by the intruder.

• Radar intelligence. Sensors belonging to this cat-
egory are all the radars. In our application we
have three types of radars: 3D radars, detecting
the 3D position of the intruder in the airspace;
2D radars, detecting the 2D position but not the
height of the intruder; and tracking radars, de-
tecting the 3D position of the intruder but only
at low heights and with a limited range.

• Imagery intelligence. Sensors belonging to this
category record TV or infrared (IR) images of
the intruder using cameras.

• Human intelligence. Sensors belonging to this
category are sensors where the information is
elaborated by humans before being transmitted
to the ADDC. In our application there are two
sensors of this type: ground-based observation
units, where humans observe the intruder using
optical instruments and communicate their ob-
servations to the ADDC, and interceptors, where
the pilot observes directly the intruder and com-
municate the observations to the ADDC.

The identification architecture is a complicated non-
homogeneous structure. In fact, not all the sensors are
present at the same time in each point of the no-fly
zone. The presence and the reliability of a sensor for
observing a given factor of the intruder depend on the
position of the intruder (in particular on its height),
on the position of the sensors in the architecture and
on the meteorological and geographical situation. In
Section 4.2 we explain in detail how presence and re-
liability are modeled by our network.

3 Mathematical Aspects

In this section, we briefly recall the definitions of
credal set and credal network [4], which are the math-
ematical objects we use to model expert knowledge
and fuse the different kinds information in a single
coherent framework.

3.1 Credal Sets

We use uppercase letters to denote random variables.
Given a random variable X , we denote by ΩX the
possibility space of X , with x a generic element of
ΩX . Denote by P (X) a mass function for X and by
P (x) the probability of x.

We denote by K(X) a closed convex set of proba-
bility mass functions over X . K(X) is said to be
a credal set over X . For any x ∈ ΩX , the lower
probability for x according to the credal set K(X) is
P (x) = minP (X)∈K(X) P (x). Similar definitions can
be provided for upper probabilities, conditional credal
sets, lower and upper expectations. Note that a set
of mass functions, its convex hull, and its set of ver-
tices (also called extreme mass functions) produce the
same lower and upper expectations and probabilities.

Conditioning with credal sets is done by elements-wise
application of Bayes rule. The posterior credal set is
the union of all posterior mass functions. Denote by
K(X |Y = y) the set of conditional mass functions
P (X |Y = y), for generic variables X and Y . We
say that two variables are strongly independent, when
every vertex in K(X, Y ) satisfies stochastic indepen-
dence of X and Y .

A set of probability intervals over ΩX , say IX = {Ix :
Ix = [lx, ux], , 0 ≤ lx ≤ ux ≤ 1, x ∈ ΩX}, can be
regarded as a specification of a credal set K(X) =
{P (X) : P (x) ∈ Ix, x ∈ ΩX ,

∑
x∈ΩX

P (x) = 1}. IX

is said to avoid sure loss if the corresponding credal
set is not empty and to be coherent (or reachable) if
ux′ +

∑
x∈ΩX ,x 6=x′ lx ≤ 1 ≤ lx′ +

∑
x∈ΩX ,x 6=x′ ux, for

all x ∈ ΩX . IX is coherent if and only if the intervals
are tight, i.e., for each lower or upper bound in IX

there is a mass function in the credal set at which the
bound is attained [12, 3].

3.2 Credal Networks

Let X be a vector of random variables and assume a
one-to-one correspondence between the elements of X

and the nodes of a directed acyclic graph G. Accord-
ingly, in the following we will use node and variable
interchangeably. For each X ∈ X, ΠX denotes the set
of the parents of X , i.e., the random variables corre-
sponding to the immediate predecessors of X accord-
ing to G.

The specification of a credal network over X, given the
graph G, consists in the assessment of a conditional
credal set K(Xi|πi) for each possible value πi ∈ ΩΠi

of the parents of Xi, for each variable Xi ∈ X.
The graph G is assumed to code strong dependen-
cies among the variables in X by the so-called strong
Markov condition: every variable is strongly indepen-
dent of its nondescendant non-parents given its par-
ents. Accordingly, it is therefore possible to regard a
credal network as a specification of a credal set K(X)
over the joint variable X, with K(X) convex hull of
the set of joint mass functions P (X) = P (X1, ..., Xn)
over the n variables of the net, that factorize ac-
cording to P (x1, . . . , xn) =

∏n

i=1 P (xi|πi). Here πi



is the assignment to the parents of Xi consistent
with (x1, . . . , xn); and the conditional mass functions
P (Xi|πi) are chosen in all the possible ways from the
respective credal sets. K(X) is called the strong ex-
tension of the credal network. Observe that the ver-
tices of K(X) are joint mass functions P (X). Each of
them can be identified with a Bayesian network [9],
which is a precise probabilistic graphical model. In
other words, a credal network is equivalent to a set of
Bayesian networks.

3.3 Computing with Credal Networks

Credal networks can be naturally regarded as expert
systems. We query a credal network to gather prob-
abilistic information about a variable given evidence
about some other variables. This task is called updat-
ing and consists in the computation, with respect to
the network strong extension K(X), of P (X |E = e)
and P (X |E = e), where E is the vector of variables of
the network in a known state e (the evidence), and X

is the node we query. Credal network updating is an
NP-hard task [5], for which a number of approximate
algorithms have been proposed [8, 2].

4 Qualitative Assessment of the

Network

We are now in the position to describe the credal net-
work developed for our application. According to the
discussion in the previous section, this task first re-
quires the qualitative identification of the conditional
dependencies between the different variables involved
in the model, which can be coded by a corresponding
directed acyclic graph.

As detailed in Section 2, the variables we consider in
our approach are: (i) the risk factor, (ii) the nine vari-
ables used to assess the intention of the intruder, (iii)
the variables representing the observations returned
by the sensors, (iv) for each sensor two additional
variables representing presence and reliability of the
sensor. In the following, we refer to the variables in
the categories (i) and (ii) as core variables.

4.1 Risk Evaluation

Figure 1 depicts the conditional dependencies between
the core variables according to the military and tech-
nical considerations of the Expert.1 As an example,
the arcs connecting the nodes type of aircraft, height,
and risk factor with the speed, correspond to the fol-
lowing Expert’s remarks: there is a strong relation be-

1In this paper we briefly call Expert a pool of military ex-
perts from the Swiss Air Force, we have consulted during the
development of the model.

tween the height above the ground and the correspond-
ing speed of an aircraft (technical considerations); a
renegade is expected to fly as fast as possible (mil-
itary consideration); an intruder flying with a light
aircraft, because of the limited maximal speed of this
type of aircrafts, would necessarily flight very slowly.
The specification of this part of the network has re-
quired a considerable amount of military and techni-
cal expertise that, due to space limitations, cannot be
explained in more detail here.

Aircraft
Type

Height
Changes

Transponder
Mode 3/A

Aircraft
Height

Risk
Factor

Reaction
to ATC

Absolute
Speed

Reaction
to ADDC

Interception
Reaction

Flight
Path

Figure 1: The core of the network. Dark gray nodes
are observed by single sensors, while light gray nodes
are observed by set of sensors for which an information
fusion scheme (see Section 4.2) is required.

4.2 Observation and Fusion Mechanism

We distinguish between latent variables, that are as-
sumed to be unobservable, and manifest variables,
which are actually observed. The core variables in
Figure 1 are regarded as latent variables that, to be
determined, usually require the fusion of information
coming from different sensors, with different levels of
reliability. Nevertheless, in the case of the identifica-
tion code emitted by the intruder (Transponder Mode
3/A), the reaction to interception observed by the pi-
lot, and the reaction to civil air traffic control (ATC)
observed by the controllers through SSR, the observa-
tion mechanism is immediate; thus we simply identify
the latent with the corresponding manifest variable,
adding the value missing, as possible value of the vari-
able. This value can have particular meanings (eg.,
a missing Mode 3/A probably means a switched off
transponder) and will be also added to the possibility
space of the other manifest variables.

Clearly, if the risk factor was the only latent variable,
the network in Figure 1 would be the complete net-
work needed to model the risk evaluation. But, be-
cause we are dealing with latent variables observed by
many sensors, a model of the observation and a fusion



mechanism has to be added to the current structure.

Observation Mechanism We begin by consider-
ing observations by single sensors, and then we ex-
plain the fusion scheme for several sensors. Consider
the following example: suppose that an intruder is fly-
ing at low height and is observed by ground-based ob-
servation units in order to evaluate its flight path. For
this evaluation, the intruder should be observed by
many units. If our identification architecture is char-
acterized by too a low number of observation units,
it is probable that the observation of the flight path
would be incomplete or even absent, although the me-
teorological and geographical conditions are optimal.
In this case, the low quality of the observation is due
to the scarce presence of the sensor. Suppose now that
the architecture is characterized by a very large num-
ber of observation units but the weather is character-
ized by a complete cloud cover with low clouds, then
the quality of the observation is very low although the
presence of units is optimal. In this case the low qual-
ity of the observation is due to the low reliability of
the sensor under this meteorological condition. This
example motivates our choice to distinguish between
reliability and presence of the sensors in the network.

Figure 2 illustrates, in general, how the evidence pro-
vided by a sensor about a latent variable is assessed.
The manifest variable depends on the relative latent
variable, on the presence of the sensor and on its re-
liability. Both reliability and presence are categorical
variables with three possible values, high, medium

and low for the reliability, and present, partially

present and absent for the presence.

The reliability of a sensor depends on the meteoro-
logical and geographical situation and on the height,
while the presence of a sensor depends only on the
identification architecture and on the height of the in-
truder. The dependence on the latent variable height
can be explained considering the technical limits of
the sensors. There are sensors that are specific of the
low and very low heights, like tracking radars and TV
or IR cameras. There are other sensors, like the 3D
radars of the fixed military radar stations, that are
always present at high and very high heights, but are
not always present at low and very low heights.

The meteorological and geographical conditions do not
affect the presence of a sensor, but only its reliability.
It is important to point out that these conditions are
always observed and we will not display them explic-
itly as variables in the network, being already con-
sidered by the Expert during his quantification of the
reliability.

Exogenous
factors

Aircraft
Height

Sensor
reliability

Latent
variable

Sensor
presence

Manifest
variable

Figure 2: Observation mechanism for a single sensor.
The latent variable is the variable to be observed by
the sensor, while the manifest variable is the value
returned by the sensor itself.

Sensors Fusion We can finally explain how the in-
formation collected by the different observations of
a single latent variable returned by different sensors
can be fused together. Consider, for example, the
determination of the latent variable type of aircraft
depicted in Figure 3. The type of aircraft can be ob-
served by four types of sensors: TV cameras, IR cam-
eras, ground-based observation units and air-based in-
terceptors. For each possible sensor, we model the
observation using a structure like the network in Fig-
ure 2: there is a node representing the presence of the
sensor and a node representing the reliability of the
sensor, while the variable height influences all these
nodes. This structure permits the fusion of the evi-
dence about the latent variables coming from the dif-
ferent sensors, taking into account the reliability of
the different observations in a very natural way and
without the need of any external specification of ex-
plicit fusion procedures. Similar approaches have al-
ready been used for Bayesian networks [6].

Aircraft
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Reliability
of Sensor 1

Reliability
of Sensor 2

Reliability
of Sensor 3

Reliability
of Sensor 4

Presence of
Sensor 1

Presence of
Sensor 2

Presence of
Sensor 3

Presence of
Sensor 4

Type of
Aircraft

Sensor 1
(TV)

Sensor 2
(IR)

Sensor 3
(ground)

Sensor 4
(air)

Figure 3: The determination of the latent variable
type of aircraft by four sensors.

We similarly proceed for all the latent variables re-
quiring the fusion of information from many sensors.
This practically means that we add a subnetwork sim-
ilar to the one reported in Figure 3 to each light gray
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Flight Path
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Aircraft Height ADDC Absolute Speed Height Changes Aircraft Type

Transponder

ATC

Figure 4: The complete structure of the credal network. Black nodes denote manifest variables, while latent
variables correspond to white nodes. Boxes are used to highlight the different subnetworks modeling the
observations of the latent variable as in Figure 3.

node of the core network in Figure 1. The resulting
directed graph, which is still acyclic, is shown in Fig-
ure 4.

5 Quantitative Assessment of the

Network

As outlined in Section 3, the specification of a credal
network over the variables associated to the directed
acyclic graph in Figure 4 requires the specification
of a conditional credal set for each variable and each
possible configuration of its parents.

For the core variables, these credal sets have been
obtained by means of probability intervals explicitly
provided by the Expert (Section 5.1), while, regard-
ing observations, presence and reliability, a quantifi-
cation procedure to automatically transform Expert’s
qualitative judgments in conditional credal sets spec-
ifications has been developed (Section 5.2).

5.1 Quantification of the Network Core

Because of the scarcity of historical cases, the quan-
tification of the conditional credal sets for the core
variables in Figure 1 is mainly based upon military
and technical considerations. Together with the Ex-
pert we have isolated a number of principles, later
translated into probability intervals and hence into
conditional credal sets. We point the reader to [10]
for a detailed description of this quantification task.
Here, we cite as an example only some of the prin-
ciples used to quantify this part of the network: a
renegade is not expected to use balloons or gliders; the
light aircraft is the type of aircraft more probable to
be used by a terrorist; erroneous intruders are usually
light aircrafts and we do not expect a business jet or
an airliner to be an erroneous intruder; balloons and
gliders are subject to defects due to the meteorological

conditions.

In some situations, the Expert was also able to iden-
tify logical constraint among the variables. As an ex-
ample, the fact that balloons cannot maintain high
levels of height represents a constraint between the
possible values of the variables type of aircraft and
height. These kinds of constraints have been embed-
ded in the structure of the network by means of zero
probability assessments.

5.2 Observations, Presence and Reliability

To complete the quantification of our credal network,
we should discuss, for each sensor, the quantification
of the variables associated to the observation, the re-
liability and the presence.

We begin by explaining how presence and reliability
are specified. Consider the network in Figure 2. The
Expert should quantify, for each of the four possible
values of the variable height, a credal set for the reli-
ability and a credal set for the presence of the sensor.
In practice, the Expert is simply required to suggest
a value for the presence and a value for the reliability.
To assess the value of the presence, he should take
into consideration only the structure of the identifi-
cation architecture; while to assess the value for the
reliability level, also the actual meteorological and ge-
ographical situation should be considered.

For each specified level of presence or reliability, the
Expert should also decide whether or not he is uncer-
tain about this value. His judgments are then trans-
lated into coherent probability intervals, from which
we can compute the corresponding credal sets reflect-
ing his beliefs. To this purpose, we have defined,
together with the Expert, a set of fixed credal sets
that are used to model the different combinations of
values and uncertainty values. This procedure sub-



stantially simplifies the quantification of the network,
while maintaining a large flexibility in the specifica-
tion of presence and reliability.

Regarding the observations, a conditional credal set
for each possible value of the corresponding latent
variable and for each possible level of reliability and
presence has been assessed. The Expert has answered
questions like, what is the probability (interval) that
the ground-based observers have medium reliability in
observing the type of aircraft of an intruder that is
flying at low height, if the meteorological condition is
characterized by dense low clouds and we are in the
plateau?

Clearly, it can be extremely difficult to answer dozens
of questions of this kind in a coherent and realistic
way. It is much easier to answer questions like the
following, what is the reliability level that you expect
from ground-based observers observing the type of air-
craft of an intruder that is flying at low height, if the
meteorological condition is characterized by dense low
clouds and we are in the plateau? The latter ques-
tion is much simpler than the former, because one is
required to specify something more qualitative than
probabilities. This is exactly the type of question that
we asked the Expert to quantify the necessary prob-
abilities in our network. In the following we explain,
in order, our quantification of presence and reliability
of sensors, and the observation mechanism.

Let X be a latent variable, and O the manifest vari-
able corresponding to the observation of X as re-
turned by a given sensor. For each combination of
reliability and presence, we should assess, for each
x ∈ ΩX and o ∈ ΩO, the bounds P (X = x|O = o)
and P (X = x|O = o).

This quantification step can be simplified by defin-
ing a symmetric non-transitive relation of similarity
among the elements of ΩX . The similarities between
the possible values of a latent variable according to
a specific sensor can be naturally represented by an
undirected graph as in the example of Figure 5. In
general, given a latent variable X , for each possible
outcome x ∈ ΩX , there are outcomes of X that are
similar to x and outcomes that are not similar to x.

Having defined, for each latent variable and each cor-
responding sensor, the similarities between its possi-
ble outcomes, we can then divide the possible obser-
vations in four categories: (i) observing the correct
value of X ; (ii) confounding the real value of X with
a similar one; (iii) confounding the true value of X

with a value that is not similar; (iv) the observation
is missing. The idea is to quantify, instead of a prob-
ability interval for P (X = x|O = o) for each x ∈ ΩX

and each o ∈ ΩO, only four probability intervals, cor-

Light
aircraft

Glider Balloon

Helicopter
Business

jet Airliner

Figure 5: An undirected graph depicting similarity re-
lations about the possible values of the variable types
of aircraft according to the observation of a TV cam-
era. Edges connect similar states. The sensor can mix
up a light aircraft with a glider or a business jet, but
not with a balloon or a helicopter.

responding to the four categories of observations de-
scribed above.

Let us finally explain how the four probability inter-
vals are quantified in our network for each combina-
tion of reliability and presence and for each sensor.
The probability interval assigned to the case where
the observation is missing depends uniquely on the
presence. In particular, if the sensor is absent, then
the probability of having a missing observation is set
equal to one and therefore the probability assigned
to all the other cases are equal to zero. It follows
that we have only seven combinations of reliability
and presence to quantify. To this extent, we use con-
straints based on the concept of interval dominance
to characterize the different combinations.2 In order
of accuracy of the observation, the combinations are
the following:

1. high, present: the correct observation dom-
inates (clearly) the similar observations. The
probability for not similar observations is zero
and is therefore dominated by all the other cate-
gories.

2. high,partially present: the correct observa-
tion dominates the similar observations and dom-
inates (clearly) the not similar observations. The
similar observations dominates the not similar
observations.

3. medium,present: the correct observation domi-
nates the similar observations and dominates the
not similar observations. The similar observa-
tions dominates the not similar observations.

4. medium, partially present: the correct obser-
vation does not dominate the similar observations
but dominates the not similar observations.

2Given a credal set K(X) over a random variable X, and two
possible values x, x′

∈ ΩX , we say that the x dominates x′ if
P (X = x′) < P (X = x) for each P ∈ K(X). It is easy to show
that that interval dominance, i.e., P (X = x′) < P (X = x), is
a sufficient condition for dominance.



5. low,present: no dominance at all.

6. low,partially present: no dominance at all.

7. absent: the probability of a missing observation
is equal to one, this value dominates all the other
values.

6 Information Fusion by Imprecise

Probabilities

The procedure described in Sections 4.2 and 5.2 to
fuse the observations gathered by the sensors, can be
regarded as a possible imprecise-probability approach
to the general information fusion problem. In this
section, we take a short detour from the military as-
pects to illustrate some key features of such an ap-
proach by a simple example.

Let us first formulate the general problem. Given a la-
tent variable X , and the manifest variables O1, . . . , On

corresponding to the observations of X returned by n

sensors, we want to update our beliefs about X , given
the values o1, . . . , on returned by the sensors.

The most common approach to this problem is to as-
sess a (precise) probabilistic model over these vari-
ables and compute the conditional mass function
P (X |o1, . . . , on). That may be suited to model situ-
ations of consensus among the different sensors. The
precise models tend to assign higher probabilities to
the values of X returned by the majority of the sen-
sors, which may be a suitable mathematical descrip-
tion of these scenarios.

The problem is more complex in case of disagreement
among the different sensors. In these situations, pre-
cise models assign similar posterior probabilities to
the different values of X . But a flat posterior prob-
ability mass function models indifference, while sen-
sors disagreement seems to reflect instead a condition
of ignorance about X .

Imprecise-probability models are more suited for these
situations. Posterior ignorance about X can be repre-
sented by the impossibility of a precise specification of
the conditional mass function P (X |o1, . . . , on). The
more disagreement we observe among the sensors, the
wider we expect the posterior intervals to be, for the
different values of X .

The case where the size of the posterior probability
intervals results to be increased by conditioning is
known in literature as dilation [11], and is relatively
common with coherent imprecise probabilities.

The following simple example, despite its simplicity,
is sufficient to outline how these particular features
are obtained by our approach.

Example 1 Consider a credal network over a la-
tent variable X, and two manifest variables O1 and
O2 denoting the observations of X returned by two
identical sensors. Assume to be given the strong in-
dependencies coded by the graph in Figure 6. Let all
the variables be Boolean. Assume P (X) to be uniform
and both P (Oi = T|X = T) and P (Oi = F|X = F)
to take values in the interval [1− ǫ, 1], for each i=1,2,
where ǫ > 1

2 models a (small) error in the observa-
tion mechanism. Since the network in Figure 6 can
be regarded as a naive credal classifier [13], where the
latent variable X plays the role of the class node and
the observations correspond to the class attributes, we
can exploit the algorithm presented in [13, Section 3.1]
to compute the following posterior interval:

P (X = T|O1 = T, O2 = T) ∈ [
(1 − ǫ)2

1 − 2ǫ(1 − ǫ)
, 1].

It follows that, in case of consensus between the two
sensors, the corresponding probability for the latent
variable increases, given that the lower extreme is
larger than 1

2 . In the case of disagreement, instead, we
obtain that P (X = T|O1 = F, O2 = T) ∈ [0, 1], which
means that our ignorance about X dilates, leading to
a completely uninformative posterior interval.

X

O1 O2

Figure 6: The credal network for Example 1.

Remarkably, assuming fixed levels of height, reliabil-
ity and presence, Figure 3 reproduces the same struc-
ture of the prototypical example in Figure 6, with
four sensors instead of two. The same holds for any
sub-network modeling the relations between a latent
variables and the relative manifest variables in our
network.

7 Algorithmic Issues and Simulations

The discussion in Section 4 and Section 5 led us to
the specification of a credal network, associated to
the graph in Figure 4, over the whole set of random
variables we consider, i.e., core variables, observations
collected by the different sensors, reliability and pres-
ence levels.

At this point, we can evaluate the risk associated to an
intrusion, by simply updating the probabilities for the
four possible values of the risk factor, conditional on
the values of the observations returned by the sensors



and on the levels of reliability and presence observed
by the Expert.

As a preliminary test of the model, we have consid-
ered a simulated scenario of a single object in the
Swiss Alps, like for example a dam, surveyed by an
identification architecture that is characterized by the
absence of interceptors and by a relatively good cov-
erage of all the other sensors. We assumed as me-
teorological conditions discontinuous low clouds and
daylight. The simulated scenario reproduces a situ-
ation where an agent provocateur is flying very low
with a helicopter and without emitting any identifi-
cation code. The decision maker is assumed to have
uniform prior beliefs about the four classes of risk.

The size of the network suggests the opportunity of
an approximate approach to this updating problem.
In our approach, we have first reformulated our model
as a locally specified credal network, according to the
procedure developed in [1]. Then, we have trans-
formed each non-binary variable of the credal network
into a set of binary variables, according to the bi-
narization algorithm, reported in [2]. The resulting
credal net has been finally updated by the loopy ver-
sion of the 2U algorithm (L2U) [7]. The overall pro-
cedure, which can be proved to be approximate only
because of the L2U algorithm, can be implemented in
polynomial time. In our case, the credal network has
been updated in few seconds on a 2.8GHz Pentium 4
machine, and convergence of L2U has been observed
after seven iterations.

Figure 7.a depicts the posterior probability intervals
for this simulated scenario. The upper probability
for the outcome renegade is zero, and we can there-
fore exclude a terrorist attack. Similarly, the lower
probability for the outcomes agent provocateur and
damaged intruder are strictly greater than the upper
probability for the state erroneous, and we can reject
also this latter value because of interval dominance.
Both these results are reasonable estimates for this
simulated scenario.

Remarkably, the indecision between agent provocateur
and damaged intruder disappears as we assume higher
levels of reliability and presence for the sensors de-
voted to the observation of the height. The results,
reported in Figure 7.b, state that the intruder is an
agent provocateur, as we have assumed in the design
of this simulation.

8 Conclusions and Future Work

A model for determining the risk of intrusion of a
civil aircraft into no-fly zone has been presented.
The model embeds in a single coherent mathematical
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Figure 7: Posterior probability intervals for the risk
factor, corresponding to a simulated scenario repro-
ducing a helicopter entering the no-fly zone because
of technical difficulties. The histogram bounds denote
lower and upper probabilities. The sensors observing
the aircraft height are assumed more reliable in (b)
than in (a).

framework human expertise expressed by imprecise-
probability assessments, and a structure reproducing
complex observation mechanisms and corresponding
information fusion schemes.

The risk evaluation corresponds to the updating of
the probabilities for the risk factor conditional on the
observations of the sensors and the estimated levels
of presence and reliability. Preliminary tests consid-
ered for a simulated scenario are consistent with the
judgments of an expert domain for the same situation.

As future work we intend to test the model for other
historical cases and simulated scenarios. The approx-
imate updating procedure considered in the present
work, as well as other algorithmic approaches will be
considered, in order to determine the most suited for
this specific problem.

In any case, it seems already possible to offer a prac-
tical support to the military experts in their evalua-
tions. They can use the network to decide the risk
level corresponding to a real scenario, but it is also
possible to simulate situations and verify the effec-
tiveness of the different sensors in order to design an
optimal identification architecture.

Finally, we regard our approach to the fusion of the in-
formation collected by the different sensors as a sound
and flexible approach to this kind of problems, able
to work also in situations of contrasting observations
between the sensors.
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Abstract

We consider the problem of quantifying our belief in
future values of a random variable X with unknown
distribution PX , based on the observation of a ran-
dom sample from the same distribution. The adopted
uncertainty representation framework is the Transfer-
able Belief Model, a subjectivist interpretation of be-
lief function theory. In a previous paper, the concept
of predictive belief function at a given confidence level
was introduced, and it was shown how to build such
a function when X is discrete. This work is extended
here to the case where X is a continuous random vari-
able, based on step or continuous confidence bands.

Keywords. Dempster-Shafer Theory, Evidence The-
ory, Transferable Belief Model, p-box, distribution
band.

1 Introduction

In the past few years, belief function theory has been
developed as a tool for data fusion, but also for the
management of uncertainty and various aspects of
data mining or decision making. Different interpre-
tations of this theory have been proposed [19]. In this
paper, we shall adopt the Transferable Belief Model
(TBM) interpretation [21], in which a belief function
is considered as representing weighted opinions of an
agent regarding some question of interest. This model
provides a flexible framework even when the available
information (data or expert knowledge) is poor. How-
ever, it is not always clear how to construct belief
functions for a given problem.

In this paper, we consider the special case where the
variable X of interest is defined from the result of
a random experiment. It is thus a random variable,
with unknown probability distribution PX . The avail-
able information is assumed to consist in past obser-
vations collected from n independent repetitions of
the same experiment, forming an independent ran-

dom sample from PX . Based on this information, we
would like to express our beliefs regarding future val-
ues to be generated from PX .

As the probability distribution of X is unknown, the
available information is incomplete and the precision
of the obtained belief function should depend on the
number of observations. In [5], a formalization of this
problem was suggested, using the concept of predic-
tive belief function (PBF). A PBF was defined as a be-
lief function less committed than PX with some user-
defined probability, and converging in probability to-
wards PX as the size of the sample tends to infinity.
Practical methods for building belief functions were
presented for the case where the domain X of X is
discrete, based on multinomial confidence regions.

In this article, the above approach is extended to the
case where X is a continuous random variable. The
extension is based on confidence bands, which play a
role similar to that of multinomial confidence regions
in the discrete case. When a confidence band is de-
fined by step upper and lower bounding functions, it
is known to be equivalent to a belief function on the
real line with a finite number of focal intervals. We
first show that this belief function is a predictive be-
lief function as defined in [5]. We then consider the
generalization to continuous confidence band. In that
case, the corresponding belief function is continuous,
and we derive the expression of its basic belief density.

The paper is organized as follows. In Section 2, the
reader is first reminded with the principles of belief
functions theory and of the definition of predictive
belief functions as introduced in [5]. The construc-
tion of a discrete predictive belief function from a step
confidence band is then exposed in Section 3, and the
construction of a continuous predictive belief function
with a basic belief density from a continous confidence
band is described in Section 4. Section 5 concludes the
paper.



2 Background on Belief Functions

This section provides a short introduction to the main
notions pertaining to the theory of belief functions
that will be used throughout the paper, and in par-
ticular, its TBM interpretation. We first consider the
case of belief functions defined on a finite domain [16],
and then address the case of a continuous domain [20].
The concept of predictive belief function as introduced
in [5] is then recalled.

2.1 Belief Functions on a Finite Frame

2.1.1 Definition of a Basic Belief Assignment

Let X = {ξ1, . . . , ξK} be a finite set, and let X be
a variable taking values in X . Given some eviden-
tial corpus, the knowledge held by a given agent at a
given time over the actual value of variable X can be
modeled by a so-called basic belief assignment (bba)
m defined as a mapping from 2X into [0, 1] such that:

∑

A⊆X

m(A) = 1. (1)

Each mass m(A) is interpreted as the part of the
agent’s belief allocated to the hypothesis that X takes
some value in A [16, 21]. The mass m(X ) is often re-
garded as representing a degree of ignorance.

2.1.2 Belief Updating

A fundamental mechanism for belief updating in the
TBM is the unnormalized Dempster’s rule of condi-
tioning, which is defined as follows [21]. Assume that
the agent’s beliefs about X are represented by a bba
m, and the agent learns that the true value of X lies in
B ⊆ X . Then, m is transformed into the conditional
bba m[B] defined as:

m[B](A) =
∑

C:C∩B=A

m(C). (2)

Upon learning that the truth lies in B, each mass of
belief given to C is thus transferred to C∩B, hence the
term “Transferable Belief Model”. Equivalent repre-
sentations of a bba m include the belief, plausibility
and commonality functions [16] defined as follows.

bel(A) =
∑

∅6=B⊆A

m(B), (3)

pl(A) =
∑

B∩A6=∅

m(B), (4)

and

q(A) =
∑

B⊇A

m(B), (5)

for all A ⊆ X . In the TBM, bel(A) represents the
agent’s total degree of belief in A. The plausibility
pl(A) = bel[A](A) may be interpreted as the maximal
degree of belief that could be given to A after ac-
quiring new information. Similarly, we observe that
q(A) = m[A](A). The commonality of A is thus the
mass of belief that remains attached to A (i.e., the
degree of ignorance) after conditioning by A.

2.1.3 Decision Making

The TBM is a two-level model in which belief rep-
resentation and updating take place at a first level
termed credal level, whereas decision making takes
place at a second level called pignistic level [21]. To
make decisions, any bba m such that m(∅) < 1 is
mapped into a pignistic probability function Betp de-
fined by

Betp(x) =
∑

A⊆X ,A6=∅

m(A)

1 − m(∅)

1A(x)

|A|
, ∀x ∈ X , (6)

where 1A denotes the indicator function of A. A de-
cision can then be made, based on Betp and on a
loss function, just as is done in Bayesian Probability
Theory.

2.2 Belief Functions on Real Numbers

Let us now assume that variable X takes values in
X = R. The above formalism can then be extended
in at least two different ways.

2.2.1 Discrete Bba on R

In the simplest approach, a bba is defined as above,
with the constraint that the set F(m) = {A1, . . . , An}
of focal elements is finite. This will be referred
to as a discrete bba. Typically, focal elements are
chosen among intervals or, more generally, Borel
sets [23, 6, 24, 13]. Denoting mi = m(Ai), with
∑n

i=1 mi = 1, and assuming Ai 6= ∅ for all i, Equa-
tions (3)-(5) become:

bel(A) =
∑

Ai⊆A

mi, (7)

pl(A) =
∑

Ai∩A6=∅

mi, (8)

and

q(A) =
∑

Ai⊇A

mi, (9)

for all A ∈ B(R), where B(R) denotes the Borel sigma-
algebra on R.



Equation (6) can be replaced by

Betp(x) =

n
∑

i=1

mi

1Ai
(x)

|Ai|
, ∀x ∈ R, (10)

where |Ai| now denotes the Lebesgue measure of Ai

and we assume that 0 < |Ai| < ∞ for all i. Equation
(10) defines a probability density function [13]. In
particular, if the Ais are bounded intervals, Betp is a
finite mixture of continuous uniform distributions.

2.2.2 Basic Belief Density

A more complex generalization of the finite case is
obtained by replacing the concept of bba by that of
basic belief density (bbd) [4, 17, 20]. A normal bbd
m is a function taking values from the set of closed
real intervals into [0, +∞), such that

∫∫

x≤y

m([x, y]) dx dy = 1. (11)

The belief, plausibility and commonality can be de-
fined in the same way as in the finite case, replac-
ing finite sums by integrals. The following definitions
hold:

bel(A) =

∫∫

[x,y]⊆A

m([x, y]) dx dy, (12)

pl(A) =

∫∫

[x,y]∩A6=∅

m([x, y]) dx dy, (13)

q(A) =

∫∫

[x,y]⊇A

m([x, y]) dx dy, (14)

for all A ∈ B(R). In particular, when A = [x, y],

bel([x, y]) =

∫ y

x

∫ y

u

m([u, v])dvdu, (15)

pl([x, y]) =

∫ y

−∞

∫ +∞

max(x,u)

m([u, v])dvdu, (16)

q([x, y]) =

∫ x

−∞

∫ +∞

y

m([u, v])dvdu, (17)

for all x ≤ y. The domains of these integrals may be
represented as in Figure 1, where each point in the
triangle corresponds to an interval with upper and
lower bounds indicated on the horizontal and vertical
axes, respectively.

Conversely, m may be recovered from bel or q as:

m([x, y]) = −
∂2bel([x, y])

∂x∂y
= −

∂2q([x, y])

∂x∂y
, (18)

provided these derivatives exist.
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Figure 1: The belief, plausibility and commonality
functions are defined as integrals of the bbd with sup-
port [a, b] on the shaded area of triangles (a), (b) and
(c), respectively.

The pignistic probability density becomes [20]:

Betp(x) = lim
ǫ→0

∫ x

−∞

∫ +∞

x+ǫ

m([u, v])

v − u
dvdu. (19)

2.3 Predictive Belief Functions

In this section, we summarize the concept of pre-
dictive belief function introduced in [5]. Assume X

is a random variable with unknown probability dis-
tribution PX , and we have observed a realization
x = (x1, . . . , xn) of an independent and identically
distributed (iid) random sample X = (X1, . . . , Xn)
with parent distribution PX . Based on this informa-
tion, we would like to quantify our beliefs about the
next value of X . As a toy example, consider the case
where X denotes the color of a ball taken from an
urn containing balls of different colors. Having ob-
served the colors of n balls randomly taken from the
urn with replacement, we would like to quantify our
belief regarding the color of the next ball.

Let bel(·;X) denote a belief function on X constructed
using X. This is a function taking values from a sigma
algebra A into [0, 1]. Typically, A = 2X if X is finite,
and A = B(R) if X = R (only these two cases will be
considered in this paper). In [5], we postulated that
such a belief function should satisfy the following two
requirements:

∀A ∈ A, bel(A;X)
P

−→ PX(A), as n → ∞, (20)

where
P
−→ denotes convergence in probability, and

P {bel(A;X) ≤ PX(A), ∀A ∈ A} ≥ 1 − α, (21)



where α ∈ (0, 1).

Requirement (20) means that bel(·;X) should become
closer to PX as the sample size tends to infinity.

For finite n, bel(·;X) should be less informative than
PX , hence the condition bel(·;X) ≤ PX . However,
this condition cannot be satisfied for all realizations
of the random sample1, hence requirement (21), which
states that it should be satisfied asymptotically for at
least a fraction 1 − α of the samples.

A belief function bel(·;X) satisfying requirements (20)
and (21) is called a predictive belief function at con-
fidence level 1 − α. Methods for constructing such
belief functions in the case where random variable X

is discrete were described in [5], based on multinomial
confidence regions.

The construction of predictive belief functions in the
continuous case (X = R) is the main topic of this pa-
per. It will be addressed in the following two sections.

3 Discrete Predictive Belief

Functions on R

In this section, the construction of a discrete predic-
tive belief function on R from a step confidence band
is addressed. Basic definitions related to confidence
bands are first recalled in Section 3.1, and the con-
struction of Kolmogorov confidence bands is exposed
in Section 3.2. In Section 3.3, we show that the dis-
crete belief function with interval focal sets equivalent
to a Kolmogorov confidence band is a predictive belief
function. The random set interpretation of a p-box is
finally recalled in Section 3.4, as a way to introduce
the continuous generalization presented in the next
section.

3.1 Confidence Bands: Definitions

Let us assume that we have a random variable X with
cumulative distribution function (cdf) FX . In some
cases, FX is not precisely known, but we can spec-
ify a lower bounding function F : R → [0, 1] and an
upper bounding function F : R → [0, 1] such that
F (x) ≤ FX(x) ≤ F (x) for all x ∈ R. The convex set
of probabilities compatible with these constraints

ΓX(F , F ) = {P |∀x ∈ R, F (x) ≤ P ((−∞, x]) ≤ F (x)}

is called a distribution band [11].

In the special case where F and F are step functions,
then ΓX(F , F ) is called a probability box2, or p-box

1Indeed, such a requirement would lead to the vacuous belief
function.

2Ferson et al. [6] actually used the term “p-box” as a syn-

for short [6]. A continuous distribution bound can al-
ways be enclosed in a p-box. The smallest discrete ap-
proximation is always obtained by choosing the lower
and upper bounding step functions to be right and
left-continous, respectively [6]. From now on, only
p-boxes possessing this property will be considered.

Suppose now that the available information about
FX takes the form of an iid random sample X =
(X1, . . . , Xn) with parent distribution FX . Let
F (·;X) and F (·;X) be two functions computed from
X and such that F (·;X) ≤ F (·;X). The distribution
band ΓX(F (·;X), F (·;X)) is called a confidence band
at level α ∈ (0, 1) [12, page 334] iff

P
{

F (x;X) ≤ FX(x) ≤ F (x;X), ∀x ∈ R
}

= 1 − α,

or, equivalently:

P
{

PX ∈ ΓX

(

F (·;X), F (·;X)
)}

= 1 − α.

Note that, in the above equalities, FX and PX are
fixed unknown functions, whereas F (·;X) and F (·;X)
depend on random sample X.

3.2 Kolmogorov Confidence Bands

Let us assume that X is a continuous random variable.
The simplest way to obtain a confidence band for FX

is to use Kolmogorov’s statistic

Dn = sup
x

|Sn(x;X) − FX(x)|,

where Sn(·;X) is the sample distribution function de-
fined by

Sn(x;X) =

{

0, x < X(1)

k/n, X(k) ≤ x < X(k+1)
1, X(n) ≤ x,

(22)

for all x ∈ R, where X(1) ≤ X(2) ≤ . . . ≤ X(n) denote
the observations sorted in increasing order.

The distribution of Dn does not depend on FX . It
was computed for fixed n by Kolmogorov [10], who
also computed the asymptotic distribution of Dn. Let
dn,α denote the critical value of Dn defined as P (Dn >

dn,α) = α. Thus,

P { Sn(x;X) − dn,α ≤ FX(x)

≤ Sn(x;X) + dn,α, ∀x ∈ R } = 1 − α, (23)

which implies that Sn ± dn,α defines a confidence
bound at level 1 − α [9, page 481]. This band may

onym to “distribution band”. However, following Kriegler and
Held [11], we prefer to reserve the term “p-box” for the impor-
tant case where the bounding functions are step functions.



be narrowed by using the inequalities 0 ≤ FX(x) ≤ 1
for all x. Hence, we have:

F (x;X) = max(0, Sn(x;X) − dn,α), (24)

F (x;X) = min(1, Sn(x;X) + dn,α). (25)

If the support of X is bounded and known to be in-
cluded in [b, B], then the above bounds can be further
narrowed.

Note that Sn(·|X) as defined by (22) and, conse-
quently, both F (·;X) and F (·;X) are right-continuous
step functions. However, F (·;X) can be replaced by

the left-continuous function F
′
(·;X) taking the same

values everywhere except at sample points, defined as

F
′
(x;X) = limh→x− F (h;X). The pair (F , F

′
) still

defines a confidence band at level 1 − α, i.e.,

P
{

PX ∈ ΓX(F , F
′
)
}

= 1 − α. (26)

Example 1. The data reported in [14] consists in
the operational lives (in hours) of 20 bearings. These
are 2398, 2812, 3113, 3212, 3523, 5236, 6215, 6278,
7725, 8604, 9003, 9350, 9460, 11584, 11825, 12628,
12888, 13431, 14266, 17809. Here, the variable of
interest, denoted X (the lifetime of a bearing), has a
lower bound b = 0 and no upper bound (B = ∞).
Figure 2 shows the sample cdf of this data, together
with the lower and upper bounding functions defining
the Kolmogorov confidence band at level 1−α = 0.95.
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Figure 2: Sample cdf Sn and Kolmogorov confidence
band at level 1 − α = 0.95 for the bearings data.

3.3 Predictive Belief Function Induced by a

Kolmogorov Confidence Band

The above method for constructing a confidence band
yields a pair of lower and upper step functions, i.e.,
a p-box. The relationship between p-boxes and be-
lief functions has been studied by several authors

[23, 6, 22]. Recently, the exact correspondance be-
tween p-boxes with bounded support and discrete be-
lief functions was proved by Kriegler and Held [11],
who also proposed an algorithm for the rigorous con-
struction of a discrete mass function m on R equiva-
lent to a p-box.

The principle of this construction is illustrated in Fig-
ure 3. The lower and upper bounding functions are
assumed to be right and left continuous, respectively.
Each rectangle Ai in this figure corresponds to a focal
interval [ai, bi), with mass m([ai, bi)) = di − ci.
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Figure 3: Principle of the construction of a basic be-
lief assignment m from a p-box (F , F ). Each rectangle
Ai in the area between the lower and upper bound-
ing functions corresponds a focal interval [ai, bi) of m,
with mass di − ci.

Let ΓX(bel) denote the set of probability measures
compatible with bel, the belief function induced by
m, i.e.,

ΓX(bel) = {P |bel(A) ≤ P (A), ∀A ∈ B(R)}.

Kriegler and Held [11] proved that (F , F ) and bel are
two equivalent representations of a unique family of
probabilities, i.e.,

ΓX(bel) = ΓX(F , F ). (27)

If bel and pl denote the corresponding belief and plau-
sibility functions, and if P and P denote the lower
and upper envelopes of ΓX(F , F ), we have bel = P

and pl = P . In particular, bel((−∞, x]) = F (x) and
pl((−∞, x]) = F (x) for all x ∈ R.

Note that, although Kriegler and Held only consid-
ered the case of p-boxes with bounded support, their
algorithm and result may be applied directly to the
case of p-boxes with unbounded support.

Let us now consider the case where F and F are the
lower and upper bounding functions of Kolmogorov
confidence band at level 1 − α, as defined by (24)-
(25). Let bel(·;X) denote the belief function on R con-



structed from p-box (F , F
′
) using Kriegler and Held’s

algorithm. The following proposition holds.

Proposition 1. bel(·;X) is a predictive belief func-
tion at level 1 − α.

Sketch of proof. First, requirement (21) is obviously
satisfied as a direct consequence of (26) and (27):

since ΓX(bel(·;X)) = ΓX(F , F
′
), we have

P {bel(A;X) ≤ PX(A), ∀A ∈ A} =

P {PX ∈ ΓX(bel(·;X))} = 1 − α.

Moreover, given that F (x)
P
−→ FX(x) and F

′
(x)

P
−→

FX(x) for all x ∈ R, it can easily be shown that

bel(A;X)
P
−→ PX(A) for all interval A. Lastly, for any

B =
⋃

i∈I Ai where (Ai)i∈I with I ∈ N is a countable
family of intervals, we have

bel(B;X) =
∑

i∈I

bel(Ai;X)
P
−→

∑

i∈I

PX(Ai) = PX(B),

which proves that requirement (20) is satisfied, and
completes the proof. �

Example 2. To illustrate the construction of a pre-
dictive belief function from a Kolmogorov confidence
band, let us consider again the data of Example 1.
Based on this data, we would like to express our be-
liefs regarding the lifetime X of a new bearing taken
randomly from the same population. For commodity
of representation, let us adopt the reasonable assump-
tion that X has an upper bound, which will arbitrarily
be set to 30000, so that the support of X is assumed
to be [0, 30000].
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Figure 4: Focals intervals of the PBF constructed
from the Kolmogorov confidence band at level 1−α =
0.95 (bearings data). The height of each segment rep-
resenting a focal interval is equal to the cumulated
mass.

The focal intervals of the corresponding PBF bel(·;X)
are displayed in Figure 4. Figures 5 and 6 are exam-
ples of graphical displays that reveal different aspects

of the information contained in the belief function
bel(·;X). Figure 5 shows the plausibility profile func-
tion x → pl({x};X) and the pignistic probability den-
sity function Betp computed from (6), which are two
left-continuous real-valued step functions with simple
interpretation. Figure 6 shows grey level representa-
tions of bel([x, y];X), pl([x, y];X) and q([x, y];X) as
two-dimensional functions of (x, y).
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Figure 5: Plausibility profile function (up) and pig-
nistic probability density function (down) of the dis-
crete PBF constructed from the Kolmogorov confi-
dence band (Bearings data).

3.4 Random Set Interpretation

The bba m associated to a p-box (F , F ) may also
be shown to correspond formally to a random set [1].

Let F−1 and F
−1

be the pseudo-inverses of F and F ,
defined, respectively, as:

F−1(α) = inf{x ∈ R, F (x) ≥ α},

F
−1

(α) = inf{x ∈ R, F (x) ≥ α},

for all α ∈ [0, 1]. Let us consider the mapping
ρ from [0, 1] to the set of real intervals, such that

ρ(α) = (F−1(α), F
−1

(α)], and let us consider the uni-
form probability distribution PU on [0, 1]. Then ρ is
a random set, and it is formally equivalent to m. Let

F = {(F−1(α), F
−1

(α)], α ∈ [0, 1]}. For all A ∈ F ,
we have

m(A) = PU (ρ−1(A)).
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Figure 6: Contour plots of functions bel[X]([x, y]),
pl[X]([x, y]) and q[X]([x, y]) constructed from Kolo-
mogorov’s confidence band (Bearings data).

Note that the uniform probability distribution on
[0, 1] and the mapping ρ are only considered here as
mathematical constructs. In the TBM, only belief
functions have an interpretation, and an underlying
multi-valued mapping is not assumed. However, the
random set point of view will guide us in the follow-
ing section to propose a generalization of the above
results in the case of continuous distribution bands.

4 Continuous Predictive Belief

Functions on R

Kolmogorov’s confidence bands have the advantage of
being exact and non parametric. However, they have
a constant vertical width, which makes them unnec-
essarily broad in the tails. As a result, the equivalent
belief functions may be excessively imprecise. Nar-
rower confidence bands can be computed using para-
metric methods, but they are defined by continuous
bounding functions. The usual approach to continu-
ous distribution bands is to approximate them using a
p-box [6]. Here, we show that this approximation can
be avoided, and a continuous predictive belief func-
tion on R can be constructed from a continuous confi-
dence band, thus providing an extension to the results
presented in the previous section. Parametric confi-
dence bands are first briefly reviewed in the following
section.

4.1 Parametric Confidence Bands

Methods for the construction of continuous confidence
bands as described above were proposed by several
authors, including Kanofsky and Srinivasan [8] and
Cheng and Iles [3]. In the sequel, Cheng and Iles’

method, which will be used later to demonstrate the
main findings of this paper, will briefly be recalled.

Let us assume that X is a continuous random vari-
able with cdf FX(x, θ), where θ is vector of r unknown
parameters. Cheng and Iles’ approach consists in de-
termining lower and upper bounds of the cdf when θ

varies in a confidence region R. This confidence region
is built from the statistics

Q(θ) = (̂θ − θ)T I(θ)(̂θ − θ),

where ̂θ is the maximum likelihood estimate of θ, and
I(θ) is the Fisher information matrix. It is known that
Q(θ) is asymptotically a chi-squared variable with r

degrees of freedom. In [3], Cheng and Iles apply their
method in the case of a general location-scale para-
metric model of the form:

FX(x) = G

(

x − µ

σ

)

,

where G is a fixed distribution function, and µ and
σ are the unknown location and scale parameters. In
that case the Fisher information matrix is of the form

I(µ, σ) =
n

σ2

(

k0 −k1
−k1 k2

)

,

where k0, k1 and k2 are constants independent of µ

and σ. The bounds of the confidance band then have
the following expressions:

F (x) = G(ξ + h), (28)

F (x) = G(ξ − h), (29)

where ξ = (x− µ̂)/σ̂, µ̂ and σ̂ are the maximum like-
lihood estimates of µ and σ, and

h =

√

γ

n k0

(

1 +
(k0ξ + k1)2

k0k2 − k2
1

)

. (30)

Coefficient γ is the value for which P (Q(µ, σ) ≤
γ) = 1 − α. It can be approximated by the chi-
squared quantile χ2

2(α). Cheng and Iles [3] demon-
strate the application of these formula for the cases
of the normal, lognormal, extreme-value (log-Weibull)
and Weibull distributions. In the case of the normal
distribution, k0 = 1, k1 = 0, and k2 = 2.

4.2 PBF Induced by a Continuous

Confidence Band

Let (F , F ) be a continuous distribution band for some
continuous random variable X , and assume that the
lower and upper bounding functions F and F are
strictly increasing. Consider the mapping ρ from
[0, 1] to the set of real intervals, such that ρ(α) =



[F−1(α), F
−1

(α)], where F−1 and F
−1

are the in-
verses of F and F , respectively. If the [0, 1] interval is
endowed with a uniform probability distribution, then
mapping ρ defines a random set, which corresponds
to a continuous belief function bel on R as described
in Section 2.2.2.

This belief function is such that bel([x, y]) = P ([x, y])
for all x ≤ y, P being the lower envelope of the distri-
bution band. In particular, we have bel((−∞, x]) =
F (x) and pl((−∞, x]) = F (x), for all x ∈ R. As we
are working within the TBM, this random set is for
us a purely mathematical construct, and we would
like to express bel directly through its bbd m([x, y]),
x ≤ y. This can be achieved using (18). The following
proposition holds.

Proposition 2. The bbd associated to a continuous
distribution band (F , F ) is defined by

m([x, y]) = −
∂2bel([x, y])

∂x∂y
,

with:

∂2bel([x, y])

∂x∂y
= −f(x)f (y)δ(F (y) − F (x)),(31)

= −f(x)δ(y − F−1 ◦ F (x)), (32)

= −f(y)δ(x − F
−1

◦ F (y)), (33)

where f and f are the first derivatives of F and F ,
respectively, and δ is the Dirac delta function.

Proof. We have

bel([x, y]) = P ([x, y]) (34)

= max(0, F (y) − F (x)) (35)

= (F (y) − F (x))H(F (y) − F (x)),(36)

where H is the Heaviside function. By differentiating
with respect to x and y, we get:

∂2bel([x, y])

∂x∂y
= −f(x)

(

δ(F (y) − F (x))f (y)

+ f(y)δ(F (y) − F (x))

+(F (y) − F (x))δ′(F (y) − F (x))f (y)
)

. (37)

Now, from the property of the delta function:
xδ′(x) = −δ(x), we have:

(F (y) − F (x))δ′(F (y) − F (x)) = −δ(F (y) − F (x)).

Hence, (37) is equivalent to (31).

In order to prove that (32) and (33) can be deduced
from (31), the following property of the delta function
can be used. For all function g,

δ (g(x)) =
∑

i

δ(x − xi)

|g′(xi)|
,

where the xi are the roots of g. For fixed x, F (y) −
F (x) is a function of y with a unique root F−1 ◦F (x).
Hence,

f(x)f (y)δ(F (y) − F (x)) =

f(x)f (y)
δ(y − F−1 ◦ F (x))

f(F−1 ◦ F (x))
(38)

The left-hand side of (38) is equal to 0 if y 6= F−1 ◦
F (x), and f(x)δ(y − F−1 ◦ F (x)) otherwise. Conse-
quently,

f(x)f(y)δ(F (y) − F (x)) = f(x)δ(y − F−1 ◦ F (x)).

Equation (33) can be deduced from (31) in a similar
way, by fixing y and treating F (y)−F (x) as a function
of x. �

It can be checked that (35) may be recovered from
m([x, y]) using (15). Similarly, the expressions of
pl([x, y]) and q([x, y]) can be obtained from m([x, y])
using (16) and (17). The following proposition holds.

Proposition 3. Let m be the bbd associated to a con-
tinuous distribution band (F , F ). The plausibility and
the commonality of any real interval [x, y] are given
by:

pl([x, y]) = F (y) − F (x), (39)

q([x, y]) = max(0, F (x) − F (y)). (40)

Proof. Let us prove (40). We have

q([x, y]) =

∫ x

−∞

∫ +∞

y

m([u, v])dvdu

=

∫ x

−∞

f(u)I(u)du,

with

I(u) =

∫ +∞

y

δ
(

v − F−1 ◦ F (u)
)

dv.

Now, I(u) = 1 if F−1 ◦ F (u) ≥ y, i.e., if u ≥ F
−1

◦

F (y), and 0 otherwise. Hence q([x, y]) = 0 if F
−1

◦
F (y) ≥ x, i.e., if F (y) ≥ F (x); otherwise,

q([x, y]) =

∫ x

F
−1

◦F (y)

f(u)du = F (x) − F (y).

The proof of (39) is similar. �

Finally, the expression of the pignistic probability
density associated to bbd m is given by the follow-
ing proposition.

Proposition 4. Let m be the bbd associated to a con-
tinuous distribution band (F , F ). The associated pig-
nistic probability density Betp is given by

Betp(x) =

∫ x

F
−1

◦F (x)

f(u)

F−1 ◦ F (u) − u
du.



Proof. From (19), we get

Betp(x) = lim
ǫ→0

∫ x

−∞

J(u)du,

with

J(u) = f(u)

∫ +∞

x+ǫ

δ
(

v − F−1 ◦ F (u)
)

v − u
dv

=

{

f(u)

F−1◦F (u)−u
if F−1 ◦ F (u) ≥ x + ǫ

0 otherwise.

The condition F−1 ◦ F (u) ≥ x + ǫ can be expressed

as u ≥ F
−1

◦ F (x + ǫ), hence

Betp(x) = lim
ǫ→0

∫ x

F
−1

◦F (x+ǫ)

f(u)

F−1 ◦ F (u) − u
du

=

∫ x

F
−1

◦F (x)

f(u)

F−1 ◦ F (u) − u
du.

�

The above results are valid for any continuous dis-
tribution band (F , F ). When (F , F ) is a confidence
band at level 1 − α, then it is easy to see, using the
same line of reasoning as in Section 3.3, that the cor-
responing belief function is a predictive belief function
at level 1 − α.

Example 3. This method for computing a continu-
ous predictive belief function was applied to the bear-
ings data of examples 1 and 2 As in [3], we assumed
these data have a lognormal distribution. Figure 7
shows the 95 % confidence band and the estimated
cdf. The plausibility profile function x → pl({x};X) is
shown in Figure 8, and contour plots of bel([x, y];X),
pl([x, y];X) and q([x, y];X) are shown in Figure 9.
These figures should be compared to Figures 2, 5 and
6, respectively.
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Figure 7: Continuous confidence band and cumulative
density function estimated through Cheng and Iles’
algorithm.
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Figure 8: Plausibility profile function obtained from
the continuous confidence band of Figure 7.
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Figure 9: Contour plots of functions bel([x, y];X),
pl([x, y];X) and q([x, y];X) constructed from Cheng
and Iles’ confidence band.

5 Conclusion

We have addressed the problem of constructing pre-
dictive belief functions as defined in [5], in the case
where the random variable X is continuous. We have
shown that such belief functions can be constructed
from confidence bands, which play the same role as
multinomial intervals in [5]. The methods yields a
discrete BF with a finite number of interval focal sets
when applied to a Kolomogov confidence band, and a
basic belief density as studied in [20] when applied to
a continuous parametric confidence band. These be-
lief functions are interpreted as quantifying our belief
in a future realization of X , based on a realization of
a random sample from the same distribution.

An application of these results to novelty detection is
described in [2]. Assume that we have defined a nov-
elty measure T using, e.g., one-class support vector
machines [15] or kernel principal component analysis
[7]. Based on observations T1, . . . , Tn of T for data
recorded while the system under study was in the



normal state ω0, we may compute a predictive belief
function on T , given that the system is in the normal
state. Using the General Bayesian Theorem [18] with
some assumptions, it is then possible to build a belief
function on Ω = {ω0, ω0} (where ω0 denotes the hy-
pothesis that the system is not in the normal state),
given T . This belief function may be combined with
other information or used for decision making.
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Abstract

During the cheese ripening, airflow pattern and climatic

conditions inside cheese-ripening rooms are determinant

for cheese weight losses. Due to the variation of air ve-

locity inside ripening chambers, homogeneity in the dis-

tribution of climatic conditions is very hard to achieve at

every single point of it. We are hence faced with impre-

cise and incomplete knowledge. In practice, it is common

that some model parameters may be represented by sin-

gle probability distributions, justified by substantial data,

while others are more faithfully represented by possibility

distributions due to the partial nature of available knowl-

edge. This paper applies recent methods, designed for

the joint propagation of variability and imprecision, to a

cheese ripening mass loss model. Joint propagation meth-

ods provide lower & upper probability bounds of exceed-

ing a certain value of cheese mass losses.

Keywords. Imprecise probabilities, p-boxes, belief func-

tions, possibility, food processing, cheese ripening.

1 Introduction

In the food industry, end-products must achieve a compro-

mise between several properties, including sensory, san-

itary, technological properties. Among the latter, sensory

and sanitary properties are essential because they influence

consumer choice and preference. Nevertheless, managing

these properties right from the fabrication stage with the

aim of controlling them is no easy task ([23, 24]). One

of the key reasons of this difficulty is the uncertainty that

should be managed at different levels:

• Uncertainty (more specifically imprecision) on the

measurements, especially the measurements of the

sensory properties [15]. It is obvious and accepted

that there is a lack of efficient sensors, and that exist-

ing sensors often provide incomplete information for

taking action decisions on the process [17]. More-

over, when adequate sensors exist, the configurations

of industrial processes do not often allow an efficient

placement.

• Uncertainty on the phenomenon involved, even for

control purposes. As a consequence the management

of uncertainty on the parameters and also the struc-

ture of the models built are crucial [16].

Few contributions about this topic are available. Among

them Davidson et al. [5] used a fuzzy arithmetic that esti-

mates peanut eating time and browning to control peanut

roasting. Perrot et al. [24] developed a decision help

system to control the cheese ripening process, integrating

the uncertainty of human measurements. Petermeier et al.

[25] used a hybrid approach to develop a model of the foul-

ing behavior of an arbitrary heat treatment device for milk.

This is developed by combining deterministic differential

equations with cognitive elements for the unknown parts

of the knowledge model. These authors emphasize the rel-

evance of this open field of research in the context of food

processes and the interest of fuzzy symbolic representation

of expert reasoning. Nevertheless, they call into question

the optimality of the approaches developed on the basis of

imperfect and incomplete expert knowledge.

The ripening process is one most important step for many

cheese makers. Microbial activities, responsible for the

organoleptic characteristics of cheeses, are influenced

by climatic conditions (air temperature and relative hu-

midity, gas concentration). So, controlling these climatic

conditions inside cheese-ripening rooms is of paramount

importance. Cheese mass loss dynamic is a key point in

ripening process, with consequences on productivity and

it introduces a risk that resulting product may be dropped

in status (e.g., the Camembert-Normandie protected

designation of origin requires a final weight of 0.25 kg).

Ventilation is used to evacuate heat and humidity gener-

ated by cheeses and the spatial distribution of climatic

conditions inside cheese-ripening rooms is dependent on

airflow (air velocity, air change rate). Nevertheless, only a

few studies on interaction between climatic conditions and



airflow can be found in the literature due to confidentiality

conditions. The distribution of climatic conditions is

very hard to achieve at every single point of ripening

chambers. In a industrial context, computational fluid

dynamic model of ripening rooms [20] can not be carried

out without an exhaustive room description. However,

it is inconceivable to install sensors everywhere inside

ripening chambers to pick up for instance temperature and

relative humidity. Hence, we are faced with imprecise

knowledge relative to the spatial variability of climatic

conditions. Heat and mass transfert are a well studied

phenomenon in cooking or drying process. However,

little data have been published for the cheese ripening and

transfert coefficients between cheese and atmosphere are

not precisely described.

It is more and more acknowledged that uncertainty

regarding model parameters has essentially two origins

[12]. It may arise from randomness (often referred to

as ”stochastic uncertainty”) due to natural variability

of observations resulting from heterogeneity or the

fluctuations of a quantity in time. Or it may be caused by

imprecision (often referred to as ”epistemic uncertainty”)

due to a lack of information. This lack of knowledge

may stem from a partial lack of data, either this data

is impossible to collect, or because only experts can

provide some imprecise information. For example, it can

be quite common for an expert to estimate numerical

values of parameters in the form of confidence intervals

according to his/her experience and intuition. The un-

certainty pervading model parameters is not of a single

nature, namely, randomness and incomplete knowledge

may coexist, especially due to the presence of several,

heterogeneous sources of knowledge, as for instance

statistical data and expert opinions. The most general

setting to recognize incompleteness as a feature distinct

from randomness is the one of imprecise probabilities

developed at length by Peter Walley [29]. In this theory,

sets of probability distributions capture the notion of

partial lack of probabilistic information. In practice,

while information regarding variability is best conveyed

using probability distributions, information regarding

imprecision is more faithfully conveyed using families

of probability distributions. Probability boxes [11] or

possibility distributions (also called fuzzy intervals) [9]

or yet belief function introduced by Dempster [7] (and

elaborated further by Shafer [27] and Smets [28] in a

different context) allow to encode such families. Most

researchers typically use either one or the other of these

modes of uncertainty representation [5, 23, 24, 25]. But

to date, such combinations of these different modes of

representation have never been applied to food processing.

In Section 2, we recall basic concepts of probability-boxes,

numerical possibility theory and belief function in connec-

tion with imprecise probabilities. In Section 3, we present

methods for propagating objective (variability) and subjec-

tive (imprecision) information through multivariate func-

tion. We also present post-processing to estimate con-

fidence intervals and/or the probability of exceeding a

threshold. In Section 4, we give an overview of a sim-

plified cheese mass loss dynamic model with available

knowledge associated to model inputs and their represen-

tation. Lastly, in Section 5, we process uncertainty on

cheese mass loss model.

2 Concise representations of imprecise

probability

Consider a probability space (Ω,A,P). Let P be a probabil-

ity family on the referential Ω and X be a random variable

associated with probability measure P. In the following,

we consider three frameworks for representing special sets

of probability functions, which are more convenient for a

practical handling.

2.1 Probability boxes

Suppose FX and F
X

are nondecreasing functions from the

real line R into [0, 1] such that F
X

(x) ≤ FX(x) ≤ FX(x),

∀x ∈ R. The interval [F
X
, FX] is called a ”probability

box” or ”p-box” [11]. It encodes the class of probability

measures whose cumulative distribution functions FX are

restricted by the bounding pair of cumulative distribution

functions F
X

and FX .

A p-box can be induced from the probability family P by

∀x ∈ R:

F(x) = inf
P∈P

P((−∞, x]); F(x) = sup
P∈P

P((−∞, x]). (1)

Let P(P < P) = {P,∀A ⊆ Ω measurable, P(A) ≤ P(A) ≤

P(A)} be the probability family limited by upper P and

lower P probabilities induced from P. Clearly P is a

proper subset of P(P < P) generally. Let P(F
X
≤ FX)

be the probability family containing P and defined by

P(F
X
≤ FX) = {P ∈ P,∀x ∈ R, F

X
(x) ≤ F(x) ≤ FX(x)}.

(2)

Generally P(F
X
≤ FX) strictly contains P(P < P), hence

also the set P it is built from. The probability box [F
X
, FX]

provides a bracketing of some ill-known cumulative dis-

tribution function and the gap between F
X

and FX reflects

the incomplete nature of the knowledge, thus picturing the

extent of what is ignored.

2.2 Numerical possibility theory

Possibility theory [9] is relevant to represent consonant

imprecise knowledge. A possibility distribution can model

imprecise information regarding a fixed unknown param-

eter and it can also serve as an approximate representation



of incomplete observation of a random variable. The basic

notion is the possibility distribution, denoted π, describing

the more or less plausible values of some uncertain vari-

able X. Possibility theory provides two evaluations of the

likelihood of an event: the possibility Π and the necessity

N. The normalized measure of possibility Π (respectively

necessity N) is defined from the possibility distribution π :

R→ [0, 1] such that supx∈R π(x) = 1 as follows:

Π(A) = sup
x∈A

π(x), N(A) = 1 − Π(A) = inf
x<A

(1 − π(x)) . (3)

Numerical possibility distribution may also be viewed as

a nested set of confidence intervals, which are the α-cuts

[x
α
, xα] = {x, π(x) ≥ α} of π. The degree of certainty that

[x
α
, xα] contains X is N([x

α
, xα]) (= 1 − α if π is contin-

uous). Conversely, given a nested set of intervals Ai with

degrees of certainty λi that Ai contains X is equivalent to

the possibility distribution

π(x) = min
i=1...n
{1 − λi, x ∈ Ai}, (4)

provided that λi is interpreted as a lower bound on N(Ai),

and π is chosen as the least specific possibility distribution

satisfying these inequalities [10].

We can interpret any pair of dual functions neces-

sity/possibility [N,Π] as upper and lower probabilities in-

duced from specific probability families.

• Let π be a possibility distribution inducing a pair

of functions [N,Π]. We define the probability fam-

ily P(π) = {P,∀A measurable, N(A) ≤ P(A)} =

{P,∀A measurable, P(A) ≤ Π(A)}. In this case,

supP∈P(π) P(A) = Π(A) and infP∈P(π) P(A) = N(A)

(see [6, 10]) hold. In other words, the family P(π)

is entirely determined by the probability intervals it

generates.

• Suppose pairs (interval Ai, necessity weight λi) sup-

plied by an expert are interpreted as stating that the

probability P(Ai) is at least equal to λi where Ai is a

measurable set. We define the probability family as

follows: P(π) = {P,∀Ai, λi ≤ P(Ai)}. We thus know

that supP∈P(π) P(A) = Π(A) and infP∈P(π) P(A) =

N(A) (see [10], and in the infinite case [6]).

We can define a particular p-box [F, F] from the pos-

sibility distribution π such that F(x) = N((−∞, x]) and

F(x) = Π((−∞, x]) ∀x ∈ R. But this p-box contains many

more probability functions than P(π) (see [1] for more de-

tails about comparative expressivity of p-box and possibil-

ity distribution).

2.3 Belief function induced from random sets

The theory of imprecise probabilities introduced by

Dempster [7] (and elaborated further by Shafer [27] and

Smets [28] in a different context) allows imprecision and

variability to be treated separately within a single frame-

work. Indeed, it provides mathematical tools to process

information which is at the same time of random and im-

precise nature. A random set onΩ is defined by a mass as-

signment νwhich is a probability distribution on the power

set of Ω. We assume that ν assigns a positive mass only to

a finite family of subsets of Ω called the set F of focal

subsets. Generally ν(∅) = 0 and
∑

E∈F ν(E) = 1. A ran-

dom set induces set functions called plausibility and belief

measures respectively denoted by Pl and Bel, and defined

by Shafer [27] as follows:

Bel(A) =
∑

E,E⊆A

ν(E), Pl(A) =
∑

E,E∩A,∅

ν(E). (5)

Bel(A) gathers the imprecise evidence that asserts A; Pl(A)

gathers the imprecise evidence that does not contradict A.

These set-functions can be interpreted as families of

probability measures, even if this view does not match

the original motivation of Shafer [27] and Smets [28]

for belief functions. A mass distribution ν may en-

code the probability family P(ν) = {P ∈ P/∀A ⊆ Ω,

Bel(A) ≤ P(A)} = {P ∈ P/∀A ⊆ Ω, P(A) ≤ Pl(A)}. This

family generates lower and upper probability functions

that coincide with the belief and plausibility functions, i.e.

Pl(A) = sup
P∈P(ν)

P(A), Bel(A) = inf
P∈P(ν)

P(A) (6)

Originally, Dempster [7] considered imprecise probabili-

ties induced from a probability space via a set-valued map-

ping Γ from a probability space (Ω,A, P) to S (yielding a

random set). For simplicity assume ∀ω ∈ Ω, Γ(ω) , ∅.

Let X : Ω → S be a random variable such that ∀ω ∈ Ω,

X(ω) ∈ Γ(ω) and PX be its associated probability measure

such that PX(A) = P(X−1(A)). Define upper and lower

probabilities as follows:

P(A) = sup
X∈S (Γ)

PX(A) P(A) = inf
X∈S (Γ)

PX(A) (7)

where S (Γ) = {X : Ω → S |X(ω) ∈ Γ(ω),∀ω ∈ Ω}. For

all measurable subsets A ⊆ Ω, we have A ⊆ A ⊆ A where

A = {ω ∈ Ω/Γ(ω) ⊆ A} and A = {ω ∈ Ω/Γ(ω) ∩ A ,

∅}. By defining the mass distribution νΓ on Ω by ν(E) =

P({ω/Γ(ω) = E}). We thus retrieve belief and plausibility

functions as follows:

P(A) = P(A) = BelΓ(A) =
∑

E⊆A

νΓ(E) (8)

P(A) = P(A) = PlΓ(A) =
∑

E∩A,∅

νΓ(E) (9)

We may define an upper F and a lower F cumulative dis-

tribution function (a particular p-box) such that ∀x ∈ R,

F(x) ≤ F(x) ≤ F(x) with :

F(x) = Pl(X ∈ (−∞, x]); F(x) = Bel(X ∈ (−∞, x]). (10)



But this p-box contains many more probability functions

than P(ν).

2.4 Discretized encoding of probability, possibility

and p-boxes a random sets

Belief functions [7, 27] encompass possibility, probability

and probabiliy-boxes theories in the discrete case. Hence,

we can encode probability distribution p, p-box [F
X
, FX]

and possibility distribution π by using mass distribution ν.

In the continuous case, the representation will be approxi-

mate in a discrete framework for being able to do compu-

tations.

1. Probability→ Belief function.

Let X be a real random variable. In the discrete case,

focal elements are singletons ({xi})i and the mass dis-

tribution ν is defined by ν({xi}) = P(X = xi). In the

continuous case, we define focal intervals ((xi, xi+1])i

by discretizing probability density into m intervals

and a mass distribution ν is defined by ν((xi, xi+1]) =

P(X ∈ (xi, xi+1]), ∀ i = 1 . . .m.

2. Possibility→ Belief function.

Let X be a ill-known random variable described by

a possibility distribution π. Focal sets correspond to

the α-cuts

πα j
= {x|π(x) ≥ α j}, ∀ j = 1...q

of possibility distribution π associated with X such

that α1 = 1 ≥ α j ≥ α j+1 ≥ αq > 0 and πα j
⊆ πα j+1

.

Mass distribution ν is defined by ν(πα j
) = α j −α j+1 ∀

j = 1 . . . q where αq+1 = 0.

3. P-box→ Belief function.

Let X be a ill-defined random variable represented by

a p-box [F
X
, FX]. By putting

F−1
X

(p) = min{x|F
X

(x) ≥ p}, ∀ p ∈ [0, 1] (11)

F
−1

X (p) = min{x|FX(x) ≥ p}, ∀ p ∈ [0, 1] (12)

we can choose focal sets of the form

([F
−1

X (pi), F
−1
X

(pi)])i and the mass distribution ν

such that ν([F
−1

X (pi), F
−1
X

(pi)]) = pi − pi−1 where

1 ≥ pi > pi−1 > 0. In this case, Kriegler et al. [18]

have showed that we have P(F
X
≤ FX) = P(ν).

3 Propagating general heterogeneous

information

This section is dedicated to the combination and the prop-

agation of three kinds of information: pure random vari-

ables, imprecisely known fixed quantities, and imprecise

random variables (see [2, 3] for more details about the

joint propagation methods of variability and imprecision).
−→
X : Ω→ Rk is a random vector that is observed with total

precision;
−→
Y = (y1, . . . , yl) is a deterministic vector and we

have partial information about it. Finally,
−→
Z : Ω→ Rn is a

random vector observed with imprecision. In our model

we suppose that there exists an unidimensional random

variable, T : Ω → R, that can be expressed of the form

T = f (
−→
X ,
−→
Y ,
−→
Z ), where the mathematical model described

by the function f : Rk+l+n → R is totally well-known. We

will try to represent the information about the probability

distribution of T based on the information available, about
−→
X ,
−→
Y and

−→
Z , respectively.

First, as
−→
X is a random vector, it can be considered as a

particular case of multidimensional random set (a single-

ton in Rk). Thus, in our model, we can assume it as part of

vector
−→
Z .

To simplify the notation, suppose
−→
Z = (Z1,Z2) and

−→
Y =

(y1, y2). The imprecise knowledge about y1 (resp. y2) is

modeled by a possibility distribution π1 (resp. π2). Thus,

with a confidence level 1 − α, the parameter y1 (resp. y2)

belongs to α-cut π1
α = {x ∈ R | π

1(x) ≥ α} (resp. π2
α =

{x ∈ R | π2(x) ≥ α}). Let us encode π1 as belief function

by their focal sets:

π1
αi
= {x ∈ R | π1(x) ≥ αi}, ∀i = 1 . . . q (13)

such that π1
αi

⊆ π1
αi+1

with respective masses

ν1
i
= ν(π1

αi
) = αi − αi+1, ∀i = 1 . . . q where

α1 = 1 ≥ αi ≥ αi+1 ≥ αq > 0 and αq+1 = 0. We

proceed in the same way for π2. Let (C1
j
, m1

j
) j=1...r (resp.

(C2
l
, m2

l
)l=1...r) be the focal sets and the mass distribution

associated to Z1 (resp. Z2).

Now, we need to represent the available information

about the probability measure PT induced by T . The

probability measure of T is imprecisely determined by

means of the basic assignment (denoted νT
i jkl

), associated

with the focal sets

Ti jkl = f (π1
αi
, π2

α j
,C1

k ,C
2
l )

of T by ∀i, j, k, l :

νT
i jkl = P(Y1 = π

1
αi
,Y2 = π

2
α j
,Z1 = C1

k ,Z2 = C2
l )

In practice, only the marginals of the joint mass assign-

ment are known, because no assumption is made about the

relationship between the observation processes. If, in par-

ticular, independence between focal sets is assumed, the

mass distribution becomes:

∀i, j, k, l νT
i jkl = ν

1
i × ν

2
j × m1

k × m2
l

Hence, if we want to estimate PlT (A) for all measurable



set A, using the definition of νT
i jkl

, we have:

PlT (A) =
∑

(i, j,k,l):A∩Ti jkl,∅

νT
i jkl, BelT (A) =

∑

(i, j,k,l):Ti jkl⊆A

νT
i jkl

It corresponds to applying a Monte-Carlo method to all

variables. For each possibility distribution, an α-cut is

independently selected. This approach is a conservative

counterpart to the calculus of probabilistic variables under

stochastic independence [4].

Suppose now the same value of α is selected in the Monte-

Carlo simulation for y1 and y2. Then, ∀i, j, k, l:

αi = α j νT
i jkl
= ν

y1,y2

αi
m1

k
m2

l

αi , α j νT
i jkl
= 0

The joint possibility distribution π associated to (y1, y2)

is characterized by min(π1, π2) which corresponds to the

nested cartesian products of α-cuts and ν
y1,y2

i
is the mass

associated to the Cartesian product π1
αi
× π2

αi
. The use of

”minimum” assumes the non-interaction of y1, y2, which

expresses a lack of knowledge about the links between the

values of y1, y2 and a lack of commitment as to whether

y1, y2 are linked or not. We thus assume a total dependence

between focal elements associated to possibilistic vari-

ables. This suggests that, if the source informing on y1 is

rather precise, then the one informing on y2 is also precise

(for instance it is the same source). However, this form of

dependence does not presuppose any genuine functional

(objective) dependence between possibilistic variables in-

side the domain π1
α × π

2
α (observed phenomenons). Hence,

if we want to estimate PlT (A) and BelT (A) using the last

definition of νT
i jkl

, we deduce:

PlT (A) =
∑

jk

ΠT
jk(A)×m1

k×m2
l , BelT (A) =

∑

jk

NT
jk(A)×m1

k×m2
l

where ΠT
jk

are the possibility measures associated with the

joint non-interactive possibility distribution πT
jk

obtained

by means of the extension principle [8]:

πT
jk(t) = sup

(y1, y2) ∈ R2,

(z1, z2) ∈ C1
j
×C2

k
,

f (y1, y2, z1, z2) = t

min(π1(y1), π2(y2))

This technique thus computes the eventwise weighted av-

erage of the possibility measures associated with each out-

put fuzzy interval, and applies to any event. It is easy to

extend this propagation method for more than four vari-

ables.

4 Case description

Our example is concerned with the ripening of a soft

mould cheese (camembert type). A model has been built

[14] to estimate the mass loss of a cheese during ripening

according to the close atmosphere. Our aim is to estimate

confidence intervals or probability that cheese weight ex-

ceeds a threshold during ripening by taking into account

uncertainty relative to measures and model parameters.

4.1 The ripening chamber

Soft cheeses (Camembert type) were manufactured in a

sterile environment as previously described [22]. After

drainage, 45 cheeses were aseptically transferred to a ster-

ile pilot ripening chamber (see Figure 1). The average

weigh of cheese was 0.333 kg with a standard deviation

of 0.023 kg.

The ripening chamber (0.91m3) was placed into a refriger-

ated room to allow the temperature regulation (see Figure

1). A cheese was continuously weighted with an elec-
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Figure 1: cheese-ripening room

tronic balance. Two combined sensors measured atmo-

spheric temperature and relative humidity: 6 cm above the

weighted cheese (see Figure 1, position a) and in the cen-

ter of ripening chamber (see Figure 1, position b). Atmo-

spheric changes were also characterized with CO2 and O2

sensors [26]. When the ripening chamber was used with-

out input airflow, variations of these gas concentrations

were depending only of cheese respiratory activity (CO2

production and O2 consumption). The ripening was per-

formed with a periodically renewed atmosphere: if neces-

sary, the CO2 concentration was decreased to 2% by daily

air injection with 6 m3/h flow rate. In practical, the at-

mosphere was not renewed except 30 min per day. The

ripening duration was 15 days, cheese were turned over

on day 5. All online data were carried out with a 6 min

acquisition period.

4.2 Model of Cheese mass loss

Cheese mass loss dynamic results from exchange between

product (cheese) and close atmosphere. A schematic view

of system is illustrated by Figure 2. Biological activities

induce a matter flux between the cheeses and atmosphere

of the ripening chamber: oxygen consumption and carbon

dioxide release. ro2
, the O2 consumption, and rco2

, the CO2

production rates (mol.m−2.s−1) are obtained by deriving

CO2 and O2 atmospheric concentrations. The respiration
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Figure 2: Schematic view of mass loss phenomenon.

matter flux φr (kg.m−2.s−1), is obtained by the difference

between these two rates balanced by the molar masses

φr = wo2
ro2
− wco2

rco2
(14)

with wo2
and wco2

the respective molar masses (kg.mol−1).

Because the O2 consumption and CO2 production rates

have the same dynamic, the following simplification is

used:

φr ≃
(

wo2
− wco2

)

r = wcr (15)

with

r =

(

ro2
+ rco2

2

)

(16)

The two rates are merged in r, corresponding to the respi-

ratory activity. This simplification can be easily done be-

cause the carbon loss represents only 3% of the total mass

loss.

The difference between water vapor pressure in the atmo-

sphere and at the cheese surface causes an evaporative flux

φw classically represented as following:

φw = k (awsPsv(Ts) − rhPsv(T∞)) (17)

with aws the cheese surface water activity, Ts and T∞ the

average surface and atmospheric temperatures respec-

tively (K), rh the relative humidity (expressed between

0 and 1), Psv(T⋆) (Pa) the saturation vapor pressure at

the temperature T⋆ , and k the average water transfer

coefficient (kg.m−2.Pa−1.s−1).

The saturation vapor pressures are classically calcu-

lated with empirical relations as the Goff-Gratch equation

[30]. However, the ripening temperature is usually be-

tween 12 oC and 14 oC. For this low range of temperature,

an approximation can be done for saturation vapor pres-

sure values, using a linear regression on the Goff-Gratch

equation. The following relation is used:

Psv(T⋆) = β1T⋆ + β2 (18)

where β1 = 102 Pa.K−1 and β2 = −27643 Pa. The rela-

tive error (residual standard deviation over value range) is

equal to 0.48%.

Direct heat exchange between the cheese and the atmo-

sphere result from convective and radiative fluxes (see Fig-

ure 2)

ψcr = h (Ts − T∞) + ǫσ
(

T 4
s − T 4

∞

)

(19)

with h the average convective heat transfer coefficient

(W.m−2.K−1), ǫ the product emissivity (dimensionless)

and σ the Stefan-Boltzmann constant (W.m−2.K−4). The

radiative heat flux relation causes a strong nonlinearity; it

can be approximated as following:

ǫσ
(

T 4
s − T 4

∞

)

≃ 4ǫσT
3

∞ (Ts − T∞) (20)

where T∞ is the atmospheric temperature mean value. It

is then possible to define a global heat transfer coefficient

h⋆ = h + 4ǫσT
3

∞. From [21], we define an empirical rela-

tion between h and k for product with cheese shape

k = 0.75 × 10−8h (21)

In addition, the moisture loss induces an heat consumption

flux ψw = λφw for the evaporation, with λ the water latent

vaporization heat (J.kg−1).

High biological activity is observed during the ripening

for Camembert-type cheeses with an important mycelial

development on the rind. This phenomenon induces a res-

pirative heat production. The generic glucose aerobic res-

piration equation is

C6H12O6+ 6O2 −→

6H2O + 6CO2 + 2.816 × 106J.mol−1

(22)

We have with this equation an equimolarity between O2

and CO2. During ripening, many substrates are oxidized

(lactose, lactate, lipids and proteins), which can induce

small differences between O2 consumption and CO2 pro-

duction. This variability is then represented by the average

of the gases rates r.

The cheese temperature dynamical model is

dTs

dt
=

s

mC
(−ψcr − λφw + α r) (23)

with m the mass of a cheese, s (m2) the surface exchange

of the cheese, C the specific heat (J.kg−1.K−1) and α the

respiration heat (J.mol−1) determined according to (22).

The mass loss dynamic is very slow compared to temper-

ature dynamic, what allows to take Ts at the steady-state.

We can thus write

Ts =
h⋆T∞ − λk (awsβ2 − rh (β1T∞ + β2)) + αr

h⋆ + λkawsβ1

(24)

and the mass loss rate qm is defined by

qm = γh⋆(aws − rh)(β1T∞ + β2)

+ (γawsβ1α + wc) r
(25)

with

γ =
k

h⋆ + λkawsβ1



4.3 Information representation

In this Section, we try to represent the available informa-

tion faithfully relative to input variables and model param-

eters.

4.3.1 model parameters

Knowledge about heat respiration α, water latent vaporiza-

tion heat λ, product emissivity ǫ, Stefan-Boltzmann con-

stant σ and molar mass wc come from literature (see Table

1).

Surface water activity (aws) is a key parameter for relation

(17). Experimental measurements allows us to assume aws

as constant equal to 0.976.

Due to low airflow velocity inside ripening chamber, avail-

able knowledge about the convective heat transfert coeffi-

cient h is imprecise and incomplete. Experts consider that

heat transfert coefficient is most likely to lie between 3 and

3.2 W.m−2.K−4 but they do not exclude values as low as

2.5 and as high as 3.5 W.m−2.K−4. Hence, the knowledge

of convective heat transfert coefficient h is represented

by means of a trapezoidal possibility distribution of core

[3,3.2] and support [2.5,3.5] (see Figure 3). According to
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Figure 3: Trapezoidal possibility distribution representing

convective heat transfert coefficient h

equation (21), knowledge about the average water transfert

coefficient k is also represented by a trapezoidal possibility

distribution.

4.3.2 input variables

The mass loss rate (25) is a function of 3 input variables

which describe the gas exchanges (r) between cheese and

atmosphere and the climatic condition (T∞, rh). Measure-

ments have not shown significant spatial gradient for O2

and CO2 concentrations inside the ripening room. Con-

sequently, the measurements carried out at the position b

(see Figure 1) are assumed as representative of gas con-

centrations close to the cheese. In ripening rooms, as well

as cold chambers, due to air condition control, spatial vari-

ations of humidity rh and temperature T∞ are always ob-

served. These gradients are determined by the shape of the
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Figure 4: Temperature acquisition in postion a (T a
∞) vs

temperature acquisition in position b (T b
∞) (see Figure 1).

room and the air regulation device. They are apprehended

with detailed measurements and computational fluid dy-

namic models (e.g. see [19]) but these approaches can not

be easily performed. We recall that it is inconceivable to

install control sensors everywhere inside ripening rooms

in order to model the behavior of humidity rh and tem-

perature T∞ inside chamber. In the present work, the aim

is thus to estimate climatic conditions (T∞, rh) close to

cheeses (see Figure 1) from on-line temperature and rel-

ative humidity measurements in position b (denoted T b
∞,

rhb), which is realistic in an industrial context. It is ob-

served a linear relationship (see Figure 4 for temperatures)

between climatic conditions (T a
∞, rha) measured by sen-

sors in position a and (T b
∞, rhb) measured in position b

(see Figure 1, position a & position b). From a linear re-

gression analysis, we obtain:

T a
∞ = 0.91T b

∞ + 2.31 and rha = 1.029rhb − 0.064 (26)

with residual standard deviations σT∞ = 6.6%, σrh =

0.5%. Due to low airflow velocity, experts assume that

linear relationships remain valid between measured cli-

matic conditions (T b
∞, rhb) and those close to by cheeses

everywhere inside ripening chamber. However, due to the

ill-known spatial variations of humidity and temperature

inside ripening room, the linear relationships are tainted

with imprecision. According to expert opinions, the im-

precision about linear relationships is characterized by the

imprecise bias of linear models. That means that tempera-

ture T∞ and relative humidity rh perceived by each cheese

can be encoded by:

T∞ = aT∞ × T b
∞ + bT∞ and rh = arh × rhb + brh

where bT∞ ∈ [b
T∞
, bT∞] and brh ∈ [b

rh
, brh]. Finally, by us-

ing linear regressions (26) and the empirical knowledge of

system by experts, we decided, in the present work, to rep-

resent T∞ (resp. rh) by an imprecise normal distribution



Symbol Mode of representation

aws (unit less) 0.976

h (W.m−2.K−1) Trapezoidal possibility distribution

support=[2.5,3.5], core=[3,3.2]

k (kg.m−2.Pa−1.s−1) 0.75×10−8h

r (unit less) measures

T∞ (K) Imprecise normal distribution

N(aT∞T b
∞ + bT∞ , σT∞ )

aT∞ = 0.91

bT∞ ∈ [2.26, 2.36]

σT∞ = 0.075

rh (unit less) Imprecise normal distribution

N(arhrh + brh, σrh)

arh = 1.029

brh ∈ [−0.066,−0.062]

σrh = 0.005

α (J.mol−1) 4.693×105

λ (J.kg−1) 2.47×106

ǫ (unit less) 0.91

σ(W.m−2.K−4) 5.67×10−8

Table 1: Representation of model parameters & input vari-

ables.

N(aT∞T b
∞ + bT∞ , σT∞) (resp. N(arhrhb + brh, σrh)) where

(aT∞ , bT∞ , σT∞) ∈ {0.91}× [2.31−0.5, 2.31+0.5]×{0.075}

(resp. (arh, brh, σrh) ∈ {1.029} × [−0.064 − 0.02,−0.064 +

0.02] × {0.005}. Table 1 summarizes modes of representa-

tion selected for the different model parameters and input

variables.

5 Uncertainty processing

In this Section, we acknowledge the imprecise nature of

available information regarding certain model parameters

& input variables (see Table 1) and attempt to jointly

propagate variability and imprecision in the estimation of

cheese mass loss through ripening process. We assume

stochastic independence between the group of random

sets (T∞, rh) and the group of possibilistic variables (h,

k). Lastly, we assume independence between information

sources pertaining to (T∞, rh). According to the propaga-

tion method described in Section 3, the sketch for estimat-

ing the probability measure of cheese mass loss through

ripening process is the following:

1. For time t = t0.

2. Select a size L of the input sample.

3. We perform a random selection among focal ele-

ments by taking into account dependencies described
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Figure 5: Upper & lower cumulative probabilities of mass

loss rate for the tenth day.

previously:

























aws πh
α1

πk
α1

T 1
∞(t) rh1(t) r(t) α λ ǫ σ

...
...

...
...

...
...

...
...

...

aws πh
αL

πk
αL

T L
∞(t) rhL(t) r(t) α λ ǫ σ

























where, ∀i = 1, . . . , L,

T i
∞(t) = [aT∞T b

∞(t)+b
T∞
+σT∞ui, aT∞T b

∞(t)+bT∞+σT∞ui]

rhi(t) = [arhrhb(t)+b
rh
+σrhvi, arhrhb(t)+brh+σrhvi]

and (u1, . . . , uL), (v1, . . . , vL) are random sampling

from N(0, 1).

4. Propagate the sample through the model qm(t),

we obtain a random set with focal elements

([qi

m
(t), qi

m(t)])i=1,...,L defined by:

qi

m
(t) = inf

(h,k,T∞,rh)∈πh
αi
×πk

αi
×T i
∞(t)×rhi(t)

and

q
i
m(t) = sup

(h,k,T∞,rh)∈πh
αi
×πk

αi
×T i
∞(t)×rhi(t)

5. Hence, we can estimate Bel(qm(t) ∈ A) by:

Bel(qm(t) ∈ A) =
1

L
Card{i|[qi

m
(t), qi

m(t)] ⊆ A}

6. t = t + δt, return to step 1.

In order to illustrate the impacts of imprecision and vari-

ability on mass loss rate, We decided to show, through Fig-

ure 5, the upper (Pl(qm(10) ≤ .)) & lower (Bel(qm(10) ≤ .))

cumulative distribution functions of it for the tenth day. It

also illustrates a comparison with the mass loss rate ob-

tained from online acquisition in position a. The gap be-

tween these two distributions is primarily a consequence



of the imprecise nature of available information and, to

a lesser extent, of the choice of the dependence in prop-

agation method. According to Figure 5, there is a 5%

(resp. 95%) of plausibility (resp. belief) of being lower

than 0.172 kg.m−2.d−1 (resp. 0.243 kg.m−2.d−1). We can
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Figure 6: Uncertainty margins of 5% & 95% percentiles

pertaining to the mass loss rate through ripening process.

then summarize the uncertainty on mass loss rate for the
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Figure 7: Uncertainty margins of 5% & 95% percentiles

pertaining to the cheese mass loss through ripening pro-

cess.

tenth day by means of interval [0.172 0.243] which can

be seen as ”confidence interval” containing imprecision.

That means, for instance, we are sure at 95% that mass loss

rate exceeds 0.172 kg.m−2.d−1 for the tenth day. Figure 6

presents uncertainty margins of 5% and 95% percentiles

pertaining to the mass loss rate for each time step through

ripening process.

After integrate mass loss rate, Figure 7 presents uncer-

tainty margins of 5% and 95% percentiles pertaining to

the cheese mass loss for each time step through ripening

process. That means [et
1
, et

2
] such that

Pl(minit −

∫ t

0

qm(u)du ≤ et
1) = 5%

Bel(minit −

∫ t

0

qm(u)du ≤ et
2) = 95%

where minit = 0.333kg. Hence, the probability, at the fif-

teenth day, of being lower than 0.263 kg is inferior to 5%

and the probability of being lower than 0.278 kg is supe-

rior to 95%. That means that mass cheese is upper than

0.263 kg and lower than 0.278 kg with a confidence level

superior to 90% at the fifteenth day of ripening process.

On the one hand, we are sure at 95% that the mass loss of

cheese does not exceed 67 g through 15 days of ripening;

on the other hand, we are sure at 95% that cheese losses at

least 52 g during 15 days.

6 Conclusion

During cheese ripening, a mass loss occurs resulting from

heat and mass transfers from cheese to atmosphere. This

phenomenon is based on physical laws and biological ac-

tivity. The state of knowledge to model the process in-

duces uncertainty on some phenomenon and as a conse-

quence on some parameters of it. In this paper, we have

quantified uncertainty on the model of cheese ripening

mass loss by treating imprecision and variability.

Propagating imprecision on the basis of the results shown,

shall help us to improve the control process. It is inter-

esting to notice that a strategy to complete this knowledge

can be elaborated as to be able to give a better estimation

of the mass loss at the end of the ripening process. For

example, considering the large gap between the upper and

lower bounds on probability in Figure 5, it is clear that fur-

ther studies on heat transfert coefficient and climatic con-

ditions would be needed in order to reduce the subjective

uncertainty regarding these quantities.

Such a result shows that it is possible to integrate and pro-

cess mathematically the uncertainty on a complex process

such as cheese ripening. Further studies will focus on this

last point and moreover on the way to process uncertainty

on a more general frame of knowledge integration and dy-

namic reconstruction.
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Abstract

In this paper we consider conditional prevision as-
sessments on random quantities with finite set of pos-
sible values. After some preliminaries, we give the
notions of generalized coherence and total coherence
for imprecise conditional prevision assessments on fi-
nite families of conditional random quantities. Then,
we examine some results on total coherence of such
conditional previsions under different assumptions for
the conditioning events. We first consider the case of
logically incompatible conditioning events; then, we
examine the case of logical independence. Finally, we
examine the general case in which there may be some
logical dependencies among the conditioning events.
We show that in this case the property of total coher-
ence is generally lost, while it is always valid a connec-
tion property. By exploiting such property, we obtain
suitable totally coherent sets of conditional prevision
assessments. We also give a necessary and sufficient
condition of total coherence for interval-valued condi-
tional prevision assessments.

Keywords. conditional random quantities, imprecise
conditional prevision assessments, generalized coher-
ence, total coherence, connection property.

1 Introduction

The probabilistic treatment of uncertainty plays a rel-
evant role in many applications of Artificial Intelli-
gence, e.g. reasoning under uncertainty with a vague
and partial information. In these applications typ-
ically the set of conditional events and/or random
quantities at hand doesn’t have any particular alge-
braic structure. Then, to obtain a flexible and con-
sistent probabilistic approach we can use imprecise
conditional probability and/or conditional prevision
assessments, by exploiting suitable generalization of
the coherence principle of de Finetti, or similar prin-
ciples like that ones adopted for lower/upper proba-
bilities and/or previsions (see, e.g., [1], [2], [5], [6], [7],

[10], [14], [15], [17], [18], [19]).
In this paper we examine interval-valued conditional
prevision assessments on finite families of conditional
random quantities having a finite set of possible val-
ues. Even if this is not the more general case from a
theoretical viewpoint, notwithstanding it is surely im-
portant in many applications. We use a notion of gen-
eralized coherence (g-coherence) which is equivalent
to avoiding uniform loss property (AUL) introduced
by Walley for lower previsions. We first recall some
results on precise and imprecise conditional probabil-
ity assessments on finite families of conditional events
([3], [4]). Then, we obtain some results concerning
the more general case of conditional prevision assess-
ments on finite families of conditional random quan-
tities; in particular, we illustrate a connection prop-
erty of the set Πn of coherent conditional prevision
assessments on a family Fn of n conditional random
quantities. Such a property may be important when
we want to determine conditional prevision assess-
ments which are intermediate between other assess-
ments which are judged too extreme, or not reason-
able in some sense. For instance, we can imagine that
we have two different assessments M′,M′′, given by
two experts, on the same family Fn, but we want
determine some assessment M which is intermediate
between M′ and M′′. Then, the connection property
assures us that we can choose M on a suitable curve
C, each point of which is a generalized convex com-
bination of the extreme points M′,M′′; we observe
that in general C could be constructed in an infinite
number of ways. It would be interesting to investigate
possible applications of the connection property in de-
cisional problems where there are several probability
assessors; but, the deepening of this aspect and a com-
parison with other approaches to imprecise probabil-
ities is out of the scope of this paper. By exploiting
the connection property, we obtain theoretical results
on totally coherent sets of conditional prevision as-
sessments. We observe that, given a family of n con-
ditional random quantities Fn, the total coherence of



a set S ⊆ IRn means that, for every M∈ S, the point
M is a coherent conditional prevision assessment on
Fn. In particular, we obtain a necessary and suffi-
cient condition of total coherence for interval-valued
conditional prevision assessments. This property as-
sures that, considering the interval I associated with
an interval-valued conditional prevision assessment on
a family of random quantities, if each vertex of I is
a coherent (precise) conditional prevision assessment,
then every point M ∈ I is coherent too. This allows
to choose, if needed, in a very flexible way a precise
conditional prevision assessment M ∈ I, being sure
that M is coherent.
We recall that an extension of a totally coher-
ent interval-valued conditional probability assessment
doesn’t always exist ([12]); however, while the ”least-
committal” coherent interval-valued assessment ”ap-
proximates” and contains the set Πn of the coherent
precise assessments on Fn, in a dual way we could use
(when possible) a suitable union of totally coherent
interval-valued assessments, with the aim of approxi-
mating Πn by a subset of it.
The paper is organized as follows. In Section 2 we
recall some preliminary notions on precise and impre-
cise conditional probability and/or prevision assess-
ments. Then, we give the notion of g-coherence for
interval-valued prevision assessments, by remarking
its equivalence with the notion of AUL lower previ-
sions. In Section 3, after some preliminary aspects,
we define the notions of g-coherence and of total co-
herence for a set of conditional prevision assessments.
In Section 4 we give a result on totally coherent sets
of conditional prevision assessments when the condi-
tioning events are logically incompatible. In Section
5, after an introductory example, we give a result
on coherent conditional probability assessments un-
der suitable hypotheses of logical independence; then,
we obtain a result on total coherence of conditional
prevision assessments. In Section 6 we examine the
general case in which among the conditioning events
there exist some (possibly partial) logical dependen-
cies. We show by an example that the property of to-
tal coherence is lost. Then, we give a theoretical result
concerning a connection property which assures that,
given two coherent conditional prevision assessments
M′,M′′, we can construct (in general, in an infinite
number of ways) a curve C each point of which is a
coherent intermediate assessment between M′,M′′.
In Section 7, exploiting the connection property, we
give some further results on total coherence; in par-
ticular, we obtain a necessary and sufficient condition
of total coherence for interval-valued conditional pre-
vision assessments. Finally, in Section 8 we give some
conclusions and comments on possible further devel-
opments of the work.

2 Some preliminary notions

We give some preliminary notions on coherence and
generalized coherence of precise and imprecise condi-
tional prevision assessments on finite families of con-
ditional random quantities. We assume that each ran-
dom quantity has a finite set of possible values. We
denote by Ac the negation of A and by A ∨B (resp.,
AB) the logical union (resp., intersection) of A and B.
We use the same symbol to denote an event and its in-
dicator. For each integer n, we set Jn = {1, 2, . . . , n}.

2.1 Precise conditional prevision
assessments

Given a real function P defined on an arbitrary fam-
ily of conditional random quantities K, let Fn =
{Xi|Hi, i ∈ Jn} be a finite subfamily of K and Mn

the vector (µi, i ∈ Jn), where µi = P(Xi|Hi). With
the pair (Fn,Mn) we associate the random gain Gn =∑

i∈Jn
siHi(Xi − µi), where s1, . . . , sn are arbitrary

real numbers and H1, . . . ,Hn denote the indicators of
the corresponding events. We set Hn = H1∨· · ·∨Hn;
moreover, we denote by Gn|Hn the restriction of Gn

to Hn. Then, using the betting scheme of de Finetti
(see, e.g., [13]), we have
Definition 1. The function P is coherent if and
only if, ∀n ≥ 1, ∀Fn ⊆ K, ∀ s1, . . . , sn ∈ R, it is
sup Gn|Hn ≥ 0.

We denote by Πn the set of coherent conditional pre-
vision assessments on Fn. Given two points

M′ = (µ′i, i ∈ Jn) ∈ Πn , M′′ = (µ′′i , i ∈ Jn) ∈ Πn ,

we set

µm
i = min {µ′i, µ′′i } , µM

i = max {µ′i, µ′′i } ,
Mm = M′ ∧M′′ = (µm

i , i ∈ Jn) ,
MM = M′ ∨M′′ = (µM

i , i ∈ Jn) .
(1)

Moreover, given any pair of points

x = (xi, i ∈ Jn), y = (yi, i ∈ Jn) ,

we set x ≤ y if and only if xi ≤ yi, ∀ i ∈ Jn.
Then, Mm ≤MM , for every M′,M′′.
In particular, given two probability assessments

P ′ = (p′i, i ∈ Jn) , P ′′ = (p′′i , i ∈ Jn)

on n conditional events E1|H1, . . . , En|Hn, as in (1)
we set

Pm = P ′ ∧ P ′′ , PM = P ′ ∨ P ′′ .

We remark that, given any point P = (pi, i ∈ Jn),
we have Pm ≤ P ≤ PM if and only if there exists a
vector ∆ = (δi, i ∈ Jn) ∈ [0, 1]n such that

pi = (1− δi)p′i + δip
′′
i , i ∈ Jn .



In this case we say that P is a generalized convex
combination of P ′,P ′′. Below, we recall (in a slightly
modified version) a result given in [3] which concerns
conditional events.

Theorem 1. Let P ′ = (p′i, i ∈ Jn), P ′′ = (p′′i , i ∈
Jn) be two coherent probability assessments defined
on Fn = {Ei|Hi, i ∈ Jn}. There exists a continuous
curve Γ with extreme points P ′,P ′′ such that:
(i) each P ∈ Γ is a generalized convex combination of
P ′,P ′′, i.e. Pm ≤ P ≤ PM ; (ii) Γ ⊆ Πn.

Theorem 1 assures that, for every pair of coherent as-
sessments P ′,P ′′ on Fn, we can construct (at least)
a continuous curve Γ ⊆ Πn (from P ′ to P ′′) whose
points are intermediate coherent assessments between
P ′ and P ′′. We remark that in general the number of
such curves is infinite.
Theorem 1 will be generalized to the case of condi-
tional random quantities by Theorem 4.
By Theorem 1, we obtain

Corollary 1. Given any quantities p1, . . . , pi−1,
li ≤ ui, pi+1, . . . , pn, let us define

P ′ = (p1, . . . , pi−1, li, pi+1, . . . , pn) ,
P ′′ = (p1, . . . , pi−1, ui, pi+1, . . . , pn) .

Moreover, let I = P ′P ′′ be the segment
{(p1, . . . , pi, . . . , pn) : li ≤ pi ≤ ui}, with set of ver-
tices V = {P ′,P ′′}. Then: I ⊆ Πn ⇐⇒ V ⊂ Πn.

We remark that Corollary 1 is also an immediate con-
sequence of the extension theorem for coherent condi-
tional probabilities. Conversely, as shown in [3], the
extension theorem can be obtained by Corollary 1 and
the closure property of coherent conditional probabil-
ity assessments.

2.2 Interval-valued conditional prevision
assessments

Let An = ([li, ui], i ∈ Jn) be any interval-valued
conditional prevision assessment on a family Fn =
{Xi|Hi, i ∈ Jn}. We give below a notion of gen-
eralized coherence (g-coherence), already used in [1]
for the case of conditional events (and simply named
’coherence’ in [9]).

Definition 2. An interval-valued conditional previ-
sion assessment An = ([li, ui], i ∈ Jn), defined on
a family of n conditional random quantities Fn =
{Xi|Hi, i ∈ Jn}, is g-coherent if there exists a coher-
ent precise conditional prevision assessment Mn =
(µi, i ∈ Jn) on Fn, with µi = P(Xi|Hi), which is con-
sistent with An, that is such that li ≤ µi ≤ ui for
each i ∈ Jn.

Remark 1. Notice that, as P(Xi|Hi) ≤ ui amounts
to P(−Xi|Hi) ≥ −ui, g-coherence can be expressed
by using only lower bounds. Then, g-coherence means
that there exists a dominating coherent precise pre-
vision and hence it is equivalent to avoiding uniform
loss property of lower previsions given in [17]. Below
we briefly comment on such equivalence. We recall
that a lower prevision P on a family of conditional
random quantities K avoids uniform loss (AUL) if,
for every

Fn = {X1|H1, . . . , Xn|Hn} ⊆ K ,

defining P (Xi|Hi) = li , i ∈ Jn and

Gn =
n∑

i=1

siHi(Xi − li) , Hn = H1 ∨ · · · ∨Hn ,

the inequality sup Gn|Hn ≥ 0 is satisfied for every
s1 ≥ 0, . . . , sn ≥ 0. By exploiting the conjugacy con-
dition P (X|H) = −P (−X|H), we can express upper
previsions in terms of lower previsions. As is well
known, every AUL conditional prevision assessment
admits the natural extension (see, e.g., [18]) which,
being coherent, is a lower envelope of a set of coher-
ent precise previsions (see [19], and for a review of
this basic paper see [16]) which dominate the natural
extension and hence the AUL assessment too. Con-
versely, as AUL property is given in terms of gains, it
can be verified that every assessment dominated by a
precise prevision is AUL.
A different method to show the equivalence between
g-coherence and AUL property of a lower prevision as-
sessment on a finite family K of conditional random
quantities, is based on the following two steps:
(i) for each F ⊆ K, let G and H be respectively the
random gain and the union of conditioning events as-
sociated with F . Then, by an alternative theorem
([8], Th. 2.10) it can be verified that the condition
sup G|H ≥ 0 is equivalent to solvability of a suitable
linear system Σ associated with F ;
(ii) it can be shown that the given lower prevision as-
sessment is g-coherent if and only if, for each F ⊆ K,
the associated system Σ is solvable.
This alternative method may be useful in real appli-
cations as, using a finite number of linear systems, we
may construct, for the conditional random quantities
in K, a probability distribution assessment consistent
with the given lower prevision assessment.

We denote by =n the set of g-coherent interval-valued
conditional prevision assessments on Fn. We recall
below (in a slightly modified version) a result (see
[4], Theorem 12) which generalizes Theorem 1 to the
case of interval-valued conditional probability assess-
ments, by showing how to construct an infinite class



of interval-valued assessments An = ([li, ui], i ∈ Jn)
which are intermediate between two given interval-
valued assessments

A′
n = ([l′i, u

′
i] , i ∈ Jn) , A′′

n = ([l′′i , u′′i ], i ∈ Jn) ;

this means that there exists a vector ∆ = (δi, i ∈
Jn) ∈ [0, 1]n such that

li = (1−δi)l′i +δil
′′
i , ui = (1−δi)u′i +δiu

′′
i , i ∈ Jn .

As already made in the case of precise probability
assessments, we say that An is a generalized convex
combination of A′

n,A′′
n, also denoted by A∆.

Theorem 2. Let be given two g-coherent interval-
valued assessments A′

n = ([l′i, u
′
i], i ∈ Jn), A′′

n =
([l′′i , u′′i ], i ∈ Jn), on a family of n conditional events
Fn = {Ei|Hi, i ∈ Jn}. Then, we can construct an infi-
nite class Υ of interval-valued probability assessments
on Fn such that: (i) each An ∈ Υ is a generalized con-
vex combination between A′

n,A′′
n; i.e., An = A∆ for

some ∆ = (δi, i ∈ Jn) ∈ [0, 1]n; (ii) An ⊆ =n.

By Theorem 2, we can move in a continuous way from
A′

n to A′′
n; then, by analogy with Theorem 1, we can

say that A′
n,A′′

n are connected by the interval-valued
probability assessments contained in Υ.

3 Some preliminary aspects

We recall that we consider random quantities with
finite sets of possible values. Let X be a random
quantity, with X ∈ X = {x1, . . . , xn}. We denote by
Ei, the event (X = xi), i ∈ Jn. Moreover, given any
event H 6= ∅, for each i we set pi = P (Ei|H); then, for
the prevision of X|H we have P(X|H) =

∑
i pixi. Of

course, the coherence of a given assessment P(X|H) =
µ amounts to the existence of a nonnegative vector
(p1, . . . , pn), with

∑
i pi = 1, such that

∑
i pixi = µ.

In equivalent terms, observing that EiH = ∅ implies
pi = 0 and denoting by XH ⊆ {x1, . . . , xn} the set of
possible values of X compatible with H, µ is coherent
if and only if the following condition is satisfied

minxi∈XH
xi ≤ µ ≤ max xi∈XH

xi . (2)

We denote by IH the interval with vertices having the
values minxi∈XH

, maxxi∈XH
; i.e. we set

IH = [minxi∈XH
xi , maxxi∈XH

xi] . (3)

Of course, given two coherent assessments P(X|H) =
µ′, P(X|H) = µ′′, it is [µ′, µ′′] ⊆ IH ; hence, the as-
sessment P(X|H) = µ is coherent, ∀µ ∈ (µ′, µ′′).
Given any pair of events H,K, we set P(X|H) =
µH , P(X|K) = µK . As noted above, the coherence of
µH (resp. µK) amounts to µH ∈ IH (resp. µK ∈ IK).

We set IHK = IH × IK . Of course, given an assess-
ment M = (µH , µK) on {X|H,X|K}, the coherence
of M amounts to the existence of two nonnegative
vectors (p1, . . . , pn), (π1, . . . , πn), with∑

i

pixi = µH ,
∑

i

πixi = µK ,
∑

i

pi =
∑

i

πi = 1 ,

such that the assessment (p1, . . . , pn, π1, . . . , πn) on
{E1|H, . . . , En|H,E1|K, . . . , En|K} is coherent.
We recall that, if EiH = ∅ (resp. EiK = ∅), then
pi = 0 (resp. πi = 0).
More generally, given n events H1, . . . ,Hn and n ran-
dom quantities X1, . . . , Xn, we denote by XHr

=
{xr1, . . . , xrkr} the set of values of Xr compatible with
Hr; then, for each r ∈ Jn, we set

Ir = [minxrj∈XHr
xrj , maxxrj∈XHr

xrj ] (4)

and I1···n = I1 × · · · × In. Then, based on Definition
2 we give the following

Definition 3. Let S be a subset of the interval I1···n.
We say that S is g-coherent if there exists M =
(µ1, . . . , µn) ∈ S such that M is a coherent condi-
tional prevision assessment on {X1|H1, . . . , Xn|Hn};
in this case we simply say that M is coherent. We
say that S is totally coherent if, for every M∈ S, M
is coherent.

We remark that in general the checking for total co-
herence of an (arbitrary) set S may be intractable,
while the situation is different for the case of interval-
valued assessments. In particular, considering the
case of conditional events, let be given an interval-
valued assessment An = ([l1, u1], . . . , [ln, un]) on a
family of n conditional events Fn and the associated
interval and set of vertices

I = [l1, u1]×· · ·×[ln, un] , V = {l1, u1}×· · ·×{ln, un} .

Then, a necessary and sufficient condition of total co-
herence for I, obtained in [11], is given below.

Theorem 3. Given an interval-valued probability as-
sessment An = ([l1, u1], . . . , [ln, un]) on Fn, one has
I ⊆ Πn if and only if V ⊆ Πn.

This necessary and sufficient condition says that total
coherence of the interval I is equivalent to coherence
of each of its vertices.

4 Logically incompatible conditioning
events

In this section we give a result on totally coherent con-
ditional prevision assessments when the conditioning
events are logically incompatible. We have



Proposition 1. Given the conditional random quan-
tities X1|H1, . . . , Xn|Hn, let Ij be the interval associ-
ated with the set of possible values of Xj compatible
with Hj , j ∈ Jn. Moreover, let I1···n denote the in-
terval I1× · · · × In. If HiHj = ∅ for every i 6= j, then
I1···n is totally coherent.

Proof. Given any M = (µ1, . . . , µn) ∈ I1···n, we have
µj ∈ Ij , j ∈ Jn; hence µ1, . . . , µn are (separately)
coherent. Then, there exist n nonnegative vectors

(pi1, . . . , piki) , i ∈ Jn ,

such that

ki∑
j=1

pij = 1 ,

ki∑
j=1

pijxij = µi , i ∈ Jn .

Based on well known results, it follows that the prob-
ability assessment

(p11, . . . , p1k1 , . . . , pn1, . . . , pnkn
)

on the family of conditional events

{A11|H1, . . . , A1k1 |H1, . . . , An1|Hn, . . . , Ankn |Hn}

is coherent; hence M is coherent. Therefore, I1···n is
totally coherent.

We remark that the previous result can be related to
the notion of separate coherence given in ([17], 6.2.2)
for the case of conditioning events belonging to a finite
partition of the sure event.
By our result we have that, when the conditioning
events are logically incompatible, separate coherence
implies total coherence.

5 Logically independent conditioning
events

In this section we relax the assumption of logical in-
compatibility among conditioning events, by assum-
ing some suitable hypotheses of logical independence.
We recall that n events E1, . . . , En are defined logi-
cally independent if and only if the number of con-
stituents is maximum, that is 2n. We first give an
introductory example.

Example 1. Let be given four events A1, A2,H1,H2

satisfying the following logical conditions:
(i) A1 and A2 are logically incompatible;
(ii) A1,H1,H2 are logically independent;
(iii) A2,H1,H2 are logically independent.
It could be shown that every non negative vector
(p1, p2, π1, π2) such that p1 + p2 ≤ 1, with

p1 + p2 = 1 if Ac
1A

c
2H1 = ∅ ,

and π1 + π2 ≤ 1, with

π1 + π2 = 1 if Ac
1A

c
2H2 = ∅ ,

is a coherent probability assessment on the family of
conditional events {A1|H1, A2|H1, A1|H2, A2|H2}.

More in general, we have

Lemma 1. Let be given k + n events A1, . . . , Ak,
H1, . . . ,Hn satisfying the following logical conditions:
(i) A1, . . . , Ak are logically incompatible;
(ii) for each index i ∈ Jk the events Ai,H1, . . . ,Hn

are logically independent.
Then, given any n nonnegative vectors

(p(1)
1 , . . . , p

(1)
k ) , . . . , (p(n)

1 , . . . , p
(n)
k ) ,

such that
∑

i p
(r)
i ≤ 1, with

∑
i p

(r)
i = 1 if

Ac
1 · · ·Ac

kHr = ∅, r ∈ Jn, the probability assessment

P = (p(1)
1 , . . . , p

(1)
k , . . . , p

(n)
1 , . . . , p

(n)
k )

on

F = {A1|H1 , . . . , Ak|H1 , . . . , A1|Hn , . . . , Ak|Hn}

is coherent.

Proof. Given any sub-family F ′ ⊆ F , we denote by
P ′ the associated sub-assessment of P and by G′ the
random gain associated with the pair (F ′,P ′). More-
over, we denote by H′ the union of those conditioning
events Hj ’s such that Ai|Hj ∈ F ′ for some index i; in
particular, we set H = H1 ∨ · · · ∨Hn. We will verify
the coherence condition

sup G′|H′ ≥ 0 , ∀F ′ ⊆ F ,

by the following steps:
1. We preliminarily observe that each nonnegative
vector Pr = (p(r)

1 , . . . , p
(r)
k ) such that

∑
i p

(r)
i ≤ 1,

with
∑

i p
(r)
i = 1 if Ac

1 · · ·Ac
kHr = ∅, is a coherent as-

sessment on the sub-family Fr = {A1|Hr, . . . , Ak|Hr};
so that, denoting by Gr the random gain associated
with the pair (Fr, Pr), it is

sup Gr|Hr ≥ 0 , ∀ r ∈ Jn .

For each h ∈ Jk we denote by g
(r)
h the value of Gr|Hr

associated with the constituent

HrA
c
1 · · ·Ac

h−1AhAc
h+1 · · ·Ac

k ;

moreover, if HrA
c
1 · · ·Ac

k 6= ∅, we denote by g
(r)
k+1 the

corresponding value of Gr|Hr. Hence

sup Gr|Hr = suph g
(r)
h ≥ 0 .



2. By the logical assumptions, the set of constituents
associated with the pair (F ,P) contains, for each r ∈
Jn, the following ones

(
∧
j 6=r

Hc
j )HrA

c
1 · · ·Ac

h−1AhAc
h+1 · · ·Ac

k , h ∈ Jk ,

denoted C
(r)
1 , . . . , C

(r)
k , and, if not impossible, the fur-

ther constituent

C
(r)
k+1 = (

∧
j 6=r

Hc
j )HrA

c
1 · · ·Ac

k .

We make two remarks:
a) the gains associated with the constituents above
are

s
(r)
1 −

k∑
i=1

p
(r)
i s

(r)
i , . . . , s

(r)
k −

k∑
i=1

p
(r)
i s

(r)
i ,

(and possibly −
∑n

h=1 p
(r)
h s

(r)
h );

b) these gains coincide respectively with the values
g
(r)
1 , . . . , g

(r)
k (and possibly g

(r)
k+1) of Gr|Hr.

Then, denoting by G the random gain associated with
the pair (F ,P), as

sup G|H ≥ s
(r)
h −

k∑
i=1

p
(r)
i s

(r)
i , ∀h ∈ Jk ,

and (from coherence of the assessment Pr on Fr)
suph g

(r)
h ≥ 0, it follows sup G|H ≥ 0.

3. Now, given any pair (F ′,P ′), where F ′ is a sub-
family of F and P ′ is the corresponding sub-vector of
P, we observe that the structure of (F ′,P ′) is sim-
ilar to that of (F ,P); in particular, the hypotheses
(i) and (ii), of logical incompatibility and of logical
independence, still hold for the sub-family of events
{Ai,Hr : Ai|Hr ∈ F ′}. Then, by the same reasoning,
we can verify that the (necessary) coherence condition
associated with (F ′,P ′), i.e. sup G′|H′ ≥ 0, is satis-
fied, ∀ (F ′,P ′). Thus, the probability assessment P
on the family F is coherent.

Now, we will consider the events Ej = (X = xj),
j ∈ Jk, which are a partition of the sure event Ω,
denoting by I the interval associated with the set of
possible values of X. By Lemma 1, we have

Proposition 2. Given the conditional random quan-
tities X|H1, . . . , X|Hn, let Ij be the interval associ-
ated with the set of possible values of X compatible
with Hj , j ∈ Jn. Moreover, let be I1···n = I1×· · ·×In.
If, for each j ∈ Jn, the events Ej ,H1, . . . ,Hn are log-
ically independent, then Ij = I, ∀ j ∈ Jn, and I1···n is
totally coherent.

Proof. By the hypotheses of logical independence it
immediately follows I1 = · · · = In = I. Given any
M = (µ1, . . . , µn) ∈ I1···n, we have µj ∈ I, j ∈ Jn;
hence, for each j, µj is (separately) coherent. Then,
there exist n nonnegative vectors (p(r)

1 , . . . , p
(r)
k ), with∑

j p
(r)
j = 1, r ∈ Jn, where p

(r)
j = P (Ej |Hr), such

that
∑

j p
(r)
j xj = µr, r ∈ Jn. By Lemma 1, the proba-

bility assessment (p(1)
1 , . . . , p

(1)
k , . . . , p

(n)
1 , . . . , p

(n)
k ) on

{E1|H1, . . . , Ek|H1, . . . , E1|Hn, . . . , Ek|Hn} is coher-
ent. Hence M is coherent too; thus I1···n is totally
coherent.

A comparison with other approaches to precise and/or
imprecise probabilities is out of the scope of this pa-
per; however, it is presumable that the results of the
sections 4 and 5 could be obtained by similar methods
proposed by other authors (see, e.g., [6], [18]).

6 Logically dependent conditioning
events

In this section we will give some results in the general
case in which among the conditioning events there
exist some (possibly partial) logical dependencies. In
this case generally the property of total coherence is
lost. We will illustrate this aspect in the following
Example 2. Given a random quantity X ∈
{x1, . . . , xn} and two events H,K, let us consider the
conditional random quantities K|H,X|HK,XK|H.
Then, let M1 = (m1,m2,m3),M2 = (µ1, µ2, µ3) be
two conditional prevision assessments on the family
F3 = {K|H,X|HK,XK|H}. As is well known, if
M1 (resp. M2) is coherent, then m3 = m2m1 (resp.
µ3 = µ2µ1). Then, denoting respectively by I1, I2, I3

the intervals associated with the set of possible values
of K|H,X|HK,XK|H, let be I = I1 × I2 × I3. We
observe that, even assuming I1 × I2 totally coherent,
the interval I is not totally coherent; that is, given
any M = (x, y, z) ∈ I, if z 6= xy, then M is not co-
herent. In particular, we observe that if M is a point
of the segment M1M2, generally M is not coherent.
Hence, the set Π3 of coherent conditional prevision
assessments on F3 is a strict non convex subset of I.
However, if we are searching for a (coherent) assess-
ment M = (x, y, xy) which is ”intermediate” between
M1 and M2, i.e. such that

min {x1, x2} ≤ x ≤ max {x1, x2} ,

min {y1, y2} ≤ y ≤ max {y1, y2} ,

min {x1y1, x2y2} ≤ xy ≤ max {x1y1, x2y2} ,

generally we can choose it in an infinite number of
ways. For instance, assuming

x1 < x2 , y1 > y2 , x1y1 < x2y2 ,



any coherent assessment M = (x, y, xy), such that

x1 ≤ x ≤ x2
y2

y1
, max {y1

x1

x
, y2} ≤ y ≤ y1 ,

satisfies the inequalities

x1 ≤ x ≤ x2 , y2 ≤ y ≤ y1 , x1y1 ≤ xy ≤ x2y2 ;

hence, M is intermediate between M1 and M2.
In general, we can construct an infinite number of
continuous curves C connecting M1 and M2, with
C ⊆ Π3, as is shown by the following examples, where
I1 × I2 is assumed totally coherent:
(i) defining M = (x2, y1, x2y1), the two segments

M1M = {(x, y1, xy1) : x = x1+t(x2−x1), 0 ≤ t ≤ 1} ,

MM2 = {(x2, y, x2y) : y = y1+t(y2−y1), 0 ≤ t ≤ 1} ,

belong to Π3. Then, the polygonal C = M1M ∪
MM2 is contained in Π3 and connects M1,M2.
(ii) defining M = (x1, y2, x1y2), the polygonal C =
M1M ∪ MM2 is contained in Π3 and connects
M1,M2.
(iii) given suitable values a, b, c, let Γ be the arc of
parabola defined as

Γ = {(x, y) ∈ I1 × I2 : y = ax2 + bx + c} .

Then the curve

C = {(x, y, z) : (x, y) ∈ Γ, z = xy = ax3 + bx2 + cx}

is contained in Π3 and connects M1,M2.
(iv) more in general, given a suitable interval [t1, t2]
and a continuous parameter t ∈ [t1, t2], let Γ be a
continuous curve contained in I1×I2, with parametric
equations x = x(t) , y = y(t) , t ∈ [t1, t2]. Then, the
continuous curve C, with parametric equations

x = x(t) , y = y(t) , z(t) = x(t)y(t) , t ∈ [t1, t2] ,

is contained in Π3 and connects M1,M2.

As shown by Example 2, when there exist logical de-
pendencies, the property of total coherence is gen-
erally lost; however, the possibility of searching for
”intermediate” assessments is preserved. By general-
izing Theorem 1, we will show that given any pair of
coherent conditional prevision assessments M′,M′′,
we can construct (in general, in an infinite number of
ways) a continuous curve C connecting M′,M′′, such
that, for every M ∈ C, M is coherent. We will see
that each point M of C is an intermediate conditional
prevision assessment between M′ and M′′. We have

Theorem 4. Given n events H1, . . . ,Hn and n ran-
dom quantities X1, . . . , Xn, for each r ∈ Jn denote
by XHr

the set {xr1, . . . , xrkr
} of possible values of

Xr compatible with Hr and by Ir the interval asso-
ciated with XHr

, as defined by (4). Moreover, let
M′ = (µ′1, . . . , µ

′
n), M′′ = (µ′′1 , . . . , µ′′n) be two co-

herent conditional prevision assessments on the fam-
ily Fn = {X1|H1, . . . , Xn|Hn}. Then, there exists
(at least) a continuous curve C contained in the in-
terval I1···n = I1 × · · · × In such that for every
M = (µ1, . . . , µn) ∈ C, we have:
(i) M is a coherent conditional prevision assessment
on Fn;
(ii) each M ∈ C is a generalized convex combination
of M′,M′′; i.e. min {µ′i, µ′′i } ≤ µi ≤max {µ′i, µ′′i },
∀ i ∈ Jn .

Proof. From coherence of M′ and M′′, there exist
two suitable nonnegative vectors

P1 = (p(1)
11 , . . . , p

(1)
1k1

, . . . , p
(1)
n1 , . . . , p

(1)
nkn

)

P2 = (p(2)
11 , . . . , p

(2)
1k1

, . . . , p
(2)
n1 , . . . , p

(2)
nkn

) ,

with

k1∑
j=1

p
(1)
1j = · · · =

kn∑
j=1

p
(1)
nj =

k1∑
j=1

p
(2)
1j = · · · =

kn∑
j=1

p
(2)
nj = 1 ,

which represent coherent assessments on the family

{Ai1|Hi , . . . , Aiki |Hi , i ∈ Jn} ;

that is, under the assessment P1 it is

P (Ai1|Hi) = p
(1)
i1 , . . . , P (Aiki

|Hi) = p
(1)
iki

, i ∈ Jn ,

while under the assessment P2 it is

P (Ai1|Hi) = p
(2)
i1 , . . . , P (Aiki

|Hi) = p
(2)
iki

, i ∈ Jn ;

moreover, P1 and P2 are such that

k1∑
j=1

p
(1)
1j x1j = µ′1 , . . . ,

kn∑
j=1

p
(1)
nj xnj = µ′n ,

k1∑
j=1

p
(2)
1j x1j = µ′′1 , . . . ,

kn∑
j=1

p
(2)
nj xnj = µ′′n .

By Theorem 1, there exists a continuous curve Γ con-
necting P1,P2, with

Pm = P1 ∧ P2 ≤ P ≤ P1 ∨ P2 = PM , ∀P ∈ Γ .

Moreover, each component pij of P is a convex com-
bination of the corresponding components p

(1)
ij , p

(2)
ij of

P1,P2, say pij = (1−tij)p
(1)
ij +tijp

(2)
ij , with tij ∈ [0, 1].



Then, from coherence of P it follows that the condi-
tional prevision assessment M = (µ1, . . . , µn) ∈ C on
Fn = {X1|H1, . . . , Xn|Hn}, where

µi = P(Xi|Hi) =
ki∑

j=1

pijxij , i ∈ Jn ,

is coherent too. Moreover, it is

ki∑
j=1

pijxij = (1− tij)
ki∑

j=1

p
(1)
ij xij + tij

ki∑
j=1

p
(2)
ij xij =

= (1− tij)µ′i + tijµ
′′
i ;

or, equivalently,

min {µ′i, µ′′i } ≤ µi ≤ max {µ′i, µ′′i } , i ∈ Jn .

Hence, M is a generalized convex combination of
M′,M′′; of course M ∈ I1···n. Finally, by moving
the point P on the curve Γ from P1 to P2, we con-
struct a continuous curve C, contained in the interval
I1···n, which connects M′,M′′.

By Theorem 4, it follows

Corollary 2. Given n conditional random quantities
X1|H1, . . . , Xn|Hn and any quantities µ1, . . . , µi−1,
li ≤ ui, µi+1 , . . . , µn, let

M′ = (µ1, . . . , µi−1, li, µi+1, . . . , µn) ,
M′′ = (µ1, . . . , µi−1, ui, µi+1, . . . , µn) ,

be two conditional prevision assessments on
{X1|H1, . . . , Xn|Hn}. Moreover, let I = M′M′′ be
the segment {(µ1, . . . , µi, . . . , µn) : li ≤ µi ≤ ui},
with vertices M′,M′′. Then, the segment I is totally
coherent if and only if M′ and M′′ are both coherent.

Proof. The proof immediately follows by observing
that in our case the interval I1···n coincides with the
segment I; therefore, the unique curve connecting
M′,M′′ is the segment I.

We observe that Corollary 2, which generalizes Corol-
lary 1 to the case of conditional prevision assessments,
is also an immediate consequence of the extension the-
orem for coherent conditional previsions.

7 Further results on total coherence

In this section we exploit the results of Section 6 to ob-
tain some related results on total coherence of suitable
sets of conditional prevision assessments. We have

Theorem 5. Given two conditional random quanti-
ties X|H,Y |K, let M1 = (m1, µ1), M2 = (m1, µ2),
M3 = (m2, µ3), M4 = (m2, µ4) be four coherent con-
ditional prevision assessments on {X|H,Y |K}. More-
over, let C1, C2 be two curves connecting, respec-
tively, M1,M2 and M3,M4, such that for every
M′ ∈ C1,M′′ ∈ C2, both M′ and M′′ are coher-
ent conditional prevision assessments on {X|H,Y |K}.
Then, the closed set S, delimited by the curves C1, C2

and by the vertical segments M1M2 and M3M4, is
totally coherent.

Proof. We need to show that, for every M ∈ S,
M is a coherent conditional prevision assessment on
{X|H,Y |K}. Without loss of generality we can as-
sume: (i) m1 ≤ m2; (ii) for every M′ = (m′, µ′) ∈
C1, M′′ = (m′′, µ′′) ∈ C2, if m′ = m′′, then µ′ ≤ µ′′.
For each m ∈ [m1,m2] we denote by Im the segment
with vertices the points M′ = (m,µ′) ∈ C1, M′′ =
(m,µ′′) ∈ C2. Then, by Corollary 2, the coherence of
M′,M′′ implies the total coherence of Im, for every
m ∈ [m1,m2]. Finally, as S =

⋃
m∈[m1,m2]

Im, S is
totally coherent.

Remark 2. A particular interesting case of Theorem
5 is obtained when µ3 = µ1 , µ4 = µ2. In this case
the interval I2 = [m1,m2]×[µ1, µ2] is totally coherent
if and only if the conditional prevision assessments
M1 = (m1, µ1), M2 = (m1, µ2), M3 = (m2, µ1),
M4 = (m2, µ2) are all coherent. Of course, the rea-
soning is the same as in the proof of Theorem 5.

More in general, we have

Theorem 6. Given a family of n conditional random
quantities Fn = {X1|H1, . . . , Xn|Hn}, let us consider
the interval In = [m1, µ1]× · · · × [mn, µn] associated
with the imprecise conditional prevision assessment
An on Fn, defined by

mi ≤ P(Xi|Hi) ≤ µi , i = 1, . . . , n . (5)

Then, defining V = {m1, µ1} × · · · × {mn, µn}, the
interval In is totally coherent if and only if each vertex
V ∈ V is coherent.

Proof. We set

V ′ = {m1, µ1} × · · · × {mn−1, µn−1} × {mn} ,

V ′′ = {m1, µ1} × · · · × {mn−1, µn−1} × {µn} .

We observe that V = V ′ ∪ V ′′; moreover, V ′ and V ′′
are, respectively, the sets of vertices of the intervals

I ′ = [m1, µ1]× · · · × [mn−1, µn−1]× [mn,mn] ,

I ′′ = [m1, µ1]× · · · × [mn−1, µn−1]× [µn, µn] .



Of course, the total coherence of In implies the
coherence of V , for every V ∈ V.
Conversely, assume that V is coherent, ∀ V ∈ V. We
proceed by the following steps:
1) m1 and µ1 are coherent, hence the interval
I1 = [m1, µ1] is totally coherent;
2) from the coherence of (m1,m2), (µ1,m2) (resp.
(m1, µ2), (µ1, µ2)) we obtain the total coherence of the
interval [m1, µ1]× [m2,m2] (resp. [m1, µ1]× [µ2, µ2]);
then, by reasoning as in Theorem 5, we obtain the
total coherence of I2;

.........................................................................

n) by induction, assume that by iterating the reason-
ing we have obtained the total coherence of the inter-
val In−1 = [m1, µ1] × · · · × [mn−1, µn−1]. The total
coherence of the sets of vertices V ′,V ′′ imply the total
coherence of the intervals I ′, I ′′; then, for each given
point (π1, . . . , πn−1) ∈ In−1, the assessments

(π1, . . . , πn−1,mn) , (π1, . . . , πn−1, µn)

are coherent. Hence, the segment

Iπn
= {(π1, . . . , πn−1, πn) : mn ≤ πn ≤ µn}

is totally coherent. Finally, as

In =
⋃

mn≤πn≤µn

Iπn ,

we conclude that In is totally coherent.

8 Conclusions

In the paper we have considered conditional prevision
assessments on random quantities with finite sets
of possible values. We have suitably extended the
notions of g-coherence and total coherence, intro-
duced in previous papers for the case of conditional
probability assessments. We have remarked that the
notion of g-coherence is equivalent to the avoiding
uniform loss property of lower previsions introduced
by Walley. We have obtained some results on total
coherence of conditional prevision assessments under
different assumptions for the conditioning events,
by first considering the case of logical incompati-
bility. Then, we have examined the case of logical
independence and the general case in which there
exist logical dependencies among the conditioning
events. We have shown that, while the property
of total coherence is generally lost, the connection
property is always valid. Such a property assures
that, given a pair of coherent conditional prevision
assessments M′,M′′ (representing for instance the

probabilistic judgements of two different experts),
we can construct (in general, in an infinite number
of ways) a curve C whose points are intermediate
coherent assessments between M′,M′′. Then, if the
assessments M′,M′′ are judged ”too extreme”, we
could use (for the decisional problem at hand) a suit-
able assessment M∈ C. By exploiting the connection
property we have obtained some theoretical results
on total coherence of suitable sets of conditional
prevision assessments. We have also obtained a
necessary and sufficient condition of total coherence
for interval-valued conditional prevision assessments.
Interesting developments of the research, which were
out of the scope of this paper, could be: (i) an
investigation of possible applications where there are
several probability assessors; (ii) a comparison with
other approaches to imprecise probabilities.
Further work should also deepen the study of impre-
cise conditional prevision assessments by extending
the results to more general random quantities.
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Abstract

Influenza pandemics have swept the world numerous
times during the last few centuries. Cases of bird
flu infecting humans have prompted predictions that
we are due for another pandemic soon, but skeptics
dismiss such prognostications as panic caused by a
misunderstanding of probability. The issue can be re-
duced mathematically to the question of whether the
pandemic process has an increasing, constant, or de-
creasing hazard function. Historical data on past pan-
demics can be used to estimate the hazard function
using imprecise probabilities, giving upper and lower
predictive probabilities of an imminent pandemic,
given past waiting times. In order to achieve smoother
estimates of the imprecise hazard function, an auto-
correlated imprecise Normal prior is proposed.

Keywords. Survival analysis, hazard function, au-
tocorrelated prior.

1 Introduction

Observations of human cases of H5N1 avian influenza
in recent years have sparked much discussion in both
scientific literature and popular media about the
prospects of another flu pandemic. Such pandemics
have occurred several times in recent history and con-
cern has been expressed about the prospects of an-
other one. The most devastating occurrence was the
Spanish flu of 1918, but lesser pandemics have occured
since then, the most recent being an H1N1 strain in
1977 [7]. Experts disagree on the probability of an
imminent pandemic, and in an attempt to elicit prob-
abilities, the University of Iowa has even created an
online market in avian influenza futures! [1].

One question that arises is whether the probability
of an imminent pandemic increases the longer it has
been since the last one. On the one hand, it has been
argued that pandemics have historically occurred at
20 to 30 year intervals, and given that it has been

30 years since the last one, we are “due” for one.
Countering that is the argument [3] that a long wait-
ing time actually makes an imminent pandemic less

likely since it indicates that the evolutionary course
of prospective pathogens has wandered away from
genotypes adapted to human transmission. Dismiss-
ing both these arguments are individuals with a little
learning in probability who proclaim that the proba-
bility of a pandemic is unaffected by a long waiting
time, since a pandemic is a random event.

A more sophisticated probabilistic view, of course,
will acknowledge that any of the three scenarios are
logically possible. Suppose that t represents the year
of the last pandemic, and let T + t be the year of the
next one. If t+s is the current year, then the relevant
quantity is the discrete hazard rate

h(t) = Pr{T + t = t + s + 1|T + t > t + s}

=
Pr{T = s + 1}

Pr{T > s}
, (1)

the conditional probability that it will occur in the
next year given that it has not happened yet. Equiv-
alently, one can work with the instantaneous hazard

rate defined as

λ(s) = lim
δ↓0

Pr{T ≤ s + δ}

δ Pr{T > s}
, (2)

the two concepts being related by

S(t) = Pr{T > s} = exp

(

−

∫ s

0

λ(u) du

)

= e−Λ(s)

(3)
and

h(s) = 1 − exp

[

Λ(s) − Λ(s + 1)

]

≈ λ(s). (4)

S is called the survivor function, and Λ is the inte-
grated hazard.

The contrary opinions expressed in the previous para-
graph can now be described as believing that the haz-



ard rate is respectively increasing, decreasing, or con-
stant. It is possible to construct probabilistic mod-
els that are consistent with any of these viewpoints.
While the dynamics of viral evolution is too complex
to describe by a simple model, even simplistic models
exhibit increasing or decreasing or constant hazards.
If the occurrence of a pandemic happens as a result of
a number of steps with a strong selective drift, then
the hazard will be increasing, since while we are wait-
ing, the virus is getting closer to a pandemic state.
On the other hand, if viral evolution is envisaged as a
random walk in a space of genotypes then a decreas-
ing hazard would be typical of hitting times in such
processes. But if pandemics truly are like a Poisson
process, then a constant hazard would be expected.

The purpose of this paper is not to delve into realistic
models of viral evolution, nor to propose definitive
predictions of an influenza pandemic. Rather, we will
examine to what extent one can determine the nature
of the hazard function for the pandemic process, based
solely on the historical record of past occurrences, and
show how principles of imprecise probability cast light
on the uncertainty present in such estimates. We will
also contrast these methods with classical statistical
approaches.

2 Mathematical models and data

According to Patterson [7], influenza pandemics oc-
curred in the following years: 1729, 1732, 1781,
1788, 1830, 1833, 1836, 1889, 1899, 1918, 1957, 1968,
and 1977. Some pandemics may have lasted more
than a year. We use the first year reported as indi-
cating the beginning of the pandemic.

We consider the pandemics to be a renewal process, in
which the time between occurrences are i.i.d. random
variables. Thus we are assuming that after each pan-
demic the virulent strain dies out because of immunity
and deaths of hosts, and the evolutionary process to
a new strain of pandemic virulence begins anew. We
are also assuming no secular trend in the intensity of
the process. These assumptions are admittedly sim-
plistic, and may be challenged. Variation of these
assumptions would increase the imprecision in the es-
timates.

Patterson’s record gives inter-pandemic periods
of 3, 49, 7, 42, 3, 3, 53, 10, 19, 39, 11, and 9 years.
To this data we can add the 30 pandemic-free years to
the present, which becomes a censored observation.

3 Frequentist analysis

A classical approach to fitting the data is to use the
Kaplan-Meier estimator [6]. This allows one to esti-
mate the survivor function S allowing for censoring,
but does not directly address the question of increas-
ing or decreasing hazard. We can, however, fit a para-
metric model

log λ(t) = θ1 + θ2 log t, (5)

which assumes that the interpandemic times have a
Weibull distribution. Increasing, constant, and de-
creasing hazards correspond to positive, zero, and
negative values, respectively, of the parameter θ2.

Estimating the parameters by maximum likelihood
gives the estimates θ̂1 = −3.329, θ̂2 = 0.075, suggest-
ing a slightly increasing hazard. However, a likelihood
ratio test finds that θ̂2 does not differ significantly
from zero, which some people (mistakenly) might in-
terpret as evidence that the hazard is constant. In-
deed the 95% confidence set on the parameters estab-
lishes only that −0.44 < θ2 < 0.80, indicating that
the data are consistent (under this model) with de-
creasing, increasing, or a constant hazard. Figure 1
shows the estimated survivor functions for both the
Kaplan-Meier and maximum likelihood estimates.

The hazard is more relevant than the survivor func-
tion for the predictive probability of an imminent pan-
demic after a waiting period. As shown in Figure 2,
the estimated hazard is nearly constant at about 5%.
However, the estimate has considerable uncertainty,
which in classical terms is indicated by a confidence
set.

Figure 2 also shows a set of hazard functions corre-
sponding to the boundary of the 95% confidence set
on the parameters. This envelope well displays the
uncertainty, showing both increasing and decreasing
hazards that are consistent with the data.

4 Imprecise probability models

While a confidence band on a predictive curve indi-
cates the imprecision, it is not possible to interpret
these bounds as predictive probabilities. It is difficult
to explain the meaning of the upper envelope in Fig-
ure 2 in a way that is both understandable and math-
ematically correct. Imprecise probability bounds, on
the other hand, can honestly be described as upper
and lower predictive probabilities.
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Figure 1: Kaplan-Meier and maximum likelihood esti-
mates of survivor function for pandemic-free periods.
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Figure 2: Maximum likelihood estimate of hazard
function along with 95% confidence envelope.

4.1 Imprecise Dirichlet and product Beta

models

Nonparametric estimates of survivor functions using
Walley’s [8] imprecise Dirichlet model were discussed
by Coolen [4]. However, this model does not give
useful descriptions of the hazard function, since up-
per and lower bounds on the survivor function do not
translate into upper and lower bounds on the haz-
ard. One can, however, estimate the hazard function
directly.

Suppose that we have k time intervals (which we as-
sume to be equally spaced). Suppose that θi rep-
resents the conditional probability of a failure (i.e.,
pandemic) by the end of the ith interval, given that
there have been no failures in the preceding i − 1 in-
tervals. If we have data on mi−1 cases in which no
failures have occurred, and ni of them do fail, then
this random variable will have a binomial distribution
with success probability θi. Moreover, since failures
in different intervals will be conditionally independent
(given survival), the likelihood of a sample will be pro-
portional to

k∏

i=1

(1 − θi)
miθni

i . (6)

Conjugate to this likelihood would be a product Beta
distribution. We can then use, for each interval,
an imprecise Beta prior with hyperparameters αiν
and (1−αi)ν (using the notation of Bernard [2]) where
αi covers the interval (0, 1) to give the range of impre-
cise probabilities. We use the same ν for all intervals,
although an argument could be made for varying it.
The upper and lower predictive hazards, (i.e., the up-
per and lower posterior expectations of θi) then be-
come (ni + ν)/(ni + mi + ν) and ni/(ni + mi + ν),
respectively. The upper and lower survivor functions
can then be computed as

Ŝi =

i∏

j=1

(

1 −
nj + ν

nj + mj + ν

)

(7)

and Ŝi =
i∏

j=1

(

1 −
nj

nj + mj + ν

)

. (8)

In the absence of censoring, mi = ni + mi+1, and as

ν → 0, Ŝi becomes the Kaplan-Meier estimator.

Figure 3 shows the upper and lower probabilities of
the survival function for both the imprecise Dirichlet
model and the product Beta model, as well as the
Kaplan-Meier estimator for comparison. Following
the suggestion of Walley, we used a value of ν = 1
as the imprecision parameter. It turns out that the
upper probabilities of the Dirichlet and product Beta
models are identical, whereas the Beta model gives a
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Figure 3: Upper and lower imprecise survivor func-
tion, showing both imprecise Dirichlet estimates, and
product Betas estimates

substantially smaller lower probability. The Kaplan-
Meier estimator lies between the upper and lower
probabilities, as was pointed out by Coolen [4].

Figure 4 shows the upper and lower probabilities for
the hazard function. Note that when an interval has
no occurrences, the lower probability is necessarily
zero, while the upper probability can be quite high
if the remaining sample numbers are low. The rather
jagged shape of the curve can be explained by the fact
that if the parameters are independent a priori then
the form of the likelihood (6) makes them indepen-
dent a posteriori as well.

4.2 Correlated imprecise Normal model

It would be preferable to make use of the prior in-
formation that the hazard function would be contin-
uous and fairly smooth. We would not expect dras-
tic changes in the probability of recurrence in a year.
Thus, in place of the product Beta model, we are
proposing that the prior distribution of the θ’s be an
autoregressive process. To make this tractable, we use
a Gaussian prior on the log-odds.

Specifically, we assume that the ωi = log
(
θi/(1− θi)

)

has a priori a Normal distribution with mean µ and
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Figure 4: Upper and lower imprecise hazard function.

variance σ2. Moreover, we assume that the sequence
of ωi’s follow a stationary AR(1) process with auto-
correlation ρ.

Using a Beta prior, the distribution of ωi would be
Fisher’s-Z [5], which has lighter tails than the Nor-
mal. Thus the Normal prior tends to give somewhat
less weight to extreme probabilities (which could be
viewed as an advantage). Another difficulty is that
the posterior distribution is harder to evaluate. Given
binomial data of y successes out of n trials, the pos-
terior distribution of ω has density

K(µ, σ, n, y)
exp

[
−

(
ω − (µ + σ2y)

)
/(2σ2)

]

(1 + eω)n
(9)

where K is a constant of integration. The posterior
mean, (i.e., the predictive probability) appears not to
be tractable, but can be computed numerically as

K

∫ 1

0

exp



−

(
log

(
θ

1−θ

)
− (µ + σ2y)

)2

2σ2



 (1 − θ)n−1

θ
dθ.

(10)

The imprecise Dirichlet model has the property that
the prior probabilities are vacuous, but the posterior
ones may have some precision. To achieve the same
goal with the Normal model requires care. We use the
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Figure 5: Sampled hazard functions from autocorre-
lated imprecise posterior

family of Normal distributions where

σ = σ0 + τ |µ|γ (11)

where σ0, τ and γ are viewed as tuning parameters.
We use σ0 = 8/3 as a value that (with µ = 0) approxi-
mates the Beta(1/2, 1/2) density for θ. Thus this sym-
metric prior distribution represents about the same
level of uncertainty as a symmetric Beta distribution
with ν = 1. Putting τ = γ = 0.5 and letting µ vary
from −∞ to ∞ appears to achieve our goal of pro-
viding upper and lower probabilities (although more
work could be done here).

Extending the integral (9) to the multivariate case
seemed intractable, so we estimated the smoothed
hazard function using importance sampling. Let-
ting µ vary from −8 to 2, 1000 samples were taken
from a Gaussian AR(1) process with mean µ, ρ = 0.99
and variance given by (11). For each sample, the like-
lihood of the observed data was computed. These
likelihoods were then used as weights in computing
the predictive probabilities of both the hazard and
survival functions. The results are shown in Figures 5
and 6. The bundle of curves displays the imprecision
in the predictive probabilities.
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Figure 6: Sampled survival functions from autocorre-
lated imprecise posterior.

5 Conclusion

From these displays we can see that although a con-
stant hazard can (barely) fit inside this band, there is
a rather strong suggestion of an increasing hazard af-
ter about 25 years. While this exercise cannot pretend
to be the last word on predicting pandemics, it does
show how ideas of imprecise probability can focus on
realistic understanding of future risks. We hope that
imprecise probability methods will be useful in other
situations of estimating risks after waiting time. As
extension of this work, we intend to examine how the
hyperparameters of the stationary Gaussian process
affect the performance of the estimates.
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Abstract 

 

The paper is devoted to the investigation of imprecision 
indices, introduced in [8]. They are used for evaluating 
uncertainty (namely imprecision), which is contained in 
information, described by fuzzy (non-additive) measures, 
in particular, by lower and upper probabilities. We argue 
that there exist various types of uncertainty, for example, 
randomness, investigated in probability theory, impreci-
sion, described by interval calculi, inconsistency, incom-
pleteness, fuzziness and so on. In general these types of 
uncertainty have very complex behavior, caused by their 
interaction. Therefore, the choice of uncertainty meas-
ures is not unique, and depends on the problems ad-
dressed. The classical uncertainty measures are Shan-
non’s entropy and Hartley’s measure. In the paper impre-
cision indices and also linear ones are introduced axio-
matically. The system of axioms allows us to define 
various imprecision indices. So we investigate the alge-
braic structure of all imprecision indices and investigate 
their families with best properties. 
 
Keywords. Imprecision indices, lower and upper prob-
abilities, uncertainty-based information. 
  

1   Introduction 

 

Measuring uncertainty plays a major role in uncertainty 

theories, in particular, probability theory, information 

theory, fuzzy sets theory and so on. There are some ways 

how to define such measures in the theory of evidence, in 

the theory of fuzzy (non-additive) measures and in the 

theory of imprecise probabilities. However, one can see 

that in such general theories the uncertainty measure with 

the best properties has not been found as yet. This situa-

tion is explained by the very complex interaction among 

various types of uncertainty, including randomness, 

inconsistence, imprecision, incompleteness of the ana-

lyzed information. We recall classical uncertainty meas-

ures, used in information theory and probability theory. 

Let X  be a finite set of alternatives. Assigning to each 

alternative x X∈  some probability ( ){ }P x , we have 

information, which is described by probability measure 

P , and in this case Shannon’s entropy 

( ) ( )
2

( ) { } log { }
x X

S P P x P x
∈

= −∑  can be used. Let we 

know only that the “true” alternative is in a nonempty set 

B X⊆ . This situation can be described by the non-

additive measure 
1,

( )
0,

B

B A
A

B A
η

⊆⎧
= ⎨
⎩

, A X⊆ , which 

gives the lower probability of an event A , and Hartley’s 

measure 
2

( ) log
B

H Bη =  can be justified. It is easily 

seen that in the first case uncertainty has a type that one 

call randomness, and the second case is more connected 

with imprecision of the information. The generalization 

of these two cases consists in the following. Consider a 

pair ( ),g g  of set functions : 2 [0,1]
X

g → , 

: 2 [0,1]
X

g →  defined on the powerset 2X . We suggest 

that ( ) ( )g A g A≤  for all 2
X

A∈ , ( ) ( ) 0g g∅ = ∅ = , and 

there is a “true” probability measure P  on 2X  with 

( ) ( ) ( )g A P A g A≤ ≤  for all 2
X

A∈ . In other words, set 

functions ,g g  give us upper and lower bounds of prob-

abilities, and for any event 2
X

A∈  we have only the 

interval ( ), ( )g A g A⎡ ⎤⎣ ⎦  of possible values of a “true” 

probability ( )P A . In practical issues it is sufficient to 

define the lower probability g , the upper probability can 

be calculated by ( )( ) 1g A g A= − , where 2
X

A∈  and A  

is the complement of A . Due to works of Abellan, Klir, 

Higashi, Harmanec and others (see [1,5,6,7]), there are 

two important uncertainty measures, which show the best 

properties in a sense of obeying axioms, which are simi-

lar to the axioms of Shannon’s entropy. They are gener-

alized Hartley’s measure, and aggregate measure of 



uncertainty. Let g  be a belief function, i.e. it can be 

represented by 
2

( )X BB
g m B η

∈
= ∑ , where ( ) 0m ∅ = , 

( ) 0m B ≥  for all 2
X

B∈ , and 
2

( ) 1
X

B
m B

∈
=∑ . Then 

generalized Hartley’s measure is defined by 

( ) 2

2 \{ }

( ) log
X

B

GH g m B B
∈ ∅

= ∑ . 

The aggregate measure of uncertainty is calculated by 

( ) sup ( )
P g

Au g S P
≥

= , 

where sup is taken over all probability measures on 2X , 

which are consistent with g , i.e. ( ) ( )P A g A≥  for all 

2
X

A∈ . It is worth to mention that generalized Hartley’s 

measure can be used for measuring imprecision and 

aggregate measure of uncertainty for total uncertainty. It 

is easy to check that aggregate measure of uncertainty 

coincides with Shannon’s entropy for probability meas-

ures and with Hartley’s measure for 
B

g η= , B ≠ ∅ . 

The paper has the following structure. We remind first 

some definitions and results from the theory of non-

additive measures and axiomatic of imprecision indices, 

formulated in [8]. Then we analyze so called linear im-

precision indices on the set of upper and lower probabili-

ties, giving their detailed description, and introducing 

their important families with symmetrical properties. We 

finish the paper with generalizing imprecision indices for 

the set of all monotone measures introducing in addition 

indices of inconsistency.  

 

2   Basic definitions and problem statement 
 

Let X  be a finite set. In the sequel we will use the fol-

lowing notations: 

1. M  is the set of all real-valued set functions on the 

powerset 2X ; 

2. { }0
| ( ) 0M g M g= ∈ ∅ = ; 

3. We write 
1 2
g g≤  for 

1 2
,g g M∈  if 

1 2
( ) ( )g A g A≤  for 

all 2
X

A∈ . 

4. 
0mon

M M⊂  is the set of all normalized monotone set 

functions on 2
X . It means that 

mon
g M∈  implies 

( ) 0g ∅ = , ( ) 1g X = , and ( ) ( )g A g B≤  if A B⊆ . 

5. 
Pr

M  is the set of all probability measures on 2X ; 

6. { }0 Pr
| :

low
M g M P M g P= ∈ ∃ ∈ ≤  is the set of all 

lower probabilities on 2X . 

6. { }0 Pr
| :

up
M g M P M g P= ∈ ∃ ∈ ≥  is the set of all 

upper probabilities on 2X . 

7. Let g M∈  then the dual of g  is denoted by g  and 

by definition: ( )( ) ( )g A g X g A= − , 2
X

A∈ . 

8. 
bel

M  is the set of all belief functions on 2X . Any 

bel
g M∈  has the following unique representation: 

2
( )

X BB
g m B η

∈
=∑ , where ( ) 0m B ≥  for all 2

X
B∈ , 

( ) 0m ∅ = , and 
2

( ) 1
X

B
m B

∈
=∑ . 

9. plM  is the set of all plausibility functions on 2X . Any 

plg M∈  is represented uniquely by 
2

( )
X BB

g m B η
∈

=∑ , 

where ( ) 0m B ≥  for all 2
X

B∈ , ( ) 0m ∅ = , and 

2
( ) 1

X
B

m B
∈

=∑ . 

We can consider the set M  (or 
0

M ) as a linear space 

w.r.t. to usual sum of set functions and usual product of 

set functions and real numbers. In non-additive measure 

theory, the basis, consisting of functions 
B

η , 2
X

B∈ , is 

of interest. Let g M∈  and 
2

( )X g BB
g m B η

∈
= ∑  then 

the set function 
g

m  is called Möbius transform of g . 

The function 
g

m  is expressed by 

\

:
( ) ( 1) ( )

B A

g A A B
m B g A

⊆
= −∑ . We will also use so-

called dual Möbius transform of g . This transform is 

connected with the basis, consisting of set functions 
Bη , 

2
X

B∈ , defined by ( ) ( )
B

B
A Aη η= . Let 

2
( )

X

Bg

B
g m B η

∈
= ∑  then the set function gm  is called 

dual Möbius transform of g . It is calculated by 

\

:
( ) ( 1) ( )

A Bg

A B A
m B g A

⊆
= −∑ . 

We remind now some definitions, introduced in [8]. 

Definition 1. A functional : [0,1]
low

f M →  is called 

imprecision index if the following conditions are ful-

filled: 1) 
Pr

g M∈  implies ( ) 0f g = ; 2) 
1 2

( ) ( )f g f g≥  

for all 
1 2
,

low
g g M∈  such that 

1 2
g g≤ ; 3) ( ) 1

X
f η = . 

Remark 1. We write 
1 2
g g<  for 

1 2
,g g M∈  if 

1 2
g g≤  

and 
1 2
g g≠ . Then sensitive imprecision indices have to 

obey: 
1 2

( ) ( )f g f g>  if 
1 2
,

low
g g M∈  and 

1 2
g g< . In 

some works (e.g. [5,7]) there is an argumentation that 

uncertainty measures have to obey also subaddivity 



property. Here we do not discuss this problem, because, 

in our opinion, this property is related to another kind of 

uncertainty, which can be called incompleteness of the 

information. However, adding the subadditivity property 

to the list of axioms for imprecision indices on 
low

M  

leads to the fact that there is no sensitive imprecision 

index with subadditivity property (for checking this 

statement you can use Example 1 in [1]).It is clear that 

there are many ways for defining imprecision indices. 

One class of them consisting of linear imprecision indi-

ces is described in the following definition.  

Definition 2. An imprecision index f  on 
low

M  is called 

linear if for any linear combination 
1

k

j j lowj
g Mα

=
∈∑ , 

j
α ∈R , j lowg M∈ , 1,...,j k= , we have ( )1

k

j jj
f gα

=
=∑  

( )
1

k

j jj
f gα

=∑ .  

 

3   The investigation of linear imprecision 

indices 
 

We notice first that any linear functional f  on M  is 

defined uniquely by its values on a chosen basis of M . 
This enables to define f  by the set function 

: 2
X

fµ →R  with the following property 

( )( )f B
B fµ η= , 2

X
B∈ . Since any 

low
g M∈  is repre-

sented as a linear combination of { }
2 \{ }XB

B

η
∈ ∅

, we take 

by definition that ( ) 0fµ ∅ =  (or ( ) 0f η ∅ = ) for any 

linear imprecision index f . 

Proposition 1 [8]. Let f  be a linear imprecision index 

on 
low

M  then f monMµ ∈  with ( ){ } 0
f

xµ =  for any 

x X∈ . 

The following proposition gives us the expression of any 

linear functional through the values of the transformed 

set function. 

Proposition 2. Let f  be a linear functional on M  then 

2
( ) ( ) ( )f

X
B

f g m B g B
µ

∈
= ∑  for any g M∈ . 

Proof. By definition 
2

( )f

X

B

f B
m B

µµ η
∈

= ∑  and 

2
( )

X g CC
g m C η

∈
= ∑ , therefore, 

2
( ) ( ) ( )X g fC

f g m C Cµ
∈

=∑
2 2

( ) ( ) ( )f

X X

B

gC B
m C m B C

µ η
∈ ∈

= ∑ ∑

2 2
( ) ( ) ( )f

X X g CB C
m B m C B

µ η
∈ ∈

= ∑ ∑
2

( ) ( )f

X
B

m B g B
µ

∈
= ∑ .■ 

The following theorem gives necessary and sufficient 

conditions on a linear functional to be an imprecision 

index through the dual Möbius transform of fµ .  

Theorem 1. Let f  be a linear functional on M  then it 

is an imprecision index on 
low

M  iff  

a) ( ) 1f
m X

µ = ; 
2

( ) 0f

X
D

m D
µ

∈
=∑ ; 

b) 
:

( ) 0f

D x D
m D

µ

∈
=∑  for all x X∈ ; 

c) ( ) 0f
m D

µ ≤  for all 2 \ { , }X
D X∈ ∅ . 

Proof. It is clear that the condition a) guarantees that 

( ) 1
X

f η =  and ( ) 0f η ∅ = . It is easy to show that b) is 

the necessary and sufficient condition that ( ) 0f g =  for 

any 
Pr

g M∈ . Indeed, since Pr{ }x
Mη ∈  then 

( ) ( ){ }
{ } 0f x
x fµ η= = , ( )

:

{ } ( ) 0f

f D x D
x m D

µµ
∈

= =∑ . 

On the other hand, any 
Pr

g M∈  can be represented as a 

convex sum of 
{ }x

η , i.e. ( ) { }
{ }g xx X

g m x η
∈

= ∑ , hence,  

( ) ( ){ }
( ) { }g xx X

f g m x f η
∈

= ∑  

( ) ( ){ } { } 0g fx X
m x xµ

∈
= =∑ . 

So b) is proved. c) is the sufficient and necessary condi-

tion of antimonotonicity of f  on 
low

M . Let c) be ful-

filled and 
1 2
g g≤  for 

1 2
,

low
g g M∈  then by Proposition 2  

( )
1 2 1 2

2

( ) ( ) ( ) ( ) ( )f

X
B

f g f g m B g B g B
µ

∈

− = −∑  

( )
{ }

1 2

2 \ ,

( ) ( ) ( )f

X
B X

m B g B g B
µ

∈ ∅

= −∑ . 

Since 
1 2
( ) ( ) 0g B g B− ≤  for any 2

X
B∈  and ( ) 0f

m B
µ ≤  

for any { }2 \ ,
X

B X∈ ∅ , we get 
1 2

( ) ( )f g f g≥ , i.e. c) 

implies antimonotonicity of f . Vice versa, let f  be 

antimonotone on 
low

M  then for any 2 \ { , }X
D X∈ ∅  we 

can always find such 
1 2
,

low
g g M∈  with 

1 2
( ) ( )g B g B=  

for all B D≠ , and 
1 2
( ) ( )g D g D< . According to Propo-

sition 2 
1 2

0 ( ) ( )f g f g≤ − =  
1 2

( )( ( ) ( ))fm D g D g D
µ − , 

i.e. ( ) 0f
m D

µ ≤ . ■ 

Conditions of Theorem 1 can be transformed to the form, 

which is very close to the condition “avoiding sure loss” 

from the theory of imprecise probabilities [10]. It enables 

to get the implicit expression for an arbitrary linear im-

precision index. We will further use the functions 1
B

, 

B X⊆ , on X  defined by 1 ( ) 1
B
x =  if x B∈ , and 

1 ( ) 0
B
x =  otherwise. 



Theorem 2. Any linear imprecision index f  on 
low

M  

can be uniquely represented by 

2
( ) 1 ( ) ( )

X
B

f g m B g B
∈

= −∑ , 

where the set function m  obeys the following conditions: 

1) ( ) 0m ∅ = , ( ) 0m X = , ( ) 0m B ≥  for all 2
X

B∈ ; 

2) 
2

( )1 1
X B XB
m B

∈
=∑ . 

Remark 2. The condition of “avoiding sure loss” from 

the theory of imprecise probabilities can be formulated 

with the help of the set function m  from the Theorem 2 

as follows: let 
0

g M∈  then 
low

g M∈  iff for any set func-

tion m  obeying 1), 2) from Theorem 2, we have 

2
( ) ( ) 1

X
B

m B g B
∈

≤∑ . 

Theorem 3. Let f  be a linear functional on M  then it 

is an imprecision index on 
low

M  iff f X
a bµ µ η= − , 

where 0b > , 1a b= + , and plMµ ∈  with ( ){ } /x b aµ =  

for all x X∈ . 

Proof. Necessity. Let f  be a linear imprecision index on 

low
M  then  

{ }2 \ ,
( ) ( ) ( )f

Xf AA X
B m A B

µµ η
∈ ∅

= ∑  

( ) ( ) ( ) ( )f f

X
m X B m B

µ µη η∅+ + ∅ , 

where ( ) 0fm A
µ ≤  for any { }2 \ ,

X
A X∈ ∅  and 1η ∅ ≡ , 

( ) 1f
m X

µ = . Let { }2 \ ,
( )f

XA X
a m A

µ

∈ ∅
= −∑  then taking 

1( ) ( )f

a
q A m A

µ= −  for { }2 \ ,
X

A X∈ ∅  and ( ) 0m A =  for 

{ },A X∈ ∅ , we get  

2
( ) ( ) ( ) 1 ( ) ( )f

Xf XAA
B a q A B m B

µµ η η
∈

= − + + ∅∑  

( )
2

( ) 1 ( )
X AA

a q A Bη
∈

= −∑  

( )( ) 1 ( ) ( ) 1f f

X
m B m a

µ µη− ∅ − + ∅ + − . 

It is clear 
2

( ) 1 ( )f f

X
A

m a m A
µ µ

∈
∅ + − = =∑ ( )fµ ∅ = 0 , 

hence, we get the representation required  

2
( ) ( ) ( ) ( )Xf A XA
B a q A B b Bµ η η

∈
= −∑ , 

where 
2

( )X AA
q Aµ η

∈
=∑ , ( )f

b m
µ= ∅ , 1a b= + .  

It is easy to show that ( ){ } /x b aµ = , x X∈ , and 0b > . 

Actually, by Proposition 1 ( ){ } 0
f

xµ =  for all x X∈ , 

i.e. ( ){ } /x b aµ =  for all x X∈ . On the other hand, 

( )
:

{ } ( ) 0f A x A
x a q A bµ

∈
= − =∑ , 

i.e. 0b ≥  and if 0b =  then 0q ≡  and this contradicts to 

the definition of imprecision index. 

Sufficiency. Assume that we have the representation of 

fµ  from the theorem. We prove sufficiency if we check 

all conditions from Theorem 1. We see that ( ) 0fµ ∅ = , 

( ) 1f Xµ = , and ( ){ } 0
f

xµ =  for all x X∈ , i.e. condi-

tions a), b) are true. We will further prove that 

( ) 0f
m A

µ ≤  for all 2 \ { , }X
A X∈ ∅ . Since µ  is a plausi-

bility function, it is represented by 
2

( )X AA
q Aµ η

∈
=∑ , 

where ( ) 0q A ≥  for all 2
X

A∈ , ( ) 0q ∅ = , and 

2
( ) 1X

A
q A

∈
=∑ . We can write 

2
( ) ( ) ( ) ( )Xf A XA
B a q A B b Bµ η η

∈
= −∑  

( ) ( )
2

( ) 1 ( ) 1 ( )
X A XA

a q A B b Bη η
∈

= − − −∑  

( ) ( )
2

( ) 1 ( ) 1 ( )
X XAA

a q A B b Bη η
∈

= − − −∑ . 

The last expression implies ( ) ( ) 0fm A aq A
µ = − ≤  for all 

2 \ { , }X
A X∈ ∅ , i.e. c) is also true. ■ 

From the proof of Theorem 3, we see that we can use the 

basis { }
2 \{ }XB

B

η
∈ ∅

of 
0

M  for defining other sufficient 

and necessary conditions on linear imprecision index. 

We formulate them in 

Corollary 1. Let f  be a linear functional on M  and 

2 \{ }
( )

Xf AA
m Aµ η

∈ ∅
= ∑  then f  is an imprecision index 

iff 1) 
0
( )f M Xµ ∈ ; 2) ( ){ } 0

f
xµ =  for all x X∈ ; 

3) ( ) 0m A ≥  for all 2 \{ , }X
A X∈ ∅ . 

The next theorem follows from Theorem 3. 

Theorem 4. Let f  be a linear functional on M  then it 

is an imprecision index on 
low

M  iff 1) 
0f Mµ ∈ ; 

2) ( ){ } 0
f

xµ =  for all x X∈ ; 3) the set function { }x

f
µ , 

defined by ( ){ }( ) { }x

f fB B xµ µ= ∪ , 2
X

B∈ , is in plM  for 

any x X∈ . 

It seems to be logical in some problems that the quantity 

of imprecision in the situation, where we know only that 

the true alternative belongs to the set B , depends on B  

and does not depend on other factors. In this case we 

assume that ( ) ( )B C
f fη η=  or ( ) ( )f fB Cµ µ=  if 

B C= , and we call such linear imprecision indices 

symmetrical. In the sequel we will use the fact that such 

symmetrical monotone set functions can be viewed as 

distorted probabilities [3]. Let P  be a probability meas-

ure on { }
1
,...,

N
X x x= ; let : [0,1] [0,1]λ →  be non-

decreasing function with (0) 0λ = , (1) 1λ = , then the set 

function g Pλ=  ( ( )( ) ( )g A P Aλ= , 2
X

A∈ ) is called 



distorted probability. We are interested in the case, where 

{ }( ) 1/
i

P x N= , 1,...,i N= . Further we will use the fol-

lowing sufficient condition of total monotonicity [2]: let 

g Pλ= , then it is a belief function if λ  is infinitely 

differentiable on [0,1)  and ( ) 0n n
d t dtλ ≥ , 1,2,...n = , 

for any [0,1)t∈ . 

Theorem 5. Let f  be a linear functional on M  and 

f Pµ λ= , i.e. fµ  is a distorted probability, mentioned 

above, and { }( ) 1/
i

P x N= , 1,...,i N= . Then f  is an 

imprecision index if: 1) ( )1/ 0Nλ = ; 2) λ  is infinitely 

differentiable on )1
,1

N
⎡⎣  and ( ) 1

1 ( ) 0
n

n n

d t dtλ−− ≥ , 

1,2,...n = , for any )1
,1

N
t ⎡∈ ⎣ . 

Proof. We will check that the all conditions from Theo-

rem 4 are true. It is clear that 
0f Mµ ∈  and ( ){ } 0

f
xµ =  

for all x X∈ . Now we prove that 3) is also true. In this 

case ( )( ){ }
( ) { }

x

f B P B xµ λ= ∪ , \{ }
2
X x

B∈ , { }x

f
µ  can be 

considered as a distorted probability on \{ }
2
X x , and 

{ }

1 1

x

f Pµ λ= , where ( )1 ( 1)
1( )

t N

N
tλ λ + −= , [0,1]t∈ , and 

{ }( )1
1/( 1)P y N= − , \ { }y X x∈ . We find that { }( )x

f Aµ =  

( )1 11 ( )P Aλ− = ( )
1 1

1 1 ( )P Aλ− − , i.e. { }

2 1

x

f Pµ λ=  is a 

distorted probability and 
2 1
( ) 1 (1 )t tλ λ= − − =  

( )( 1)
1 1

t N

N
λ −− − . It is clear { }x

f pl
Mµ ∈  iff { }x

f belMµ ∈ . 

Then we argue that { }x

f
µ  is a plausibility function if 

2
( ) 0n n

d t dtλ ≥ , 1,2,...n = , for any [0,1)t∈ , or 

( ) 1

1 ( ) 0
n

n n

d t dtλ−− ≥ , 1,2,...n = , for any )1
,1

N
t ⎡∈ ⎣ .■ 

In some cases it is suitable to define symmetrical fµ  by 

a non-decreasing function : [1, ) [0, )ϕ +∞ → +∞  with 

(1) 0ϕ =  assuming that ( ) ( )( )f A A Xµ ϕ ϕ=  for 

A ≠ ∅ . Then ( ) ( )( )t tN Nλ ϕ ϕ=  for 
1
,1

N
t ⎡ ⎤∈ ⎣ ⎦ , where 

N X= . It is easy to see that according to Theorem 5, 

fµ  determines a linear imprecision index if ϕ  is infi-

nitely differentiable on [1, )N  and 

( ) 1

1 ( ) 0
n

n n

d t dtϕ−− ≥ , 1,2,...n = , for any [1, )t N∈ . 

Example 1. Let ( ) ln( )t tϕ =  then ( )f Aµ =  

( ) ( )ln lnA X . In this case the corresponding linear 

imprecision index can be considered as the analog of 

generalized Hartley’s measure. We see that 

( ) 1

1 ln( ) ( 1)! 0
n

n n n

d t dt n t
− −− = − ≥  for 1t ≥ , i.e. fµ  

determines a linear imprecision index on 
low

M . 

Example 2. Given two source of information about the 

object of our interest. These sources are described by 

lower probabilities 
1
g  and 

2
g . Assume that the pointed 

sources are consistent, i.e. { }1 2
max ,

low
g g M∈ . We are 

going to use one of the sources in further analysis. This 

situation may be caused that we work, for example, with 

necessity functions and the choice of more exact infor-

mation { }1 2
max ,g g  pushes out from possibility theory. 

Assume that we make a choice from { }1 2
,g g  using the 

metric on 
mon

M  defined by 

( )1 2 1 22
, ( ) ( ) ( )X

B
d g g m B g B g B

∈
= −∑ , 

where 
1 2
,

mon
g g M∈ , m  is a weight function with 

( ) ( ) 0m m X∅ = = , ( ) 0m B >  for all 2 \{ , }X
B X∈ ∅ . We 

choose 1g  if { }( ) { }( )1 1 2 2 1 2
,max , ,max ,d g g g d g g g< , 

2
g  if { }( ) { }( )1 1 2 2 1 2

,max , ,max ,d g g g d g g g> , and if 

{ }( ) { }( )1 1 2 2 1 2
,max , ,max ,d g g g d g g g=  then the addi-

tional analysis is needed for making a decision. Now we 

show how this metric is related to the notion of impreci-

sion index. Simplifying the expression 

{ }( ) { }( )1 1 2 2 1 2
,max , ,max ,d g g g d g g g− =

( )
2 1

2 1

: ( ) ( )

( ) ( ) ( )
B g B g B

m B g B g B
>

− −∑
( )

1 2

1 2

: ( ) ( )

( ) ( ) ( )
B g B g B

m B g B g B
>

− =∑
( )2 1

2

( ) ( ) ( )
X

A

m B g B g B
∈

− =∑  

( ) ( )1 22 2
1 ( ) ( ) 1 ( ) ( )X X

B B
m B g B m B g B

∈ ∈
− − −∑ ∑ . 

We get that the expressions ( )
2

1 ( ) ( )X iB
m B g B

∈
−∑ , 

1,2i = , can be considered as values of the linear impre-

cision index f  if m  obeys the condition 2) of Theorem 

2. In this case we choose 
1
g  if ( ) ( )1 2

f g f g< , i.e. the 

first source gives us more exact information than the 

second. 

 

4   The algebraic structure of the set of linear 

imprecision indices 
 

Let 
1
f , 

2
f  be linear functionals on M  then their linear 

combination 
1 2

f af bf= + , ,a b∈R  is also a linear func-

tional. If we take into consideration set functions 

1 2

, ,f f fµ µ µ , we see that 
1 2

f f fa bµ µ µ= + , i.e. the set of 

all linear functionals on M  is a linear space and this 

space is isomorphic to the linear space M  of all set 

functions on 2X . It is easy to show that if 
1
f , 

2
f  are 

linear imprecision indices then their convex sum 

1 2
f af bf= + , where , 0a b ≥ , 1a b+ = , is also linear 



imprecision index, i.e. the set of all linear imprecision 

indices is a convex set. We denote by 
I

M  the set of all 

set functions fµ , which correspond to linear imprecision 

indices on 
low

M . One can say that we understand the 

algebraic structure of a convex set if we find its extreme 

points. The following theorem gives the necessary and 

sufficient condition on an arbitrary 
I

Mµ∈  to be an 

extreme point.  

Theorem 6. Let 
I

Mµ∈ , ( )
AA

m Aµ η
∈

= −∑ B X
bη , 

where 2 \ { , }X
X⊆ ∅B , ( ) 0m A >  for all A∈B , 

0b > , then µ  is an extreme point of 
I

M  iff functions 

{ }1
A A∈B

 are linearly independent. 

Proof. Notice first that any 
I

Mµ∈  has the representa-

tion ( )
A XA

m A bµ η η
∈

= −∑ B
 by Corollary 1, 0b > , 

and B  is not empty. Secondly, ( ){ } 0xµ =  for all 

x X∈ , i.e.  

( )1 1
A XA

m A b
∈

=∑ B
. 

We will show that µ  is not an extreme point of 
I

M  iff 

functions { }1
A A∈B

 are linearly dependent. This implies 

evidently the theorem statement. Assume that functions 

{ }1
A A∈B

 are linearly dependent. Then there exist two 

different solutions of 1 1
A A XA

α
∈

=∑ B
 w.r.t. 

A
α , A∈B . 

We choose one of them as (1) ( ) /
A

m A bα = , A∈B . Since 

(1) 0
A

α >  for all A∈B , we can choose another solution 

(2)

A
α  with (2)

0
A

α ≥ , A∈B . Let ( )( )(2)

2 1 1
AA

b α
∈

= −∑ B
, 

then it is easy to see that 
2

0b >  and the set function 
2

µ , 

defined by 

(2)

2 2 2A A XA
b bµ α η η

∈
= −∑ B

, 

is in 
I

M . Defining 

{ }(2)

2 2sup | ( ), ,
A

c r rb m A A rb bα= ∈ ≤ ∈ ≤R B , 

we confirm that (0,1)c∈ , 
2

cµ µ≥ . Then  

( )
1 2 1 1

1
( )

1
A XA

c m A b
c

µ µ µ η η
∈

= − = −
− ∑ B

. 

where ( )1 (2)

1 21
( ) ( )

Ac
m A m A cb α−= − , ( )1

1 21 c

b b cb−= − , is 

in 
I

M . We see that 
1 2

(1 )c cµ µ µ= − + , i.e. we have 

proved that µ  is not an extreme point of 
I

M . 

Vice versa; assume that µ  is not an extreme point of 

I
M . Then there exist set functions 

1 2
,

I
Mµ µ ∈  such that 

1 2
a bµ µ µ= + , where , 0a b >  and 1a b+ = . Since 

1 2
, ( )

I
M Xµ µ ∈  we have ( )1 1

i A i XA
m A b

∈
=∑ B

, where 

0
i
b > , 1,2i = . Therefore, the equation 1 1

A A XA
α

∈
=∑ B

 

has more than one solution w.r.t. 
A

α ∈R , A∈B , hence, 

functions { }1
A A∈B

 are linearly dependent if µ  is not an 

extreme point of 
I

M .■ 

Theorem 6 implies that the set 
I

M  has the finite number 

of extreme points. According to the Theorem by Krein-

Milman [9], any 
I

Mµ∈  can be represented as a convex 

sum of extreme points. However, it is a very hard prob-

lem to describe such extreme points explicitly. Further 

we consider one convex subset of 
I

M , for which this 

problem can be solved.  

Definition 3. Let f  be a linear imprecision index on 

low
M , then we call it complementarily symmetrical if 

( ) ( )f f
m A m A

µ µ=  for all 2 \{ , }X
A X∈ ∅ . 

Important examples of complementarily symmetrical 

linear imprecision indices are primitive imprecision 

indices. We see that 

( ) ( ) ( ) ( ) ( )
B
g g X g B g B gν = − − + ∅ , 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

B
v A A A A

B B X

A X B B

A A A A

µ η η η η

η η η η∅

= − − + ∅

= − − +
 

Therefore, ( ) 1vBm A
µ =  if { , }A X∈ ∅ , ( ) 1vBm A

µ = −  if 

{ , }A B B∈ , and ( ) 0vBm A
µ =  otherwise. We can also 

express 
B

νµ  through plausibility functions. In this case  

( ) 1 ( ) ( ) ( )

( ) ( ) ( ).

B
v B XB

B XB

A A A A

A A A

µ η η η

η η η

= − − +

= + −
 

By Theorem 6 it is easy to show that primitive indices 

B
ν , 2 \ { , }X

B X∈ ∅ , are extreme points of 
I

M . Actu-

ally, it follows from the fact that functions { }1 ,1
B B

 are 

linearly independent. 

The role of primitive indices for describing the set of all 

complementarily symmetrical linear indices shows the 

following theorem. 

Theorem 7. The set of all complementarily symmetrical 

linear indices is convex. Any complementarily symmetri-



cal linear index can be uniquely represented by a convex 

sum of primitive indices.  

Proof. The convexity of all complementarily symmetri-

cal linear indices it is obvious. Now we will prove that 

any complementarily symmetrical linear index can be 

represented by a convex sum of primitive indices. Let f  

be a complementarily symmetrical linear index and 

low
g M∈  then 

2
( ) ( ) ( )f

X
B

f g m B g B
µ

∈
= ∑ , 

where ( ) ( )f f
m B m B

µ µ=  for all 2 \{ , }X
B X∈ ∅ . Let 

{ }2 \ { } |
X

B X x B= ∈ ∈D , { }2 |
X

B B= ∈ ∈D D  for 

some x X∈  then 2 \{ , }X
X∪ = ∅D D , ∩ =∅D D .  

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

f f

f

f

B

B

f g m X g X m g

m B g B g B

m B g X g B g B g

µ µ

µ

µ

∈

∈

= + ∅ ∅

+ +

= − − − + ∅

∑
∑

D

D

 

( )( ) ( ) ( )

( ) ( ) ( ) ( ).

f

f f

B
m B g X g

m X g X m g

µ

µ µ

∈
+ + ∅

+ + ∅ ∅

∑ D  

We see that 
:

( ) ( ) ( )f f f

B B x B
m B m B m X

µ µ µ

∈ ∈
= − =∑ ∑D

 

( ) 1f
m X

µ− = − . The equality 
2

( ) 0f

X
B

m B
µ

∈
=∑  implies 

that ( )( ) ( ) ( )f f f

B
m m B m B

µ µ µ

∈
∅ = − + −∑ D

( ) 1f
m X

µ = . 

Hence, 

( ) ( 1) ( )f

BB
f g m B

µ ν
∈

= −∑ D
, 

where ( 1) ( ) 0f
m B

µ− ≥  for all B∈D , and 

( 1) ( ) 1f

B
m B

µ

∈
− =∑ D

, i.e. f  can be represented by a 

convex sum of primitive indices.  

We prove that the found representation is unique if we 

show that system { }
B B

ν
∈D

 of all primitive indices is 

linearly independent in the linear space of all linear func-

tionals on M , or we show the same property for set 

functions { }
B B

νµ ∈D
. It is easy to see that set functions 

Bv B XB
µ η η η= + − , B∈D , are linearly independent, 

this follows immediately from the fact that set functions 

{ }
2 \{ }XB

B

η
∈ ∅

 are also linearly independent in M .■ 

Example 3. Let : Xξ → R , max ( ) min ( ) 1
x Xx X

x xξ ξ
∈∈

− = . 

Then we can define the linear imprecision index by Cho-

quet integral [4] ( )
X X

f g dg dgξ ξ= −∫ ∫ , where 
low

g M∈ . 

Then ( ) max ( ) min ( )f
x Bx B

B x xµ ξ ξ
∈∈

= −  for B ≠ ∅ . It is easy 

to show that such defined an index f  is complementar-

ily symmetrical. It is worth to mention that in the theory 

of imprecise probabilities 
X

dgξ∫  can be viewed as an 

upper estimate of the expectation [ ]E ξ , and 
X

dgξ∫  as a 

lower estimate of the expectation [ ]E ξ . 

Example 4. Let g  be a coherent lower probability, and 

{ }1 2
( ) min ( ), ( )g A P A P A= , where 

1 2 Pr
,P P M∈ , 2

X
A∈ . 

Let f  be a complementarily symmetrical imprecision 

index. Then it is easy to show that 

1 22
( ) ( ) ( ) ( )X

A
f g m A P A P A

∈
= −∑ , 

where m  is a non-negative set function on 2
X  with 

( ) 0m ∅ = , ( ) 0m X = and 
2

( ) 1X
A

m A
∈

=∑ . Therefore, in 

this case we express the value of the imprecision index 

through the metric 

( )1 2 1 22
, ( ) ( ) ( )X

A
d P P m A P A P A

∈
= −∑ , 

1 2 Pr
,P P M∈ , 

on 
Pr

M  if m  has the property ( ) ( ) 0m A m A+ >  for all 

2 \{ , }X
A X∈ ∅ . 

 

5   The extension of imprecision indices to 

the set of all non-additive measures 
 

In this section we will try to extend the notion of impre-

cision index. We consider first one simple generalization 

of imprecision indices onto the set 
up

M .  

Definition 4. A functional : [0,1]
up

f M →  is called 

imprecision index if the following conditions are ful-

filled: 1) 
Pr

g M∈  implies ( ) 0f g = ; 2) 
1 2

( ) ( )f g f g≤  

for all 
1 2
,

up
g g M∈  such that 

1 2
g g≤ ; 3) ( ) 1

X
f η = . 

We call an imprecision index f  on 
up

M  linear if it has 

linear properties on 
up

M . We can define this linear func-

tional on the set of all set functions, and we take by defi-

nition that ( ) 0f η ∅ = .  

The following proposition shows the connection between 

imprecision indices on 
low

M  and 
up

M . 

Proposition 3. Let 
1
: [0,1]

low
f M →  then 

1
f  is an impre-

cision index on 
low

M  iff the functional 
2
: [0,1]

up
f M →  

defined by 
2 1
( ) ( )f g f g= ,

up
g M∈ , is an imprecision 



index on 
up

M . In addition, 
1
f  is a linear index on 

low
M  

iff 
2
f  is a linear imprecision index on 

up
M . 

Corollary 2. Let f  be a linear functional on M  then 

f  is an imprecision index on 
up

M  iff the set function 

fµ , defined by ( )( )f

B
B fµ η= , is in 

I
M . 

We see that using Proposition 3 and Corollary 2, we can 

formulate all results, proved for imprecision indices on 

low
M , through imprecision indices, defined on 

up
M . For 

example, Theorem 2 can be reformulated as follows. 

Theorem 2*. Any linear imprecision index f  on 
up

M  

can be uniquely represented by 

2
( ) ( ) ( )

X
B

f g m B g B a
∈

= −∑ , 

where the set function m  obeys the following conditions: 

1) ( ) 0m ∅ = , ( ) 0m X = , ( ) 0m B ≥  for all 2
X

B∈ ; 

2) 
2

( )1 1
X B XB
m B

∈
=∑ , 

2
( ) 1

X
B

a m B
∈

= −∑ . 

Comparing Theorems 2 and 2*, we see that conditions 

1), 2) are very close. If 1a =  then we can define an im-

precision index on 
low

M  and 
up

M  by one linear func-

tional. Namely, if the linear functional f  defines the 

imprecision on 
low

M , then f−  defines the imprecision 

index on 
up

M , or f  defines an imprecision index on 

low
M  and 

up
M  simultaneously. In some cases, the sign 

of f  may be useful, since it enables to check what the 

argument of f  is: it is a lower or upper probability. If 

the argument g  is not in low upM M∪  we can say that g  

gives us rather lower estimations of probabilities than 

upper probabilities if ( ) 0f g > , and vice versa. In some 

cases, we should guarantee that ( ) ( )f g f g= , in other 

words, the amount of imprecision is the same, if we 

describe uncertainty by lower or by upper probabilities. 

This situation is analyzed in the following proposition. 

Proposition 4. Let f  be a linear functional on M  and 

we use notations from Theorems 2, 2*. Then f  defines 

a linear imprecision index on 
low

M  and 
up

M  with 

( ) ( )f g f g=  for all 
low

g M∈  iff f  is a complemen-

tarily symmetrical index on 
low

M .  

Proof. We see that 1a =  is the necessary condition, and 

this condition is fulfilled for complementarily symmetri-

cal indices. Consider the sum 

2
( ) ( ) 2 ( ) ( )

X
B

f g f g m B g B
∈

+ = − −∑
2

( ) ( )
X

B
m B g B

∈∑ . 

which has to be equal to zero for every 
low

g M∈ .  

2 \{ , }
( ) ( ) ( ) ( )

X
B X

f g f g m B g B
∈ ∅

+ = −∑  

2 \{ , }
( ) ( )

X
B X

m B g B
∈ ∅

=∑  

( )
2 \{ , }

( ) ( ) ( )
X

B X
m B m B g B

∈ ∅
−∑ . 

Since ( ) ( ) ( ) ( )f f
m B m B m B m B

µ µ− = − , for any com-

plementarily symmetrical index ( ) ( ) 0f g f g+ = . We 

prove the proposition if we show that the condition 

( ) ( ) 0m B m B− =  is also necessary one. Let 
D

g η= , 

1D X= −  then ( ) ( ) ( ) ( )f g f g m D m D+ = − , i.e. 

( ) ( ) 0m D m D− =  for any 2
X

D∈  with 1D X= − . 

Assume by induction the statement ( ) ( ) 0m D m D− =  is 

true for any 2
X

D∈  with D X i= − , 1,..., 1i k= − , 

1k X< − . We show that ( ) ( ) 0m D m D− =  for any 

2
X

D∈ , where D X k= − . Actually, choosing 

D
g η=  with D X k= − , we get ( ) ( )f g f g+ =  

( )( ) ( ) ( )
D B X

m B m B g B
⊆ ⊂

− =∑ ( ) ( )m D m D− , i.e. 

( ) ( ) 0m D m D− =  for any 2
X

D∈  with D X k= − .■ 

If we are going to generalize measuring imprecision for 

general case, i.e. imprecision indices are defined on 

mon
M , we should consider two types of uncertainty, 

caused by imprecision and inconsistency, and propose 

their interpretation. One possible interpretation consists 

in the following. Suppose that the set function 
mon

g M∈  

should give us low estimates of probabilities, however, 

low
g M∉ . Then some of its values are greater than it is 

possible, and this implies that information contains some 

amount of inconsistency. Suppose that for measuring 

imprecision we use an index f  on 
low

M . It seems to be 

logical to evaluate the amount of imprecision in g  by 

the value  

Imp
|

( ) inf ( )
lowq M q g

f g f q
∈ ≤

= .  

We see that the functional 
Imp
f  can be considered as an 

extension of f  onto 
mon

M . Let 
up

g M∈  then 

Imp
( ) 0f g = , and we conclude that the amount of impre-

cision is equal to zero, i.e. we have exact information in 

our disposal, however, there is uncertainty caused by 

inconsistency. The amount of this uncertainty can be also 

evaluated. In this case we choose the same axiomatic for 

inconsistency index as for imprecision index for upper 

probabilities. Then we can measure inconsistency by 



( )f g . If 
mon

g M∈  and 
up

g M∉ , we can introduce an 

inconsistency index by 

Inc
|

( ) inf ( )
up

q M q g

f g f q
∈ ≥

= . 

We see that 
Inc
( ) 0f g =  if 

low
g M∈ . It is clear that 

Imp
f  

is antimonotone on 
mon

M , i.e. 
1 2
g g≤  implies 

( ) ( )Imp 1 Imp 2
f g f g≥  for 

1 2
,

mon
g g M∈ . 

Inc
f  is monotone 

on 
mon

M , i.e. 
1 2
g g≥  implies ( ) ( )Imp 1 Imp 2

f g f g≥  for 

1 2
,

mon
g g M∈ . Further we will use the following nota-

tions: { }1 2
min ,g g g=  if { }1 2

( ) min ( ), ( )g A g A g A= , for 

all 2
X

A∈ , 
1 2

, ,
mon

g g g M∈ . Next lemmas shows, how 

the problem of calculating 
Imp
f  

Inc
f  can be simplified. 

Lemma 1. { }
Pr

Imp( ) inf (min , )
M

f g f g
α

α
∈

= . 

Proof. Since { }min ,
low

g Mα ∈  for any 
Pr

Mα ∈ , we 

conclude that { }
Pr

Imp( ) inf (min , )
M

f g f g
α

α
∈

≤ . Let 
low

q M∈ , 

q g≤  then there is an 
Pr

Mα ∈  with q α≤ . We see 

{ }min ,q gα≤ , i.e. { }
Pr

Imp
|

( ) inf (min , )
M g

f g f g
α α

α
∈ ≤

≥ . So, 

there is one possibility { }
Pr

Imp( ) inf (min , )
M

f g f g
α

α
∈

= .■ 

The next result is proved analogously as Lemma 1. 

Lemma 2. { }
Pr

Inc
( ) inf (min , )

M

f g f g
α

α
∈

= . 

Lemma 3. Let 0.5 0.5g q q= + , 
mon

q M∈ , then 

Imp Imp
( ) ( )f g f g= . 

Proof. It is true because g g=  in this case. ■ 

If we take another interpretation that 
mon

g M∈  gives us 

upper estimations of probabilities then we can follow the 

proposed scheme for defining imprecision and inconsis-

tency indices, assuming that g  gives us lower estimates 

of probabilities, i.e. if f  is an imprecision index on 

low
M , then in this case 

Imp
( )f g  gives us the amount of 

imprecision, and 
Inc
( )f g  gives us the amount of incon-

sistency. In some situations we do not know what infor-

mation we have in our disposal, we know only that g  

gives us estimates of probabilities, and we have to decide 

– it is lower estimates of probabilities or upper estimates 

of probabilities. One way, based on an imprecision index 

f , defined on 
low

M , consists in the following. We can 

assume that in the analyzed information the amount of 

imprecision should be greater or equal than the amount 

of inconsistency. Then, calculating the value 

{ } { }
Pr Pr

S
( ) inf (min , ) inf (min , )

M M

f g f g f g
α α

α α
∈ ∈

= − , 

we suppose that g  is rather lower probability than upper 

probability if 
S
( ) 0f g ≥ , and rather upper probability 

then lower probability if 
S
( ) 0f g < . 

Lemma 4. Let f  be a complementarily symmetrical 

linear imprecision index on 
low

M  then ( ) ( )
S
f g f g= . 

Proof. Let all conditions of the lemma hold and 

{ }2 \ { } |
X

B X x B= ∈ ∈D  for some x X∈  then by 

Theorem 7 ( )( ) ( ) ( ) ( )
A

f g m A g A g A
∈

= −∑ D
, where 

mon
g M∈ , ( ) 0m A ≥  for all A∈D , and ( ) 1

A
m A

∈
=∑ D

. 

Let 
Pr

Mα ∈ , 
mon

g M∈  then 

{ } { }(min , ) (min , ) ( ) ( )
A

f g f g m A q Aα α
∈

− =∑ D
, 

where { } { }( ) max ( ), ( ) min ( ), ( )q A A g A A g Aα α= − −  

{ } { }max ( ), ( ) min ( ), ( ) ( ) ( )A g A A g A g A g Aα α+ = − , i.e. 

{ } { }(min , ) ( ) (min , )f g f g f gα α= + , or 

{ } { }
Pr Pr

inf (min , ) ( ) inf (min , )
M M

f g f g f g
α α

α α
∈ ∈

= + , 

and we get the result required. ■ 

Example 5. Let we have two source of information about 

the object of our interest in the form of possibility meas-

ures defined on the power set of the finite set X . These 

possibility measures are given by possibility distribution 

functions : [0,1]
i
Xπ → , 1,2i = , and values of the corre-

sponding possibility and necessity measures 
i

Π ,
i

N , 

1,2i = , are computed by formulas: ( ) max ( )
i i

x X

A xπ
∈

Π = , 

2 \{ }X
A∈ ∅ , and ( ) 0

i
Π ∅ = ; ( )( ) 1

i i
N A A= −Π , 

2
X

A∈ . By our assumption, the values of 
i

N  give us 

lower estimates of probabilities, the values of 
i

Π  give us 

lower estimates of probabilities. For our example we 

assume that { }1 2 3
, ,X x x x= , and functions 

: [0,1]
i
Xπ → , 1,2i = , are given by Table 1. Combining 

information of these two sources, we get the measure 

{ }1 2
max ,g N N= , which should be a lower probability 

by our assumption, but it is not really in 
low

M  because 

( ) ( )g A g A>  for { }1A x=  and { }2 3
,A x x=  (see Table 2, 

where values of 
i

Π , 1,2i = , g , and corresponding dual 

measures are shown). 

 

 

 

 

 



 

 
1
x  

2
x  

3
x  

1
π  1 0.5 0.5 

2
π  0.4 1 0.6 

 

Table 1: Values of possibility distribution functions. 

 

1
x  

2
x  

3
x  

1
Π  

2
Π  

1
N  

2
N  g  g  

0 0 0 0 0 0 0 0 0 

1 0 0 1 0.4 0.5 0 0.5 0.4 

0 1 0 0.5 1 0 0.4 0.4 0.5 

1 1 0 1 1 0.5 0.4 0.5 1 

0 0 1 0.5 0.6 0 0 0 0.5 

1 0 1 1 0.6 0.5 0 0.5 0.6 

0 1 1 0.5 1 0 0.6 0.6 0.5 

1 1 1 1 1 1 1 1 1 

 

Table 2: Values of monotone measures. 

 

Now for measuring imprecision and inconsistency we 

will use the following imprecision indices on ( )
low

M X : 

( ) 1
| |

1 2
( ) 2 2 ( ) ( )

X

X

B
v g g B g B

−

∈
= − −∑ , 

{ }( ) max ( ) ( ) | 2
X

v g g B g B B∞ = − ∈ , 

( )
2 \{ }

1
( )ln

ln( ) X

g

B

GH g m B B
X ∈ ∅

= ∑ . 

Notice that 
1
,GHν  are linear imprecision indices, and 

ν∞  is non-linear one. The results of measuring uncer-

tainty by these indices are shown in Table 3. 

 

 Imprecision Inconsistency 

 
1

ν  ν∞  GH  
1

ν  ν∞  GH  

1
N  0.5 0.5 0.5 0 0 0 

2
N  0.5(3) 0.6 0.526 0 0 0 

g  0.2 0.5 0.2 0.03(3) 0.1 0.0288 

 

Table 3: Evaluation of uncertainty by imprecision indices. 

 

6   Summary and Conclusions 
 

Although, measuring uncertainty plays a central role in 

various uncertainty theories, there is no possibility to find 

one true uncertainty measure. This can be explained by 

the fact that there are many various types of uncertainty, 

they have different interpretations; it is very difficult to 

understand their mutual interaction. One way for over-

coming this problem is to find families of suitable uncer-

tainty measures, satisfying some justified properties. The 

choice of the best uncertainty measure considerably 

depends on the problem solved. In this paper we have 

proposed how imprecision can be measured if uncertain 

information is described by monotone measures, in par-

ticular lower or upper probabilities. We have treated the 

case, where uncertainty consists of some randomness, 

imprecision, and inconsistency. The introduced axiomat-

ics enables us to give detailed description of linear im-

precision indices, and investigate some of them with 

symmetrical properties. 
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Abstract

The propagation of probabilities in credal networks
when probabilities are estimated with a global impre-
cise Dirichlet model is an important open problem.
Only Zaffalon [21] has proposed an algorithm for the
Naive classifier. The main difficulty is that, in gen-
eral, computing upper and lower probability intervals
implies the resolution of an optimization of a fraction
of two polynomials. In the case of the Naive credal
classifier, Zaffalon has shown that the function is a
convex function of only one parameter, but there is
not a similar result for general credal sets. In this pa-
per, we propose the use of an imprecise global model,
but we restrict the distributions to only the most ex-
treme ones. The result is a model giving rise that in
the case of estimating a conditional probability under
independence relationships, it can produce smaller in-
tervals than the global general model. Its main ad-
vantage is that the optimization problem is simpler,
and available procedures can be directly applied, as
the ones proposed in [7].

Keywords. Locally specified credal networks, global
imprecise Dirichlet model, propagation algorithms,
probability trees.

1 Introduction

Credal networks [12] are an extension of Bayesian net-
works where instead of having a joint precise global
probability distribution we have a closed and convex
set of possible distributions (a credal set [15]). This
credal set produces a conditional credal set for each
variable given its parents. There are two basic possi-
bilities:

• The credal net is separately specified [12], i.e. the
set of joint probability distributions is obtained
by specifying a credal set of conditional prob-
ability distributions for each variable and each
configuration of its parents, and then the joint

credal set is the convex hull of the probability
distributions obtained by multiplying the condi-
tional probability distributions resulting by se-
lecting one element from each conditional credal
set (the joint credal set is the strong extension of
the local conditional credal sets [12]).

• The credal net is globally specified, when only the
joint credal set is given.

Most of the effort to design algorithms for compu-
tation in credal networks has been devoted to the
case of separately specified credal nets. In general,
this computation is equivalent to the resolution of
a combinatorial optimization problem. One of the
most promising approaches is based on the branch-
and-bound technique [17, 7]. Also, there are several
approximate algorithms, as the ones based on the sim-
ulated annealing technique [6] or the ones based on
making the variables binaries in order to apply the
efficient 2U algorithm [13, 3].

There is less work for globally specified credal net-
works. Preliminary models were proposed by Coz-
man [11, 12], but he followed a robust statistics
methodology, considering credal sets that were neigh-
borhoods of standard Bayesian networks. Recently,
Antonucci and Zaffalon [2] have proposed a general
method based on the use of auxiliary variables as in
[5] to transform a globally specified credal network
into a separately specified one. This allows the appli-
cation of existing algorithms for separately specified
networks to cases that initially were non-separately
given.

However, the Antonucci and Zaffalon [2] transforma-
tion can not directly solve some important imprecise
networks that can arise in practice. This is the case of
credal nets in which conditional probabilities are es-
timated from a database of observations with an im-
precise global Dirichlet model (IDM) [20]. The main
problem is that in this situation we need auxiliary
variables with infinite values (as the parameters can



have values in a continuum). If the IDM is locally ap-
plied to each conditional probability distribution (we
consider a different IDM for each variable and each
configuration of its parents), then there is no prob-
lem, as only the extreme parameters are relevant, and
we can apply the transformation by Cano, Cano, and
Moral [5]. This local application was initially pro-
posed in Zaffalon [22]. But its main difficulty was
that it has a tendency to produce too wide intervals
that are too uninformative. For this reason Zaffalon
[21] proposed1 a global application of the IDM. This
application has the problem that to compute lower
and upper conditional probabilities, it is necessary
the resolution of an optimization of a fraction of two
polynomials in several parameters. In the case of the
Naive credal classifier, Zaffalon [21] has shown that
the function is a convex function of one parameter,
and he proposes a numerical method for its optimiza-
tion, but there is not a similar result for general net-
works.

In this paper, we propose the use of an imprecise
global model, but we restrict the class IDM to the
set of its extreme distributions. The result is a model
giving rise to the same upper and lower probabilities,
when estimating the uncertainty of a future simple
event, but in the case of estimating a conditional prob-
ability under independence relationships, it can pro-
vide smaller intervals. Its main advantage is that the
optimization problem is simpler, being possible to ex-
press the problem as a locally specified credal network
for which standard algorithms for separately specified
networks can be applied. In order to make the repre-
sentation more efficient, we will represent conditional
probability tables as probability trees as the ones used
in [6, 7].

The paper is organized as follows: in Section 2 the
basic concepts of credal sets and credal networks are
given; in Section 3 we consider the IDM applied to
estimating the probabilities in a credal network and
introduce the extreme IDM; in Section 4 we show the
transformation of a credal network with probabilities
estimated with an IDM model (the general or the ex-
treme one) into a locally specified credal network; in
Section 5 the results of some preliminary experiments
are shown; and finally Section 6 is devoted to the con-
clusions.

2 Credal Networks

Let X be a set of variables. Let us assume that each
variable X ∈ X takes values on a finite set ΩX (the
frame of X). We shall use x to denote a generic value

1In the acknowledgments of the paper it is said that the
model was suggested to him by Peter Walley

of X , x ∈ ΩX . If Y ⊆ X, then this variable will take
values on he Cartesian product

∏

X∈Y
ΩX , denoted

by ΩY. The elements of ΩY are called configurations
of Y and will be written as y.

A credal set about Y is a closed and convex set
of probability distributions on ΩY, denoted as KY.
If the number of extreme points is finite, then this
convex set will be given by enumerating its extreme
points: KY = CH({P1, . . . , Pl}), where CH stands for
the convex hull.

A credal network about variables X is a directed
acyclic graph G, with a node for each X ∈ X and
a credal set KX such that every extreme distribution
P ∈ Ext(KX), factorizes according to the graph:

P (x) =
∏

x

P (x|πX(x)) (1)

where ΠX is the set of parents of X in G and πX(x)
the configuration of these parents corresponding to x.

A credal network is said to be separately specified [16]
if the global credal set KX can be obtained by giving
a credal set, K(X |πX), for each variable X and each
configuration of its parents πX and then obtaining all
the possible joint probabilities by expression (1).

A locally specified credal set [2] about X is composed
of the following elements:

• The set of variables X.

• An additional set of auxiliary variables which An-
tonucci and Zaffalon [2] call decision variables D.
Each variable D ∈ D takes values in a set ΩD.

• A directed acyclic graph G with a node for each
variable in X ∪D.

• A precise conditional probability distribution for
each variable X ∈ X conditioned to its parents
ΠX in G.

• A set RD(πD) ⊆ ΩD for each decision variable D

and each configuration of its parent variables πD

in G.

A locally specified credal net can define a credal net
about X ∪ D and another about X, by marginaliza-
tion. These can be obtained by the following proce-
dure:

• Consider for each D ∈ D the family of decision
functions fD : ΩΠD

→ ΩD, such that fD(πD) ∈
RD(πD), ∀πD ∈ ΩπD

.



• Consider the set of strategies, where an strategy
is given by a decision function for each decision
variable.

• Each strategy defines a precise probability distri-
bution: the one obtained by factorization accord-
ing to G and given by the precise probability con-
ditional distributions of each variable X ∈ X and
the degenerate conditional probability distribu-
tions given by the decision functions of the deci-
sion variables of the given strategy: P (d|πD) = 1,
if d = fD(πD) and 0, otherwise.

• The credal set about X∪D is the convex hull of
the probabilities defined from the set of strate-
gies. As the extreme points of this credal set
factorize according to G, they define a credal net-
work.

• The credal set about X is the one obtained by
marginalization of the credal set about X ∪ D

(equivalent to marginalizing each one of the prob-
abilities). This set factorizes on the graph G′ on
X, obtained by deleting nodes in D and connect-
ing with arcs the parents of each decision node
with all its children (if a decision node D has as
parent another decision node D′, then we also
have to make a connection from the parents of
D′ to the children of D, and this also recursively
applies to the parents of D′).

The advantage of having a credal set about X locally
expressed is that we can solve the computation of up-
per and lower conditional probabilities, or the domi-
nance relationship [19], by means of an optimization
problem in the set of strategies. If the sets ΩD are fi-
nite, then both approximate [13, 3, 6] and exact [17, 7]
algorithms able of solving medium size problems are
currently available2.

3 Credal Networks from the

Imprecise Dirichlet Model

In this section we consider that we have a set of vari-
ables X, a graph G and a database with N cases in
which all the variables are observed (there are no miss-
ing data). For each configuration y of a subset of vari-
ables Y ⊆ X we can measure the absolute frequency
of it in the database Ny. We want to estimate a credal
set for graph G from the observations in the database.

2Most of these algorithms have been initially developed for
separately specified nets, but with some small modifications
they can be applied to locally specified ones. For example, for
the model of this paper we did not need any modification of
the algorithm in [7].

The Imprecise Dirichlet Model (IDM) [20] was intro-
duced for estimating probability values from a set
of observations and has been extensively used by its
good theoretical properties and performance in exper-
iments.

Assume the case of one variable X , if we want to esti-
mate the probabilities P (x) with the precise Dirichlet
model, we have to assume a vector of positive parame-
ters (αx)x∈ΩX

. The value S =
∑

x∈ΩX
αx is called the

equivalent sample size. If we denote the probability
P (x) by θx, then the Dirichlet density is proportional
to

∏

x θαx−1
x . In these conditions the estimation of the

probability P (x) for a future event is equal to (Nx+αx)
(N+S)

(the expected value of the posterior probability given
the data).

The Imprecise Dirichlet Model (IDM) considers a set
of prior distributions, those obtained by fixing a global
sample size S and considering all the vectors of posi-
tive parameters (αx)x∈ΩX

such that S =
∑

x∈ΩX
αx.

This gives rise to an interval estimation (correspond-
ing to all the possible vectors compatible with a given
S) of P (x), which is given by:

[

Nx

N + S
,
Nx + S

N + S

]

(2)

Usually a parameter S in the interval [1, 2] is consid-
ered, and recently some authors as Bernard [4] advo-
cates for the use of S = 2.

When applying the IDM to obtain the credal set of a
credal network, this can be done in two ways: local
or global. In the local application we obtain a sep-
arable credal network. What we do is to apply an
IDM to each variable X and each configuration of its
parents πX , considering only the part of the database
compatible with configuration πX , i.e. the cases that
for variables ΠX have the same values than in con-
figuration πX . Then we obtain a local set for each
variable and each configuration of its parents: the
probabilities satisfying the intervals in equation (2)
where the frequencies are measured in the restricted
database (same values than the configuration of par-
ent variables). The global credal set is obtained by
strong extension (the convex hull of the set of all the
probabilities equal to the multiplication of a condi-
tional probability distribution for each variable given
its parents, where this conditional probabilities are
selected from the local conditional credal sets).

This was the method initially employed, but soon
it was noticed that it can produce too wide poste-
rior intervals [21], and a small imprecision in all the
conditional probabilities can give rise to high degrees
of imprecision in conditional probabilities that are a



function of all these conditional probabilities.

The other possible application is the global one [21].
According to it, the credal set is obtained by consider-
ing a global application of the IDM to all the variables
X. We consider the credal set given by the probabili-
ties obtained from the IDM and that factorize accord-
ing to G. When a global precise Dirichlet model is ap-
plied to X with parameters (αx)x∈ΩX

, then the esti-
mated probabilities for any conditional probability of
a variable X conditional to a configuration Y = y, co-
incides with the ones obtained with a Dirichlet model
with a vector of parameters(αx,y)x∈ΩX

which can be
obtained from the original vector by adding in the
non participating variables. If Z are the variables in
X − Y − {X}, then we have that αx,y =

∑

z
αx,y,z.

When considering a global application of the IDM, the
set of all conditional probability distributions for each
single variable X given a configuration of its parents
πX is the same than in the local application. But
in the global application restrictions in the param-
eters used in the different conditional probabilities.
Imagine that we have two binary variables, X and
Y , and that X is a parent of Y . If for the marginal
of X we use a Dirichlet distribution with parameters
(αx1 , αx2), then for the conditional probability of Y

given X = x1, we have to use a Dirichlet distribution
with parameters (αy1 , αy2) with αy1 + αy2 = αx1 and
for the conditional probability of Y given X = x2,
the parameters has to verify αy1 + αy2 = αx2 . So the
parameters use in one variable impose restrictions in
the parameters used in the rest of variables. As a
consequence, the joint credal set is not the one ob-
tained by selecting an arbitrary conditional probabil-
ity for each variable given its parents and multiply-
ing them. We have to take into account the exist-
ing restrictions between the parameters which impose
restrictions into the conditional probabilities for the
different variables.

In the following section, we will show that it is pos-
sible to locally express the associated credal net, but
there is an important problem: the decision variables
are continuous and so we have to solve an optimiza-
tion problem with continuous variables, which is not
simple in general, and for which we do not know any
paper reporting an implementation of a general algo-
rithm to compute upper or lower conditional probabil-
ities. Only Zaffalon [21] has reported an algorithm for
the case of a Naive graph to compute the dominance
relationship.

What we propose here is a modification of the IDM
model that we will call the extreme IDM. In the ex-
treme IDM, instead of considering all the prior Dirich-
let with S =

∑

x∈ΩX
αx for a given S, only the ex-

treme ones are considered: one for each x0 ∈ ΩX given
by parameters (αx)x∈ΩX

, where αx = S, if x = x0

and 0.0, otherwise. This density will be called the
extreme density concentrated in value x0 with sam-
ple size S. These prior densities on the parameters
are improper densities, i.e. their integral is not equal
to 1.0, but infinite. Their use has been justified by
the estimation they produce of the posterior proba-
bilities after a sample. Some of them are the limit
of proper density functions and have a simpler inter-
pretation. Above density can be considered as the
limit when ǫ approaches to 0 of the densities with pa-
rameters (αǫ

x)x∈ΩX
, where αǫ

x = S, if x = x0 and ǫ,
otherwise. The estimation of the future probabilities
will be the limit of the estimation with the proper
densities when epsilon tends to 0. When we consider
the parameters αx = 0.0, ∀x ∈ ΩX , the estimation we
obtain for future probabilities coincide with the max-
imum likelihood estimation (relative frequencies), i.e.
P (x) is estimated by Nx/N .

The main fact about the new model is that instead of
considering all the infinite densities determined by a
simple size S, we only consider the extreme ones, in
which all the sample size is concentrated in only one
element3. This gives rise to one density for each one
of the possible value of X .

When considering the extreme IDM for the estimation
of future probabilities of a single variable X , what
we obtain as estimation for P (x) is the same interval
than in formula (2). This is immediate, as the upper
and lower limits of the intervals are obtained in the
extreme densities. The densities in which the param-
eters are not concentrated in only one point, produce
inner values of the intervals (2).

However, in a credal net we can have differences as
we take into account the independence relationships
represented by the graph. In general, we obtain inter-
vals which are included into the intervals associated
to the use of the global original IDM.

The global application of the extreme IDM with pa-
rameter S to a graph G and set of variables X is
given by the credal set which is equal to the convex
hull of all the probability distributions that factorizes
according to the graph with conditional distributions
obtained in the following way:

1. Consider a value x0 ∈ ΩX.

2. For each variable X and each conditional configu-
ration of its parents πX , estimate the probability
distribution of X given this configuration in the
following way:

3We consider that the use of improper densities is not es-
sential for the extreme model.



(a) If the configuration πX coincides with x0 in
the set of parents of X then P (x|πX) is equal

to
Nx,πX

+S

NπX
+S

if the value of X in configuration

x0 is equal to x, and equal to
Nx,πX

NπX
+S

, oth-

erwise; where NπX
is the frequency of con-

figuration πX in the sample, and Nx,πX
the

frequency of cases in which we have config-
uration πX and X = x in the sample.

(b) If the configuration πX does not coincide
with x0 in the set of parents of X then

P (x|πX) is equal to
Nx,πX

NπX

.

What we do is to consider all the extreme densi-
ties, one for each value x0 ∈ ΩX given by parame-
ters (αx)x∈ΩX

, where αx0 = S and 0.0, otherwise.
With this vector of parameters, all the conditional
probabilities are estimated. For a variable, X , and a
configuration of its parents, πX , if x0 coincides with
this configuration in the set of parents of X , then the
conditional probability about X is estimated with the
extreme density concentrated in the value of X in con-
figuration x0 with parameter S. If x0 does not coin-
cide with this configuration in the set of parents of X ,
then we have to estimate the conditional probability
with a vector of values which are all equal to 0.0, i.e.
we apply maximum likelihood estimation. If applying
the maximum likelihood estimation NπX

= 0, then
the estimation of the probability is not defined. We
will consider the uniform distribution in this case4.

Example 1 We are going to show the differences be-
tween the global IDM model and the extreme IDM
model in a very sample case.

Assume three binary variables X, Y, Z and a single
credal network in which X is a parent of Y and Z (as
a Naive Bayes in which X is the root node). Consider
a sample of size equal to 2 with observations:

X Y Z

x1 y1 z1

x2 y1 z1

Assume that we apply the extreme global IDM with
global sample size S = 2 to estimate the conditional
probabilities and we want to compute the upper prob-
ability of X = x1 given that Y = y1, Z = z1. This
probability, P (x1|y1, z1) is obtained by maximizing the
result of Bayes rule, that taking into account the ex-
isting conditional independence relationships can be
expressed as:

4Any conditional probability distribution will give rise to
the same joint distribution, as these values are going to be
multiplied by 0.0.

P (y1|x1).P (z1|x1).P (x1)

P (y1|x1).P (z1|x1).P (x1) + P (y1|x2).P (z1|x2).P (x2)

The upper value with extreme prior densities is ob-
tained when these probabilities are estimated with pa-
rameters αx1,y1,z1 = 2 and 0.0 otherwise, and the
value of the upper probability is 0.75 (the value is ob-
tained by estimating the probabilities with relative fre-
quencies from a sample obtained from the original one
by adding two cases in which X = x1, Y = y1, Z =
z1). This upper limit can be also obtained with an-
other extreme parameter: αx2,y2,z2 = 2 and 0.0 other-
wise.

If we consider the global IDM model, then more sets
of parameters are allowed, and not only those concen-
trated in only one configuration of values. In partic-
ular, we can have αx1,y1,z1 = 1, αx2,y2,z2 = 1 and 0.0
otherwise. If we compute the conditional probability
using this set of parameters (using relative frequen-
cies to a sample in which two new cases are added:
one in which X = x1, Y = y1, Z = z1 and other in
which X = x2, Y = y2, Z = z2) we obtain a value of
0.8, which is the upper limit of the interval. So, in
this case, when applying the global model, the upper
limit is greater than when using the restricted model.

To give an idea of the differences between the two mod-
els, let us generalize above situation: imagine that we
have a Naive Bayes model with X as root node and
a number n of children variables (n = 2 in previous
case). Assume that we also have a sample of size 2
similar to the above one (one in which X = x1 and
another in which X = x2 and in both of them the first
case of the remaining variables is observed), and that
we want to compute the upper probability of X = x1

conditioned to the first case of each variable. With
variable, there is no difference between the models.
With n = 3 the difference is very small, and with
n ≥ 4 both models produce again the same result.

4 Local Specification

In this section we will show that credal networks esti-
mated with the IDM can be locally specified. First we
will start with the complete model in which it will be
necessary to use decision variables with infinite values.

Given a credal network with graph G learned with the
IDM with global sample size S, we will consider the
following credal network:

• For each variable X with parents ΠX in
the graph, consider a decision variable DX ,
which will be a parent of X . This variable



will have as set of values the set of vectors
(αx,πX

)x∈ΩX ,πX∈ΩΠX
, where αx,πX

> 0 and
∑

x∈ΩX ,πX∈ΩΠX

αx,πX
= S.

• For each configuration πX and vector
(αx,πX

)x∈ΩX ,πX∈ΩΠX
, the conditional prob-

ability of X is given by:

P (x|πX , (αx,πX
)x∈ΩX ,πX∈ΩΠX

) =
Nx,πX

+ αx,πX

NπX
+ SπX

where SπX
=

∑

x∈ΩX
αx,πX

.

• Consider an order of the variables which is com-
patible with the graph G. For each variable, X ,
in this order consider the set TX = ΠX ∪ {X}.
Compute the intersections RX,Y = TX∩TY with
all the variables Y preceding X in the graph.
Make as parents of DX all the variables DY , for
which RX,Y is a non empty maximal set (there
is not another RX,Y ′ including it).

• fDX
is defined as a function that associates to

each configuration of its parents the set of possi-
ble values for DX . This will be done, by deter-
mining the set of possible values for each one of
its parents and then taking the intersection for all
the parents. For a parent variable DY and a vec-
tor belonging to its domain (βy)y∈ΩTY

, the set
of possible values for DX will be equal to the set
of vectors (αx)x∈ΩTX

such that
∑

u
βy =

∑

v
αx,

where U = TY − RX,Y , V = TX − RX,Y , i.e.
the results of adding the vectors in the non com-
mon variables coincide.

With this procedure we only estimate conditional
probabilities, considering that the joint probabilities
can be obtained by multiplication. So all the proba-
bilities factorize according to G.

In this local specification, for each variable X , the do-
main for the decision variable DX is the set of possible
parameters for the prior Dirichlet distributions if the
joint probability has global parameter S. The con-
ditional probability is determined for each parameter
vector, by doing the corresponding estimation from
the database and the given prior distribution. Fi-
nally, the role of functions fDX

is to keep consistency
among parameters taking into account the existing
restrictions in the global application of the IDM. For
that, we relate the vectors of parameters DX and DY

if the corresponding sets of variables TX and TX have
non-empty intersection. Consistency is achieved if
the marginalization of the vectors of parameters on
the intersection of both sets of variables is the same,
where the marginalization is computed by adding in
the variables not in the intersection (in the same way

than when computing a marginal probability). This
is based on the properties of the Dirichlet densities
(see [14, 4]).

The main problem of this description as a local net-
work is that variables DX take values in a continu-
ous infinite set of parameters. This makes infeasible
the application of existing algorithms for computing
upper and lower conditional probabilities, which are
designed for categorical variables. In the following,
we will show that the use of the extreme IDM gives
rise to a credal network that can be locally specified
in a simple way by introducing categorical decision
variables.

In the extreme IDM we have a prior density for each
value x0 ∈ ΩX, so in the posterior credal set after
observing the database we will have a joint probability
for each one of these values. We have to introduce
decision auxiliary variables able of representing these
values. This will be done by considering a decision
variable RX for each variable X with the same set of
values than X : ΩX . The set of values of variables
RX , X ∈ X, will represent the configuration x0 ∈ ΩX

in which the parameter S is concentrated.

Decision variables, RX , do not have parents.

If we have variable X with parents ΠX in graph G,
we add links from each variable RY where Y = X

or Y ∈ ΠX to X (we extend the parents of X by
adding its decision variable and the decision variables
of its parents). Let us call RΠX

the set of vari-
ables RY where Y ∈ ΠX , and as usual (in lower-
case), rΠX

will represent a configuration of this set
of variables. The conditional probability of a variable
X given ΠX = πX , RX = rX and RΠX

= rΠX
is

computed as follows:

• If for one variable Y in ΠX , the value of Y in
configuration πX is not equal to the value of RY

in configuration rΠX
, then

P (x|πX , rΠX
, rX) =

Nx,πX

NπX

(3)

where the conditional distribution is the uniform
if NπX

= 0.

• If for any variable Y in ΠX , the value of Y in
configuration πX is the same than the value of
RY in configuration rΠX

, and the value of X is
the same than the value of RX (x = rX), then

P (x|πX , rΠX
, rX) =

Nx,πX
+ S

NπX
+ S

(4)



• If for any variable Y in ΠX , the value of Y in
configuration πX is the same than the value of
RY in configuration rΠX

, and the value of X is
not equal to the value of RX (x 6= rX), then

P (x|πX , rΠX
, rX) =

Nx,πX

NπX
+ S

(5)

It is immediate that this specification determines the
same credal set over G as the one defined in Section
3, taking into account that the values of variables
RX , X ∈ X, represent the value x0 ∈ ΩX in which
the extreme Dirichlet distribution is concentrated.

One important problem of this representation is that
the number of variables in each conditional probabil-
ity is duplicated, and as the size of conditional tables
is exponential in the number of variables, then we can
have tables of quadratic size with respect to the size
of precise conditional probability tables in G. How-
ever, the size of the conditional probabilities can be
smaller if we use an appropriate representation. In
this paper we consider the use of the probability tree
representation [9, 18, 7].

A probability tree T is a directed labelled tree, where
each internal node represents a variable and each leaf
represents a non-negative real number. Each internal
node has one outgoing arc for each state of the vari-
able associated with that node. The size of a tree T ,
denoted by size(T ), is defined as its number of leaves.

A probability tree T on variables Y represents a po-
tential (a joint or conditional probability distribution)
in these variables h : ΩY → IR+

0 if for each y ∈ ΩY

the value h(y) is the number stored in the leaf node
that is reached by starting from the root node and
selecting the child corresponding to the value of Y in
y for each internal node labelled Y .

A probability tree is usually a more compact repre-
sentation of a potential than a table. This is illus-
trated in Figure 1, which displays a potential h and
its representation using a probability tree. The tree
contains the same information as the table, but us-
ing only five values instead of eight. Furthermore,
trees enable even more compact representations to be
obtained in exchange for loss of accuracy. This is
achieved by pruning certain leaves and replacing them
by the average value, as shown in the second tree in
Figure 1.

All the necessary operations to compute with proba-
bility potentials in credal networks can be directly car-
ried out in the probability tree representation, with-
out transforming it into a table [9, 18, 7]. In the
following we give the probability tree representation
of the conditional probability distribution of a vari-
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Figure 1: A probability potential h, its representa-
tion as a probability tree and its approximation after
pruning various branches

able X in a local specification of an extreme IDM
credal network. It is built with the following proce-
dure BuildT ree(T ,Z,y), where T is the tree we are
building, Z is the set of variables from ΠX we have
to consider and y the configuration of the variables
already introduced in the tree and that corresponds
to the path from the root to the present tree T . Ini-
tially the procedure is called with T empty, y empty,
and Z = ΠX . It performs the following steps:

• Take a variable Z ∈ Z, branch T by Z, then
branch also all its children by variable RZ . Re-
move Z from Z.

• For each one of the leaves T ′ of the resulting tree,
consider the configuration y′ equal to y plus the
value of Z = z corresponding to this leaf.

– If for this leaf, the values of Z and RZ

are the same, then call recursively to
BuildT ree(T ′,Z,y′), continuing with the
construction of the tree.

– If for this leaf, the values of Z and
RZ are different, then call recursively to
BuildT ree2(T ′,Z,y′).

• If Z = ∅, then the tree is finished by branching
by X and all its children by RX . For all the
resulting leaves we store the conditional proba-
bility of X = x given the configuration y (that
now is a complete configuration of its parents).
This probability is computed with expressions (4)
or (5) depending on whether the leaf is obtained
for the same value of RX and X or for different
values of these variables (in the corresponding
expressions πX is the current configuration y).

BuildT ree2(T ,Z,y) is a simpler procedure that ob-
tains the conditional probability when the configura-
tion of the parents is different of the configuration of
the decision variables (by maximum likelihood):



• If Z = ∅, then the tree is finished by branching by
X and in its leaves we store the conditional prob-
ability of X = x given the configuration y. This
probability is computed with expressions (3). As
above, in the corresponding expression, πX is the
current configuration y.

• If Z 6= ∅, then take Z ∈ Z, branch the tree by Z.
Remove Z from Z.

• For each one of the leaves T ′ of the resulting tree,
consider the configuration y′ equal to y plus the
value of Z = z corresponding to this leaf. Then,
call recursively to BuildT ree2(T ′,Z,y′).

As example, assume two binary variables X and Y for
which we have the following table of frequencies:

Y=0 Y=1
X=0 1 3
X=1 2 1

The resulting tree for the conditional probability of Y

given X and S = 2, is given in Figure 2.

It can be shown that if n is the size of a table of
X given ΠX , then the number of leaves of this tree
representation will be n.

(

|ΩX | +
∑

Y ∈ΠX
(|ΩY | − 1)

)

.
In this example, we have represented a table of size
n = 4 with a tree of 12 leaves. This is obtained from
the following fact: the number of cases in which the
value of the decision variables coincides with the con-
ditioning configuration is n, and each one of then is
branched by RX of cardinal |ΩX |. Now, each condi-
tioning variable Y defines (|ΩY |−1) branches in which
the complete probability table of size n is estimated
by maximum likelihood (no coincidence of the condi-
tioning variables and the value of parents variables).

5 Experiments

The local estimation algorithm with the extreme IDM
has been implemented in Elvira environment [10] pro-
ducing the local specification at the same time. With
this we have been able of applying the existing algo-
rithms for credal networks as the ones described in
[7] which have also been implemented in Elvira. We
have done a very simple and preliminary experiment.
We have selected a Naive Bayes graph with a class
variable and 10 attributes (all binary variables). We
have simulated samples with different sizes (from 10
to 1000). We have selected a Naive Bayes, as with
no independencies the results are the same than with
the complete IDM. So, we do the experiments with
a graph in which many independence relationships
among the variables are represented. In these con-
ditions, we have estimated the locally specified credal

network and computed the conditional probability for
the class when all the attributes have been observed.
We have considered 3 different situations: the obser-
vations are random, for each attribute we observe the
most frequent value, and finally the case in which for
each attribute we observe the least frequent value. We
report the length of the computed posterior intervals.
The intervals are computed with a simple exact dele-
tion algorithm with probability trees (see details in
[8]). The sample generation is repeated 50 times for
each sample size and set of observations and in Ta-
ble 1 we report the average and standard deviations
of the lengths interval probabilities (Evi1 corresponds
to random observations, Evi2 to observing the most
frequent cases, and Evi3 to observing the least fre-
quent cases).

We observe that the intervals decrease in size when
the sample size is increased. Also when we observe
the most frequent values the intervals are smaller than
when the least frequent values are observed. Random
observations give rise to intermediate intervals. In
this stage, we can not say much more, except that
the intervals are very wide with the smaller sample
size (10) but that the imprecision is small with sam-
ple sizes of 1000. To our opinion, this imprecision is
reasonable.

6 Conclusions

In this paper, we have proposed a new model to esti-
mate probabilities for a credal network. This model
is a restriction of the general IDM, where only the ex-
treme densities are considered. Its main advantage of
the new one is that the resulting credal network allows
a simple local specification with categorical decision
variables and then it is suitable for the application of
existing algorithms for the computation of posterior
intervals or dominance relationships.

We have shown the results of the imprecision in the
intervals in some very preliminary experiments. But,
really it would be necessary to carry out more tests to
see the behaviour in real classification problems and
to study the differences with the complete IDM. We
believe that the differences between the two models
are less important than the selection of parameter S

and, at present, there is no general agreement about
which is the most suitable value of S. We do not
expect meaningful differences between them. We have
also to take into account that it is possible that the
fact that the new model is more restrictive could be
compensated with a greater S (using S = 2 in all the
situations).

Another point we would like to raise is that, though
the IDM is a widely accepted model with very good
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Evi1 Evi2 Evi3
Iter aver. dev. aver. dev. ave. dev.
10 0.948286 0.051853 0.608757 0.251884 0.999999 4.2475E-5
20 0.814695 0.172520 0.382576 0.247139 0.983606 0.115112
50 0.573315 0.144312 0.062716 0.067052 0.968920 0.121630
100 0.326327 0.126361 0.010081 0.007831 0.869229 0.238078
200 0.170638 0.053589 0.002283 0.001472 0.656434 0.209858
500 0.063706 0.017014 6.9051E-4 3.4956E-4 0.366218 0.123964
1000 0.032087 0.006731 3.0723E-4 1.1755E-4 0.181275 0.051277

Table 1: Average lengths standard deviations for the posterior conditional intervals (S = 2)

theoretical properties, it is not the only possible model
for being used as prior information. In the problem
we have studied in this paper, we see that the general
model has computational problems. We also experi-
mented difficulties with the global IDM when study-
ing independence in [1] and we considered a different
more restrictive IDM as it was impossible to make
decisions about independence with the original IDM
using a generalization of Bayesian scores (there was
no dominance even with very large samples). So it is
important to investigate alternative models for prior
information, comparing their behaviour in solving dif-
ferent problems.
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Abstract

In this paper we study the flip relation on the set
of comparative probability orders on n atoms intro-
duced by Maclagan (1999). With this relation the set
of all comparative probability orders becomes a graph
Gn. Firstly, we prove that any comparative probabil-
ity order with an underlying probability measure is
uniquely determined by the set of its neighbours in
Gn. This theorem generalises the theorem of Fish-
burn, Pekeč and Reeds (2002). We show that the
existence of the underlying probability measure is es-
sential for the validity of this result. Secondly, we ob-
tain the numerical characteristics of the flip relation
in G6. Thirdly, we prove that a comparative proba-
bility order on n atoms can have in Gn up to φn+1

neighbours, where φn is the nth Fibonacci number.
We conjecture that this number is maximal possible.
This partly answers a question posed by Maclagan.

Keywords. comparative probability, flippable pair,
probability elicitation, subset comparisons, simple
game, weighted majority game, desirability relation

1 Introduction

Considering comparative probability orders from the
combinatorial viewpoint, Maclagan [13] introduced
the concept of a flippable pair of subsets. We show
that the concept of flippable pair is important for sev-
eral other reasons and adds richness to the whole the-
ory of comparative probability orders. In particular,
we show that comparisons of subsets in flippable pairs
correspond to irreducible vectors in the discrete cone
of a comparative probability order. Fishburn at al
[9] showed that in any minimal set of comparisons
that define a representable comparative probability
order all pairs of subsets in those comparisons are
critical. We strengthen this theorem by showing that
they must be not only critical but also flippable.

We show that there is an important distinction in al-

gebraic properties of discrete cones for representable
and non-representable comparative probability or-
ders. In the former case the cone has a basis of ir-
reducible vectors and in the latter irreducible vectors
may not generate the cone.

Maclagan formulated a number of very interesting
questions (see [13, p. 295]) which we partly answer
here. In particular, she asked how many flippable
pairs a comparative probability order may have. In
this paper we show that a representable comparative
probability order may have up to φn+1 flippable pairs,
which is the (n + 1)th Fibonacci number. We conjec-
ture that this lower bound on maximal number of flip-
pable pairs is sharp. The latter results was obtained
by Dominic Searles in his summer scholarship project
(2006) under supervision of the other two authors.

Section 2 contains preliminary results and formulates
Maclagan’s problem. Section 3 discusses the concept
of a flippable pair and proves the aforementioned gen-
eralisation of Fishburn-Pekeč-Reeds theorem. Section
4 numerically characterises the flip relation on six
atoms. In Section 5 we discuss Searles’ conjecture in
relation to Maclagan’s problem and prove the afore-
mentioned lower bound. Section 6 introduces a class
of simple games related to comparative probability or-
ders and Section 7 concludes with stating sveral open
problems.

2 Preliminaries

2.1 Comparative Probability Orders and

Probability Measures

Given a (weak) order1 � on a set A, the symbols ≺
and ∼ will, as usual, denote the corresponding (strict)
linear order and indifference, respectively.

Definition 1. Let X be a finite set. A linear order

� on 2X is called a comparative probability order on

1reflexive, complete and transitive binary relation



X if ∅ ≺ A for every non-empty subset A of X, and

� satisfies de Finetti’s axiom, namely

A � B ⇐⇒ A ∪ C � B ∪ C, (1)

for all A,B,C ∈ 2X such that (A ∪ B) ∩ C = ∅.

As in [7, 8] at this stage of investigation we preclude
indifferences between sets. For convenience, we will
further suppose that X = [n] = {1, 2, . . . , n} and de-
note the set of all comparative probability orders on
2[n] by Pn.

If we have a probability measure p = (p1, . . . , pn)
on X, where pi is the probability of i, then we know
the probability of every event A by the rule p(A) =∑

i∈A pi. We may now define an order �p on 2X by

A �p B if and only if p(A) ≤ p(B).

If probabilities of all events are different, then �p is a
comparative probability order on X. Any such order
is called (additively) representable. The set of repre-
sentable orders is denoted by Ln. It is known [10]
that Ln is strictly contained in Pn for all n ≥ 5.

Since a representable comparative probability order
does not have a unique probability measure represent-
ing it but a class of them, any comparative probability
order can be viewed as a credal set [12] of a very spe-
cial type. We will return to this interpretation slightly
later.

As in [7, 8], it is often convenient to assume that 1 ≺
2 ≺ . . . ≺ n, This reduces the number of possible
orders under consideration by a factor of n!. The set of
all comparative probability orders on [n] that satisfy
this condition, will be denoted by P∗

n and the set of
all representable comparative probability orders on [n]
will be denoted by L∗

n.

We can also define a representable comparative prob-
ability order by any vector of positive utilities u =
(u1, . . . , un) by

A �u B if and only if
∑

i∈A

ui ≤
∑

i∈B

ui.

We do not get anything new since this will be the or-
der �p for the measure p = 1

S
u, where S =

∑n
i=1 ui.

However, sometimes it is convenient to have the co-
ordinates of u integers. We will call u(A) =

∑
i∈A ui

the utility of A.

2.2 Discrete Cones

To every linear order � ∈ P∗
n, there corresponds a

discrete cone C(�) in T n, where T = {−1, 0, 1} (as
defined in [11, 7]).

Definition 2. A subset C ⊆ T n is said to be a discrete

cone if the following properties hold:

D1. {e1, e2, . . . , en} ⊆ C, where {e1, . . . , en} is the

standard basis of R
n,

D2. for every x ∈ T n, exactly one vector of the set

{−x,x} belongs to C,

D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ T n.

We note that in [7] Fishburn requires 0 /∈ C because
his orders are anti-reflexive. In our case, condition D2
implies 0 ∈ C.

For each subset A ⊆ X we define the indicator vec-
tor χA of this subset by setting χA(i) = 1, if i ∈ A,
and χA(i) = 0, if i /∈ A. Given a comparative prob-
ability order � on X, we define the indicator vector
χ(A,B) = χB−χA ∈ Tn for every possible compari-
son A � B. The set of all indicator vectors χ(A,B),
for A,B ∈ 2X such that A � B, is denoted by C(�).
The two axioms of comparative probability guarantee
that C(�) is a discrete cone (see [7, Lemma 2.1]).

Definition 3. A comparative probability order �
satisfies the mth cancellation condition Cm if and

only if there is no set {x1, . . . ,xm} of non-zero vec-

tors in C(�) for which there exist positive integers

a1, . . . , am such that

a1x1 + a2x2 + · · · + amxm = 0. (2)

It is known [10, 7, 4] that a comparative probability
order � is representable if and only if all cancellation
conditions for C(�) are satisfied.

There is an interpretation of discrete cones in terms
of gambles. Any vector of T n represents a gamble.
The gamble

x = (x1, . . . , xn) ∈ Tn

pays xi ∈ T if the state i materialises. On appearance
of 0 6= x ∈ T n a participating agent must be ready to
accept either x or −x. The basic rationality assump-
tion requires that the set of acceptable gambles form
a discrete cone.

One may measure rationality of an agent looking at
how consistent she was in accepting and rejecting var-
ious gambles. We need the following concept.

Definition 4. Let C be a discrete cone corresponding

to a personal comparative probability of an agent. A

multiset

P = {xa1

1 ,xa2

2 , . . . ,xam

m },

where xi ∈ C and ai ∈ N, is called a portfolio of
acceptable gambles.



Gambles are like risky securities. You may own a dif-
ferent number of shares of the same company. Simi-
larly, a portfolio can contain several identical gambles.
If the personal comparative probability of an agent is
representable by a measure, then all portfolios of ac-
ceptable gambles are (in the long run) profitable.

Definition 5. The portfolio P is said to be neutral if

(2) is satisfied.

The criterion of representability given in [10] can be
reformulated in terms of portfolios as follows

Theorem 1 ([10]). Suppose � be the agent’s com-

parative probability order on 2Ω and C be the corre-

sponding discrete cone. Then � is representable iff C
has no neutral portfolios of acceptable gambles.

One can measure the degree of rationality of the agent
by the minimal size of the portfolio of gambles which
she cannot handle correctly.

2.3 Generation of Cones and Preference

Elicitation

Let us define a restricted sum for vectors in a discrete
cone C. Let u,v ∈ C. Then

u ⊕ v =

{
u + v if u + v ∈ T n,

undefined if u + v /∈ T n.

This makes a discrete cone an algebraic object, first
studied by Kumar [11].

Definition 6. We say that the cone C is weakly gen-

erated by vectors v1, . . . ,vk if every non-zero vec-

tor c ∈ C can be expressed as a restricted sum of

v1, . . . ,vk, in which each generating vector can be

used as many times as needed. We denote this by

C = <v1, . . . ,vk>w.

For the cone of a representable comparative proba-
bility order there is a much stronger tool to produce
new vectors of the cone from a set of given ones. The
following condition is a reformulation of Axiom 3 in
[9] in terms of discrete cones associated with �. See
also [3].

Lemma 1. Let ≺ ∈ L∗
n be a representable com-

parative probability order and C(≺) the correspond-

ing discrete cone. Suppose {x1, . . . ,xm} ⊆ C(≺)
and suppose that for some positive rational numbers

a1, . . . , am and x ∈ T n,

x = a1x1 + a2x2 + · · · + amxm. (3)

Then x ∈ C(≺).

Definition 7. Let � be a representable comparative

probability order. We say that the cone C = C(�) is

strongly generated by vectors v1, . . . ,vk if every non-

zero vector c ∈ C can be obtained from v1, . . . ,vk

by taking linear combinations with positive rational

coefficients. We denote this by C = <v1, . . . ,vk>.

These two latter concepts are important in the light
of probability elicitation problem that Fishburn et al
[9] considered. When we elicit a comparative proba-
bility without knowing that an underlying probability
measure exists, then queries

A1?B1, . . . , Ak?Bk, (4)

resulting in comparisons A1 ≺ B1, . . . , Ak ≺ Bk,
determine the order � if and only if the vectors
v1 = χ(A1, B1), . . . ,vk = χ(Ak, Bk) weakly gener-
ate C(�). If it is already known that a representable
order is being elicited, then (4) defines � if and only if
the vectors v1, . . . ,vk strongly generate C(�). Con-
der et al [2] give an example where the set of strong
generators of the cone does not generate the cone
weakly.

2.4 Geometric Representation of

Representable Orders

Let A,B ⊆ [n] be disjoint subsets, of which at least
one is non-empty. Let H(A,B) be a hyperplane con-
sisting of all points x ∈ R

n satisfying the equation
∑

a∈A

xa −
∑

b∈B

xb = 0.

We denote the corresponding hyperplane arrangement
by An. Also let J be the hyperplane

x1 + x2 + . . . + xn = 1,

and let Hn = AJ
n be the induced hyperplane arrange-

ment.

x3

x1

x2

Figure 1

Fine and Gill [5] showed that the regions of Hn in the
positive orthant R

n
+ of R

n correspond to representable
orders from Pn.



Example 1. The 12 regions of H3 on Figure 1 repre-

sent all 12 comparative probability orders on {1, 2, 3}.
The two shaded triangular regions correspond to the

two orders for which 1 ≺ 2 ≺ 3, namely

1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺ 23 ≺ 123, (5)

1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 23 ≺ 123, (6)

with the lighter one corresponding to the first order

(the lexicographic order).

Now we can see what is special in the credal sets that
correspond to comparative probability orders. They
are not only convex, as credal sets must be, but they
are in fact polytopes.

Problem 1 (Maclagan [13]). How many facets do

regions of Hn have?

The minimal number of facets of a region in Hn

is n [4, 2]. The maximal number of facets is not
known. Searles’ conjecture which we discuss in Sec-
tion 5 states that the maximal number of facets is
φn+1, the (n + 1)th Fibonacci number.

3 Critical and flippable pairs

Definition 8. Let A and B be disjoint subsets of [n].
The pair (A,B) is said to be critical2 for � if A ≺ B
and there is no C ⊆ [n] for which A ≺ C ≺ B.

Definition 9. Let A and B be disjoint subsets of [n].
The pair (A,B) is said to be flippable for � if for

every D ⊆ [n], disjoint from A ∪ B, the pair (A ∪
D,B ∪ D) is critical.

Since in the latter definition we allow the possibility
that D = ∅, every flippable pair is critical.

We note that the set of flippable pairs is not empty,
since the central pair of any comparative probability
order is flippable [10]. Indeed, this consists of a certain
set A and its complement Ac = X \ A, and there is
no D which has empty intersection with both of these
sets. It is not known whether this can be the only

flippable pair of the order.

Suppose now that a pair (A,B) is flippable for a com-
parative probability order �, and A 6= ∅. Then revers-
ing each comparison A∪D ≺ B∪D (to B∪D ≺ A∪D),
we will obtain a new comparative probability order
�′, since the de Finetti axiom will still be satisfied.
We say that �′ is obtained from � by flipping over

A ≺ B. The orders � and �′ are called flip-related.
This flip relation turns Pn into a graph which we will
denote Gn.

2We follow Fishburn [9] in this definition, while Maclagan
[13] calls such pairs primitive.

A pair (A,B) with A = ∅ can be flippable with no
possibility of flipping over. Below we mark with an
asterisk the three flippable pairs of the comparative
probability order (5):

∅ ≺∗ 1 ≺∗ 2 ≺ 12 ≺∗ 3 ≺ 13 ≺ 23 ≺ 123.

The first comparison ∅ ≺∗ 1 cannot be flipped over
while the other two can be. For example, if we flip
this order over (12, 3) we will obtain the order (6)
which geometrically means passing from the lightly
shaded triangle to the darkly shaded one. Or else we
can say that flipping over takes us from one credal set
to the adjacent one.

Definition 10. An element w of the cone C is said to

be reducible if there exist two other vectors u,v ∈ C
such that w = u ⊕ v, and irreducible otherwise. The

set of all irreducible elements of C will be denoted as

Irr(C).

Theorem 2. A pair (A,B) of disjoint subsets is flip-

pable for � if and only if the corresponding indicator

vector χ(A,B) is irreducible in C(�).

Proof. Suppose (A,B) is flippable but w = χ(A,B)
is reducible. Then w = u⊕v, where u = χ(C,D) and
v = χ(E,F ) for some C,D,E, F such that C ≺ D and
E ≺ F . We may assume without loss of generality
that C ∩ D = E ∩ F = ∅. Since u + v ∈ C(�) ⊂ T n

and C ∩D = E ∩F = ∅, we have C ∩E = D∩F = ∅.
Also since χ(A,B) = χ(C,D) + χ(E,F ), it is easy to
see that

A = (C \ F ) ∪ (E \ D) and B = (D \ E) ∪ (F \ C).

Let X = C ∩ F . Then X ∩ (A ∪ B) = ∅, and since
(C ∪ D) ∩ (E \ D) = (E ∪ F ) ∩ (D \ E) = ∅ we have

A ∪ X = C ∪ (E \ D) ≺ D ∪ (E \ D) =

(D \ E) ∪ E ≺ (D \ E) ∪ F = B ∪ X.

In particular, A∪X and B ∪X are not neighbours in
�, so (A,B) is not flippable — contradiction.

Suppose now that A ≺ B but (A,B) is not flippable.
Then there exist subsets C and D such that (A∪B)∩
C = ∅ and

A ∪ C ≺ D ≺ B ∪ C.

We may assume that C is minimal for which such
D exists. In this case we must have C ∩ D = ∅,
for otherwise the common elements in C and D can
be removed and a contradiction with minimality of C
follows. Now if u = χ(A∪C,D) and v = χ(D,B∪C),
then

u ⊕ v = χ(A ∪ C,B ∪ C) = χ(A,B) = w,

and so w is reducible.



Fishburn et al [9, Theorem 3.7] proved that any small-
est set of comparisons that determines a representable
comparative probability order in Ln must consist of
critical pairs. Here we prove a stronger result.

Theorem 3. Let � be a representable comparative

probability order. Then the set of irreducible elements

of C = C(�) is the smallest set that weakly gener-

ates C.

Proof. It is clear that the set of all irreducible ele-
ments Irr(C) of C = C(�) is contained in any set of
weak generators. Let x ∈ C. We will prove that either
x belongs to Irr(C) or x can be represented as a re-
stricted sum of elements of Irr(C). Suppose x /∈ Irr(C).
Then x = x1 ⊕ x2 for some xi ∈ C. If both of them
belong to Irr(C), we are done. If at least one of them
does not, then we continue representing both as re-
stricted sums of vectors of C. In this way, we obtain
a binary tree of elements of C. We claim that not
a single branch of this tree can be longer than the
cardinality of C. If one of the branches were longer,
then there would be two equal elements in it. Hence
it would be possible to start a tree with some element
and find the same element deep inside the tree. With-
out loss of generality, we can assume that x itself can
be found in a tree generated by x. If we stop when x

has appeared for the second time, then we will have

x = G(x,x1, . . . ,xm),

where G is some term in the algebra 〈 C, ⊕〉. Then
if we express restricted addition through the ordinary
one, the term x will cancel on both sides, and we will
obtain an expression

a1x1 + a2x2 + . . . + amxm = 0

with all coefficients ai positive integers. This will vi-
olate the mth cancellation condition.

This theorem strengthens the aforementioned result of
Fishburn, Pekec and Reeds in two directions. Firstly
we prove a stronger property for pairs, secondly we
prove this for a larger set of pairs.

We see that a minimal set of queries (4) that define a
representable comparative probability order in Pn is
unique. In contrast, a minimal set of queries (4) that
define a representable comparative probability order
in Ln is not unique. This can be seen, for example,
from Example 2 of [2].

Theorem 3 does not hold for non-representable order-
ings as the following example shows.

Example 2. In the following non-representable com-

parative probability order we mark all flippable pairs

with an asterisk:

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺∗ 4 ≺ 14 ≺∗ 23 ≺ 5

≺∗ 123 ≺ 24 ≺ 34 ≺∗ 15 ≺ 124 ≺ 25 ≺∗ 134 . . . .

There are five such pairs. Let f1 = χ(13, 4), f2 =
χ(14, 23), f3 = χ(5, 123), f4 = χ(34, 15), f5 =
χ(25, 134), and also let x = χ(23, 5). Then it is easy

to check that

x = f1 ⊕ ((f5 ⊕ (f2 ⊕ x)) ⊕ f4). (7)

But on the other hand, x cannot be represented as

a restricted sum of f1, . . . , f5 since it is not in the

subspace spanned by f1, . . . , f5. The reason for (7) is

of course the equation f1 + f2 + f4 + f5 = 0, which is

a violation of the fourth cancellation condition C4.

There is a marked difference in algebraic properties
of representable cones (Theorem 3) and the cone of
the non-representable comparative probability order
in the previous example. We wonder if this can be
made a criterion of representability.

Problem 2. Is it true that a discrete cone is repre-

sentable if and only if it is generated by its irreducible

vectors?

4 Characteristics of the flip relation

and Maclagan’s problem

It is clear that it is sufficient to solve Maclagan’s prob-
lem (Problem 1) for comparative probability orders in
L∗

n. For n = 5 and n = 6 we can find a solution com-
putationally, using the following fact:

Proposition 1 ([2]). Let � be a representable com-

parative probability order in Ln, and let P be the cor-

responding convex polytope, which is a region of the

hyperplane arrangement Hn. Then the number of

facets of P equals the number of representable com-

parative probability orders that are flip-related to �
(plus one if the pair ∅ ≺ 1 is flippable).

As we know, the flip relation turns Pn into a graph.
Let � and �′ be two comparative probability orders
which are connected by an edge in this graph (and so
are flip-related). We say that � and �′ are in friendly

relation if they are either both representable or both
non-representable.

In the following tables, by the number of flips of the
order � we mean the number of flippable pairs of �.
Let A ≺ B be a flippable pair of � such that A 6= ∅.
We say that the flip of the pair A ≺ B is friendly if



the given order � and the order �′ resulting from this
flip are in friendly relation.

Let �∈ P∗
n be a representable comparative probabil-

ity order. There are two situations when a flip of �
fails to be friendly: either the corresponding flippable
pair is ∅ ≺ 1, or the order �′ resulting from this flip
is of a type different to �.

The characteristics of the flip relation for n = 5 are
given in the following table

Representable orders in P∗
5

# flips # friendly flips # of orders

5
5 169
4 11 (11)

6
6 159
5 82 (3)

7
7 65
6 15
5 6

8 8 9

Non-representable orders in P∗
5

# flips # friendly flips # of orders

5
3 6
2 2
1 16

6 2 6

Note that the numbers in parentheses are the numbers
of orders for which the pair ∅ ≺ 1 is flippable. The
total number of comparative probability orders in P5

in each category can be obtained by multiplying by
5! = 120. The corresponding indicators of the flip
relation for n = 6 are given in [2].

The number of facets of the regions of H5 correspond-
ing to orders of L∗

5 are given here:

# facets 5 6 7 8 all
# regions 265 177 65 9 512

The number of facets of the regions of H6 correspond-
ing to L∗

6 is given in [2]. Here will only notice that
the smallest number of facets is 6 with 38,025 regions
and the maximal is 13 with 20 regions.

It is worth paying attention to the fact that for n = 5
and n = 6, all comparative probability orders with the
largest possible number of flips (namely 8 for n = 5,
and 13 for n = 6) are representable, and all of their
flips are friendly. This does not always happen, when
an order has the smallest possible number of flips.
Nevertheless, this is true for any representable order
with smallest possible number of flips: all its flips are
friendly [4, 2].

Maclagan [13] gave an example of a non-representable
comparative probability order in P6 whose set of flip-
pable pairs was a subset of the set of all flippable pairs
of a representable comparative probability order. She
concluded that for n ≥ 6, an order might not be de-
termined by the set of its flippable pairs.

Strictly speaking, we have to talk about the sequence
of flippable pairs of an order �, since these pairs may
occur in � in different order. Strengthening the result
of Maclagan, we have found eight sequences of com-
parisons with the property that each is the sequence
of flippable pairs for two different non-representable
comparative probability orders in P6 [2]. We list one
such sequence below: 14 ≺ 5, 15 ≺ 24, 125 ≺ 34,
45 ≺ 16, 26 ≺ 145, 1245 ≺ 36. These eight sequences
were found with the help of the Magma [1] system,
which we used to determine and analyse several ex-
amples of orderings on sets of small order.

5 Searles’ Conjecture

Let us summarise what we know about the cardinality
of |Irr(C)| in the following

Theorem 4 ([4, 2]). Let � be a comparative proba-

bility order on 2X with |X| = n, and C be the corre-

sponding discrete cone. Then

• if � is representable, then the set of all irreducible

elements Irr(C) generates C and |Irr(C)| ≥ n,

while

• if � is non-representable, then the set of all irre-

ducible elements Irr(C) may not generate C and

it may be that |Irr(C)| < n.

As we mentioned, Magma computations show that

• in G5: 5 ≤ |Irr(C)| ≤ 8, and

• in G6: 5 ≤ |Irr(C)| ≤ 13,

and all intermediate values are attainable.

Searles noticed that 8 = φ6 and 13 = φ7, where
φn is the nth Fibonacci number, that is the nth
member of the sequence defined by φ1 = φ2 = 1
and φn+2 = φn+1 + φn. Its initial values are:
1, 1, 2, 3, 5, 8, 13, 21, . . . He conjectured that

Conjecture 1. The maximal number of facets of re-

gions of Hn is equal to the maximal cardinality of

Irr(C(�)) for �∈ L∗
n, and equal to the Fibonacci num-

ber φn+1.

The first part of this conjecture will be proved if we
show that for some representative comparative prob-
ability order �, for which |Irr(C(�))| is maximal, all



flips of � are friendly. The existence of such order
was checked for all n ≤ 12.

Searles made the following advance towards proving
the second part of this conjecture.

Theorem 5. In Pn there exists a comparative proba-

bility order with a discrete cone C for which |Irr(C)| =
φn+1, where φn is the nth Fibonacci number.

The proof will be split into several observations. Let
us introduce the following notation first. Let u =
(u1, . . . , un) be a vector such that 0 < u1 < . . . < un

and q > 0 be a number such that uj < q < uj+1 for
some j (we assume that un+1 = ∞). In this case we
set (u, q) to be the vector of R

n+1 such that

(u, q) = (u1, . . . , uj , q, uj+1, . . . , un).

We also denote `n = (1, 2, 4, . . . , 2n−1) and 2`n =
(2, 4, 8, . . . , 2n). An easy observation is this:

Proposition 2. �`n
is the lexicographic order, and

the utilities of any two consecutive terms in it differ

by 1. These utilities cover the whole range between 0

and 2n − 1.

Proof. We leave the verification to the reader.

Proposition 3. Let q be an odd number such that q <
2n+1 and m = (2`n, q). Then the difference between

the utilities of any two consecutive terms of �m is not

greater than 2.

Proof. Suppose 2j < q < 2j+1, that is, q is the util-
ity of j in �m. Suppose now that (A,B) is a critical
pair for �m. If j /∈ B, then the statement follows
from Proposition 2. If j ∈ B and j ∈ A, the state-
ment follows from the same proposition. Assume now
that j ∈ B but j /∈ A. Then B = {j} ∪ B′, where
B′ does not contain j. If B′ 6= ∅, then by Propo-
sition 2 there exists A′, not containing j, such that
0 ≤ u(B′)− u(A′) ≤ 2. Then A must be {j}∪A′ and
the proposition is true. Finally, if B = {j}, then since
u(j) ≤ 2n+1 − 1 by Proposition 2 there will be an A,
not containing j, such that u(B) − u(A) = 1.

Let us denote by Sn+1 the class of orderings on X =
{1, 2, . . . , n + 1} of the type �m, where m = (2`n, q)
for some odd q < 2n. And let j denote the number
such that 2j < q < 2j+1. Obviously, j < n + 1.

Proposition 4. From the position at which the sub-

set {j} appears in the order �m until the position at

which all subsets contain j, subsets not containing j
alternate with those containing j, with the difference

in utilities for any two consecutive terms being 1.

Proof. All subsets not containing j have even utility
and all those containing j have odd utilities. If we
consider these two sequences separately, by Proposi-
tion 2 the difference of utilities of neighboring terms
in each sequence will be equal to 2. Hence they have
to alternate in �m.

Lemma 2. Let �m be an order from the class Sn+1

and let (A,B) be a critical pair for �m. Then the

following conditions are equivalent:

(a) (A,B) is flippable;

(b) either A or B contains j;

(c) u(B) − u(A) = 1.

Proof. (a) =⇒ (b): Suppose (A,B) is flippable. As
(A,B) is critical, it is impossible for A and B each to
contain j. We only have to prove that it is impossible
for both of them not to contain j. If j /∈ A and j /∈ B,
then u(A) + 2 = u(B) < u(j). Then u(A) < u(B) <
u(n + 1) = 2n, hence neither A nor B contains n + 1.
But then for A′ = A ∪ {n + 1} and B′ = B ∪ {n + 1}
we have u(j) < u(A′) < u(B′). Both A′ and B′ do
not contain j, hence they are in the alternating part
of the ordering, and since u(B′) − u(A′) = 2, they
cannot be consecutive terms. As (A,B) is flippable,
this is impossible, which proves that either A or B
contain j.

(b) =⇒ (c): This follows from Proposition 4.

(c) =⇒ (a): This is true not only for orders from our
class, but also for all orders defined by integer utility
vectors. Indeed, if u(B) − u(A) = 1, then for any
C ∩ (A ∪ B) = ∅ we have u(B ∪ C) − u(A ∪ C) = 1,
and B ∪ C and A ∪ C are consecutive.

Up to now, the utility of q and j did not matter. Now
we will try to maximise the number of flippable pairs
in �m, so we will need to choose q carefully. It should
come as no surprise that the optimal choice of q will
depend on n, so we will talk about qn now. For the
rest of the proof we will set

qn =
(−1)n+1 + 2n

3
. (8)

An equivalent way of defining qn would be by the
recurrence relation

qn = qn−1 + 2qn−2 (9)

with the initial values q3 = 3, q4 = 5. We also note:

Proposition 5. qn ≡ 2 + (−1)n+1 (mod 4).

Proof. Easy induction using (9).



Let us now consider a flippable pair (A,B) for �m.
Since j = n − 2, we have either A = A′ ∪ {n − 2} or
B = B′ ∪ {n − 2}. In the first case, (A′, B) is a pair
of nonintersecting subsets of the lexicographic order
on [n + 1] \ {n− 2} with u(B)− u(A′) = q + 1. In the
second, the pair will be (B′, A) with u(A) − u(B′) =
q − 1.

Let gn be the number of pairs A ≺ B with u(B) −
u(A′) = q +1 in the lexicographic order �2`n

, and let
hn be the number of pairs A ≺ B with u(B)−u(A′) =
q−1 in the same order. We have proved the following:

Lemma 3. The number of flippable pairs in �m is

gn + hn.

This reduces our calculations to a rather understand-
able lexicographic order �2`n

.

For convenience we will denote q+
n = qn +1 and q−n =

qn − 1. We note that Proposition 5 implies

Proposition 6. q−n ≡ 1 + (−1)n+1 (mod 4), and

q+
n ≡ 3 + (−1)n+1 (mod 4).

A direct calculation also shows that the following
equations hold:

Proposition 7.

q−n+1 = 2q−n for all odd n ≥ 3, (10)

q−n+1 = 2q−n + 2 for all even n ≥ 4, (11)

q+
n+1 = 2q+

n − 2 for all odd n ≥ 3, (12)

q+
n+1 = 2q+

n for all even n ≥ 4. (13)

Lemma 4. For any odd n ≥ 3 the following recur-

rence relations hold:

gn+1 = gn + hn, (14)

hn+1 = hn, (15)

and for any even n ≥ 4

gn+1 = gn, (16)

hn+1 = gn + hn. (17)

Proof. Firstly we assume that n is odd. Then n+1 is
even. We know from (10) that q−n+1 = 2q−n . Given any
nonintersecting pair A < B in �2`n

, we may shift it to
the right, replacing each element i with the element
i+1, to obtain a nonintersecting pair Ā < B̄ of �2`n+1

.
This procedure of shifting doubles the difference in
utilities, so u(B̄) − u(Ā) = 2q−n = q−n+1. This proves

hn+1 ≥ hn. Moreover, by Proposition 6, q−n+1 ≡ 0
(mod 4) hence no nonintersecting pair C < D of
�2`n+1

with difference q−n+1 can involve 1, either in
C or in D. Therefore C = Ā and D = B̄ for some
nonintersecting pair A < B, and so hn+1 = hn.

We can also use hn nonintersecting pairs of �2`n+1

as described above to construct the same number of
nonintersecting pairs of �2`n+1

with utility difference
q+
n+1 = q−n+1 + 2. If A < B is such a pair, we notice

that 1 belongs neither to A nor to B. Adding 1 to
B will create a pair A < B ∪ {1} with the utility
difference q+

n+1. We can also use (12) and a shifting
technique to create another gn nonintersecting pairs
with utility difference q+

n+1. Indeed, if A < B is a
nonintersecting pair in �2`n

with utility difference q+
n ,

then the pair {1} ∪ Ā < B̄ will be nonintersecting in
�2`n+1

with utility difference 2q+
n − 2 = q+

n+1. Thus
gn+1 ≥ gn + hn.

We have now two ways of obtaining nonintersecting
pairs from �2`n+1

with utility difference q+
n+1. The

first method gives us pairs C < D with 1 ∈ D, while
the second method gives us pairs C < D with 1 ∈ C.
Now, let C < D be a nonintersecting pair in �2`n+1

with utility difference q+
n+1. As n + 1 is even, Propo-

sition 6 gives q+
n+1 ≡ 2 (mod 4). This implies that

either 1 ∈ C or 1 ∈ D. Now as above, we can show
that C < D can be obtained by the second or the first
method, respectively. Thus gn+1 = gn + hn.

For even n, the statement can be proved similarly,
using the other two equations in Proposition 7.

Proof of Theorem 5. Let us consider the case n = 3.
We have q3 = 3, so q−3 = 2 and q+

3 = 4. We have
three nonintersecting pairs in �2`3 with utility differ-
ence two, namely ∅ < 1, 1 < 2, and 12 < 3, and
two nonintersecting pairs with utility difference four,
namely, ∅ < 2 and 2 < 3. Thus g3 = 2 and h3 = 3. Al-
ternatively, we may say that (g3, h3) = (φ3, φ4). It is
also easy to check that (g4, h4) = (5, 3) = (φ5, φ4). A
simple induction argument now shows that (gn, hn) =
(φn, φn+1) for odd n and (gn, hn) = (φn+1, φn) for
even n. By Lemma 3 we find that the number of
flippable pairs of �m is

gn + hn = φn+1 + φn = φn+2.

It remains to notice that �m is in Gn+1.

6 Simple games related to

comparative probability orders

Let us consider a finite set X consisting of n elements
(which are called players). For convenience, X can be
taken to be the set [n] = {1, 2, . . . , n}.

Definition 11 ([18, 16]). A simple game is a pair

G = (X,W ), where W is a subset of the power set 2X

satisfying the monotonicity condition: if A ∈ W and

A ⊂ B ⊆ X, then B ∈ W .



Elements of the set W are called winning coalitions.
We also define the complement L = 2X \W , and call
the elements of this set losing coalitions. A winning
coalition is said to be minimal if each of its proper
subsets is losing. By the monotonicity condition, ev-
ery simple game is fully determined by its set of min-
imal winning coalitions. Also for A ⊆ X, we will
denote its complement X \ A by Ac.

Definition 12. A simple game is called proper if A ∈
W implies that Ac ∈ L, and strong if A ∈ L implies

that Ac ∈ W . A simple game which is proper and

strong is also called a constant-sum game.

In a constant-sum game, there are exactly 2n−1 win-
ning coalitions and exactly 2n−1 losing coalitions.

Definition 13. A simple game G is called a weighted
majority game if there exists a weight function

w : X → R
+ (where R

+ is the set of all non-negative

reals) and a real number q, called the quota, such that

A ∈ W if and only if
∑

i∈A wi ≥ q.

Associated with every simple game G = (X,W ) is a
desirability relation �G on X. This was defined by
Lapidot and actively studied by Peleg (see [16]).

Definition 14. Given a simple game G we say that a

coalition A ∈ 2X is less desirable than a coalition B ∈
2X if it has the property that whenever the coalition

A∪C is winning for some coalition C ∈ 2X such that

C ∩ (A ∪ B) = ∅, the coalition B ∪ C is winning as

well. We denote this by A �G B, or by A � B when

the game is clear from the context. Let us also write

A ∼G B whenever A �G B and B �G A.

For an arbitrary simple game G, the relation �G sat-
isfies the following weak version of the de Finetti
condition: for any subsets A,B,C ∈ 2X such that
C ∩ (A ∪ B) = ∅,

A �G B =⇒ A ∪ C �G B ∪ C. (18)

(Note that the arrow is only one-sided.) In other re-
spects, this might not be a well-behaved relation. It
might not be complete, and its strict companion ≺G

could be cyclic (see [16]). For the class of games we
will define, however, this relation is as nice as it can
be. It is also quite natural in the light of (18).

Any (strict) comparative probability order ≤ on X =
[n] defines a constant-sum simple game G(≤). Indeed,
all subsets of X are ordered according to ≤, say

∅ < A1 < . . . < A2n−1−1 < A2n−1 < . . . < A2n−1 < X.

Let us take W = {A2n−1 , . . . , X}, to obtain a
constant-sum game G(≤). The pair (A2n−1−1, A2n−1)
is the central pair of ≤, and as shown in [10], we have
Ac

2n−1−1 = A2n−1 . Also this pair is always flippable.

Proposition 8. If ≤ is defined as above, then ≤⊆
�G(≤). In particular, the desirability relation of such

a game is complete, and the strict desirability relation

is acyclic.

Proof. Let A and B be two subsets of X, and suppose
without of loss of generality that A ≤ B. Now suppose
also that A ∪ T ∈ W for some T ∩ (A ∪ B) = ∅.
Then by de Finetti’s axiom, A ∪ T ≤ B ∪ T , which
implies that B ∪ T ∈ W by definition of G(≤). Thus
A �G(≤) B.

If ≤ is a representable comparative probability order,
then G(≤) is a weighted majority game.

Peleg asked if any constant-sum simple game with
complete desirability relation and acyclic strict desir-
ability relation is a weighted majority game. This
question was answered negatively in [17] (see also
[16, Section 4.10]), but the cardinality of X in that
counter-example is large (and not even specified). If
our previous question is answered, it could provide us
with a natural way of constructing such examples for
smaller n. As we will see below, however, any non-
representable comparative probability order that can
be used for this purpose must have some very spe-
cial properties in Pn relative to the flip relation. The
following lemma explains why.

Lemma 5. If the comparative probability order ≤′ is

obtained from a comparative probability order ≤ by

a flip over a flippable pair which is not central, then

G(≤′) = G(≤).

Proof. Suppose we flip over the flippable pair (A,B).
Then for any C ⊂ X such that C ∩ (A ∪ B) = ∅, the
sets A∪C and B∪C are neighbours and cannot split
the central pair. Hence in G(≤), either both A ∪ C
and B ∪ C are winning, or both are losing, and thus
A ∼G(≤) B. The same will happen in G(≤′), and so
G(≤′) = G(≤).

Corollary 1. Let ≤ be any comparative probability

order in Pn. If ≤ is connected to a representable com-

parative probability order by a sequence of flips, none

of which changes the central pair of ≤, then G(≤) is

a weighted majority game.

Theorem 6. If ≤∈ P5 or ≤∈ P6, then G(≤) is a

weighted majority game.

Proof. It is known (see [18]) that every constant sum
game with five players is a weighted majority game.
In the case of ≤∈ P5, we can deduce this directly
from our results. First, it can be seen from Table 1
that every comparative probability order ≤ in P5 has
at least two representable neighbours. At least one of



these must be flip-related to ≤ via a non-central pair,
and hence the above lemma applies. This deals with
the case n = 5. For n = 6, we have used Magma

[1] to verify that for every ≤ in P6, the probability
measure p of some representable order � ∈ L6 gives
a weight function w that makes G(≤) a weighted ma-
jority game.

7 More Open Problems

Problem 3. Is it true that G(≤) is always a weighted

majority game?

Problem 4. Is Searles’ conjecture true?

Problem 5. What is the minimum value of |Irr(C)|
in Gn?

Problem 6. Is Gn connected?

It was checked in [13], and independently by us, that
G6 is connected. As all representative orders form a
connected subgraph in Gn, it would be natural to try
to prove that any order in Gn is connected to a repre-
sentable order. This is not obvious. In G6, for exam-
ple, there are vertices (orders) without representable
neighbours. A stronger version of this problem which
is required for extending Theorem 6 to all n is as fol-
lows.

Problem 7. Is any non-representable order in Gn

connected to a representable order by a sequence of

non-central flips?
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Abstract

Nonparametric predictive inference (NPI) is a power-
ful tool for predictive inference under nearly complete
prior ignorance. After summarizing our NPI approach
for multinomial data, as presented in [8, 9], both for
situations with and without known total number of
possible categories, we illustrate how this approach
can be generalized to deal with sub-categories, en-
abling consistent inferences at different levels of de-
tail for the specification of observations. This ap-
proach deals with main categories and sub-categories
in a logical manner, directly based on the powerful
probability wheel representation for multinomial data
that is central to our method and that ensures strong
internal consistency properties. Detailed theory for
such inferences, enabling for example more layers of
sub-categories as might occur in tree-like data base
structures, has yet to be developed, but is conceptu-
ally straightforward and in line with the illustrations
for more basic inferences presented in this paper.

Keywords. CA model, imprecise Dirichlet model,
nonparametric predictive inference, probability wheel
representation.

1 Introduction

Statistical data in various application areas are often
multinomial, i.e. the observations fall into one of sev-
eral unordered categories. Recently, the current au-
thors have developed a nonparametric predictive in-
ferential approach for such data [8, 9]. This approach
provides lower and upper probabilities for a future ob-
servation, on the basis of observed multinomial data,
and it adds only few modelling assumptions to the
data. The method has been presented both for sit-
uations in which one has no information about the
number of possible categories [8], and for situations
with at most K possible categories [9], where the ad-
ditional knowledge in the latter case leads to less im-
precision for some events of interest. In this paper,

we will refer to the general NPI approach for multi-
nomial data, by Coolen and Augustin [8, 9], as the
‘CA model’1. In the earlier papers, the advantages of
the CA model are discussed and illustrated in detail,
and the resulting lower and upper probabilities are
also compared to those based on Walley’s Imprecise
Dirichlet Model (IDM) [23], which has attracted con-
siderable attention in a variety of application areas
[4].

The CA model fits in the framework of ‘Nonparamet-
ric Predictive Inference’ (NPI) [2, 7], which is gener-
ally based on Hill’s assumption A(n) [18]. However,
for multinomial data, a variation of this assumption
is required, which was introduced by Coolen and Au-
gustin [8] and called ‘circular-A(n)’, and which is very
close in nature to Hill’s A(n) as both are post-data
versions of exchangeability [14]. Coolen [7] illustrated
the natural use of circular-A(n) for circular data.

A key assumption for the CA model as presented be-
fore [8, 9], as well as for most models for multino-
mial data including Walley’s IDM, is that the differ-
ent categories are in no way related. Not only should
the categories not be ordered, but there should also
not be other possible links between some of the cate-
gories. For example, such methods are not fully suited
for situations where two or more categories may be
considered as sub-categories of a larger category, for
example2 one may be interested in situations where
one distinguishes between main colours such as green,
red and blue, but in addition distinguishes between
light-blue and dark-blue within the latter category.
An interesting property, called the Representation In-
variance Principle (RIP), of Walley’s IDM [23] is that
this distinction has no effect on probabilities for events
which do not directly involve ‘blue’, this property does
not hold in general for the CA model [8, 9]. In this pa-

1CA: Circulus Alearius and/or Circular-A(n).
2The use of colours as different categories in illustrative ex-

amples might be considered inappropriate, as one could con-
sider an existing natural ordering of colours, but it has become
somewhat of a tradition in this field following Walley [23].



per, we call categories such as light-blue and dark-blue
‘sub-categories’ of the category blue, and we present
the basic way in which the CA model can deal explic-
itly with such sub-categories.

In Section 2 of this paper, we present an overview of
the CA model as presented before, both for a known
and unknown number of categories [8, 9]. Section 3
illustrates how the CA model should be generalized
in order to deal with sub-categories, which is mostly
explained via an example as the main theory is under
development, and Section 4 provides some concluding
remarks.

2 The CA model

2.1 The basic setting

Hill [18] introduced the assumption A(n) as a basis
for predictive inference in case of real-valued obser-
vations. Suppose we have n observations ordered as
z1 < z2 < . . . < zn, which partition the real-line
into n + 1 intervals (zj−1, zj) for j = 1, . . . , n + 1,
where we use notation z0 = −∞ and zn+1 = ∞.
Hill’s assumption A(n) is that a future observation,
represented by a random quantity Zn+1, falls into
any such interval with equal probability, so we have
P (Zn+1 ∈ (zj−1, zj)) = 1

n+1 for j = 1, . . . , n+1. This
assumption implies that the rank of Zn+1 amongst
the n observed data has equal probability to be any
value in {1, . . . , n+ 1}. This clearly is a post-data as-
sumption, related to exchangeability [14], which pro-
vides direct posterior predictive probabilities [13]. Hill
[18, 19] argued that A(n) is a reasonable basis for infer-
ence in the absence of any further process information
beyond the data set, when actually predicting a future
random quantity. Augustin and Coolen [2] prove gen-
erally that Nonparametric Predictive Inference (NPI)
based on A(n) has strong consistency properties in
the theory of interval probability [22, 24, 25]. Inter-
estingly, as NPI is based on A(n), such inference is
fully in line with ‘perfectly calibrated’ inference along
the lines of Lawless and Fredette [20], who however
restricted attention to precise probability.

In the CA model, multinomial data are represented
as observations on a probability wheel, and hence as
circular data. A straightforward variation of A(n) that
is suitable for inference based on such data, and again
linked to exchangeability of n+ 1 observations, is the
assumption circular-A(n), denoted by A(n)© [7, 8]: Let
ordered circular data x1 < x2 < . . . < xn create n
intervals on a circle, denoted by Ij = (xj , xj+1) for
j = 1, . . . , n − 1, and In = (xn, x1). The assumption
A(n)© is that a future observation Xn+1 falls into each
of these n intervals with equal (classical) probability,

so
P (Xn+1 ∈ Ij) =

1
n
, for j = 1, . . . , n. (1)

Clearly, A(n)© is again a post-data assumption, re-
lated to the appropriate exchangeability assumption
for such circular data, in exactly the same way as A(n)

was related to exchangeability of n+ 1 values on the
real-line. NPI based on A(n)© has the same consistency
properties as shown in [2] for such inference based on
A(n).

In the CA model [8, 9], A(n)© is combined with the as-
sumed underlying representation of multinomial data
as outcomes of spinning a probability wheel. Without
additional assumptions about the probability mass
1/n per interval Ij , the predictive inferences based
on the CA model are again in the form of interval
probabilities [2, 22, 24, 25], where a lower probability
for an event A is represented by P (A), and the cor-
responding upper probability by P (A). Effectively,
the lower probability is the maximum lower bound
for the classical probability for A that is consistent
with the probabilities as assigned by A(n)© and in ac-
cordance with the probability wheel model, according
to De Finetti’s fundamental theorem of probability
[14], and the upper probability is the minimum upper
bound consistent in this way.

The predictive lower and upper probabilities pre-
sented in [8, 9], and reviewed in this section, are based
on an underlying assumed model, ensuring that they
not only make sense for one specific set of data, which
they do being F -probability [24, 25] and due to the
fact that they bound the observed relative frequen-
cies, but they are also consistent if more observations
are added to the data. We now give a brief summary
of the key aspects of this model and its properties.

The CA model underlying the nonparametric predic-
tive lower and upper probabilities presented below, is
based on a probability wheel representation, with each
observation category represented by a single segment
of the probability wheel. The idea of such a proba-
bility wheel is as follows (see [15] for use of the same
concept as a reference experiment underlying subjec-
tive probability). An arrow, fixed at the center of a
circle, spins around, such that the arrow is equally
likely to stop at any segment of the same size, where
a segment is an area between two lines from the cen-
ter of the circle to its circumference. In our model
for multinomial data, we assume explicitly that each
possible observation category is represented by only
a single segment on the circle. Even more, we as-
sume that there is no natural (or assumed) ordering
of the observation categories, and therefore also no
such ordering of the segments on the circle. Clearly,
if we had perfect knowledge of the sizes of all seg-



ments on the probability wheel, we would have full
knowledge of the probability distribution for future
observations from this multinomial setting. The CA
model can deal both with situations where the num-
ber of possible categories is unknown [8] and where it
is known that there are K possible categories [9], and
it only assumes a finite number of exchangeable multi-
nomial observations, A(n)© , and the probability wheel
representation. As this probability wheel is only an
abstract model, we have no information about the
configuration of different segments on it. This is im-
portant for our nonparametric predictive inferences
based on A(n)© once we consider unions of two or more
categories, and adds to imprecision of our inferences,
in the sense that our lower and upper probabilities
are optimal bounds over all configurations of the pos-
sible segments on the probability wheel. In Section 3
we change this perspective a little, by allowing cate-
gories to be subdivided into sub-categories, in such a
way that both inferences at the category and at the
sub-category level can be considered. We will show
how the CA model can deal with sub-categories by
explicitly representing sub-categories within the cor-
responding category in the probability wheel repre-
sentation. Each sub-category is again assumed to be
represented by a single segment on the probability
wheel.

When we combine the concept of a probability wheel,
with each observation category represented by a single
segment, with the assumption A(n)© , on the basis of n
observations, then we can represent this situation as
if the n observations are represented by n lines, which
partition the circle into n equally sized slices, repre-
senting that the next observation is equally likely to
fall into each one of these slices. The assumption that
each observation category is represented by only one
segment on the probability wheel, implies that the
lines representing observations in the same category
are ‘next to each other’. For example, if precisely two
observations fall into one category, then our current
inferences with regard to the next observation falling
into this category, are based on the current represen-
tation with two lines next to each other which both
represent this category, and the other lines, in case of
more than 2 observations, representing different cat-
egories. Under the assumption A(n)© , the probability
1
n for the line on the probability wheel corresponding
to the next observation to be in between the two lines
representing these observations in the same category,
is the lower probability that the next observation be-
longs to that same category as well. For the upper
probability, we consider all possible configurations of
segments on the probability wheel, which are consis-
tent with the observations and their corresponding
lines on the wheel. The upper probability is then the

maximum amount of probability, under A(n)© and these
data and configurations, that can be assigned to the
segments corresponding to the event of interest.

The assumption that each observation category is rep-
resented by a single segment on the probability wheel
is crucial to the imprecision in the lower and upper
probabilities, and is essential as without this assump-
tion the CA model would lead to vacuous lower and
upper probabilities for all non-trivial events.

2.2 Inference for an unknown number of
categories

Our inferences in this paper are restricted to a single
future observation, which is assumed to be exchange-
able with the n observations so far. We will refer to
such a future observation as the ‘next observation’,
and will denote it by Yn+1. We will assume that each
observation can be assigned to a category with cer-
tainty, but we do not require these categories to be
defined prior to the observations. We assume that
available data consist of nj observations in category
cj , for j = 1, . . . , k, with

∑k
j=1 nj = n. If the cat-

egories are defined upon observation, we have that
nj ≥ 1, and hence that 1 ≤ k ≤ n. We could include
further specifically defined categories to our data de-
scription, to which no observations belong, but doing
so will not influence any of our inferences (as is eas-
ily confirmed), so we will not consider this possibility
further. For the general setting with unknown total
number of possible categories, we must include nota-
tion for new, as yet unseen, categories. We distin-
guish between Defined New categories, of which we
need to take the possibility of having several differ-
ent such categories into account, denoted by DNi for
i = 1, . . . , l for l ≥ 1, and the possibility that the next
observation belongs to any not yet observed category
(including categories DNi), which we describe as an
Unobserved New outcome and denote as Yn+1 = UN .
By allowing l ≥ 0 and 0 ≤ r ≤ k in this notation, we
can define two types of events that comprise the most
generally formulated events that need to be consid-
ered for Yn+1 in our multinomial setting. These two
general events are

Yn+1 ∈
r⋃
s=1

cjs ∪ UN\
l⋃
i=1

DNi (2)

and

Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃
i=1

DNi (3)

Excluding one or more defined new categories in the
event of interest, as in (2), can only affect our infer-
ences for events including UN .



The general CA model results for nonparametric pre-
dictive inference for the next observation, Yn+1, based
on multinomial data, with complete absence of knowl-
edge on the number of possible categories apart from
the information provided by n > 0 observations, and
based on A(n)© and the probability wheel model rep-
resentation, were presented in [8]. For the first of the
general events, the lower probability3 is

P (Yn+1 ∈
r⋃
s=1

cjs ∪ UN\
l⋃
i=1

DNi) =

1
n

(
r∑
s=1

njs − r

)
, for k ≥ 2r

1
n

(
r∑
s=1

njs − r + max(2r − k − l, 0)

)
,

for r ≤ k ≤ 2r

(4)

and the corresponding upper probability is

P (Yn+1 ∈
r⋃
s=1

cjs ∪ UN\
l⋃
i=1

DNi)

=
1
n

(
r∑
s=1

njs + k − r

)
(5)

For the second of these general events, the lower prob-
ability is

P (Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃
i=1

DNi) =
1
n

(
r∑
s=1

njs − r

)
(6)

and the corresponding upper probability is

P (Yn+1 ∈
r⋃
s=1

cjs ∪
l⋃
i=1

DNi) =

1
n

(
r∑
s=1

njs + k − r

)
, for r ≤ k ≤ 2r,

1
n

(
r∑
s=1

njs + r + min(k − 2r, l)

)
,

for k ≥ 2r

(7)

2.3 Inference with a known number of
possible categories

If we assume, for the same multinomial setting, that
there is a known number of possible categories, de-
noted by K, then this extra assumption has an ef-
fect on the lower and upper probabilities in the CA

3All probabilities in this paper are predictive given the first
n observations, we do not explicitly mention the dependence
on the first n observations in the notation.

model [9]. We restrict attention to K ≥ 3, as for
the binomial situation with K = 2 NPI can be based
on an assumed data representation on a line, as pre-
sented by Coolen [6], which leads to slightly less im-
precision than a representation on a circle as in this
paper. We can now denote the K ≥ 3 possible cat-
egories by C1, . . . , CK , even if their precise definition
might only be possible following observations. With-
out loss of generality, we assume that the first k of
these, C1, . . . , Ck for 1 ≤ k ≤ K, have already been
observed and the last K − k, Ck+1, . . . , CK have not
yet been observed. Let nj be the number of observa-
tions in Cj , so nj ≥ 1 for j ∈ {1, . . . , k} and nj = 0
for j ∈ {k + 1, . . . ,K}, and n =

∑k
j=1 nj . The two

general events of interest introduced before, when K
was not known, are now reduced to a single general
event,

Yn+1 ∈
⋃
j∈J

Cj (8)

with J ⊆ {1, . . . ,K}, but except where mentioned
explicitly we exclude the trivial events J = ∅ and
J = {1, . . . ,K} from our considerations. Let OJ =
J∩{1, . . . , k} denote the index-set for the categories in
the event of interest that have already been observed,
and UJ = J∩{k+1, . . . ,K} the corresponding index-
set for the categories in the event of interest that have
not yet been observed. Let r be the number of ele-
ments of OJ and l the number of elements of UJ , so
0 ≤ r ≤ k and 0 ≤ l ≤ K − k. This implies that
k − r observed categories and K − k − l unobserved
categories are not included in the event of interest.

The lower and upper probabilities for event (8), ac-
cording to the CA model with K known, are [9]

P (Yn+1 ∈
⋃
j∈J

Cj)

=
1
n

∑
j∈OJ

nj − r + max(2r + l −K, 0)

 (9)

and

P (Yn+1 ∈
⋃
j∈J

Cj)

=
1
n

∑
j∈OJ

nj − r + min(2r + l, k)

 (10)

For the two trivial events, the NPI-based lower and
upper probabilities are obvious. If J = {1, . . . ,K},
the upper probability of event (8) is equal to 1, in
line with (10), and also the lower probability (9) is
trivially defined as 1, which is fully in line with the
probability wheel representation which underlies the



CA model. Similarly, if J = ∅, the lower probability
of event (8) is equal to 0, in line with (9), and the
upper probability (10) is defined as 0. In our further
discussion, we will not explicitly mention these trivial
events anymore. At the end of this section, we briefly
illustrate (9) and (10) via an example, which will be
generalized to include sub-categories in Section 3.

2.4 Fundamental properties of the inferences

To derive all the above lower and upper probabilities,
we consider all possible configurations σ on the prob-
ability wheel, apply A(n)© to each of these to obtain
lower and upper predictive probabilities Pσ(·) and
Pσ(·), and then take the lower and upper envelope
with respect to the set Σ of all configurations [8, 9].
In case of known K, there are fewer configurations on
the probability wheel possible for some events of in-
terest, but never more, than when no maximum num-
ber of possible categories is known or assumed, hence
lower and upper probabilities can be less imprecise if
K is known then for the corresponding event in the
more general case, but they can never be more im-
precise. Actually, such lower and upper probabilities
are nested in the logical manner, as the optimization
procedures to derive the lower and upper probabilities
also take all configurations into account correspond-
ing to known K in the case of an unknown number
of categories. All these lower and upper probabilities
satisfy a number of important and attractive proper-
ties [8, 9]: (a) they satisfy the conjugacy property in
interval probability theory, and beyond that they are,
by applying arguments along the line of [1] (see also
[12]), actually F -probability in the sense of Weich-
selberger [24, 25] and they are coherent in the sense
of Walley [22]; (b) Corresponding lower and upper
probabilities always contain the empirical probability
for the event of interest; (c) in the limiting situation
with (n → ∞), corresponding lower and upper prob-
abilities become identical. The properties named in
(a) imply that the CA model provides sound interval-
probabilistic statistical inferences, with strong inter-
nal consistency properties. Properties (b) and (c) en-
sure that these inferences are sensible from classical
statistical (‘frequency’) perspective. Convenient ex-
pressions to calculate the lower and upper expecta-
tions as simply weighted sums instead of solutions to
linear optimization problems are presented in [9].

Properties of the CA model have been discussed in
detail before, both for the situations with an un-
known total number of possible categories [8] and
with at most K possible categories [9], in those pa-
pers the resulting inferences were also compared with
corresponding inferences based on Walley’s Imprecise
Dirichlet Model (IDM) [23]. We advocate in particu-

lar the fact that the inferences from the CA model do
not generally satisfy Walley’s ‘Representation Invari-
ance Principle’ [23], as there are particular situations
where for example the number of different categories
observed so far would logically have an impact on pre-
dictive inference for some events of interest, including
events involving categories that have not yet been ob-
served. The CA model provides an attractive alter-
native to the IDM, and is particularly different on
details which were remarked upon by many discus-
sants of Walley’s paper [23]. Of course, in situations
with substantial data available and a limited number
of categories, inferences based on the CA model and
the IDM are very similar, in the limit these all agree
with empirical probabilities converging to the under-
lying probabilities (derived from the sizes of the seg-
ments). An obvious advantage of the IDM is the fact
that it is directly based on a parametric model, with a
class of priors used in a similar manner as common in
robust Bayesian methods [3]. This implies that infer-
ences can be both in terms of the model parameters
and of the future observations, the latter via the class
of posterior predictive distributions corresponding to
the class of priors chosen [4]. However, as many infer-
ences can be formulated predictively in an attractive
and natural manner [7, 16], this apparent advantage
of the IDM over the CA model does not hinder appli-
cability of the latter too much.

2.5 An illustrative example

Example 1 briefly illustrates multinomial NPI with a
known number of categories, hence formulae (9) and
(10) are used.

Example 1.
Suppose that there are K = 6 possible categories,
namely Blue, Red, Yellow, Green, White, Other,
henceforth also indicated by their first letter. Sup-
pose that n = 9 observations are available, with the
following numbers per category: B − 3, R− 1, Y − 2,
G−3, W−0, O−0. We illustrate NPI for the 10th ob-
servation, Y10, under the usual assumptions for NPI
for multinomial data, as discussed in this section and
in more detail in [8, 9]. Some lower and upper proba-
bilities for the events concerning Y10 are given in Table
1, it is easy to check that these results illustrate (9)
and (10).

Y10 ∈ {·} [P , P ]
B [2/9, 4/9]
B,R [2/9, 6/9]
B,R, Y [3/9, 7/9]
B,R, Y,G [7/9, 1]
B,R, Y,G,W [8/9, 1]

Table 1. Some lower and upper probabilities (Ex. 1)



For the illustration of our inferences by this exam-
ple it is helpful to look at the increasing sequence
of events described in Table 1. As a consequence of
Theorem 2 in [9], where two-monotonicity of P (·) was
proven, there exists a “least favorable configuration”
producing all the lower probabilities of the elements
of the sequence as well as a “most favorable configu-
ration” related to all the upper probabilities. For the
lower probability note that the probability assigned
to a colour that has been observed nj − 1 times is at
least (nj − 1)/n. This already gives the whole contri-
bution of the colour to the lower probability as long as
there are enough colours not in the event of interest
to separate the segments, in order to avoid having to
attribute further probability mass 1/n to the segment
connecting two neighbouring colours in the event of
interest. Consequently, we obtain the lower proba-
bilities by the following configuration, where B and
R are separated by O and R and Y by W , while Y
and G can not be separated anymore, and so addi-
tional masses contribute to the lower probability of
the event {B,R, Y,G}, i.e. its lower probability ex-
ceeds

∑
j∈OJ nj − r.
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Figure 1. Configurations leading to the lower
and upper probabilities in Example 1

Similar arguments apply to the derivation of the up-
per probability. The main difference is that we now
want to assign as much probability mass as possible to
the colours in the event of interest, and so we assume
that not yet observed colours that are also not in the
event of interest do not occur on the probability wheel
at all. Again we separate the colours in the event of
interest as far as possible, but now with the aim to
add probability mass 1/n as much as possible. This
leads to the configuration at the bottom of Figure 1.

3 Sub-categories

3.1 The modelling of sub-categories

In this section we present the basic principle for deal-
ing with sub-categories in the CA model, and we il-
lustrate this via a basic example. The highest level
of categories, in line with the categories as presented
in Section 2, will occasionally be referred to as ‘main
categories’, where it is relevant to distinguish these
from sub-categories. It is assumed that a main cate-
gory might be divided into several sub-categories, in
such a way that sub-categories are not overlapping
and that each sub-category is only related to a single
main category. We will assume that each observation
belongs to a single main category, and where applica-
ble also to a single sub-category. Such a setting with
sub-categories appears, for example, in hierarchical
classifications (e.g.[17]). As for the basic CA model
(Section 2), both variations with known and unknown
total number of possible sub-categories per main cat-
egory can be dealt with, we restrict our discussion
mostly to situations where these numbers are known.
We briefly discuss some generalizations in Section 4.

The general principle for dealing with sub-categories
is as follows. Each main category is assumed to be
represented, in the CA model [8, 9], by a single seg-
ment on a probability wheel, with no information
about the configuration of all segments representing
observed and other relevant categories (those that
play a role in predictions). Lower and upper pre-
dictive probabilities for the next observation, based
on the CA model, are computed by combining this
assumed representation with the appropriate A(n)© as-
sumption, and via minimization and maximization,
respectively, over all configurations that are possible
for the given data and categories considered. Sup-
pose now that a particular category (e.g. ‘Blue’) is
divided into sub-categories (e.g. ‘Light Blue’, ‘Dark
Blue’, ‘Other Blue’), then this is included in the prob-
ability wheel representation underlying the CA model
by assuming that the single segment representing the
main category is divided into sub-segments, where
it is again assumed that each sub-category is repre-
sented by a single sub-segment. We have no knowl-
edge, and wish to make no assumptions, about any
particular ordering of such sub-segments, hence for
events involving one or more sub-segments, the pre-
dictive lower and upper probabilities are again de-
rived via the usual A(n)© assumption, which remains
unaffected by the appearance of sub-categories, and
minimization and maximization over all possible con-
figurations, now also considering all possible config-
urations of sub-categories within each corresponding
main category. Of course, if one has at least two main



categories for which observations are available, then
the segments representing the sub-categories of one
main category do not form the full circle of the prob-
ability wheel, so the combinatorical arguments and
computations involved with the sub-categories differ
slightly from those for the main categories, yet the
principle is straightforward. Note that, if one were
to add a new single ‘higher-level’ category, with the
main categories all considered to be sub-categories
of this higher-level category, than this makes no dif-
ference to the CA model inferences as via the opti-
misation over all possible configurations that single
‘higher-level’ category would have no effect whatso-
ever. It is again possible, as for the events in Section
2 which only considered one level of categories, to
derive general expressions for lower and upper proba-
bilities for general events, these have yet to be derived
and hence they will be presented at a later stage. It is
easily seen that the key properties for NPI for multi-
nomial data discussed in Section 2, including the F -
probability property and coherence, can again be rig-
orously proven in the same way as was done in [9],
when sub-categories are included in the model.

We illustrate the general and natural manner in which
the CA model can deal with sub-categories in Exam-
ple 2. For ease of presentation, we restrict attention
in this example to a situation with known number K
of possible categories [9], as we focus on inferences in-
volving sub-categories. For the case with an unknown
number of possible categories, the manner in which
the CA model enables sub-categories to be taken into
account is identical. We also mostly consider only
the case of a known number of sub-categories, this
can be generalized to an unknown number of sub-
categories in a manner that logically combines the
presented way for dealing with sub-categories and the
general method for dealing with an unknown total
number of categories [8]. As a final restriction to
keep presentation at a basic level, we only consider
sub-categories of a single main category, of course sub-
categories of other main categories are dealt with in
the same manner, and one can, for example, generally
also consider predictive inference for events involving
sub-categories of different main categories. Detailed
general results for all such situations will be presented
elsewhere.

3.2 Example continued

Example 2.
As in Example 1, suppose that there are six possible
categories, Blue, Red, Yellow, Green, White, Other,
also indicated by their first letter. In addition, let us
assume that observations in Blue are further speci-
fied in the sub-categories Light Blue (LB), Dark Blue

(DB), or Other Blue (OB). Suppose that 9 obser-
vations are available, with the following numbers per
(sub-)category: LB−1, DB−2, OB−0, R−1, Y −2,
G − 3, W − 0, O − 0. Of course, these data still im-
ply that there are 3 observations in the main category
B, so the lower and upper probabilities for the event
Y10 = B are as before,

[P , P ](Y10 = B) = [2/9, 4/9]

If we consider events such that Y10 belongs to a single
sub-category, the resulting lower and upper probabili-
ties are no different from what they would have been if
these sub-categories had been main categories, as each
is still represented by a single segment on the proba-
bility wheel. However, for events involving the union
of two sub-categories, the possible configurations of
all three sub-categories LB,DB,OB within the main
category B must be taken into account. For example,
the upper probability for the event Y10 ∈ {LB,OB}
corresponds to the configurations where DB separates
LB,OB within the main category B, while it is irrel-
evant where B is in the overall configuration with re-
gard to the other main categories, as this is only rele-
vant when events involving unions of main categories
are considered, or, as we will discuss later, unions
of one or more main categories and sub-categories of
other main categories. This separation of LB,OB
ensures that of the probability masses that have to
be in the main category B, namely two probabili-
ties of 1/9 each, only the probability 1/9 between the
two lines representing DB observations has to be as-
signed to DB, and as LB and OB are on the two ex-
treme sides within the category B, they can now be
assigned maximum probabilities of 2/9 and 1/9, re-
spectively. Hence, the upper probability for the event
Y10 ∈ {LB,OB} is 3/9. The lower probability for this
event is 0, as it is easily seen that it is possible (for
several configurations) that no actual segment of the
probability wheel as created by the data and reflect-
ing the probability masses as assigned by A(n)© in the
CA model, [8, 9] must belong to either LB or OB.
With similar derivations the lower and upper proba-
bilities presented in Table 2 are derived (see also the
example in Figure 2).

The last event in Table 2 is, of course, identical to
Y10 = B. If we had introduced multiple ‘Other Blue’
sub-categories (OBi), with no observations for each
as yet, then the upper probability that Y10 was in any
of such sub-category would be equal to 2/9 in case
of two such OBi, and 3/9 in case of three or more
of such OBi, the latter case in agreement with the
possible use of UN (see Section 2 and [8]) for such
sub-categories if we had not made any assumptions
on the number of sub-categories of Blue.



Y10 ∈ {·} [P , P ]
LB [0, 2/9]
DB [1/9, 3/9]
OB [0, 1/9]
LB,DB [1/9, 4/9]
LB,OB [0, 3/9]
DB,OB [1/9, 4/9]
LB,DB,OB [2/9, 4/9]

Table 2. Some lower and upper probabilities (Ex. 2)
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Figure 2. On the lower and upper probability of
LB ∪DB

Let us also briefly consider unions of these sub-
categories with other main categories. It should be
emphasized that considering the information at sub-
category level within the main category Blue, or just
at the main category level, has no effect whatsoever
on events which do not involve B or any of its sub-
categories, due to the fact that all considerations of
more detailed configurations to deal with the sub-
categories only took account of the segment repre-
senting Blue, and did not affect the configurations
at main categories level. Lower and upper probabil-
ities for events such as Y10 ∈ {DB,Y } are derived
as usual, as a single sub-category is involved they are
identical to corresponding lower and upper probabili-
ties that would correspond to the situation with DB
considered as a main category, so this event has lower
probability 2/9 and upper probability 6/9. If more
sub-categories of the same main category are included
in the event of interest, then the same considerations
as discussed above must be taken into account, so all
configurations of the sub-categories within the main
category must be included in the analysis. For such
events including other main categories, however, we
must combine this with the configurations at the main
categories level, which again becomes mainly impor-
tant in the case of a known total number of main cat-
egories and events involving more than half of these
[9]. For example, the lower probability for the event
Y10 ∈ {LB,OB,R,G,W,O} is equal to 3/9, as only
the main category Y and sub-category DB are not
included, and as long as Y and DB are not next to

each other in the configuration, they can both get a
maximum of 3 segments assigned out of the 9 in which
the observations have divided the probability wheel,
where each such segment represents predictive prob-
ability 1/9. The upper probability for this event is
7/9, as all but two segments can be assigned to all
(sub-)categories in this event of interest. Of course,
this also illustrates the conjugacy property with re-
gard to the complementary event Y10 ∈ {DB,Y }
considered above. For this event involving 2 of the
3 specified sub-categories of B, and 4 of the 5 main
categories other than B, clearly there are no possi-
ble configurations with all these 6 (sub-)categories
included in the event separated from each other by
other categories with each at least one observation in
them. If this last situation were the case, the up-
per probability would have been identical to the sum
of the upper probabilities of the events Y = X with
X ∈ {LB,OB,R,G,W,O} [9].

To emphasize the difference between sub-categories
and main categories, let us compare the event Y10 ∈
{LB,DB}, which has lower and upper probabilities
1/9 and 4/9, with the event Y10 ∈ {R, Y }. For both
sets of (sub-)categories in these events, we have one
(sub-)category with a single observation, and one with
two observations. However, the lower and upper prob-
abilities for the event Y10 ∈ {R, Y } are equal to 1/9
and 5/9, so this upper probability is larger than that
for Y10 ∈ {LB,DB}. This results from the fact that
the main categories R and Y can be fully separated, in
the configurations for the probability wheel represen-
tation, by categories with positive numbers of obser-
vations in them, whereas the sub-categories LB and
DB can only be separated by OB, in which there are
no observations. If one of the observations in G had
actually been in OB, then both these events consid-
ered here would have had the same upper probability
5/9.

It will be clear from this example that the CA model,
as before, does not satisfy Walley’s ‘Representation
Invariance Principle’ (RIP) [23], a fact which we have
commented on in detail before [8, 9], and which we
do perceive as an advantage of our model. One could
argue, however, that the fact that, in the CA model, it
does not matter whether one uses information at main
category level, or at sub-category level, as long as this
category is not involved in the event of interest, is very
close in nature to the underlying idea of Walley’s RIP.

4 Concluding remarks

In this paper we have reviewed the CA model as pre-
sented so far [8, 9], and we have outlined the general
manner in which the CA model can deal with data at



sub-category level, to get consistent inferences at both
main and sub-category levels. Detailed expressions for
lower and upper probabilities, for general events in a
variety of situations with regard to assumed knowl-
edge of numbers of (sub-)categories will be presented
elsewhere, but all follow the basic concept outlined in
Section 3 and illustrated in Example 2. This general-
ization of the CA model is of great practical use, as
interest is often explicitly at sub-category levels, with
potentially even more layers of sub-categories play-
ing a role. As long as such different layers are rep-
resentable by tree structures, the same approach as
outlined here can be used, guaranteeing strong inter-
nal consistency of inferences at varying levels due to
the use of the probability wheel representation. It re-
mains important here that no actual ordering of (sub-
)categories is known. If one wishes to use a multino-
mial approach with categories ordered, as for example
Coolen [5] did for lifetime data on the basis of Wal-
ley’s IDM, then the CA model with the probability
wheel representation might not be suitable. In par-
ticular if one models time categories, with a natural
one-dimensional ordering, the general framework of
NPI offers more suitable modelling opportunities, as
Coolen and Yan [10] presented for grouped lifetime
data, using another variation of Hill’s A(n) for deal-
ing with right-censored data [11].

Throughout this paper, and in [8, 9], we assume to
have perfect information on each observation, that is
we know with certainty which unique (sub-)category
it belongs to. If only partial information is available,
in the sense that it is only known for a particular
observation to belong to a subset of (sub-)categories
[21, 27], then the CA model is easily adapted to deal
with such information in a consistent manner, taking
all possibilities of the values of that particular obser-
vation into account and again optimizing over all pos-
sible corresponding configurations of the observations
on the probability wheel. However, all such general-
izations make it harder to derive general expressions
for the lower and upper probabilities for events of in-
terest, as the combinatorial problems in deriving ana-
lytic solutions of the optimization processes involved
become ever more complex.

In the CA model, as in NPI in general [2, 7], updating
in the light of new observations is straightforward, as
simply new lower and upper probabilities are calcu-
lated on the basis of the entire data set. Conditioning,
however, is more complex [2], where conditioning is
understood as taking additional information into ac-
count on the particular random quantity of interest,
in contrast to information in the form of further ob-
served exchangeable random quantities in updating.
Generalization of the classical, precise probabilistic,

concept of conditioning is acknowledged to be a com-
plex issue in theory of lower and upper probability
[24, 26], and this is not any different in conditioning
within the CA model. For example, suppose that for
the situation in Example 2, one learns that Y10 is ac-
tually Blue, but that one then is interested in which
of the three specified sub-categories it belongs to. Fol-
lowing the basics of the NPI approach, and of the CA
model, a correct way of arguing is that of the nine
observations so far, only three can still be assumed to
satisfy the post-data exchangeability assumption that
is key for any inference based on A(n) and its varia-
tions such as A(n)© , namely the three already observed
Blue outcomes, of which one was LB and two were
DB, with OB as only other sub-category assumed.
Hence, instead of considering Y10 with a post-data
exchangeability assumption with 9 available observa-
tions, one should now redefine the random quantity
of interest as, say, Ỹ4, with 3 observations available,
and (if deemed appropriate) one can use A(n)© with the
three sub-categories now functioning as main cate-
gories, in which case the lower and upper probabili-
ties for events involving Ỹ4 are easily derived using (9)
and (10). Generally, the lower and upper probabilities
for Ỹ4 derived in this manner are not proportional to
those for the corresponding events involving Y10 and
based on all 9 observations, before taking the infor-
mation Y10 = B into account. Although this is not a
surprise due to the complex general nature of condi-
tional lower and upper probabilities, detailed study of
properties of such conditioning within the CA model
is an important topic for future research.
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Abstract

We consider two basic aspects of juries that must de-
cide on guilt verdicts, namely the size of juries and
their composition in situations where society consists
of sub-populations. We refer to the actual jury that
needs to provide a verdict as the ‘first jury’, and as
their judgement should reflect that of society, we con-
sider an imaginary ‘second jury’ to represent society.
The focus is mostly on a lower probability of a guilty
verdict by the second jury, conditional on a guilty
verdict by the first jury, under suitable exchangeabil-
ity assumptions between this second jury and the first
jury. Using a lower probability of a guilty verdict nat-
urally provides a ‘benefit of doubt to the defendant’
robustness of the inference. By use of a predictive
approach, no assumptions on the guilt of a defendant
are required, which distinguishes this approach from
those presented before. The statistical inferences used
in this paper are relatively straightforward, as only
cases are considered where the lower probabilities ac-
cording to Coolen’s Nonparametric Predictive Infer-
ence for Bernoulli random quantities [5] and Walley’s
Imprecise Beta Model [24, 25] coincide.

Keywords. Imprecise Beta Model, lower probability,
Nonparametric Predictive Inference, representation of
sub-populations.

1 Introduction

In law, the use of juries is often regarded as a natu-
ral manner for reaching a verdict, mostly used when a
defendant is charged with a serious crime. In such sit-
uations, there is typically uncertainty about the guilt
of the defendant, and most civilized societies only
wish to convict the defendant if there is considered
to be very strong evidence that the defendant com-
mitted the crime: in case there is remaining doubt,
the defendant should normally be given the benefit
of the doubt, and should not be convicted. Due to
the presence of uncertainty, it is natural that proba-

bilistic and statistical methods have been used to an-
alyze several theoretical aspects of juries (e.g. [11]),
and of uncertainty in law more generally (e.g. [12]).
During a trial, an enormous amount of information is
typically presented to a jury. Such information may
consist of many facts brought alight, with different
emphasis on their relevance and circumstances under
which these facts did or might have occurred (or not),
and the manner in which this all is presented can be
very confusing to members of the jury. Clearly, this
makes it difficult to translate all such information into
suitable data for a statistical approach based on a
full model, and the one-off nature of specific court
cases appears to prevent a classical frequentist sta-
tistical approach to support jurors in reaching a ver-
dict. From a Bayesian perspective, it would be ex-
tremely difficult to provide a detailed model a priori,
as one would have to foresee all possible information
that might appear in a court case, in the right order
(as e.g. the defence will often adapt its strategy to
counter arguments presented by the prosecutor), and
based on detailed expert judgements (as, effectively,
only one realization of the whole process is actually
observed, so any prior information is likely to remain
influential). Of course, some aspects of ‘uncertainty in
law’ have been discussed frequently, e.g. the so-called
‘prosecutor’s fallacy’, which is a mistake due to confu-
sion of conditional probabilities [1]. If one would wish
to use Bayesian statistical reasoning to decide on a
defendant’s guilt, one would also require prior prob-
abilities on his guilt. It would not only be very dif-
ficult to assess such prior probabilities meaningfully,
but any explicit quantification of a juror’s prior beliefs
that the defendant is guilty would be considered to be
highly inappropriate. Jurors are typically not trained
in law, statistics or probability, so such an approach
would be deemed to fail even if suggested. It is, there-
fore, very difficult to even consider a suitable general
way in which statistics could assist jurors with their
possibly very difficult task, namely that of deducing
whether or not the defendant is guilty on the basis of



all evidence presented.

In this paper, we are certainly not attempting the
impossible. However, we emphasize the complexity
of the use of statistical methods to support jurors on
deciding their verdict, as any such use of statistics
is explicitly absent in the approach presented in this
paper. We do not propose a method for quantifying
a ‘level of certainty about guilt’, and we do not re-
quire any prior thoughts about the defendant’s guilt.
We focus our attention on juries, and we study size
of juries from a novel perspective, from which we also
consider composition of juries if a population consists
of recognized sub-populations. The main novelty in
our approach is that nowhere any assumptions are
made about the defendant’s guilt, and also no attempt
is made to model the complex stream of information
jurors have to consider during a process. By consid-
ering a predictive criterion, which is introduced and
explained in Section 2, we can still comment mean-
ingfully on appropriateness of jury sizes from a theo-
retical perspective. It is important to emphasize here
that we do not take practicalities of the processes used
by juries to reach an overall verdict into account [14],
we assume throughout this paper that each juror takes
the evidence presented into account and reaches a de-
cision without conferring with other jurors. Actually,
our approach even allows the latter to take place, but
as outcomes of such deliberations might depend on
particular personality characteristics of individual ju-
rors, it would make the appropriateness of the key
exchangeability assumption underlying our approach
(Section 2) less clear.

Section 2 provides a short discussion of a typical sta-
tistical method for inference on jury verdicts and jury
size, as presented in the literature. Then it presents
the main criterion and assumptions underlying our
novel approach, as well as the results of our approach
on jury size. In Section 3 we show how this approach
can be used to decide on optimal representations of
‘independent’ sub-populations in a jury, our approach
as presented here also has some attractive features
when compared to e.g. statistical methods for strati-
fied sampling, which we will discuss briefly in Section
4 together with some further comments. Throughout
this paper, uncertainty is quantified via lower and up-
per probabilities, where it is particularly attractive to
use lower probabilities as, for the events considered,
these effectively ‘give the benefit of doubt’ to the de-
fendant. As we only consider a relatively straightfor-
ward statistical model with lower and upper probabil-
ities, we use these without many further comments.
For the events considered, lower and upper proba-
bilities from Coolen’s Nonparametric Predictive In-
ference for Bernoulli random quantities [5] coincide

with those from Walley’s Imprecise Beta Model [24],
which is the special case of Walley’s Imprecise Dirich-
let Model for the situation with only two categories
[25]1.

2 Jury size

Friedman [11] discusses different jury sizes and criteria
for convictions, focussing on 12 jurors, with either a
12-out-of-12 or 10-out-of-12 criterion (the latter lead-
ing to a guilty verdict if supported by at least 10 of the
12 jurors), and on 6 jurors (6-out-of-6). He empha-
sizes that his analysis is not based on whether or not
a person is actually guilty, and he also does not make
any assumptions about guilt. Instead, he focusses on
the degree to which the person appears to be legally
guilty or the inverse, the degree to which he can de-
fend himself. Friedman suggests that this appearance
of guilt may be considered as equivalent to the proba-
bility that an individual juror would consider the de-
fendant guilty, and assumes that the defendant affects
each of the jurors equally and independently. This al-
lows the use of the Binomial distribution, for given
number of jurors and given degree of apparent guilt,
to calculate the probability of conviction. Friedman
then considers the probability of conviction as a func-
tion of this degree of apparent guilt, and discusses
some characteristics of several jury systems from this
perspective. Clearly, the unanimous 12-out-of-12 sys-
tem has a relatively low probability of conviction for
values of the degree of apparent guilt which are not
close to 1. Friedman’s discussion is in well-known sta-
tistical terms of errors of Type I, i.e. conviction of in-
nocent individuals, and errors of Type II, i.e. failure
to convict guilty individuals. This discussion is some-
what informal due to the change from assumed (non-)
guilt to degree of apparent guilt. Friedman mentions
that this statistical model is based on the assumption
that all jurors are unbiased and equivalent in their
perception. He briefly discusses the possibility of an
atypical juror, which may be a strong argument in
favour of jury systems that do not require unanim-
ity. Essential in this approach is the introduction of
a parameter, φ say, which, although not directly ob-
servable, is assumed to have a meaningful and unam-
biguous interpretation, in Friedman’s work it is the
degree of apparent guilt and φ ∈ [0, 1], with φ = 0
meaning that the defendant is certainly not guilty, in
the sense that his innocense is absolutely certain to
every juror, and φ = 1 meaning that every juror is
absolutely certain of the defendant’s guilt.

1For Walley’s model, the value of a further parameter s in
the notation of [25] must be chosen: throughout this paper we
set s = 1 without further mentioning, as this is the value for
which the lower and upper probabilities for the events consid-
ered coincide with those from Coolen’s NPI approach.



Bayesian methods in statistics provide a framework
for dealing with uncertainty about parameters in a
consistent manner, namely by expressing subjective
beliefs about such parameters, for an assumed statis-
tical model, via prior probability distributions, which
are then combined with observed data to give the pos-
terior probability distribution of the parameters. In
many situations this seems highly sensible, although
it does explicitly require information about the pa-
rameters to be taken into account. Clearly, with the
parameter used by Friedman, representing the de-
fendants degree of apparent guilt, it may be a far
from trivial task to model subjective beliefs about
this parameter via a probability distribution. Never-
theless, it might be considered attractive to attempt
a Bayesian approach to problems on adequate jury
size and composition, with a parameter representing
either the defendant’s guilt, or Friedman’s ‘appear-
ance of guilt’. However, in addition to the need for a
prior distribution on such a parameter, any such an
approach would require further assumed probabilities,
namely for the variety of events which can be summa-
rized as ‘juror gives correct judgement’. Not only is
it extremely difficult to have meaningful information
on such events, let alone to quantify the uncertainty
about them, these events are also (normally) unob-
servable and any assigned probability values will be
influential on the overall inferential results.

In this paper, we present a different approach to con-
siderations of jury size, and jury composition (Section
3). Let us consider the main reason for the very exis-
tence of a jury: it is assumed to represent the popula-
tion in the sense that its final verdict should, ideally,
be in line with that of ‘the population’, if ‘the popula-
tion’ were confronted with the same information from
the whole process. Of course, it is difficult to formu-
late any such a ‘verdict of an entire population’, we
propose the following solution. Throughout this pa-
per, we will refer to the actual jury as JA, and we
consider a second, imaginary jury JI, also selected
from the general population in a similar manner as
JA. We now study aspects of JA by making some
suitable exchangeability assumptions, and consider-
ing predictive inferences on JI’s verdict based on in-
formation from JA’s verdict. In particular, we will
consider the lower probability of a guilty verdict by
JI, given a guilty verdict by JA. We discuss this
idea in more detail at the end of this section, we first
develop the idea further and consider its implications
for jury size considerations.

A first possible approach would be to assume ex-
changeability at the level of the juries, which may be
most natural if JA and JI consist of the same num-
ber of jurors and the same conviction rule (required

number of jurors’ guilty votes to provide an overall
jury guilty verdict) applies for both. In this setting,
the precise conviction rule is of no actual relevance.
We consider the JA verdict as one observation of a
Bernoulli random quantity, and the JI verdict as a
second Bernoulli random quantity which we wish to
predict, and which we assume to be exchangeable with
the JA verdict. Let us denote a guilty verdict of JA
(JI) by JA−G (JI−G). Both Coolen’s NPI approach
for Bernoulli random quantities [5], and Walley’s IBM
[24, 25] give P (JI − G|JA − G) = 1/2, which does
not provide much useful insight in this setting, and
is certainly not very strong evidence that ‘the pop-
ulation’ would consider the guilty verdict appropri-
ate. Of course, by conjugacy the corresponding upper
probability of a not-guilty verdict by JI is 1/2, so one
could argue that this would support a guilty verdict
as a fair representation of the population’s judgement
in such a case, but as it is generally accepted (in soci-
eties that like to consider themselves ‘civilized’) that a
defendant is only convicted in case of strong evidence,
and hence that the defendant should get the benefit
of the doubt, this result based on assumed exchange-
ability at the jury level does not appear to be strong
enough as a basis for decisions. For completeness, let
us also mention the corresponding upper probability
P (JI − G|JA − G) = 1, which seems logical in such
cases where there is no evidence in the available data
(here the single observation JA − G) that there has
to be any level of doubt about the defendants guilt.

A logical alternative approach to this problem is by
focussing on the votes of individual jurors, and to as-
sume exchangeability between jurors in JA and jurors
in JI. From here on, we assume such exchangeability
at the level of individual jurors. Focussing on indi-
vidual jurors’ votes, it becomes important to consider
the conviction rule applied. From a mathematical per-
spective, it might be of interest to study all conviction
rules that can be defined, in relation to real-world law
scenarios it makes sense to restrict attention to k-out-
of-K rules (with k > K/2), where the jury verdict is
‘guilty’ if at least k of the K jurors vote ‘guilty’. Ac-
tually, we will focus on the unanimity conviction rule
(k = K) for guilty verdicts of JA. It will be rele-
vant, however, to consider more general k-out-of-K
rules for JI, as we use JI to reflect the population at
large, and as such it might for example be of interest
to know the lower probability that JI would reach a
guilty verdict under a specific conviction rule, given
that the jurors in JA voted ‘guilty’ unanimously. For
even wider flexibility, we will consider scenarios un-
der which JA and JI are not required to consist of
the same number of jurors, with n jurors in JA and
m jurors in JI. It should be emphasized here that
n = 12 is the present situation in many jury systems,



although studies of effectiveness of juries consisting
of 6 or 8 jurors have been reported [9, 20, 23]. We
will discuss below what unanimous guilty verdicts of
juries JA of some sizes other than 12 imply for juries
JI.

Coolen [5] derived and justified the following general
results for nonparametric predictive inference (NPI)
for m + n exchangeable Bernoulli random quantities.
Suppose that we have a sequence of n + m exchange-
able Bernoulli trials, each with ‘success’ and ‘failure’
as possible outcomes, and data consisting of s suc-
cesses in n trials. Let Y n

1 denote the random number
of successes in trials 1 to n, then a sufficient represen-
tation of the data for our inferences is Y n

1 = s, due to
the assumed exchangeability of all trials. Let Y n+m

n+1

denote the random number of successes in trials n+1
to n + m. Let Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1
and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of no-
tation, let us define

(
s+r0

s

)
= 0. Then the NPI-based

upper probability for the event Y n+m
n+1 ∈ Rt, given

data Y n
1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =
(

n + m

n

)−1

×

t∑
j=1

[(
s + rj

s

)
−

(
s + rj−1

s

)] (
n− s + m− rj

n− s

)
The corresponding lower probability is derived via the
conjugacy property

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s)

where Rc
t = {0, 1, . . . ,m}\Rt.

For the setting in the current paper, we are only con-
sidering data consisting of a unanimous guilty verdict
of JA, so s = n, in which case we will denote Y n

1 = n
by (n, n), and the event that there are at least y suc-
cesses in the following m observations, so Y n+m

n+1 ≥ y
for which we will use the notation Ym ≥ y, leading to
NPI lower probability, for y = 0, 1, . . . ,m

P (Ym ≥ y|(n, n)) = 1− (n + y − 1)!m!
(y − 1)!(n + m)!

(1)

The corresponding upper probability is equal to 1,
which is fully in line with intuition yet of little rele-
vance for the rest of this paper. For Walley’s impre-
cise Beta model [24], which is the special case of his
Imprecise Dirichlet Model with only 2 categories [25],
the lower probability for this event is identical to (1).
This also coincides with the ‘cautious’ or ‘conserva-
tive’ Bayesian inference advocated by Hartigan [17]
for such cases. It should be emphasized that Coolen’s
NPI and Walley’s imprecise Beta model do not gener-
ally give identical upper and lower probabilities, with

Coolen’s NPI leading to slightly more imprecision for
many events, due to the fact that it only assumes ex-
changeability of the m+n random quantities involved
whereas Walley’s approach stays close to the robust
Bayes framework [3], using a Binomial model which
requires assumed embedding in an infinite sequence
of such exchangeable random quantities [10].

For our jury problem, with the n jurors in JA all vot-
ing guilty and m jurors in JI, (1) provides the lower
probability (according to NPI and Walley’s model)
that JI would also reach a guilty verdict under a
y-out-of-m rule. If m = n and y = m, so JI also
requires a unanimous guilty vote to reach a guilty
verdict, with JI and JA having the same number
of jurors, then this lower probability is 1/2. This
is naturally in agreement with the situation, briefly
described above, where only exchangeability at jury
level is assumed, which holds of course here due to
the assumed exchangeability of jurors, and the same
number of jurors and conviction rules for JA and JI
in this situation2. More generally, if we assume that
unanimity is also required for a guilty verdict of JI
(so y = m), but we do not restrict the value of m,
then the lower probability (1) is equal to n/(n + m),
which is increasing in n and decreasing in m, also in
line with intuition.

Let us consider some numerical values of (1) for situa-
tions of relevance to our discussion on jury size. These
values are explicitly given in the text below, and to
aid the discussion they are also presented in Table 1.

n = 12, m = 12:

y = 11 10 9 8 7
P = .761 .891 .953 .981 .993

n = 6, m = 6:

y = 5 4
P = .773 .909

n = 6, m = 12:

y = 8 7
P = .908 .950

n = 24, m = 24:

y = 23 20 13
P = .755 .975 .99996

n = 24, m = 12:

y = 7
P = .9995

n = 12, m = 100:

y = 100 99 95 51
P = .107 .204 .502 .9995

Table 1: Some values of P = P (Ym ≥ y|(n, n)))

2For simplicity, we assume here that the unanimity rule ac-
tually applied for JA: if this is not the case, then one might
not learn the exact number of jurors in JA that voted ‘guilty’
- both NPI and Walley’s method can, of course, also deal with
information that would appear in such cases, but we do not
discuss this explicitly in this paper.



First of all, for m = n = 12, these lower probabili-
ties for the values y = 11, 10, 9, 8, 7 are 0.761, 0.891,
0.953, 0.981, 0.993, respectively. This means that, if
a 12-person jury JA reaches a unanimous guilty ver-
dict, then the lower probability that the majority of
members of a second 12-person jury, with all 24 in-
dividual jurors involved assumed to be exchangeable
(with regard to their individual votes - a further dis-
cussion of this assumption is provided near the end
of this section), would have reached the same guilty
verdict, is very high indeed (0.993). One can inter-
pret this as a reflection of the strength of evidence
of the information in the JA guilty verdict. However,
one could argue that, ideally, a substantial majority of
the population should (be expected to) agree with the
guilty verdict, so perhaps the values 0.891 (for y = 10)
or 0.953 (y = 9) are more natural to focus on. As
mentioned above, several studies have focussed, both
from theoretical and practical perspectives, on juries
of smaller sizes, in particular 6-person juries have been
considered [9, 20, 23]. For the case where both JA and
JI are 6-person juries, so with m = n = 6, the lower
probability (1) is equal to 0.773, 0.909 for y = 5, 4,
respectively. So, the unanimous guilty vote of the 6-
person jury JA now only implies a lower probability
of 0.909 for the event that a majority of the 6-person
jury JI would agree with this verdict, which is a sub-
stantial reduction from the 0.993 for the correspond-
ing lower probability if both JA and JI consisted of
12 persons. Another method that could be used to
compare actual jury sizes 12 and 6, is by considering
the lower probability (1) for n = 6, but with m = 12
and y = 7, which is equal to 0.950. However, due
to the discrete nature of these events comparisons are
slightly complicated, as m = 6 and y = 4 more nat-
urally relates to the case with m = 12 and y = 8,
for the latter (still with n = 6) the lower probabil-
ity (1) is equal to 0.908, which is very close to the
0.909 for the former case. Studies of the performance
of juries of size 6 are mostly initiated by practical as-
pects of 12-person juries, unfortunately also including
considerations of costs. From such a perspective, the
increased risk of getting a JA guilty verdict under the
unanimity rule for a 6-person jury, which would not
be in line with the verdict of the majority of the larger
population, and when compared to a 12-person jury,
might need to be balanced with such cost consider-
ations, although this would involve consideration of
utilities at a level that many might find ‘unethical’
to do explicitly as it would require balancing between
utilities of an individual (the defendant) and of soci-
ety at large.

It is also interesting to see what could be gained, in
terms of the lower probability (1), by doubling the
JA size to n = 24. For m = 24, (1) is equal to 0.755

for y = 23, 0.975 for y = 20 and 0.99996 for y = 13,
while for m = 12 the lower probability of a majority of
JI jurors agreeing with the guilty verdict (so y = 7)
is equal to 0.9995 (which one may wish to compare
to the corresponding values, as mentioned above, of
0.993 and 0.950 for n = 12 and n = 6, respectively).

When considering the role of JI in representing the
society at large, one can also argue that a substan-
tially larger value of m would be appropriate. In
Section 3, when considering jury composition in case
of a population consisting of subgroups, we will find
the use of size m = 100 for JI convenient. For the
current scenario, m = 100 leads, for n = 12, to
the following values for the lower probability (1): for
y = 100, 99, 95, 51 we get 0.107, 0.204, 0.502, 0.9995,
respectively. Notice that this lower probability for
y = 51, reflecting that a majority of JI will vote
guilty given the unanimous guilty vote of the 12 ju-
rors in JA, is greater than the corresponding lower
probabilities for a majority of guilty votes in JI in
the situations discussed above, with smaller values of
m. Of course, for increasing m, NPI [5] requires an
exchangeability assumption over an increasing num-
ber of random quantities. This raises the question of
what happens if m → ∞. For a meaningful answer,
let us consider the limit of the right-hand side of (1)
with y = θm for 0 < θ ≤ 1:

lim
m→∞

(
1− (n + θm− 1)!m!

(θm− 1)!(n + m)!

)
= 1− θn (2)

In this limiting situation (see [5] for a similar argu-
ment), the exchangeability assumption in NPI be-
comes ‘infinite exchangeability’, for which case De
Finetti’s Representation Theorem [10] shows that one
could represent the random quantities involved as
conditionally independent given a parameter, where
the parameter is also a random quantity. One might
see parallels between such a parameter and the above
θ, but they are different, as our θ only has a meaning
in the predictive inference considered, that is to spec-
ify events of interest, and is not considered to be an
unknown property of the infinite sequence of future
observations considered in this inference. Our infer-
ences do not require the use of a prior distribution for
θ, which would necessarily have required additional
assumptions which we try to avoid. This limit 1− θn

of P (Ym ≥ θm|(n, n)) is decreasing in θ, which makes
immediately clear that θ should not be interpreted as
a limit for the proportion of guilty votes for the m
jurors considered in JI. For illustration, this limiting
lower probability (2) is given in Table 2, for some val-
ues of n and θ. Although these limiting values provide
some insight, we find the actual inferences quite con-
fusing as populations from which juries are selected
will never be of infinite size, so restricting attention



to JI of smaller sizes, as discussed above, seems more
in line with intuition.

n θ = 0.50 0.75 0.90 0.95 0.99

6 0.9844 0.8220 0.4686 0.2649 0.0585
12 0.9998 0.9683 0.7176 0.4596 0.1136
24 1.0000 0.9990 0.9292 0.7080 0.2143

Table 2: Some limiting lower probabilities (2)

Before we consider corresponding inferences on ap-
propriate representative subgroups of different sub-
populations (Section 3), we discuss the underlying ex-
changeability assumption between jurors in a bit more
detail, also from the perspective of NPI [5] and Hill’s
assumption A(n) which is implicit in NPI.

It seems sensible to assume exchangeability of the in-
dividual jurors in JA and JI, as we did above (apart
from the first considerations, when we only assumed
exchangeability of the two juries JA and JI). For
NPI [5], this exchangeability is actually assumed with
regard to an assumed underlying representation of the
Bernoulli random quantities which is very similar to
the representation used by Thomas Bayes [2]. It is
assumed that, corresponding to the Bernoulli ran-
dom quantities, there are real-valued random quan-
tities which are not observable, but which are so that
if they exceed an unknown threshold they are ‘suc-
cesses’, else they are ‘failures’. Coolen’s NPI for
Bernoulli data [5] uses this representation together
with Hill’s assumption A(n)

3, which effectively for
this real-valued setting is a ‘post-data exchangeabil-
ity’ assumption, meaning that the exchangeability as-
sumption on n + m random quantities still holds, for
as far as prediction of m random quantities is con-
cerned, once the values of the first n are known. This
representation might be quite appropriate in a jury
setting, as one could consider an underlying process
where each individual juror reaches a conclusion on
the strength of their believe in the guilt of the con-
victed person, and compares this strength to an indi-
vidual ‘guilt threshold value’ to reach the individual
vote. For the exchangeability assumption used in our
approach, one could assume that the differences be-
tween each individual’s strength of believe in guilt and
corresponding individual guilt threshold value would
be the unobservable real-valued random quantity in
the assumed representation underlying NPI. Hence,
we do not need to assume that all jurors would actu-
ally have the same guilt threshold value, nor that the
strengths of their beliefs of guilt must be comparable.
The fact that such concepts are not measurable in a
meaningful manner supports the appropriateness of

3We use the notation A(n) here generically, for inference
on m future observations the actual assumption made is, in
notation of Hill [18, 19] A(n+m−1), which also implies A(l) for
all l < n + m− 1 [5].

A(n) in this setting [6, 18, 19], as one never gets infor-
mation that could be used to counter the underlying
exchangeability assumption.

The question whether or not the exchangeability as-
sumption is really appropriate here is quite subtle. It
is again important to emphasize that we only assume
exchangeability of the m and n jurors in JA and JI,
which is reasonable if we have no specific informa-
tion on these individuals and if we would assume that
jurors in JI would be selected from the large popula-
tion by the same process as used to select the jurors in
JA. This, however, might not imply that these jurors
are exchangeable with all members of the population,
as the selection process is likely to favour or exclude
some in the population. However, we believe that this
issue is inherent to any selection procedure for juries,
and therefore to any legal system that uses juries, and
we consider it an advantage that our method does not
actually need to assume such exchangeability between
all members of society (the above discussion involv-
ing the limit for m → ∞ was included more for its
theoretical value than for its real-world relevance).

At the beginning of this section, we reviewed the ap-
proach by Friedman [11], which in a classical statisti-
cal manner focusses on errors of Type I and Type II
for jury verdicts, and which makes clear the inherent
difficulty when representing the defendant’s guilt, or a
corresponding ‘degree of apparent guilt’, in the statis-
tical reasoning. The method presented in this section
does not make use of any of these concepts, and only
looks at jury verdicts under assumed exchangeability
of jurors, so it explicitly does not add any assumption
or inference on whether or not the jury is correct. It
is important to emphasize this, as many might con-
sider this a disadvantage. However, in most individ-
ual situations it will by the nature of court cases not
be known whether or not the defendant is guilty, and
avoiding any attempt to quantify beliefs about actual
(or apparent) guilt seems to simplify the discussion in
a straightforward and fair manner. Of course, meth-
ods such as Friedman [11] presented have their merits,
but we believe that our method provides useful addi-
tional insights and possible arguments on appropriate
jury sizes. We have only considered our approach un-
der assumed unanimous guilty verdicts by JA. The
approach is easily extended to also consider more gen-
eral k-out-of-K conviction rules for JA, but as we
have no ambition to propose, or even consider, an op-
timal rule, we do not address such different rules for
JA further in this paper.



3 Jury composition

In this section, we briefly consider the interest-
ing question of how to select representative juries
from populations that consist of known separate sub-
populations, where we assume independence of these
sub-populations with regard to the individual ver-
dicts of jurors from different sub-populations. We as-
sume that the number and (relative) sizes of the sub-
populations are known, and also that for each mem-
ber of the population the sub-population to which
they belong is known. We use the same general ap-
proach as in Section 2, with the actual jury JA and
the imaginary jury JI, where the use of JI provides
a convenient way for taking the relative sizes of the
sub-populations into account. We assume that the
individual verdicts of jurors belonging to the same
sub-population are exchangeable, as before, and per
sub-population we use the same lower (and upper)
probabilities as in Section 2. In most of this section,
we consider only two sub-populations. For more sub-
populations, the general conclusion remains valid.

Let the two sub-populations be denoted by A and B,
with pA ∈ (0, 1) the proportion of the whole popu-
lation that belongs to A. Let jury JA consist of nA

jurors from A and nB from B, with nA + nB = n,
and jury JI of mA jurors from A and mB from B,
with mA + mB = m. An intuitive way to choose
the numbers of jurors from each sub-population in
JA, assuming that n has already been chosen, is by
taking nA as close as possible to pAn, so to achieve
proportional representation of the sub-populations in
JA. However, if again we consider the jurors as rep-
resentatives of the population, and hence of the sub-
populations, this choice might not be optimal from a
similar perspective as used in Section 2, namely when
considering the lower probability that a second jury
JI would also provide a guilty verdict if JA does so.
A natural manner in which to reflect the relative sizes
of the sub-populations is by choosing (approximately)
the same proportions for the numbers of representa-
tives in JI, as throughout our approach the role of
the imaginary jury JI is to reflect the larger popula-
tion. We saw in Section 2 that the actual choice of
the size m of JI affects the predictive inferences of in-
terest, but as we just want to introduce our approach
for this setting, we will use m = 100 for illustrations
in this section. So JI will be assumed to consist of
100pA (rounded to nearest integer to give mA) jurors
from A, and mB = 100−mA jurors from B. For this
JI, which clearly reflects the sub-populations, we now
wish to choose nA and nB , under the assumption that
nA +nB = n and n is predetermined, such that a ver-
dict of guilty by JA leads to maximum lower prob-
ability of a guilty verdict by JI. In this paper, we

only consider unanimity conviction rules for both JA
and JI in this situation, the approach is easily gener-
alized to more general conviction rules for JA, JI or
both. Due to the assumed independence of individual
jurors’ verdicts between jurors from JA and from JI,
the lower probability of the event that all mA + mB

jurors in JI vote guilty, given all nA + nB jurors in
JA voted guilty (and under the same exchangeability
assumptions per sub-population as used throughout
this paper), is equal to

nA

nA + mA
× nB

nB + mB

By a basic exercise one can derive a general expression
for the optimal choices of nA and nB which achieve the
maximum value for this lower probability, but these
do not provide much general insight, apart from the
fact that the optimal fraction nA/n is equal to 1/2 if
pA = 1/2 (this is of course logical by symmetry), but
will be closer to 1/2 than pA is in all other cases. In
other words, the smaller of the two sub-populations
will relatively be over-represented in JA, of course
with this all under the constraint due to the discrete
nature of nA and the fact that n is likely to be small.
For example, the optimal number nA in a n = 20 per-
son jury JA, for m = 100 (under the unanimity con-
viction rule for both juries), is equal to 8 for pA = 0.1,
9 for pA = 0.2 and for pA = 0.3, and 10 for pA = 0.4
and for pA = 0.5. The optimal values of nA for pA

greater than 1/2 follow by symmetry. It might be con-
sidered to be remarkable that, for pA = 0.1 and the
imaginary jury JI consisting of 100 jurors (so 10 from
A and 90 from B), nA = 8 and nB = 12 would give
the optimal 20-person jury according to this predic-
tive criterion. The lower probability optimised here
is actually pretty robust if one varies nA a little from
this optimum, but it is substantially larger than if
one would only select 2 jurors from A and 18 from B
(‘proportional representation’), namely 0.0523 versus
0.0278 for the latter case. Of course, these lower prob-
abilities are pretty small as m is quite large, but if one
relaxes the conviction rule for JI, similar results are
achieved. Overall, this over-representation of smaller
sub-groups is not really surprising, as the additional
information from an extra juror added to a small num-
ber of jurors for a particular subgroup, in terms of the
predictive power of the total information, is stronger
than the corresponding information lost by reducing
a larger number of jurors for the different subgroup
accordingly.

We do not wish to provide a more detailed study of
this approach to decisions on jury composition, as the
main goal here is the introduction of this criterion us-
ing the predictive lower probability of a guilty verdict
by JI, given a guilty verdict by JA, and to emphasize



the attractive role of JI in representing the popula-
tion. Naturally, there are many related topics that
can be studied, and for some of these we did some
preliminary analyses and calculations. For example,
in the situation of two sub-populations, the influence
of particular choices of m and n can be considered
(the over-representation of the smaller sub-population
to achieve optimality holds generally), and more gen-
eral conviction rules can also be studied. We calcu-
lated several cases, only relaxing the conviction rule
of JI, and the over-representation of the smaller sub-
population was always present, be it to a lesser extent
than for the unanimity rule for JI. For example, cor-
responding to the case discussed above with m = 100
and n = 20, if we use the 97-out-of-100 rule for convic-
tion by JI, then for pA = 0.1 the optimal nA is equal
to 6 (instead of 8 for unanimity as discussed above).
This effect seems logical, as the loss of detailed infor-
mation about the sub-population A is less likely to
have a substantial influence on JI’s overall verdict in
the latter situation. We also performed some calcula-
tions for three sub-populations, in which case also the
smallest (largest) sub-population is over-represented
(under-represented) in the optimal jury composition.
For example, again with n = 20 and m = 100, if
sub-populations A, B and C consist of 10, 10 and
80 percent of the population, then the optimal rep-
resentations are 6, 6 and 8, respectively, under the
unanimity conviction rule for both juries JA and JI.

4 Concluding remarks

There is a considerable literature on the use of statis-
tical methods in relation to aspects of law, including
attention to specific problems involving juries which
particularly received much attention in the seventies
[9, 11, 13, 14, 15, 16, 23]. In addition to these mostly
theoretical studies on jury size and conviction rules,
there are also many studies of actual jury behaviour,
see for example Ellsworth [8] who reports on a de-
tailed observational study with attention to a vari-
ety of practical aspects, consideration of which goes
far beyond the theoretical goals of the current pa-
per. However, the use of lower and upper probabili-
ties [24, 26, 27] in law scenarios is, unfortunately, still
pretty rare, whereas it provides an attractive method
to deal with the ‘benefit of doubt to the defendant’ is-
sue which in law seems to be quite generally accepted,
and more appealing than perhaps in many other ar-
eas where uncertainty is quantified to enable infer-
ence and decision making. In the discussion to Wal-
ley’s paper which introduced the Imprecise Dirichlet
Model [25], one discussant remarked that the first ever
recorded use of lower and upper probability was actu-
ally in a law problem, by Ostrogradsky. The current

authors have not been able to verify this claim, yet
it is of interest to mention that Ostogradsky [21, 22]
did consider two types of judge (‘juror’ in our ter-
minology), namely ‘condemning judges’ and ‘acquit-
ting judges’, and assumed different probability distri-
butions for these, considering the propensity to ren-
der a guilty verdict when the person on trial is ac-
tually innocent. He then proceeded to calculate the
probability of erroneous majority judgement, and us-
ing the ‘principle of insufficient reason’ for the prior
probability of guilt, he showed that this probability
of erroneous majority judgement only depends on the
difference between the numbers of condemning and
acquitting judges involved. Although this does not
involve, neither explicitly nor in its nature, lower and
upper probabilities, the idea to study the influence on
different-natured jurors would be of interest to also
study from our perspective, although it could not be
embedded naturally in an NPI approach as such juror
characteristics would typically not be observable.

The major contributions of this paper are the novel
use of an imaginary ‘second’ jury JI to represent
the larger population in a predictive statistical frame-
work, with the corresponding opportunity to study
appropriateness of real jury (JA) sizes and conviction
rules, and the fact that the inferences do not make any
assumptions on actual (or apparent) guilt of the de-
fendant and also do not even attempt to conclude on
such guilt. This work can be extended in many ways,
most clearly of course by studying other conviction
rules for JA, JI or both. In Section 3, the predictive
approach was suggested for decisions on appropriate
representations of sub-populations. This problem can
also be considered from the classical perspective of
‘stratified sampling’ [4], where one often uses criteria
considering the overall variance of a random outcome.
The predictive approach presented here is an attrac-
tive alternative to classical stratified sampling, and
could be studied in detail for more general sampling
scenarios.

This approach could also allow an alternative to tra-
ditional Type I and Type II errors, with the former
formulated as the event that JI would not convict the
defendant when JA does reach a guilty verdict, and
the latter as the event that JI would convict the de-
fendant when JA does not. One would be particularly
interested in the upper probabilities for these events.
In this paper we have focussed on the lower probabil-
ity of a guilty verdict by JI, given a guilty verdict by
JA, which would correspond via the conjugacy prop-
erty to the upper probability of a Type I error, if the
latter was defined as suggested. We have not con-
sidered the Type II error, but we acknowledge that
detailed study of its upper probability could provide



useful insights into this predictive approach to issues
related to juries. The goal of this paper was not to
present such a detailed study, but to propose a new
approach to a classical theoretical problem. The pa-
per was also not aimed at specific real-world jury sce-
narios, where far more complicated issues often play
a role. Nevertheless, we believe that the results from
this theoretical exercise can provide new insights into
practical issues related to the use of juries.

In a study of jury size and composition, one might
expect a general conclusion on ‘best choices’. We do
not pretend to be well placed to give such advice, as
our only ambition has been to introduce a novel man-
ner for study of jury size and composition that has
the advantages described above. Practical limitations
make it unlikely that jury sizes in law would increase,
and of course from the perspective of the defendant it
seems best (under the jurors’ exchangeability assump-
tions) to have the maximum possible number of jurors
and the strictest conviction rule. However, although
we addressed this problem from the perspective of ju-
ries in law, a similar approach can be used for other
decision problems involving representative groups. If
there is not such a clear direction in which ‘benefit of
doubt’ should be applied, one may wish to take both
lower and upper probabilities into account, but even
then the predictive approach proposed in this paper
appears to provide sufficient promise to warrant fur-
ther study.
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Abstract
We give an overview of two approaches to probability the-
ory where lower and upper probabilities, rather than proba-
bilities, are used: Walley’s behavioural theory of imprecise
probabilities, and Shafer and Vovk’s game-theoretic ac-
count of probability. We show that the two theories are
more closely related than would be suspected at first sight,
and we establish a correspondence between them that (i)
has an interesting interpretation, and (ii) allows us to freely
import results from one theory into the other. Our approach
leads to an account of immediate prediction in the frame-
work of Walley’s theory, and we prove an interesting and
quite general version of the weak law of large numbers.

Keywords. Game-theoretic probability, imprecise prob-
abilities, coherence, conglomerability, event tree, lower
prevision, immediate prediction, Prequential Principle, law
of large numbers, Hoeffding’s inequality.

1 Introduction

In recent years, we have witnessed the growth of a num-
ber of theories of uncertainty, where imprecise (lower and
upper) probabilities and previsions, rather than precise (or
point-valued) probabilities and previsions, have a central
part. Here we consider two of them, Glenn Shafer and
Vladimir Vovk’s game-theoretic account of probability [18],
which is introduced in Section 2, and Peter Walley’s be-
havioural theory [20], outlined in Section 3. These seem
to have a rather different interpretation, and they certainly
have been influenced by different schools of thought: Wal-
ley follows the tradition of Frank Ramsey [10], Bruno de
Finetti [4] and Peter Williams [24] in trying to establish
a rational model for a subject’s beliefs in terms of her
behaviour. Shafer and Vovk follow an approach that is
strongly coloured by ideas about gambling systems and
martingales. They use Cournot’s Principle to interpret
lower and upper probabilities (see [17]; and [18, Chap-
ter 2] for a nice historical overview), whereas on Walley’s
approach, lower and upper probabilities are defined in terms
of a subject’s betting rates.

What we set out to do here, and in particular in Sections 4
and 5, is to show that in many practical situations, the two
approaches are strongly connected.1 This implies that quite
a few results, valid in one theory, can automatically be con-
verted and reinterpreted in terms of the other. Moreover,
we shall see that we can develop an account of coherent im-
mediate prediction in the context of Walley’s behavioural
theory, and prove, in Section 6, a weak law of large num-
bers with an intuitively appealing interpretation. We use
this weak law in Section 7 to suggest a way of scoring a pre-
dictive model that satisfies A. Philip Dawid’s Prequential
Principle [1, 2].

2 Shafer and Vovk’s game-theoretic
approach to probability

In their game-theoretic approach to probability [18], Shafer
and Vovk consider a game with two players, World and
Skeptic, who play according to a certain protocol. They ob-
tain the most interesting results for what they call coherent
probability protocols. This section is devoted to explaining
what this means.

G1. The first player, World, can make a number of moves,
where the possible next moves may depend on the
previous moves he has made, but do not in any way
depend on the previous moves made by Skeptic.

This means that we can represent his game-play by an
event tree (see also [14, 16] for more information about
event trees). We restrict ourselves here to the discussion of
bounded protocols, where World makes only a finite and
bounded number of moves from the beginning to the end
of the game, whatever happens. But we do not exclude
the possibility that at some point in the tree, World has the
choice between an infinite number of next moves.

1Our line of reasoning here should be compared to the one in [17],
where Shafer et al. use the game-theoretic framework developed in [18]
to construct a theory of predictive upper and lower previsions whose
interpretation is based on Cournot’s Principle. See also the comments
near the end of Section 5.
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Figure 1: A simple event tree for World, displaying the
initial situation �, other non-terminal situations (such as t)
as grey circles, and paths, or terminal situations, (such as
ω) as black circles. Also depicted is a cut of �, consisting
of the situations u1, u2, u3 and u4.

Let us establish some terminology related to World’s event
tree. A path in the tree represents a possible sequence
of moves for World from the beginning to the end of the
game. We denote the set of all possible paths ω by Ω, the
sample space of the game. A situation t is some connected
segment of a path that is initial, i.e., starts at the root of
the tree. It identifies the moves World has made up to a
certain point, and it can be identified with a node in the
tree. We denote the set of all situations by Ω♦. It includes
the set Ω of terminal situations, which can be identified
with paths. All other situations are called non-terminal;
among them is the initial situation �, which represents the
empty initial segment. See Figure 1 for a simple graphical
example explaining these notions.

If for two situations s and t, s is a(n initial) segment of
t, then we say that s precedes t or that t follows s, and
write s v t. If ω is a path and t v ω then we say that the
path ω goes through situation t. We write s @ t, and say
that s strictly precedes t, if s v t and s 6= t. Denote by
↑t := {ω ∈ Ω : t v ω} the set of all paths that go through t.
If we call any subset of Ω an event, then ↑t is the event that
corresponds to World getting to a situation t. It is clear that
not all events will be of the type ↑t.2

Any (partial) function on Ω♦ is called a process, and any
process whose domain includes all situations that follow
a situation t is called a t-process. A special t-process is
the distance d(t, ·) which for any situation s w t returns
the number of steps d(t,s) along the tree from t to s. In
the bounded protocols we are considering here, there is a
natural number D such that d(t,s)≤ D for all s w t.

Similarly, any (partial) function on Ω is called a variable,
and any variable on Ω whose domain includes all paths that
go through a situation t is called a t-variable. If we restrict
a t-process F to the set ↑t of all terminal situations that

2Shafer [15] calls events of this type exact. Further on, in Section 4,
exact events will be the only events that can be legitimately conditioned
on, because only they may occur as part of World’s game-play.

follow t, we obtain a t-variable, which we denote by FΩ.

Call a cut U of a situation t any set of situations that (i)
follow t, and (ii) such that for all paths ω through t [t v ω],
there is a unique u ∈U that ω goes through [u v ω]; see
also Figure 1. A set U of situations is a cut of t if and only
if the corresponding set {↑u : u ∈U} is a partition of ↑t. A
cut can be interpreted as a (complete) stopping time.

If a situation sw t precedes (follows) some element of a cut
U of t, then we say that s precedes (follows) U , and we write
s vU (s wU). Similarly for ‘strictly precedes (follows)’.
For two cuts U and V of t, we say that U precedes V if each
element of U is followed by some element of V .

A child of a non-terminal situation t is a situation that imme-
diately follows it. The set C(t) of children of t constitutes a
cut of t, called its children cut. Also, the set Ω of terminal
situations is a cut of �, called the terminal cut. ↑t is the
corresponding terminal cut of a situation t.

If U is a cut of t, then we call a t-variable g U-measurable
if for all u in U , g assumes the same value g(u) := g(ω) for
all ω that go through u. In that case we can also consider g
as a variable on U , which we can denote as gU .

If F is a t-process, then with any cut U of t we can as-
sociate a t-variable FU , which assumes the same value
FU (ω) := F (u) in all ω that follow u∈U . This t-variable
is clearly U-measurable, and can be considered as a vari-
able on U . This notation is consistent with the notation FΩ

introduced earlier. Similarly, we can associate with F a
new, U-stopped, t-process U(F ), as follows:

U(F )(s) :=

{
F (s) if t v s vU
F (u) if u ∈U and u v s.

The t-variable U(F )Ω is U-measurable, and is actually
equal to FU .

We call a move w for World in a non-terminal situation t any
arc that connects t to one of its children s ∈C(t), meaning
that s = tw is the concatenation of the segment t and the arc
w. World’s move space in t is the set Wt of those moves w
that World can make in t: Wt = {w : tw ∈C(t)}. We have
already mentioned that Wt may be infinite. But it should
contain at least two elements (otherwise there is no choice
for World to make).

We now turn to the other player, Skeptic. His possible
moves may well depend on the previous moves that World
has made, in the following sense. In each non-terminal
situation t, he has some set St of moves s available to him,
called Skeptic’s move space in t.

G2. In each non-terminal situation t, there is a (positive
or negative) gain for Skeptic associated with each of
the possible moves s in St that Skeptic can make. This
gain depends only on the situation t and the next move
w that World will make.



This means that for each non-terminal situation t there is
a gain function λt : St ×Wt → R, such that λt(s,w) repre-
sents the change in Skeptic’s capital in situation t when he
makes move s and World makes move w.

Let us introduce some further notions and terminology
related to Skeptic’s game-play. A strategy P for Skeptic is
a partial process defined on the set Ω♦ \Ω of non-terminal
situations, such that P(t) ∈ St is the move that Skeptic
will make in each non-terminal situation t. With each
such strategy P there corresponds a capital process K P ,
whose value in each situation t gives us Skeptic’s capital
accumulated so far, when he starts out with zero capital
and plays according to the strategy P . It is given by the
recursion relation

K P(tw) = K P(t)+λt(P(t),w), w ∈ Wt ,

with initial condition K P(�) = 0. Of course, when Skep-
tic starts out (in �) with capital α and uses strategy P ,
his corresponding accumulated capital is given by the pro-
cess α +K P . In the terminal situations, his accumulated
capital is then given by the real variable α +K P

Ω
.

If we start in a non-terminal situation t, rather than in �,
then we can consider t-strategies P that tell Skeptic how to
move starting from t, and the corresponding capital process
K P is then also a t-process, that tells us how much capital
Skeptic has accumulated since starting with zero capital in
situation t and using t-strategy P .

Assumptions G1 and G2 determine so-called gambling
protocols. They are sufficient for us to be able to define
lower and upper prices for real variables. Consider a non-
terminal situation t and a real t-variable f . Then the upper
price Et( f ) for f in t is defined as the infimum capital α

that Skeptic has to start out with in t in order that there
would be some t-strategy P such that his accumulated
capital α +K P allows him, at the end of the game, to
hedge f , whatever moves World makes after t:

Et( f ) := inf
{

α : α +K P
Ω ≥ f for some t-strategy P

}
,

(1)
where α +K P

Ω
≥ f is taken to mean that α +K P(ω)≥

f (ω) for all terminal situations ω that go through t. Simi-
larly, for the lower price Et( f ) for f in t:

Et( f ) := sup
{

α : α −K P
Ω ≤ f for some t-strategy P

}
,

(2)
so Et( f ) =−Et(− f ). If we start from the initial situation
t = �, we simply get the upper and lower prices for a real
variable f , which we also denote by E( f ) and E( f ).

A gambling protocol is called a probability protocol when
besides G1 and G2, two more requirements are satisfied.

P1. For each non-terminal situation t, Skeptic’s move
space St is a convex cone in some linear space:

a1s1 +a2s2 ∈ St for all non-negative real numbers a1
and a2 and all s1 and s2 in St .

P2. For each non-terminal situation t, Skeptic’s gain
function λt has the following linearity property:
λt(a1s1 + a2s2,w) = a1λt(s1,w)+ a2λt(s2,w) for all
non-negative real numbers a1 and a2, all s1 and s2 in
St and all w in Wt .

Finally, a probability protocol is called coherent3 when
moreover

C. For each non-terminal situation t, and for each s in St
there is some w in Wt such that λt(s,w)≤ 0.

It is clear what this last requirement means: in each non-
terminal situation, World has a strategy for playing from
t onwards such that Skeptic cannot (strictly) increase his
capital from t onwards, whatever t-strategy he might use.

For such coherent probability protocols, Shafer and Vovk
prove a number of interesting properties for the correspond-
ing lower (and upper) prices. We list a number of them
here. For any real t-variable f , we can associate with a
cut U of t another special U-measurable real t-variable EU
by EU ( f )(ω) = Eu( f ), for all paths ω through t, where u
is the unique situation in U that ω goes through. For any
two real t-variables f1 and f2, f1 ≤ f2 is taken to mean that
f1(ω)≤ f2(ω) for all paths ω that go through t.
Proposition 1 (Properties of lower and upper prices in a
coherent probability protocol [18]). Consider a coherent
probability protocol, let t be a non-terminal situation, f , f1
and f2 real t-variables, and U a cut of t. Then

1. infω∈↑t f (ω)≤Et( f )≤Et( f )≤ supω∈↑t f (ω) [convex-
ity];

2. Et( f1 + f2)≥ Et( f1)+Et( f2) [super-additivity];

3. Et(λ f ) = λEt( f ) for all real λ ≥ 0 [non-negative ho-
mogeneity];

4. Et( f +α) = Et( f )+α for all real α [constant additiv-
ity];

5. Et(α) = α for all real α [normalisation];

6. f1 ≤ f2 implies that Et( f1)≤ Et( f2) [monotonicity];

7. Et( f ) = Et(EU ( f )) [law of iterated expectation].

What is more, Shafer and Vovk use specific instances of
such coherent probability protocols to prove various limit
theorems (such as the law of large numbers, the central
limit theorem, the law of the iterated logarithm), from
which they can derive, as special cases, the well-known
measure-theoretic versions. We shall come back to this in
Section 6.

3For a discussion of the use of ‘coherent’ here, we refer to [17, Ap-
pendix C].



3 Walley’s behavioural approach to
probability

In his book on the behavioural theory of imprecise probabil-
ities [20], Walley considers many different types of related
uncertainty models. We shall restrict ourselves here to the
most general and most powerful one, which also turns out
to be the easiest to explain, namely coherent sets of really
desirable gambles; see also [21].

Consider a non-empty set Ω of possible alternatives ω ,
only one of which actually obtains (or will obtain); we
assume that it is possible, at least in principle, to determine
which alternative does so. Also consider a subject who is
uncertain about which possible alternative actually obtains
(or will obtain). A gamble4 on Ω is a real-valued map on Ω.
It is interpreted as an uncertain reward, expressed in units
of some predetermined linear utility scale: if ω actually
obtains, then the reward is f (ω), which may be positive or
negative. If a subject accepts a gamble f , this means that
she is willing to engage in the transaction where, (i) first it
is determined which ω obtains, and then (ii) she receives
the reward f (ω). We can try and model the subject’s beliefs
about Ω by considering which gambles she accepts.

Suppose our subject specifies some set R of gambles she
accepts, called a set of really desirable gambles. Such a
set is called coherent if it satisfies the following rationality
requirements:

D1. if f < 0 then f 6∈R [avoiding partial loss];

D2. if f ≥ 0 then f ∈R [accepting partial gain];

D3. if f1 and f2 belong to R then their (point-wise) sum
f1 + f2 also belongs to R [combination];

D4. if f belongs to R then its (point-wise) scalar prod-
uct λ f also belongs to R for all non-negative real
numbers λ [scaling].

Here ‘ f < 0’ means ‘ f ≤ 0 and not f = 0’. Walley has also
argued that sets of really desirable gambles should satisfy
an additional axiom, where IB denotes the indicator of the
event B [a gamble that assumes the value one on B and zero
elsewhere]:

D5. R is B-conglomerable for any partition B of Ω: if
IB f ∈R for all B∈B, then also f ∈R [full conglom-
erability].

4Walley [20] assumes gambles to be bounded. We make no such
assumption here. It seems the concept of a really desirable gamble (at least
formally) allows for such a generalisation, because the coherence axioms
for real desirability, as opposed to those for Walley’s related notions of
almost- and strict desirability, nowhere hinge on such a boundedness
assumption, at least not from a technical mathematical point of view.

Full conglomerability is a very strong requirement, and it is
not without controversy. If a model R is B-conglomerable,
this means that certain inconsistency problems when con-
ditioning on elements B of B are avoided; see [20, Sec-
tion 6.8] for more details and examples. Conglomerability
of belief models was not required by forerunners of Walley,
such as Williams [24],5 or de Finetti [4]. While we agree
with Walley that conglomerability is a desirable property
for sets of really desirable gambles, we do not believe that
full conglomerability is always necessary: it seems that we
only need to require conglomerability with respect to those
partitions that we actually intend to condition our model
on.6 This is the path we shall follow in Section 4.

Given a coherent set of really desirable gambles, we can
define conditional lower and upper previsions as follows:
for any gamble f and any non-empty subset B of Ω, with
indicator IB,

P( f |B) := inf{α : IB(α − f ) ∈R} (3)
P( f |B) := sup{α : IB( f −α) ∈R}, (4)

so P( f |B) =−P(− f |B), and P( f |B) is the supremum price
α for which the subject will buy the gamble f , i.e., accept
the gamble f −α , contingent on the occurrence of B. For
any event A, we define the conditional lower probability
P(A|B) := P(IA|B), i.e., the subject’s supremum rate for
betting on the event A, contingent on the occurrence of B,
and similarly for P(A|B) := P(IA|B).

We want to stress here that by its definition [Eq. (4)], P( f |B)
is a conditional lower prevision on what Walley [20, Sec-
tion 6.1] has called the contingent interpretation: it is a
supremum acceptable price for buying the gamble f con-
tingent on the occurrence of B, meaning that the subject
accepts the contingent gambles IB( f −P( f |B)+ ε), ε > 0,
which are called off unless B occurs. This should be con-
trasted with the updating interpretation for the conditional
lower prevision P( f |B), which is a subject’s present (be-
fore the occurrence of B) supremum acceptable price for
buying f after receiving the information that B has occurred
(and nothing else!). Walley’s Updating Principle [20, Sec-
tion 6.1.6], which we shall accept, and use further on in
Section 4, (essentially) states that conditional lower previ-
sions should be the same on both interpretations. There is
also a third way of looking at a conditional lower prevision
P( f |B), which we shall call the dynamic interpretation, and
where P( f |B) stands for the subject’s supremum accept-
able buying price for f after she gets to know that B has
occurred. For precise conditional previsions, this seems
to be the interpretation considered in [6, 11, 12, 17]. It is

5Axioms (D1)–(D4), but not (D5), were actually suggested by
Williams. But it seems that we need at least some weaker form of (D5),
namely the cut conglomerability (D5’) considered further on, to derive
our main results: Theorems 3 and 6.

6The view expressed here seems related to Shafer’s, as sketched near
the end of [13, Appendix 1].



far from obvious that there should be a relation between
the first two and the third interpretations.7 We shall briefly
come back to this distinction in the following sections.

For a partition B of Ω, we let P( f |B) := ∑B∈B IBP( f |B)
be the gamble on Ω that in any element ω of B assumes the
value P( f |B), where B is any element of B.

The following properties of conditional lower and upper
previsions associated with a coherent set of really desirable
gambles were (essentially) proven by Walley.
Proposition 2 (Properties of conditional lower and upper
previsions [20]). Consider a coherent set of really desirable
gambles R, let B be any non-empty subset of Ω, and let f ,
f1 and f2 be gambles on Ω. Then8

1. infω∈B f (ω) ≤ P( f |B) ≤ P( f |B) ≤ supω∈B f (ω) [con-
vexity];

2. P( f1 + f2|B)≥ P( f1|B)+P( f2|B) [super-additivity];

3. P(λ f |B) = λP( f |B) for all real λ ≥ 0 [non-negative
homogeneity];

4. P( f +α|B) = P( f |B)+α for all real α [constant addi-
tivity];

5. P(α|B) = α for all real α [normalisation];

6. f1 ≤ f2 implies that P( f1|B)≤ P( f2|B) [monotonicity];

7. if B is a partition of Ω that refines the partition
{B,Bc} and R is B-conglomerable, then P( f |B) ≥
P(P( f |B)|B) [conglomerative property].

The analogy between Propositions 1 and 2 is striking, even
if there is an equality in Proposition 1.7 and only an in-
equality in Proposition 2.7.9 We now set out to identify the
exact correspondence between the two models.10

4 Connecting the two approaches

In order to lay bare the connections between the game-
theoretic and the behavioural approach, we enter Shafer and

7We may be wrong, but it seems to us that in [17], the authors con-
fuse the updating interpretation with the dynamic interpretation when
they claim that “[their new understanding of lower and upper previsions]
justifies Peter Walley’s updating principle”.

8Here, as in Proposition 1, we implicitly assume that whatever we
write down is well-defined, meaning that for instance no sums of −∞

and +∞ appear, and that the function P( f |B) is real-valued, and nowhere
infinite. Shafer and Vovk do not seem to mention the need for this.

9Concatenation inequalities for lower prices do appear in the more
general context described in [17].

10We shall find a specific situation where applying Walley’s theory leads
to equalities rather than the more general inequalities of Proposition 2.7.
This seems to happen generally for what is called marginal extension
in a situation of immediate prediction, meaning that we start out with,
and extend, an initial model where we condition on increasingly finer
partitions, and where the initial conditional model for any partition deals
with gambles that are measurable with respect to the finer partitions; see
[20, Theorem 6.7.2] and [9].

Vovk’s world, and consider another player, called Subject,
who, in situation �, has certain piece-wise beliefs about
what moves World will make.

More specifically, for each non-terminal situation t ∈
Ω♦ \Ω, she has beliefs (in situation �) about which move
w World will choose from the set Wt of moves available
to him in t. We suppose she represents those beliefs in the
form of a coherent11 set Rt of really desirable gambles on
Wt . These beliefs are conditional on the updating interpre-
tation, in the sense that they represent Subject’s beliefs in
situation � about what World will do immediately after
he gets to situation t. We call any specification of such
coherent Rt , t ∈ Ω♦ \Ω, an immediate prediction model
for Subject. It should be stressed here that Rt should not
be interpreted dynamically, i.e., as a set of gambles on Wt
that Subject accepts in situation t.

We can now ask ourselves what the behavioural implica-
tions of these conditional assessments Rt in the immediate
prediction model are. For instance, what do they tell us
about whether or not Subject should accept certain gam-
bles12 on Ω, the set of possible paths for World? In other
words, how can these beliefs (in �) about which next move
World will make in each non-terminal situation t be com-
bined coherently into beliefs (in �) about World’s complete
sequence of moves?

In order to investigate this, we use Walley’s very general
and powerful method of natural extension, which is just
conservative coherent reasoning. We shall construct, using
the local pieces of information Rt , a set of really desirable
gambles on Ω for Subject in situation � that is (i) coherent,
and (ii) as small as possible, meaning that no more gambles
should be accepted than is actually required by coherence.

First, we collect the pieces. Consider any non-terminal
situation t ∈ Ω♦ \Ω and any gamble ht in Rt . Then with
ht we can associate a t-gamble,13 also denoted by ht , and
defined by

ht(ω) := ht(ω(t)),

for all ω w t, where we denote by ω(t) the unique ele-
ment of Wt such that tω(t) v ω . The t-gamble ht is U-
measurable for any cut U of t that is non-trivial, i.e., such
that U 6= {t}. This implies that we can interpret ht as a
map on U . In fact, we shall write ht(s) := ht(ω(t)), for any
t @ s, where ω is any terminal situation that follows s.

I↑tht represents the gamble on Ω that is called off unless
World ends up in situation t, and which, when it is not called
off, depends only on World’s move immediately after t, and
gives the same value ht(w) to all paths ω that go through

11Since we do not immediately envisage conditioning this local model
on subsets of Wt , we impose no extra conglomerability requirements here,
only the coherence conditions D1–D4.

12In Shafer and Vovk’s language, gambles are real variables.
13Just as for variables, we can define a t-gamble as a partial gamble

whose domain includes ↑t.



tw. The fact that Subject, in situation �, accepts ht on Wt
conditional on World’s getting to t, translates immediately
to the fact that Subject accepts the contingent gamble I↑tht
on Ω, by Walley’s Updating Principle. We thus end up with
a set of gambles on Ω

R :=
⋃

t∈Ω♦\Ω

{
I↑tht : ht ∈Rt

}
that Subject accepts in situation �. The only thing left to
do now, is to find the smallest coherent set ER of really de-
sirable gambles that includes R (if indeed there is any such
coherent set). Here we take coherence to refer to conditions
D1–D4, together with D5’, a variation on D5 which refers
to conglomerability with respect to those partitions that we
actually intend to condition on, as suggested in Section 3.

These partitions are what we call cut partitions. Con-
sider any cut U of the initial situation �. Then the set
of events BU := {↑u : u ∈U} is a partition of Ω, called the
U-partition. D5’ requires that our set of really desirable
gambles should be cut conglomerable, i.e., conglomerable
with respect to every cut partition BU .14

Why do we only require conglomerability for cut partitions?
Simply because we are interested in predictive inference:
we eventually will want to find out about the gambles on
Ω that Subject accepts in situation �, conditional (con-
tingent) on World getting to a situation t. This is related
to finding lower previsions for Subject conditional on the
corresponding events ↑t. A collection {↑t : t ∈ T} of such
events constitutes a partition of the sample space Ω if and
only if T is a cut of �.

Because we require cut conglomerability, it follows in
particular that ER will contain the sums of gambles g :=
∑u∈U I↑uhu for all non-terminal cuts U of � and all choices
of hu ∈ Ru, u ∈U . This is because I↑ug = I↑uhu ∈ R for
all u ∈U . Because moreover ER should be a convex cone
[by D3 and D4], any sum of such sums ∑u∈U I↑uhu over a
finite number of non-terminal cuts U should also belong
to ER . But, since in the case of bounded protocols we
are discussing here, World can only make a bounded and
finite number of moves, Ω♦ \Ω is a finite union of such
non-terminal cuts, and therefore the sums ∑u∈Ω♦\Ω

I↑uhu

should belong to ER for all choices hu ∈Ru, u ∈ Ω♦ \Ω.

Call therefore, for any non-terminal situation t, a t-selection
any partial process S defined on the non-terminal situa-
tions s w t such that S (s) ∈Rs. With such a t-selection,
we can associate a t-process, called a gamble process G S ,
with value

G S (s) = ∑
tvu@s

S (u)(s)

in all situations s that follow t, where it should be re-
called that S (u)(s) = S (u)(ω(u)) for all ω w s (see

14When all of World’s move spaces Wt are finite, cut conglomerability
(D5’) is a consequence of D3, and therefore needs no extra attention.

above). Alternatively, G S is given by the recursion re-
lation G S (sw) = G S (s)+S (s)(w) for all non-terminal
s w t and all w ∈ Ws, with initial value G S (t) = 0. In
particular, this leads to the t-gamble G S

Ω
defined on all

terminal situations ω that follow t, by letting

G S
Ω = ∑

tvu,u∈Ω♦\Ω

I↑uS (u).

We have just argued that the gambles G S
Ω

should belong
to ER for all non-terminal situations t and all t-selections
S . As before for strategy and capital processes, we call a
�-selection S simply a selection, and a �-gamble process
simply a gamble process. It is now but a technical step to
prove Theorem 3 below. It is a significant generalisation,
in terms of sets of really desirable gambles rather than
coherent lower previsions,15 of the Marginal Extension
Theorem first proven by Walley [20, Theorem 6.7.2] and
subsequently extended by De Cooman and Miranda [9].

Theorem 3 (Marginal Extension Theorem). There is a
smallest set of gambles that satisfies D1–D4 and D5’ and
includes R. This natural extension of R is given by

ER :=
{

g : g ≥ G S
Ω for some selection S

}
.

Moreover, for any non-terminal situation t and any t-
gamble g, it holds that I↑tg ∈ ER if and only if there is
some t-selection St such that g ≥ G St

Ω
, where as before,

g ≥ G St
Ω

is taken to mean that g(ω)≥ G St
Ω

(ω) for all ter-
minal situations ω that follow t.

We now use the coherent set of really desirable gam-
bles ER to define special lower (and upper) previsions
P(·|t) := P(·|↑t) for Subject in situation �, conditional
on an event ↑t, i.e., on World getting to situation t, indi-
cated in Section 3.16 We shall call such conditional lower
previsions predictive lower previsions. We then get, using
Theorem 3, that for any non-terminal situation t,

P( f |t) := sup
{

α : I↑t( f −α) ∈ ER

}
(5)

= sup
{

α : f −α ≥ G S
Ω for some t-selection S

}
.

(6)

Eq. (5) is also valid in terminal situations t, whereas Eq. (6)
clearly isn’t.

Besides the properties in Proposition 2, which hold in gen-
eral for conditional lower and upper previsions, the pre-
dictive lower and upper previsions we consider here also
satisfy a number of additional properties, listed in Proposi-
tions 4 and 5.

15The difference in language may obscure that this is indeed a general-
isation. But see Theorem 7 for expressions in terms of predictive lower
previsions that should make the connection much clearer.

16We stress again that these are conditional lower and upper previsions
on the contingent/updating interpretation.



Proposition 4 (Additional properties of predictive lower
and upper previsions). Let t be any situation, and let f , f1
and f2 be gambles on Ω.

1. if t is a terminal situation ω , then P( f |ω) = P( f |ω) =
f (ω);

2. P( f |t) = P( f I↑t |t) and P( f |t) = P( f I↑t |t);

3. f1 ≤ f2 (on ↑t) implies that P( f1|t) ≤ P( f2|t) [mono-
tonicity].

Before we go on, there is an important point that must be
stressed and clarified. It is an immediate consequence of
Proposition 4.2 that when f and g are any two gambles
that coincide on ↑t, then P( f |t) = P(g|t). This means that
P( f |t) is completely determined by the values that f as-
sumes on ↑t, and it allows us to define P(·|t) on gambles
that are only necessarily defined on ↑t, i.e., on t-gambles.
We shall do so freely in what follows.

For any cut U of a situation t, we may define the t-gamble
P( f |U) as the gamble that assumes the value P( f |u) in any
ω w t, where u is the unique element of U that ω goes
through. This t-gamble is U-measurable by construction,
and it can be considered as a gamble on U .

Proposition 5 (Separate coherence). Let t be any situation,
let U be any cut of t, and let f and g be t-gambles, where
g is U-measurable.

1. P(↑t|t) = 1;

2. P(g|U) = gU ;

3. P( f +g|U) = gU +P( f |U);

4. if g is moreover non-negative, then P(g f |U) =
gU P( f |U).

There appears to be a close correspondence between the
expressions [such as (2)] for lower prices Et( f ) associ-
ated with coherent probability protocols and those [such
as (6)] for the predictive lower previsions P( f |t) based on
an immediate prediction model. Say that a given coher-
ent probability protocol and given immediate prediction
model match whenever they lead to identical corresponding
lower prices Et and predictive lower previsions P(·|t) for
all non-terminal t ∈ Ω♦ \Ω.

Theorem 6 (Matching Theorem). For every coherent prob-
ability protocol there is an immediate prediction model such
that the two match, and conversely, for every immediate
prediction model there is a coherent probability protocol
such that the two match.

It is interesting to indicate here how matching is actually
achieved. If we have a coherent probability protocol with
move spaces St and gain functions λt for Skeptic, define

the immediate prediction model for Subject to be (essen-
tially) Rt := {−λ (s, ·) : s ∈ St}. If, conversely, we have an
immediate prediction model for Subject consisting of the
sets Rt , define the move spaces for Skeptic by St := Rt ,
and his gain functions by λt(h, ·) :=−h for all h in Rt .

Theorem 7 (Concatenation Formula). Consider any two
cuts U and V of a situation t such that U precedes V . Then
for all t-gambles f on Ω,17

1. P( f |t) = P(P( f |U)|t);

2. P( f |U) = P(P( f |V )|U).

This theorem, in combination with the following two propo-
sitions (8 and 9), tells us that all predictive lower (and
upper) previsions can be calculated using backwards re-
cursion, by starting with the trivial predictive previsions
P( f |Ω) = P( f |Ω) = f for the terminal cut Ω, and using
only the local models Rt . To see this, observe in addi-
tion that in the above theorem, the t-gamble P( f |V ) is
V -measurable, and therefore actually a gamble on V .

To make clear what the following Proposition 8 implies,
consider any t-selection S , and define the U-called off
t-selection S U as the selection that mimics S until we get
to U , where we begin to select the zero gambles: for any
non-terminal situation sw t, let S U (s) := S (s) if s strictly
precedes (some element of) U , and let S U (s) := 0 ∈ Rs
otherwise. Then

U(G S ) = G S U
and therefore G S

U = G S U

Ω , (7)

so we see that stopped gamble processes are gamble pro-
cesses themselves, that correspond to selections being
‘called-off’ after a cut. This also means that we can ac-
tually restrict ourselves to selections S that are U-called
off in Proposition 8.

Proposition 8. Let t be a non-terminal situation, and let
U be a cut of t. Then for any U-measurable t-gamble f ,
I↑t f ∈ ER if and only is there is some t-selection S such
that I↑t f ≥ G S U

Ω
, or equivalently, fU ≥ G S

U . Consequently,

P( f |t) = sup
{

α : f −α ≥ G S U

Ω for some t-selection S
}

= sup
{

α : fU −α ≥ G S
U for some t-selection S

}
.

If a t-gamble h is measurable with respect to the children
cut C(t) of a non-terminal situation t, then we can interpret
it as gamble on Wt . For such gambles, the following imme-
diate corollary of Proposition 8 tells us that the predictive
lower previsions P(h|t) are completely determined by the
local modal Rt .

17Here too, it is implicitly assumed that all expressions are well-defined,
e.g., that in the second statement, P( f |v) is a real number for all v ∈ V ,
making sure that P( f |V ) is indeed a gamble.



Proposition 9. Let t be a non-terminal situation, and con-
sider a C(t)-measurable gamble h. Then

P(h|t) = Pt(h) := sup{α : h−α ∈Rt}.

5 Interpretation

The Matching Theorem has a very interesting interpreta-
tion. In Shafer and Vovk’s approach, World is sometimes
decomposed into two players, Reality and Forecaster. It
is Reality whose moves are characterised by the above-
mentioned event tree, and Forecaster who determines what
Skeptic’s move space St and gain function λt are, in each
non-terminal situation t. We now make Shafer and Vovk’s
model a bit more involved, by adding something to it.

Suppose that Forecaster has certain beliefs, in situation
�, about what move Reality will make next in each non-
terminal situation t,, and suppose she models those beliefs
by specifying a coherent set Rt of really desirable gam-
bles on Wt . In other words, we identify Forecaster with
Subject.18

When Forecaster specifies such a set, she is making cer-
tain behavioural commitments. In fact, she is committing
herself to accepting, in situation �, any gamble in Rt , con-
tingent on World getting to situation t, and to accepting
any combination of such gambles according to the combi-
nation axioms D3, D4 and D5’. This implies that we can
derive predictive lower previsions P(·|t), with the follow-
ing interpretation: in situation �, P( f |t) is the supremum
price Forecaster can be made to buy the t-gamble f for,
conditional on World’s getting to t, and on the basis of the
commitments she has made in the initial situation �.

What Skeptic can now do, is take Forecaster up on her
commitments. This means that in situation �, he can use
a selection S , which for each non-terminal situation t, se-
lects a gamble (or equivalently, any non-negative linear
combination of gambles) S (t) = ht in Rt and offer the cor-
responding gamble G S

Ω
on Ω to Forecaster, who is bound

to accept it. If Reality’s next move in situation t is w ∈ Wt ,
this changes Skeptic’s capital by (the positive or negative
amount) −ht(w). In other words, his move space st can
then be identified with the convex set of gambles Rt and his
gain function λt is then given by λt(ht , ·) =−ht . But then
the selection S can be identified with a strategy P for
Skeptic, and K P

Ω
=−G S

Ω
(this is the essence of the proof

of Theorem 6), which tells us that we are led to a coher-
ent probability protocol, and that the corresponding lower
prices Et for Skeptic coincide with Forecaster’s predictive
lower previsions P(·|t).

18The germ for this idea, in the case that Forecaster’s beliefs can be
expressed using precise probability models on the L (Wt), is already
present in Shafer’s work, see for instance [18, Chapter 8] and [13, Ap-
pendix 1]. We extend this idea here to Walley’s imprecise probability
models.

In a very nice paper [17], Shafer, Gillett and Scherl discuss
ways of introducing and interpreting lower previsions in a
game-theoretic framework, not in terms of prices that a sub-
ject is willing to pay for a gamble, but in terms of whether
a subject believes he can make a lot of money (utility) at
those prices. They consider such conditional lower previ-
sions both on a contingent and on a dynamic interpretation,
and argue that there is equality between them in certain
cases. Here, we have decided to stick to the more usual
interpretation of lower and upper previsions, and concen-
trated on the contingent/updating interpretation. We see
that also on our approach, the game-theoretic framework is
useful.

This is of particular relevance to the laws of large numbers
that Shafer and Vovk derive in their game-theoretic frame-
work, because such laws can now be given a behavioural
interpretation in terms of Forecaster’s (or any Subject’s)
(predictive) lower and upper previsions. To give an exam-
ple, we now turn to deriving a very general weak law of
large numbers.

6 A more general weak law of large
numbers

Consider a non-terminal situation t and a cut U of t. Define
the t-variable nU such that nU (ω) is the distance d(t,u),
measured in moves along the tree, from t to the unique
situation u in U that ω goes through. nU is clearly U-
measurable, and nU (u) is simply the distance d(t,u) from t
to u. We assume that nU (u) > 0, or in other words that U 6=
{t}. Of course, in the bounded protocols we are considering
here, nU is bounded, and we denote its minimum by NU .

Now consider for each s between t and U a bounded gamble
hs and a real number ms such that hs−ms ∈Rs, meaning
that Forecaster in situation � accepts to buy hs for ms,
contingent on Reality getting to situation s. Let B > 0
be any common upper bound for suphs − infhs, for all
t v s @ U . Then it follows from the coherence of Rs [D1]
that ms ≤ suphs. To make things interesting, we shall also
assume that infhs ≤ms, because otherwise hs−ms ≥ 0 and
accepting this gamble represents no real commitment on
Forecaster’s part. As a result, we see that |hs−ms| ≤ B.

We are interested in the following t-gamble GU , given by

GU =
1

nU
∑

tvs@U
I↑s[hs−ms],

which provides a measure for how much, on average, the
gambles hs yield an outcome above Forecaster’s accepted
buying price ms, along segments of the tree starting in t
and ending right before U . In other words, GU measures
the average gain for Forecaster along segments from t to
U , associated with commitments she has made and is taken
up on, because Reality has to move along these segments.



This gamble GU is U-measurable too. We may therefore
interpret GU as a gamble on U . Also, for any hs and any
u ∈U , we know that because s @ u, hs has the same value
hs(u) := hs(ω(s)) in all ω that go through u. This allows
us to write

GU (u) =
1

nU (u) ∑
tvs@u

[hs(u)−ms].

We would like to study Forecaster’s beliefs (in the initial
situation � and contingent on Reality getting to t) in the
occurrence of the event

{GU ≥−ε} := {ω ∈ ↑t : GU (ω)≥−ε},

where ε > 0. In other words, we want to know
P({GU ≥−ε}|t), which is Forecaster’s supremum rate for
betting on the event that his average gain from t to U will
be at least −ε , contingent on Reality’s getting to t.

Theorem 10 (Weak Law of Large Numbers). For all ε > 0,

P({GU ≥−ε}|t)≥ 1− exp
(
−NU ε2

4B2

)
.

We see that as NU increases this lower bound increases to
one, so the theorem can be very loosely formulated as fol-
lows: As the horizon recedes, Forecaster, if she is coherent,
should believe increasingly more strongly that her average
gain along any path from the present to the horizon will
not be negative. Of course, this is a very general version
of the weak law of large numbers. It significantly extends
the result mentioned in Section 5. Perhaps surprisingly, it
can be seen as generalisation of Hoeffding’s inequality for
martingale differences [7] (see also [22, Chapter 4] and [19,
Appendix A.7]) to coherent lower previsions on event trees.

7 Scoring a predictive model

Suppose Reality follows a path up to some situation uo in
U , which leads to an average gain GU (uo) for Forecaster.
Suppose this average gain is negative: GU (uo) < 0.

Then we see that ↑uo ⊆ {GU <−ε} for all 0 < ε <
−GU (uo), and therefore all these events {GU <−ε} have
actually occurred (because ↑uo has). On the other hand,
Forecaster’s upper probability (in �) for their occurrence
satisfies P({GU <−ε}) ≤ exp(−NU ε2

4B2 ), by Theorem 10.
Coherence then tells us that Forecaster’s upper probability
(in �) for the event ↑uo, which has actually occurred, is
then at most SNU (γU (uo)), where

SN(x) = exp
(
−N

4
x2

)
and γU (u) :=

GU (uo)
B

.

By assumption, γU (uo) is a number in [−1,0). Coherence
requires that Forecaster, because of her local predictive
commitments, can be forced (by Skeptic, if he chooses his

strategy well) to bet against the occurrence of the event ↑uo
at a rate that is at least 1− SNU (γU (uo)). So we see that
Forecaster is losing utility because of her local predictive
commitments. Just how much depends on how close γU (uo)
lies to −1 , and on how large NU is; see Figure 2.

1

1

0
0 −x

1−SN(x)

NU = 5

NU = 10

NU = 100
NU = 500

Figure 2: What Forecaster can be made to pay, 1−SN(x),
as a function of x = γU (u), for different values of N = NU .

The upper bound SNU (γU (uo)) we have constructed for
the upper probability of ↑uo has a very interesting property,
which we now try to make more explicit. Indeed, if we were
to calculate Forecaster’s upper probability P(↑uo) for ↑uo
directly using Eq. (6), this value would generally depend
on Forecaster’s predictive assessments Rs for situations
s that do not precede uo, and that Reality therefore never
got to. We shall see that such is not the case for the upper
bound SNU (γU (uo)) constructed using Theorem 10.

Consider any situation s before U but not on the path
through uo, meaning that Reality never got to this situa-
tion s. Therefore the corresponding gamble hs−ms in the
expression for GU is not used in calculating the value of
GU (uo), so we can change it to anything else, and still
obtain the same value of GU (uo).

Indeed, consider any other predictive model, where the only
thing we ask is that the R ′

s coincide with the Rs for all s that
precede uo. For other s, the R ′

s can be chosen arbitrarily,
but still coherently. Now construct a new average gain
gamble G′

U for this alternative predictive model, where
the only restriction is that we let h′s = hs and m′

s = ms if s
precedes uo. Then we know from the reasoning above that
G′

U (uo) = GU (uo), so the new upper probability that the
event ↑uo will be observed is at most

SNU

(
G′

U (uo)
B

)
= SNU

(
GU (uo)

B

)
= SNU (γU (uo)).

In other words, the upper bound SN(γU (u)) we found for
Forecaster’s upper probability of Reality getting to a sit-
uation uo depends only on Forecaster’s local predictive



assessments Rs for situations s that Reality has actually
got to, and not on her assessments for other situations.
This means that this method for scoring a predictive model
satisfies Dawid’s Prequential Principle [1, 2].

8 Additional Remarks

We have proven the correspondence between the two ap-
proaches only for event trees with a bounded horizon. For
games with infinite horizon, the correspondence becomes
less immediate, because Shafer and Vovk implicitly make
use of coherence axioms that are stronger than D1–D4 and
D5’, leading to lower prices that dominate the correspond-
ing predictive lower previsions. Exact matching would be
restored of course, provided we could argue that these addi-
tional requirements are rational for any subject to comply
with. This could be an interesting topic for further research.
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Abstract
We consider immediate predictive inference, where a sub-
ject, using a number of observations of a finite number
of exchangeable random variables, is asked to coherently
model his beliefs about the next observation, in terms of
a predictive lower prevision. We study when such predic-
tive lower previsions are representation insensitive, mean-
ing that they are essentially independent of the choice of
the (finite) set of possible values for the random variables.
Such representation insensitive predictive models have very
interesting properties, and among such models, the ones
produced by the Imprecise Dirichlet-Multinomial Model
are quite special in a number of ways.

Keywords. Predictive inference, immediate prediction,
lower prevision, coherence, exchangeability, representation
invariance, representation insensitivity, Imprecise Dirichlet-
Multinomial Model, Johnson’s sufficientness postulate.

1 Introduction

Consider a subject who is making N > 0 successive ob-
servations of a certain phenomenon. We represent these
observations by N random variables X1, . . . , XN . By ran-
dom variable, we mean a variable about whose value the
subject may entertain certain beliefs. We assume that at
each successive instant k, the actual value of the random
variables Xk can be determined in principle. To fix ideas,
our subject might be drawing balls without replacement
from an urn, in which case Xk could designate the colour
of the k-th ball taken from the urn.

In the type of predictive inference we consider here, our
subject in some way uses zero or more observations
X1, . . . , Xn made previously, i.e., those up to a certain in-
stant n ∈ {0,1, . . . ,N−1}, to predict, or make inferences
about, the values of the future, or as yet unmade, observa-
tions Xn+1, . . . , XN . Here, we only consider the problem of
immediate prediction: he is only trying to predict, or make
inferences about, the value of the next observation Xn+1.

We are particularly interested in the problem of making

such predictive inferences under prior ignorance: initially,
before making any observation, our subject knows very
little or nothing about what produces these observations. In
the urn example, this is the situation where he doesn’t know
the composition of the urn, e.g., how many balls there are,
or what their colours are. What we do assume, however, is
that our subject makes an assessment of exchangeability to
the effect that the order in which a sequence of observations
has been made does not matter for his predictions.

What a subject usually does, in such a situation, is to de-
termine, beforehand, a (finite and non-empty) set X of
possible values, also called categories, for the random vari-
ables Xk. It is then sometimes held, especially by advo-
cates of a logical interpretation for probability, that our
subject’s beliefs should be represented by some given fam-
ily of predictive probability mass functions. Such a pre-
dictive family is made up of real-valued maps pn+1

X (·|x)
on X , which give, for each n = 0, . . . ,N − 1 and each
x = (x1, . . . ,xn) in X n, the (so-called predictive) proba-
bility mass function for the (n + 1)-th observation, given
the values (X1, . . . ,Xn) = (x1, . . . ,xn) = x of the n previ-
ous observations. Any such family should in particular
reflect the above-mentioned exchangeability assessment.
Cases in point are the Laplace–Bayes Rule of Succession
in the case of two categories [10], or Carnap’s more general
λ -calculus [2].

The inferences in Carnap’s λ -calculus, to give but one ex-
ample, can strongly depend on the number of elements in
the set X . This may well be considered undesirable. If for
instance, we consider drawing balls from an urn, predictive
inferences about whether the next ball will be ‘red or green’
ideally should not depend on whether we assume before-
hand that the possible categories are ‘red’, ‘green’, ‘blue’
and ‘any other colour’, or whether we take them to be ‘red
or green’, ‘blue’, ‘yellow’ and ‘any other colour’. This
desirable property was called representation invariance by
Peter Walley [14], who argued that it cannot be satisfied
by a precise probability model, i.e., by a system consist-
ing of a family of predictive probability mass functions
pn+1

X (·|x) for every X , but that it is satisfied by the so-



called Imprecise Dirichlet-Multinomial Model (or IDMM
for short [15]). The IDMM can be seen as a special system
of predictive lower previsions and it is a (predictive) cousin
of the parametric Imprecise Dirichlet Model (or IDM [14]).
Lower previsions are behavioural belief models that gener-
alise the more classical Bayesian ones, such as probability
mass functions, or previsions. We assume that the reader
is familiar with at least the basic aspects of the theory of
coherent lower previsions [13].

Here, we intend to study general systems of such predictive
lower previsions. In Section 2, we give a general definition
of such predictive systems and study a number of properties
they can satisfy, such as coherence and exchangeability. In
Section 3, we study the property of representation insen-
sitivity for predictive systems, which is a stronger version
of Walley’s representation invariance, tailored to making
inferences under prior ignorance. We show in Section 4
that there are representation insensitive and exchangeable
predictive systems, by giving two examples. These two can
be used to generate the mixing predictive systems, stud-
ied in Section 5. Among these, the ones corresponding to
an IDMM take a special place, as they are the only ones
to satisfy all the above-mentioned properties and an extra
specificity property, related to behaviour under condition-
ing. In the Conclusions (Section 6), we list a number of
interesting, but as of yet unresolved, questions.

2 Predictive families and systems

2.1 Families of predictive lower previsions

First assume that, before the subject starts making the
observations Xk, he fixes a non-empty and finite set X
of possible values for all the random variables Xk. Now
suppose that he has observed the sequence of values
x = (x1, . . . ,xn) ∈ X n of the first n random variables, or
in other words, he knows that Xk = xk for k = 1, . . . ,n. We
want to represent his beliefs about the value of the next
observation Xn+1, and the model we propose for this is a
lower prevision Pn+1

X (·|x) on the set L (X ) of all gam-
bles on X . Let us first make clear what this means (see
Walley’s book [13] for more information).

A gamble f on X is a real-valued map on X . It represents
an uncertain reward, expressed in terms of some predeter-
mined linear utility scale. So a gamble f yields a (possibly
negative) reward of f (x) utiles if the value of the next vari-
able Xn+1 turns out to be the category x in X . The set of
all gambles on X is denoted by L (X ). The lower pre-
vision Pn+1

X ( f |x) of any gamble f on X is the subject’s
supremum acceptable price for buying this gamble, or in
other words, the highest s such that he accepts the uncer-
tain reward f (Xn+1)− p for all p < s, conditional on his
having observed the values x = (x1, . . . ,xn) for the first n
variables (X1, . . . ,Xn). His corresponding predictive upper

prevision, or infimum selling price for f , is then given by
the conjugacy relationship: Pn+1

X ( f |x) =−Pn+1
X (− f |x).

A specific class of gambles is related to events, i.e., sub-
sets A of X . This is the class of indicators IA that map
any element of A to one and all other elements of X to
zero. We identify events A with their indicators IA. A lower
prevision that is defined on (indicators of) events only is
called a lower probability, and we often write Pn+1

X (A|x)
instead of Pn+1

X (IA|x).

The predictive lower prevision Pn+1
X (·|x), which models be-

liefs about the value of the random variable Xn+1 given the
observations (X1, . . . ,Xn) = x, is the real-valued functional
on L (X ) that assigns to any gamble f its predictive lower
prevision Pn+1

X ( f |x). We assume that the subject has such
a predictive lower prevision Pn+1

X (·|x) for all x in X n and
all n ∈ {0, . . . ,N−1}, where N > 0 is some fixed positive
integer, representing the total number of observations we
are interested in. For n = 0, there is some slight abuse of
notation here, because we then actually have an uncondi-
tional predictive lower prevision P1

X on L (X ) for the
first observation X1, and no observations have yet been
made.

Definition 1 (Family of predictive lower previsions). Con-
sider a finite and non-empty set of categories X . An
X -family of predictive lower previsions, or predictive
X -family for short, for up to N > 0 observations is a
set of predictive lower previsions

σ
N
X :=

{
Pn+1

X (·|x) : x ∈X n and n = 0, . . . ,N−1
}

.

It is useful to consider the special case, quite common in
the literature, of a family of predictive lower previsions of
which all members Pn+1

X (·|x) are actually linear previsions
Pn+1
X (·|x). This means that for each n = 0, . . . ,N−1 and x

in X n there is some predictive (probability) mass function
pn+1

X (·|x) on X such that ∑z∈X pn+1
X (z|x) = 1, for all z

in X , pn+1
X (z|x)≥ 0, and for all gambles f on X

Pn+1
X ( f |x) = ∑

z∈X

f (z)pn+1
X (z|x).

Such linear previsions are the Bayesian belief models
usually encountered in the literature (see for instance de
Finetti’s book [7]). We can use Bayes’s rule to combine
these predictive mass functions into unique joint mass func-
tions pn

X on X n :=×n
i=1X , given by

pn
X (x) = pn

X (x1, . . . ,xn) =
n−1

∏
k=0

pk+1
X (xk+1|x1, . . . ,xk),

for all x = (x1, . . . ,xn) in X n and all n = 1, . . . ,N. This
also results in unique corresponding linear previsions (ex-
pectation operators) Pn

X defined for all f in L (X n) by

Pn
X ( f ) = ∑

x∈X n
f (x)pn

X (x). (1)



For n = N, we call PN
X the joint linear prevision associated

with the given predictive family of linear previsions. It
models beliefs about the values that the random variables
(X1, . . . ,XN) assume jointly in X N .

2.2 Systems of predictive lower previsions

When a subject is using a family of predictive lower previ-
sions σN

X , this means he has assumed beforehand that the
random variables X1, . . . , XN all take values in the set X .
It cannot, therefore, be excluded at this point that his in-
ferences, as represented by the predictive lower previsions
Pn+1

X (·|x), strongly depend on the choice of the set of pos-
sible values X . Any initial choice of X may lead to an
essentially very different predictive family σN

X . In order to
be able to deal with this possible dependence mathemati-
cally, we now define predictive systems as follows.

Definition 2 (System of predictive lower previsions). Fix
N > 0. If we consider for any finite and non-empty set of
categories X a corresponding X -family σN

X of predictive
lower previsions Pn+1

X (·|x), we get a new collection

σ
N :=

{
σ

N
X : X is a finite and non-empty set

}
,

called a system of predictive lower previsions, or predictive
system for short, for up to N observations. We denote the
set of all predictive systems for a given (fixed) N by ΣN .

It is such predictive systems that we are interested in, and
whose properties we intend to study. Consider the set ΣN

of all predictive systems for up to N observations. For
two such predictive systems σN and λ N we say that σN

is less committal, or more conservative, than λ N , and we
denote this by σN � λ N , if each predictive lower prevision
Pn+1

X (·|x) in σN is point-wise dominated by the correspond-
ing predictive lower prevision Qn+1

X
(·|x) in λ N :

Pn+1
X ( f |x)≤ Qn+1

X
( f |x)

for all gambles f on X . The reason for this terminology
should be clear: a subject using a predictive system λ N

will then be buying gambles f on X at supremum prices
Qn+1

X
( f |x) that are at least as high as the supremum prices

Pn+1
X ( f |x) of a subject using predictive system σN .

The binary relation � on ΣN is a partial order. A non-empty
subset

{
σN

γ : γ ∈ Γ
}

of ΣN (where Γ is some index set)
may have an infimum with respect to this partial order,
and whenever it exists, this infimum corresponds to taking
lower envelopes: if we fix X , n and x, then the correspond-
ing predictive lower prevision in the infimum predictive
system is the lower envelope infγ∈Γ Pn+1

X ,γ(·|x) of the cor-
responding predictive lower previsions Pn+1

X ,γ(·|x) in the
predictive systems σN

γ , γ ∈ Γ.

2.3 Coherence requirements

We impose some consistency, or rationality, requirements
on the members Pn+1

X (·|x) of a system σN of predictive
lower previsions.

Definition 3 (Coherence). A system of predictive lower
previsions is called coherent if it is the infimum (or lower
envelope) of a collection of systems of predictive linear
previsions.

This condition is equivalent to requiring, for each choice
of X , that the conditional lower previsions Pn+1

X (·|x) for
n = 0, . . . ,N−1 and x∈X n should satisfy Walley’s (joint)
coherence condition.1 This condition is in the present con-
text also equivalent [12] to requiring that the predictive
lower previsions Pn+1

X (·|x) by themselves should be (sep-
arately) coherent, meaning that for each finite and non-
empty set X , n = 0, . . . ,N−1 and x in X n, Pn+1

X (·|x)
should satisfy

(C1) Pn+1
X ( f |x)≥ inf f ;

(C2) Pn+1
X ( f +g|x)≥ Pn+1

X ( f |x)+Pn+1
X (g|x);

(C3) Pn+1
X (λ f |x) = λPn+1

X ( f |x);

for all gambles f and g on X and all real λ ≥ 0.

2.4 Exchangeability and regular exchangeability

Next, we show how to formulate an assessment of exchange-
ability of the random variables X1, . . . , XN in terms of a
system of predictive lower previsions. A subject would
make such an assessment if he believed that the order in
which these variables are observed is not important. Let us
make this idea more precise.

We begin with the definition of exchangeability for a precise
predictive system, i.e., a system of predictive linear previ-
sions. For each choice of X , the precise X -family σN

X
has a unique joint linear prevision PN

X on L (X N), de-
fined by Equation (1). We then call the precise predic-
tive system exchangeable if all the associated joint lin-
ear previsions PN

X are. Formally [5, 7], consider the set
of all permutations of {1, . . . ,N}. With any such permu-
tation π we can associate a permutation of X N , also
denoted by π , that maps any x = (x1, . . . ,xN) in X N

to πx := (xπ(1), . . . ,xπ(N)). Similarly, with any gamble f
on X N , we can consider the permuted gamble π f := f ◦π ,
or in other words (π f )(x) = f (πx). We then require that
PN
X (π f ) = PN

X ( f ) for any such permutation π and any
gamble f on X N . Equivalently, in terms of the joint mass

1See Chapters 6 and 7, and also Section K3 (Williams’s Theorem) in
Walley’s book [13]. Since the random variables Xk are assumed to only
take on a finite number of values, Walley’s coherence condition coincides
with the one first suggested by Williams [16].



function pN
X , we require that pN

X (πx) = pN
X (x) for all x

in X N and all permutations π .

We adopt the following definition of exchangeability for
general predictive systems.
Definition 4 (Exchangeability). A system of predictive
lower previsions is called exchangeable if it is the infimum
(or lower envelope) of a collection of exchangeable systems
of predictive linear previsions. We denote by 〈ΣN

e ,�〉 the
set of all exchangeable predictive systems for up to N ob-
servations, with the same order relation � that we defined
on 〈ΣN ,�〉.

The infimum (lower envelope) of any non-empty collection
of exchangeable predictive systems is still exchangeable.
This means that the partially ordered set 〈ΣN

e ,�〉 is a com-
plete semi-lattice [3, Sections 3.19–3.20]. For reasons of
mathematical convenience, we also introduce a stronger
requirement.
Definition 5 (Regular exchangeability). A system of pre-
dictive lower previsions is called regularly exchangeable
if it is the infimum (or lower envelope) of some collection
σN

γ , γ ∈ Γ of exchangeable systems of predictive linear
previsions, such that for all finite and non-empty X , all x
in X N−1, and all γ in Γ,

pN−1
X ,γ (x) :=PN

X ,γ({x}×X )

=
N−2

∏
k=0

pk+1
X ,γ(xk+1|x1, . . . ,xk) > 0.

Of course, all regularly exchangeable predictive sys-
tems are in particular also exchangeable and coherent.
A precise exchangeable predictive system is regularly
exchangeable if and only if pN−1

X (x1, . . . ,xN−1) > 0 for
all (x1, . . . ,xN−1) ∈X N−1 and all finite and non-empty
sets X . This shows that regular exchangeability is a stricter
requirement than exchangeability.

The term regular here reminds of the notion of regular
extension considered by Walley in [13]. In a regularly ex-
changeable predictive system every predictive lower previ-
sion Pn+1

X (·|x) is the lower envelope of the predictive linear
previsions Pn+1

X ,γ(·|x), which can be uniquely derived from
the joint linear previsions PN

X ,γ by applying Bayes’s rule:

Pn+1
X ,γ( f |x) =

PN
X ,γ( f I{x}×X N−n)

PN
X ,γ({x}×X N−n)

for every gamble f ∈ L (X ) and sample x ∈X n, or
equivalently,

pn+1
X ,γ(z|x) =

pn+1
X ,γ(x,z)

pn
X ,γ(x)

for all z ∈X and x ∈X n, because the probability
pn

X ,γ(x) := PN
X ,γ({x}×X N−n) of the conditioning event

is non-zero.

In regularly exchangeable predictive systems, the number
of times

Tz(x) := |{k ∈ {1, . . . ,n} : xk = z}|

that a given category z in X has been observed in some
sample x ∈X n of length 0 ≤ n ≤ N, is of special impor-
tance. This leads us to consider the counting map TX that
maps samples x of length n to the X -tuple TX (x) whose
components are Tz(x), z ∈X . TX (x) tells us how many
times each of the elements of X appears in the sample x,
and as x varies over X n, TX (x) assumes all values in the
set of count vectors N n

X :=
{
m ∈ NX

0 : ∑z∈X mz = n
}

. It
is easy to see that any two samples x and y of length n have
the same count vector TX (x) = TX (y) if and only if there
is some permutation π of {1, . . . ,n} such that y = πx.

Proposition 1. In any precise exchangeable predictive
system σN , consider any finite and non-empty set X ,
0 ≤ n ≤ N − 1, and samples x and y in X n such that
TX (x) = TX (y). Then pn

X (x) = pn
X (y) and moreover,

if pn
X (x) = pn

X (y) > 0, then also Pn+1
X (·|x) = Pn+1

X (·|y).

In any regularly exchangeable predictive system, the pre-
dictive lower previsions Pn+1

X (·|x) only depend on the
sample x through its count vector m = TX (x): for any
other sample y such that TX (y) = m, it holds that
Pn+1

X (·|x) = Pn+1
X (·|y) and we use the notation Pn+1

X (·|m)
for Pn+1

X (·|x) in order to reflect this. In fact, from now on
we only consider predictive systems—be they regularly
exchangeable or not—for which the predictive lower previ-
sions only depend on the observed samples through their
count vectors, i.e., for which the count vectors are sufficient
statistics.

One important reason for introducing regular exchangeabil-
ity, is that it allows us to prove the following inequality,
which has far-reaching consequences and which shall be
used in Section 5.2. We denote by ez the count vector
in N 1

X whose z-component is one and all of whose other
components are zero; it corresponds to the case where we
have a single observation which is of a category z in X .

Proposition 2. In any regularly exchangeable predictive
system, it holds that

Pn+1
X ( f |m)≥ Pn+1

X (Pn+2
X ( f |m+e·)|m)

for all finite and non-empty sets X , all 0 ≤ n ≤ N − 2,
all m in N n

X and all gambles f on X .

Here Pn+2
X ( f |m+e·) denotes the gamble on X that as-

sumes the value Pn+2
X ( f |m + ez) in z ∈ X . It can be

checked that the above inequality is an equality for pre-
cise regularly exchangeable predictive systems. The result
follows then by taking lower envelopes.



3 Representation invariance and
representation insensitivity

We are ready to consider Walley’s notion of representation
invariance; see his IDM paper [14] for more detailed discus-
sion and motivation. While its definition seems to be fairly
involved in case of general predictive inference, we shall
see that it takes on a remarkably simple and intuitive form
in the more special case of immediate prediction.

Representation invariance could also, and perhaps prefer-
ably so, be called pooling invariance. Consider a set of
categories X , and a partition S of X . Each element S
of such a partition corresponds to a single new category,
that consists of all the elements x ∈ S being pooled, i.e.,
considered as one. Denote by S(x) the unique element of
the partition S that a category x∈X belongs to. Now con-
sider a gamble f on X that doesn’t differentiate between
pooled categories, or in other words, that is constant on the
elements of S . This f can be seen as a gamble f̃ on the set
of categories S , such that f̃ (S(x)) := f (x) for all x ∈X .
Similarly, with a sample x = (x1, . . . ,xn)∈X n, there corre-
sponds a sample S(x) :=(S(x1), . . . ,S(xn))∈S n of pooled
categories. We consider S as a new set of categories, and
representation invariance now requires that

Pn+1
S ( f̃ |S(x)) = Pn+1

X ( f |x),

i.e., for gambles that do not differentiate between pooled
categories, it should not matter whether we consider pre-
dictive inferences for the set of original categories X , or
for the set of pooled categories S .

We are especially interested in predictive inference where
a subject starts from a state of prior ignorance. In such a
state, he has no reason to distinguish between the differ-
ent elements of any set of categories X he has chosen.
How can this be expressed in terms of predictive lower
previsions? Consider a permutation ϖ of the elements of
X .2 With any gamble f on X , there corresponds a per-
muted gamble ϖ f = f ◦ϖ . Similarly, with an observed
sample x in X n, there corresponds a permuted sample
ϖx = (ϖ(x1), . . . ,ϖ(xn)). If a subject has no reason to dis-
tinguish between categories z and their images ϖz, this
means that

Pn+1
X (ϖ f |x) = Pn+1

X ( f |ϖx).

We call this property category permutation invariance.3

We call representation insensitivity the combination of
both representation invariance and category permutation

2This permutation ϖ of the elements of X , or in other words of the
categories, should be contrasted with the permutation π of the order of
the observations, i.e., of the time set {1, . . . ,N}, considered in Section 2.4
in order to define exchangeability.

3It is related to the notion of (weak) permutation invariance that two
of us studied in much detail in a paper [4] dealing with general issues of
symmetry in uncertainty modelling.

invariance. It means that predictive inferences remain es-
sentially unchanged when we transform the set of cate-
gories, or in other words that they are essentially insen-
sitive to the choice of representation, i.e., category set.
To make this more explicit, consider two non-empty and
finite sets of categories X and Y , and a so-called re-
labeling map ρ : X → Y that is onto, i.e., such that
Y = ρ(X ) := {ρ(x) : x ∈X }. Then with any gamble
f on Y there corresponds a gamble ρ f := f ◦ ρ on X .
Similarly, with an observed sample x in X n, there cor-
responds a transformed sample ρx = (ρ(x1), . . . ,ρ(xn))
in Y n. Representation insensitivity for immediate pre-
diction then means that Pn+1

X (ρ f |x) should be equal to
Pn+1

Y ( f |ρx).

3.1 Definition and basic properties

For any gamble f on a finite and non-empty set of cate-
gories X , its range f (X ) := { f (x) : x ∈X } can again be
considered as a finite and non-empty set of categories, and f
itself can be considered as a relabeling map. With any m
in N n

X there corresponds a count vector m f in N n
f (X )

defined by
m f

r := ∑
f (x)=r

mx

for all r ∈ f (X ). Clearly, if x is a sample with count vec-
tor m, then the relabeled sample f x = ( f (x1), . . . , f (xn))
has count vector m f . Representation insensitivity is then
equivalent to the following requirement, which we take as
its definition, because of its simplicity and elegance.

Definition 6 (Representation insensitivity). A predic-
tive system σN is representation insensitive if for all
0 ≤ n ≤ N−1, for any finite and non-empty sets X and Y ,
for any m ∈N n

X and m′ ∈N n
Y , and for any gambles f

on X and g on Y such that f (X ) = g(Y ), the following
implication holds:

m f = m′g ⇒ Pn+1
X ( f |m) = Pn+1

Y (g|m′).

Clearly, a predictive system σN is representation insensi-
tive if and only if for all finite and non-empty sets X , all
0 ≤ n ≤ N−1, all m ∈N n

X and all f ∈L (X ):

Pn+1
X ( f |m) = Pn+1

f (X )(id f (X ) |m f ), (2)

where id f (X ) denotes the identity map (gamble) on f (X ).
The predictive lower prevision Pn+1

X ( f |m) then depends
on f (X ) and m f only, and not directly on X , f and m.
More explicitly, Pn+1

X ( f |m) only depends on the values
that f may assume, and on the number of times each value
has been observed.

We denote by ΣN
e,ri the set of all exchangeable predictive

systems that are representation insensitive. It is a subset of
the class ΣN

e of all exchangeable predictive systems, and



it inherits the order �. Clearly, taking (non-empty) infima
preserves representation insensitivity, so 〈ΣN

e,ri,�〉 is a com-
plete semi-lattice as well. We shall see in Theorem 5 that
these two structures have the same bottom (the vacuous
representation insensitive and exchangeable predictive sys-
tem).

The remainder of this paper is devoted to the predictive
systems in 〈ΣN

e,ri,�〉. So we are interested in finding, and
studying the properties of, predictive systems that are both
exchangeable (and therefore coherent) and representation
insensitive. We believe performing such a study to be quite
important, and we here report on our first attempts.

3.2 The lower probability function

With any predictive system σN , we can associate a map ϕσN

that is defined on the subset {(n,m) : 0 ≤ m ≤ n ≤ N−1}
of N2

0 by

ϕσN (n,m) := Pn+1
{0,1}(id{0,1} |n−m,m).

Why this map is important, becomes clear if we look at pre-
dictive systems that are representation insensitive. Consider
any proper event /0 6= A X , then it follows by applying
Equation (2) with f = IA, that

Pn+1
X (A|m) = Pn+1

{0,1}(id{0,1} |n−mA,mA)

= ϕσN (n,mA) (3)

where mA := ∑z∈A mz. So we see that in a representation
insensitive predictive system, the lower probability of ob-
serving an event (that is neither considered to be impossible
nor necessary) does not depend on the embedding set X
nor on the event itself, but only on the total number of pre-
vious observations n, and on the number of times m that the
event has been observed before, and is given by ϕσN (n,m).
Something similar holds of course for the upper probability
of observing a non-trivial event. Indeed, by conjugacy,

Pn+1
X (A|m) = 1−Pn+1

X (Ac|m) = 1−ϕσN (n,mAc)
= 1−ϕσN (n,n−mA). (4)

This property of representation insensitive predictive sys-
tems is reminiscent of Johnson’s sufficientness postulate
[9] (we use Zabell’s terminology [17]), which requires that
the probability that the next observation will be a category x
is a function fx(n,mx) that depends only on the category x
itself, on the number of times mx that this category has been
observed before, and on the total number of previous obser-
vations n. Representation insensitivity is stronger, because
it entails that the function ϕσN that ‘corresponds to’ the fx
is the same for all categories x in all possible finite sets and
non-empty X .

We call ϕσN the lower probability function of the predictive
system σN . We shall simply write ϕ instead of ϕσN , when-
ever it is clear from the context which predictive system

we are talking about. Let us give a number of interesting
properties for the lower probability function ϕ associated
to a representation insensitive and coherent predictive sys-
tem σN .

Proposition 3. Let N > 0 and let σN be a representation
insensitive and coherent predictive system with lower prob-
ability function ϕ . Then

1. ϕ is [0,1]-bounded:
0 ≤ ϕ(n,k)≤ 1 for all 0 ≤ k ≤ n ≤ N−1.

2. ϕ is super-additive in its second argument:
ϕ(n,k + `)≥ ϕ(n,k)+ϕ(n, `) for all non-negative
integers n, k and ` such that k + `≤ n ≤ N−1.

3. ϕ(n,0) = 0 for all 0 ≤ n ≤ N−1.

4. ϕ(n,k)≥ kϕ(n,1) for 1 ≤ k ≤ n ≤ N−1,
and 0 ≤ nϕ(n,1)≤ 1 for 1 ≤ n ≤ N−1.

5. ϕ is non-decreasing in its second argument:
ϕ(n,k +1)≥ ϕ(n,k) for 0 ≤ k < n ≤ N−1.

If σN is moreover regularly exchangeable, then

6. ϕ(n + 1,k) + ϕ(n,k)[ϕ(n + 1,k + 1)− ϕ(n + 1,k)] ≤
ϕ(n,k) for 0 ≤ k ≤ n ≤ N−2.

7. ϕ is non-increasing in its first argument:
ϕ(n+1,k)≤ ϕ(n,k) for 0 ≤ k ≤ n ≤ N−2.

8. ϕ(n,1)≥ ϕ(n+1,1)[1+ϕ(n,1)] for 1 ≤ n ≤ N−2.

9. Suppose that ϕ(n,1) > 0 and define sn := 1
ϕ(n,1) −n for

1 ≤ n ≤ N−1.4 Then sn ≥ 0, sn is non-decreasing and
ϕ(n,1) = 1/(sn +n).

In particular, these results, together with Equations (3)
and (4), allow us to draw interesting and intuitively ap-
pealing conclusions about predictive lower and upper prob-
abilities, which are valid in any representation insensitive
and coherent predictive system: (i) the lower probability of
observing an event that hasn’t been observed before is zero,
and the upper probability of observing an event that has
always been observed before is one [Proposition 3.3]; and
(ii) if the number of observations remains fixed, then both
the lower and the upper probability of observing an event
again do not decrease if the number of times the event has
already been observed increases [Proposition 3.5]. In pre-
dictive systems that are moreover regularly exchangeable,
we also see that (iii) if the number of times an event has
been observed remains the same as the number of obser-
vations increases, then the lower probability for observing
the event again does not increase [Proposition 3.7].

4This sn will later, in Section 5.2 turn out to be a constant (independent
of the number of observations n) under special additional assumptions,
and will play the rôle of the hyper-parameter s in the ID(M)M.



When the predictive system consists solely of families of
predictive linear previsions (apart from predictive lower
previsions for dealing with zero previous observations, see
Section 4), we can use the additivity of linear previsions,
instead of the mere super-additivity of coherent lower pre-
visions used previously, to get stronger versions of parts
of Proposition 35. Such predictive systems will be charac-
terised in Theorem 6 further on.

Corollary 4. Consider a representation insensitive and
coherent predictive system σN , with a lower probability
function ϕ , and such that all the predictive lower previsions
Pn+1

X (·|m) for 0 < n ≤ N−1 are linear previsions. Then
for all 0 < n ≤ N−1 and all k, `≥ 0 such that k + `≤ n:

1. ϕ(n,k + `) = ϕ(n,k)+ϕ(n, `).

2. ϕ(n,k) = kϕ(n,1).

4 Are there representation insensitive
exchangeable predictive systems?

We don’t know yet if there are any predictive systems that
are both representation insensitive and exchangeable. We
remedy this situation here by establishing the existence
of two ‘extreme’ types of representation insensitive and
exchangeable predictive systems, one of which is also reg-
ularly exchangeable.

Consider, for any predictive system σN that is both repre-
sentation insensitive and exchangeable, the predictive lower
previsions for n = 0. These are actually unconditional lower
previsions P1

X on L (X ), modelling our beliefs about
the first observation X1, i.e., when no observations have
yet been made. It follows right away from Proposition 3
and Equations (3) and (4) that for any proper subset A
of X , P1

X (A) = ϕ(0,0) = 0. Since P1
X is assumed to

be a (separately) coherent lower prevision, it follows that
P1

X ( f ) = min f , for any gamble f on X . So all the P1
X in

a representation insensitive and exchangeable predictive
system must be so-called vacuous lower previsions.6 This
means that there is no choice for the first predictions. It also
means that it is impossible to achieve representation insen-
sitivity in any precise predictive system (but see Theorem 6
for a predictive system that comes close).

This leads us to consider the so-called vacuous predictive
system νN where all predictive previsions are vacuous:
for all 0 ≤ n ≤ N − 1, all finite and non-empty sets of

5Note that the equalities in this corollary will also hold for some non-
linear predictive systems, such as the mixing ones we shall consider in
Section 5

6This result was proven, in another way, by Walley [13, Section 5.5.1],
when he argued that his Embedding and Symmetry Principles under
coherence only leave room for the vacuous lower prevision. When there
are no prior observations (n = 0), the Embedding Principle is related to
representation invariance, and the Symmetry Principle with what we have
called category permutation invariance.

categories X , all m in N n
X and all gambles f on X ,

Pn+1
X ( f |m) := min f .

Theorem 5. The vacuous predictive system νN is reg-
ularly exchangeable and representation insensitive. It
is the bottom (smallest element) of the complete semi-
lattice 〈ΣN

e,ri,�〉. Its lower probability function is given
by ϕ(n,m) = 0 for 0 ≤ m ≤ n ≤ N−1.

In the vacuous predictive system the predictive lower previ-
sions Pn+1

X (·|m) are all vacuous, and therefore do not de-
pend on the number of observations n, nor on the observed
count vectors m. A subject who is using the vacuous predic-
tive system is not learning anything from the observations.
Representation insensitivity and (regular) exchangeability
do not guarantee that we become more committal as we
have more information at our disposal. Indeed, with the
vacuous predictive system, whatever our subject has ob-
served before, he always remains fully uncommittal. If we
want a predictive system where something is really being
learned from the data, it seems we need to make some ‘leap
of faith’, and add something to our assessments that is not
a mere consequence of exchangeability and representation
insensitivity.

So are there less trivial examples of exchangeable and rep-
resentation insensitive predictive systems? We must make
the vacuous choice for n = 0, but is there, for instance, a
way to make the predictive lower previsions precise, or
linear, for n > 0? The following theorem tells us there is
only one such exchangeable and representation insensitive
predictive system.
Theorem 6. Consider a predictive system where for any
0 < n≤N−1 all the predictive lower previsions Pn+1

X (·|m)
are actually linear previsions Pn+1

X (·|m). If this predictive
system is representation insensitive, then

Pn+1
X ( f |m) = Sn+1

X ( f |m) := ∑
z∈X

f (z)
mz

n
(5)

for all 0 < n ≤ N−1, all finite and non-empty sets of cat-
egories X , all m ∈ N n

X and all gambles f on X . For
its lower probability function ϕ , we then have ϕ(n,k) = k

n
for all 0 ≤ k ≤ n and n > 0. Moreover, the predictive pre-
visions given by Equation (5), together with the vacuous
lower previsions for n = 0, constitute a representation in-
sensitive and exchangeable (but not regularly so) predictive
system πN .

We call the predictive system πN described in Theorem 6
the Haldane predictive system. The name refers to the
fact that a Bayesian inference model with a multinomial
likelihood function using Haldane’s (improper) prior (see,
e.g., Jeffreys [8, p. 123]) leads to these predictive previsions
for n > 0.

It is a consequence of Walley’s Marginal Extension The-
orem [13, Section 6.7.3] that for any finite and non-
empty X , the only joint lower prevision on L (X N)



that is coherent with the Haldane predictive X -family is
given by PN

X ( f ) = minz∈X f (z, . . . ,z). This implies that
the Haldane predictive system is not regularly exchange-
able: any dominating precise exchangeable predictive sys-
tem satisfies pN−1

X (x) = 0 for all x ∈X N−1 such that
TX (x) = m 6= (N−1)ez for all z∈X , and for any such x,
the requirements for regular exchangeability cannot be sat-
isfied.

The Haldane predictive system only seems to be coherent
with a joint lower prevision PN

X which expresses that our
subject is certain that all variables Xk will assume the same
value, but where he is completely ignorant about what that
common value is. This is related to another observation: we
deduce from Proposition 3.3 that in the Haldane predictive
system, when n > 0 then not only the lower probability but
also the upper probability of observing an event that hasn’t
been observed before is zero! This models that a subject
is practically certain (because prepared to bet at all odds
on the fact) that any event that hasn’t been observed in the
past will not be observed in the future either. The sampling
prevision Sn+1

X ( f |m) for a gamble f in this predictive sys-
tem is the expectation of f with respect to the observed
(sampling) probability distribution on the set of categories.
The Haldane predictive system is too strongly tied to the
observations, and does not allow us to make ‘reasonable’
inferences in a general context.

5 Mixing predictive systems

So we have found two extreme representation insensitive
and exchangeable predictive systems, both of which are
not very useful: the first, because it doesn’t allow us to
learn from past observations, and the second, because its
inferences are too strong and we seem to infer too much
from the data. A natural question then is: can we find ‘in-
termediate’ representation insensitive and exchangeable
predictive systems whose behaviour is stronger than the
vacuous predictive system and weaker than the Haldane
predictive system? The first idea that comes to mind, is to
look at convex mixtures. Let us, therefore, consider a finite
sequence ε , of N numbers εn ∈ [0,1], 0 ≤ n ≤ N−1, and
study the mixing predictive system σN

ε whose predictive
lower previsions are given by

Pn+1
X ( f |m) := εnSn+1

X ( f |m)+(1− εn)min f , (6)

for all 0 ≤ n ≤ N−1, all finite and non-empty sets of cat-
egories X , all m ∈ N n

X and all gambles f on X . As
Sn+1

X ( f |m) is only defined for n > 0, and since represen-
tation insensitivity and coherence require that P1

X should
be vacuous, we always let ε0 = 0 implicitly. We call any
such sequence ε a mixing sequence, and we denote by ϕε

the lower probability function of the corresponding mixing
predictive system σN

ε .

We are mainly interested in finding mixing predictive sys-

tems that are representation insensitive and (regularly) ex-
changeable. The following proposition tells us that the only
real issue lies with exchangeability.

Proposition 7. For any mixing sequence ε , the predictive
system σN

ε is still representation insensitive. Moreover, let
0≤ k ≤ n≤ N−1. Then ϕε(n,k) = εn

k
n , and if εn > 0 then

sn = n 1−εn
εn

and εn = n
n+sn

. In particular ϕε(n,1) = εn/n is
the lower probability of observing a non-trivial event that
has been observed once before in n trials, εn = nϕε(n,1)
is the lower probability ϕε(n,n) of observing a non-trivial
event that has always been observed before (n out of n
times), and sn = 1−ϕε (n,n)

ϕε (n,1) is the ratio of the upper proba-
bility of observing an event that has never been observed
before to the lower probability of observing an event that
has been observed once before, in n trials.

We have already argued that in order to get away from
making vacuous inferences, and in order to be able to learn
from observations, we need to make some ‘leap of faith’
and go beyond merely requiring exchangeability and repre-
sentation insensitivity. One of the simplest ways to do so,
is to specify the numbers ϕ(n,1) for n = 1, . . . ,N−1, or in
other words, to specify, beforehand, the lower probability
of observing any non-trivial event that has been observed
only once in n trials. We can then ask for the most con-
servative representation insensitive predictive system that
exhibits these lower probabilities. The following theorem
tells us that mixing predictive systems play this part.

Theorem 8. Consider N > 0 and a mixing sequence ε .
Let σN be a representation insensitive coherent predictive
system such that its associated lower probability function ϕ

satisfies
ϕ(n,1)≥ ϕε(n,1) = εn/n

for all 0 < n ≤ N−1. Then σN
ε � σN .

Mixing predictive systems have a special part in this theory,
because they are quite simple, and in some sense most con-
servative. They are quite simple because all that is needed
to specify them is the values ϕ(n,1) of the lower proba-
bility function, or in other words, the lower probabilities
that an event will occur that has been observed once in n
observations. They are the most conservative coherent and
representation insensitive predictive systems with the given
values for ϕ(n,1). In the following subsections we shall see
that there are mixing predictive systems with a non-trivial
mixing sequence ε that are also regularly exchangeable, and
we derive a necessary condition on the mixing sequence ε

for this to be the case.

5.1 The regular exchangeability of
mixing predictive systems

Consider any mixing sequence ε and the corresponding
mixing predictive system σN

ε . For the corresponding lower
probability function ϕε it holds by Proposition 7 that



ϕε(n,k) = εn
k
n ; if we substitute this in the inequality of

Proposition 3.8 we see that it is necessary for regular ex-
changeability that

εn

n
≥ εn+1

n+1

(
1+

εn

n

)
, n = 1, . . . ,N−1. (7)

If one εn is zero, then all of the subsequent εn+k are zero
as well: if inferences are vacuous after n > 0 observations,
they should also remain vacuous after subsequent ones. Or,
to put it more boldly, in regularly exchangeable mixing
predictive systems, if we are going to learn at all from
observations, we have to start doing so from the first obser-
vation.

5.2 Predictive inferences for the IDMM

It is of particular interest to investigate for which types of
mixing predictive systems, or in other words, for which
mixing sequences ε , we generally have an equality rather
than only an inequality in the condition of Proposition 2,
i.e., for which

Pn+1
X ( f |m) = Pn+1

X (Pn+2
X ( f |m+e·)|m), (8)

for all finite and non-empty X , all 0 ≤ n ≤ N − 1,
all m ∈N n

X and all gambles f on X , where the pre-
dictive lower previsions Pn+1

X (·|m) are given by Equa-
tion (6). Using the definition of Sn+1

X ( f |m), and the co-
herence of Pn+1

X (·|m) we find, after some rearranging, that
Equation (8) holds if and only if

εn

n
=

εn+1

n+1

(
1+

εn

n

)
, n = 1 . . . ,N−1,

i.e., we have the equality in (7). Clearly, one εn is zero if and
only if all of them are, which leads to the vacuous predictive
system νN . We already know this vacuous system to be
regularly exchangeable (and representation insensitive). If
we assume on the other hand that εn > 0 for n = 1, . . . ,N,
and let ζn := n/εn = n+ sn ≥ 1, then the above equality
can be rewritten as ζn+1 = ζn +1, which implies that there
is some s ≥ 0 such that ζn = n+ s, or equivalently, sn = s
and consequently, εn = n

n+s , and

Pn+1
X ( f |m) =

n
n+ s

Sn+1
X ( f |m)+

s
n+ s

min f (9)

for n = 0,1, . . . ,N−1. The predictive lower previsions in
Equation (9) are precisely the ones that can be associated
with the so-called Imprecise Dirichlet-Multinomial Model
(or IDMM) with hyper-parameter s [15, Section 4.1]. We
call mixing predictive systems of this type IDMM-predictive
systems. The vacuous predictive system corresponds to
letting s → ∞.

Theorem 9. The vacuous predictive system, and the IDMM-
predictive systems for s > 0 are regularly exchangeable
and representation insensitive, and they are the only mixing
predictive systems for which the equality (8) holds.

Among the mixing predictive systems, the ones correspond-
ing to the IDMM are also special in another way. which
points to a quite peculiar, but intuitively appealing, prop-
erty of predictive inferences produced by the IDMM. In-
deed, assume that in addition to observing a count vec-
tor m of n observations, we know in some way that the
(n + 1)-th observation will belong to a proper subset A
of X —we might suppose for instance that the observa-
tion Xn+1 has been made, but that it is imperfect, and only
allows us to conclude that Xn+1 ∈ A. Then we can ask
what the updated beliefs are, i.e., what Pn+1

X ( f |m,A) is.
Since Pn+1

X (A|m) = εnmA/n > 0 if and only if mA > 0
and εn > 0, let us assume that indeed mA > 0 and εn > 0,
in which case the requirements of coherence allow us to
determine Pn+1

X ( f |m,A) uniquely, using the so-called Gen-
eralised Bayes Rule [13, Section 6.4]. This implies that
Pn+1

X ( f |m,A) is then the unique real µ such that

Pn+1
X (IA( f −µ)|m) = 0.

We now have the following characterisation of IDMM-
predictive systems.

Theorem 10 (Specificity). The IDMM-predictive systems
with s > 0 are the only mixing predictive systems with all
εn > 0, n = 1, . . . ,N−1 that satisfy

Pn+1
X ( f |m,A) = PmA+1

A ( fA|mA) (10)

for all n = 1, . . . ,N−1, all m ∈N n
X , all gambles f on X

and all proper subsets A of X such that mA > 0.

We have denoted by fA the restriction of the gamble f to
the set A, by mA the A-tuple obtained from m by dropping
the components that correspond to elements outside A. The
sum of the components of mA is mA.

This so-called specificity property of inferences charac-
terised by Equation (10) is quite peculiar. Suppose that you
have observed n successive outcomes, leading to a count
vector m. If you know in addition that Xn+1 ∈ A, then Equa-
tion (10) tells you that the updated value Pn+1

X ( f |m,A) is
the same as the one you would get by discarding all the
previous observations producing values outside A, and in
effect only retaining the mA observations that were inside A!
Knowing that the (n+1)-th observation belongs to A allows
you to ignore all the previous observations that happened to
lie outside A. This is intuitively appealing, because it means
that if you know that the outcome of the next observation
belongs to A, only the related behaviour (the values of f
on A and the previous observations of this set) matters for
your prediction.

The name ‘specificity’ for this property was suggested to
us by Jean-Marc Bernard. In one of his papers [1], he
calls ‘specific’ any type of inference that has this particular
property.



6 Conclusions

More work is needed in order to be able to draw a reason-
ably complete picture of the issue of representation insensi-
tivity in predictive systems. Indeed, while doing research
for this paper, we came across a multitude of questions that
we haven’t yet been able to answer, and we list only a few
of them here.

(i) Are there (regularly) exchangeable and representa-
tion insensitive predictive systems that are not mixing
predictive systems?

(ii) Related questions are: are there (regularly) exchange-
able and representation insensitive predictive systems
that, unlike the mixing systems, are not completely
determined by the probabilities ϕ(n,1) of observing
an event that has been observed only once before
in n observations; are there such predictive systems
whose behaviour on gambles, unlike that of mixing
systems, is not completely determined by the lower
probability function ϕ; and are there such predictive
systems whose lower probability function ϕ , unlike
that of mixing systems, is not additive in the sense
that ϕ(n,k + `) = ϕ(n,k)+ϕ(n, `)?

(iii) Are there (regularly) exchangeable and representation
insensitive mixing predictive systems that are not of
the IDMM-type? And if so,

(iv) are there (regularly) exchangeable, representation in-
sensitive non-mixing predictive systems that satisfy
Equation (10)?

(v) Can we arrive at stronger conclusions if we consider
that the observations Xn make up an infinite exchange-
able sequence?

(vi) Can more definite answers be given if we consider
the general, rather than the immediate, prediction
problem?
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Abstract

Building on work that we reported in [1] we revisit the
claims made by Fox and Tversky in [3] concerning
their comparative ignorance hypothesis for decision
making under uncertainty.

Keywords. normative, descriptive, indeterminate,
rationality.

1 Introduction

The purpose of this paper is to report on recent de-
velopments in the research program that we intro-
duced in [1] and continued in [2]. The motivating
questions behind this program concern the extent to
which certain normative theories of decision making
that are based on indeterminate probabilities can be
used to rationalize some observed deviations from the
orthodox Bayesian account. This program may be
contrasted with the so-called ‘heuristics and biases’
program which seeks descriptive theories of decision
making that are capable of accommodating such devi-
ations. Where our program is focused on the explana-
tory power of indeterminate probabilities as they are
employed in certain normative theories, the heuristics
and biases program introduces clearly non-normative
explanatory devices such as psychological effects in or-
der to accommodate certain deviations from orthodox
Bayesian account.

Fox and Tversky’s ‘comparative ignorance’ hypothesis
of [3] is an important example of the sort of theoreti-
cal work that has been advanced within the heuristics
and biases framework. Roughly, the basic idea behind
comparative ignorance is that ‘uncertainty aversion’ is
mainly driven by comparative contexts in which the
decision maker is made aware of their lack of knowl-
edge concerning a given uncertain event as a result of
the salience of another uncertain event about which
they are better informed. Fox and Tversky investigate
the comparative ignorance hypothesis through a series

of experiments that employ both ‘clear’ and ‘vague’
prospects in isolation and jointly. Following Fox and
Tversky’s terminology we will say that a comparative
context obtains when the subject is presented with
both a clear and a vague prospect.

The following illustrates a type of prospect that Fox
and Tversky use in their work: An urn has been filled
with 100 balls, where m of the balls are known to be
solid black and n ≤ 100 − m are known to be solid
white. What is the most that you would be willing
to pay for a ticket that pays $100 if a given random
selection from the urn yields a black ball and pays
$0 dollars if the random selection yields a white ball?
Prospects of this type for which m+n = 100 are said
to be clear while those for which m+n < 100 are said
to be vague.

Now suppose that we fix two prospects of the indi-
cated type. Prospect A is clear and is determined by
setting m = 50 = n. Prospect B is vague and is de-
termined by setting m = 0 = n. According to the
comparative ignorance hypothesis subjects who are
presented with both A and B, thereby constituting
a comparative context, will tend to exhibit a signif-
icant difference in their willingness to pay for these
prospects while the difference between the maximum
purchase price for those subjects who are offered A in
isolation and those who are offered B in isolation will
tend to be relatively insignificant.

In [1] we employed a rather novel methodology
whereby subjects were asked to price their ticket on
mixtures of the basic chance setups that were consid-
ered in Fox and Tversky’s original experiment. For
example, subjects were asked to state the most they
would be willing to pay for their ticket given that the
payoff would be determined by a two-stage chance
setup where the first stage consists of a flip of a fair
coin and the second stage, which depends on the out-
come of the first, consists of a random draw from ei-
ther the 50:50 urn or the urn that has a completely
unknown ratio of black balls to white balls. With this



methodology we introduced gradations between Fox
and Tversky’s clear and vague bets; increasing the
bias of the coin in the first stage in favor of the 50:50
urn results in a more clear bet while increasing the
bias of the coin in the first stage in favor of the com-
pletely indeterminate urn results in a more vague bet.
As we reported in [1] increasing amounts of vagueness
had significance for the maximum buying prices even
in the absence of a comparative context of the sort
that was discussed by Fox and Tversky.

2 Experiment on Mixtures of Chance
Setups

In our initial use of mixtures of chance setups we as-
sumed that these setups were, at least in principle,
reducible to one-stage setups. Given that an overar-
ching goal of our project has been to investigate the
explanatory power of indeterminate probabilities we
have a clear interest in whether or not a play on a
mixed chance setup can be exchanged for a play on
a particular urn for which the subject is given some,
although not necessarily complete, information con-
cerning the ratio of black balls to white balls. We
now report on study that takes some first steps to-
wards an understanding of this reduction.

Our subjects, 56 undergraduates at Carnegie Mellon
University, were presented with a questionnaire that
began with the following description of the relevant
chance setups:

Urn A contains exactly 100 balls. 50 of these balls are
solid black and the remaining 50 are solid white.

Urn B contains exactly 100 balls. Each of these balls is
either solid black or solid white, although the ratio
of black balls to white balls is unknown.

Urn X contains exactly 100 balls. Each of these balls
is either solid black or solid white. Further assump-
tions concerning this urn will be considered in the
questions below.

The next item on the questionnaire was the following
presentation of the alternatives that the subjects were
asked to consider:

Alternative 1 We flip a fair coin. If the coin lands
heads, then we draw a ball at random from Urn
A. If the coin lands tales, then we draw a ball at
random from Urn B. In either case, if the ball that
is drawn is black, then you get $100. However, if
the ball that is drawn is white, then you get $0.

Alternative 2 We draw a ball at random from Urn X.
If the ball that is drawn is black, then you get $100.
If the ball that is drawn is white, then you get $0.

Finally, we attempted to elicit a reduction with the
following two questions:

Question 1: What is the smallest number m, between 0
and 100, such that if you were to learn that X con-
tains at least m black balls then you would be will-
ing to choose Alternative 2 when offered a choice
between Alternative 1 and Alternative 2?

Question 2: Let m be your answer from Question 1.
Assume that all you know about the distribution of
black balls and white balls in Urn X is that there are
at least m black balls in Urn X so that, according to
your answer to Question 1, you would be willing to
choose Alternative 2 when offered a choice between
Alternative 1 and Alternative 2. Is there a number
n, between 0 and 100−m, such that if you were to
learn that Urn X contains at least n white balls then
you would no longer be willing to choose Alternative
2 when offered a choice between Alternative 1 and
Alternative 2? If there is such a number, then write
the least such number in the space below.

There are at least two rather obvious theoretical can-
didates that might be considered in connection with
the questionnaire that has just been presented. Ac-
cording to the first of these, a reduction is given by
the following operation:

U ⊕λ V = {λp + (1− λ)q | p ∈ U and q ∈ V } (1)

where U and V are each sets of probability distribu-
tions over a common state space and λ ∈ [0, 1] is a
mixture weight. Interpret A as the set that contains
exactly one distribution, namely the one that assigns
a probability to drawing a black ball that is equal to
that of drawing a white ball. Interpret B as the set
of all distributions on {Black,White}. Taking λ as 1

2 ,
A ⊕ 1

2
B evaluates to the set of all distributions p on

the indicated set of states such that p(Black) ≥ 1
4 and

p(White) ≥ 1
4 . This suggests a reduction of the two-

stage chance setup to a single-stage setup where the
subject is told that there are at least 25 black balls
and at least 25 white balls in the urn. For our second
theoretical candidate imagine a subject who applies
the principle of insufficient reason when considering
B, the maximally indeterminate urn, and thus inter-
prets the flip of the coin as leading to a play on a 50:50
urn in either case. This second account suggests a re-
duction of the two-stage setup to a single stage setup



> 37.5 < 37.5
Black min 39 17
White max 47 9

Table 1:

> 37.5 < 37.5
34 2

Table 2:

where the subject is told that the urn has 50 black
balls and 50 white balls.

It turns out that relatively few of the subjects were
in complete agreement with either of the theoretical
candidates. As noted, the first (second) theoretical
candidate suggests a value of 25 (50) as the minimum
number of known black balls required for Alternative
2 to be admissible and the first (second) theoretical
candidate suggests a value of 25 (50) as the maximum
number of known white balls such that Alternative 2
retains its status as an admissible option. 1 Now, if
we suppose that each of these candidates is playing
a role to some degree, then we can try to consider
the extent to which one of the two seems to dominate
by making a cut at 37.5, i.e. the midpoint ( 25+50

2 )
between the theoretical predictions regarding each of
the two bounds.

Table 1 shows the number of subjects who reported
a value above (below) the midpoint for each of the
two bounds. Table 1 suggests that the second model,
the one based on the principle of insufficient reason,
is dominant, at least when the two questions are con-
sidered individually. Table 2 shows the breakdown
when fit is considered with respect to both of the
bounds. The first column of Table 2 shows the num-
ber of subjects who gave values above 37.5 for both
of the bounds (i.e. the minimum for black and the
maximum for white). Similarly, the second column
shows the number of subjects who gave values below
37.5 for both of the bounds. Again the model that is
based on the principle of insufficient reason appears
dominant, 34 of 56 compared to 2 of 56.

While the analysis above suggests that the data fa-
vors the account based on the principle of indiffer-
ence, it is important to note that relatively few sub-
jects returned values that are in complete agreement
with this account. As a possible explanation of this

1This first set of values (i.e. the minimum number of known
black balls) may be computed directly from Question 1, while
the second set of values (i.e. the maximum number of known
white balls) can be computed from Question 2 as n − 1 if a
value is supplied and 100 − m if no value is supplied by the
subject.

some might suggest that the mixed chance setup is
itself a comparative context in that it makes salient
a comparison between the maximally indeterminate
urn and the 50:50 urn. To be sure, this is not quite
a comparative context in the sense of Fox and Tver-
sky: there is but one alternative being played against
the mixed chance setup. Moreover, it is unclear how
Fox and Tversky can in general interpret the upper
and lower bounds that are reported. Of course we are
open to interpreting these bounds as upper and lower
probabilities for a potential credal state, but such an
interpretation does not seem to be an option for Fox
and Tversky. Nonetheless, let us allow a very gen-
erous interpretation of ‘comparative context’ so that
the results of [1], which employed mixed chance se-
tups, can be countered by objecting that we did in fact
employ a comparative context. The following studies
attempt to reinforce our point without appealing to
mixed chance setups.

3 Two Experiments That Do Not Use
Mixtures of Chance Setups

Fox and Tversky predict essentially Bayesian behavior
in the absence of a comparative context. Moreover,
in keeping with much of the heuristics and biases tra-
dition, they seem to interpret all deviations from the
Bayesian standard as instances of irrationality; de-
viations from this standard are predicted when the
subject is under the spell of various psychological ef-
fects, which in the sort of cases that we have been
considering are those resulting from the presence of a
comparative context. While our primary focus in [1]
was to argue against some of the core claims in [3], we
will now consider data that has direct relevance to the
manner in which Fox and Tversky seem to interpret
deviations from the Bayesian standard.

Using a protocol that was derived from an example
in [4] we attempted to ascertain the extent to which
violations of the Bayesian standard could be accom-
modated by certain normative alternatives based on
indeterminate probabilities. For the purposes of these
studies we focused on the following decision rules:

E-admissibility: Assume that the decision maker’s
credal state can be represented by a set P of
probability distributions. If X is a set of alter-
natives, then a is E-admissible in X iff a ∈ X
and there is some distribution in p ∈ P for which
Ep[a] ≥ Ep[b] for all b ∈ X, where Ep[x] is the
the expected utility of x against distribution p..

MMEU: Assume that the decision maker’s credal
state can be represented by a set P of probability
distributions. For each alternative x, let x− be



the greatest lower bound of {Ep[x] | p ∈ P}. If X
is a set of alternatives, then x ∈ X satisfies the
maximin criterion for expected utility (MMEU)
on X iff x− ≥ y− for all y ∈ X.

E-admissibility followed by MMEU: Assume
that the decision kakers credal state can be rep-
resented by a set P of probability distributions.
If X is a set of alternatives, then a is admissible
in X according to this rule iff a satisfies MMEU
on the set of alternatives that are E-admissible
in X.

E-admissibility is discussed in [6] where it is taken as
the first tier in Levi’s two-tiered decision theory. Al-
ternatively, taken as a free standing decision rule, E-
admissibility corresponds to Levi’s theory when the
security, the second tier, is vacuous. MMEU has a
long history in the statistics literature, e.g. in discus-
sions of ‘gamma minimax’, and continues to receive
attention in decision contexts [4, 5]. The third crite-
rion is essentially an instance of Levi’s decision theory
where the second tier security rule is given by MMEU.

3.1 Study 1

Our subjects, 56 undergraduates at Carnegie Mellon
University, were presented with a questionnaire that
began with the following description of the underlying
chance setup.

An urn has been filled with several balls, each of which
is either solid black or solid white. While the exact ratio
of black balls to white balls is unknown, the following
statistical information is available:

Black The probability of selecting a black ball on a
single random draw from the urn is at least %40
but not more than %60.

White The probability of selecting a white ball on a
single random draw from the urn is at least %40
but not more than %60.

The next section of the questionnaire introduced the
following choice problem, which, as noted above, is
based on an example from [4]:

Consider the three alternatives in the table below. Note
that the payoffs for these alternatives are in dollars. So,
for example, Alternative pays $-10 if a black ball is drawn
(i.e. you lose $10 if a black ball is drawn from the urn)
and pays $12 dollars if a white ball is drawn.

Black White
A -10 12
B 11 -9
C 0 0

A,B B C Other
12 9 22 13

Table 3:

In the final section of the questionnaire the subjects
were given the following prompt and then asked to
indicate the alternatives that they would be willing
to choose.

Suppose that you are offered the opportunity to specify
the alternatives above that you are willing to choose,
with the understanding that we will pick one of these
alternatives before the random selection from the urn
and you will receive the winnings, or pay the losses, that
are generated by the alternative that we pick.

Before turning to the data from this initial study, let
us apply the three decision rules from the previous
section to the choice problem that is presented in the
above questionnaire. Assume that utilities are deter-
minate and linear in dollars. Assume that the agent’s
credal state is given by the description at the begin-
ning of the protocol. That is, assume that the agent’s
credal state can be represented by the set P = {p :
.4 ≤ p(Black) ≤ .6}. Under these assumptions it fol-
lows that A and B are the only E-admissible alterna-
tives in {A,B, C} while C is the only alternative that
satisfies MMEU in {A,B, C}. The two-tiered rule, E-
admissibility followed by MMEU, counts B as the lone
admissible alternative since B is the only alternative
that satisfies MMEU in {A,B}.
Table 3 shows that those subjects who regarded C as
uniquely admissible constitute the largest group by a
rather wide margin, with the total for C being approx-
imately equal to the combined totals for A,B and B.
It is worth noting that C is the only alternative that
fails to be a bayes solution under the assumption that
utilities in this range are determinate and essentially
linear in dollars. Given that this is a noncomparative
problem, C’s dominant position seems to disconfirm
Fox and Tversky’s prediction of essentially Bayesian
behavior in absence of a comparative context. This
point can be strengthened if we note that Fox and
Tversky seem to have in mind that the appropriate
Bayesian model for predicting behavior in noncom-
parative contexts is one that appeals to the principle
of insufficient reason. That is, Fox and Tversky seem
to predict that subjects who are faced with the given
noncomparative choice problem will choose as though
they are maximizing expectations against the distri-
bution that assigns the two states an equal probabil-
ity. Assuming that utilities are determinate and linear
in dollars, subjects who are in accordance with this
prediction must be willing to choose A and B. Hence,



in addition to those who judged C to be uniquely ad-
missible, those who judged B to be uniquely admis-
sible fail to confirm Fox and Tversky’s prediction for
noncomparative choice under uncertainty.

Although their presence seems to disconfirm Fox and
Tversky’s predictions, at least under the assumption
that utilities are determinate and linear in dollars,
those who judged either B or C to be uniquely admis-
sible in the triple are consistent with one of the nor-
mative alternatives discussed above under this very
same linearity assumption. Of course we recognize
that by appealing to other considerations, e.g. non-
linear utilities or perhaps various psychological effects,
one might formulate decidedly non-normative decision
models that are capable of reproducing the admissi-
bility judgments that were reported by these subjects.
It is for this reason that we decided to conduct a fur-
ther investigation in order to determine the extent
to which subjects reasoned in the manner suggested
by the normative theory that reproduced their ad-
missible choices. Details of this second study are the
subject of the next section.

3.2 Study 2

Our subjects, 27 undergraduates at Carnegie Mellon
University, were presented with a questionnaire that
began exactly as the one that was employed in the
previous study but continued with the following illus-
trations of each of the three decision rules that were
discussed at the beginning of Section 3.

Albert’s reasoning: Note that the only probability dis-
tributions that are consistent with the information that
is given are those for which the probability assigned to
drawing a black (white) chip is at least .4 and no more
than .6. Among the distributions that satisfy these con-
ditions, there are some for which A maximizes expected
value. For example, if the probability of drawing a black
ball is .4, and so the probability of drawing a white ball
is .6, the following table gives the expected valued of
each of the alternatives.

p(Black) = .4 p(White) = .6 Expected Val.

A -10 12 3.2
B 11 -9 -1.0
C 0 0 0

From the table it is clear that A maximizes expected
value against the probability distribution that assigns a
probability of .6 to drawing a white ball. Similarly, B
maximizes expected value against the probability distri-
bution that assigns a probability of .6 to drawing a black
ball and a probability of .4 to drawing a white ball. On
the other hand there is no distribution that is consistent
with the information that is given and against which C
maximizes expected value. With this reasoning I elimi-

nated C from further consideration. I would be willing
to choose A and B, but not C.

Bob’s reasoning: Well, I eliminated C along the same
lines as Albert suggested, but then I appealed to some
additional considerations. Since the minimal expected
value of A is −1.2, which occurs when the probability
assigned to drawing a black ball is .6, and the minimal
expected value of B is −1.0, which occurs when the
probability assigned to drawing a white ball is .6, I de-
cided to eliminate A from further consideration. I would
be willing to choose B, but not A or C.

Carol’s reasoning: My reasoning was essentially like
Bob’s, except for the part where he followed Albert.
That is, I simply considered the minimal expectation of
each of the three alternatives. Since the minimal ex-
pected value of A is −1.2 and the minimal expected
value of B is −1.0, while the minimal expected value of
C is 0, I eliminated A and B from further consideration.
C has the largest minimal expectation. So, I would be
willing to choose C, but not A or B.

Finally, the subjects in this study were asked to indi-
cate their level of agreement with each of the state-
ments below. We instructed the subjects to indicate
their level of agreement on a scale from 1 to 10 (i.e.
1, 2, 3, ..., 10) with 1 being ‘not at all’ and 10 being ‘as
much as possible’:

• Albert’s reasoning is compelling.

• Bob’s reasoning is compelling.

• Carol’s reasoning is compelling.

• Albert’s reasoning resembles the reasoning that I
used in formulating my own response to the ques-
tion.

• Bob’s reasoning resembles the reasoning that I used
in formulating my own response to the question.

• Carol’s reasoning resembles the reasoning that I
used in formulating my own response to the ques-
tion.

First, before turning the data obtained from the ad-
ditional questions, we recall that the subjects in this
second study also answered the questions that were
given to those in the first study. Table 4 shows the
breakdown of this group of subjects in terms of the
same partition that was employed in Table 3. As was
reported in Table 3 in connection with the first study,
Table 4 shows that the group of subjects who judged
C to be uniquely admissible in the triple is the largest
of the four groups and, as before, is roughly the size
of the groups for A,B and B combined.



A,B B C Other
7 3 12 5

Table 4:

It is important to remember that the first part of the
questionnaire that was employed in Study 2 is identi-
cal to the questionnaire that was used in Study 1. One
of the referees who commented on an earlier version
of this paper suggested that the additional questions
that were used in Study 2 might have led the sub-
jects. There are at least two reasons to believe that
this is not the case. First, the additional questions,
i.e those concerning the three character sketches, were
posed at the end of the questionnaire. The subjects
were instructed to respond to the questions in the or-
der that they were presented and were told not to go
back to revise their answers to earlier questions. Sec-
ond, Table 4, which shows the data from the part of
the questionnaire that duplicated what was used in
Study 1, suggests a very similar breakdown to what
was observed in Study 1.

Returning to the matter that prompted this second
study, we note that 15 of the 27 subjects reported
B or C. The issue that prompted this second study
concerns the extent to which these subjects determine
admissibility by appealing to the considerations that
are suggested by one of three non-Bayesian, norma-
tive rules described above. In terms of the additional
questions that were employed in this second study
we can attempt to address this question by isolating
those subjects who reported a high level of resem-
blance between their own reasoning and the appro-
priate non-Bayesian norm. Interpreting a high level
of resemblance to be a value of 8 or above for the sub-
ject’s response to the relevant question we observed
that 11 of these 15 appealed to considerations that
had a high level of resemblance to those suggested
by the appropriate non-Bayesian norm. Finally, al-
though the numbers are getting rather small at this
point it is perhaps worth noting that although A,B
is consistent with Fox and Tversky’s predictions the
majority of the subjects in the A,B group reported
that their reasoning had a high resemblance to Al-
bert’s E-admissibility considerations.

4 Conditional Support

Subjects evaluate the resemblance of their own form of
reasoning to the theories exemplified by Albert, Bob
and Carol’s reasoning at the end of the questionnaire.
Previous to this, and after receiving the information
about Albert, Bob and Carol, they assess the validity
of these theories. One minimal desideratum here is

that subjects who judge their own reasoning to have
a strong resemblance to theory X (with X varying
over the theories advanced by Albert, Bob and Carol)
rank the theory X with a score superior to at least 5
in the scale from 0 to 10. Otherwise we would have
a situation where subjects see themselves as judging
according to a theory that they themselves consider
to have dubious validity.

Not all subjects obey these minimal desiderata and
we propose to filter them out in order to consider
unconditional and conditional support for the three
theories under consideration. In particular there is a
subject who chooses C and sees himself as choosing
according to Carols considerations but gives Carol’s
theory a score of 4.

If we consider unconditional support for C after this
subject is eliminated form the pool of respondents the
average unconditional support for C has a value of
8.54 (in comparison with a value of 8.1 before elimi-
nating subjects who do not obey the aforementioned
desideratum).

There is also a separate measure of interest which is
given by the amount of support that a theory X re-
ceived conditional on the fact that the subject chooses
what X recommends and that the subject sees himself
as choosing in accordance to X. We will consider that
a subject sees herself as choosing in accordance with
X if she ranks X as resembling her form of reasoning
with a score of at least 8.

The average conditional support for C in these cir-
cumstances has a value of 9.25. Similarly the average
conditional support for A, B has a value of 8.25. And
the corresponding average conditional (and uncondi-
tional) support for B has a maximal value of 10. So,
all the values of average conditional support are rela-
tively high.

The average unconditional support for A, B is, nev-
ertheless, lower than the average conditional support
(7.71) indicating that there are some subjects who
choose A, B but do not see themselves as choosing in
accordance with Albert’s form of reasoning. It would
be interesting in future research to consider alterna-
tive forms of reasoning consistent with choosing A, B
even when they might not be articulated in terms of
indeterminate probabilities (applications of the prin-
ciple of insufficient reasoning might be a salient option
here).

In the case of option C the gap between unconditional
and conditional support is less significant (8.54 after
sensitivity analysis as opposed to 9.25) indicating that
this form of non-Bayesian reasoning is very robust.
Finally there is no gap between average unconditional



and conditional support in the case of B. This form of
non-Bayesian reasoning occurs in a minority of cases
as opposed to A, B and B, but it is supported in a
very strong manner when it occurs.

5 Future work

The comparative ignorance hypothesis advanced by
Fox and Tversky explains deviations from Bayesian
behavior in cases where there is indeterminacy in
terms of a psychological effect, namely uncertainty
aversion driven by comparative contexts. But as we
tried to make clear in this paper there are frequent
cases of decision contexts where there is indetermi-
nacy but no comparison is being made. The scenario
in Study 1 is such a case. As we stressed above this is
a case where there is no comparison between clear and
vague bets. All bets are vague. In a situation of this
sort it seems that there is no psychological effect, at
least along the lines that were suggested by Fox and
Tversky’s account, that one might invoke to predict
a deviation from Bayesian standards of rationality.

There are, nevertheless, several decision models that
take indeterminacy seriously and might be used to
explain the behavior verified in the experiments that
we have reported. Of course there could be other
models that take indeterminacy into account but in
a way that is very different from what is suggested
in the decision rules that we have considered. Alter-
natively, there might be an entirely different psycho-
logical effect that is driving the behavior of subjects.
The existence of all these possibilities is what moti-
vated our second experiment, where some theoretical
options were presented to the subjects for their ap-
praisal. Subjects had the option of saying that none
of the presented options represented their reasoning
adequately. Nevertheless we verified that 11 out of
15 subjects selected one of the theoretical options as
closely resembling their reasoning. So, this seems to
indicate that one of the theoretical options that takes
indeterminacy seriously (MMEU) figures among the
reasoning strategies of actual subjects.

Is it possible that psychological effects that have
nothing to do with indeterminacy motivate the non-
Bayesian behavior verified in the experiments? One
referee pointed out that the fact that our example
uses negative payoffs might be the cause of some of
the behavior observed in the experiments. The idea is
that agents might be motivated by loss aversion and
that this explains the selection of option C in Study 1
(2). This nevertheless does not explain why subjects
selected Carol’s reasoning as resembling as much as
possible their own reasoning. One needs to assume
here that a majority of subjects were mistaken in as-

sessing their own reasoning.

One experiment that can settle the issue (as suggested
by the referee) is to run a version of Study 1 (2) where
15 dollars is added uniformly to all payoffs in the ma-
trix used in both experiments. The referee predicts
that in this case option C will lose its appeal and that
options A and B (a Bayes solution) would be chosen.
Notice that even if this behavior were observed this
solution is also compatible with Albert’s reasoning (E-
admissibility). To settle this issue we propose to add
a theoretical option along the lines of the principle
of insufficient reason to the salient theoretical options
offered to the subjects in a new version of experiment
two. Fox and Tversky seemed to have predicted that
in a situation of this sort agents will appeal to in-
sufficient reasoning. Other methods of dealing with
indeterminacy (like Albert’s reasoning) remain pos-
sible as well. So, the problem of determining which
one of these methods constitutes an empirically ro-
bust response to indeterminacy remains as open in
this new experimental set up as it was in the scenario
investigated in this paper.

6 Conclusions

In Section 2 we reported on an experiment that was
conducted in order to investigate the manner in which
subjects reduce mixtures of chance setups, of the sort
that we employed in [1], to indeterminate probabili-
ties. This was important to us because part of our
overall research program is an exploration of the ex-
planatory power of indeterminate probabilities, es-
pecially as this stands in contrast to the purely de-
scriptive agenda that is articulated within the heuris-
tics and biases paradigm. As we discussed in Sec-
tion 2, the data that were generated by this experi-
ment raised the possibility that mixtures of chance se-
tups might constitute a comparative context of sorts.
If so, then such a thing could be offered as an ob-
jection to the arguments that we advanced in [1],
e.g. one could object that we had smuggled in a
comparative context by using mixtures of chance se-
tups. Anticipating this objection we conducted the
two experiments that are reported in Section 3. These
two experiments address the core of Fox and Tver-
sky’s claims without appealing to mixtures of chance
setups. The results from the first of these studies
suggests a significant amount of non-Bayesian behav-
ior occurring in a noncomparative context. We were
able to rationalize much of this non-Bayesian behav-
ior in terms of three well-known normative rules that
are based on indeterminate probabilities. The second
study in Section 3 suggests that such rationalizations
of the indicated non-Bayesian behavior are not merely
of the ‘as if’ variety but rather approximate a sub-



stantial portion of the reasoning that is driving this
behavior. Thus, despite the claims of Fox and Tver-
sky, it appears that there is a significant amount of
non-Bayesian behavior even in the absence of a com-
parative context.
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Abstract

We study three conditions of independence within Ev-
idence Theory framework. First condition refers to
the selection of pairs of focal sets. The remaining two
are related to the choice of a pair of elements, once
a pair of focal sets has been selected. These three
concepts allow us to formalize the ideas of lack of in-
teraction between variables and between their (im-
precise) observations. We illustrate the difference be-
tween both types of independence with simple exam-
ples about drawing balls from urns. We show that
there are not implication relationships between both
of them. We derive interesting conclusions about the
relationships between the concepts of “independence
in the selection” and “random set independence”.

Keywords. Evidence Theory, Independence, Ran-
dom Sets, Sets of Probabilities.

1 Introduction

The concept of stochastic independence is essential
in probability theory. Factorization allows us to de-
compose complex problems into simpler components.
When generalizing to imprecise probabilities, the con-
cept of independence, which is unique in probability
theory, can be extended in different ways. Different
definitions of independence for imprecise probabilities
are studied and compared in [1], [2] and [7].

Evidence theory ([5]) falls within the theory of impre-
cise probabilities. This way, definitions of indepen-
dence for imprecise probabilities can be transferred to
this context. In [3], for instance, sets of joint probabil-
ity measures associated to joint mass assignments are
constructed. Different ways of choosing the weights of
the joint focal sets and the probability measures inside
these sets are considered. Depending on these condi-
tions, different sets of joint probability measures are
obtained. The author shows that some of these cases
lead to types of independence described in [2] such as

strong independence, random set independence and
unknown interaction. The author initially considers
the class of all probability measures on a product
space whose marginals are dominated by a pair of
plausibility measures. Next he establishes three rules
to construct probabilities within that class. Each rule
is related to a particular aspect of independence and
it determines a subclass in the initial set of probabil-
ity measures. First rule refers to the choice of weights
of the joint focal sets, and it is related to the concept
of random set independence. Second and third rules
are referred to the choice of the probability measures
inside the focal sets. The author shows that the class
of probability measures based on these three rules sat-
isfies independence in the selection. We will go fur-
ther on this study. First, we will recall these notions
under a different framework. Then we will give an
intuitive meaning for each rule, by means of simple
examples about drawing balls from urns. Our main
goal is showing that none of these rules is strictly nec-
essary to get independence in the selection. In fact,
we will construct product probabilities without using
some of these rules. This will be possible because the
same probability measure can be constructed by using
different procedures. In fact, we can choose weights
of the joint focal sets and/or the probability measures
inside the focal sets and finally get the same proba-
bility measure.

We will also go into further details about the relation-
ships between random set independence ([2]) and type
1 independence [1]. It is well known that the class of
probability measures associated to random set inde-
pendence includes the class of probability measures
satisfying type 1 independence (see [2], for instance).
We will check in the paper that this is a strict inclu-
sion, except for trivial situations (precise probabili-
ties).

Our analysis does not apply to all interpretations of
Evidence Theory, but only when the pair of plausi-
bility and belief functions is regarded as a family of



probability measures. Different interpretations of Ev-
idence Theory as the Transferable Belief Model ([6])
lead to different approaches (see [8], for instance) to
the concept of independence.

The paper is organized as follows. Section 2 pro-
vides the necessary technical background about upper
probabilities, evidence theory and independence no-
tions for imprecise probabilities. Section 3 is devoted
to different representations of the class of probability
measures dominated by a particular plausibility func-
tion. We end the paper with some general concluding
remarks and open problems.

2 Preliminary concepts and notation

Let us introduce some notation and recall some defi-
nitions needed in the rest of the paper.

2.1 Sets of probability measures

Consider a finite universe Ω We will denote PΩ the
class of all probability measures we can define on
℘(Ω). Let P ⊆ PΩ an arbitrary subset. It induces
upper and lower probability functions respectively de-
fined by

P ∗(A) = sup
Q∈P

Q(A); P∗(A) = inf
Q∈P

Q(A) (1)

The set of probability measures dominated by an up-
per probability P ∗ is denoted by P(P ∗) = {Q :
Q(A) ≤ P ∗(A),∀A ⊆ Ω}. If the upper probability
measure P ∗ is generated by the family P, then P(P ∗)
is generally a proper superset of P.

Mathematical evidence theory of Shafer extends clas-
sical probability theory. In this framework, a basic
mass assignment, m, is a mass of probability defined
over the power set of Ω. It assigns a positive mass to a
family of subsets of Ω called the set Fm of focal sub-
sets. Generally, m(∅) = 0 and

∑
E∈Fm

m(E) = 1.
This mass assignment induces set functions called
plausibility and belief measures, respectively denoted
by Pl and Bel, and defined by Shafer [5] as follows:

Pl(A) =
∑

E∩A 6=∅

m(E) Bel(A) =
∑
E⊆A

m(E).

2.2 Independence concepts for imprecise
probabilities

Consider two variables or uncertain values which may
be regarded as the outcomes of two experiments. As-
sume that the two outcomes are known to belong
to the universes Ω1 and Ω2 which are finite. As-
sume that the set of possible joint outcomes is the

cartesian product Ω1 × Ω2. Let us respectively rep-
resent by P1 ⊆ PΩ1 and P2 ⊆ PΩ2 our knowledge
about the true distribution of probability that mod-
els each marginal experiment. Let P ⊆ PΩ1×Ω2

represent our (imprecise) knowledge about the joint
probability distribution associated to the joint ex-
periment. Given a joint probability measure, P on
Ω1 × Ω2 we will respectively denote P1 and P2 its
marginals on Ω1 and Ω2, i.e., P1(A) = P (A × Ω2),
and P2(B) = P (Ω1 ×B), ∀A ⊆ Ω1, B ⊆ Ω2.

We say that there is type 1 independence [1] when
every joint probability P ∈ P factorizes as P = P1 ⊗
P2, i.e., P (A × B) = P (A × Ω2) P (Ω1 × B), ∀A ⊆
Ω1, B ⊆ Ω2. In other words, when

P ⊆ {P1 ⊗ P2 : P1 ∈ P1, P2 ∈ P2}.

This concept is closely related to the notion of inde-
pendence in the selection studied in [2].

Suppose that P1 = P(Plm1) and P2 = P(Plm2).
We say that there is random set independence if
P = P(Plm), where m = m1 �m2, i.e.,

m(A×B) = m1(A) m2(B), ∀A ⊆ Ω1, B ⊆ Ω2.

3 Probability measures dominated by
a plausibility function

In this section we will deal with representations of the
class of probability measures dominated by a partic-
ular plausibility function. Let Ω represent the (finite)
universe of discourse and let Fm = {A1, . . . , Aq} be
the class of focal sets associated to a basic mass as-
signment m. Let Plm denote the associated plausibil-
ity measure. Grabisch et al. ([4]) consider the family
of tuples Z(Fm) = {~α = (α1, . . . , αq) : αi : Ai →
[0, 1],

∑
ω∈Ai

αi(ω) = m(Ai), i = 1, . . . , q}. For each
particular tuple ~α ∈ Z(Fm), they consider the asso-
ciated probability measure Q~α : ℘(Ω) → [0, 1] such
that Q~α({ω}) =

∑
i : Ai3ω αi(ω), ∀ω ∈ Ω. Under this

construction, they easily check that each Q~α is dom-
inated by Plm. Furthermore, for each A ⊆ Ω, there
exists ~α∗ ∈ Z(Fm) such that Q~α∗(A) = Plm(A). Let
the reader notice that these conditions do not suffice1

to prove that the class Jm = {Q~α : ~α ∈ Z(Fm)} co-
incides with P(Plm). But, in fact, it does, as we will
check at the end of this section.

Fetz independently considers in [3] the class of prob-
ability measures

Km :=

{
q∑

i=1

m(Ai)P i : P i ∈ Ki

}
, where

1For instance, the class of extreme points of P(Plm),
Ext(P(Plm)), satisfies the above conditions, but it does not
coincide with the convex set P(Plm).



Ki = {P i ∈ PΩ, : P i(Ai) = 1, ∀ i = 1, . . . , q}

In other words, each probability measure in Km is a
linear convex combination of q probability measures,
P 1, . . . , P q. Each P i is a probability measure on the
focal Ai.

The family Km coincides with Jm. In fact, each tu-
ple ~α = (αA1 , . . . , αAq

) is associated to the tuple of
probability measures (P 1, . . . , P q) defined as

P i({ω}) =
αAi(ω)
m(Ai)

, ∀ω ∈ Ai, ∀ i = 1, . . . , q.

We can give an additional alternative description of
the class Km. In fact a joint probability measure,
IP : ℘(℘(Ω) × Ω) → [0, 1], can be associated to each
Q ∈ Km. Its marginals on ℘(Ω) and Ω are respectively
related to m and Q, as follows:

IP1({A}) = m(A) and IP2(A) = Q(A), ∀A ⊆ Ω.

(In other words, Q coincides with the second marginal
probability, IP2, while m is the mass function associ-
ated to the first marginal probability, IP1.) In fact,
let us define

IP (C) =
∑

(i,ω) : (Ai,ω)∈C

αi(ω), ∀ C ⊆ ℘(Ω)× Ω.

Remark 1. For each particular pair (i, ω), the quan-
tity αi(ω) represents the mass on the “point” (Ai, ω),
i.e. αi(ω) = IP ({(Ai, ω)}).

On the other hand, each probability P i in Fetz’s con-
struction ([3]) coincides with the conditional probabil-
ity measure:

P i = IP ( · |{Ai} × Ω), ∀ i = 1, . . . , q.

Furthermore, the second marginal probability measure
Q(A) = IP2(A) can be written as the linear convex
combination:

Q =
q∑

i=1

m(Ai)P i.

Remark 2. We easily check that IP is univocally de-
termined by the pair (m, (P i)q

i=1), since m represents
the first marginal IP1 and (P i)q

i=1 represents a fam-
ily of conditional distributions, as we have checked
in last remark. From now on, we will write IP ≡
(m, (P i)q

i=1).

Next we will show that the family Im = Km coincides
with the class of probability measures dominated by
the plausibility measure, P(Plm).

Theorem 1. Let Ω = {x1, . . . , xn} be a finite uni-
verse and let m : ℘(Ω) → [0, 1] a basic mass assign-
ment on it. Let Plm : ℘(Ω) → [0, 1] be a plausibility
measure associated to m and let Q : ℘(Ω) → [0, 1] be a
probability measure dominated by Plm, Q ∈ P(Plm).
Then there exists a family of mappings {αA : A →
[0, 1]}A∈℘(Ω) such that

m(A) =
∑
ω∈A

αA(ω), and

Q({ω}) =
∑
A3ω

αA(ω), ∀ω ∈ Ω, A ⊆ Ω.

Proof: Let us denote by Fm = {A1, . . . , Aq} the
family of focal sets associated to m. Let us define
the tuple ~α = (αA1 , . . . , αAq

) as follows. For each
i = 1, . . . , q, let αAi : Ai → [0, 1] be defined as:

αAi
(xj) =

{
min{aij , bij} if xj ∈ Ai

0 otherwise,

where aij = Q({xj})−
i−1∑
k=1

αAk
(xj)

and bij = m(Ai)−
j−1∑
l=1

αAi(xl).

On the other hand, let αA(xj) = 0, ∀ j =
1, . . . , n, A 6∈ Fm. We easily check that the required
equalities hold.

Remark 3. For an arbitrary Q ∈ P(Pl), there exists
at least one tuple ~α such that Q = Q~α. But this as-
sociation is not necessarily unique. Let us consider,
for instance, the universe Ω = {ω1, ω2, ω3} and the
mass assignment m : ℘(Ω) → [0, 1] such that Fm =
{A1, A2} where A1 = {ω1, ω2}, A2 = {ω1, ω2, ω3},
and m(A1) = 0.5 = m(A2). Let us now consider
the probability measure Q : ℘(Ω) → [0, 1] such that
Q({ω1}) = Q({ω2}) = 5/12 and Q({ω3}) = 1/6. Let
~α = (αA1 , αA2) and ~β = (βA1 , βA2) the tuples of map-
pings defined as follows:

αA1(ω1) = αA2(ω2) = 0.25,

αA2(ω1) = αA2(ω2) = αA2(ω3) = 1/6.

βA1(ω1) = 5/12, βA2(ω2) = 1/12,

βA2(ω1) = 0, βA2(ω2) = 1/3, βA2(ω3) = 1/6.

We easily check that

m(A) =
∑
ω∈A

αA(ω) =
∑
ω∈A

βA(ω), ∀A and

Q({ω}) =
∑
A3ω

αA(ω) =
∑
A3ω

βA(ω), ∀ω ∈ Ω.



4 Independence concepts in evidence
theory

The notion of independence in evidence theory is stud-
ied from different points of view in the literature. In
[8], for instance, the ideas of decomposability and ir-
relevance are studied and compared within the The-
ory of Evidence. In this paper, we will distinguish
between independence of variables and independence
of their observations. First one is related to the con-
cept of “type 1 independence” ([1]) and the second
one is associated to “random set independence” [2].

In [3], Fetz establishes three different restrictions to
the elements in P(Plm). Each one of them is related
to some aspect of independence. Fetz shows some re-
lationships between these restrictions and some other
notions of independence considered in [2]. In this sec-
tion, we will continue this investigations. First of all,
we will recall the notions given by Fetz, but we will
use a different nomenclature. For each definition, we
will give an intuitive interpretation and an example
of of an urn model to which the definition is applied.

4.1 Three conditions of independence

Let m1 : ℘(Ω1) → [0, 1] and m2 : ℘(Ω2) → [0, 1]
be two arbitrary basic mass assignments. Let us re-
spectively denote by Fm1 = {A1, . . . , Aq} and Fm2 =
{B1, . . . , Br} their families of focal elements. Let us
now consider a basic mass assignment on Ω1 × Ω2,
m : ℘(Ω1 × Ω2) → [0, 1] satisfying the following con-
ditions:

• The family of focal elements associated to m co-
incides with (or it is included in) Fm = {Ai×Bj :
i = 1, . . . , q, j = 1, . . . , r}.

• m1(Ai) =
∑r

j=1 m(Ai ×Bj), i = 1, . . . , q.

• m2(Bj) =
∑q

i=1 m(Ai ×Bj), j = 1, . . . , r.

Let P ∈ P(Plm) and let IP : ℘(℘(Ω1×Ω2),Ω1×Ω2) →
[0, 1] be a probability measure satisfying IP1({C}) =
m(C),∀C ∈ ℘(Ω1 × Ω2) and IP2 = P.

For each pair (i, j) ∈ {1, . . . , q} × {1, . . . , r}, let P ij :
℘(Ω1 × Ω2) → [0, 1] be defined as follows:

P ij(C) = IP (℘(Ω1 × Ω2)|{Ai ×Bj} × C).

P ij is a probability measure on Ω1 × Ω2 and it sat-
isfies the equality P ij(Ai × Bj) = 1. According to
Remark 2, IP is univocally determined by the pair
(m, (P ij)q

i=1
r
j=1) so we can identify them. Further-

more, the probability measure P can be written as

P =
q∑

i=1

r∑
j=1

m(Ai ×Bj)P ij .

Let us now show three different definitions of indepen-
dence. They can be applied to probability measures of
the form IP ≡ (m, (P ij)q

i=1
r
j=1) and they are closely

related to three restrictions established in [3] to the
elements in the class Km. Each condition reflects a
different aspect associated to the notion of indepen-
dence, as we will check below.
Definition 1. A probability measure IP ≡
(m, (P ij)q

i=1
r
j=1) satisfies first independence condi-

tion if m = m1 �m2, i.e.

m(Ai ×Bj) = m1(Ai) · m2(Bj)

∀ i = 1, . . . , q, j = 1, . . . , r.

This notion is associated to the concept of random set
independence recalled in Section 2. Let us illustrate
this type of independence.
Example 1. Suppose that we have two urns, each of
them with 10 balls. First urn has five red, two white
and three unpainted balls. Second urn has three red,
three white and 4 unpainted balls. We select one ball
from each urn in a stochastically independent way,
and if either one the selected balls are not coloured,
then they are painted white or red by a completely un-
known procedure. There can be arbitrary correlation
between the colours they are finally assigned.

In this example, we are interested in the colours of
the balls we draw from the urns. So, the universe
of discourse is Ω1 × Ω2 = {r, w} × {r, w}. The fo-
cal elements associated to both selections are Fm1 =
{A1, A2, A3} and Fm2 = {B1, B2, B3}, where A1 =
B1 = {r}, A2 = B2 = {w} and A3 = B3 = {r, w}.
The marginal mass assignments for the colours of the
selected balls are:

m1(A1) = 0.5 m1(A2) = 0.2 m1(A3) = 0.3
m2(B1) = 0.3 m1(B2) = 0.3 m2(B3) = 0.4

The mass assignment associated to the joint experi-
ment satisfies the equalities:

m(Ai ×Bj) = m1(Ai) m2(Bj), ∀ i, j.

The class of probability measures representing our
(imprecise) information about the joint experiment is
P(Plm) = Km. Each one of them is associated to a
probability measure IP satisfying first condition of in-
dependence.
Definition 2. A probability measure IP ≡
(m, (P ij)q

i=1
r
j=1) is said to satisfy second inde-

pendence condition if P ij = P ij
1 ⊗ P ij

2 , ∀ i =
1, . . . , q, j = 1, . . . , r, i.e.,

P ij(A×B) = P ij
1 (A) · P ij

2 (B),

∀A ⊆ Ω1, B ⊆ Ω2, ∀ i = 1, . . . , q, ∀ j = 1, . . . , r.



Example 2. Consider the same urns as in exam-
ple 1 and assume again that we select one ball from
each urn in a stochastically independently way. Let
us also assume that, when both selected balls are not
painted, there is no correlation between the colours
they are assigned. If we have no additional informa-
tion, our knowledge about the joint experiment is de-
scribed by the class of probability measures of the form
P =

∑3
i=1

∑3
j=1 m(Ai×Bj)P ij, where m is the mass

assignment from Example 1, and P ij is a probability
measure on Ω1 × Ω2 satisfying:

• P ij(A × B) = P ij
1 (A) × P ij

2 (B), ∀A ∈
℘(Ω1), B ∈ ℘(Ω2),

• P ij(Ai × Bj) = 1, for each i = 1, 2, 3 and each
j = 1, 2, 3.

Every probability measure IP ≡ (m, (P ij)q
i=1

r
j=1) as-

sociated to this information satisfies first and second
independence conditions. As we pointed out above,
both balls are selected in a stochastically independent
way. Furthermore, when both selected balls have no
colour, we use separate procedures to paint them. Nev-
ertheless, there can remain some dependence relation.
Let us, for instance assume the following procedure to
assign each colour:

• If only one of the selected balls is coloured, we
will draw a dice to choose the colour of the other
one. If the number in the dice is “5”, we will
paint it with the same colour. Otherwise, we will
choose the opposite.

• If both selected balls have no colour we will draw
two coins, each one for each ball.

The probability measure, P : ℘(Ω1 × Ω2) → [0, 1],
associated to the joint experiment satisfies both con-
ditions given in definitions 1 and 2. However, it can-
not be expressed as a product. In fact, there exists
an stochastic dependence between the colours of both
balls. Let us notice, for instance, that

• P ({(r, r)}) = 0.15 + 0.2 · 1
4 + 0.09 · 1

6 + 0.12 · 1
4

• P ({r} ×Ω2) = 0.5 + 0.09 · 1
6 + 0.09 · 5

6 + 0.12 · 1
2 ,

and

• P (Ω1 × {r}) = 0.3 + 0.2 · 1
6 + 0.06 · 5

6 + 0.12 · 1
2

Thus, P ({(r, r)}) = 0.245 does not coincide with
P ({r} × Ω2) · P (Ω1 × {r}) = 0.65 · 0.46.

Definition 3. A probability measure IP ≡
(m, (P ij)q

i=1
r
j=1) satisfies third independence

condition when

P i1
1 = . . . = P ir

1 = P i
1, ∀ i = 1, . . . , q and

P 1j
2 = . . . = P qj

1 = P j
2 , ∀ j = 1, . . . , r.

Example 3. Suppose again we have the urns in ex-
ample 1. Let us draw a ball from each urn. If some
of the balls is uncoloured, we decide its colour without
checking whether the other one is red, white or un-
coloured. Nevertheless, there can be some dependence
relationship between both colours. Let us, for instance,
consider the following procedure to assign each colour:

• If only one of the balls is coloured, we will toss
a dice. If the number in the dice is “5”, we will
paint it red. Otherwise, we will paint it white.

• If both balls are uncoloured, we will toss the same
dice to decide their colour. If the number in the
dice is 5, we will paint both of them red. Other-
wise, we will paint them white.

The probability measure, IP ≡ (m, (P ij)q
i=1

r
j=1), asso-

ciated to the joint experiment satisfies the conditions
given in definitions 1 and 3. Nevertheless, the prob-
ability measure that models the joint experiment (the
probability measure Q =

∑3
i=1

∑3
i=1 m(Ai × Bj)P ij)

cannot be written as the product of its marginals. For
instance, the probability of the result (r, r) is, approx-
imately, 0.22. On the other hand Q({r}×Ω2) = 0.55
and Q(Ω1 × {r}) ≈ 0.37. Hence, Q({(r, r)}) does not
coincide with the product Q({r} × Ω2) ·Q(Ω1 × {r}).

Summarizing, each condition reflects a different as-
pect of the notion of independence. First condition
(random set independence) reflects independence be-
tween the procedures used to select both balls from
the urns. In last examples, this condition is satis-
fied, because each ball is selected from a different urn,
in a stochastically independent way. Second condi-
tion reflects independence between the procedures to
paint both balls, once they have been selected. Fi-
nally third condition reflects independence between
the procedure used to select one ball from a urn and
the procedure used to paint the other ball, once it has
been selected.

In examples 1, 2 and 3 we show situations where
some, but not all of these conditions are satisfied, and
P = IP2 cannot be written as a product. If IP =
(m, (P ij)q

i=1
r
j=1), satisfies conditions 1 to 3 then the

probability measure P = IP2 =
∑q

i=1

∑r
j=1 m(Ai ×

Bj)P ij can be factorized as P = P1 ⊗ P2, as Fetz
checks in [3]. Conversely, we easily check that every



product probability P = P1⊗P2 where P1 ∈ P(Plm1)
and P2 ∈ P(Plm2) can be written as P = IP2 =∑q

i=1

∑r
j=1 m(Ai × Bj)P ij , where IP satisfies condi-

tions given in Definitions 1, 2 and 3. In next section
we will make a further study about the connection
between conditions 1 to 3 and independence in the
selection.

4.2 Independence in the selection

As we pointed out in last subsection, any proba-
bility measure P = P1 ⊗ P2 with P1 ∈ P(Plm1),
P2 ∈ P(Plm2) is associated to a probability measure
IP satisfying independence conditions given in last
section. In other words, it can be written as a linear
convex combination P =

∑q
i=1

∑r
j=1 m(Ai ×Bj)P ij ,

where m = m1 � m2 and P ij = P i
1 ⊗ P j

2 , ∀ i = 1 =
1, . . . , q, j = 1, . . . , r. On the other hand, we can use
different linear convex combinations and get the same
probability measure, as we have checked in Remark 3.
So we can ask ourselves whether we can find an alter-
native linear convex combination

P =
q∑

i=1

r∑
j=1

m′(Ai ×Bj)Qij ,

where IP ≡ (m′, {Qij}q
i=1

r
j=1) does not satisfy the

requirements considered in definitions 1, 2 and 3. In
fact, it is possible, as we show below.

Example 4. Suppose we have two urns, each one
with 10 balls. The two of them have five red, and five
unpainted balls. We select one ball from the first urn
and then we select a similar ball (red or uncoloured)
from the second urn. (There is stochastic dependence
between both selections.) Once we have selected both
balls, we use the following procedure to paint them
in case they are uncoloured: we toss three coins, and
check the number of heads:

• If the number is 3, we paint both balls with the
colour red.

• If the number of heads is 2, we paint the first ball
red, and the second one, white.

• If the number of heads is 1, we paint the first ball
white, and the second one, red.

• Finally, if three tails are obtained, we paint white
both of them.

The probability measure that models this random ex-
periment can be written as:

P = m(A1 ×B1) P 11 + m(A2 ×B2)P 22,

where A1 = B1 = {r}, A2 = B2 = {r, w},

m(A1 ×B1) = m(A2 ×B2) = 0.5 and

P 11 ≡ (1, 0, 0, 0) and P 22 ≡ (1/8, 3/8, 3/8, 1/8).

There does not exist m1 and m2 such that m = m1 �
m2. On the other hand, each P ij cannot be factorized
as P ij = P i

1⊗P j
2 . In other words, m and {P ij}2

i=1
2
j=1

do not satisfy the requirements from definitions 1
and 2. (It has no sense to check condition 3, since
P 12

1 , P 12
2 , P 21

1 and P 22
2 can be arbitrarily defined.)

Nevertheless, P coincides with the product of its
marginals. In fact, P ({(r, r)}) = 9/16, P ({(r, w)}) =
P ({(w, r)}) = 3/16, and P ({(w,w)}) = 1/16, and
hence P (A×B) = P1(A)P2(B), ∀A,B ⊆ {r, w}.

Since the probability measure that models last exper-
iment can be written as a product, there must exists
an alternative linear convex combination,

P =
2∑

i=1

2∑
j=1

m1(Ai)m2(Bj)Qij , (2)

where Qij = Qi
1 ⊗ Qj

2,∀ i, j. In fact, last experiment
is equivalent to the following one: suppose we have
two urns, each one with 10 balls. The two of them
have five red, and five unpainted balls. We select
one ball from each urn in a stochastically indepen-
dent way. If some of the balls is uncoloured, we
toss a coin to decide its colour (one coin for each
ball). The probability measure associated to this new
random experiment coincides with P and it can be
written, in a natural way as in equation 2, where:
m1(A1) = m1(A2) = m2(B1) = m2(B2) = 0.5,
Qi

k({r} = Qi
k({w}) = 0.5, i = 1, 2, k = 1, 2.

In last example, we have built a product probability
measure P = P1⊗P2 without having into account any
of the requirements given in definitions 1 to 3. We can
also get a product probability by using some or these
rules, but not all of them. In next example, we will
only take into account the requirement from definition
1, and we will get a product probability measure.
Example 5. Consider a urn with 10 balls. Five of
them are red, and the other five are unpainted. Sup-
pose that a ball is drawn at random from the urn and
replaced, and then a second ball is drawn at random,
and the two drawings are stochastically independent.
Once both balls are selected from the urn, we consider
the following procedure to paint them:

• If both balls are red, we do not need to do any-
thing.

• If the first ball is red and the second one is un-
coloured, we paint it red with probability 5/8 and
white, with probability 3/8.



• If the second ball is red and the first one is un-
coloured, then we paint it red with probability 1/2
(and white, with the same probability).

• Finally, if both balls are unpainted, we assign
them the pairs of colors (red, red), (red, white),
(white, red), (white, white) with respective prob-
abilities (1/8, 3/8, 1/4, 1/4).

The probability measure, P, that models the joint ex-
periment can be written as

P =
2∑

i=1

2∑
j=1

m(Ai ×Bj)P ij , where

A1 = B1 = {r}, A2 = B2 = {r, w},
m(A1 ×B1) = m(A1 ×B2) = m(A2 ×B1) =

m(A2 ×B2) = 0.25 and

P 11 ≡ (1, 0, 0, 0) P 12 ≡ ( 5
8 , 3

8 , 0, 0)
P 21 ≡ ( 1

2 , 0, 1
2 , 0) P 22 ≡ ( 1

8 , 3
8 , 1

4 , 1
4 ).

The probability measure IP ≡ (m, (P ij)2i=1
2
j=1) sat-

isfies first condition of independence, but it does not
satisfy the second and the third ones. On the other
hand, the probability measure P =

∑2
i=1

∑2
i=1 m(Ai×

Bj)P ij can be identified with the tuple

P ≡
(

9
16

,
3
16

,
3
16

,
1
16

)
,

so it can be factorized as

P = P1 ⊗ P2 ≡ (3/4, 1/4)⊗ (3/4, 1/4).

We can also build some IP satisfying the requirements
from definitions 2 and 3, but not the property from
definition 1, and such the probability measure P = IP2

can be written as the product of its marginals. Let us
show it in next example:
Example 6. Suppose that we have three urns. First
one has 3 balls: one white, one red and one un-
coloured. Second urn has two balls: one red and one
white. Third urn has two unpainted balls. We select
one ball from the first urn. If it is coloured, we select
another ball from second urn. If, otherwise, it is un-
coloured, we select a ball from the second urn. Once
the balls have been selected, we drop two coins to de-
cide their colour (if they are uncoloured), one coin for
each ball.

The probability measure that models this experiment
can be written as:

P =
3∑

i=1

3∑
j=1

m(Ai ×Bj)P i
1 ⊗ P j

2 , where

A1 = B1 = {r}, A2 = B2 = {w}, A3 = B3 = {r, w},

the mass assignment m is determined by:

B1 B2 B3

A1 1/6 1/6 0
A2 1/6 1/6 0
A3 0 0 1/3

and the marginal probability measures defined on each
focal are:

P 1
1 ≡ (1, 0) P 2

1 ≡ (0, 1) P 3
1 ≡ (0.5, 0.5)

P 1
2 ≡ (1, 0) P 2

2 ≡ (0, 1) P 3
2 ≡ (0.5, 0.5)

The mass assignment m cannot be written as the
product of its marginals, i.e., m 6= m1 � m2. So,
IP = (m, {P ij}3

i=1
3
j=1) does not satisfy the condition

described in definition 1. But it satisfies the con-
ditions described in definitions 2 and 3. (There is
independence inside the focal elements, but not be-
tween focals.) On the other hand, we easily check
that P ({(r, r)}) = P ({(r, w)}) = P ({(w, r)}) =
P ({(w,w)}) = 0.25. So P can be factorized as the
product of its marginals. In fact:

P ≡ (0.25, 0.25, 0.25, 0.25) =

(0.5, 0.5)⊗ (0.5, 0.5) = P1 ⊗ P2.

4.3 Random set independence and
independence in the selection

Let m1 : ℘(Ω1) → [0, 1], m2 : ℘(Ω2) → [0, 1] two arbi-
trary mass assignments and let m : ℘(Ω1 × Ω2) →
[0, 1] satisfy m(A × Ω2) = m1(A), m(Ω1 × B) =
m2(B),∀A ⊆ Ω1, B ⊆ Ω2. As we have pointed
out in Section 4.1, the class of probability mea-
sures P =

∑q
i=1

∑r
j=1 m(Ai × Bj)P ij , where IP =

(m, (P ij)q
i=1

r
j=1) safisties the three conditions consid-

ered in last definitions coincides with the family of
product probability measures:

{P1 ⊗ P2 : P1 ∈ P(Plm1), P2 ∈ P(Plm2)}.

On the other hand, we easily check that the class of
probability measures P =

∑q
i=1

∑r
j=1 m(Ai×Bj)P ij

where IP = (m,P ij)q
i=1

r
j=1) satisties the first condi-

tion coincides with P(Plm1�m2). Thus, the following
inclusion holds:

{P1 ⊗ P2 : P1 ∈ P(Plm1), P2 ∈ P(Plm2)}

⊆ P(Plm1�m2) (3)



The left hand side is associated to type 1 indepen-
dence. The right hand side is related to random
set independence. We may ask ourselves whether
the inclusion in equation 3 is strict or not, for any
pair of mass asignments m1,m2. Let us notice that
the probability measure IP ≡ (m, (P ij)q

i=1
r
j=1) in

example 5 satisfies the first condition of indepen-
dence, but it does not satisfy the second and the
third ones. Nevertheless, the probability measure
P = IP2 =

∑q
i=1

∑r
j=1 m(Ai ⊗ Bj)P ij can be fac-

torized as P = P1 ⊗ P2, and hence it belongs to the
class {P1 ⊗ P2 : P1 ∈ P(Plm1), P2 ∈ P(Plm2)}. So,
we ask ourselves

Does there exists some pair m1,m2 such that
any

P =
q∑

i=1

r∑
j=1

m1(Ai)m2(Bj)P ij

can be written as the product of its
marginals, P = P1 ⊗ P2?

The answer is “no”, except for the cases where m1

and m2 represent trivial situations. Let us show the
following result:

Theorem 2. Let us consider two finite universes Ω1

and Ω2 and two arbitrary mass assignments m1 :
℘(Ω1) → [0, 1] and m2 : ℘(Ω2) → [0, 1]. Let m be the
“product mass assignment”, i.e. m : ℘(Ω1 × Ω2) →
[0, 1] such that m(A × B) = m1(A) · m2(B), ∀A,B.
Let us assume that P(Plm) coincides with the family:

{P1 ⊗ P2 : P1 ∈ P(Plm1), P2 ∈ P(Plm2)}.

Then, some of the following conditions holds:

• Plm1 and Plm2 are probability measures (they are
additive).

• Plm1 or Plm2 is a degenerate probability measure
(I.e., al least one of the families Fm1 or Fm2 has
only one focal with only one element.)

Proof: (Sketch) Let us assume that Plm2 is not a de-
generate probability measure. Then there exists B ⊆
Ω2 and Q2 ∈ P(Plm2) such that Q2(B) ∈ (0, 1). Let A
be an arbitrary subset of Ω1 and let P1, Q1 ∈ P(Plm1)
such that P1(A) = Plm1(A) and Q1(A) = Belm1(A).
(The existence of such P1, Q1 and Q2 is easily
checked.) Let ~α, ~α′ and ~β be respectively associated
to each one of them. Let ~γ = (γij)

q
i=1

r
j=1 be defined

as γij(x, y) = αi(x)βj(y) IB(y) + α′i(x)βj(y) IBc(y).
We can check that ~γ represents a probability mea-
sure, R, on Ω1 × Ω2 such that (a) R ∈ P(Plm),

(b) R2 = Q2, R2(A × B) = P1(A)Q2(B) and (c)
R2(A × Bc) = Q1(A)Q2(B). We easily derive that
Plm1(A) = P1(A) = Q1(A) = Belm1(A). Since A is
an arbitrary set, we conclude that Plm1 is a additive.

5 Conclusion and open problems

We have considered three rules to build probabil-
ity measures on product spaces in Evidence Theory
framework. Each one of them reflects a particular as-
pect of independence, as we illustrate in Examples 1, 2
and 3. They are simple examples about drawing pairs
of balls from urns. As we show there, first condition
reflects that the selections of both balls are indepen-
dent. Second condition means that there is indepen-
dence between the procedures of painting the balls,
for a particular selection of a pair of balls. Finally,
third condition reflects independence between the se-
lection of a ball and the procedure used to choose the
colour to paint the other ball.

In a more general and applied context, first condi-
tion is related to the idea of independence between
mechanisms of observation of variables. If we add
second and third conditions, independence between
the actual variables holds. But, as we have checked
in Examples 4, 5 and 6, none of these conditions
is strictly necessary to guarantee this independence.
When there is no imprecision in the observations, sec-
ond and third conditions do not apply (they are triv-
ially satisfied when the focals are singletons). In that
case, independence between the variables and between
their observations are the same (perception and re-
ality do coincide). But when imprecision appears,
there is no an implication relationship between inde-
pendence of the observations and independence of the
variables.

All these ideas can be extended to non finite universes.
In the general context, pairs of upper and lower prob-
abilities associated to multi-valued mappings play the
role of pairs of plausibility-belief functions. Further-
more, the probability measures induced by the selec-
tions of the multi-valued mapping are dominated by
its upper probability. So, in the general context, the
mass assignment m : ℘(Ω1 × Ω2) → [0, 1] will be re-
placed by a multi-valued mapping Γ = Γ1 ×Γ2 : Λ →
℘(Ω1 × Ω2), such that Γ(λ) = Γ1(λ) × Γ2(λ). (The
images of the multi-valued mapping play the role of
the focal sets of the basic mass assignment.) Further-
more, each probability measure on Ω1×Ω2 induced by
a selection (X1, X2) is dominated by the upper proba-
bility of Γ. Hence, the finite tuple of probability mea-
sures (P ij)q

i=1
r
j=1 will be replaced by the conditional

distribution of (X1, X2) given Γ. In this new setting,
we will say that first condition of independence is sat-



isfied when Γ1 and Γ2 are stochastically independent
(random set independence). Second condition will be
satisfied when X1 and X2 are conditionally indepen-
dent, given Γ. Finally, third condition will be sat-
isfied when X1 and Γ2 are conditionally independent
given Γ1 and X2 and Γ1 are conditionally independent
given Γ2. In this general context, there is indepen-
dence in the selection when X1 and X2 are stochasti-
cally independent. We intuitively observe that when
the three conditions are satisfied, then X1 are X2 are
stochastically independent. But the converse is not
true. Furthermore, there is no implication relation-
ship between the independence of Γ1 and Γ2 (random
set independence) and the independence between X1

and X2 (independence in the selection), as it happens
in the finite case.

Acknowledgements

I wish to thank the referees for their helpful comments
and suggestions. This work has been supported by
grant MTM2004-01269.

References

[1] L.M. de Campos, S. Moral, Independence con-
cepts for convex sets of probabilities. In Proceed-
ings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, Ph. Besnard, S. Hanks
(eds.) Morgan Kaufmann (San Mateo), 108-115.

[2] I. Couso, S. Moral, and P. Walley. A survey of
concepts of independence for imprecise probabil-
ities, Risk Decision and Policy 5 165–181, 2000.

[3] T. Fetz, Sets of joint probability measures gen-
erated by weighted marginal focal sets Thomas
Fetz. Proceedings of ISIPTA’01, 171–178, Ithaca,
NY (USA), 2001.

[4] M. Grabisch, H.T. Nguyen, E.A. Walker, Funda-
mentals of Uncertainty Calculi with Applications
to Fuzzy Inference, Kluwer Academic Publishers,
1995.

[5] G. Shafer, A mathematical theory of evidence,
Princeton University Press, 1976.

[6] P. Smets, What is Dempster-Shafer’s model?
Advances in the Dempster-Shafer Theory of Ev-
idence, R.R. Yager, M. Fedrizzi and J. Kacprzyk
(eds.), Wiley (1994) 5-34.

[7] P. Walley, Statistical Reasoning with Imprecise
Probabilities, Chapman and Hall, 1991.

[8] B. Ben Yaghlane, P. Smets and K. Mellouli, Be-
lief function independence: I. The marginal case,
Int. J. of Approximate Reasoning 31 31-75, 2002.



 



5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007

On various definitions of the variance of a fuzzy random variable

Inés Couso
Dep. Statistics and O.R.
Univ. of Oviedo, Spain

couso@uniovi.es

Didier Dubois
IRIT-CNRS

Univ. of Toulouse, France
dubois@irit.fr

Susana Montes
Dep. Statistics and O.R.
Univ. of Oviedo, Spain

montes@uniovi.es

Luciano Sánchez
Dep. Computer Sciences
Univ. of Oviedo, Spain

luciano@uniovi.es

Abstract

According to the current literature, there are two dif-
ferent approaches to the definition of the variance of a
fuzzy random variable. In the first one, the variance is
defined as a fuzzy interval, offering a gradual descrip-
tion of our incomplete knowledge about the variance
of an underlying, imprecisely observed, classical ran-
dom variable. In the second case, the variance of the
fuzzy random variable is defined as a crisp number,
that makes it easier to handle in further processing.
In this work, we introduce yet another definition of
the variance of a fuzzy random variable, in the con-
text of the theory of imprecise probabilities. The new
variance is not defined as a fuzzy or crisp number,
but it is a real interval, which is a compromise be-
tween both previous definitions. Our main objectives
are twofold: first, we show the interpretation of the
new variance and, second, with the help of simple
examples, we demonstrate the usefulness of all these
definitions when applied to particular situations.

Keywords: Fuzzy random variable, random set,
variance, second order possibility measure.

1 Introduction

The concept of fuzzy random variable, that extends
the classical definition of random variable, was intro-
duced by Féron [14] in 1976, and modified by other
authors like Kwakernaak [22], Puri and Ralescu [31],
Kruse and Meyer [21], or Diamond and Kloeden [9],
among others. In [18], Krätschmer surveys all of these
definitions and proposes an unified approach. In all
of these works, a fuzzy random variable is defined as
a function that assigns a fuzzy subset to each pos-
sible output of a random experiment. The different
definitions in the literature disagree on the measura-
bility conditions imposed to this mapping, and in the
properties of the output space, but all of them in-
tend to model situations that combine fuzziness and

randomness. Since the introduction of this concept,
many works have generalized different probabilistic
concepts and classical results to the case in which all
observations associated to the different results of the
experiment are fuzzy sets.

Regarding the generalizations, in this context, of def-
initions of parameters associated to a probability dis-
tribution, we can divide them into two groups. On
the one hand, some parameters have been defined as
fuzzy values: the expectation [31], the distribution
function in a point [5, 21], the variance [20] and the
covariance1 [26]. On the other hand, the expectation
[23], the variance [13, 17, 24], the covariance[13] or the
inequality index [25] have also been defined as crisp
values. The introduction of these last definitions is
guided by the interest of the authors in solving de-
cision problems involving parameters with numerical,
not fuzzy values.

In spite of the great amount of studies about fuzzy
random variables, there are few works that study the
different interpretations that could be given to their
various definitions. The same can be said about the
new concepts arising from them (for instance, some
of the mentioned parameters.) It is well known that
fuzzy sets admit of many different meanings (see, for
example [12]) and each one of these meanings could
lead to an interpretation of the concept of fuzzy ran-
dom variable.

In this work, we shall observe that there are different
extensions of the concept of variance to fuzzy random
variables. We shall review different definitions of vari-
ance, found in the literature, and we shall propose an
additional definition, that could be cast in a model
of imprecise probabilities. We pay attention to the
interpretation of each definition. Guided by simple
examples, we shall observe the advantages and draw-
backs of each definition in different contexts.

1We must remark that the concept of fuzzy random vari-
able not only extends the concept of one-dimensional random
variable, but also of random n-dimensional vector.



2 Fuzzy random variables

It was mentioned in the introduction that a fuzzy ran-
dom variable is a function that assigns a fuzzy subset
to each outcome of a random experiment. The dif-
ferent definitions of fuzzy random variable differ in
the measurability conditions imposed to the random
variables.

Kwakernaak [22] and Puri and Ralescu [31] rely on
the α-cut mappings (the multivalued functions that
map each element in the initial probability space to
the respective α-cuts of the fuzzy set-valued image)
to translate such condition. While Kwakernaak re-
stricts himself to images that are fuzzy subsets of IR
and the boundaries of the α-cuts are measurable func-
tions, Puri and Ralescu impose that the graph of the
images itself be measurable (i.e. lies in the product σ-
algebra.) On the other hand, Klement et al. [16] and
Diamond and Kloeden [9] consider different metrics
over the class of fuzzy sets of the output space and
impose that the function is measurable with respect
to the Borel σ-algebra induced by the corresponding
metric. Krätschmer [18] reviews all the previous con-
cepts and offers a unified vision when he considers a
certain topology, defined over the class of fuzzy sub-
sets of IRn, with non empty compact α-cuts. In this
work, we shall not deal with formal aspects of each
particular definition, but with the interpretation of
the various concepts of fuzzy random variable.

Fuzzy sets have been given different interpretations
[12], therefore a fuzzy random variable admits of var-
ious meanings as well. In the remaining part of this
section, we briefly review two existing interpretations
of fuzzy random variables, and introduce a new one.
For every interpretation, we shall describe the in-
formation provided by the fuzzy random variable by
means of a specific underlying model, namely, a clas-
sical probability model, an order 2 imprecise probabil-
ity model and an order 1 imprecise probability model,
respectively.

2.1 Linguistic random variables

In [31], Puri and Ralescu consider that the observa-
tions of some random experiments do not consist of
numerical outputs, but are represented by vague lin-
guistic terms. According to this idea, some authors
consider that a fuzzy random variable is a measurable
function, in the classical sense, between a certain σ-
algebra of events in the original space and a σ-algebra
defined over a class of fuzzy subsets of IR. In this
context, the probability distribution induced by the
fuzzy random variable can be used to summarize the
probabilistic information that the variable provides.
If the fuzzy random variable has a finite number of

images forming a linguistic term set, probability val-
ues can be assigned to the different linguistic labels.
For example, the following model could be generated:
the result is “high” with probability 0.5, “medium”
with probability 0.25 and “low” with probability 0.25,
where “high”, “medium” and “low” are linguistic la-
bels associated to fuzzy subsets of IR.

2.2 Ill-known classical random variables

On the contrary, Kruse and Meyer [21] choose a pos-
sibilistic interpretation of fuzzy sets. Each fuzzy set
is viewed as modeling incomplete knowledge about
an otherwise precise value. These authors then claim
that the fuzzy random variable represents imprecise
or vague knowledge about a classical random vari-
able, X0 : Ω → IR, they refer to as the “original
random variable.” Therefore, the membership de-
gree of a point x to the fuzzy set X̃(ω) represents
the possibility degree of the assertion “X0(ω) is x”,
i.e., the image of element ω coincides with x. This
way, the authors get all the elements needed to de-
fine a possibility measure over the set of all random
variables. They define the “acceptability degree” of
each random variable, X : Ω → IR, as the value:
acc (X) = inf

ω∈Ω
X̃(ω)(X(ω)). The function “acc” takes

values in the unity interval. Therefore, it can be re-
garded as the possibility distribution associated to a
possibility measure, ΠX̃ , defined over the set of all
random variables. acc(X) represents the possibility
degree of X being the “true” random variable that
models the studied experiment. If the fuzzy random
variable were a random set (its images are crisp sub-
sets of IR,) the acceptability function would assign the
value 1 to random variables in a certain set, and the
value 0 to the remaining ones. In the particular case
when the fuzzy random variable is a classical random
variable (all images are sets with only one element)
the acceptability function would assign the value 1 to
only one random variable, which is the true random
variable that models the experiment. In this case, its
observation is completely precise.

Under this framework, we can build (see [6]) a possi-
bility measure over the set of all the probability dis-
tributions in IR. The possibility distribution, πPX̃

,
that characterizes such possibility measure is defined
as follows:

πPX̃
(Q) = sup{acc(X) | PX = Q} =

ΠX̃({X : Ω → IR measurable | PX = Q}).

πPX̃
(Q) represents the degree of possibility that the

original random variable is one of those that induce
the probability distribution Q in IR. The possibility
measure ΠPX̃

is a “second-order possibility” formally



equivalent to those considered in [8]. It is so called,
because it is a possibility distribution defined over a
set of probability measures.

A possibility measure on a set represents the same in-
formation as a family of probability measures on this
set (the family of probability measures that are dom-
inated by the possibility measure and dominate the
dual necessity measure [11].) Therefore, a second-
order possibility measure is associated to a set of
(meta-) probability measures, each of them defined,
in turn, over a set of probability measures. Thus, a
second-order possibility would allow us to state as-
sertions like “the subjective probability that the true
probability of the value 7 is 0.5 is between 0. and
0.7.”

2.3 Known random process with imprecisely
perceived output

Also in accordance with the possibilistic interpreta-
tion of fuzzy sets, in this work we are going to pro-
ceed in a slightly different way, in order to describe
the information provided by X̃. We follow the path
started in [30] for the particular case of the random
sets and continued in [1] and [4] for fuzzy random
variables. Suppose we have partial information about
the probability distribution that models a sequence of
two random experiments whose sample spaces are Ω
and IR, respectively. For instance, the first one de-
scribes some random phenomenon of interest and the
second one accounts for a measurement process ap-
plied to outcomes of the first one. Let us suppose, on
the one hand, that the probability distribution that
models the first one, P : A → [0, 1], is completely
determined (in the preceding expression, A denotes
a σ-algebra of events over Ω.) On the other hand,
the other experiment is only known via a family of
conditional possibility measures {Π(· | ω)}ω∈Ω, each
of them inducing the fuzzy set X̃(ω). This family
of possibility measures models our knowledge about
the relationship between the outcome of the first sub-
experiment an the possible outcomes of the second
one. (If the result of the first experiment is ω, then
the possibility degree of x occurring in the second one
is X̃(ω)(x).) In other words, we know the probability
measure that drives the primary random process but
the measurement process of outcomes is tainted with
uncertainty.

The combination, using natural extension techniques
[32] of both sources of information, allows to describe
the available information about the probability distri-
bution on βIR (the probability distribution that rules
the second sub-experiment) by means of an upper
probability (a standard imprecise probability model,
not an order-2 model, like the one described before.)

Let the reader notice that the conditional possibility
measure is coherent,under fairly general conditions on
X̃. This way, we are able to state assertions like the
following: “the probability of observing an outcome
between 3 and 7 lies between 0.3 and 0.6.”

3 Several definitions of variance

Each of the three models described in the preceding
section leads a different understanding of the variance.
In this section we consider the different definitions, ac-
cording to each model, and emphasize their usefulness
in different contexts. We shall restrict ourselves to the
case where the images of the fuzzy random variable
are fuzzy subsets of IR. In the last section of this
work, we shall make some considerations about the
generalization to the multi-dimensional case.

3.1 Classical model

Let us consider a probability space, (Ω,A, P ), and a
metric, d, defined over the class of the fuzzy subsets
of IR, P̃(IR), (or over a subclass) and let us suppose
that X̃ : Ω → P̃(IR) is a function A−β(d)-measurable
(here, β(d) represents the Borel σ-algebra induced by
d.)

Definition 1 We call classical variance of X̃ the
quantity

VarCl(X̃) =
∫

Ω

d(X, E(X̃))2 dP.

The different definitions of variance in the literature
that fit this formulation differ in the used metric and
in the definition of the expectation of a fuzzy random
variable. With respect to this, we briefly comment
some details about the definitions of Körner [17] and
Lubiano et al. [24]. On the one hand, Körner con-
siders Fréchet’s definition of expectation [15] for mea-
surable functions taking values in a metric space. It
is noticeable that Fréchet defines the expectation of a
measurable function Z, with values in a metric space
(M,d) as a solution a = E(d)(Z), (not necessarily
unique) of the problem mina∈M E[d(Z, a))2]. Körner
[17] checks that Puri and Ralescu’s expectation [31]
is the only Fréchet expectation for a certain family of
metrics defined over the class of compact and normal
fuzzy sets of IR, which they generically denote ρ2. Ac-
cording to this, given a distance ρ2, the variance of a
fuzzy random variable X̃ is the amount

Varρ2(X̃) =
∫

Ω

ρ2(X̃, EPR(X̃))2 dP. (1)

With respect to the family of variances defined by
Lubiano et al. in [24], the considered expectation is



also that of Puri-Ralescu, EPR(X̃), and the class of
distances is that defined by Bertoluzza et al. in [3],
which in turn is a subclass of the family defined by
Körner. In [17] and [24] we can find some interesting
properties of the families of variances defined there.
In this work we only comment some particular aspects
of those, to show some of their advantages and also
some drawbacks, if compared to other definitions of
variance. Even though these definitions are stated for
general fuzzy random variables in [17] and [24], in this
work , it is sufficient to use their formulation in the
particular case when X̃ is a multi-valued mapping (a
function whose images are “crisp” subsets of the final
space.)

In this case, we can easily check that the definitions
of Körner and Lubiano et al. are of the form:

Var(X̃) = π1Var(X1) + π2Cov(X1, X2) + π3Var(X2),

where π1 = λ1+0.25λ2, π2 = 0.5λ2, π3 = λ3+0.25λ2,
λi ≥ 0, i = 1, 2, 3, λ1+λ2+λ3 = 1 and X1, X2 are the
random variables defined over Ω as X1(ω) = inf X̃(ω)
and X2(ω) = sup X̃(ω), ∀ω ∈ Ω, respectively. (Un-
der the measurability conditions imposed to X̃ by the
authors, the functions X1 and X2 are A − βIR mea-
surable.) Therefore, in the particular case in which
π2 is null (thus π3 = 1 − π1), the variance of the
random set will be a convex linear combination of
the variances of their boundaries2. Additionally, if
π3 = (1−√π1)2, the variance of X̃ coindices with the
variance of the convex linear combination of X1 and
X2 given by the expression

√
π1X1 + (1 − √

π1)X2.
In other words, in this case, for every element in the
sample space, ω, we can choose a representative point,
αX1(ω)+(1−α)X2(ω) (with α ∈ [0, 1]), of the image
of the fuzzy random variable, and then calculate the
variance of the classical random variable that results.
The idea of computing the scalar variance using a rep-
resentative substitute point to each fuzzy observation
is used by Baudrit et al. [2], as one piece of informa-
tion to be extracted from the hybrid propagation of
fuzzy and probabilistic information through a mathe-
matical model. With these examples, we observe that
families of variances so defined allow us to quantify
the dispersion of the (fuzzy, or set-valued) images of
X̃, regarded as a measurable function from a classical
point of view, and that can be useful when the images
of X̃ are linguistic labels. In the context of a linguistic
variable, V ar(X̃) thus evaluates the variation across
the possible linguistic labels.

The following example illustrates the shortcomings of
this “classical” variance when quantifying the infor-
mation available about the variance of an underlying

2The definition given by Feng in [13] and cited in the intro-
duction fits this formulation for π1 = π3 = 0.5.

random variable, when a “possibilistic” view of the
fuzzy random variables is used, instead of the above
setting.

Example 1 Let us consider first a unitary sample
space (that models a deterministic experiment,) Ω1 =
{ω1}, a probabilistic space with the only σ-algebra that
can be defined over it, A1 = P(Ω1) and the only prob-
ability measure P1 that is possible. Let us define a
random set Γ1 : Ω1 → P(IR), as Γ1(ω1) = [−K, K].
In this example, Γ1 is instrumental to represent the
output (imprecisely known) of a deterministic exper-
iment. For example, it represents the amount of
money that, with absolute confidence, we shall receive,
if we only know that it lies between −K and K.

Then, let us also consider another probabilistic space
(Ω2,A2, P2) that corresponds to the outcome of toss-
ing a fair coin (Ω2 = {h, t}), and the random set Γ2 :
Ω2 → P(IR) defined as Γ2(h) = Γ2(t) = [−K, K]).
In turn, Γ2 can be used to represent our gain after
tossing a fair coin: the amount we are going to re-
ceive depends on the coin. The two outcomes are fixed
before we perform the experiment, but we only know
them in an imprecise manner, and actually we have
the same knowledge [−K, K] about these different val-
ues. The random sets Γ1 and Γ2, if regarded as classi-
cal measurable functions on the power set, induce the
same possibility distribution (degenerated in the in-
terval [−K, K]). Therefore, they both have the same
Aumann expectation3 (that coincides with their own
image) and they have null “classical” variance, since
they are constant set-valued functions. But, if we fol-
low Kruse and Meyer’s, interpretation, we suppose
that each of the maps models the imprecise observa-
tion of a classical random variable. Let us recall that,
when the fuzzy random variable is reduced to multi-
valued mapping, Γ, the information that it provides
us about the original random variable X0, can be in-
terpreted as follows: for every ω ∈ Ω, all we know
about the image of ω, X0(ω), is that it is in the set
Γ(ω). So, returning to the example, in the case of Γ1,
we are certain that the variance of the original ran-
dom variable is 0. In the second case (Γ2) we only
know that it is a value between 0 and K2.

In practice, a fuzzy random variable can also be used
to represent the imprecise observation of a certain
property of the elements of a population Ω. To rep-
resent the information provided by the imprecise ob-
servations about the variance of the (classical) un-
derlying random variable that models this property,
we must resort to the variance defined by Kruse and
Meyer.

3The Aumann expectation of a random set is defined as the
union of the expectations of all its measurable selections.



3.2 Second-order imprecise model

In [20], Kruse defines the variance of a multi-valued
mapping, Γ : Ω → P(IR), as the set:

VarKr(Γ) = {Var(X) | X ∈ S(Γ)},

where S(Γ) represents the set of all measurable se-
lections of the multi-valued mapping. The preceding
definition can be easily extended to the case of fuzzy
random variables as follows:

Definition 2 Let us call Kruse’s variance of the fuzzy
random variable X̃ : Ω → P̃(IR), the only fuzzy set
determined by the nested family of sets:

F (α) := VarKr(X̃α),∀α,

where X̃α is the multi-valued mapping α-cut of X̃.

We refer to the fuzzy set whose membership function
is given by the expression

π(x) = sup{α ∈ (0, 1] | x ∈ VarKr(X̃α)}, ∀x ∈ IR

Let us notice that:

{x | π(x) > α} ⊆ F (α) ⊆ {x | π(x) ≥ α},∀α ∈ (0, 1).

Hence, it is easy to see that the following equality
holds:

π(x) = sup{acc(X) | Var(X) = x}, ∀x ∈ IR.

From now on, we shall denote by VarKr(X̃) the fuzzy
set with membership function π. It is clear that this
definition is compatible with the second-order possi-
bility model shown in Section 2. Therefore, the mem-
bership degree of a value x to the fuzzy set VarKr(X̃)
represents the maximal possibility degree of the orig-
inal random variable among those whose variance is
equal to x. See [19] for the computation of the em-
pirical set-valued variance of a finite set of set-valued
realizations and [10] for the fuzzy case.

When the outputs of a random experiment are impre-
cisely observed, our knowledge about their dispersion
is also imprecise. So, Kruse’s variance can be called
potential variance, since π(x) is the degree of possi-
bility that x is the variance (in case it exists) of the
actual underlying random variable. VarKr(X̃) reflects
the imprecision pervading the observation of the out-
come of a random experiment. Therefore, it produces
a crisp set of potentially attainable variances (when
the imprecise observations of the random variable are
set-valued) or a fuzzy set (when it is represented by
a fuzzy random variable). It does not produce a real
value, like the “classical” observable variance of the

previous section. Thus, when the random set (or the
fuzzy random variable) represents the imprecise ob-
servation of a “classical” random variable, the descrip-
tion of the changes of the observed sets or fuzzy sets
via a classical variance is not enough to inform about
the variability of the underlying phenomenon. Let us
show an illustrative example.

Example 2

(a) The set Ω = {ω1, . . . , ω4} comprises four ob-
jects, whose actual weights are X0(ω1) = 10.2,
X0(ω2) = 10.0, X0(ω3) = 10.4, X0(ω4) =
9.7. We sense the weights with a digital de-
vice that rounds the measure to the nearest in-
teger, and displays the value ‘10’ in all of these
cases. Therefore, we get the constant random set
Γ(ωi) = [9.5, 10.5],∀ i = 1, . . . , 4. The true vari-
ance of the four measurements is 0.067. Since we
only know the information provided by Γ, all we
can say about the variance is that it is bounded
by the values 0 and 0.25. This is the information
that Kruse’s variance gives us. Misleadingly, the
classical variance of Γ returns the value 0.

(b) Case (a) is an example where the classical vari-
ance of the random set Γ is not an upper bound
of the actual value of the variance of X0. Nei-
ther is it, in general, a lower bound, as we are
going to show. Let us suppose that four objects
ω1, . . . , ω4 weigh the same: X0(ω1) = X0(ω2) =
X0(ω3) = X0(ω4) = 9.8g. Let us also sup-
pose that, for some reason, the weight of the
fourth object was imprecisely measured, and we
only know that it is between the values 9.5 and
10.5. Our knowledge about the variable X̃0 is
given by the random set Γ : ω → P(IR) de-
fined as Γ(ω1) = Γ(ω2) = Γ(ω3) = {9.8} and
Γ(ω4) = [9.5, 10.5]. The true variance of X0 is
0, but the “classical” variance assigns a strictly
positive value to it. On the other hand, Kruse’s
variance produces the interval [0, 0.092].

The last case suggests that the observed classical vari-
ance of a fuzzy random variable can be misleading.
It may reflect the variance of the imprecision of the
output (the knowledge of object ω4 is more imprecise
than the knowledge of the other objects), rather than
the actual variability of the underlying phenomenon.

On the other hand, neither Kruse’s variance is deter-
mined by the classical one, nor the converse holds. Let
us illustrate these ideas with the aid of the following
examples.

Example 3 Let us consider now the random sets in
Example 1. According to Kruse, their respective vari-



ances represent the sets of possible values of the vari-
ance of the corresponding original random variable.
Thus, in that example, the respective variances are,
according to this definition, VarKr(Γ1) = {0} and
VarKr(Γ2) = [0,K2]. However, the classical variance
assigns the value 0 to both random sets.

We observe that Kruse’s variance allows us to distin-
guish between two fuzzy random variables with the
same “classical” probability distribution (the proba-
bility measure induced by the fuzzy random variable
in the classical model) when they are used in this con-
text. However, it does not always associates different
values to two fuzzy random variables with different
“classical” variance, as we shall see in the example
that follows.

Example 4 Let us consider the probability space
(Ω2,A2, P2) of Example 1 and the constant random
set Γ2 : Ω2 → P(IR), defined there. Let us also
define the random set Γ3 : Ω2 → P(IR) as follows:
Γ3(h) = [−K, 0] and Γ3(t) = [0,K]. In both cases,
Kruse’s variance produces the interval [0,K2]. But
the classical variance would assign the value 0 to Γ2

and a strictly positive value to Γ3.

The last example serves us to observe that Kruse’s
variance does not allow, generally speaking, to quan-
tify the dispersion of the images of a fuzzy random
variable, when it is considered as a classical measur-
able function.

In fact, the scalar variance of section 3.1 could be
used in the context of an imprecisely observed random
variable, but it could only account for an “observable
variance”, namely the part of the variance that can
be measured, despite the imprecision of the observa-
tion. Indeed in Example 1, the fair die case leads
to a zero observable variance, because the variability
of the die is drowned into the imprecision of the ob-
servation. However, it seems that the scalar variance,
when non-zero, may partially account for the variabil-
ity of the underlying phenomenon: if the fuzzy ran-
dom variable represents an imprecisely observed ran-
dom variable with disjoint imprecise realizations, then
it has a positive scalar variance that reveals the non-
deterministic nature of the underlying process (even
if only partially). On the other hand, as the above
examples show, a zero scalar variance is not enough
to conclude whether the observed phenomenon is ran-
dom or not. Nor does a positive scalar variance reveal
the actual randomness of the phenomenon if the re-
alizations are nested fuzzy sets. It only points out
the variability of the imprecision of the observed out-
comes. In fact, one way of computing the observable
variance as a scalar is to choose an appropriate dis-
tance between fuzzy sets instead of ρ2 in the scalar

variance (1), namely one that vanishes when the two
fuzzy intervals overlap: consider two fuzzy intervals
F and G, and let

dmin(Fα, Gα) = inf{| x− y |, x ∈ Fα, y ∈ Gα},

and (for instance) dmin(F,G) = infα>0 dmin(Fα, Gα).

We can check that this new scalar variance is less that
the lower bound of Kruse’s variance. In example 2(b),
the above scalar variance is now 0, and so is it in ex-
ample 4. In example 2(b), the Körner scalar variance
essentially reflects the variability of the precision of
the observation.

3.3 First-order imprecise model

In this section, we propose a model that also takes
imprecision into account, although in a different man-
ner. We consider here a first-order imprecise probabil-
ity model, instead of a second-order one. Therefore,
the new variance assigns a crisp set to every fuzzy
random variable. With the help of easy examples,
we shall show the similarities and differences between
this new model and the present one.

The present definition of variance is based upon the
first-order, imprecise probabilities model that was
shown at the end of section 2. As we pointed out
there, we consider, on the one hand, the probability
measure P (defined over A), that models a first sub-
experiment, and, on the other hand, a family of con-
ditional possibility measures, {Π(· | ω)}ω∈Ω, defined
as follows:

Π(A | ω) = ΠX̃(ω)(A) = sup
x∈A

X̃(ω)(x), ∀A ∈ βIR, ∀ω.

In the preceding formula, ΠX̃(ω) represents the possi-
bility measure determined by the possibility distribu-
tion X̃(ω) : IR → [0, 1]. So, the value Π(A|ω) is an up-
per bound for the probability that the final outcome
is in A, verifying the hypothesis that the outcome of
the initial experiment is ω. This family of possibility
measures represents our (imprecise) knowledge car-
ried by X̃ about the relation that exists between the
outcome of the first sub-experiment and the set of all
the possible outcomes of the second one.

Therefore, the relationship between the two experi-
ments is given by a transition probability Q(·|·)
on βIR × Ω, i.e., a function such that:

1. Q(·|ω) is a probability measure for all ω ∈ Ω.

2. Q(A|·) is A− β[0,1]-measurable for all A ∈ βIR,

and the available knowledge about this transition
probability is modelled by the conditional possibil-



ity measures {Π(·|ω)}ω∈Ω, in the sense that Q(·|ω) ≤
Π(·|ω) for all ω ∈ Ω.

Within this context, all we know about the probabil-
ity distribution that models the second experiment is
that it is given by the formula:

Q2(B) =
∫

Ω

Q(B|ω) dP (ω), ∀B ∈ βIR,

where Q(·|·) belongs to the class:

C = {Q(·|·) | Q(A|ω) ≤ Π(A|ω) ∀A ∈ βIR, ω ∈ Ω}.

In other words, all we know about Q2 is that it is in
the set

C2 = {Q2 : βIR → IR | ∃Q(·|·) ∈ C where

Q2(B) =
∫

Ω

Q(B|ω) dP (ω), ∀B ∈ βIR}, (2)

It is easily observed that this is a generalization of the
concept of probability induced by a classical random
variable. Let us suppose that the images of the fuzzy
random variable X̃ are real values. In other words, let
us suppose that for all ω ∈ Ω, Π(·|ω) is, in particular,
the degenerated probability measure in a point X(ω).
In this case, we are admitting a complete confidence
about the relationship between both sub-experiments
(if the result of the first sub-experiment is ω, then
we are absolutely certain the outcome of the second
experiment is X(ω)). It is easy to prove that the class
C2 in equation (2) is reduced to the singleton {PX} (in
this case, the probability induced by X : Ω → IR in
βIR is the only probability measure compatible with
P and Π(·|·)). Besides, the variance of a classical
random variable, Var(X) =

∫
Ω
[X − E(X)]2dP, can

be alternatively expressed as the following Lebesgue
integral with respect to PX :

Var(PX) =
∫

IR

(
id−

∫
IR

id dPX

)2

dPX ,

where id:IR → IR is the identity function4. There-
fore, in the proposed imprecise probabilities model,
all we know about the variance of the output of the
second sub-experiment is that it belongs to the set
VarIm 1(X̃) defined as follows:

Definition 3 Consider a probability space (Ω,A, P ),
and a fuzzy random variable defined over it, X̃ : Ω →
P̃(IR). For each ω ∈ Ω, let Π(·|ω) denote the possi-
bility measure associated to the possibility distribution

4Since the variance of a classical random variable is a func-
tion of its induced probability distribution,we shall commit a
small abuse of the language from now on and we shall express
it as the variance of such probability distribution.

X̃(ω). We define the first-order imprecise variance of
X̃ as the (crisp) set:

VarIm−1(X̃) = {Var(Q2) | Q2 ∈ C2}

where

C2 = {Q2 : βIR → IR | ∃Q(·|·) ∈ C s.t.

Q2(B) =
∫

Ω

Q(B|ω) dP (ω), ∀B ∈ βIR},

and

C = {Q(·|·) | Q(A|ω) ≤ Π(A|ω) ∀A ∈ βIR, ω ∈ Ω}.

VarIm−1(X̃) is the set of possible values of the vari-
ance of the second sub-experiment, according to the
available information. We are going to compare, on
an example, the information provided by VarIm 1 and
VarKr about the variance of the “original” probability
distribution.

Example 5 Let us consider the unit interval, Ω =
[0, 1], equipped with the Lebesgue measure. Let us also
consider the fuzzy random variable X̃ : Ω → P̃(IR)
constant in the fuzzy set Ã determined by the α-cuts
Ãα = [−(1 − α), 1 − α]. It can be easily checked that
[VarKr(X̃)]α = [0, (1 − α)2], ∀α > 0. On the other
hand, we can observe that VarIm−1(X̃) is the inter-
val [0,1/3]5. It is clear that this interval is strictly
contained in the support of VarKr(X̃). Therefore, un-
der the first-order model here described, the variance
of the results of the experiment is known to be less
than or equal that 1/3, while under the second-order
probability model, a strictly positive possibility degree
is also assigned to all variables between 1/3 and 1.

Despite the fact that the two models considered in
last example (orders 1 and 2 imprecise probability
models) are associated to a possibilistic interpreta-
tion of fuzzy sets, the meaning of the two definitions
of variance derived from them are quite different. In
the second-order model, the fuzzy random variable,
X̃, represents an imprecise observation of a particu-
lar (classical) random variable, X0 : Ω → IR. For each
possible result of the random experiment, ω ∈ Ω, the
value X0(ω) is fixed but we have imprecise knowledge
about it. However, in the first-order model, the fuzzy
random variable X̃ represents our (imprecise) knowl-
edge about the link between two steps of a random
experiment. Thus, the same result ω in the first step
can be associated to different outcomes of the sec-
ond step. Under the first-order model assumptions,
we must combine the probability measure associated

5It is actually equal to 1
2

∫ 1

0
(inf Aα − sup Aα)2dα. See

Dubois et al.[10].



to the first step with the probability measure that re-
lates the first step with the second one. As our knowl-
edge about the latter conditional probability measure
is given by a pair of upper-lower probability measures,
so is our knowledge about the probability measure
that governs the whole process.

Let us examine now the relation between both models
in the particular case where X̃ is a random set. (X̃(ω)
is a crisp set, ∀ω ∈ Ω.) In this case, Kruse’s variance
is defined as:

VarKr(X̃) = {Var(PX) | X ∈ S(X̃)}

= {Var(Q) | Q ∈ P(X̃)},

where P(X̃) is the set of probability measures associ-
ated to the measurable selections of X̃,

P(X̃) = {PX |X ∈ S(X̃)}.

On the other hand, the first-order imprecise variance
is given by the formula:

VarIm 1(X̃) = {Var(Q2) | Q2 ∈ C2}, where

C2 = {Q2 | Q2 marginal of P ×Q(·|·), Q(·|·) ∈ C},

and C is the set of transition probability measures:

C = {Q(·|·) | Q(A|ω) ≤ Π(A|ω) ∀A ∈ βIR, ω ∈ Ω}.

In the above formula, Π(·|ω) is the Boolean possibil-
ity measure associated to the (crisp) set X̃(ω). For
an arbitrary measurable selection of X̃, X ∈ S(X̃),
and a fixed ω ∈ Ω, let us consider the probability
measure degenerated on the point X(ω), δX(ω). Let
us construct the function Q(·|·) : βIR × Ω → [0, 1] as
Q(·|ω) = δX(ω), ∀ω ∈ Ω. It is easy to see that Q(·|·) is
a transition probability measure and it belongs to the
set C. So the probability measure PX : βIR → [0, 1]
belongs to C2. Thus, we observe that the set P(X̃)
is included in C2 and so VarKr(X̃) is contained in
VarIm 1(X̃). Furthermore C2 is a convex set of prob-
ability measures, but P(X̃) is not convex in gen-
eral. (The properties of P(X̃) are studied in detail
in [6, 7, 27, 28, 29].) These differences can influence
the calculation of the variances, as shown in the fol-
lowing example.

Example 6 Consider again the random sets used in
example 1. According to the model described in that
section, in the first case the first sub-experiment is
deterministic, and the relationship between both sub-
experiments is determined by Γ1. This random set
represents an “empty” conditional probability distri-
bution over [−K, K]. Therefore, the set of conditional
probability measures Q(·|ω1), that are compatible with

them is the set of all measures that assign probability 1
to the set [−K, K]. This way, the following informa-
tion is given: once the first experiment is performed,
a random number between −K and K is chosen, and
not a number selected beforehand. This is the differ-
ence between the second-order model described before
and the current model. In the second-order model, the
number was selected beforehand, but it was unknown.

Now, in the case of Γ2, the first sub-experiment con-
sists in tossing a coin. Once the result has been ob-
served, it is chosen, whatever the result is, a random
number between −K and K. Therefore, it is intu-
itively clear in this example that, regarding the out-
come of the second sub-experiment, we could obvi-
ate tossing the coin (we could not in the second or-
der model) and then Γ1 and Γ2 show, according to
the interpretation of the first-order model the same
information. Thus we observe that VarIm−1(Γ1) =
VarIm−1(Γ2) = [0,K2].

Let us comment on some relationships that exist be-
tween the variance of this imprecise, first-order model,
and the classical variance of section 3.1.

We easily observe that none of them can be calculated
as a function of the other one:

Example 7 Let us consider, on the one hand, the
random set Γ1 defined in Example 1 and, on the other,
the random set Γ5, defined over the same space, of
the form Γ5(ω1) = {0}. The “classical” variance as-
signs value 0 to both random sets, while the imprecise
variance assigns the set of values [0,K2] to the first
problem, and the singleton {0} to the second.

In a similar manner, we can check that the classical
variance can not either be expressed as a function of
the variance that is considered in this section. It is
enough to observe the random sets of Example 4.

4 Concluding remarks

In this work we have studied different proposals to
generalize the concept of variance of a real random
variable to fuzzy random variables. In Körner ’s work
[17] is stated a more general definition, valid when
the final space is IRn, with arbitrary n ∈ IN . In that
work, the variance of X̃ is defined as the expecta-
tion of the squares of the distances of their images
to their Fréchet expectation. In the particular case
where X̃ is a classical random vector and the chosen
distance is Euclidean, the result of this calculation is
the moment of inertia. This way, Körner’s procedure
generalizes, in the n-dimensional case, a concept that
may be useful to measure the dispersion of the images
of the fuzzy random variable, but not directly related



to the concept of variance-covariance matrix.

If, on the contrary, the aim is to generalize the lat-
ter concept, Kruse’s procedure can be applied without
too many changes. Using similar reasoning methods
as those of this author, a fuzzy set over the class of
square matrices can be obtained. It associates, to each
particular matrix, a degree of possibility. This fuzzy
set models the imprecise knowledge available about
the variance-covariance matrix of the “original” ran-
dom vector. In [26], Meyer proposes a definition of
covariance following a path similar to Kruse’s. Ac-
cording to our intuition, the combination of the in-
formation provided separately about the variance of
every component and about the covariance between
them is more imprecise that the straight information
about the variance-covariance matrix.

With respect to the different definitions of variance
considered in this work, we think that none of them is,
in general terms, preferable to the others, but they ei-
ther serve different purposes or reflect different models
of the observed phenomenon, as well as different ob-
servation settings. Therefore, according to the prob-
lem under concern, it should be decided whether the
dispersion needs to be measured as a number, a fuzzy
set or a crisp set. If the fuzzy random variable is in-
terpreted as a classical measurable function, the most
appropriate decision would involve Feng, Körner or
Lubiano et al.’s definitions. It measures the variabil-
ity of the observed membership function, not the vari-
ability of the quantity it possibly describes. Such clas-
sical definitions do not take into account any kind of
imprecision, but they merely quantify the dispersion
of the (fuzzy) images of the fuzzy random variable.

Some of these classical definitions are equivalent to
considering first a representative (numerical) element
of every image of the fuzzy random variable (the cen-
ter point of the 0-cut, for instance) and then calculate
the dispersion of these numerical values. Part of the
actual variability can be observed and measured by
means of a scalar if the fuzzy outcomes are precise
enough and often disjoint. On the other hand, the
average precision of the fuzzy random variable, and
the variance of the precision are other useful evalua-
tions.

If the fuzzy random variable represents an imprecise
measurement of a certain characteristic of the ele-
ments of the sample space, one of the two non-scalar
definitions must be used. For example: let us suppose
we intend to calculate the dispersion of the weights of
a bunch of apples, and we use an imprecise scale. Let
us suppose that, for every confidence level 1 − α we
know that the real weight is at most at dα from the
value produced by the scale. In this case, every α-cut

of Kruse’s variance represents our knowledge about
the true dispersion of the weights of the apples, for
every confidence level 1− α. On the other hand, the
variance proposed in section 3.3 represents the set of
all possible values for the dispersion of the weights, if
we combine the initial randomness (tied to the ran-
dom experiment “choose an apple”) with the random-
ness originated in the degrees of confidence associated
to the scale accuracy. Therefore, if the fuzzy random
variable represents the knowledge about the relation-
ship between the two sub-experiments (“if we choose
the apple ω, the degree of possibility of its weight x
is X̃(ω)(x)”), then the definition proposed in section
3.3 should be used.

Acknowledgements

This work has been supported by grants MTM2004-
01269 and TIN2005-08036-C05-05. Both grants par-
tially participate to FEDER funds.

References

[1] C. Baudrit, I. Couso, D. Dubois (2007) Joint
propagation of probability and possibility in risk
analysis: Towards a formal framework, Int. J. of
Approximate Reasoning, 45, 82-105.

[2] C. Baudrit, D. Dubois, D. Guyonnet, H. Fargier
(2006) Joint treatment of imprecision and ran-
domness in uncertainty propagation. In : Modern
Information Processing: From Theory to Appli-
cations. B. Bouchon-Meunier, G. Coletti, R.R.
Yager (Eds.), Elsevier, p. 37-47.

[3] C. Bertoluzza, A. Salas, N. Corral (1995) On a
new class of distances between fuzzy numbers.
Mathware and Soft Computing 2 71-84.

[4] I. Couso, E. Miranda, G. de Cooman (2004)
A possibilistic interpretation of the expectation
of a fuzzy random variable. In Soft methodol-
ogy and random information systems (eds: M.
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Abstract

A credal network associates a directed acyclic graph
with a collection of sets of probability measures; it of-
fers a compact representation for sets of multivariate
distributions. In this paper we present a new algo-
rithm for inference in credal networks based on an in-
teger programming reformulation. We are concerned
with computation of lower/upper probabilities for a
variable in a given credal network. Experiments re-
ported in this paper indicate that this new algorithm
has better performance than existing ones for some
important classes of networks.

Keywords. Credal networks, Integer program-
ming.

1 Introduction

This paper presents novel techniques for marginal in-
ference in credal networks. The goal is to provide an
algorithm that can handle graphical models for pre-
cise and imprecise probabilistic assessments based on
integer programming.

Credal networks represent a set of joint probability
measures through a directed acyclic graph and a col-
lection of local sets of probability measures [3, 5, 13].
The structure of the graph indicates relations of in-
dependence between variables; the “size” of the sets
of probabilities encodes the imprecision in the prob-
ability values. Section 2 reviews basic properties of
credal networks and Section 3 addresses the inference
problem we are interested in. Basically, a belief up-
dating inference in the context of credal networks is
a computation of upper/lower probability for some
conjunction of events, given observations. Most exist-
ing algorithms for belief updating cannot handle large
networks; when they can, they suffer from numerical
instability [9].

This paper aims at enlarging the class of networks
that can be successfully processed exactly. We focus

on developing a reformulation that is particularly effi-
cient for polytree-shaped networks. Section 4 reviews
a multilinear reformulation and presents a new infer-
ence algorithm based on bilinear and integer program-
ming. Section 5 shows through experiments that the
algorithm can process large polytree networks, sur-
passing existing algorithms [8, 9]. Section 6 concludes
the paper.

2 Credal sets and credal networks

A few preliminary definitions are important. A con-
vex set of probability distributions is called a credal
set [18]. A credal set for X is denoted by K(X); we
assume that every random variable is categorical and
that every credal set has a finite number of vertices.
A conditional credal set is a set of conditional dis-
tributions, obtained by applying Bayes rule to each
distribution in a credal set of joint distributions. The
theory of sets of probability distributions adopted in
this paper can be placed in the framework of coherent
behavior by selecting axioms advocated by several au-
thors, for instance by Walley [23]. We emphasize that
our setting is restricted to categorical variables, thus
we can brush away subtle but crucial differences be-
tween proposed frameworks concerning issues of con-
glomerability and countable additivity.

The sets K(X |Y ) are separately specified when there
is no constraint on the conditional set K(X |Y = y1)
that is based on the properties of K(X |Y = y2), for
any y2 6= y1 — that is, the conditional sets bear no
relationship to each other. In this paper we assume
that local credal sets are always separately specified;
justifications for this separability assumption can be
found in [7]. Given a number of marginal and con-
ditional credal sets, an extension of these sets is a
joint credal set with the given marginal and condi-
tional credal sets. In this paper we are exclusively
concerned with the largest possible extension for any
collection of marginal and conditional credal sets.



Given a credal set K(X) and an event A, the upper
and lower probability of A are respectively P (A) =
maxp(X)∈K(X) P (A) and P (A) = minp(X)∈K(X) P (A).

A credal network N = (G, X, K) is composed by a di-
rected acyclic graph G = (V, E) where each node of V

is associated with a random variable Xi ∈ X and with
a collection of conditional credal sets K(Xi|pa(Xi)) ∈
K, where pa(Xi) denotes the parents of the node as-
sociated to Xi in the graph. In the remainder of this
paper, we refer to Xi and its associated node inter-
changeably. Note that we have a conditional credal
set related to Xi for each instantiation of pa(Xi). A
root node is associated with a single marginal credal
set. We take that in a credal network every random
variable is independent of its nondescendants nonpar-
ents given its parents; this is the Markov condition
on the network. In this paper we adopt the con-
cept of strong independence1: two random variables X

and Y are strongly independent when every extreme
point of K(X, Y ) satisfies standard stochastic inde-
pendence of X and Y (that is, p(X |Y ) = p(X) and
p(Y |X) = p(Y )) [5]. Strong independence is the most
commonly adopted concept of independence for credal
sets, probably due to its obvious connection with stan-
dard stochastic independence. There are concepts of
independence that are less precise in the sense that
they admit distributions that do not factorize; an ex-
ample is epistemic independence [11, 23].

Given a credal network, an extension of the network
is any joint credal set that satisfies all constraints en-
coded in the network. The strong extension of a credal
network is the largest joint credal set such that every
variable is strongly independent of its nondescendants
nonparents given its parents. The strong extension of
a credal network is the joint credal set that contains
every possible combination of vertices for all credal
sets in the network [6]; that is, each vertex of a strong
extension factorizes as follows:

p(X1, . . . , Xn) =
∏

i

p(Xi|pa(Xi)) . (1)

3 Inference with strong extensions

A marginal inference in a credal network is the com-
putation of lower/upper probabilities in an extension
of the network. If Xq is a query variable and XE rep-
resents a set of observed variables, then an inference
is the computation of tight bounds for p(Xq|XE) for
one or more values of Xq. For inferences in strong ex-
tensions, it is known that the distributions that mini-
mize/maximize p(Xq|XE) belong to the set of vertices
of the extension [13].

1We note that other concepts of independence are found in
the literature [4, 12].

An inference can be produced by combinatorial op-
timization, as we must find a vertex for each lo-
cal credal set K(Xi|pa(Xi)) so that Expression (1)
leads to a maximum/minimum of p(Xq|XE). In gen-
eral, inference offers tremendous computational chal-
lenges — consider the following example, taken from
Rocha et al. [8]. Take a network with three nodes,
X → Y ← Z, where X , Y and Z have four cate-
gories each, and where all credal sets have four ver-
tices each. There are 418 different joint distributions
factorizing as Expression (1), where local distribu-
tions are vertices of local credal sets. Rocha et al. [8]
discuss branch-and-bound procedures that can han-
dle situations such as this, but that still have difficul-
ties in large networks. The only known polynomial
algorithm for strong extensions is the 2U algorithm,
which only processes polytrees with binary variables
[13]. Other exact inference algorithms based on enu-
meration examine all potential vertices of the strong
extension to produce the required lower/upper values
[2, 3, 5, 7]; these algorithms face serious difficulties in
large networks.

A different way to look at the computation of in-
ferences is to recognize that a lower/upper value for
p(Xq|XE) is obtained by minimization/maximization
of a fraction containing polynomials in probability val-
ues. This is in fact the strategy discussed in Section 4;
our results suggest that this is the most profitable
strategy to take for exact inference with strong ex-
tensions.

4 Inference as a multilinear

programming problem

A marginal inference for a strong extension can be for-
mulated as a multilinear programming problem. The
goal is to minimize/maximize the expression

∑

Xi\Xq

∏

i

p(Xi|pa(Xi)) (2)

subject to constraints on the local probabilities
p(Xi|pa(Xi)). For a query with evidence, we may

use the constraint p(Xq|XE) =
p(Xq ,XE)

p(XE) , that can be

turned into a multilinear constraint.2 In this prob-
lem we must deal with a large number of terms in the
multilinear objective function (the number of terms is
exponential on the size of the network), as shown in
Example 1.

Example 1 Take the network presented in Figure 1.
Suppose that random variables are binary and we want

2We assume that the probability of evidence is strictly
greater than zero, leaving for future work the important case
where lower probabilities equal to zero may happen.
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Figure 1: Simple multi-connected network.

to evaluate the maximum possible value for the proba-
bility of (E = e)∧(F = f); this is obtained by solving:

max
∑

A,B,C,D

p(f |C) · p(e|D) · p(D|B, C) · (3)

·p(B|A) · p(C|A) · p(A) ,

subject to linear constraints (from local credal sets).
We have a multilinear objective function with 16 non-
linear terms of degree six. The probability functions p

are seen as optimization variables in the multilinear
program.

As presented by Campos and Cozman [9], we can run
a symbolic variable elimination algorithm to obtain a
simpler objective function.

Example 2 Take the network and specifications of
Example 1. Instead of optimizing Expression (3), the
symbolic variable elimination procedure transforms it
into a problem with simpler multilinear functions of
degree at most three, by grouping terms and introduc-
ing new optimization variables. The result is a multi-
linear program with 22 nonlinear terms:

max
∑

D

p(e|D) p(D, f) subject to

p(B, C) =
∑

A

p(B|A) p(C|A) p(A) , for all B, C

p(C, D) =
∑

B

p(D|B, C) p(B, C) , for all C, D

p(D, f) =
∑

C

p(f |C) p(C, D) , for all D

plus the linear constraints.

Note that the reformulated problem presented in Ex-
ample 2 contains terms of smaller degree than the
original problem (Example 1). This is important in
multilinear programming, as it is difficult to handle
problems with high degree. Besides that, the trans-
formation usually leads a smaller number of nonlinear
terms than in the direct version given by Expression
(1), although that was not the case in Example 2.

4.1 A bilinear transformation

The new multilinear terms obtained with the sym-
bolic variable elimination procedure just described

have smaller degree than the original ones, but the
maximum degree is at least as large as the tree-width
of network’s moral graph (even if we know an optimal
elimination ordering for the variables) [9].

We present in this section a new transformation proce-
dure, which naturally produces multilinear program-
ming problems with maximum degree of two (that is,
bilinear problems) regardless of network’s topology,
and where the following property holds: each bilinear
term has at least one variable that is defined (even
though by a credal set) in the input (that is, each bi-
linear term has at most one auxiliary variable). This
property will be essential for obtaining an integer pro-
gram in Section 4.2, and it is specially efficient for
polytree networks, which are defined by graph with-
out any cycles (directed or not).

Prior to the algorithm itself, we must present some
useful definitions.

Definition 3 An ordering for the network variables
is said a precedence ordering if, for each variable in
the ordering, all its ancestors in the network’s graph
appear before it in the ordering.

Definition 4 (Robertson and Seymour [20,

21]). Given a graph G = (V, E), a sequence
V1, . . . , Vr of subsets of V is a path-decomposition of
G if the following conditions are satisfied:

•
⋃

i Vi = V .

• For every edge e ∈ E, some Vi contains both end-
points of e.

• For 1 ≤ i ≤ j ≤ k ≤ r, Vi ∩ Vk ⊆ Vj .

Definition 5 (Robertson and Seymour [20,

21]). The path-width of G, denoted by pw(G), is
the minimum value h ≥ 0 such that G has a path-
decomposition V1, . . . , Vr with |Vi| ≤ h + 1 for i =
1, . . . , r.

Definition 6 The path-width of a credal network
N = (G, X, K), or just pw(N), is the path-width of
its graph G.

The idea of Bilinear-Transformation algorithm is
to process the network variables top-down, using a
precedence ordering. At each step we construct a con-
straint that defines the relationship between the query
and the current variable being processed. A variable
may be processed only if all its ancestors have already
been processed. The active nodes at each step form
a path-decomposition of the network’s graph. Note
that we cannot use other decompositions such as joint
trees, because we would get multilinear terms with



more than one auxiliary variable, that is, the result
would not be a bilinear programming problem with
that described property. We proceed with the idea of
the transformation using an example.

Example 7 Suppose we want to query the probability
of e, f in the network presented in Figure 1. The first
step of the Bilinear-Transformation algorithm is to
choose a precedence ordering for the network variables
(when there is evidence, all the process must be re-
peated for the queries and for the observed variables).
We will use the ordering A, C, B, D, E, F . The first
variable to be processed is A (it is the only variable
without parents). We have the queries e, f and will
write their joint probability using p(A) (which is de-
fined in the network specification) and inserting A in
the conditional part. So we create the constraint

p(e, f) =
∑

A∈{a,a}

p(A) · p(e, f |A).

Functions p(e, f |A) are auxiliary (they do not appear
in the network), and we must create constraints to
define them (for all possible instantiations of A). The
current variable to be processed is C. Thus, for all
A ∈ {a, a}:

p(e, f |A) =
∑

C∈{c,c}

p(C|A) · p(e, f |A, C).

At this stage, our queries are conditioned on A and
C. Following the idea, we process B, obtaining

p(e, f |A, C) =
∑

B∈{b,b}

p(B|A) · p(e, f |B, C),

which must be written for all A ∈ {a, a}, C ∈ {c, c}.
Note that at this point A disappeared from the con-
ditioning side, because B and C together separate the
query variables from A. Now the current variable to be
treated is D, and our queries are conditioned on B, C,
that is, we must define how to evaluate p(e, f |B, C).
We have, for all B ∈ {b, b}, C ∈ {c, c}, that

p(e, f |B, C) =
∑

D∈{d,d}

p(D|B, C) · p(e, f |C, D).

At this moment, e, f are conditioned on C, D (again,
B is not present anymore as C, D separate the queries
from B). Now we will process E, but because the only
two remaining variables are E and F and they are
not parent of each other, their order in fact does not
matter. Thus,

p(e, f |C, D) = p(e|D) · p(f |C),

for all C ∈ {c, c}, D ∈ {d, d}. Note that, as p(f |C) is
specified in the network, we can stop. We have com-
pleted the procedure as both p(e|D) and p(f |C) appear

A,C,E,F

A,E,F

C,D,E,F

B,C,D,E,F

A,B,C,E,F

Figure 2: Path-decomposition of Example 7.

in the network. Note that, if we had chosen another
ordering such as A, B, C, D, E, F or A, B, C, F, D, E,
more constraints might be needed.

Figure 2 shows the path-decomposition induced by
the ordering of Example 7. Note that there is an one-
to-one relation between decomposition components
and constraints in the example. The elements in a
given component appear together in some constraint
of the reformulation, either in the conditioned (includ-
ing queries) or in the conditioning sides.

The algorithm is presented using pseudo-code in Fig-
ure 3. Functions g appearing in line 24 of the algo-
rithm are just conditioned probability functions. We
use the letter g instead of p because of another trans-
formation presented in next section, where functions g

have special meaning. If we just want a bilinear trans-
formation, g should be simply replaced by p, even
though we note that names of optimization variables
are not an issue (they just need to be coherent among
each other). Regarding the complexity of the algo-
rithm, we define the path-width of a precedence order-
ing as the width of the path-decomposition induced
by that ordering, and present the following theorem.

Theorem 8 Let N = (G, X, K) be a credal net-
work where the maximum number of categories
of a random variable is O(|V |). Suppose o′

is a precedence ordering for the variables in
X. Then Bilinear-Transformation runs in time
O(|V |pw(o′)+k), for k constant.

Proof: All non-loop lines of the algorithm can clearly
be executed in polynomial time in the number of
nodes, that is, O(|V |K), for K constant.

The loop of line 4 is executed twice if we have evi-
dence, and only once if we do not have evidence. Line
12 loop is executed |U | times, that is, O(|V |). The
loop of line 26 is executed O(c) times, where c is the



Bilinear-Transformation(N, Q, E)

N = (G, X, K) is the network, G = (V, E) its graph, X its variables and K its local credal sets.
Q is an instantiation for a set of queried variables.
E is an instantiation for a set of observed variables.
The result of this procedure is a bilinear programming problem
(bilinear objective function of line 1 and a set of bilinear constraints from lines 2 and 24).

1 � The program will maximize or minimize t, which will be the objective function.
2 Insert the following constraint into the bilinear program:

p(Q, E) = t · p(E)
3 � Now we create constraints to evaluate p(Q, E) and p(E).
4 for W = Q ∪ E and W = E

5 do

6 � U is the set of all relevant variables.
7 U ← {X ∈ V \W such that X is an ancestor of some w ∈ W}.
8 � There are many ways to choose a precedence ordering. Do it polynomially.
9 Rename the variables of U as X1, X2, . . . , X|U| according to a precedence ordering.

10 � Initially, functions are not conditioned. L is a list of sets of conditioning variables.
11 Let L be an empty queue of sets. Insert ∅ in the end of L.
12 for i← 1 to |U |
13 do

14 � L′ will have the conditioning sets to be considered on the next loop step.
15 Let L′ be an empty queue of sets.
16 � Conditioning sets from the previous step are processed.
17 while L is not empty
18 do

19 S ← first element of L (remove S from L).
20 � S′ are separated variables (with respect to the query variables) when

inserting Xi in the conditioning part. The separation is based on
the graph structure (known as d-separation [19]).

21 S′ ← {s ∈ S such that {Xi} ∪ S \ {s} separates W from s}.
22 � The variables in S′ are no more relevant.
23 R← S \ S′.
24 Depending on W , insert the following constraint into the bilinear program:

if W = Q ∪ E then p(W |S) =
∑

xij
p(xij |pa(Xi)) · p(W |R, xij).

if W = E then g(W |S) =
∑

xij
p(xij |pa(Xi)) · g(W |R, xij).

� xij is a category of Xi.
� pa(Xi) is an instantiation complying with W , R and S.

25 � Now we insert into L′ the conditioning sets for the next step.
26 for each xij of Xi

27 do

28 R′ ← R ∪ {xij}.
29 Insert R′ in the end of L′.
30 � End of for

31 � End of while

32 L← L′

33 � End of for

34 � End of for

Figure 3: Reformulation algorithm for inferences in credal networks.



maximum number of categories of a random variable.

Line 17 loop executes |L| times. Let u be the maxi-
mum size of a set stored in L. Then the number of
elements in L at each round is O(cu), because at most
cu unequal instantiations for u variables are possible.
Note that the sizes of sets stored in L are exactly
the sizes of components in the path-decomposition in-
duced by o′. So the bottleneck is the size of the ele-
ments in L, which is equal (in worst case) to pw(o′).
Thus the complexity of Bilinear-Transformation is
(k = K + 2):

2 ·O(|V |)·O(|V |K)·O(c)·O(cpw(o′)) = O(|V |pw(o′)+k).

Note that, with recent results of Feige et al. [14], it is
possible to approximate the optimum path-width of
the network by log |V |

√

log pw(N). So, the algorithm

runs in time O(|V |log c·pw(N)·
√

log pw(N)+k). 2

Corollary 9 When restricted to polytrees, the algo-
rithm Bilinear-Transformation runs in polynomial
time in the size of input.

Proof: In a polytree, each variable separates its par-
ents from its descendants. The path-width is bounded
by d, the maximum degree of network’s graph, and
it is easy to find an ordering with such width (a
greedy algorithm will succeed). So the complexity is
O(|V |d · |V |k), k constant. As the input size needed to
specify the local credal sets of the network is already
exponential on d, the corollary follows. 2

4.2 An integer programming version

We show in this section how to obtain an integer
program from that bilinear program generated by
Bilinear-Transformation. We must note some use-
ful properties:

1. A multiplication of a rational optimization vari-
able x ∈ [0, 1] by a boolean variable b ∈ {0, 1}
can be encoded by linear constraints: replace the
nonlinear term x · b by a new variable yxb and
insert the constraints:

0 ≤ yxb ≤ b

x− 1 + b ≤ yxb ≤ x

2. We can represent each local credal set as a
combination of its vertices. Suppose X is a
network variable with parents Y1, . . . , Yr, and
that vertices α1, . . . , αs define the credal set for
p(X |y1, . . . , yr) (the dimension of each αi equals
the number of categories of X). For each instan-

tiation of X, Y1, . . . , Yr we have

p(x|y1, . . . , yr) =

s
∑

i=1

αi(x) · b(i)
y1,...,yr

, (4)

where αi(x) are known values (specified in the

network) and b
(i)
y1,...,yr

are boolean variables such
that

s
∑

i=1

b(i)
y1,...,yr

= 1,

that is, only one of these b
(i)
y1,...,yr

variables is one,
thus selecting a vertex.

3. Each nonlinear term appearing in the constraints
created by Bilinear-Transformation is a mul-
tiplication of a rational variable and a variable
appearing in the network specification (defined
by the local credal sets).

These observations lead us to the following procedure
to replace each product r ·p(x|y1, . . . , yr) of each con-
straint created by Bilinear-Transformation:

r · p(x|y1, . . . , yr) :=

s
∑

i=1

αi(x) · y
(i)
rby1,...,yr

,

y
(i)
rby1,...,yr

≥ 0,

y
(i)
rby1,...,yr

≤ b(i)
y1,...,yr

,

y
(i)
rby1,...,yr

≥ r − 1 + b(i)
y1,...,yr

,

y
(i)
rby1,...,yr

≤ r,

s
∑

i=1

b(i)
y1,...,yr

= 1,

where A := B means to replace A by B. Although we
need to work with all vertices of credal sets and it may
be hard to enumerate all of them, many important
models can easily be translated into lists of vertices.
For example, capacities of infinite order (also known
as belief functions) can be expressed by mass assign-
ments that are attached to sets of categories; vertices
are simply obtained by combining the ways in which
mass assignments are to be distributed [22, 23].

There is still a problem to address to get an integer
version. The constraint inserted during line 2 of al-
gorithm Bilinear-Transformation is nonlinear and
the variables involved in its product are not in the
network specification and thus cannot be directly re-
placed by some linear constraints and integer vari-
ables. We solve this problem by calling the loop of line
4 twice: in the first time, we evaluate p(Q, E) (using
functions named p); in the second time, we evaluate
g(E) = t ·p(E), that is, functions g do not mean prob-
ability functions but t times probability functions.



For example, the constraint in line 2 becomes sim-
ply p(Q|E) = g(E). Each constraint inserted in line
24 of the algorithm

g(W |S) =
∑

xij

p(xij |pa(Xi)) · g(W |R, xij)

in fact means

t · p(W |S) =
∑

xij

p(xij |pa(Xi)) · t · p(W |R, xij),

with the t variable hidden inside the g functions,
whose are seen as optimization variables. So, on the
last step of the inner loop, the constraint g(W |S) =
t · p(W |S) must be included to pull t out of g, trans-
forming it into p again. Because the p(W |S) of the
last step is certainly specified in the credal network
input, this product can now be linearized using those
ideas described on items from 1 to 3.

Example 10 Suppose we want to evaluate p(a|d) in
the network of Figure 1. First, we symbolically eval-
uate p(a, d) using p functions:

p(a, d) = p(a) · p(d|a)

p(d|a) = p(b|a) · p(d|a, b) + p(b|a) · p(d|a, b)

p(d|a, b) = p(c|a) · p(d|b, c) + p(c|a) · p(d|b, c)

p(d|a, b) = p(c|a) · p(d|b, c) + p(c|a) · p(d|b, c)

Note that we have both p functions defined in the net-
work and auxiliary p functions. Now we evaluate g(d),
using g functions that hide t until the last step:

g(d) = p(a) · g(d|a) + p(a) · g(d|a)

g(d|a) = p(b|a) · g(d|a, b) + p(b|a) · g(d|a, b)

g(d|a) = p(b|a) · g(d|a, b) + p(b|a) · g(d|a, b)

g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)

g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)

g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)

g(d|a, b) = p(c|a) · g(d|b, c) + p(c|a) · g(d|b, c)

g(d|b, c) = t · p(d|b, c)

g(d|b, c) = t · p(d|b, c)

g(d|b, c) = t · p(d|b, c)

g(d|b, c) = t · p(d|b, c)

To force t as the variable to maximize/minimize, we
impose that p(a, d) = g(d) (remember that g(d) means
t · p(d)). Now take the last constraint (g(d|b, c) =
t · p(d|b, c)) to illustrate the linearization of a product
(the same idea must be applied to all products in all
constraints). Suppose that p(d|b, c) ∈ [l, u], with l and
u known. The constraint becomes

g(d|b, c) = l · y
(1)

tp(d|b,c)
+ u · y

(2)

tp(d|b,c)

and we include

y
(1)

tp(d|b,c)
≥ 0,

y
(1)

tp(d|b,c)
≤ b

(1)

d|b,c
,

y
(1)

tp(d|b,c)
≥ t− 1 + b

(1)

d|b,c
,

y
(1)

tp(d|b,c)
≤ t,

y
(2)

tp(d|b,c)
≥ 0,

y
(2)

tp(d|b,c)
≤ b

(2)

d|b,c
,

y
(2)

tp(d|b,c)
≥ t− 1 + b

(2)

d|b,c
,

y
(2)

tp(d|b,c)
≤ t,

b
(1)

d|b,c
+ b

(2)

d|b,c
= 1,

where the new created boolean variables b
(i)

d|b,c
indicate

which vertex to use: l or u. The variable p(d|b, c) has
disappeared (its possible values l and u still remain),

and t and new variables b
(i)

d|b,c
appear linearly in the

constraints.

Because only one vertex of each local credal set will be
chosen, we can go further in the reformulation, obtain-
ing a smaller number of boolean optimization vari-
ables. According to the linearization just described,
we represent each local credal set as a combination of
its vertices and create one boolean optimization vari-
able for each vertex of each local credal set. Instead
of this transformation, we can use another idea, in-
terpreting the boolean optimization variables as the
binary representation of a vertex index. Suppose
α0, . . . , αs−1 are the vertices and that s is a power
of two (we do not loose generality because, if s is not
a power of two, we can always repeat several times
one of the already existent vertices to reach the next
power of two; these additional vertices do not change
the result as they are equal to some old vertex). Now
let 1 ≤ j ≤ log2 s be an integer indexing a bit of the
number i, and for each instantiation of variable X

with parents Y1, . . . , Yr we define

p(x|y1, . . . , yr) =

s−1
∑

i=0

αi(x) ×
∏

bit j of i

bj
y1,...,yr

×

∏

not bit j of i

(1− bj
y1,...,yr

), (5)

where (not) bit j of i means that the jth bit of i is
(not) one. That is, instead of a boolean variable that
indicates (with a zero or one) if a given vertex should
be used (and only one of them actually should), we
multiply a collection of boolean variables according



to the binary representation of i (the vertex index).
This product guarantees that the result is one if and
only if all b variables of its binary representation are
set to one.

Example 11 Let X be a random variable with three
categories (x0, x1, x2) and one parent, named Z. Let
Z have two categories (z, z). Suppose the credal set
for p(X |z) has four vertices (α0, . . . , α3) with three
dimensions each. Then we define the boolean opti-

mization variables b
(1)
z , b

(2)
z and the constraints:

p(x0|z) = α0(x0) · (1− b(1)
z ) · (1− b(2)

z ) +

α1(x0) · b
(1)
z · (1− b(2)

z ) +

α2(x0) · (1− b(1)
z ) · b(2)

z +

α3(x0) · b
(1)
z · b

(2)
z

p(x1|z) = α0(x1) · (1− b(1)
z ) · (1− b(2)

z ) +

α1(x1) · b
(1)
z · (1− b(2)

z ) +

α2(x1) · (1− b(1)
z ) · b(2)

z +

α3(x1) · b
(1)
z · b

(2)
z

p(x2|z) = α0(x2) · (1− b(1)
z ) · (1− b(2)

z ) +

α1(x2) · b
(1)
z · (1− b(2)

z ) +

α2(x2) · (1− b(1)
z ) · b(2)

z +

α3(x2) · b
(1)
z · b

(2)
z

After some simple algebraic manipulation of Equa-
tions (5), we still have to deal with products of
boolean variables. The procedure is straightforward:
If b1, b2, . . . , br are boolean variables, then the prod-
uct

∏

i bi can be replaced by the continuous variable
y, with additional constraints:

0 ≤ y ≤ 1

y ≤ bi, for all i (6)
∑

i

bi − r + 1 ≤ y

The number of boolean optimization variables in
the integer programming version is O(log2

∏

X∈V cX),
where cX is the number of categories of the random
variable associated to node X . Thus, the reformu-
lation to an integer programming problem is per-
formed by running the Bilinear-Transformation

algorithm together with the linearization step.
The linearization inserts a logarithmic number of
new constraints for each constraint generated by
Bilinear-Transformation (when using the ideas of
Expressions (5) and (6)). The number of new boolean
optimization variables is small and does not increase
the overall complexity of the reformulation. For poly-
trees, we still have a polynomial time procedure.

5 Computational results

To illustrate the behavior of our methods, we present
two sets of experiments. First we deal with test sets
containing multi-connected networks (randomly gen-
erated using the BNGenerator software [17] or using
the topology of the Alarm network [1]). Latter we
treat randomly generated polytrees. In each network
we perform a belief updating inference with a pre-
defined variable (we have chosen the most challenging
variables).

Table 1 shows results of Bilinear-Transformation
followed by the linearization step for four different
network. Rows present type of the network, to-
tal number of nodes, number of nodes involved in
the inference, number of vertices in the credal sets,
resulting continuous optimization variables, result-
ing boolean variables and resulting optimization con-
straints. All the tests were done by transforming in-
ferences in multi-connected credal networks into in-
teger programming problems. The chosen inferences
represent the most challenging inference for each net-
work. We processed networks with different variables
(binary and ternary), and different sizes of credal sets
per node of the network. Note that the size of result-
ing problems (specially the number of boolean vari-
ables to optimize) is large. Existing exact optimiza-
tion solvers usually can not handle such large number
of boolean variables, but approximation ideas are still
possible. As we can see, the number of integer vari-
ables is too high for processing such networks.

Restricting our attention to polytrees, Table 2
presents twenty polytree-shaped credal networks.
They have ternary variables and at most three ver-
tices by locally and separately specified credal set.
Rows present name of network, total number of nodes,
number of nodes involved in the inference, generated
continuous optimization variables, generated boolean
variables, generated constraints, time for solving the
integer programming problem and number of branch-
and-bound nodes evaluated by the solver.

Analyzing Table 1 (multi-connected networks) and
Table 2 (polytree networks), we see that the algorithm
could generate much smaller problems in the latter
case. That happens because of the relationship be-
tween tree-width and path-width of a polytrees: they
are almost the same.

Because the integer programming reformulation is
usually less dependant on some convergence criteria
and numerical problems than nonlinear programming
techniques (such as multilinear programming [8, 9]),
the integer programming reformulation achieves good
performance together with reliable results. All tests



Network Nodes Active Vertices by Continuous Boolean Constraints
topology Nodes credal set variables variables

Dense binary 10 10 2 1523 120 1523
Dense ternary 10 10 3 3954 202 3954
Alarm network 37 24 2 34537 161 34351
Alarm network 37 24 4 51293 322 65075

Table 1: Size of integer programming problems generated from some multi-connected credal networks.

were performed on a Intel Xeon 2.8Ghz (4MB of
L2 cache) with 4GB of RAM memory. The integer
programming problems were solved using the AMPL
modeling language [15, 16] and the CPLEX solver.

6 Conclusion

We have discussed in this paper a new idea for in-
ferences in credal networks. The main contribution
is the use of bilinear and integer programming tech-
niques. Although many authors have suggested and
worked with multilinear programming as a possible
approach to inference, as far as we know no investi-
gation or implementation of bilinear and/or integer
programming reformulations have been conducted.

Results produced in our experiments seem promis-
ing and surpass existing exact algorithms for infer-
ence in polytree-shaped credal networks with respect
to the number of network variables that could be dealt
[5, 9]. Although there is a polynomial time algorithm
for inferences in binary polytrees [13], the problem is
NP-Complete in general polytrees [10]. So our refor-
mulation is a new idea to address this hard problem,
with good empirical performance. Furthermore, inte-
ger programming produces outer bounds based on lin-
ear programming relaxations, which can be used for
approximate procedures. Known approximate tech-
niques, such as cutting planes, can be applied.

Other multilinear programming techniques could cer-
tainly be investigated in future work, perhaps com-
bining some ideas from multilinear programming with
integer programming. As it happens with multilinear
programming, integer programming will fail for large
networks; in this case approximate inference is the
natural solution. The reformulations presented in this
paper also contribute in that direction, as approxima-
tions for bilinear and integer programming problems
are well studied in the literature.
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Abstract

There exist many practical representations of prob-
ability families that make them easier to handle.
Among them are random sets, possibility distribu-
tions, probability intervals, Ferson’s p-boxes and Neu-
maier’s clouds. Both for theoretical and practical con-
siderations, it is important to know whether one rep-
resentation has the same expressive power than other
ones, or can be approximated by other ones. In this
paper, we mainly study the relationships between the
two latter representations and the three other ones.

Keywords. Random Sets, possibility distributions,
probability intervals, p-boxes, clouds.

1 Introduction

There are many representations of uncertainty.
The theory of imprecise probabilities (including
lower/upper previsions) [27] is the most general
framework. It formally encompasses all the repre-
sentations proposed by other uncertainty theories, re-
gardless of their possible different interpretations.

The more general the theory, the more expressive it
can be, and, usually, the more expensive it is from
a computational standpoint. Simpler (but less flexi-
ble) representations can be useful if judged sufficiently
expressive. They are mathematically and computa-
tionally easier to handle, and using them can greatly
increase efficiency in applications.

Among these simpler representations are random
sets [7], possibility distributions [28], probability in-
tervals [2], p-boxes [15] and, more recently, clouds [21,
22]. With such a diversity of simplified representa-
tions, it is then natural to compare them from the
standpoint of their expressive power. Building formal
links between such representations also facilitates a
unified handling of uncertainty, especially in propa-
gation techniques exploiting uncertain data modeled
by means of such representations. This is the pur-

pose of the present study. It extends some results by
Baudrit and Dubois [1] concerning the relationships
between p-boxes and possibility measures.

The paper is structured as follows: the first section
briefly recalls the formalism of random sets, possibil-
ity distributions and probability intervals, as well as
some existing results. Section 3 then focuses on p-
boxes, first generalizing the notion of p-boxes to arbi-
trary finite spaces before studying the relationships of
these generalized p-boxes with the three former rep-
resentations. Finally, section 4 studies the relation-
ships between clouds and the preceding representa-
tions. For the reader convenience, longer proofs are
put in the appendix.

2 Preliminaries

In this paper, we consider that uncertainty is modeled
by a family P of probability assignments, defined over
a finite referential X = {x1, . . . , xn}. We also restrict
ourselves to families that can be represented by their
lower and upper probability bounds, defined as fol-
lows:

P (A) = inf
P∈P

P (A) and P (A) = sup
P∈P

P (A)

Let PP,P = {P |∀A ⊆ X, P (A) ≤ P (A) ≤ P (A)}. In
general, we have P ⊂ PP,P , since PP,P can be seen
as a projection of P on events. Although they are
already restrictions from more general cases, dealing
with families PP,P often remains difficult.

2.1 Random Sets

Formally, a random set [20] is a mapping Γ from a
probability space to the power set ℘(X) of another
space X, also called a multi-valued mapping. This
mapping induces lower and upper probabilities on
X [7]. In the continuous case, the probability space
is often [0, 1] equipped with Lebesgue measure, and Γ
is a point-to-interval mapping.



In the finite case, these lower and upper probabili-
ties are respectively called belief and plausibility mea-
sures, and it can be shown that the belief measure is a
∞-monotone capacity [4]. An alternative (and useful)
representation of the random set consists of a normal-
ized assignment of positive masses m over the power
set ℘(X) s.t.

∑
E⊆X m(E) = 1 and m(∅) = 0 [25].

A set E that receives strictly positive mass is said to
be focal. Belief and plausibility functions are then
defined as follows:

Bel(A)=
P

E,E⊆A m(E)

Pl(A)=1−Bel(Ac)=
P

E,E∩A 6=∅
m(E).

The set

PBel = {P |∀A ⊆ X,Bel(A) ≤ P (A) ≤ Pl(A)}

is the probability family induced by the belief mea-
sure.

Although 2|X| values are still needed to fully specify a
general random set, the fact that they can be seen as
probability assignments over subsets of X allows for
simulation by means of some sampling process.

2.2 Possibility distributions

A possibility distribution π [12] is a mapping from
X to the unit interval such that π(x) = 1 for some
x ∈ X. Formally, a possibility distribution is the
membership function of a fuzzy set. Several set-
functions can be defined from a distribution π [11]:

• Π(A) = supx∈A π(x) (possibility measures);

• N(A) = 1 − Π(Ac) (necessity measures);

• ∆(A) = infx∈A π(x) (sufficiency measures).

Possibility degrees express the extent to which an
event is plausible, i.e., consistent with a possible state
of the world, necessity degrees express the certainty of
events and sufficiency (also called guaranteed possibil-
ity) measures express the extent to which all states of
the world where A occurs are plausible. They apply
to so-called guaranteed possibility distributions [11]
generally denoted by δ.

A possibility degree can be viewed as an upper bound
of a probability degree [13]. Let

Pπ = {P,∀A ⊆ X,N(A) ≤ P (A) ≤ Π(A)}

be the set of probability measures encoded by a pos-
sibility distribution π. A possibility distribution is
also equivalent to a random set whose realizations are
nested.

From a practical standpoint, possibility distributions
are the simplest representation of imprecise probabil-
ities (as for precise probabilities, only |X| values are
needed to specify them). Another important point is
their interpretation in term of collection of confidence
intervals [10], which facilitates their elicitation and
makes them natural candidate for vague probability
assessments (see [5]).

2.3 Probability intervals

Probability intervals are defined as lower and up-
per probability bounds restricted to singletons xi.
They can be seen as a collection of intervals
L = {[li, ui], i = 1, . . . , n} defining a probability fam-
ily:

PL = {P |li ≤ p(xi) ≤ ui ∀xi ∈ X}.

Such families have been extensively studied in [2] by
De Campos et al.

In this paper, we consider non-empty families (i.e.
PL 6= ∅) that are reachable (i.e. each lower or upper
bound on singletons can be reached by at least one
probability assignment of the family PL). Conditions
of non-emptiness and reachability respectively corre-
spond to avoiding sure loss and achieving coherence
in Walley’s behavioural theory.

Given intervals L, lower and upper probabilities
P (A), P (A) are calculated by the following expres-
sions

P (A) = max(
∑

xi∈A li, 1 −
∑

xi /∈A ui)

P (A) = min(
∑

xi∈A ui, 1 −
∑

xi /∈A li) (1)

De Campos et al. have shown that these bounds are
Choquet capacities of order 2 ( P is a convex capac-
ity).

The problem of approximating PL by a random set
has been treated in [17] and [8]. While in [17], Lem-
mer and Kyburg find a random set m1 that is an
inner approximation of PL s.t. Bel1(xi) = li and
Pl1(xi) = ui, Denoeux [8] extensively studies meth-
ods to build a random set that is an outer approxi-
mation of PL. The problem of finding a possibility
distribution approximating PL is treated by Masson
and Denoeux in [19].

Two common cases where probability intervals can be
encountered as models of uncertainty are confidence
intervals on parameters of multinomial distributions
built from sample data, and expert opinions providing
such intervals.



3 P-boxes

We first recall some usual notions on the real line that
will be generalized in the sequel.

Let Pr be a probability function on the real line with
density p. The cumulative distribution of Pr is de-
noted F p and is defined by F p(x) = Pr((−∞, x]).

Let F1(x) and F2(x) be two cumulative distributions.
Then, F1(x) is said to stochastically dominate F2(x)
iff F1(x) ≤ F2(x) ∀x.

A P-box [15] is defined by a pair of cumulative distri-
butions F ≤ F (F stochastically dominates F ) on the
real line. It brackets the cumulative distribution of an
imprecisely known probability function with density
p s.t. F (x) ≤ F p(x) ≤ F (x) ∀x ∈ <.

3.1 Generalized Cumulative Distributions

Interestingly, the notion of cumulative distribution is
based on the existence of the natural ordering of num-
bers. Consider a probability assignment (probability
vector) λ = (λ1 . . . λn) defined over the finite space
X; λi denotes the probability Pr(xi) of the i-th ele-
ment xi, and

∑n
j=1 λj = 1. In this case, no natural

notion of cumulative distribution exists. In order to
make sense of this notion over X, one must equip it
with a complete preordering ≤R, which is a reflexive,
complete and transitive relation. An R-downset is of
the form {xi : xi ≤R x}, and denoted (x]R.

Definition 1. [9] The generalized R-cumulative dis-
tribution of a probability assignment λ on a finite,
completely preordered set (X,≤R) is the function F λ

R :
X → [0, 1] defined by F λ

R(x) = Pr((x]R).

The usual notion of stochastic dominance can also be
defined for generalized cumulative distributions. Con-
sider another probability assignment κ = (κ1 . . . κn)
on X. The corresponding R-dominance relation of
λ over κ can be defined by the pointwise inequality
Fλ

R < Fκ
R. Clearly, a generalized cumulative distribu-

tion can always be considered as a simple one, up to
a reordering of elements.

Any generalized cumulative distribution F λ
R with re-

spect to a complete preorder ≤R on X, of a proba-
bility measure Pr, with assignment λ on X, can also
be used as a possibility distribution πR whose asso-
ciated measure dominates Pr, i.e. maxx∈A Fλ

R(x) ≥
Pr(A),∀A ⊆ X. This is because a (generalized) cu-
mulative distribution is constructed by computing the
probabilities of events Pr(A) in a nested sequence of
downsets (xi]R. [10].

3.2 Generalized p-box

Using the generalizations of the notions of cumulative
distributions and of stochastic dominance described in
section 3.1, we define a generalized p-box as follows

Definition 2. A R-P-box on a finite, completely pre-
ordered set (X,≤R) is a pair of R-cumulative distri-
butions F λ

R(x) and F κ
R(x), s.t. F λ

R(x) ≤ F κ
R(x) (i.e. κ

is a probability assignment R-dominated by λ)

The probability family induced by a R-P-box is

Pp−box = {P |∀x, F λ
R(x) ≤ FR(x) ≤ F κ

R(x).}

If we choose a relation R with xi ≤R xj iff i < j,
and, ∀xi ∈ X, consider the sets Ai = (xi]R, it
comes down to a family of nested confidence sets
∅ ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ X. The family Pp−box

can then be represented by the following restrictions
on probability measures [9]:

αi ≤ P (Ai) ≤ βi i = 1, . . . , n (2)

with α1 ≤ α2 ≤ . . . ≤ αn ≤ 1 and β1 ≤ β2 ≤ . . . ≤
βn ≤ 1. Choosing X = < and Ai = (−∞, xi], it is
easy to see that we find back the usual definition of
P-boxes.

A generalized cumulative distribution being fully
specified by |X| values, it follows that 2|X| values
must be given to completely determine a generalized
p-box. Moreover, we can interpret p-boxes as a col-
lection of nested confidence intervals with upper and
lower probability bounds (which could come, for ex-
ample, from expert elicitation). In order to make no-
tation simpler, the upper and lower cumulative distri-
butions will respectively be noted F ∗, F∗ in the sequel
and, unless stated otherwise, we will consider (with-
out loss of generality) the order R s.t. xi ≤R xj iff
i < j with the associated nested sets Ai.

3.3 Generalized P-boxes in the setting of

possibility theory

Given that sets Ai can be interpreted as nested con-
fidence intervals with upper and lower bounds, it is
natural to search a connection with possibility the-
ory, since possibility distributions can be interpreted
as a collection of nested confidence intervals (a nat-
ural way of expressing expert knowledge). We thus
have the following proposition

Proposition 1. A family Pp−box described by a gen-
eralized P-box can be encoded by a pair of possibil-
ity distributions π1, π2 s.t. Pp−box = Pπ1

∩ Pπ2
with

π1(x) = F ∗(x) and π2(x) = 1 − F∗(x)



Proof of proposition 1. Consider the definition of
a generalized p-box and the fact that a generalized
cumulative distribution can be used as a possibil-
ity distribution πR dominating the probability dis-
tribution Pr (see section 3.1). Then, the set of con-
straints (P (Ai) ≥ αi)i=1,n from equation (2) gener-
ates a possibility distribution π1 and the set of con-
straints (P (Ac

i ) ≥ 1 − βi)i=1,n generates a possibility
distribution π2. Clearly Pp−box = Pπ1

∩ Pπ2
.

3.4 Generalized P-boxes are special case of

random sets

The following proposition was proved in [9]

Proposition 2. A family Pp−box described by a gen-
eralized P-box can be encoded by a random set s.t.
Pp−box = PBel.

Algorithm 1: R-P-box → random set

Input: Nested sets ∅, A1, . . . , An, X and bounds
αi, βi

Output: Equivalent random set
for k = 1, . . . , n + 1 do

Build partition Fi = Ai \ Ai−1

Rank αi, βi increasingly
for k = 0, . . . , 2n + 1 do

Rename αi, βi by γl s.t.
α0 = γ0 = 0 ≤ γ1 ≤ . . . ≤ γl ≤ . . . ≤ γ2n ≤ 1 =
γ2n+1 = βn+1

Define focal set E0 = ∅
for k = 1, . . . , 2n + 1 do

if γk−1 = αi then
Ek = Ek−1 ∪ Fi+1

if γk−1 = βi then
Ek = Ek−1 \ Fi

Set m(Ek) = γk − γk−1

Algorithm 1 provides an easy way to build the ran-
dom set encoding a generalized p-box. It is similar
to algorithms given in [16, 24], and extends them to
more general spaces. The main idea of the algorithm
is to use the fact that a generalized p-box can be seen
as a random set whose focal elements are unions of
adjacent sets in a partition. Thanks to the nested na-
ture of sets Ai, we can build a partition of X made of
Fi = Ai \Ai−1, and then add or substract consecutive
elements of this partition to build the focal sets (of the
form

⋃
j≤i≤k Fi) of the random set equivalent to the

generalized p-box. The following example illustrates
both the notion of generalized p-box and algorithm 1.

Example 1. Consider a space X made of six ele-
ments {x1, . . . , x6} (These elements could be, for in-
stance, successive components on a production line).
For various reasons, one can only observe whether

the event A1 = {x1, x2}, A2 = {x1, x2, x3}, A3 =
{x1, x2, x3, x4, x5} or the whole X happens. Suppose
an expert must evaluate the likelihood of these events,
and only gives us probability intervals :

P (A1)∈ [0, 0.3] P (A2)∈ [0.2, 0.7] P (A3)∈ [0.5, 0.9]

So we have a generalized p-box, the order of the el-
ements being determined by the possible observations
(notice that we are indifferent to the order of x1, x2

and of x4, x5). Applying algorithm 1, we have :

F1 = {x1, x2} F2 = {x3} F3 = {x4, x5} F4 = {x6}

and

0(α0) ≤ 0(α1) ≤ 0.2(α2) ≤ 0.3(β1) ≤ 0.5(α3)

≤ 0.7(β2) ≤ 0.9(β3) ≤ 1

which gives us the following corresponding random set

m(E1)=m({x1,x2})=0 m(E2)=m({x1,x2,x3})=0.2

m(E3)=m({x1,x2,x3,x4,x5})=0.1 m(E4)=m({x3,x4,x5})=0.2

m(E5)=m({x3,x4,x5,x6})=0.2 m(E6)=m({x4,x5,x6})=0.2

m(E7)=m({x6})=0.1

which makes the imprecision of the available informa-
tion more visible.

3.5 Generalized P-boxes and probability

intervals

Provided an order R has been defined on elements xi,
a method to build a p-box from probability intervals
L can be easily derived from equations (1). Lower
an upper generalized cumulative distributions can be
computed as follows

F∗(xi)=P (Ai) = max(
∑

xi∈Ai

lj , 1 −
∑

xi /∈Ai

uj)

F ∗(xi)=P (Ai) = min(
∑

xi∈Ai

ui, 1 −
∑

xi /∈Ai

li) (3)

Transforming a p-box into probability intervals is also
an easy task. First, let us assume that each element
Fi of the partition used in algorithm 1 is reduced to a
singleton xi. Corresponding probability intervals are
then given by the two following formulas:

P (Fi) = P (xi) = li = max(0, αi − βi−1)

P (Fi) = P (xi) = ui = βi − αi−1

if a set Fi is made of n elements xi1, . . . , xin, it is easy
to see that l(xij) = 0 and that u(xij) = P (Fi), since
xij ∈ Fi.

Let us note that transforming probability intervals
into p-boxes (and conversely) generally loses informa-
tion, except in the degenerated cases of precise proba-
bility assignment and of total ignorance. If no obvious



order relation R between elements xi is to be privi-
leged, and if one wants to transform probability in-
tervals into generalized p-boxes, we think that a good
choice for the order R is the one s.t.

n∑

i=1

F ∗(xi) − F∗(xi)

is minimized, so that a minimal amount of informa-
tion is lost in the process.

Another interesting fact to pinpoint is that both cu-
mulative distributions given by equations (3) can be
interpreted as possibility distributions dominating the
family PL (for F∗, the associated possibility distribu-
tion is 1− F∗). Thus, computing either F ∗ or F∗ is a
method to find a possibility distribution approximat-
ing PL, which is different from the one proposed by
Masson and Denoeux [19].

4 Clouds

We begin this section by recalling basic definitions
and results due to Neumaier [21], cast in the ter-
minology of fuzzy sets and possibility theory. A
cloud is an Interval-Valued Fuzzy Set F such that
(0, 1) ⊆ ∪x∈XF (x) ⊆ [0, 1], where F (x) is an interval
[δ(x), π(x)]. In the following, it is either defined on
a finite space X, or it is a continuous interval-valued
fuzzy interval (IVFI) on the real line ( a “cloudy” inter-
val). In the latter case each fuzzy set has cuts that are
closed intervals. When the upper membership func-
tion coincides with the lower one, (δ = π) the cloud is
called thin, and when the lower membership function
is identically 0, the cloud is called fuzzy by Neumaier.
Let us note that these names are somewhat counter-
intuitive, since a thin cloud correspond to a fuzzy set
with precise membership function, while a fuzzy cloud
is equivalent to a probability family modeled by a pos-
sibility distribution.

A random variable x with values in X is said to belong
to a cloud F if and only if ∀α ∈ [0, 1]:

P (δ(x) ≥ α) ≤ 1 − α ≤ P (π(x) > α) (4)

under all suitable measurability assumptions.

If X is a finite space of cardinality n, a cloud can be
defined by the following restrictions :

P (Bi) ≤ 1 − αi ≤ P (Ai) and Bi ⊆ Ai, (5)

where 1 = α0 > α1 > α2 > . . . > αn > αn+1 = 0
and ∅ = A0 ⊂ A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ An+1 =
X; ∅ = B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ Bn+1 = X.
The confidence sets Ai and Bi are respectively the
strong and regular α-cut of fuzzy sets π and δ (Ai =
{xi, π(xi) > αi+1} and Bi = {xi, δ(xi) ≥ αi+1}).

As for probability intervals and p-boxes, eliciting a
cloud requires 2|X| values.

4.1 Clouds in the setting of possibility

theory

Let us first recall the following result regarding possi-
bility measures (see [10]):

Proposition 3. P ∈ Pπ if and only if 1 − α ≤
P (π(x) > α),∀α ∈ (0, 1]

The following proposition directly follows

Proposition 4. A probability family Pδ,π described
by the cloud (δ, π) is equivalent to the family Pπ ∩
P1−δ described by the two possibility distributions π
and 1 − δ.

Proof of proposition 4. Consider a cloud (δ, π),
and define π = 1−δ. Note that P (δ(x) ≥ α) ≤ 1−α is
equivalent to P (π > β) ≥ 1−β, letting β = 1−α. So
it is clear from equation (4) that probability measure
P is in the cloud (δ, π) if and only if it is in Pπ ∩ Pπ.
So a cloud is a family of probabilities dominated by
two possibility distributions (see [14]) .

This property is common to generalized p-boxes
and clouds: they define probability families upper
bounded by two possibility measures. It is then nat-
ural to investigate their relationships.

4.2 Finding clouds that are generalized

p-boxes

Proposition 5. A cloud is a generalized p-box iff
{Ai, Bi, i = 1, . . . , n} form a nested sequence of sets
(i.e. there is a linear preordering with respect to in-
clusion)

Proof of proposition 5. Assume the sets Ai and
Bj form a globally nested sequence whose current el-
ement is Ck. Then the set of constraints defining a
cloud can be rewritten in the form γk ≤ P (Ck) ≤ βk,
where γk = 1−αi and βk = min{1−αj : Ai ⊆ Bj} if
Ck = Ai; βk = 1−αi and γk = max{1−αj : Aj ⊆ Bi}
if Ck = Bi.

Since 1 = α0 > α1 > . . . > αn < αn+1 = 0, these
constraints are equivalent to those of a generalized p-
box. But if ∃ Bj , Ai with j > i s.t. Bj 6⊂ Ai and
Ai 6⊂ Bj , then the cloud is not equivalent to a p-box,
since confidence sets would no more form a complete
preordering with respect to inclusion.

In term of pairs of possibility distributions, it is now
easy to see that a cloud (δ, π) is a generalized p-box
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Figure 2: Non-Comonotonic cloud

if and only if π and δ are comonotonic. We will thus
call such clouds comonotonic clouds. If a cloud is
comonotonic, we can thus directly adapt the various
results obtained for generalized p-boxes. In partic-
ular, because comonotonic clouds are generalized p-
boxes, algorithm 1 can be used to get the correspond-
ing random set. Notions of comonotonic and non-
comonotonic clouds are respectively illustrated by fig-
ures 1 and 2

4.3 Characterizing and approximating

non-comonotonic clouds

The following proposition characterizes probability
families represented by most non-comonotonic clouds,
showing that the distinction between comonotonic
and non-comonotonic clouds makes sense (since the
latter cannot be represented by random sets).

Proposition 6. If (δ, π) is a non-comonotonic cloud
for which there are two overlapping sets Ai, Bj that
are not nested (i.e. Ai ∩ Bj 6= {Ai, Bj , ∅}), then the
lower probability of the induced family Pδ,π is not even
2-monotone.

The proof can be found in the appendix.

Remark 1. The case for which we have Bj ∩ Ai ∈
{Ai, Bj} for all pairs Ai, Bj is the case of comono-
tonic clouds. Now, if a cloud is such that for all pairs
Ai, Bj : Bj ∩Ai ∈ {Ai, Bj , ∅} with at least one empty
intersection, then it is still a random set, but no longer
a generalized p-box. Let us note that this special case
can only occur for discrete clouds.

Since it can be computationally difficult to work with

capacities that are not 2-monotone, one could wish
to work either with outer or inner approximations.
We propose two such approximations, which are easy
to compute and respectively correspond to necessity
(possibility) measures and belief (plausibility) mea-
sures.

Proposition 7. If Pδ,π is the probability family de-
scribed by the cloud (δ, π) on a referential X, then,
the following bounds provide an outer approximation
of the range of P (A) :

max(Nπ(A), N1−δ(A)) ≤ P (A) ≤

min(Ππ(A),Π1−δ(A)) ∀A ⊂ X (6)

Proof of proposition 7. Since we have that Pδ,π =
P1−δ ∩Pπ, and given the bounds defined by each pos-
sibility distributions, it is clear that equation 6 give
bounds of P (A).

We can check that the bounds given by equation (6)
are the one considered by Neumaier in [21]. Since
these bounds are, in general, not the infinimum and
supremum of P (A) on Pδ,π, Neumaier’s claim that
clouds are only vaguely related to Walley’s previsions
or random sets is not surprising. Nevertheless, if we
consider the relationship between clouds and possi-
bility distributions, taking this outer approximation,
that is very easy to compute, seems very natural.

Nevertheless, these bounds are not, in general, the
infinimum and the supremum of P (A) over Pδ,π. To
see this, consider a discrete cloud made of four non-
empty elements A1, A2, B1, B2. It can be checked that

π(x) = 1 if x ∈ A1;

= α1 if x ∈ A2 \ A1;

= α2 if x 6∈ A2.

δ(x) = α1 if x ∈ B1;

= α2 if x ∈ B2 \ B1;

= 0 if x 6∈ B2.

Since P (A2) ≥ 1 − α2 and P (B1) ≤ 1 − α1,
from (5), we can easily check that P (A2 \ B1) =
P (A2 ∩ Bc

1) = α1 − α2. Now, Nπ(A2 ∩ Bc
1) =

min(Nπ(A2), Nπ(Bc
1)) = 0 since Ππ(B1) = 1 and

B1 ⊆ A1. Considering distribution δ, we can have
N1−δ(A2∩Bc

1) = min(N1−δ(A2), N1−δ(B
c
1)) = 0 since

N1−δ(A2) = ∆δ(A
c
2) = 0 since B2 ⊆ A2. Equation (6)

can thus result in a trivial lower bound, different from
P (A2 \ B1).

The next proposition provides an inner approximation
of Pδ,π

Proposition 8. Given the sets {Bi, Ai, i = 1, . . . , n}
inducing the distributions (δ, π) of a cloud and the



corresponding αi, the belief and plausibility measures
of the random set s.t. m(Ai \ Bi−1) = αi−1 − αi are
inner approximations of Pδ,π.

It is easy to see that this random set can always be
defined. We can see that it is always an inner approx-
imation by using the contingency matrix advocated
in the proof of proposition 6 (see appendix). In this
matrix, the random set defined above comes down to
concentrating weights on diagonal elements. This in-
ner approximation is exact in case of comonotonicity
or when we have Ai ∩Bj ∈ {Ai, Bj , ∅} for any pair of
sets Ai, Bj defining the clouds.

4.4 A note on thin and continuous clouds

Thin clouds (δ = π) constitute an interesting special
case of clouds. In this latter case, conditions defining
clouds are reduced to

P (π(x) ≥ α) = P (π(x) > α) = 1 − α,∀α ∈ (0, 1).

On finite sets these constraints are generally contra-
dictory, because P (π(x) ≥ α) > P (π(x) > α) for
some α, hence the following theorem:

Proposition 9. If X is finite, then P(π) ∩ P(1 − π)
is empty.

which is proved in [14], where it is also shown that
this emptiness is due to finiteness. A simple shift of
indices solves the difficulty. Let π(ui) = αi such that
α1 = 1 > . . . > αn > αn+1 = 0. Consider δ(ui) =
αi+1 < π1(ui). Then P(π) ∩ P(1 − δ) contains the
unique probability measure P such that the probabil-
ity weight attached to ui is pi = αi−αi+1,∀i = 1 . . . n.
To see it, refer to equation (5), and note that in this
case Ai = Bi.

In the continuous case, a thin cloud is non-trivial.
The inclusions [δ(x) ≥ α] ⊆ [π(x) > α] (correspond-
ing to Bi ⊆ Ai) again do not work but we may have
P (π(x) ≥ α) = P (π(x) > α) = 1−α,∀α ∈ (0, 1). For
instance, a cumulative distribution function, viewed
as a tight p-box, defines a thin cloud containing the
only random variable having this cumulative distribu-
tion (the “right” side of the cloud is rejected to ∞). In
fact, it was suggested in [14] that a thin cloud contains
in general an infinity of probability distributions.

Insofar as Proposition 5 can be extended to the re-
als (this could be shown, for instance, by proving the
convergence of some finite outer and inner approxima-
tions of the continuous model, or by using the notion
of directed set [5] to prove the complete monotonic-
ity of the model), then a thin cloud can be viewed as
a generalized p-box and is thus a (continuous ) be-
lief function with uniform mass density, whose focal

sets are doubletons of the form {x(α), y(α)} where
{x : π(x) ≥ α} = [x(α), y(α)]. It is defined by the
Lebesgue measure on the unit interval and the mul-
timapping α −→ {x(α), y(α)}. This result gives us
a nice way to characterize the infinite set of random
variables contained in a thin cloud. In particular, con-
centrating the mass density on elements x(α) or on
elements y(α) would respectively give the upper and
lower cumulative distributions that would have been
associated to the possibility distribution π alone (let
us note that every convex mixture of those two cumu-
lative distributions would also be in the thin cloud).
It is also clear that Bel(π(x) ≥ α) = 1−α. More gen-
erally, if Proposition 5 holds in the continuous case,
a comonotonic cloud can be characterized by a con-
tinuous belief function [26] with uniform mass den-
sity, whose focal sets would be unions of disjoint in-
tervals of the form [x(α), u(α)] ∪ [v(α), y(α)] where
{x : π(x) ≥ α} = [x(α), y(α)] and {x : δ(x) ≥ α} =
[u(α), v(α)].

4.5 Clouds and probability intervals

Since probability intervals are 2-monotone capacities,
while clouds are either ∞-monotone capacities or not
even 2-monotone capacities, there is no direct corre-
spondence between probability intervals and clouds.
Nevertheless, given previous results, we can easily
build a cloud approximating a family PL defined by
a set L of probability intervals (but perhaps not the
most "specific" one): indeed, any generalized p-box
built from the probability intervals is a comonotonic
cloud encompassing the family PL.

Finding the "best" (i.e. keeping as much information
as possible, given some information measure) method
to transform probability intervals into cloud is an
open problem. Any such transformation in the finite
case should follow some basic requirements such as:

1. Since clouds can model precise probability assign-
ments, the method should insure that a precise
probability assignment will be transformed into
the corresponding (almost thin) cloud.

2. Given a set L of probability intervals, the trans-
formed cloud [δ, π] should contain PL (i.e. Pδ,π ⊂
PL) while being as close to it as possible.

Let us note that using the transformation proposed
in section 3.5 for generalized p-boxes satisfies these
two requirements. Another solution is to extend Mas-
son and Denoeux’s [19] method that builds a possibil-
ity distribution covering a set of probability intervals,
completing it by a lower distribution δ (due to lack of
space, we do not explore this alternative here).



Imprecise probabilities

Lower/upper prob.

2-monotone capacities

Random sets (∞-monot)

Comonotonic clouds

Generalized p-boxes

P-boxes

Probabilities

Probability Intervals

Non-comonot. clouds

Possibilities

Figure 3: Representations relationships. A −→ B : B
is a special case of A

5 Conclusions

Figure 3 summarizes our results cast in a more gen-
eral framework of imprecise probability representa-
tions (our main contributions in boldface).

In this paper, we have considered many practical rep-
resentations of imprecise probabilities, which are eas-
ier to handle than general probability families. They
often require less data to be fully specified and they
allow many mathematical simplifications, which may
prove to increase computational efficiency (except,
perhaps, for non-comonotonic clouds).

Some clarifications are provided concerning the sit-
uation of the cloud formalism. The fact that non-
comonotonic clouds are not even 2-monotone capac-
ities tends to indicate that, from a computational
standpoint, they may be more difficult to exploit than
the other formalisms. Nevertheless, as far as we know,
they are the only simple model generating capacities
that are not 2-monotone.

A work that remains to be done to a large ex-
tent is to evaluate the validity and the usefulness of
these representations, particularly from a psycholog-
ical standpoint (even if some of it has already been
done [23, 18]). Another issue is to extend presented
results to continuous spaces or to general lower/upper
previsions (by using results from, for example [26, 6]).
Finally, a natural continuation to this work is to ex-
plore various aspects of each formalisms in a manner
similar to the one of De campos et al. [2]. What be-

comes of random sets, possibility distributions, gen-
eralized p-boxes and clouds after fusion, marginaliza-
tion, conditioning or propagation? Do they preserve
the representation? and under which assumptions ?
To what extent are these representations informative
? Can they easily be elicited or integrated ? If many
results already exist for random sets and possibility
distributions, there are fewer results for generalized
p-boxes or clouds, due to their novelty.
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Appendix

Proof of proposition 6 (sketch). Our proof uses
the following result by Chateauneuf [3]: Let m1,m2

be two random sets with focal sets F1,F2, each
of them respectively defining a probability family
PBel1 ,PBel2 . Here, we assume that those families are
"compatible" (i.e. PBel1 ∩ PBel2 6= ∅).

Then, the result from Chateauneuf states the follow-
ing : the lower probability P (E) of the event E on
PBel1 ∩ PBel2 is equal to the least belief measure
Bel(E) that can be computed on the set of joint nor-
malized random sets with marginals m1,m2. More
formally, let us consider a set Q s.t. Q ∈ Q iff

• Q(A,B) > 0 ⇒ A × B ∈ F1 × F2 (masses over
the cartesian product of focal sets)

• A ∩ B = ∅ ⇒ Q(A,B) = 0 (normalization con-
straints)

• m1(A) =
∑

B∈F2
Q(A,B) and m2(B) =∑

A∈F1
Q(A,B) (marginal constraints)

and the lower probability P (E) is given by the follow-
ing equation

P (E) = min
Q∈Q

∑

(A∩B)⊆E

Q(A,B) (7)

where Q is the set of joint normalized random sets.
This result can be applied to clouds, since the family
described by a cloud is the intersection of two families
modeled by possibility distributions.



To illustrate the general proof, we will restrict our-
selves to a 4-set cloud (the most simple non-trivial
cloud that can be found). We thus consider four sets
A1, A2, B1, B2 s.t. A1 ⊂ A2,B1 ⊂ B2,Bi ⊂ Ai to-
gether with two values α1, α2 s.t. 1(= α0) > α1 >
α2 > 0(= α3) and the cloud is defined by enforcing
the inequalities P (Bi) ≤ 1−αi ≤ P (Ai) i = 1, 2. The
random sets equivalent to the possibility distributions
π, 1 − δ are summarized in the following table:

π 1 − δ
m(A1) = 1 − α1 m(Bc

0 = X) = 1 − α1

m(A2) = α1 − α2 m(Bc
1) = α1 − α2

m(A3 = X) = α2 m(Bc
2) = α2

Furthermore, we add the constraint A1 ∩ B2 6=
{A1, B2, ∅}, related to the non-monotonicity of the
cloud. We then have the following contingency ma-
trix, where the mass mij is assigned to the intersec-
tion of the corresponding sets at the beginning of line
i and the top of column j:

Bc
0 = X Bc

1 Bc
2

∑

A1 m11 m12 m13 1 − α1

A2 m21 m22 m23 α1 − α2

A3 = X m31 m32 m33 α2∑
1 − α1 α1 − α2 α2 1

We now consider the four events A1, B
c
2, A1∩Bc

2, A1∪
Bc

2. Given the above contingency matrix, we imme-
diately have P (A1) = 1 − α1 and P (Bc

2) = α2, since
A1 only includes the (joint) focal sets in the first line
and Bc

2 in the third column.

It is also easy to see that P (A1 ∩ Bc
2) = 0, by consid-

ering the mass assignment mii = αi−1 − αi (we then
have m13 = 0, which is the mass of the only joint focal
set included in A1 ∩ Bc

2).

Now, concerning P (A1 ∪ Bc
2), let us consider the fol-

lowing mass assignment:

A2 ∩ Bc
1 : m22 = α1 − α2

A3 ∩ Bc
0 : m31 = min(1 − α1, α2)

A1 ∩ Bc
0 : m11 = 1 − α1 − m31

A3 ∩ Bc
2 : m33 = α2 − m31

A1 ∩ Bc
2 : m13 = m31

it can be checked that this mass assignment satisfies
the constraints of the contingency matrix, and that
the only joint focal sets included in A1 ∪Bc

2 are those
with masses m11,m33,m13. Summing these masses,
we have P (A1 ∪ Bc

2) = max(α2, 1 − α1). Hence:

P (A1 ∪ Bc
2) + P (A1 ∩ Bc

2) < P (Bc
2) + P (A1)

max(α2, 1 − α1) < 1 − α1 + α2

an inequality that clearly violates the 2-monotonicity
property. We have thus shown that in the 4-set case,
2-monotonocity never holds for families modeled by
non-comonotonic clouds.

Now, in the general case, we have the following con-
tingency matrix

Bc
0 · Bc

j · Bc
n

∑

A1 m11 1 − α1

· ·
Ai mi(j+1) αi−1 − αi

· ·
An+1 m(n+1)(n+1) αn∑

1− αj− αn

α1 αj+1

Under the hypothesis of proposition 6, there are two
sets Ai, Bj s.t. Ai ∩ Bj 6= {Ai, Bj , ∅}. Due to the
inclusion relationships between the sets, and similarly
to what was done in the 4-set case, we have

P (Ai) = 1 − αi

P (Bc
j ) = αj

P (Ai ∩ Bc
j ) = 0

Next, let us concentrate on event Ai ∪ Bc
j

(which is different from X by hypothesis). Let
us suppose that mkk = αk−1 − αk, ex-
cept for masses m(j+1)i,mii,mi(j+1),m(j+1)(j+1).
This is similar to the 4-set case with masses
m(j+1)i,mii,mi(j+1),m(j+1)(j+1) and we define the
following assignment

Ai ∩ Bc
j : mi(j+1) = min(αi−1 − αi, αj − αj+1)

Ai ∩ Bc
i−1 : mii = αi−1 − αi − mi(j+1)

Aj+1 ∩ Bc
j : m(j+1)(j+1) = αj − αj+1 − mi(j+1)

Aj+1 ∩ Bc
i−1 : m(j+1)i = min(αi−1 − αi, αj − αj+1)

Given this specific mass assignment (which is always
inside the set Q), and summing assignments given to
subsets of Ai ∪ Bc

j , the following inequality results:

P (Ai ∪ Bc
j ) ≤ max(αj+1 + 1 − αi, αj + 1 − αi−1)

so,

P (Ai ∪ Bc
j ) + P (Ai ∩ Bc

j ) < P (Ai) + P (Bc
j ),

which clearly violates the 2-monotonicity property.
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Abstract 
 

Upper and lower conditional previsions are defined by 

the Choquet integral with respect to the Hausdorff outer 

and inner measures when the conditioning events have 

positive and finite Hausdorff outer or inner measures in 

their dimension; otherwise, when conditioning events 

have infinite or zero Hausdorff outer or inner measures in 

their dimension, they are defined by a 0-1 valued finitely, 

but not countably additive probability. It is proven that, if 

we consider the restriction of the (outer) Haudorff 

measures to the Borel σ-field, these (upper) conditional 

and unconditional previsions satisfy the disintegration 

property in the sense of Dubins with respect to all 

countable partitions of Ω. This result is obtained as a 

consequence of the fact that non-disintegrability 

characterizes finitely as opposed to countably additive 

probability. Moreover upper and lower conditional 

previsions are proven to be coherent, in the sense of 

Walley, with the unconditional previsions.  

Properties related to the coherence of upper conditional 

probabilities are extended to the case where information 

is represented by fuzzy sets. In particular, given an 

infinite set Ω, a conditioning rule for possibility 

distribution is proposed so that it is coherent and it is 

coherent with the unconditional possibility distribution. 

Through this conditional possibility distribution, a   

conditional possibility measure with respect to the 

partition of all singletons of [0,1] is defined. It is proved 

it satisfies the conglomerative principle of de Finetti. 

  

 

Keywords. Upper and lower conditional previsions,  

Hausdorff outer and inner measures, disintegration 

property,  fuzzy reasoning, conditional possibility 

distribution. 

  

1   Introduction 
 

Fuzzy reasoning has been introduced as a tool to handle 

vague and ambiguous information about linguistic or 

numerical variables. In [2],[16],[17] probabilistic and 

fuzzy reasoning  are compared. The common aim is to  

extend the conditions of coherence, which characterize 

upper and lower conditional previsions to uncertainty 

measures used to manage vague and ambiguous 

information, represented by fuzzy sets. 

In this paper two different problems are considered; 

firstly we continue the research about the possibility to 

define coherent upper and lower conditional probabilities 

by a class of Hausdorff outer and inner measures. In 

particular, when the conditioning event has positive and 

finite Hausdorf outer (inner) measure in its dimension, 

upper (lower) conditional previsions are defined by the 

Choquet integral ([5]) with respect to the outer  (inner) 

Hausdorff measures, which are particular examples of 

monotone set functions. Otherwise, when the 

conditioning event has Hausdorff outer (inner) measure 

in its dimension equal to zero or infinity, upper (lower) 

conditional previsions are defined by a 0-1 valued 

finitely but not countably additive probability. 

Moreover when we consider the restriction of the (outer) 

Haudorff measures to the Borel σ-field (upper) 

conditional and unconditional previsions are proven to 

satisfy the disintegration property in the sense of Dubins 

with respect to all countable partitions of Ω and to be 

coherent in the sense of Walley. 

The second problem analysed in this paper is a 

comparison between probabilistic and fuzzy reasoning. 

If upper and lower conditional previsions are defined 

with respect to outer and inner Hausdorff measures some 

properties are assured. We focus the attention on the 

property (P1 Section 2), which assures that coherent 

conditional probability is an uncertainty measure able to 

manage precise information represented by the singletons 

and on the disintegration property. 

If we represent information by fuzzy sets and partial 

knowledge by conditional possibility measures do we 

lose these properties assured by the coherence? 

In Section 5 of this paper we define a conditional 

possibility distribution on an infinite set Ω that is 

coherent and coherent with respect to the unconditional 



possibility distribution.  Moreover, through this 

conditional possibility distribution we obtain a possibility 

conditional measure with respect to the partition of all 

singletons that is coherent and that satisfies the (weak) 

conglomerative principle of de Finetti. 

 

2   Upper and Lower Conditional Previsions 

Separately Coherent and Coherent with 

respect to the Unconditional Prevision. 

 
In the approach of Walley ([15]) coherent conditional 

previsions  are required to be separately coherent and 

coherent with respect to a given unconditional lower 

prevision P. Given  a non empty set Ω, a gamble X is a 

bounded function from Ω  to R (the set of real numbers) 

and let L be the set of all gambles  on Ω.  When K is a 

linear space of gambles a coherent lower prevision P is a 

real function defined on K, such that the following 

conditions hold for every X and Y in K: 

1)P(X) ≥  inf(X) 

2)P(λX) = λP(X) for each positive constant λ 

3)P(X+Y) ≥  P(X) + P(Y) 

 

Lower previsions have a behavioural interpretation. If the 

gambles X in K are regarded as uncertain rewards, the 

lower prevision P(X) can be regarded as a supremum 

buying price for the gamble X. 

Suppose that P is a lower prevision defined on a linear 

space K, its conjugate upper prevision P is defined on 

the same domain K by P (X) = - P (-X). 

If K contains only gambles that are indicator functions of 

events then a coherent lower (upper) prevision P  defined 

on K is a coherent lower (upper) probability. So in this 

note we use the same symbol for  (conditional) 

probability measure and (conditional) prevision. 

Let B denote  a partition of Ω, which is a non-empty, pair 

wise-disjoint subsets whose union is Ω. For B in B  let 

H(B) be the set of gambles defined on B which includes 

the gamble B (we denote with the same symbol the set 

that represents an event and the indicator function of the 

event).  A lower conditional prevision  P(X|B) is a real 

function  defined on H(B). Lower coherent conditional 

previsions P(X|B), defined for B in B and X in H(B) are 

required to be  separately coherent, that is for every 

conditioning event B P(·|B) is a coherent lower  prevision 

on the domain  H(B) and P(B|B) = 1. 

P(X|B) can be interpreted as the supremum buying  price 

for X after we make the observation of a set B, that is we 

learn that the true state ω is in B. (This interpretation 

amounts to one of several possible “conditionalization” 

principles). 

A gamble X is B-measurable when it is constant on each 

set B in B. Given a σ-field G of subsets of Ω, a gamble X 

is G-measurable if for every Borel set C of R the sets 

{ })C(X: 1−∈ωΩ∈ω  belong to G. 

Measurability with respect to a partition is, in general, a 

stronger condition than the measurability with respect to 

a σ-field. In fact, given two σ-fields F and G with G 

properly contained in F and generated by the partition B, 

fix A in F-G. We have that the indicator function of A is 

B-measurable, but not G-measurable. 

Let G(B) be the class of B-measurable gambles. We 

denote by P(X|B) the function from H into G(B) whose 

image is the collection of coherent lower previsions 

{P(·|B) : B in B}. P(X|B) is separately  coherent if all the 

lower  conditional previsions are separately coherent. Let 

)B|(P ⋅  be the conjugate upper conditional prevision. If 

P(·|B)  are linear previsions, that is )B|(P)B|(P ⋅=⋅  for 

every B in B, then a  linear conditional prevision P(X|B) 

is defined by )B|X(P)B|X(P)B|X(P ==  for every B 

in B. 

 

Given a non-empty set Ω, a partition B of Ω and a  B-

measurable gamble X if upper and lower conditional 

previsions are separately coherent then we have that 

)B|X(P)B|X(P =  = X for every B in B (Walley [15] 

pag. 292 ). 

In particular if  B is the partition of Ω that consists of all 

singletons and  X = )(I A ω   is the indicator function of 

an event A  then the previous property implies that   

 (P1) P (A|{ }ω )= )(I A ω   for every Ω∈ω  and for every 

A Ω⊆ .  

The intuitive meaning of property (P1) is that coherent 

conditional probability is an uncertainty measure able to 

manage “precise” information, which is represented by 

the singletons of Ω. 

This basic property is not always satisfied, in the 

continuous case, by the axiomatic definition of 

conditional probability given by the Radon-Nykodim; in 

fact if the conditioning σ-field is not countably 

generated, we may have that the regular conditional 

distributions, given that σ-field, are maximally improper 

(Seidenfeld et al. [13]) and therefore it does not verify 

the property (P1). It implies that conditional probability 

defined by the Radon-Nikodym derivative cannot always 

be used to represent uncertainty (see Example 33.11  of 

Billingsley [1]). 

 

Walley ([15], 6.3) discusses the conditions in which an 

unconditional lower prevision P is coherent with P(·|B). 

Given  a class D of gambles, we say that D is a class of 

desirable gambles if, for each X in D and positive δ, we 

are disposed to accept the gamble X+δ. X is almost-

desirable if we are not necessarily disposed to accept X 

itself. 

The link between unconditional and conditional 

previsions can be expressed in terms of desirability, by 

the conglomerative principle (Walley [15], 6.3.3): 

 



If a gamble X is B-desirable, i.e we intend to accept X 

provided we observe only the event B, for every set B in 

the partition B, then X  is desirable. 

 

 Definition 1.  Let P be an unconditional lower prevision 

defined on K and P(·|B) be a conditional lower prevision 

on the domain H separately coherent on H. Assume that 

H and K are linear spaces containing all constant 

gambles and denote by G(X) = X - P(X), G(Y|B) = Y - 

P(Y|B) and G(W|B) = B(W - P(W|B)). Say that P and 

P(·|B) are coherent if  

 

a) sup[G(X) + G(Y|B) - G(Z)] ≥ 0  

and  

b) sup[G(X) + G(Y|B) - G(W|B)] ≥ 0 if X,Z∈  K, 

Y,W∈H and B∈B. 

 

The previous definition quantifies over infinitely many  

unconditional  previsions and called-off  previsions since 

the superior operation appears. It is an important 

difference with respect to de Finetti’s criterion of 

coherence that permits only finitely many unconditional 

and called-off previsions to enter into an assessment of 

coherence. For this reason, in de Finetti’s theory, 

coherence does not entail that  P and P(·|B) are coherent. 

Conditions a) and b) automatically hold when either 

domain K contains only constant gambles or H contains 

only B-measurable gambles. 
In the first case we have that G(X) and G(Z) are equal to 

zero and  by the separate coherence of P(·|B ) we have 

that conditions a) and b) are satisfied. 

In the second case we have that  G(Y|B) = 0 for every B-

measurable gamble Y and by  the coherence of  P we 

have that conditions a) and b) are satisfied. 

The gamble G(X|B), in which we pay the uncertain price 

P(X|B) for X can be regarded as a two-stage gamble: 

firstly we observe B and pay price P(X|B), then we 

observe ω in B and receive X(ω). 

 

A general characterization of coherence of the 

unconditional lower prevision with respect to the lower 

conditional prevision can be given by two axioms 

(Walley  [15] 6.5.1). 

Let BP (Y|B) denote the gamble B P (Y|B) + PBc (Y|B). 

Then P  and P(·|B) are coherent if and only if they satisfy 

the two axioms: 

1) If X∈K, Y∈H and X ≥ Y then  P (X) ≥  inf P(·|B) 

2) If B∈B, X∈K, Y∈H and X ≤ Y then P (X) ≤ 

sup BP (Y|B). 

 

The axioms simplify further when one of the domains 

contains the other. 

In particular if  H contains K  P  and P(·|B) are coherent 

if and only if  

3) P (X) ≥  inf P(X|B) whenever X∈K 

4) P (X) ≤ sup BP (X|B) whenever X∈K and B∈B. 

 

If  P and P(·|B) are respectively linear unconditional and 

conditional previsions their coherence can be 

characterized by simpler conditions. In particular in 

Walley ([15] Section 6.5.3 and section 6.5.7) the 

following result has been proven: 

 

Proposition 1.  Given P defined on K  and P(X|B) 

defined on H  such that they are respectively linear 

unconditional and conditional previsions with H 

contained in K and  P(X|B) separately coherent, then P 

and P(X|B) are  coherent if and only if the following 

conglomerative  property  is satisfied  

 

P(X) = P(P(X|B)). 

  

Given a partition B of Ω, the unconditional probability 

P(X) is B-conglomerable if it satisfies the 

conglomerative property in the  partition B. 

When the unconditional prevision P(X) is B-

conglomerable for every partition B of Ω then it is called 

fully conglomerable (Walley [15] 6.8.1). 

In the paper of Dubins ([7]) the following definitions are 

introduced. 

Given a partition B of Ω, a linear prevision P(X) is  

disintegrable with respect to   linear conditional 

previsions P(X|B)  if the  equality P(X) = P(P(X|B)) is 

satisfied for every bounded variable X on Ω and for 

every B in B. 

A  linear prevision P(X) is defined to be conglomerative 

with respect to a partition B of Ω  if the following 

condition is satisfied: for every bounded variable X and 

for every B in B we have that P(X|B) ≥ 0 implies P(X) ≥ 

0 .                                           

It has been proven (Theorem 1 of [7]) that a prevision is 

disintegrable with respect to a partition if and only if  it is 

conglomerative with respect to the same partition. 

When H and K are equal to the set L of all bounded 

gambles on Ω then the conglomerative property of 

Walley is equivalent to the notion of disintegrability of a 

prevision  P(X) with respect to a partition of Ω, 

introduced by Dubins ([7]). The author calls strategies 

linear conditional previsions that are separately coherent 

and defined on the set of all bounded gambles on Ω. 

So if linear conditional previsions P(X|B) and  linear 

unconditional prevision P(X), defined on the class of all 

bounded gambles, are such that they satisfy the 

disintegration property   with respect to a given partition  

B of Ω, then they are coherent. 

The notion of conglomerability given by Dubins can be 

seen as a generalization to the class of all bounded 

variables of the conglomerative principle, introduced by 

de Finetti ( [4]  pp.99) for probabilities: 

 

Given a partition B of Ω we say that the probability P is 

conglomerable with respect to the partition B if for every 



event A  and for every B in B  we  have that  a ≤ P(A|B) 

≤ b implies a ≤ P(A) ≤  b. 

 

Generally the disintegrability in the sense of Dubins is 

stronger than the conglomerability in the sense of de 

Finetti. 

In fact if the conglomerative principle is satisfied it does 

not imply that the disintegration property is satisfied; but 

when the domain of the conditional and unconditional 

linear previsions is a linear space then the notion of 

conglomerability in the sense of de Finetti is equivalent 

to the notion of disintegrability in the sense of Dubins. 

 

An important aspect, analysed in literature is the 

relationship between conglomerability and countable 

additivity. 

In Schervish et. al. [11] it has been proven that when a 

probability P is defined on a σ-field, it takes infinitely 

many values and it is countably additive then it is 

disintegrable (conglomerable) in the sense of Dubins in 

every countable partition of Ω. 

In particular if P is defined on the class of all subsets of 

Ω and  it takes infinitely many different values then it is 

fully conglomerable if and only if it is countably additive 

on every partition of Ω. 

We have that for non-countable partitions countable 

additivity of the unconditional prevision is not a 

sufficient condition to assure that it is coherent with the  

conditional previsions (Kadane, Schervish,  Seidenfeld  

[9] Example 6.1). 

The previous results imply that there is no fully 

conglomerable linear prevision P defined on the set of all 

bounded gambles L that takes many different values on 

events and satisfies P( { }ω ) = 0 for all ω ∈Ω. For 

example there is no fully conglomerable linear extension 

of Lebesgue measure to all bounded gambles on the unit 

interval. Otherwise the Lebesgue lower prevision on L, 

which is the natural extension of the Lebesgue (inner) 

measure to all bounded gambles is fully conglomerable 

(Walley [15], 6.9.6), that is there is a lower conditional 

prevision with respect to every partition B coherent with 

the Lebesgue lower previsions. 

 

 

3 Hausdorff Outer and Inner Measures  
 

In this section we recall some preliminaries about 

Hausdorff measures, that we use to define conditional 

previsions P(X|B)  when the conditioning events B  have 

finite and positive Hausdorff measure in their dimension. 

For more details about Hausdorff measures see for 

example Falconer ([8]). 

Let (Ω,d)  be the  Euclidean metric space with  Ω = [0,1]. 

The diameter of a nonempty set U of Ω  is defined as |U| 

= sup{|x-y|: x,y∈U} and if a subset A of Ω is such that A 

⊂ U

i
iU  and 0 < |Ui| < δ for each i, the class {Ui} is 

called a δ-cover of A. Let s be a non-negative number. 

For δ > 0  we define h
s
δ(A) = inf Ui

s

i=

∞
∑

1

, where the 

infimum is over all δ-covers {Ui}. The Hausdorff s-

dimensional outer measure of A, denoted by h
s
(A), is 

defined as h
s
(A) = lim ( )

δ
δ

→0
h

s
A . This limit exists, but 

may be infinite, since h
s
δ(A) increases as  δ decreases. 

The Hausdorff dimension of a set A, )A(dim H , is 

defined as the unique value, such that  

h
s
(A) = 









∞<<

≤≤∞

s)A(dimif0

)A(dims0if

H

H

 

We can observe that if 0 < h
s
(A) < ∞ then )A(dimH = s, 

but the converse is not true. We assume that the 

Hausdorff dimension of the empty set is equal to –1 so 

no event has Hausdorff dimension equal to the empty set. 

If an event A is such that )A(dimH = s < 1, then the 

Hausdorff dimension of the complementary set A c is 

equal to 1 since the following relation holds: 

=∪ )BA(dim H { })B(dim);A(dimmax HH . 

A subset A of Ω is called measurable with respect to the 

outer measure h
s
 if it decomposes every subset of Ω 

additively, that is if h
s
(E) = h

s
(AE) + h

s
(E-A) for all sets 

E ⊂ Ω. 

The restriction of h
s
 to the σ-field of h

s
-measurable sets, 

containing the σ-field of the Borel sets, is called  

Hausdorff s-dimensional measure. In particular the 

Hausdorff 0-dimensional measure is the counting 

measure and the Hausdorff 1-dimensional measure is the 

Lebesgue measure. 

 

4   Upper and Lower Conditional Previsions  

defined by the  Hausdorff Outer and Inner 

Measures 
 

In [6] upper and lower conditional probabilities are 

obtained as natural extensions ( Theorem 3.1.5  [15]) of 

a finitely additive conditional probability in the sense of 

Dubins, assigned by a class of Hausdorff measures. They 

are proven to be separately coherent and so they satisfy 

the necessary condition for the coherence (P1). 

In this Section upper and lower conditional previsions 

are defined as extensions of the previous upper and lower 

conditional probabilities. In particular, when the 

conditioning event has positive and finite Hausdorff 

outer (inner) measure in its dimension, they are defined 



by the Choquet integral ([5]) with respect to outer  

(inner) Hausdorff measures, which are particular 

examples of monotone set functions. Otherwise, when 

the conditioning event has Hausdorff outer (inner) 

measure in its dimension equal to zero or infinity, they 

are defined by a 0-1 valued finitely but not countably 

additive probability. 

In Theorem 2 and 3 of this Section we prove that when 

Hausdorff measures are defined on the Borel σ-field and 

the class of all Borel-measurable gambles is considered, 

then linear conditional and unconditional previsions 

defined with respect to Hausdorff measures satisfy the  

Dubin’s disintegration property with respect to every 

countable partition of Ω. 

In Theorem 2 we consider Ω equal to [0,1] and in 

Theorem 3 we consider the general case in which Ω is an 

infinite set with Hausdorff measure equal to 1 in its 

dimension. 

Moreover linear conditional previsions are coherent with 

the unconditional previsions in the sense of Walley, since 

in this case coherence in the sense of Walley is 

equivalent to the disintegration property of Dubins ( see 

Proposition 1 of Section 2). 

The role of Hausdorff measures in the previous results is 

crucial. 

In fact it is important to observe that if we define 

conditional and unconditional previsions with respect to 

a coherent finitely but not countably additive probability 

we cannot obtain the same results. 

In fact from Theorem 3.1 of ([11]) we have that for each 

finitely but not countable additive probability P defined 

on a σ-field there is a partition (in that σ-field) where P is 

not disintegrable in the sense of Dubins. 

This implies that linear conditional and unconditional 

previsions defined with respect to a merely finitely 

additive probability cannot be disintegrable on every 

countable partition of Ω. 

  

We recall some results given in ([6]). 

 Let Ω be a non empty set and  let F  and G be two 

fields of subsets of Ω, with G ⊆ F or with  G an additive 

subclass of F,  P* is a finitely additive conditional 

probability ( [7]) defined on (F,G)  if it is
 
a

 
real function

 

defined on F×G
0
, where G

0
=G-∅, such that the 

following conditions hold: 

 I) given any H∈G
0
 and   A1,...,An ∈ F with AiAj =∅  for 

i≠j,  the  function P*(⋅|H) defined on  F is such that  

I)P*(A|H) ≥ 0,    P*( H|A
n

1k
kU

=

) = ∑
=

n

1k
k )H|A(*P ,   

P*(Ω|H) = 1 

 

 II)  P*(H|H) = 1             if H∈ FG
0
  

 

III) given  E ∈ F, H∈F EH ∈ F with A∈G
0
 and EA 

∈G
0
 then P*(EH|A) = P*(E|A)P*(H|EA). 

 

From conditions I) and II) we have  

 

 II’)  P*(A|H) = 1       if A∈ F, H∈G
0
 and H⊂A. 

 

Such approach to conditional probability allows to give 

probability assessments on arbitrary finite family of 

conditional events through the notion of coherence as 

proposed by de Finetti ([3], [4]). In fact, if  F  and G are 

arbitrary finite families of subsets of Ω, then  the real 

function P, defined on F×G
0
  is coherent if and only if it 

is the restriction of a finitely additive conditional 

probability defined on D×D
0
, where D is the field 

generated by the sets of  F and G.  

In [6] a finitely additive conditional probability in the 

sense of Dubins is defined by a class of Hausdorff 

dimensional measures. Moreover, upper (lower) 

conditional probability is  given by Hausdorff s-

dimensional outer (inner) measures if the conditioning 

event has positive and finite Hausdorff s-dimensional 

outer  (inner) measure in its dimension; otherwise upper 

conditional probability is defined by a 0-1 finitely 

additive (but not countable additive) probability so that 

condition III) of a finitely additive conditional 

probability in the sense of Dubins is satisfied. They are 

proven to be separately coherent in the sense of Walley. 

The unconditional probability is obtained as particular 

case when the conditioning event is Ω. 

 

Theorem 1.  Let Ω=[0,1], let F be the σ-field of all 

subsets of  Ω and let G be an additive sub-class of F. Let 

us denote by h
s
 the Hausdorff s-dimensional  outer 

measure and let us define on C=F×G
0
 the function  P  

by  

 

P (A|H) = 














∞=

∞<<

,0)H(hif)AH(m

)H(h0if
)H(h

)AH(h

s

s

s

s

 

where  m is a 0-1 valued finitely additive (but not 

countably additive)  probability measure. Then the 

function P  is an upper conditional probability. 

 

The existence of the measure m is a consequence of the 

prime ideal theorem. 

The conjugate lower conditional probability P can be 

defined as in Theorem 1 if h
s
 denotes the Hausdorff s-

dimensional  inner  measure. 

 

When the family of the conditioning events is a partition 

of Ω the conditional probabilities can be defined in a 

similar way.  

 

Definition 2. Let Ω = [0,1], let F be the σ-field of all 

subsets of  Ω  and let B be a partition of Ω. Let us denote 



by s the Hausdorff dimension of the conditioning event B 

belonging to B and by  h
s
 the outer Hausdorff s-

dimensional  measure. Let us define  an upper  

conditional probability on F× B by the function  

 

    P (A|B) =














∞=

∞<<

,0)B(hif)AB(m

)B(h0if
)B(h

)AB(h

s

s

s

s

               

 

where m is a 0-1 valued finitely additive (but not 

countably additive)  probability measure. 

 

The two definitions of upper conditional probabilities can 

be compared when  G  is the  σ-field   generated by the  

partition B. In particular, given a probability space 

(Ω,F,P), let G be equal to or contained in the σ-field 

generated by a countable class C of subsets of F and let  

B be the partition generated by the class the C. Denote 

by Ω’ = B and Bψ the function from Ω to Ω’ that 

associates to every Ω∈ω the atom B of the partition B 

that contains  ω; then we have that P (·|G) = 

P (·|B) Bψo  (See Koch [10] p. 262). 

 

Upper (lower) conditional prevision is obtained as 

extension of upper (lower) conditional probability 

assigned by a class of outer  Hausdorff measures.  

It is defined by the Choquet integral ([5]) with respect to 

outer (inner) Hausdorff measures, which are particular 

examples of monotone set functions. 

 

Definition 3. Let Ω = [0,1], let L  be  the class of all 

bounded gambles on Ω  and let B be a partition of Ω . 

Let us denote by s the Hausdorff dimension of the 

conditioning event B belonging to B and by  h
s
 the 

Hausdorff s-dimensional outer  measure.  Let us define 

an upper conditional prevision  on L× B by the function  

 

    )B|X(P =














∞=

∞<<∫

,0)B(hif)XB(m

)B(h0ifXdh
)B(h

1

s

s

B

s

s

              

where m is a 0-1 valued finitely additive (but not 

countably additive)  probability measure. 

 

From the definition it follows that upper conditional 

previsions are separately coherent for every partition B  

of Ω. 

We prove that when the (outer) Hausdorff measures are 

defined on the Borel σ-field and L is  the class of all 

Borel-measurable gambles, then linear conditional and 

unconditional previsions defined with respect to 

Hausdorff measures  satisfy the  Dubin’s disintegration 

property with respect to every countable partition of Ω 

and they are coherent in the sense of Walley. 

The following results can be obtained as a consequence 

of the fact that non-disintegrability characterizes finitely 

as opposed to countably additive probability as proven in 

[11]. Each arbitrary finitely additive probability P can be  

decomposed uniquely into a convex combination of a 

countably additive probability cP  and a purely finitely 

additive probability DP , that is 

P=α cP  + β DP       with α + β = 1,  α ,β≥ 0. 

In [11] the coefficient β has been proven to be an upper 

bound for failures of conglomerability in all denumerable 

partitions. 

In Theorem 3.1 of [11] it has been proven that if β ≠ 0, if 

the range of P is not limited to finitely many distinct 

values and if P is defined on a σ-field of event, then the 

upper bound on the failure of conglomerability, β, must 

be approached. 

 

Theorem 2. Let Ω = [0,1], let F be the Borel σ-field of  

subsets of  Ω  and let L be the class of all Borel-

measurable gambles on Ω. If B is a countable partition 

of Ω, consisting of sets belonging to F, then the linear 

conditional prevision defined on L× B by Definition 3, is 

coherent with the unconditional prevision P(·|Ω). 

 

Proof. Since Ω is equal to [0,1] then the linear 

unconditional prevision P(· |Ω) is defined with respect to 

the Hausdorff measure of order 1, 1h , that is the 

Lebesgue measure. It is defined on the Borel σ-field, it 

takes infinitely many different values and it is countably 

additive. As shown in [11] this is equivalent to the 

disintegrability  of 1h in the sense of Dubins with respect 

to all countable partitions of Ω. 

Since for every s, the σ-field of sh -measurable sets 

contains the  Borel σ-field and L is the class of all Borel–

measurable gambles, we also have that the conditional 

previsions are linear. 

So the unconditional and conditional previsions are 

coherent in the sense of Walley; in fact  from Proposition 

1 of Section 2,  disintegrability in the sense of Dubins is 

equivalent to the coherence of linear conditional 

previsions with respect to the linear unconditional 

prevision.□ 

 

The previous result can be generalized to the case where 

Ω is an infinite set with Hausdorff measure in its 

dimension equal to 1. 

 

Theorem  3. Let Ω be an infinite set with Hausdorff 

measure equal to 1 in its dimension, let F be the Borel σ-

field of  subsets of  Ω  and let L be the class of all Borel-

measurable gambles on Ω. If B is a countable partition 



of Ω, consisting of sets belonging to F, then the 

conditional prevision defined on L× B as Theorem 2, 

is coherent with the unconditional prevision P(·|Ω). 

 

Proof. Denoted by s the Hausdorff dimension of Ω, then 

the unconditional  prevision P(· |Ω) is defined with 

respect to the s-dimensional Hausdorff measure sh , 

which is a probability since )(h s Ω  = 1, it is defined on 

the Borel σ-field, it takes infinitely many different values 

and it is countably additive since for every s, the σ-field 

of sh -measurable sets contains the  Borel σ-field.  

Then the result can be obtained in a similar way of 

Theorem 2.□ 

 

Remark 1. It is important to note the crucial role of the 

Hausdorff measures in the previous theorems. In fact if 

the unconditional prevision is defined with respect to the 

s-dimensional Hausdorff measure, where s is the 

Hausdorff dimension of Ω and F is the  Borel σ-field, 

then in Theorem 2 and in Theorem 3 the unconditional 

prevision is defined with respect to a countably additive 

probability. This implies ([11]) that the disintegration 

property in the sense of Dubins is satisfied on every  

countable partition of Ω. 

Otherwise if we define the unconditional prevision with 

respect to a coherent finitely but not countably additive 

probabilility P, defined on a σ-field then there is 

(Theorem 3.1 of [11]) a countably partition where P fails 

disintegrability in the sense of Dubins. 

 

Example 1. We recall the definition of the Cantor set, 

which is the most familiar set of real numbers of non-

integer Hausdorff dimension. 

Let 0E = [0,1], 1E = [0,1/3] ∪ [2/3,1], 2E = 

[0,1/9] ∪ [2/9,1/3] ∪ [2/3,7/9] ∪ [8/9,1], etc., where 

1jE + is obtained by removing the open middle third of 

each interval in Ej . The Cantor’s set is the perfect set E 

= I
∞

=0j
j

E .The Hausdorff dimension of the Cantor set is s 

= log2/log3 and h
s
(E) = 1 (see [8]  Theorem 1.14). 

Let Ω be equal to the Cantor set, let F be the Borel σ-

field of  subsets of  Ω  and let L be the class of all Borel-

measurable gambles on Ω. If B is a countable partition of 

Ω, consisting of sets belonging to F, then the conditional 

prevision defined on L× B as in Theorem 2, is coherent 

with the unconditional prevision P(· |Ω). 

  

5   Coherence of Conditional Possibility 

Distribution 
 

A first criterion to decide if an uncertainty measure is a 

good tool to handle imprecise and vague information 

about a linguistic or numerical variable is to verify if it 

is, first of all, able to manage “precise” information, 

which is represented by the singletons of  Ω.  

In the theory of imprecise probabilities this property is 

formalised by property (P1) as recalled in Section 2. 

 (P1) for every x belonging to Ω P(A|{ }x ) is equal to 1 if 

x belongs to A and it is equal to 0 if x does not belong to 

A. 

We analyze the possibility to extend the properties 

assured by the coherence to uncertainty measures used 

when information is represented by fuzzy sets. 

In this Section a conditional possibility distribution on an 

infinite set Ω that is coherent and coherent with respect 

to the unconditional possibility distribution. 

The conditional possibility distribution satisfies the 

property (P1). Moreover, through this conditional 

possibility distribution we obtain a possibility conditional 

measure with respect to the partition of all singletons that 

is coherent and such that the (weak) conglomerative 

principle of de Finetti is verified. 

 

In ([2], [16]) possibility measures are proven to be an 

important special class of upper probabilities; moreover 

in  [17] a necessary and sufficient condition  for the 

coherence of rules for defining conditional possibility 

distributions is given when the possibility space Ω is 

finite. In the quoted paper conditioning on variables 

rather then events is considered. Given two variables X 

and Y whose sets of possible values are finite the 

problem of examining whether a conditioning rule 

produces conditional distribution π(x|y) that is coherent 

with the joint possibility distribution π(x,y) has been 

investigated; moreover it has been investigated when  

they generate possibility measures (or equivalently upper 

probability measures ) П and П(· |y) that are coherent. 

Given an infinite set Ω, in this section we consider 

conditioning on the class of fuzzy sets of Ω, and we 

investigate the problem to define conditional possibility 

distribution π(x|y) coherent with the unconditional 

possibility distribution π. Moreover the coherence of the   

conditional possibility measures П(· |y) with the 

unconditional possibility measure П is analyzed. 

Several conditioning rules are proposed in literature for 

defining conditional possibility distributions or measures 

from unconditional ones. 

The approach followed in this section is quite different: 

firstly we define the conditional possibility distribution  

π(x|y)  and the conditional possibility measure П(· |y)   

such that they satisfy the condition (P1) for the 

coherence, then we consider their  coherence with the  

unconditional possibility distribution and the 

unconditional possibility measure. 

 

Given a non-empty set Ω  a fuzzy set A is defined by a 

membership function that associates to each element x of 

Ω  a real number A(x) between 0 and 1, which represents 

the degree to which x belongs to A.  



If the membership function is equal to the indicator 

function then A is a crisp set. 

The support of a fuzzy set is the crisp set where the 

membership function of the fuzzy set is greater than zero; 

the core of a fuzzy set is the crisp set where the 

membership function is equal to one. A fuzzy singleton 

is a fuzzy set whose core is a singleton. 

Given two fuzzy sets A(x) and B(x) their union is 

defined by   A(x) ∪ B(x) = max{A(x),B(x)} for every x 

in Ω. 

Given an infinite set  Ω we denote by P(Ω) the class  of  

the fuzzy sets of Ω; a fuzzy measure over P(Ω) is a 

function m: P(Ω)→[0,1] such that m )(∅ = 0 and m(Ω) = 

1, )F(m)E(mFE ≤⇒⊂ . 

A measure of possibility is a fuzzy measure П such that 














Π

∈

U
Jj

jA = )A(sup j
Jj

Π
∈

. 

A possibility distribution over Ω is a function π: 

Ω→[0,1] such that π(ω) = { })x(Π  

Using a possibility distribution π over Ω, it is possible to 

construct a possibility measure П over P(Ω) by the 

formula 

Ω∈ω

=Π sup)A( { }))(A),(min( ωωπ ; 

A possibility distribution and a possibility measure are 

normalized if { }Ω∈ωωπ=ΩΠ :)(sup)(  =1. 

 In this paper we assume they are normalized. 

As recalled in Walley ([16] p. 35) the information 

represented by a fuzzy set,  for example “Mary is young” 

can be modeled by a possibility distribution defined on 

the set of possible ages.  The number π(ω) lies between  

zero and one and it represents “ the degree to which it is 

possible that Mary has a precise age ω, given she is 

young” 

In the same way we can interpret a conditional possibility 

distribution π(x|y) as “the degree to which it is possible 

that Mary has a precise age x, given she is y years old” 

So if we want the conditional distribution to satisfy the  

condition (P1) necessary for the coherence of an upper 

conditional probability we have to define 

 

π(x|y) =








≠

=

yxif0

yxif1

                             (1) 

 

that is the conditional distribution π(x|y) is equivalent to 

the indicator function of the (fuzzy) singleton; so for 

every y in Ω π(x|y) is concentrated on the singleton y.  

 

In order to find conditions that assure the coherence of 

the conditional distribution π(x|y) with the unconditional 

distribution π it is important to determine relations 

between them. 

Given two fuzzy sets A and B we introduce a joint 

possibility distribution π(x,y) for all x ∈A and y∈B. 

According to Hisdial a conditional possibility 

distribution π(x|y) is implicitly defined as  

 

π(x,y) = min(π(y), π(x|y))                      (2) 

 

If we define conditional possibility distribution by (1)  

and we require that also  (2) is satisfied we obtain 

 









≠

=π

=π

yxif0

yxif)y(

)y,x(   

 

At this point the question is:” how do we have to choose 

π(y) so that the conditional possibility distribution π(x|y) 

and the unconditional possibility distribution are 

coherent?” 

 

We observe that the definition of conditional possibility 

distribution proposed in this section is  similar to the one 

proposed by Ramer [14]. This conditioning rule consists 

in picking one 0x  such that π( 0x ,y) = π(y), letting 

π( 0x ,y) = 1 and π(x|y) = π(x,y). It produces normal 

π(· |y), but it has the disadvantage of requiring an 

arbitrary choice whenever there is more than one x that 

maximizes π(· |y). Moreover, Ramer’s rule produces 

conditional possibility distributions which are incoherent 

with joint distribution if 0 < π(x,y) < π(y) < 1 as pointed 

out in [17]. 

The definition of conditional possibility distribution 

given in this section by (1) avoids this problem since the 

only value, which maximizes π(· |y) is 0x = y  

Given y ∈  Ω  and for every x∈Ω  we define π(x,y) equal 

to  









≠

=

=π

yxif0

yxif1

)y,x(  

 

So that π(·) is the 0-1 valued finitely additive measure 

concentrated on the singleton { }y . 

 

When Ω is a finite set  a  necessary and sufficient 

condition for the coherence of π(· ,·) and 

{ }Ω∈⋅π y:)y|( has been proposed in [17]; it claims that  

π(· ,·) and { }Ω∈⋅π y:)y|( are coherent if and only if  the 

conditional possibility distribution π(x|y) is greater or 

equal to the conditional possibility distribution defined 

by the Dempster’s rule ( )y,x(DEπ ) and it is less or 

equal to the conditional possibility distribution defined 

by the natural extension ( )y,x(NEπ ) if π(y) > 0. 



The definition of conditional possibility distribution 

π(x|y) given by (1) satisfies the previous condition in fact 

we have that  

π(x|y) = π(x,y) = π(y)= 1= )y,x(DEπ = )y,x(NEπ . 

If Ω is a countable set the unconditional possibility 

distribution π(·) and the conditional possibility 

distribution π(· |y) defined by (1) are equal to the measure 

concentrated on the singleton { }y . 

They are coherent as proven in Seidenfeld et al. ([12] 

Lemma 1). 

 

Definition 4. Let us define a conditional possibility 

measure by 

 

)y|A(Π = { }))y(A),y|x(min(sup
Ax

π
∈

 

 

then we obtain 

)y(A)y|A( =Π  

 

Remark 2. If A is a crisp set, so that its membership 

function A(x) is equal to the indicator function of A, then  

)y|A(Π  is the indicator function of A and so property 

(P1) necessary for the coherence is satisfied; moreover 

from the definition of possibility measure we have that  

{ })y|B(),y|A(max)y|BA( ΠΠ=∪Π . 

So, if A is a crisp set, the conditional possibility measure 

)y|A(Π is the 0-1 finitely additive measure concentrated 

on the singleton { }y , which is a particular kind of (upper) 

conditional probability  

 

Example 2. Let Ω  be the set of natural numbers  N, then   

the conditional possibility measure )y|A(Π is the  0-1 

finitely additive measure concentrated on the singleton 

{ }y  and we have that  

=Π )y|N( { }))y(N),y|x(min(sup
Nx

π
∈

=1 

 

We have defined the conditional possibility distribution 

π(·) equal to the  0-1 valued finitely additive measure 

concentrated on the singleton { }y . So we obtain that the 

conditional possibility measure is equal to  

 

Ω∈

=Π
y

sup)A( { }))y(A),y(min(π = { })y(Asup
y Ω∈

 

 

In particular if A is a fuzzy singleton { }xA =  we have 

that { } 1)x()x( =π=Π . 

 

The next result shows that for every fuzzy set A the 

normalized possibility measure П and the normalized 

conditional possibility measure )y|A(Π satisfy the 

conglomerative principle of de Finetti with respect to the 

partition of all singletons of an infinite set Ω.  

 

Theorem 4. Let Ω be an infinite set and let П be a 

normalized possibility measure over P(Ω) the class of all 

fuzzy sets of Ω defined by  

Ω∈

=Π
y

sup)A( { }))y(A),y(min(π = { })y(Asup
y Ω∈

. Moreover 

let )y|A(Π be the conditional possibility measure 

defined by )y(A)y|A( =Π . Then for every y belonging 

to Ω, we have that 

 a ≤ П(A|y) ≤ b implies a ≤ П (A) ≤ b. 

 

 Proof. Since we have that  

 

)y|A(Π = { }))y(A),y|x(min(sup
Ax

π
∈

 

from the definition of conditional possibility distribution 

π(x|y) given by (1) we obtain that )y(A)y|A( =Π . 

 So, if  for every y in Ω we have that  

 

a ≤ )y(A)y|A( =Π  ≤ b 

it implies that  

 

a ≤ { })y(Asup
y Ω∈

 ≤b 

that is   a ≤ П(A) ≤ b.□ 

 

 

6   Summary and Conclusions 
 

A new model of upper and lower conditional previsions 

is proposed in this paper. 

When the conditioning event has positive and finite 

Hausdorf outer (inner) measure in its dimension, upper 

(lower) conditional previsions are defined by the 

Choquet integral ([5]) with respect to the outer  (inner) 

Hausdorff measures, which are particular examples of 

monotone set functions. Otherwise, when the 

conditioning event has Hausdorff outer (inner) measure 

in its dimension equal to zero or infinity, upper (lower) 

conditional previsions are defined by a 0-1 valued 

finitely but not countably additive probability. 

These upper and lower conditional previsions are proven 

to be separately coherent for every partition B of Ω. 

Moreover when we consider the restriction of the (outer) 

Haudorff measures to the Borel σ-field (upper) 

conditional and unconditional previsions are proven to 

satisfy the disintegration property in the sense of Dubins 

with respect to all countable partitions of Ω and to be 

coherent in the sense of Walley. 

Another problem analyzed in this paper is the extension 

of upper conditional probability properties  assigned by a 

class of Hausdorff outer measures when information is 

represented by fuzzy sets. 

A conditional possibility distribution on an infinite set Ω 

that is coherent and coherent with respect to the 

unconditional possibility distribution is defined.  



Moreover through this conditional possibility distribution 

we obtain a possibility conditional measure with respect 

to the partition of all singletons that is coherent and that 

satisfies the conglomerative principle of de Finetti. 
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Abstract

It is often recognised that in real-life decision sit-
uations, classical utility theory puts too strong re-
quirements on the decision-maker. Various interval
approaches for decision making have therefore been
developed and these have been reasonably success-
ful. However, a problem that sometimes appears in
real-life situations is that the result of an evaluation
still has an uncertainty about which alternative is to
prefer. This is due to expected utility overlaps ren-
dering discrimination more difficult. In this article
we discuss how adding second-order information may
increase a decision-maker’s understanding of a deci-
sion situation when handling aggregations of impre-
cise representations, as is the case in decision trees or
influence diagrams.

Keywords. Decision analysis, Imprecise probabili-
ties, Imprecise utilities, Hierarchical models.

1 Introduction

In classical types of utility theories, a widespread
opinion is that utility theory captures the concept of
rationality. However, the shortcomings of this stand-
point are sometimes severe. Among other things, the
question has been raised whether people are capable
of providing the inputs that utility theory requires,
when, for instance, most people cannot clearly dis-
tinguish between probabilities ranging over substan-
tial intervals. Similar problems arise in the case of
artificial decision-makers, since utility-based artificial
agents usually base their reasoning on human assess-
ments, for instance in the form of induced preference
functions. Furthermore, even if a decision-maker is
able to discriminate between different probabilities,
very often complete, adequate, and precise informa-
tion is missing.

Thus, the requirement to provide numerically precise
information in such models has often been considered

unrealistic for real-life decision situations and after
quite intense activities in the area, particularly dur-
ing recent years, a number of models with representa-
tions allowing imprecise probability statements have
been suggested. Such models include possibility the-
ory [4], capacities (of order 1 and 2) [3], [13], [5], evi-
dence theory and belief functions [19], various kinds of
logic [22], upper and lower probabilities [7], hierarchi-
cal models [21], [10], and sets of probability measures
[15]. Some general approaches to evaluating imprecise
decision situations include probabilities and utilities.
[16] is an early example and more recently some other
interesting approaches have been suggested, e.g., [17],
[14], [1], [6], and [2].

2 Decision Trees

In this paper, we let an information frame represent
a decision problem. The idea with such a frame is
to collect all information necessary for the model into
one structure. The representational issues are of two
kinds, structure (trees) and constraints (statements).

Decisions under risk (probabilistic decisions) are of-
ten given a tree representation, cf. [18]. One of the
building blocks of a frame is a decision tree. Formally,
a decision tree is a graph.

Definition 1. A graph is a structure 〈V, E〉 where V
is a set of nodes and E is a set of node pairs (edges).

A general graph structure is, however, too permissive
for representing a decision tree. Hence, we will restrict
the possible degrees of freedom of expression in the
decision tree.

Definition 2. A tree is a connected graph without
cycles. A decision tree is a tree containing a finite
set of nodes and that has a dedicated node at level
0. The adjacent nodes, except for the nodes at level
i − 1, to a node at level i is at level i + 1. A node
at level i + 1 that is adjacent to a node at level i is
a child of the latter. A node at level 1 is an alter-



native. A node at level i is a leaf or consequence if
it has no adjacent nodes at level i + 1. A node that
is at level 2 or more and has children is an event
(an intermediary node). The depth of a rooted tree is
max(n|there exists a node at level n).

Thus, a decision tree is a way of modelling a de-
cision situation where the alternatives are nodes at
level 1 and the set of final consequences are the set of
nodes without children. Intermediary nodes are called
events. For convenience we can, for instance, use the
notation that the n children of a node ci are denoted
ci1, ci2, . . . , cin and the m children of the node cij are
denoted cij1, cij2, . . . , cijm, etc.

Figure 1 shows a decision tree. Over the sets of events
and consequences, different functions can be defined,
such as probability measures and utility functions.

3 Intervals in Decision Making

For numerically imprecise decision situations, one op-
tion is to define probability and utility functions in
the classical way. Another, more elaborate option
is to define sets of candidates of possible probabil-
ity and utility functions. For instance, in [7] such an
approach is suggested. The possible functions are ex-
pressed as vectors in polytopes that are solution sets
to, so called, probability and utility bases (see below).

For instance, the probability (or utility) of cij being
between the numbers ak and bk is expressed as pij ∈
[ak, bk] (uij ∈ [ak, bk]). This approach also includes
relations: a measure (or function) of cij is greater
than a measure (or function) of ckl is expressed as
pij ≥ pkl and analogously uij ≥ ukl. Each statement
can thus be represented by one or more constraints.

Definition 3. Given a decision tree D, a utility base
is a set of linear constraints of the types uij ∈ [ak, bk],
uij ≥ ukl and, for all consequences {cij} in D,
uij ∈ [0, 1]. A probability base has the same structure,
but, for all nodes N (except the root node) in D, also
includes

∑mi

j=1 pij = 1 for the children {cij}j=1,...,mi

of N .

Since a vector in the polytope can be considered to
represent a distribution, a probability base P can be
interpreted as constraints defining the set of all possi-
ble probability measures over the consequences. Sim-
ilarly, a utility base U consists of constraints defin-
ing the set of all possible utility functions over the
consequences. The bases P and U together with the
decision tree constitute the information frame.

Primary evaluation rules of a decision tree model are
based on the expected utility. Since neither probabil-
ities nor utilities are fixed numbers, the evaluation of

the expected utility yields multi-linear expressions.

Definition 4. Given a decision tree T and an alter-
native Ai ∈ A the expression

E(Ai) =
ni0
∑

i1=1

pii1

ni1
∑

i2=1

pii1i2 · · ·
nim−2
∑

im−1=1

pii1i2...im−2im−1

nim−1
∑

im=1

pii1i2...im−2im−1imuii1i2...im−2im−1im

where m is the depth of the tree corresponding to
Ai, nik

is the number of possible outcomes following
the event with probability pik

, p...ij ..., j ∈ [1, . . . , m],
denote probability variables and u...ij ... denote utility
variables as above, is the expected utility of alternative
Ai in T .

Maximisation of such non-linear objective functions
subject to linear constraint sets (statements on prob-
ability and utility variables) are computationally de-
manding problems to solve for an interactive decision
tool in the general case, using techniques from the
area of non-linear programming. In, e.g., [7], [8], and
[6], there are discussions about computational proce-
dures reducing the evaluation of non-linear decision
problems to systems with linear objective functions,
solvable with ordinary linear programming methods.
The approach taken is to model probability and util-
ity intervals as constraint sets, containing statements
on upper and lower bounds. Furthermore, normalisa-
tion constraints for the probabilities are added (repre-
senting that the consequences from a parent node are
exhaustive and pairwise disjoint). Such constraints
are always on the form

∑n
j=1 pij = 1 .

The solution sets to probability and utility constraint
sets are polytopes. The evaluation procedures then
yield first-order interval estimates of the evaluations,
i.e. upper and lower bounds for the expected utilities
of the alternatives.

An advantage of approaches using upper and lower
probabilities is that they do not require taking partic-
ular probability distributions into consideration. On
the other hand, the expected utility range resulting
from an evaluation is also an interval. To our expe-
rience, in real-life decision situations, it is then some-
times hard to discriminate between the alternatives.
In effect, an interval based decision procedure keeps
all alternatives with overlapping expected utility in-
tervals, even if the overlap is quite small. Therefore,
it is interesting to extend the representation of the de-
cision situation using more information, such as dis-
tributions over classes of probability and utility mea-
sures, in pursuit of more discriminative power.



4 Including Second-Order
Information

Basically, distributions have been used for expressing
various beliefs over multi-dimensional spaces where
each dimension corresponds to, for instance, possible
probabilities or utilities of consequences. The distri-
butions can consequently be used to express strengths
of beliefs in different vectors in the polytopes.

Beliefs of such kinds are expressed using higher-order
distributions (hierarchical models). Approaches for
extending the interval representation using distribu-
tions over classes of probability and value measures
have been developed into various hierarchical mod-
els, such as second-order probability theory. A quite
early approach was suggested in [11] and [12]. A more
recent example is [20] that provides a model for one-
level trees similar to [9].

In the following, we will pursue the idea of adding
more information and discuss some interesting proper-
ties that appear when evaluating second-order models
as well as the effects of aggregating such distributions
over expected utilities. The main conclusion here is
that the actual deep and breadth of the decision tree
under consideration is of large importance for the in-
terpretation of the result. We will also see that the
detailed shapes of the distributions are not utterly
important compared with this and approximates are
sufficient.

4.1 Distributions over Information Frames

Interval estimates can be considered as special cases of
representations based on distributions over polytopes.
For instance, a distribution can be defined to have a
positive support only for xi ≤ xj . More formally, the
solution set to a probability or utility constraint set is
a subset of a unit cube since both variable sets have
[0, 1] as their ranges. This subset can be represented
by the support of a distribution over the cube.

Definition 5. Let a unit cube be represented by B =
(b1, . . . , bn). The bi can be explicitly written out to
make the labelling of the dimensions clearer. (More
rigorously, the unit cube should be represented by all
the tuples (x1, . . . , xn) in [0, 1]n.)

Definition 6. By a second-order distribution over B,
we denote a positive distribution F defined on the unit
cube B such that

∫

B

F (x) dVB(x) = 1 ,

where VB is the n-dimensional Lebesque measure on

B. The set of all second-order distributions over B is
denoted by BD(B).

For our purposes here, second-order probabilities are
an important sub-class of these distributions and will
be used below as a measure of belief, i.e. a second-
order joint probability distribution. Marginal distri-
butions are obtained from the joint ones in the usual
way.
Definition 7. Let a unit cube B = (b1, . . . , bn) and
F ∈ BD(B) be given. Furthermore, let B−

i =
(b1, . . . , bi−1, bi+1, . . . , bn). Then

fi(xi) =
∫

B−
i

F (x) dVB−
i

(x)

is a marginal distribution over the axis bi.

Such distributions can then straightforwardly be de-
fined over the information frames. However, regard-
less of the actual shapes of the distributions involved,
constraints such as

∑n
i=1 xi = 1 must be satisfied

since it is not reasonable to believe in an inconsis-
tent point such as (0.15, 0.25, 0.4, 0.3) if the vector is
supposed to represent a probability distribution over
four mutually exclusive outcomes. Therefore, a con-
venient and general way of modelling random weights
in [0, 1] is the Dirichlet distribution.
Definition 8. Let the notation be as above. Then the
probability density function of the Dirichlet distribu-
tion is defined as

fDir(p, α) =
Γ(
∑n

i=1 αi)
∏n

i=1 Γ(αi)
pα1−1
1 pα2−1

2 · · · pαn−1
n

on a set {p = (p1, . . . , pn) | p1, p2, . . . , pn ≥ 0,
∑

pi =
1}, where (α1, α2, . . . , αn) is a parameter vector in
which each αi is a positive parameter and Γ(αi) is the
Gamma function.

This distribution is particularly popular among
Bayesian statisticians because it is conjugate with re-
spect to the multinomial distribution, i.e. if we choose
the prior to be the Dirichlet distribution then the
posterior will also become Dirichlet. It is also con-
venient in the sense that it is not hard to choose
parameters to reflect our prior knowledge about the
weights p1, p2, . . . , pn. If we choose large values for
α1, α2, . . . , αn we obtain small variances, which reflect
a large measure of certainty about the probabilities
involved.

Formally, this probability density function does not
fulfil our requirement for a belief distribution, but as
demonstrated in [9], the issue with the dimension loss
can be solved using the the Dirac distribution, δp(x),
with pole at the point p.



Definition 9. Let A be a subset of a unit cube B,
and let f be a belief distribution in A. The natural
extension f̃A(x) of f with respect to A is defined by

f̃A(x) =
{

f(x) if x ∈ A
0 otherwise

Definition 10. Let A be a subset of B. A distribu-
tion gA over B is called a characteristic distribution
for A in B if

f(p) =
∫

B

δp(x)f̃A(x)gA(x) dVB(x)

for every belief distribution f over A, and for every
point p in A.

Now let A = {(p1, . . . , pn) | ∑n
i=1 pi = 1} and let gA

be a Dirichlet distribution. From distribution theory
follows that for every measurable subset A in a unit
cube B, there exists a characteristic distribution for
A in B. It also follows that f̃A(x) · gA(x) is a belief
distribution over B and equals 0 outside A.

4.2 Marginal Distributions

A marginal distribution of a Dirichlet distribution is
a beta distribution. For instance, if the distribution
is uniform, the resulting marginal distribution (over
an axis) is a polynomial of degree n − 2, where n is
the dimension of a cube B: let α1 = α2 = · · · = αn =
1. Then the Dirichlet distribution is uniform and the
marginal distribution is

f(xi) =
∫

B−
i

dVB−
i

(x) = (n − 1)(1 − xi)n−2 .

Example 1. The marginal distribution f(xi) of the
uniform Dirichlet distribution in a 4-dimensional cube
is

f(xi) =

1−xi
∫

0

1−y−xi
∫

0

6 dz dy = 3(1 − 2xi + x2
i )

= 3(1 − xi)2 .

This tendency is the result of a general phenomenon
that becomes more emphasised as the dimension in-
creases. As it will be discussed in the next section, this
observation of marginal probabilities is important for
the analysis of expected values in decision trees and
similar structures.

4.3 The Expected Value and its Variance

Consider a decision tree with only one level of events
and n alternatives. Let pi denote probabilities and ui

utilities of the consequences of an alternative Aj . We
assume that u1, u2, . . . , un can be considered as inde-
pendent random variables and we denote the mean
and the variance of ui by µi and σ2

i , respectively. We
also assume that p1, p2, . . . , pn are random variables in
the interval [0, 1] satisfying the condition

∑

i pi = 1.

Using the Dirichlet distribution, the expected value
of
∑n

i=1 piui can be calculated straightforwardly. Let
y below represent the (uncertain) expected utility of
the alternative Aj such that y =

∑n
i=1 piui. Then

E(y) = E

(

n
∑

i=1

piui

)

=
n
∑

i=1

E(pi)E(ui) =
n
∑

i=1

αi

α
µi

When calculating the variance, we have to take the
dependence of the pi-variables into account.

We use the convenient formula

Var(y) = E(y2) − E(y)2

where

E(y2) = E

⎛

⎝

(

n
∑

i=1

piui

)2
⎞

⎠

= E

(

n
∑

i=1

p2
i u

2
i

)

+ 2E

⎛

⎝

∑

i<j

pipjuiuj

⎞

⎠

=
n
∑

i=1

E(p2
i )E(u2

i ) + 2
∑

i<j

E(pipj)E(ui)E(uj)

=
n
∑

i=1

(E(pi)2 + Var(pi))(E(ui)2 + Var(ui))

+2
∑

i<j

(E(pi)E(pj) + Cov(pi, pj))µiµj

=
n
∑

i=1

(

α2
i

α2
+

αi(α − αi)
α2(α + 1)

)

(µ2
i + σ2

i )

+2
∑

i<j

(

αiαj

α2
− αiαj

α2(α + 1)

)

µiµj

=
n
∑

i=1

αi(αi + 1)
α(α + 1)

(µ2
i + σ2

i ) + 2
∑

i<j

αiαj

α(α + 1)
µiµj

where α =
∑

i αi, and

E(y)2 =

(

n
∑

i=1

αi

α
µi

)2

=
n
∑

i=1

α2
i

α2
µ2

i + 2
∑

i<j

αiαj

α2
µiµj



Figure 1: The decision tree in Example 2.

Combining these results yields the variance

Var(y) =

1

α2(α + 1)

(

n
∑

i=1

αi((α−αi)µ
2

i +α(αi+1)σ2

i )−2
∑

i<j

αiαjµiµj

)

For the uniform case, we obtain

E(y) =
n
∑

i=1

1
n

µi = µ̄

and

Var(y) =

1
n2(n + 1)

(

n
∑

i=1

((n − 1)µ2
i + 2nσ2

i ) − 2
∑

i<j

µiµj

)

Example 2. Let an information frame contain a de-
cision tree with two alternatives A1 and A2. As-
sume that each have five consequences Ci1, . . . , Ci5

with probabilities pij ∈ [0.1, 0.3], j = 1, . . . , 5, i = 1, 2
and with utilities u1j ∈ [0, 0.7], j = 1, . . . , 5, u2j ∈
[0.2, 1], j = 1, . . . , 5. This tree is shown in Figure
1. An interval analysis yields E(A1) ∈ [0, 0.7] and
E(A2) ∈ [0.2, 1]. The major overlap between the
two alternatives’ expected utility intervals, [0.2, 0.7],
makes it difficult to supply the decision-maker with
any advice. If, for example, the distributions over the
information frame are uniform, we can see that the
distribution of mass over the expected utility clearly
discriminates the alternatives. The expected values
are 0.35 and 0.6 and the variances are around 0.015.
Furthermore, in Figure 2 and Figure 3 the alternatives
are entirely separated already for 75% of the belief
mass (the darker areas). A comparison of the two al-
ternatives is further demonstrated in Figure 4, show-
ing the distribution over the difference E(A1)−E(A2).

If we do not know any specifics of the underlying dis-
tributions, we can utilise Chebyshev’s inequality which

Figure 2: Distribution over E(A1) in Example 2.

Figure 3: Distribution over E(A2) in Example 2.

Figure 4: Distribution over E(A1)−E(A2) in Example
2.



can be formulated in a number of different ways de-
pending on the application. The most common and
useful version is

P(|X − µ| > cσ) ≤ 1
c2

where X is a random variable with mean µ and stan-
dard deviation σ and c is an arbitrary constant. For
instance, if we want to determine a symmetric 95 %
interval around µ, we choose c =

√
20 = 4.47. For

many classical distributions, this approximation is un-
fortunately quite rough, even if it is possible to find
distributions where equality is attained. For instance,
the normal distribution satisfies P(|X−µ| > 1.96σ) =
0.05, which yields an interval being less than half as
wide as the Chebyshev approximation.

In any case, it should be noted that we can add infor-
mation to the decision tree by utilising second-order
information. Moreover, the distributions resulting
from multiplications generally have shapes very dif-
ferent from their marginal components and we will
further investigate this effect below. As will be seen,
this has some implications for trees deeper than one
level.

4.4 Aggregations

The characteristic of a decision tree is that the
marginal (or conditional) probabilities of the event
nodes are multiplied in order to obtain the joint prob-
ability of a combined event, i.e. of a path from the
root to a leaf. In the evaluation of a decision tree
the operations involved are multiplications and addi-
tions. There are therefore two effects present at the
same time when calculating expected utilities in deci-
sion trees. Those are additive effects (for joint prob-
abilities aggregated together with the utilities at the
leaf nodes) and multiplicative effects (for intermediate
probabilities).

One important effect is that multiplied distributions
become considerably warped compared to the corre-
sponding component distributions. Such multiplica-
tions occur in obtaining the expected utility in de-
cision trees and probabilistic networks, enabling dis-
crimination while still allowing overlap. Properties of
additions of components follow from ordinary convo-
lution, i.e. there is a strong tendency towards the
middle.

We will now investigate the combined effect and con-
sider how to put second-order information into use
to further discriminate between alternatives. The
main idea is not to require a total lack of overlap
but rather allowing overlap by interval parts carry-
ing little belief mass, i.e. representing a very small

part of the decision-maker’s belief. Then, the non-
overlapping parts can be thought of as being the core
of the decision-maker’s appreciation of the decision
situation, thus allowing discrimination. In addition,
effects from varying belief (i.e. differing forms of belief
distribution) should be taken into account.

Evaluations of expected utilities in trees lead to mul-
tiplication of probabilities using a type of “multiplica-
tive convolution” of two densities.

Let G be a distribution over the two cubes A and B.
Assume that G has a positive support on the feasible
probability distributions at level i in a decision tree,
i.e. is representing these (the support of G in cube
A), as well as on the feasible probability distributions
of the children of a node xij , i.e. xij1 , xij2, . . . , xijm

(the support of G in cube B). Let f(x) and g(y)
be the marginal distributions of G(z) on A and B,
respectively.

Definition 11. The cumulative distribution of the
two belief distributions f(x) and g(y) is

H(z) =
∫∫

Γz

f(x)g(y) dx dy =

1
∫

0

z/x
∫

0

f(x)g(y) dy dx =

1
∫

0

f(x)G(z/x) dx =

1
∫

z

f(x)G(z/x) dx ,

where G is a primitive function to g, Γz = {(x, y) |
x · y ≤ z}, and 0 ≤ z ≤ 1.

Let h(z) be the corresponding density function. Then

h(z) =
d

dz

1
∫

z

f(x)G(z/x) dx =

1
∫

z

f(x)g(z/x)
x

dx .

The addition of such products is analogous to the
product rule for standard probabilities and we can use
the ordinary convolution of two densities restricted to
the cubes. The distribution h on a sum z = x + y of
two independent variables associated with belief dis-
tributions f(x) and g(y) is therefore given by

h(z) =

z
∫

0

f(x)g(z − x) dx .

Example 3. Consider an information frame contain-
ing an alternative A1 with depth 3 and with 3 conse-
quences at each event node. Let p1i ∈ [0, 1], p1ij ∈



Figure 5: The upper one third of the decision tree in
Example 3.

Figure 6: Distribution over E(A1) in Example 3.

[0, 1], p1ijk ∈ [0, 1], u1ijk ∈ [0, 1], and i, j, k ∈ {1, 2, 3}.
This means that no numerical information, except
for the trivial constraints, is provided. Part of the
tree is shown in Figure 5. Looking at the upper and
lower bounds for the expected utility, we find that
E(A1) ∈ [0, 1]. If, for example, the second-order dis-
tributions over the information frame are uniform, we
find that the resulting distribution from each path is
−4(−12 + 12z − 6 ln(z)− 6z ln(z)− ln(z)2 + z ln(z)2)
and that, e.g., 90% of the mass is over the interval
[0.33, 0.67], see Figure 6.

As can be seen, second-order data, for instance in
terms of Dirichlet distributions, may provide impor-
tant information in decision evaluation. The example
above is taking a particular distribution into account,
but as in the previous discussion, these results apply
for all types of distributions.

5 Summary and Conclusions

In classic decision theory it is assumed that a decision-
maker can assign precise numerical values correspond-
ing to the true value of each consequence, as well as

precise numerical probabilities for their occurrences.
In attempting to address real-life problems, where un-
certainty in the input data prevails, some kind of rep-
resentation of imprecise information is important and
several have been proposed. In particular, representa-
tions such as sets of probability measures, upper and
lower probabilities, and interval probabilities and util-
ities of various kinds have been perceived as enabling
a better representation of the input sentences for a
subsequent decision analysis. However, higher-order
analysis can sometimes add important information to
the analysis, enabling further discrimination between
alternatives.

In this paper, we have discussed the effects of em-
ploying second-order information in decision trees. As
was seen from Definition 11, the multiplicative effects
on probabilities in decision trees increase with tree
depth. We have also shown that the multiplicative
and additive effects strongly influence the resulting
distribution over the expected values.

These effects combined yield a method that sometimes
can offer more discriminative power in selecting alter-
natives in decision trees. The main idea of the method
is to allow a small overlap where the belief mass is kept
under control. While the discussion focuses on prob-
abilistic decision trees, the results also apply to other
formalisms involving products of probabilities, such
as probabilistic networks, and to formalisms dealing
with other products of interval entities such as inter-
val weight trees in hierarchical multi-criteria decision
models.
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Abstract

This paper is devoted to the construction of sets
of joint probability measures for the case that the
marginal sets of probability measures are generated
by probability measures with uncertain parameters
where the uncertainty of these parameters is mod-
elled by random sets. Further we show how different
conditions on the choice of the weights of the joint
focal sets and on the probability measures associated
to these sets lead to different sets of joint probability
measures including the cases of strong independence,
random set independence and unknown interaction.

Keywords. Random sets, lower and upper proba-
bilities, sets of probability measures, parameterized
probability measures, sets of joint probability mea-
sures, strong independence, random set independence,
unknown interaction.

1 Introduction

Let a mapping

g : D ⊆ Rm −→ R : (x1, . . . , xm) 7→ g(x1, . . . , xm)

be given. The variables xk are assumed to be uncer-
tain where the uncertainty is modelled by sets of prob-
ability measures for each variable separately. What
we want to know is the lower and upper probabili-
ties if the value g(x), x = (x1, . . . , xm), is lower (or
greater) than a certain value. Therefore we had to
propagate the uncertainty of the variables xk through
this multivariate model g, c.f. [1].

As a short motivation we want to mention a few appli-
cations where this problem of propagating uncertain
variables is arising:

Reliability analyis: In this case the above mapping g
is the so called failure function where g(x) ≤ 0 means
failure and g(x) > 0 means no failure of buildings like
bridges and tunnels in civil engineering; or of slopes

and dams in geotechnical engineering. The aim is to
describe the risk of failure, that means we want to
have the upper probability P ({g(x) ≤ 0}) of failure.
The variables xk are parameters as elastic modulus
E, angle of friction φ or flood heights.

Construction management: Here the values of g(x)
are costs or durations which should not exceed a cer-
tain bound a where the variables xk are costs, dura-
tions or similar parameters as above. Then we want
to have the upper probability P ({g(x) ≥ a}).

In most cases all these variables are not precisely
known, especially parameters arsing in geotechnical
engineering are only very vaguely known. In engi-
neering there are several approaches used to describe
the uncertainty of these variables: wellknown ones as
probability distributions or intervals and more modern
ones as fuzzy sets and random sets. The uncertainty
of the variables is given separately and often modelled
by different ways. So a unifying approach is needed
to combine and propagate the different models of un-
certainty trough the function g. This is provided by
the concept of sets of probability measures where these
sets are generated by random sets which are including
the other three approaches (probability distributions,
intervals and fuzzy sets).

In some applications the type of probability distri-
butions to discribe the uncertainty of a variable is
known, e.g. gaussian distributions, exponential dis-
tributions in queueing theory, etreme value distribu-
tions in flood risk analysis, but the parameters of
these probability distributions are often only vaguely
known. In these cases we have to model the uncer-
tainty of the parameters of these distributions. So
we introduce here the concept of sets of probability
measures which are generated by parameterized prob-
ability measures where these parameters are uncertain
and the uncertainty is described by random sets. All
models of uncertainty mentioned before are special
cases of this concept.



Since the uncertainty of the variables is given sepa-
rately, we have to model the joint uncertainty, that
means to construct the set of joint probability mea-
sures. There are certain ways to generate such sets,
e.g. according to strong independence [2, 11] if we
assume stochastically independence of the variables,
or according to unknown interaction [2] if we do not
know how the variables interact, or according to ran-
dom set independence [3] since random sets are in-
volved. These cases are already studied for sets of
probability measures generated by random sets in
[5, 6, 7, 8]. Here in this paper we extend this to sets
of probability measures generated by parameterized
probability measures with uncertain parameters.

To propagate the uncertainty through a multivariate
model in a computational efficient way it is essen-
tial to make use of the structure of the random sets.
We show how different conditions on the parts of this
structure (on the choice of the weights of the joint
focal sets and on the probability measures associated
to these sets) lead to different sets of joint probability
measures. But our goal is not to create new artifi-
cial types of sets of joint probability measures, but to
get sets according to strong independence or unknown
interaction by using the random set structure.

The plan of this paper is as follows:

Section 2 is devoted to random sets and the parame-
terization of probability measures by random sets in
the univariate case. In Section 3 we construct sets
of joint probability measures which are generated by
probability measures which are parameterized by or-
dinary sets as preliminary work for Sec. 5. In Sec-
tion 4 we recall from [5, 7] the general formulation
for constructing sets of joint probability measures for
the case where random sets are involved and list dif-
ferent conditions on choosing the weights of the joint
focal sets and the probability measures associated to
these sets. In Section 5 we show that some of these
cases lead to strong independence, random set inde-
pendence and unknown interaction.

2 Sets of probability measures
generated by probability measures
parameterized by random sets

We want to model the uncertainty about the value of
a variable x by a convex set K of probability measures
in the univariate case. Here in this paper we generate
such sets K by a parameterized probability measure
p θ where θ = (θ1, θ2, . . . ) are the parameters of the
probability measure. These parameters are assumed
to be uncertain. The uncertainty of θ is modelled
by random sets. So we have to recall the concept of

random sets and sets of probability measures gener-
ated by random sets. Further we need two different
measurable spaces: (Ω,A) for the uncertain variable
itself and (Θ,A) for the uncertain parameters of the
probability measures.

2.1 Random sets

First we want to model the uncertainty of a variable
x by random sets. Let a measurable space (Ω,A) be
given. A random set (F,m) [3, 4] consists of a finite
class

F = {F 1, F 2, . . . , Fn} ⊆ A

of focal sets and of a weight function

m : F −→ [0, 1] : F 7→ m(F )

with
∑|F|

i=1 m(F i) = 1 where |F| is the number of fo-
cal sets. Then the plausibility measure Pl or upper
probability P of a set A ∈ A is defined by

P (A) = Pl(A) =
∑

F i∩A 6=∅

m(F i)

and the belief measure Bel or lower probability P by

P (A) = Bel(A) =
∑

F i⊆A

m(F i).

2.2 Sets of probability measures generated
by random sets

The focal set F i has the weight m(F i), but we do not
know how this weight is distributed on the elements of
the focal set which reflects the uncertainty modelled
by a random set. Let

K(F i) := {P : P (F i) = 1} (1)

be the set of all probability measures “on” the focal
set F i. Then m(F i)K(F i) is the set of all possible
distributions of the weight on the focal set. A con-
vex set of probability measures K is generated by the
random set (F,m) as follows [5]:

K : = K(F,m) :=
|F|∑
i=1

m(F i) K(F i) := (2)

=

P : P =
|F|∑
i=1

m(F i)P i, P i ∈ K(F i)

 .

This set K(F,m) coincides with the set of probability
measures defined by

{P : ∀A ∈ A : Bel(A) ≤ P (A) ≤ Pl(A)},



c.f. [3, 4, 10].

Remark: There is a second approach of defining ran-
dom sets: using multivalued mappings and measur-
able selections [9, 10]. This approach leads to a set
M of probability measures which is a subset of K and
which is not convex in general. The set of probabil-
ity measures associated to the measurable selctions
is PΩ(Γ) = {PX : X ∈ S(Γ)}, where Γ : Ω → A

is a multivalued mapping defined on a probability
space (Ω,A, PΩ). S(Γ) is the set of measurable selec-
tions of Γ, that means the class of random variables
X : Ω → Ω with X(ω) ∈ Γ(ω).

Now let PX ∈ P (Γ), X ∈ S(Γ), be given. Then

PX(A) = PΩ(X−1(A)) =
|Ω|∑
i=1

PΩ({ωi})χA(X(ωi))

=
|F|∑
i=1

m(F i)χA(ωi) =
|F|∑
i=1

m(F i)δωi(A)

with ωi = X(ωi) ∈ Γ(ωi) = F i and PΩ({ωi}) =
m(F i) where χA is the indicator function of A.

So in our above notation the set M would be generated
by

M := M(F,m) :=
|F|∑
i=1

m(F i) M(F i)

with

M(F i) = {δω : δω(F i) = 1} = {δω : ω ∈ F i} ⊆ K(F i)
(3)

where δω is the Dirac measure at ω ∈ Ω corresponding
to the selections. The connections between M and K

are discussed in [9, 10].

2.3 Sets of parameterized probability
measures

Now we generate the set K of probability measures
by a probability measure p θ on (Ω,A) which is pa-
rameterized by an uncertain θ. For modelling the un-
certainty of the parameter θ we need the following: A
measurable space (Θ,A) where Θ is the universal set
for θ, A a σ-Algebra and K a set of probability mea-
sures µ on (Θ,A). The σ-Algebra A has to be chosen
in a way that for all A ∈ A the mapping

θ 7→ p θ(A)

is A-measurable.

The set K is defined by

K := K(K, p θ) :=

{
P =

∫
Θ

p θ(·)µ(dθ) : µ ∈ K

}
.

(4)

Then the upper and lower probabilities for a set A ∈ A

is computed as follows:

P (A) = sup{P (A) : P ∈ K} = sup
µ∈K

∫
Θ

p θ(A) µ(dθ),

P (A) = inf{P (A) : P ∈ K} = inf
µ∈K

∫
Θ

p θ(A) µ(dθ).

In the following the set K is either a set of probability
measures generated by ordinary sets or by random
sets. The usage and meaning of the symbols K and K
is summarized in the following table:

notation set of probability measures
K(F ) on (Ω,A) generated by a set F
K(F ) on (Θ,A) generated by a set F
K(F,m) on (Ω,A) gen. by a random set (F,m)
K(F,m) on (Θ,A) gen. by a random set (F,m)
K(K, p θ) on (Ω,A) gen. by K and p θ as in (4)

and where K is either a K(F ) or K(F,m)

So K is always a set of probability measures on (Ω,A)
and K a set of probability measures on the parameter
space of θ, namely Θ.

2.4 Generation of K by probability measures
µ on ordinary sets F , K := K(F )

We take the set K := K(F ) of probability measures on
F ∈ A and K := K(K(F ), p θ) for the set K of proba-
bility measures which are generated by K(F ) and the
parameterized probability measure p θ. Then the up-
per and lower probability are given by

P (A) = sup
µ∈K(F )

∫
Θ

p θ(A) µ(dθ) = (5)

= sup
θ0∈F

∫
Θ

p θ(A) δθ0(dθ) = sup
θ0∈F

p θ0(A)

and P (A) = infθ0∈F p θ0(A). Further we have for the
special case (Θ,A) := (Ω,A) and p ω := δω:

K(F ) = K(K(F ), δω), (6)

because

K(K(F ), δω) =

{
P =

∫
Ω

δω(·)µ(dω) : µ ∈ K(F )

}
=

= {µ ∈ K(F )} = K(F ) = K(F )

and ω 7→ p ω(A) = δω(A) = χA(ω) is A-measurable
for all A ∈ A. So the set of probability measures
generated by an ordinary set is integrated into the
new concept.



2.5 Generation of K by random sets,
K := K(F,m)

Here we take K := K(F,m) and K := K(K(F,m), p θ).
A probability measure P ∈ K is written as follows:

P =
∫
Θ

p θ(·) µ(dθ) =

=
∫
Θ

p θ(·)

( |F|∑
i=1

m(F i) µi(dθ)

)
=

=
|F|∑
i=1

m(F i)
∫
Θ

p θ(·) µi(dθ) =
|F|∑
i=1

m(F i)P i

where µ ∈ K(F,m). µ =
∑|F|

i=1 m(F i)µi is a de-
composition of µ according to the focal sets and
P i =

∫
Θ

p θ(·)µi(dθ) is a probability measure in
K(K(F i), p θ). So for the set K(K(F,m), p θ) we also
can write

K(K(F,m), p θ) =
|F|∑
i=1

m(F i) K(K(F i), p θ) (7)

which is formula Eq. (2) but with K(F i) replaced by
K(K(F i), p θ). The set K(F i) used in Eq. (2) is a
set of probability measures on F i, but the probability
measures in the set K(K(F i), p θ) are only associated
to F i via the parameter θ.

Similar to the section above we have for the upper
and lower probability:

P (A) =
|F|∑
i=1

m(F i) sup
µi∈K(F i)

∫
Θ

p θ(A)µi(dθ) =

=
|F|∑
i=1

m(F i) sup
θ0∈F i

p θ0(A) =
|F|∑
i=1

m(F i)P
i
(A)

and

P (A) =
|F|∑
i=1

m(F i) inf
θ0∈F i

p θ0(A) =
|F|∑
i=1

m(F i)P i(A).

2.6 An example for p θ, gaussian distribution

(Ω,A) := (R,B(R)), (Θ,A) = (R×R>0,B(R×R>0)),
θ := (µ, σ2). The function

(µ, σ2) 7→ p(µ,σ2)(A) :=
∫
R

χA(x)
1√

2πσ2
e−

(x−µ)2

2σ2 dx

is continuous and therefore A-measurable. We com-
pute the upper and lower probability of the set A =
[a,∞) using a set K(F,m) to describe the uncertainty
of µ and σ2 with F i = [µ

i
, µi]× [σ2

i , σ
2
i ], i = 1, . . . , n,

as follows:

P
i
([a,∞)) =

{
p(µi,σ

2
i
)([a,∞)) µi ≥ a,

p(µi,σ
2
i )([a,∞)) otherwise,

and

P i([a,∞)) =

{
p
(µ

i
,σ2

i
)([a,∞)) µ

i
≤ a,

p
(µ

i
,σ2

i )([a,∞)) otherwise.

Then

P ([a,∞)) =
n∑

i=1

m(F i)P
i
([a,∞))

and

P ([a,∞)) =
n∑

i=1

m(F i)P i([a,∞)).

3 Sets of joint probability measures
generated by ordinary sets

3.1 Preliminaries

In this paper we restrict ourselves to the combina-
tion of only two sets of probability measures. In
the following we always need the measurable spaces
(Ω1,A1), (Ω2,A2) and (Ω,A) with Ω = Ω1 × Ω2 and
A = A1⊗A2 for the uncertain variables and (Θ1,A1),
(Θ2,A2) and (Θ,A) with Θ = Θ1 × Θ2 for the un-
certain parameters of the probabilty measures with
σ-Algebras such that mappings like θ 7→ p θ(A) are
measurable. A set A will be always in A.

The generation of a set of joint probability measures
by two marginal sets K1 and K2 of probability mea-
sures will be written as K(K1,K2). First we recall two
general ways of combining sets K1 and K2 of proba-
bility measures.

Unknown interaction: The set of joint probabil-
ity measures according to unknown interaction [2] is
generated by

KU := {P : P (· × Ω2) ∈ K1, P (Ω1 × ·) ∈ K2}. (U)

Strong independence: The set of joint probability
measures according to strong independence [2, 11] is
generated by

KS := {P1 ⊗ P2 : P1 ∈ K1, P2 ∈ K2} ⊆ KU. (S)



Notation for the corresponding probabilities:

P S(A) := sup{PS(A) : PS ∈ KS},
P S(A) := inf{PS(A) : PS ∈ KS},
PU(A) := sup{PU(A) : PU ∈ KU},
PU(A) := inf{PU(A) : PU ∈ KU}.

In the following we are analyzing very special cases of
sets of joint probability measures which is a prelimi-
nary work for Sec. 4 and 5 for dealing with the joint
focals sets in these sections.

3.2 Kk := K(Fk) = K(K(Fk), δωk
)

Given subsets Fk ∈ Ak, k = 1, 2, we generate the sets
KU and KS of joint probability measures by the sets
K(F1) and K(F2). KU(K(F1),K(F2)) is the set of
joint probability measures generated by the two sets
K(F1) and K(F2) of probability measures according to
(U). Since the marginals of all probability measures on
F1×F2 are in the sets K(F1) and K(F2), respectively,
we have KU(K(F1),K(F2)) = K(F1×F2). To get the
upper and lower probability PU(A) and PU(A) it is
sufficient to put a Dirac measure at the appropriate
place. Since a Dirac measure is a product measure we
get

P S(A) = PU(A) and PU(A) = P S(A).

Now we make a first step towards sets of joint prob-
ability measures generated by parameterized proba-
bilities doing the same for K

(
K(Fk), δωk

)
in the more

general notation. We already know that K(Fk) =
K
(
K(Fk), δωk

)
and therefore

KU = KU

(
K(F1),K(F2)

)
= K(F1 × F2) =

= K
(
K(F1 × F2), δω1 ⊗ δω2

)
.

Further we have for strong independence

KS = KS

(
K(F1),K(F2)

)
=

= KS

(
K(K(F1), δω1),K(K(F2), δω2)

)
=

= K
(
KS(K(F1),K(F2)), δω1 ⊗ δω2

)
,

because

PS(A) =
(
P1 ⊗ P2

)
(A) =

∫
Ω1

P2(Aω1)P1(dω1) = (8)

=
∫
Ω1

(∫
Ω2

∫
Ω2

χAω1
(ω2)δω′2

(dω2)µ2(dω′2)
)
P1(dω1) =

=
∫
Ω1

∫
Ω1

(∫
Ω2

∫
Ω2

χAω1
(ω2)δω′2

(dω2)µ2(dω′2)
)
·

· δω′1
(dω1)µ1(dω′1) =

=
∫
Ω1

∫
Ω2

(∫
Ω1

∫
Ω2

χAω1
(ω2) δω′2

(dω2)δω′1
(dω1)

)
·

· µ2(dω′2)µ1(dω′1) =

=
∫
Ω1

∫
Ω2

[(
δω′1

⊗ δω′2

)
(A)
]

µ2(dω′2)µ1(dω′1) =

=
∫

Ω1×Ω2

[(
δω′1

⊗ δω′2

)
(A)
]

µ(d(ω′1, ω
′
2))

with µ1 ∈ K(F1), µ2 ∈ K(F2), µ ∈ KS(K(F1),K(F2))
and Aω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ A}.

3.3 Kk := K(K(Fk), pθk

k )

Now we replace the Diracs by parameterized proba-
bility measures pθk

k and analyze the cases of strong
independence and unknown interaction.

3.3.1 Strong independence

Similar to Eq. (8) it holds:

PS(A) =
∫
Θ1

∫
Ω1

( ∫
Θ2

∫
Ω2

χAω1
(ω2)pθ2

2 (dω2)µ2(dθ2)

)
·

· pθ1
1 (dω1)µ1(dθ1) =

=
∫
Θ1

∫
Θ2

( ∫
Ω1

∫
Ω2

χAω1
(ω2) pθ2

2 (dω2)pθ1
1 (dω1)

)
·

· µ2(dθ2)µ1(dθ1) =

=
∫
Θ1

∫
Θ2

[(
pθ1
1 ⊗ pθ2

2

)
(A)
]

µ2(dθ2)µ1(dθ1).

So we get

KS = K
(
KS(K(F1),K(F2)), pθ1

1 ⊗ pθ2
2

)
.

3.3.2 Unknown interaction

For strong independence the joint probability mea-
sure generated by pθ1

1 and pθ2
2 was pθ1

1 ⊗ pθ2
2 , a single

probability measure. In case of unknown interaction
we would need the whole set of all possible joint prob-
ability measures on (Ω,A). Maybe on the other hand
we have more information how the joint probability
measure, say pθ, is generated by pθ1

1 and pθ2
2 than

how the parameters of the joint probability measure
interact. So we introduce the sets K(US) and K(Upθ)

of joint probability measures for which the choice of
µ is according to (U) and the choice of the joint pa-
rameterized probability measure is according to (S)
or defined by pθ.



Then it holds:

KS : = K
(
KS(K(F1),K(F2)), pθ1

1 ⊗ pθ2
2

)
⊆

⊆ K
(
KU(K(F1),K(F2)), pθ1

1 ⊗ pθ2
2

)
=

= K
(
K(F1 × F2), pθ1

1 ⊗ pθ2
2

)
=: K(US).

For the upper and lower probabilities we have

P S(A) = P (US)(A) und P S(A) = P (US)(A),

because we can obtain the upper and lower proba-
bilities from K(US) by means of Dirac measures in
K(F1 × F2) which are also in KS(K(F1),K(F2)).

4 General formulation of the
generation of sets of joint
probability measures by random
sets

Let random sets (Fk,mk), k = 1, 2, be given for mod-
elling the uncertainty of the variables x1 and x2. As a
consequence of Dempster’s rule of combination [3, 4]
the joint random set (F,m) is defined by

F = {F ij : i = 1, . . . , n1; j = 1, . . . , n2}

where
F ij := F i

1 × F j
2

and
m(F i

1 × F j
2 ) := m1(F i

1)m2(F
j
2 ) (9)

which is the case of random set independence (RS-
independence).

For our more general approach we start with the mul-
tivariate analogon of Eq. (2):

K? =
|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )K?(Ki
1,K

j
2)

where the question mark in K?(Ki
1,K

j
2) indicates the

possibility of different choices in combining the sets
of probability measures Ki

1 and K
j
2 associated with

the marginal focal sets F i
1 and F j

2 . Further we have
to define how the joint weights m(F i

1 × F j
2 ) are com-

puted (perhaps not in the way of Eq. (9)) and to
think about possible interactions between probability
measures in the different sets K?(Ki

1,K
j
2).

The consequences of these different choices are dif-
ferent sets of joint probability measures K? and the
goal is to generate sets according to strong indepen-
dence, unknown interaction and RS-independence. In
the following we describe the different choices we have
for the above formula and discuss their consequences
for the set of joint probability measures.

4.1 The choice of the joint weights
m(F i

1 × F j
2 )

The weights m1 and m2 are discrete probability
measures on the sets of focal sets {F 1

1 , . . . , Fn1
1 },

{F 1
2 , . . . , Fn2

2 } respectively. So if we want to choose
the joint focal sets in a stochastically independent
way, then m = m1 ⊗m2 which means m(F i

1 × F j
2 ) =

m1(F i
1)m2(F

j
2 ) for all i, j. If we do not know how m1

and m2 interact, we allow all possible combinations,
that means unknown interaction.

Case (U−−): Unknown interaction, m must satisfy
the following conditions:

m1(F i
1) =

|F2|∑
j=1

m(F i
1 × F j

2 ), i = 1, . . . , |F1|,

m2(F
j
2 ) =

|F1|∑
i=1

m(F i
1 × F j

2 ), j = 1, . . . , |F2|.

In this case m is not uniquely defined and is deter-
mined later on by solving an optimization problem
for the lower or upper probabilities.

Case (S−−): Stochastic independence:

m(F i
1 × F j

2 ) := m1(F i
1)m2(F

j
2 ).

4.2 The choice of P ij, Kij, respectively

P ij ∈ Kij is a probability measure associated to the
joint focal set F i

1 × F j
2 . How a P ij looks like depends

on how Kij is constructed from Ki
1 and K

j
2.

Case (−U−): K
ij
U := KU(Ki

1,K
j
2)) which is the set

of all joint probability measures generated by the sets
Ki

1 and K
j
2 according to condition (U).

Case (−S−): K
ij
S := KS(Ki

1,K
j
2) which is the set

generated according to strong independence (S).

4.3 The choice of interactions between the
P ij

Case (−−1): Row- and columnwise equality condi-
tions on the marginals of the probability measures on
the joint focal sets:

P i
1 := P i,i1

1 = · · · = P i,in2
i , i = 1, . . . , n1,

P j
2 := P j,1j

2 = · · · = P j,n1j
i , j = 1, . . . , n2

where

P i,ik
1 = P ik

1 (· × Ω2) and P j,kj
2 = P kj

2 (Ω1 × ·).

This condition seems to be very artificial, but we need
this to get results according to strong independence
later on.



Case (−−0): No interactions, this means that we
can choose a P ij ∈ Kij on F i

1 × F j
2 irrespective of the

probability measures chosen on other joint focal sets.

Remark: It is clear that it should hold that the con-
vex sum

∑
k

1
m1(F i

1)
m(F i

1 × F j
2 )P i,ik

1

is in Ki
1. This is always true for convex sets Ki

1 of
probability measures, but for sets which are generated
by measurable selections (see Eq. (3)) it is not true
in general. In this case one should introduce a more
restrictive condition than (−−1).

4.4 The choice of the joint marginals

We emphasize that the choice of the Cartesian prod-
ucts F i

1 × F j
2 as joint focals is no restriction of gener-

ality. Joint focal sets V ⊆ F i
1 × F j

2 of arbitrary shape
can be subsumed in our approach by restricting sets of
joint probability measures on F i

1 × F j
2 to those whose

support lies in V . Such subsets would describe spe-
cific types of dependence or interaction between the
marginal focal sets F i

1 and F j
2 . But such interactions

are not investigated in this paper.

5 The different cases

Now we will discuss combinations of the above cases
which lead to random set independence, unknown in-
teraction, strong independence. The cases are indi-
cated by indices of the form (ABC) where for exam-
ple (SU0) means m according (S−−), P ij according
to (−U−) and no interaction between the P ij .

We want to stress that again, that it is not our goal
to introduce a number of eight (all possible combina-
tions) new types of joint probability measures, but to
identify the combinations which leads to the desired
types of sets joint probability measures. We do this
for RS-independence, unknown interaction and strong
independence. In this very technical part we first re-
call for each of these types the case where “pure ran-
dom sets” are used, that means the case where no pa-
rameterized probabilities are involved. Then we gen-
eralize the results to the case of parameterized prob-
abilities. So the sets Ki

k are first sets of probability
measures K(F i

k) and then in a second part replaced by
sets K(K(F i

k), p θ) associated with the marginal focal
set F i

k.

5.1 (SU0), (SS0) and RS-independence

5.1.1 General formulation

The sets KSU0 and KSS0 of joint probability measures
are generated by

KSU0 =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )KU(Ki

1,K
j
2)

KSS0 =
|F1|∑
i=1

|F2|∑
j=1

m2(F
j
2 )m2(F

j
2 )KS(Ki

1,K
j
2).

5.1.2 Ki
1 := K(F i

1), K
j
2 := K(F j

2 )

We obtain the upper probability P SU0(A) for a set
A ∈ A by

P SU0(A) =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )P

ij

U(A)

where

P
ij

U(A) = sup
{
P ij

U (A) : P ij
U ∈ KU(K(F i

1),K(F j
2 ))
}

and
KU(K(F i

1),K(F j
2 )) = K(F i

1 × F j
2 ).

So P
ij

U(A) is computed very easily by

P
ij

U(A) = sup{δω(A) : ω ∈ F i
1 × F j

2 } =

=

{
1 ∃ ω ∈ A ∩ F i

1 × F j
2 ,

0 else

which leads to the formula for the joint plausibility
measure

PR(A) := PSU0(A) = Pl(A) =
∑

i,j: F i
1×F j

2∩A 6=∅

m1(F i
1)m2(F

j
2 )

which is the joint upper probability in the case of RS-
independence indicated by the index R. Further we
have P SU0 = P SS0 because

δω = δ(ω1,ω2) = δω1 ⊗ δω2 .

is a product measure (case (−S−)). Similar to the
upper probability we get for the lower probability

PR := Bel = P SU0 = P SS0.

Contrary to the above equalities we have for the cor-
responding sets of joint probability measures only

KR := KSU0 ⊇ KSS0.



5.1.3 Ki
1 := K(K(F i

1), p
θ1
1 ), K

j
2 := K(K(F j

2 ), pθ2
2 )

An idea would be to define KR by KSU0 as before
[6], but then we have the same problem as in Sec.
3.3.2. So another possibility would be to define KR :=
KS(US)0 or KR := KS(Upθ)0.

We start with the case of (SS0) and get

KSS0 =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 ) K

ij
S

⊆
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )Kij

(US) =

=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )·

·K
(
K(F i

1 × F j
2 ), p θ1

1 ⊗ p θ2
2

)
=

= K
(
K(F,m), p θ1

1 ⊗ p θ2
2

)
=: KS(US)0 =: KR,

with K
ij
S := KS

(
K(K(F i

1), p
θ1
1 ),K(K(F j

2 ), p θ2
2 )
)

and
K

ij
(US) := K

(
K(F i

1×F j
2 ), pθ1

1 ⊗pθ2
2

)
and Eq. (7). (F,m)

is the joint random set according to RS-independence.
KS(SU)0 is the set of probability measures where
the parameterized probability measure is the prod-
uct measure, but the uncertainty of the parameters of
this poduct measure is discribed by the set K(F,m)
of joint probability measures which are generated by
the random set describing the uncertainty of θ1 and
θ2.

For the upper and lower probabilities we have P SS0 =
P S(US)0 and P SS0 = P S(US)0 by the same arguments
as in Sec. 3.3.2.

5.2 (UU0), (US0) and unknown interaction

5.2.1 Ki
1 := K(F i

1), K
j
2 := K(F j

2 )

Let KUU0 be the set of probability measures generated
according to case (UU0). A computational method for
PUU0(A) is obtained in the following way:

PUU0(A) =
|F1|∑
i=1

|F2|∑
j=1

m∗(F i
1 × F j

2 ) P
ij

U(A) =

=
∑
i,j:

F i
1×F j

2∩A 6=∅

m∗(F i
1 × F j

2 ),

where P
ij

U(A) is computed by the same Dirac mea-
sures as for PR and the weights m∗ by solving the
following linear optimization problem:∑

i,j:

F i
1×F j

2∩A 6=∅

m(F i
1 × F j

2 ) = max!

subject to condition (U−−). Minimization instead of
maximization leads to lower probability PUU0(A).

The set KUU0 is just the set of probability measures
which is generated by the least restrictive conditions
on m and P ij . It is proven in [5, 6] that KU = KUU0.

By the same arguments as in the previous cases we
get PU = PUU0 = PUS0 and PU = PUU0 = PUS0.

5.2.2 Ki
1 := K(K(F i

1), p
θ1
1 ), K

j
2 := K(K(F j

2 ), pθ2
2 )

Similar to Sec. 5.1.3 we can define sets

KUU0 =
|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )·

·KU

(
K(K(F i

1), p
θ1
1 ),K(K(F j

2 ), p θ2
2 )
)

KUS0 =
|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )·

·K
(
KS(K(F i

1),K(F j
2 )), p θ1

1 ⊗ p θ2
2

)
KU(US)0 =

|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 )·

·K
(
K(F i

1 × F j
2 ), p θ1

1 ⊗ p θ2
2

)
,

where in addition the joint weights can be choosen
according to (U−−); and it also holds
PUS0(A) = PU(US)0, PUS0(A) = PU(US)0 and
KUU0 ⊇ KU(US)0 ⊇ KUS0.

But unfortunately we do not have KU = KUU0 in
general what we show in the following example.

Example:

The sets K1 and K2 of probability measures are given
by

K1 = K(F1,m1) = K(K(F1,m1), δω)

and

K2 = K(K(F2,m2), pθ2
2 )

where pθ2
2 is defined by pθ2

2 ({0}) = θ2 and
pθ2
2 ({1}) = 1− θ2 and where

Ω1 = Ω2 = {0, 1}, Ω = Ω1 × Ω2

F1 = {{0}, {1}}, m1({0}) = m1({1}) = 1
2 ,

F2 = {{ 1
2}}, m2({ 1

2}) = 1.

In this very special example both marginal sets of
probability measures have only one element, namely
the discrete uniform distribution on {0, 1}:

K1 = {P 1
1 }, K2 = {P 1

2 }, P1 = P2 and

P1({0}) = P1({1}) = 1
2 .

But this uniform distribution is “generated” by two
different ways:



1. As a degenerated random set where the two focal
sets are singletons.

2. As a realization of the parameterized probability
measure pθ2

2 with a parameterization by a random
set with only one focal set.

The sets of probability measures associated with the
marginal focal sets are given by

K1
1 = {P 1

1 }, P 1
1 ({0}) = 1,

K2
1 = {P 2

1 }, P 2
1 ({1}) = 1,

K1
2 = {P 1

2 } = {P2}.

Now we determine the joint focal sets and weights:

F = {F 11, F 21} with F 11 = {(0, 1
2 )}, F 21 = {(1, 1

2 )},

m(F 11) = m(F 21) = 1
2 .

Since |F2| = 1 the joint weights are uniquely deter-
mined independent of (S−−) or (U−−).

The sets of probability measures associated with the
joint focal sets:

K11
U = KU(K1

1,K
1
2) = KU(P 1

1 , P 1
2 ) = {P 11

U } with

P 11
U ({(0, 0)}) = P 11

U ({(0, 1)}) = 1
2

and

K21
U = KU(K2

1,K
1
2) = KU(P 2

1 , P 1
2 ) = {P 21

U } with

P 21
U ({(1, 0)}) = P 21

U ({(1, 1)}) = 1
2 .

Let A = {(0, 0), (1, 1)}. Then

PUU0(A) = m(F 11)P 11
U (A) + m(F 21)P 21

U (A) =

= 1
2P 11

U ({(0, 0)}) + 1
2P 21

U ({(1, 1)}) =

= 1
2

1
2 + 1

2
1
2 = 1

2 .

But it is clear that

PU(A) = sup{PU(A) : PU ∈ KU(K1,K2)} = 1 for
PU defined by PU({(0, 0)}) = PU({(1, 1)}) = 1

2 .

5.3 The case (SS1), strong independence

5.3.1 Ki
1 := K(F i

1), K
j
2 := K(F j

2 )

We write a probability measure PSS1 ∈ KSS1 in the
following way:

PSS1(A) =
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 ) (P i

1 ⊗ P j
2 )(A) =

=

( |F1|∑
i=1

m1(F i
1)P i

1

)
⊗

( |F2|∑
j=1

m2(F
j
2 ) P j

2

)
(A) =

= (P1 ⊗ P2)(A) = PS(A)

with P1 ∈ K(F1,m1) and P2 ∈ K(F2,m2). This leads
to

KSS1 = KS =

=
{
P1 ⊗ P2 : P1 ∈ K(F1,m1), P2 ∈ K(F2,m2)

}
which is the case of strong independence.

Computational method:

Theorem 1. The upper probability P S(A) is the so-
lution of the following global optimization problem:

|F1|∑
i=1

|F2|∑
j=1

m(F i
1 × F j

2 ) χA(ωi
1, ω

j
2) = max!

subject to

ωi
1 ∈ F i

1, i = 1, . . . , |F1|,
ωj

2 ∈F j
2 , j = 1, . . . , |F2|,

where χA is the indicator function of the set A. The
lower probability P S(A) is obtained by minimization.

Proof: see [5, 8].

In general it is very hard to solve the above optimiza-
tion problem because there may be many local max-
ima (or minima) and because the objective function
is not continuous. Criteria when we have P S = PR

are given in [6]. In this case we automatically get P S

by using the computationally cheaper PR.

5.3.2 Ki
1 := K(K(F i

1), p
θ1
1 ), K

j
2 := K(K(F j

2 ), pθ2
2 )

It holds

PS(A) = PSS1(A) =
(
P1 ⊗ P2

)
(A) =

=

( |F1|∑
i=1

m1(F i
1)P

i
1

)
⊗

( |F2|∑
j=1

m2(F
j
2 )P j

2

) (A) =

=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )
(
P i

1 ⊗ P j
2

)
(A) =

=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )·

·
∫
Θ1

∫
Θ2

( ∫
Ω1

∫
Ω2

χAω1
(ω2) p θ2

2 (dω2)p θ1
1 (dω1)

)
·

· µj
2(dθ2)µi

1(dθ1) =



=
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )·

·
∫
Θ1

∫
Θ2

[(
p θ1
1 ⊗ p θ2

2

)
(A)
]

µj
2(dθ2)µi

1(dθ1) =

=
∫
Θ1

∫
Θ2

[(
p θ1
1 ⊗ p θ2

2

)
(A)
]

µ2(dθ2)µ1(dθ1) =

=
∫

Θ1×Θ2

[(
p θ1
1 ⊗ p θ2

2

)
(A)
]
µ(d(θ1, θ2))

with µ ∈ KS(K(F1,m1),K(F2,m2)), µi
1 ∈ K(F i

1), µj
2 ∈

K(F j
2 ), µ1 ∈ K(F1,m1) and µ2 ∈ K(F2,m2).

Computational method:

We get the following optimization problem for the
computation of P S(A) and P S(A), respectively:
|F1|∑
i=1

|F2|∑
j=1

m1(F i
1)m2(F

j
2 )
(
p

θi
1

1 ⊗ p
θj
2

2

)
(A) = sup! (inf!)

subject to θi
1 ∈ F i

1 and θj
2 ∈ F j

2 . Proof: see [6].

6 Summary

We summarize the results where parameterized prob-
abilities are involved: Fig. 1 depicts the relations
between the sets of joint probability measures. For
the upper probabilities see Fig. 2. There are three
differences to the results for “pure random sets” in
[5].

1. KUU0 is only a subset of KU in general.
2. New cases induced by (−(US)−) which coincide

with (−U−) for “pure random sets” because of
the Dirac measures.

3. Generalization of the computational method for
P S and P S.

KUS0⊇KU(US)0⊇KU ⊇ KUU0

⊆⊆⊆

KSS0⊇KR := KS(US)0⊇KSU0

⊆

KS = KSS1

Figure 1: Relations between the sets of probability
measures.

PUS0=PU(US)0≥PU ≥ PUU0

≤≤≤

P SS0
=PR := P S(US)0≥P SU0

≤

P S = P SS1

Figure 2: Relations between the upper probabilities.
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Abstract

Previous works ([5][6][8])) have presented a frequen-
tist interpretation of sets of measures as probabilis-
tic models which have denominated chaotic models.
Those models, however, dealt only with sets of prob-
ability measures on finite algebras, that is, probabil-
ity measures which can be related to variables with a
finite number of possible values. In this paper, an ex-
tension of chaotic models is proposed in order to deal
with the more general case of real-valued variables.

Keywords. Imprecise probabilities, foundations of
probability, chaotic probability models, frequentist in-
terpretation.

1 Introduction

In a series of papers ([5][6]), we presented the first
steps towards a frequentist interpretation of sets of
measures as probability models, which we have called
chaotic probability models in order to distinguish them
from other plausible interpretations. This work was
coherently presented in [4] and extended by Rêgo and
Fine in [8]. In our previous work, we presented chaotic
models as simply sets of probability measures whose
domain is a finite set of events. In this sense, we may
associate chaotic probability models to discrete “ran-
dom”1 variables with finite range (e.g., the outcome
of the flipping of a coin or the tossing of a die). In this
paper, we present a simple approach to the extension
of chaotic probability models to real-valued variables
(e.g., tomorrow’s minimum temperature).

The paper is organized as follows. Section 2 presents
some concepts of the previous work which are needed
for this paper. In Section 3, we provide the basic mo-
tivation behind the model which is described in Sec-
tion 4. In the latter Section, we also show that such

1We use quotation marks to denote the difference between
these chaotic variables and the usual understanding of random
variables.

a model is plausible. Section 5 is devoted to present
extensions for this framework of the concepts of visi-
bility and temporal homogeneity defined in previous
works. Finally, in Section 6 we discuss the results pre-
sented in this paper and suggest future lines of work.

2 Variables with finite range

We need to recall the interpretation of chaotic proba-
bility models for variables with finite range ([6][4][8]).

2.1 An Instrumental Description of the
Model

The instrumental (that is, without commitment to
reality) description of chaotic probability models pre-
sented in earlier works is basically preserved in this
paper. Let X be a finite sample space. We denote
by X∗ the set of all finite sequences of elements taken
in X. A particular sequence of n samples from X
is denoted by xn = {x1, x2, · · · , xn}. P denotes the
set of all measures on the power set of X. A chaotic
probability model M is a subset of P and models the
“marginals” of some process generating sequences in
X∗.

Given any n ∈ N, consider the generation of a se-
quence xn of length n by the following algorithm2:

FOR k = 1 TO k = n

1. Choose ν = F (xk−1) ∈ M.

2. Generate xk according to ν.

where F : X∗ → M is a function corresponding to the
decisions causally made by the algorithm at each step.
Let νk = F (xk−1). For any k ≤ n, F determines the
probability distribution of the potential kth outcome
Xk of the sequence,

(∀A ⊆ X) P
(
Xk ∈ A|Xk−1 = xk−1

)
= νk(Xk ∈ A).

2We denote the empty string by x0.



The probability of a particular realization xn of a se-
quence of random variables Xn is given by

P (X1 = x1, . . . , Xn = xn) =
n∏

k=1

νk(Xk = xk).

We denote by M∗ the family of all such process mea-
sures P , one for each possible function F . From the
analysis of data, we do not expect in general to be
able to pinpoint a single P ∈ M∗ or even a small
subset of M∗, what we call a fine-grained picture
of the source. On the contrary, we expect our know-
able operational quantities to be (large) subsets
of M∗ which provide an appropriate coarse-grained
description of the source.

2.2 Data analysis and estimation

We begin the study of a sequence xn ∈ X∗ by analyz-
ing it into several subsequences. These subsequences
are selected by rules that satisfy the following
Definition 1. A computable function ψ : X∗ →
{0, 1} is a causal subsequence selection rule (also
known as a Church place selection rule) if for any
xn ∈ X∗, xk is the j-th term in the generated subse-
quence xψ,n, of length λψ,n, whenever

ψ(xk−1) = 1,
k∑

i=1

ψ(xi−1) = j, λψ,n =
n∑

k=1

ψ(xk−1).

Let Ψ = {ψα} be a set of causal subsequence selection
rules. For each ψ ∈ Ψ, we study the behavior of the
relative frequency of marginal events along the cho-
sen subsequence. That is, given xn and a selection
rule ψ ∈ Ψ we determine the frequentist empiri-
cal (relative frequency) measure µ̄ψ,n along the
subsequence xψ,n through

(∀A ⊂ X) µ̄ψ,n(A) =
1

λψ,n

n∑

k=1

IA(xk)ψ(xk−1),

where IA(·) is the indicator function of the event A.

A family of subsequence selection rules Ψ is key to our
understanding of a chaotic probability model as given
by a set of measures M. It has been proved that:

• so long as we restrict to a family of causal se-
lection rules of moderate size, we can with high
probability avoid extracting arbitrary patterns
through some of the selected subsequences and
instead exhibit the patterns that have inductive
validity (see [6] and [4]).

• chaotic probability models M can be estimated
from the empirical relative frequency measures if

the appropriate family of subsequence selection
rules is chosen (see [6] and [4] ). Rêgo and Fine
[8] showed how to choose a universal family of
place selection rules to make the model visible.

• the visibility (possibility of estimation) of a
chaotic probability model M depends strongly
on the choice of the subsequence selection family,
i.e., there are cases where M can be estimated by
a family Ψ0 while another family Ψ1 only “sees”
one measure in ch(M) (see [6] and [4]).

3 Motivation

In what follows, we shall assume that (X,X ) is a mea-
surable space and that P is the set of all probability
measures on X . A chaotic probability model is repre-
sented mainly by a set M ⊂ P.

The instrumental description of chaotic probability
models summarized in Section 2.1 can be extended to
variables with infinite (even uncountable) range with-
out changes. Therefore, the problem of the extension
of chaotic probability models to more general spaces
lies on the task of making such models “visible” (in
an intuitive sense) when they are represented as in
Section 2.1.

One possibility is to allow, as in the finite case, for
the estimation of the measures in M by means of the
empirical relative frequencies:

µ̄ψ,n(A) =
1

λψ,n

n∑

k=1

IA(xk)ψ(xk−1).

The difficulty then becomes the choice of the sets
A ⊂ X that should be used. For, in general, it is
impossible to compute µ̄ψ,n(A) for all A in a σ-field.
Furthermore, it may make no sense at all to try to
assess such a fine-grained model.

We may also charge the statistician with the respon-
sibility of choosing a collection of subsets A ⊂ X ade-
quate for the problem at hand. If we follow this path,
we may as well allow for greater generality by let-
ting the practitioner to choose a suitable finite family
F of real-valued bounded measurable test functions
f : X → R and proceeding to the estimate by means
of the empirical relative frequencies

µ̄ψ,n(f) =
1

λψ,n

n∑

k=1

f(xk)ψ(xk−1).

We may conceive these functions as those which are of
actual interest for the problem at hand. We may also
understand the family of functions F together with
the family of subsequence selection rules Ψ as a rep-
resentation of the discernment power of the observer



or, at least, of the coarse-grainedness appropriate for
the model. In particular note that if we restrict our-
selves to bounded test functions, the family F may
contain indicator functions of the type IA, A ⊂ X.

From a technical viewpoint, the trick is simple: we
substitute the finite algebra of events related to a dis-
crete variable by a finite set of test functions applied
to a real variable. With this idea in mind, all previous
results (e.g., those in [6]) can be easily extended, as
it is shown in Section 5.

3.1 Test functions as gambles

From a behavioral stand, we may also consider F as
a collection of gambles in the sense of Peter Walley:

“A gamble is a bounded real-valued function
on Ω [the sample space] which is interpreted
as a reward.” ([11], Chapter 2)

Therefore, from this point of view, the estimates
µ̄ψ,n(f) can be understood as estimates of the set
of linear previsions dominating a coherent lower pre-
vision based on the gambles F (see [11], especially
Chapters 2 and 3).

There is, however, a key difference with some of the
work of Peter Walley in [11] in the sense that we are
not interested in pursuing an equivalent to the natural
extension in our framework. We assume that a finite
set of test functions (or gambles) F is enough for the
purposes of a given problem. In other words, we do
not feel compelled to make probabilistic assessment
over anything else than F.

If we take the discussion in the last paragraph one step
further, we may allow to specify a chaotic probability
model by, not a precise set of probability measures
M, but by a collection of “previsions” Pr defined as

(∀f ∈ F)Pr(f) ⊂ R, Pr = {Pr(f) : f ∈ F} ,

and where, intuitively,

Pr(f) = {µ(f) : µ ∈ M}
for some unspecified set M.

There is another difference with the work of Peter
Walley: we consider only countably additive linear
previsions P. Theorem 3.6.1 of Walley [11] shows
that there is a one to one correspondence between
the coherent lower previsions on the domain of the
bounded gambles and the non-empty weak*-compact
convex subsets M of Pl, the set of all linear previsions.
Although Pl is the weak*-closure of P, the latter is
strictly contained in the former if the sample space X
is infinite (see [11], Appendix D and Section 3.6.8).

Since we do not desire to follow closely any behavioral
interpretation and in order to avoid confusion, we con-
tinue to refer to the elements of F as test functions
rather than gambles.

3.1.1 Gambling with nature

Shafer and Vovk ([10]) present a game-theoretic in-
terpretation of probabilistic reasoning where there are
three players:

1. Nature: It determines what may happen in the
world, that is, the outcomes of a given game.

2. Modeler: Modeler suggests a theory about how
Nature behaves. Based on this theory, Modeler
proposes a game to Skeptic.

3. Skeptic: Skeptic tries to show that Modeler’s
theory is wrong by betting on the proposed game.
If Modeler’s theory is “correct”, Skeptic should
not be able to make a high profit (with “not-too-
low probability”).

It is easy to see a relationship between the work
presented here and the theory of Shafer and Vovk.
Modeler has an instrumental understanding of how
Nature works (see Section 2.1): There is a certain set
of measures M ⊂ P such that

FOR k = 1 TO k = n

1. Nature chooses ν ∈ M based on
xk−1.

2. Nature generates xk according to
ν.

Note that Nature is causal, but not necessarily marko-
vian. Also note that Modeler does not need to know
the set M, but Modeler does know {µ(f)}µ∈M for all
f ∈ F. Based on this understanding of Nature’s be-
havior, Modeler proposes any of the following gambles
to Skeptic:

Skeptic’s initial capital is K0 = 0.

Skeptic chooses f ∈ F.

FOR k = 1 TO k = n

1. Skeptic chooses θk ∈ {0, 1} based on
xk−1.

2. Nature generates xk.

3. Skeptic’s capital is now

Kk = Kk−1 + θk

(
f(xk)− sup

µ∈M
µ(f)

)
.



Note that Skeptic’s sequence of bets {θk} can be as-
sociated with a causal subsequence selection rule ψ
(see Def. 1), if Skeptic can only use computable
strategies. Note also that, if Skeptic needs to keep
track of his capital, he must be able to compute his
earnings. One necessary (but not sufficient) require-
ment for this is that the test functions be computable
in a reasonable sense (see Section 3.2). We shall come
back to this game in Section 4.

3.2 Computability of test functions and
place selection rules

One reasonable restriction on test functions is to ask
them to be computable, i.e., that their value can
be calculated. Also, place selection rules must be
able to output values in {0, 1} when having tuples of
real values as inputs. The problem then becomes to
find a reasonable definition of computable real-valued
functions with real-valued input variables. To our
knowledge, there are mainly two broad approaches
to such a definition in the area of computational anal-
ysis (see, e.g., [2] [1]). On one hand, there are the
traditional approach and its many variations and ex-
tensions which are based, loosely speaking, on the fol-
lowing ideas:

• Given a finite alphabet, say A, and an adequate
program M , a description of an element y of some
space Y is a finite string a = a1a2 · · · ak, ai ∈ A,
such that y = M(a).

• It may be the case that not all the elements of
some space have a description. However, an ele-
ment y is considered to be computable if there is
an approximating sequence of descriptions {ai},
i.e., the strings ai are such that the outputs
yi = M(ai) get increasingly closer to y.

• A function f : Y → Z is computable if for each
computable number y ∈ Y, with approximating
sequence {ai}, there is a program P such that
{P (ai)} is an approximating sequence of descrip-
tions for f(y) ∈ Z.

This approach models well scientific computations.
Moreover, most “calculator” functions (polynomials,
log(x),

√
x, etc.) are computable under this approach.

On the other hand, there is the Blum-Shub-Smale
(BSS) approach which is based on computing ma-
chines that can deal with elements of any field R (e.g,
R = R) and that are allowed to perform the field op-
erations (+, −, × and %) on R and can branch on
comparisons (<, >, ≤) between elements of R if it
is ordered. The fact that the BSS approach is very

useful in numerical modelling should not come as a
surprise.

Since we are focused on calculations that can be made
on any personal computer, we shall take the first ap-
proach to computability of real-valued functions.

3.2.1 Computable functions of real variable

The material in this section is taken from Weihrauch
[12] (see also [7]). There are other approaches which
are equivalent and quite powerful, for example, that
based on domain theory (see, e.g., Edalat [3]), but less
intuitive.

Let A be any finite alphabet. The finite strings of
elements of A will be denoted by A∗ and the infinite
sequences of elements of A will be denoted by A∞.

Definition 2. (Computability by Type 2 ma-
chines)

1. A Type 2 machine M is defined by two com-
ponents:

(a) a Turing machine with k one-way input
tapes (k ≥ 0), a single one-way output tape
and finitely many work tapes,

(b) a type specification (Y1, · · · ,Yk,Y0) with
{Y0, · · · ,Yk} ⊆ {A∗,A∞}.

2. The function ρM : (Y1 × · · · ×Yk) → Y0 com-
puted by the Type 2 machine M (the semantics
of M) is defined as follows:

(a) Case Y0 = A∗ (finite output):
ρM (y1, · · · , yk) = w iff M with input
(y1, · · · , yk) halts with result w on the output
tape.

(b) Case Y0 = A∞ (infinite output):
ρM (y1, · · · , yk) = p iff M with input
(y1, · · · , yk) computes forever writing the
sequence p on the output tape.

3. We say that a function ρ : (Y1 × · · · × Yk) →
Y0 is computable iff ρ = ρM for some Type
2 machine M . A sequence y is a computable
element of Y0 iff the 0-place function ρ : {()} →
Y0 with ρ() = y is computable.

Type 2 machines can be considered as a certain kind
of oracle Turing machines and computability with re-
spect to them is entirely classical. In order to extend
the concept of computability to functions, e.g., over
the reals, we need the concept of a naming system.
Indeed, objects like real numbers can be represented
(named) by finite or infinite sequences of finite alpha-
bets. For example, we can represent a real number



in [0, 1] by its (probably infinite) representation by a
binary sequence. These ideas are formalized in the
following

Definition 3. (Naming System. Reducibility)

1. A notation of a set X is a surjective function
ρ : A∗ → X (naming by finite strings).

2. A representation of a set X is a surjective
function ρ : A∞ → X (naming by infinite se-
quences).

3. A naming system of a set X is a notation or a
representation of X.

4. For functions γ : Y → X and γ′ : Y′ → X′

with Y,Y′ ⊆ {A∗,A∞}, we call γ reducible to
γ′, γ ¹ γ′, iff there exists a computable function
ρ : Y → Y′ such that (∀y ∈ dom(γ)) γ(y) =
γ′(ρ(y)). We say that γ and γ′ are equivalent,
γ ≡ γ′, iff γ ¹ γ′ and γ′ ¹ γ.

In order to clarify ideas, we present some common
naming systems:

• Binary representation of N: ρbin : {0, 1}∗ → N,
ρbin(a0a1 · · · ak) =

∑k
i=0 ai2i.

• Rational numbers: ρQ : {+,−} × {0, 1}∗ ×
{0, 1}∗ → Q, ρQ(s, bn, bd) = sρbin(bn)

ρbin(bd) .

• Interval Representation of R: Let SQ be the set
of all infinite sequences of triples (s, n, d) taken
from {+,−}×{0, 1}∗×{0, 1}∗. Then define ρint :
SQ × SQ → R by

ρint(a0a1a2 · · · , b0b1b2 · · · ) = x ⇔
⇔ lim

n→∞
ρQ(an) = lim

n→∞
ρQ(bn) = x

and

ρQ(a0) < ρQ(a1) < · · · < x <

< · · · < ρQ(b1) < ρQ(b0).

The latter naming system leads to the following

Definition 4. (Computable Real Numbers) x ∈
R is computable if it is ρint-computable.

The definition of naming systems leads to the exten-
sion of the definition of computable functions that we
need for this paper:

Definition 5. (Relative Computability)

1. For i = 0, 1, · · · , k, let γi : Yi → Zi be naming
systems. A function δ : Z1 × · · · × Zk → Z0

is (γ1, · · · , γk, γ0)-computable iff there is a Type
2-computable function (in the sense of Def. 2)
ρ : Y1 × · · · ×Yk → Y0 such that

δ(γ1(y1), γ2(y2), · · · , γk(yk)) =
= γ0(ρ(y1, y2, · · · , yk)),

whenever δ(γ1(y1), γ2(y2), · · · , γk(yk)) exists.

2. We say that a real-valued function of a real vari-
able is computable if it is (ρint, ρint)-computable.

One important consequence of the definition of com-
putability is that all computable functions are contin-
uous (see [12]).

We shall require all admissible test functions to be
computable. Some examples of real-valued com-
putable functions are: +, −, ×, 1/x, exp, log, sin,
cos, √ , min, max, etc.

We shall also require place selection rules to be com-
putable functions of tuples of real variables, in the
sense of Definition 5, which take only values in {0, 1}.
In other words, we shall require of a place selection
rule ψ to be (ρint, · · · , ρint)-computable, where ρint

appears k + 1 times, for each k ≥ 0.

We shall also need the following

Definition 6. (Computable Probability Mass
Function) Let (X,X ) be a measurable space, with
X containing the singleton sets. Then, we say that
a probability mass function on (X,X ) is computable
if each of the probability values is computable in the
sense of Def. 4.

4 Chaotic probability model

Let Ψ = {ψα} be a set of causal subsequence selec-
tion rules and F = {fβ} a collection of bounded real-
valued test functions. For each ψ ∈ Ψ, we study the
behavior of the relative frequency of (only) fβ along
the chosen subsequence. That is, given xn and a se-
lection rule ψ ∈ Ψ we determine the frequentist em-
pirical (relative frequency) measure µ̄ψ,n along
the subsequence xψ,n through

(∀f ∈ F) µ̄ψ,n(f) =
1

λψ,n

n∑

k=1

f(xk)ψ(xk−1).

In a similar manner, for all such rules ψ, we define the
time average conditional measure ν̄ψ,n (∀f ∈ F)

ν̄ψ,n(f) =
1

λψ,n

n∑

k=1

E
[
f(Xk)|Xx−1 = xk−1

]
ψ(xk−1).



Rewritten in terms of our instrumental understanding
of the measure selection function F ,

ν̄ψ,n(f) =
1

λψ,n

n∑

k=1

νk(f)ψ(xk−1),

where νk = F (xk−1). Note that, since we assume F
to be unknown, the time average conditional measure
ν̄ψ,n is also unknown. Since we want to expose some
of the structure of the chaotic probability model M
by means of the rules in Ψ, we are interested in how
good µ̄ψ,n is as an estimator of ν̄ψ,n.

Define the metric dF on P by

dF(ν, µ) = max
f∈F

|µ(f)− ν(f)|, (∀µ, ν ∈ P).

We call F-causally faithful a set of rules Ψ such that
any ψ ∈ Ψ yields a small value of dF(ν̄ψ,n, µ̄ψ,n) with
high probability. The existence of such a set of rules
is stated by
Theorem 1. Let m ≤ n and fix Ψ and F of finite car-
dinality, denoted by ‖Ψ‖ and ‖F‖ respectively. Then
(∀P ∈ M∗)

P

(
max
ψ∈Ψ

{dF(µ̄ψ,n, ν̄ψ,n) : λψ,n ≥ m} ≥ ε

)
≤

≤ 2‖F‖‖Ψ‖e−
ε2m2

8β2n ,

where
β = max

f∈F
sup
x∈X

|f(x)|.

The proof of the theorem is completely analog to that
of Theorem 1 in [6] (see also the appendix to Chapter
4 in [4]). The consequence of this theorem is that,
as long as we restrict to small-sized families of causal
selection rules we can with high probability avoid ex-
tracting arbitrary patterns through some of the se-
lected subsequences.

Recall the game in Section 3.1.1 proposed by Modeler
to Skeptic. If Modeler is right, the probability that
Skeptic becomes rich is very low. This is exactly
what the following result shows.
Lemma 1. Consider the game played by Modeler and
Skeptic. Then (∀ε > 0) (∀m ≤ n)

P (Kn ≥ mε) ≤ 2e−
ε2m2

8β2n ,

where
β = max

f∈F
sup
x∈X

|f(x)|.

The proof of this lemma follows along the same lines
as the proof of Theorem 1.

4.1 Collection of expected values as a model

In Section 3.1, we suggested the idea of taking the col-
lection of expected values as the actual model, defin-
ing implicitly the set of probability measures M. The
following Lemma shows that M defined in this way
has a particularly simple structure.

Lemma 2. Let (X,X ) be a measurable space and P
the set of all probability measures on it. Assume that
X contains the singletons. Let F = {f1, · · · , fN} be a
finite collection of real-valued bounded functions. Let
the set

Pr ⊂
[

inf
x∈X

f1(x), sup
x∈X

f1(x)
]
× · · ·

· · · ×
[

inf
x∈X

fN (x), sup
x∈X

fN (x)
]
⊂ R‖F‖

be given. Define a set of measures by

MPr = {µ ∈ P : (µ(f1), · · · , µ(fN )) ∈ Pr} .

Then, the measures in MPr are ε-indistinguishable
from measures with finite support in the sense that
for each ε > 0 there are points x1, · · · , xL(ε) in X
such that (∀µ ∈ MPr )(∃ν ∈ MPr ) such that

dF(µ, ν) ≤ ε, and
L(ε)∑

i=1

ν({xi}) = 1.

In other words, Lemma 2 tells us that, as long as
we restrict ourselves to a finite set of test functions,
there is no substantial difference (what concerns the
test functions) between the behavior of a given chaotic
real variable and that of a particular chaotic discrete
variable with finite range. This fact not only opens
up the door to the reuse of previous results which
were originally conceived for discrete variables, but
it also shows the way in which chaotic real variables
can be simulated. Indeed, the simulation of chaotic
real variable is not different from that of an adequate
chaotic discrete variable according to Lemma 2, and
the simulation of the latter type of variables was al-
ready explained in [6] (see also the proof of Theorem
3 in the Appendix).

Hence, using a collection of expected values of a fi-
nite set of test functions Pr as a model, gives us only
a coarse-grained, blurred view of how a real variable
behaves. This model may be as precise as we are ca-
pable of (or willing to) build it. However, the model
is so fuzzy, our view so blurred, that we cannot distin-
guish with certainty whether we observe a real-valued
variable or just a simple discrete variable which takes
only a few values. By the way, this should not be



very surprising for, that who observes a finite num-
ber of outcomes of a uniformly distributed random
variable in [0, 1], how can he be certain that he was
dealing with a real random variable or just a complex
discrete random variable.

5 Visibility and Temporal
Homogeneity

In this section, we present extensions to those con-
cepts of visibility and temporal homogeneity which
were defined in [6]. The proofs of the results that
follow are also analog to the proofs of the results in
[6] thanks to the finiteness of the set of bounded test
functions F and Lemma 2.

The possibility of exposing all of M by means of the
rules in Ψ is expressed in the following

Definition 7. (Visibility)

(a) M is made F-visible (Ψ, θ, δ,m, n) by P ∈ M∗

if

P


 ⋂

µ∈M

⋃

ψ∈Ψ

Cψ


 ≥ 1− δ,

where

Cψ = {Xn : λψ,n(Xn) ≥ m, dF(µ̄ψ,n, µ) ≤ θ}.

(b) A subset M′ of M∗ renders M uniformly
F-visible (Ψ, θ, δ,m, n) if M is made F-visible
(Ψ, θ, δ,m, n) by each P ∈ M′. The maximal such
subset is denoted MV (Ψ) and MV (Ψ) may be empty.

The non-triviality of Definition 7(a), and, hence, of
Definition 7(b), is asserted in

Theorem 2. Let M be a set of probability measures
and F a finite family of real-valued bounded functions
on X. Given 0 < 2ε < θ, for large n, there exists
a process measure P and a family Ψ of size Nε such
that M is made F-visible (Ψ, θ, δ,m, n) by P with

δ = 2(‖F‖+ 1)Nεe
− (θ−2ε)2m2

8β2n ,

where
β = max

f∈F
sup
x∈X

|f(x)|,

Nε ≤
⌈

2β

ε

⌉‖F‖
.

The fact that not every set of rules Ψ can expose all
of M is expressed by the concept of temporal homo-
geneity defined as follows.

Definition 8. (Temporal Homogeneity)

(a) P ∈ M∗ is F-temporally homogeneous
(Ψ, θ, δ,m, n) if

P (∆Ψ ≤ θ) ≥ 1− δ,

where

∆Ψ =
= max

ψ1,ψ2∈Ψ
{dF(µ̄ψ1,n, µ̄ψ2,n) : λψ1,n, λψ2,n ≥ m} .

(b) A subset M′ of the set of all possible process
measures M∗ is uniformly F-temporally homo-
geneous (Ψ, θ, δ,m, n) if each of the elements of M′

is temporally homogeneous (Ψ, θ, δ,m, n). The maxi-
mal such subset is denoted MT (Ψ).

As it was the case with chaotic variables with finite
range, a model M may be visible under a certain fam-
ily of subsequence selection rules and temporal homo-
geneous under another, as the following result shows.
Theorem 3. Let F, Pr and MPr be as in Lemma 2.
Let ε > β

m , where

β = max
f∈F

sup
x∈X

|f(x)|.

Let Ψ0 be a set of (causal deterministic) place selec-
tion rules. Then, there are a process measure P and
a family Ψ1 such that, for large enough n, P will both
render MPr F-visible (Ψ1, 3ε, δ,m, n) and ensure F-
temporal homogeneity (Ψ0, 6ε, δ,m, n) with

δ = 2‖F‖max {‖Ψ0‖, ‖Ψ1‖} e−
ε2m2

8β2n .

Although the proof of this theorem is very similar to
that of Theorem 4 in [6], we include a sketch in the
appendix because it shows clearly how the concepts of
computability of real-valued functions, the finiteness
of the set of test functions F and Lemma 2 are applied
in order to reuse previous results under the current
framework.

6 Conclusions and future work

The extension of chaotic probability models proposed
in this paper does not carry in itself any technical nov-
elties with respect to previous works, except perhaps
for Lemma 2. Although this may seem disappoint-
ing, we believe it is the best feature of the current
presentation, i.e., that it allows a smooth and simple
extension of chaotic models to real-valued variables.

Besides extending previous works on chaotic models,
a different viewpoint on them is offered in Section



4.1, where we suggest to get rid of the set of measures
and work directly with the assessment of “expected”
values of the test functions. Although this idea is not
novel in itself, it is in the framework of chaotic models.

The relation between gambles and test functions
sketched in Section 3.1 may allow to those pursuing
behavioral interpretations of probability to deal with
chaotic models without any sense of guilt.

Lemma 2 shows that the finiteness of our discernment
is implicitly embedded in the finite number of test
functions.

There are several matters which were left out of this
paper. For example, it is easy to see that the same
ideas can be applied to tuples of variables. Then, the
question becomes what the relation is between chaotic
models on tuples of variables and the “marginal”
chaotic models and how independence can be charac-
terized. The problem of marginalizing chaotic models
on tuples is difficult because the corresponding test
functions must also be marginalized.
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Rêgo. The author is most grateful to T.L. Fine for
he found a mistake in an earlier version of Lemma
2. The author would also like to thank the unknown
reviewers for their helpful and useful comments.

This work was partially supported by anonymous con-
tributors through the project “Prevention and early
detection of forest fires by means of sensor networks”
which is being developed at the Instituto Tecnológico
de Buenos Aires (ITBA).

Appendix A: Proof of Lemma 2

In order to prove Lemma 2, we need the following
preliminary result.

Proposition 1. Let ε > 0 be given and let β > 0 be
defined as

β = max
f∈F

sup
x∈X

‖f(x)‖.

Then, there is a finite set Mε = {ν1, ν2, · · · , νNε} ⊂
MPr such that

Nε ≤
⌈

2β

ε

⌉‖F‖
,

and
sup
µ∈M

min
1≤i≤Nε

dF(µ, νi) ≤ ε.

Proof. Let N = ‖F‖ and consider the set in RN

A = {(µ(f1), · · · , µ(fN )) : µ ∈ MPr} .

Then, it is clear that A is included in the closed hy-
percube [−β, +β]N . Moreover, this hypercube can be

covered by a set of
⌈

2β
ε

⌉N

smaller hypercubes of side
ε.

We also need the following result from Rudin [9] (see
Lemma after Theorem 3.25 in Rudin [9], page 73).

Lemma 3. If y lies in the convex hull of a set E ⊂
RN , then y lies in the convex hull of a subset of E
which contains at most N + 1 points.

Now, we are ready for the proof of Lemma 2:

Proof. Let f
x

= (f1(x), · · · , fN (x)) for all x ∈ X, and
µ = (µ(f1), · · · , µ(fN )) for all µ ∈ MPr . Consider the
following set:

E =
{

f
x

: x ∈ X
}
⊂ RN .

It is clear that Pr ⊆ ch(E), where ch(E) is the convex
hull of E. By Lemma 3, for each νk ∈ Mε, where
Mε is as in Prop. 1, there are at most N + 1 points
f

x
{k}
1

, · · · , f
x
{k}
L

in E such that

νk =
L∑

i=1

p
{k}
i f

x
{k}
i

,

where

p
{k}
i ≥ 0,

L∑

i=1

p
{k}
i = 1.

Define the probability measures {ν′k} on (X,X ) by

ν′k({x}) =

{
p
{k}
i if x = x

{k}
i ,

0 otherwise.

Let A = ∪k

{
x
{k}
1 , · · · , x

{k}
L

}
. Clearly, the cardinal-

ity of A is

L(ε) = ‖A‖ ≤ (N + 1)×
⌈

2β

ε

⌉‖F‖
.

Then the measures ν′k are as required by the Lemma.

Appendix B: Proof of Theorem 3

By Lemma 2 and Prop. 1, there is a set of measures
with finite support Mε =

{
ν′1, ν

′
2, · · · , ν′Nε

}
such that

sup
µ∈M

min
1≤i≤Nε

dF(µ, ν′i) ≤
ε

2
,



where the supremum is over all measures in MPr and

Nε ≤
⌈

4β

ε

⌉‖F‖
,

where β is defined as in Prop. 1. Since the mass on
each of the supporting atoms can be approximated as
closely as desired by rational numbers and the fact
that rational numbers are computable in the sense of
Section 3.2, then it is easy to see that for each ν′k ∈ Mε

there is a computable probability mass function (in
the sense of Def. 6) µk such that dF(ν′k, µk) ≤ ε

2 and,
hence,

sup
µ∈M

min
1≤i≤Nε

dF(µ, µi) ≤ ε,

where the supremum is over all measures in MPr .
Note that the measures {µi} are not necessarily in
MPr

3. We may assume that ε is a computable num-
ber w.l.o.g.. Consider the following construction of
P :

• Choose any measure ν0 ∈ MPr . Let µ0 be any
computable probability mass function such that
dF(ν0, µ0) < ε.

• Define Nε counters i(1), · · · , i(Nε) and set them
to 0.

• For each k > 0 define,

– (∀ψ ∈ Ψ0), ν̄ψ,k−1 = 1
λψ,k−1

∑k−1
l=1 ψ(xl−1)νl

if λψ,k−1 > 0, and ν̄ψ,k−1 = µ0 otherwise.

– αk = 0 if (∀ψ ∈ Ψ0) ψ(xk−1) = 0, and αk =
maxψ∈Ψ0

{
dF(ν̄ψ,k−1, µ0) : ψ(xk−1) = 1

}
otherwise.

– jk = argmin i(j).

Note that αk depends only on xk−1.

• If αk > ε, let νk = µ0. Otherwise, let νk be the
computable probability measure µjk

and incre-
ment i(jk) by 1.

• Generate xk according to νk.

Note that all the steps in the construction are com-
putable, with the exception of the generation of the
outcomes.

Proposition 2. For ε > β/m and large enough n, P
is F-temporally homogeneous (Ψ, 6ε, δ,m, n), with

δ = 2‖F‖‖Ψ0‖e−
ε2m2

8β2n .

3Although we think that this restriction can easily be re-
moved, it does not pose any problem to the proof of the theo-
rem.

Proof. Suppose that there is some ψ ∈ Ψ0 such that
dF(ν̄ψ,n, µ0) > ε and λψ,n ≥ m. Let

δ(µ0) = max
ν∈Mε

dF(µ0, ν).

Since, by construction, as soon as dF(ν̄ψ,n, µ0) > ε
outcomes start to be generated according to µ0, then
we must have

dF(ν̄ψ,n, µ0) <
(λψ,n − 1)ε + δ(µ0)

λψ,n
≤ ε +

β

m
≤ 2ε.

Since by Theorem 1 we have

P

(
max
ψ∈Ψ0

{dF(µ̄ψ,n, ν̄ψ,n) : λψ,n ≥ m} ≥ ε

)
≤

≤ 2‖F‖‖Ψ0‖e−
ε2m2

8β2n ,

the proposition is proved.

Proposition 3. Let

n ≥ δ(µ0)Nεm

ε
‖Ψ0‖+ Nεm− 1.

Then
Nε∑

j=1

i(j) ≥ Nεm, (1)

and, hence,
min

1≤j≤Nε

i(j) ≥ m. (2)

Proof. We call k an exceeding time when

αk =

= max
{
dF(ν̄ψ,k−1, µ0) : ψ ∈ Ψ0, ψ(xk−1) = 1

}
>

> ε.

By the construction of P , it is clear that Eqn. 2 fol-
lows immediately from Eqn. 1. Suppose that Eqn. 1
does not hold. This means that there have been at
least (n−Nεm+1) exceeding times. Since by hypoth-
esis

δ(µ0)Nεm

ε
‖Ψ0‖ ≤ n−Nεm + 1,

there must be a ψ ∈ Ψ0 such that, for its correspond-
ing subsequence, dF(ν̄ψ,k, µ0) has been greater than ε

at least δ(µ0)Nεm
ε times. Note that, for each exceeding

time

ε < dF(ν̄ψ,k, µ0) ≤

≤ (λψ,k − λψ,k,M)× 0 + λψ,k,Mδ(µ0)
λψ,k

=

=
λψ,k,M

λψ,k
δ(µ0),



where λψ,k,M is the number of times, along the sub-
sequence selected by ψ, such that αk ≤ ε. From the
last inequality, it follows that

λψ,k,M >
ε

δ(µ0)
λψ,k.

Therefore, for ψ’s last exceeding time we have

λψ,k,M >
ε

δ(µ0)
λψ,k ≥ ε

δ(µ0)
δ(µ0)Nεm

ε
= Nεm.

However, this contradicts our initial assumption that
there were less than Nεm exceeding times along the
entire sequence. Thus, we must conclude that Eqn. 1
holds.

Let Ψ1 = {ψ1, ψ2, · · · , ψNε} be a set of Nε place se-
lection rules such that, for 1 ≤ l ≤ Nε, ψl selects
the subsequence where the measure µl has been used.
The fact that such a family Ψ1 of computable place
selection rules exists follows from the construction of
P . Note that Proposition 3 implies that the subse-
quences selected by the rules in Ψ1 have length larger
than or equal to m.

Proposition 4. M is F-visible (Ψ1, 3ε, δ,m, n),
where

δ = 2‖F‖‖Ψ1‖e−
ε2m2

8β2n .

Proof. It is clear that, by construction, for all µ ∈ M
there is a measure µi ∈ Mε and a rule ψ ∈ Ψ1 such
that

dF(ν̄ψ,n, µ) ≤ dF(ν̄ψ,n, µi) + dF(µi, µ) ≤ ε + ε ≤ 2ε.

Then the proposition follows from Theorem 1 and the
fact that Proposition 3 implies that (∀ψ ∈ Ψ1) λψ,n ≥
m.

The proof of Theorem 3 follows from Propositions
2-4.
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Abstract

Data-based decision theory under imprecise probabil-
ity has to deal with optimisation problems where di-
rect solutions are often computationally intractable.
Using the Γ-minimax optimality criterion, the com-
putational effort may significantly be reduced in the
presence of a least favorable model. In 1984, A. Buja
derived a necessary and sufficient condition for the
existence of a least favorable model in a special case.
The present article proves that essentially the same
result is valid in case of general coherent upper previ-
sions. This is done mainly by topological arguments in
combination with some of L. Le Cam’s decision theo-
retic concepts. It is shown how least favorable models
could be used to deal with situations where the dis-
tribution of the data as well as the prior is assumed
to be imprecise.

Keywords. Decision theory, robust statistics, impre-
cise probability, coherent upper previsions, Le Cam,
equivalence of models, least favorable models.

1 Introduction

1.1 Motivation

Decision theory provides a formal framework for de-
termining optimal actions under uncertainty on the
states of nature. It has a wide range of potential areas
of application which includes also statistical problems,
for example. However, a serious problem in practical
applications of decision theory is that the uncertainty
often is too complex to be adequately described by a
classical, i.e. precise, probability distribution. Ambi-
guity, i.e. the extent of deviation from ideal stochas-
ticity, plays an important role in decision making that
cannot be neglected. To take ambiguity into account
properly, generalisations of the concept of probability
have been developed, among others, by [24] (imprecise
probability) and [25] (interval probability). Here, the
probability of an event is no longer a number p ∈ [0, 1]

but an interval [p, p] ⊂ [0, 1]. These concepts are ap-
plied in a number of recent articles in decision theory,
e.g. [3], [21] and [22].

Generalisations of probabilities as in [24] and [25] have
a strong relationship with some concepts of robust sta-
tistics (cf. e.g. [20, §3.1.7]) - a fact which is frequently
disregarded. Actually, [6] develops a concept of ro-
bust statistics (named “upper expectations”) which
lies between the concepts of [24] and [25]. [6] con-
siders decision making which is explicitly data-based.
This can be understood as a matter of its own as has
been pointed out by [3]. In the spirit of the cele-
brated article [14], [6] characterises the existence of
precise models which are simultaneously least favor-
able for a class of loss functions (or for a class of prior
distributions):

[14] deals with hypothesis testing where a (rather spe-
cial) upper prevision is tested against another one.
This is equivalent to testing between certain sets of
(precise) probabilities M0 and M1. [14] shows that
there is a pair (p0, p1) ∈ M0 × M1 which is least
favorable: Testing between p0 and p1 is as hard as
testing between M0 and M1 and, as a consequence,
there is an optimal test between p0 and p1 which is
also an optimal test between M0 and M1. That way,
testing between M0 and M1 can be done by testing
only between p0 and p1. This reduces the computa-
tional effort substantially. In fact, it is one of the most
important drawbacks of data-based decision theory
(including hypothesis testing) that the computational
effort of direct solutions is frequently not manageable.
Therefore, least favorablility has attracted enormous
attention after the publication of [14]. For a review of
[14] and the work following [14], confer [2]. In quite
general data-based decision theory, where there are n
states of nature (instead of two), an analogous ques-
tion of that one solved by [14] is: Does there exist a
model (q1, q2, . . . , qn) ∈ M1×M2×· · ·×Mn which is
simultaneously least favorable for a class of loss func-
tions? This is not always the case but [6] proves a



necessary and sufficient condition for the existence of
such simultaneously least favorable models.

Unfortunately, [6] contains an error which reduces its
applicability significantly. The validity of the conclu-
sions in [6] can only be guaranteed by adding a re-
strictive assumption on the involved upper previsions
(cf. [10]).

The present article follows the lines of [6] - but within
the concept of [24] which dispenses with σ-additivity.
It is shown that the same result as in [6] is possible
without any additional assumption on the involved
(coherent) upper previsions. This demonstrates that,
in [6], insistence on σ-additivity of probabilities hap-
pens to be an unnecessary burden (cf. also Remark
2.2).

By ignoring σ-additivity, we are in line with Le Cam’s
decision theoretic framework (cf. [15] and [16]), which
provides us with some effective methods. Within
this framework some terms (e.g. randomisations) are
slightly generalised (cf. [16, §1] and [9, §4]).

Sections 2 and 3 develop the decision theoretic
framework. Section 4 contains a generalisation of
the LeCam-Blackwell-Sherman-Stein-Theorem which
plays an important role in Section 5. In Section 5, the
analogue to [6, Theorem 8.2] is proven which charac-
terises the existence of least favorable models. This
is the main theorem of the present article. Section 6
explains how least favorability could be used to deal
with situations where the distribution of the data as
well as the prior is assumed to be imprecise.

Since the content of this article might be obscured
by the mathematical details, the following subsection
presents a rather detailed outline.

1.2 Outline

In order to explain the decision theoretic setup we are
concerned with, the classical decision theoretic setup
is recalled at first:

There is a set Θ where each element θ ∈ Θ represents
a possible state of nature. We know that one state of
nature will occur but we do not know which one it will
be. Furthermore, there is a set D where each element
t ∈ D is a decision we can choose. Depending on what
state of nature θ occurs, every decision t leads to a loss
Wθ(t). The goal is to choose a “good” decision so that
the loss is as small as possible.

Sometimes, we might know a precise expectation π
for the states of nature θ ∈ Θ. Then, we can choose
the decision that minimises the expected loss∫

Θ

Wθ(t) π(dt)

Quite often, we can choose our decision on the base
of an observation y ∈ Y. For example, the observa-
tion y may be the outcome of an experiment. The
distribution of the observation y might be a precise
expectation qθ which depends on the state of nature
θ. That is (qθ)θ∈Θ is a model which describes the
distribution of the observation y.

Such “data-based decision making” can be formalised
by choosing a decision function δ : Y → D , x 7→
δ(y) which minimises∫

Θ

∫
Y

Wθ(δ(y)) qθ(dy) π(dt)

Decision theory commonly also deals with randomised
decisions. Randomised decision procedures (randomi-
sations) are defined in Subsection 2.1. Confer [4] for
an introduction to these basic concepts of decision
theory.

In the following, we are concerned with a more general
decision theoretic setup because we also want to deal
with imprecise probabilities:

Since the prior knowledge about the states of nature
will frequently not be precise, we allow for a whole
set P of possible precise expectations π. Also the
knowledge about the distribution of the observation
may only be imprecise so that there are sets Mθ of
possible precise expectations qθ. While minimising
the expected loss in case of precise expectations is
widely accepted, there are several reasonable optimal-
ity criteria in case of imprecise expectations, confer
[21] for a discussion of the most important ones. In
the present article the so-called Γ-minimax criterion
is used which represents a worst case consideration.1

That is we choose a decision function δ (or rather a
randomisation later on) which minimises the twofold
upper expectation

sup
π∈P

∫
Θ

sup
qθ∈Mθ

∫
Y

Wθ(δ(y)) qθ(dy) π(dt)

Unfortunately, a direct solution of this problem is
quite often computationally intractable. In Section 6,
it is shown how the situation might become manage-
able: In the presence of a model (q̃θ)θ∈Θ ∈ (Mθ)θ∈Θ

which is simultaneously least favorable for P (or for
a corresponding set of loss functions) the above min-
imisation problem may be solved by minimising

sup
π∈P

∫
Θ

∫
Y

Wθ(δ(y)) q̃θ(dy) π(dt)

However, such a least favorable model (q̃θ)θ∈Θ need
not exist. In Section 5, a necessary and sufficient con-

1For the use of the Γ-minimax criterion in Bayesian analysis,
cf. [23] and the literature cited therein.



dition for existence is proven (Theorem 5.4). This
condition is formulated in terms of standard models.

Standard models are our main tool. They are intro-
duced in Subsection 2.3. An important fact is that
every model (consisting of precise expectations) is
equivalent to a standard model. In Subsection 2.2, we
define an equivalence relation on the set of all (pre-
cise) models (qθ)θ∈Θ according to which two (precise)
models (pθ)θ∈Θ and (qθ)θ∈Θ are equivalent if the fol-
lowing is true: Observations of model (pθ)θ∈Θ can
artificially be generated (by a randomisation) from
observations of model (qθ)θ∈Θ and vice versa. Here
and also as decision procedures, randomisations be-
come important. By topological reasons, the term
“randomisation” has to be slightly generalised in the
present article (cf. Subsection 2.1). All these tools
from decision theory (namely randomisations, equiv-
alence of models, standard models) are presented in
Section 2.

In Section 3, minimal Bayes risks are defined for pre-
cise models and for imprecise models as well. It is
shown that minimal Bayes risks can be expressed in
terms of standard models, which in fact is the reason
why we use standard models.

Section 4 contains a generalisation of the LeCam-
Blackwell-Sherman-Stein-Theorem, which is impor-
tant in the proof of the main theorem, Theorem 5.4.
Theorem 5.4 characterises the existence of simultane-
ously least favorable models.

1.3 Some Notation

This subsection collocates some notation which is
used throughout the article.

Let (Y,B) be a measurable space and L∞(Y,B) be the
Banach space of all bounded Borel-measurable real
functions g : Y → R where ‖g‖ = supy∈Y g(y). For a
subset B of Y, IB denotes the characteristic function
of B on Y.

The set of all finitely additive signed measures
ba(Y,B) can be identified with the dual space of
L∞(Y,B), i.e. the Banach space of all linear con-
tinuous real functionals on L∞(Y,B) where ‖µ‖ =
sup

{
|µ[g]|

∣∣ g ∈ L∞(Y,B), ‖g‖ ≤ 1
}

for all µ ∈
ba(Y,B) (cf. [7, Theorem IV.5.1]). µ ∈ ba(Y,B)
is called positive if µ[g] ≥ 0 for every g ≥ 0. This is
denoted by µ ≥ 0.

Let Θ be an index set. Throughout the article,
(Qθ)θ∈Θ is a family of coherent upper previsions Qθ :
L∞(Y,B) → R (cf. [24]). The corresponding sets
of majorised linear previsions are denoted by Mθ :={
qθ ∈ ba(Y,B)

∣∣ qθ[g] ≤ Qθ[g] ∀ g ∈ L∞(Y,B)
}
.

Analogously to [25], Mθ is called structure. (Qθ)θ∈Θ

is called imprecise model on (Y,B). A family (qθ)θ∈Θ

of linear previsions qθ : L∞(Y,B) → R is called pre-
cise model on (Y,B). These terms are adapted from
the notion “statistical model”. [6] and [15] use the
term “experiment” instead of “model”.

Let (X ,A) be another measurable space. F = (qθ)θ∈Θ

will always denote a precise model on (Y,B), E =
(pθ)θ∈Θ will always denote a precise model on (X ,A).
If qθ ∈ Mθ for every θ ∈ Θ, we may also write
(qθ)θ∈Θ ∈ (Mθ)θ∈Θ or F ∈ (Mθ)θ∈Θ. Expressions of
the form (aθ)θ∈Θ will often be abbreviated by (aθ)θ.

For some fixed n ∈ N, put U :=
{
u ∈ Rn

∣∣ u =
(uθ1 , . . . , uθn)′, uθ ≥ 0 ∀ θ ∈ Θ, uθ1 + · · ·+ uθn = 1

}
and C := B⊗n ∩ U where B⊗n is the Borel-σ-algebra
of Rn. For θ ∈ Θ, put ιθ : U → [0, 1], u 7→ uθ where
uθ is the θ-component of u.

2 Some Tools from Decision Theory

2.1 Randomisations

2.1.1 Introduction

Let X be a set of possible outcomes of an experi-
ment and D be a set of possible decisions t. Then,
a decision function may be a map δ : X → D where
δ(x) = t means: If x appears, choose action t. In
addition, decision theory commonly deals with ran-
domised decisions δ : X → ba(D,D), x 7→ τx. Here,
it is supposed that each τx is a linear prevision and
that τ·[h] : x 7→ τx[h] lies in L∞(X ,A) for every
h ∈ L∞(D,D). Then, δ(x) = τx means: After observ-
ing x, start an auxiliary random experiment according
to the distribution τx and choose that action d which
is the outcome of the auxiliary random experiment.

For our purposes, we will need a slight generalisation.
Note that every randomised decision function x 7→ τx

defines a map

σ : ba(X ,A) → ba(D,D), µ 7→ σ(µ)

via

σ(µ) : h 7→ σ(µ)[h] = µ
[
τ·[h]

]
(1)

It is easy to see that σ is

• linear

• positive: σ(µ) ≥ 0 for every µ ≥ 0

• normalised: ‖σ(µ)‖ = ‖µ‖ for every µ ≥ 0

2.1.2 Definition

Let (X ,A) and (Y,B) be measurable spaces. Accord-
ing to [15], a randomisation from X to Y is a linear,



positive and normalised map

T : ba(X ,A) → ba(Y,B)

where “positive” means T (µ) ≥ 0 for every µ ≥ 0 and
“normalised” means ‖T (µ)‖ = ‖µ‖ for every µ ≥ 0.
Let T (X ,Y) denote the set of all randomisations from
X to Y.

We also mark a class of randomisations of a very sim-
ple form: To this end, let κ be a map

κ : L∞(Y,B) → L∞(X ,A), g 7→ κ(g)

so that there is some finite set S ⊂ Y and

κ(g) =
∑
y∈S

g(y)αy ∀ g ∈ L∞(Y,B)

where αy ∈ L∞(X ,A) ∀ y ∈ S, αy ≥ 0 ∀ y ∈ S and∑
y∈S αy ≡ 1. Then,

κ∗ : ba(X ,A) → ba(Y,B), µ 7→ κ∗(µ)

where κ∗(µ)[g] = µ[κ(g)] ∀ g ∈ L∞(Y,B), is called
restricted randomisation. It is easy to see that every
restricted randomisation is generated by a (very sim-
ple) randomised decision function via (1). Every re-
stricted randomisation is in fact a randomisation , i.e.
Tr(X ,Y) ⊂ T (X ,Y) where Tr(X ,Y) denotes the set
of all restricted randomisations.

2.1.3 Topological Issues

Models which consist of imprecise probabilities are
so extensive that sequential limit arguments are no
longer adequate. So, we have to resort to topological
arguments.

Let Q : L∞(Y,B) → R be a coherent upper pre-
vision with structure M :=

{
q ∈ ba(Y,B)

∣∣ q[g] ≤
Q[g] ∀ g ∈ L∞(Y,B)

}
.

In addition to the norm-topology, ba(Y,B) can also
be provided with the σ(ba,L∞)-topology. This is the
smallest topology so that

ba(Y,B) → R , µ 7→ µ[g]

is continuous for every g ∈ L∞(Y,B).

Theorem 2.1 M is σ(ba,L∞)-compact.
(Cf. [24, §3.6.1].)

Remark 2.2 According to Theorem 2.1, compact-
ness of M comes for free. If we restricted M to
σ-additive measures, we would have to impose addi-
tional assumptions to ensure compactness in reason-
able topologies. So, insistence on σ-additivity appears
to be a burden.

T (X ,Y) can be provided with the topology of point-
wise convergence on ba(X ,A)×L∞(Y,B). This is the
smallest topology so that

T (X ,Y) → R, T 7→ T (µ)[g]

is continuous for every µ ∈ ba(X ,A) and every g ∈
L∞(Y,B). The following theorem is the reason why
we use the generalisation of randomised procedures:

Theorem 2.3 T (X ,Y) is a compact Hausdorff
space. (Cf. [16, Theorem 1.4.2].)

The following theorem indicates that the term “ran-
domisation” has only been slightly generalised:

Theorem 2.4 Tr(X ,Y) is dense in T (X ,Y).

Proof: This is a consequence of [15, Theorem 1]. 2

Especially, Theorem 2.4 implies that the randomised
procedures defined via (1) are dense in T (X ,Y).

2.2 Sufficiency and Equivalence of Models

Let E = (pθ)θ∈Θ be a precise model on (X ,A) and
F = (qθ)θ∈Θ a precise model on (Y,B).

Analogously to [6], (pθ)θ∈Θ is called sufficient for
(qθ)θ∈Θ if there is a randomisation T ∈ T (X ,Y) so
that T (pθ) = qθ ∀ θ ∈ Θ.

This definition of “sufficiency” essentially goes back
to [5]. It does not strictly coincide with the more
common definition in terms of conditional expecta-
tions but, under suitable assumptions of regularity,
the definitions do coincide (cf. [13]). At least, if the
randomisation T is generated by a randomised func-
tion x 7→ τx via (1), the above definition has a very
descriptive interpretation:

Let x be an observation distributed according to pθ.
After observing x, start an auxiliary random exper-
iment according to τx. Then, the outcome y of the
auxiliary random experiment is distributed according
to qθ. That is, if we have observations of the model
(pθ)θ, we can artificially generate observations of the
model (qθ)θ “by coin tossing”.

(pθ)θ∈Θ and (qθ)θ∈Θ are called equivalent if they are
mutually sufficient, i.e. there are some T1 ∈ T (X ,Y),
T2 ∈ T (Y,X ) so that T1(pθ) = qθ ∀ θ ∈ Θ and
T2(qθ) = pθ ∀ θ ∈ Θ.

The descriptive interpretation of sufficiency already
indicates that equivalent models essentially coincide
from a decision theoretic point of view. Our defin-
ition of equivalence is in accordance with Le Cam’s
definition (cf. [9, §5.2]).

Let (Qθ)θ∈Θ be an imprecise model with correspond-
ing structures Mθ, θ ∈ Θ.



Analogously to [6], (pθ)θ∈Θ is called worst-case-suf-
ficient for (Qθ)θ∈Θ if (pθ)θ∈Θ is sufficient for some
(qθ)θ∈Θ ∈ (Mθ)θ∈Θ. So, (pθ)θ∈Θ is worst-case-suf-
ficient for (Qθ)θ∈Θ if and only if there is some T ∈
T (X ,Y) so that ∀ θ ∈ Θ

T (pθ)[g] ≤ Qθ[g] , ∀ g ∈ L∞(Y,B)

2.3 Standard Models

Let the index set Θ be finite with cardinality n.

In Subsection 2.2, we have defined an equivalence re-
lation on the precise models with a fixed index set
Θ. Each equivalence class contains a uniquely defined
representative (called standard model later on) which
has some nice properties.2 This is the content of the
following theorem.

Theorem 2.5 Every precise model F = (qθ)θ∈Θ on
(Y,B) admits a uniquely defined (σ-additive) proba-
bility measure sF on (U , C) so that dsFθ = nιθ dsF

defines a precise model (sFθ )θ∈Θ on (U , C) which is
equivalent to F . (Cf. [9, Theorem 6.5].)

Analogously to [6], sF is called standard measure and
(sFθ )θ∈Θ is called standard (precise) model of F .

Standard models share two important properties:

• They are defined on the very nice measurable
space (U , C) (cf. Subsection 1.3).

• They consist of linear previsions sθ which are σ-
additive probability measures.

For the imprecise model (Qθ)θ∈Θ with corresponding
structures Mθ, we can uniquely define

S[h] = sup
{
sF [h]

∣∣ F ∈ (Mθ)θ∈Θ

}
∀h ∈ L∞(U , C)

Sθ[h] = sup
{
sFθ [h]

∣∣ F ∈ (Mθ)θ∈Θ

}
∀h ∈ L∞(U , C)

S is called standard upper prevision, (Sθ)θ∈Θ is called
standard imprecise model of (Qθ)θ∈Θ. Note that S is
a coherent upper prevision on L∞(U , C) and (Sθ)θ∈Θ

is an imprecise model on (U , C).

3 Minimal Bayes Risks

Let the index set Θ = {θ1, . . . , θn} be finite with
cardinality n and let π be a prior distribution on
(Θ, 2Θ), i.e. π is a linear prevision on L∞(Θ, 2Θ). Put
πθ := π[I{θ}].

2As stated in Subsection 2.2, equivalent models essentially
coincide from a decision theoretic point of view. Therefore,
every decision problem coincides with a “standard decision
problem” where a standard model is involved. We will deduce
properties of the original decision problem from the correspond-
ing “standard decision problem” later on.

A decision space is a measurable space (D,D) where
D is the set of possible decisions. A loss function is a
family (Wθ)θ∈Θ ⊂ L∞(D,D).

The measurable space (Y,B) may represent the re-
sults of an experiment. According to [15], a decision
procedure is a randomisation

σ : ba(Y,B) → ba(D,D)

i.e. σ ∈ T (Y,D).

Now, Bayes risks can be defined for precise models
(Subsection 3.1) and for imprecise models (Subsec-
tion 3.2). The main goal of the present section is
to express minimal Bayes risks in terms of standard
measures (Theorem 3.2) and standard upper previ-
sions (Theorem 3.4).

3.1 Precise Models

Let (qθ)θ∈Θ be a precise model on (Y,B). For a de-
cision procedure σ ∈ T (Y, D) and a loss function
(Wθ)θ∈Θ ⊂ L∞(D,D), the risk function of (qθ)θ∈Θ

is
σ(q)[W ] : θ 7→ σ(qθ)[Wθ]

The Bayes risk is

R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ

)
= π

[
σ(q)[W ]

]
=

=
∑
θ∈Θ

πθσ(qθ)[Wθ]

Note that this definition coincides with the usual one
if σ is defined by a randomised decision function via
(1).

The minimal Bayes risk is the same if we let σ vary
among the randomisations or the restricted randomi-
sations:

Proposition 3.1

inf
σ∈T (Y,D)

R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ

)
=

= inf
σ∈Tr(Y,D)

R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ

)
Proof: The definition of the topology of pointwise con-
vergence implies continuity of the map

σ 7→
(
σ(qθ1)[Wθ1 ] , . . . , σ(qθn

)[Wθn
]
)

and, therefore, continuity of

σ 7→ R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ

)
Since Tr(Y, D) is dense in T (Y, D) (Theorem 2.4), the
statement follows. 2



For (Wθ)θ∈Θ ⊂ L∞(D,D), put

K
(
(Wθ)θ

)
: u 7→ inf

τ∈D

∑
θ∈Θ

nπθWθ(τ)ιθ(u) (2)

on Rn where ιθ(u) = uθ is the θ-component of
u ∈ RΘ ∼= Rn. Note that K

(
(Wθ)θ

)
is concave

and, therefore, continuous on Rn. Hence, the re-
striction of K

(
(Wθ)θ

)
on U is Borel-measurable and

s(qθ)θ
[
K

(
(Wθ)θ

)]
is defined well where s(qθ)θ is the

standard measure of (qθ)θ∈Θ.

Theorem 3.2

inf
σ∈T (Y,D)

R
(
(qθ)θ, σ, (Wθ)θ

)
= s(qθ)θ

[
K

(
(Wθ)θ

)]
Proof: According to Theorem 2.5, the standard model(
sFθ

)
θ∈Θ

is equivalent to F := (qθ)θ∈Θ. That is(
sFθ

)
θ∈Θ

and F are mutual sufficient. So, a twofold
application of Lemma 8.2 yields

inf
σ∈T (Y,D)

R
(
F , σ, (Wθ)θ

)
=

= inf
ρ∈T (U,D)

R
(
(sFθ )θ, ρ, (Wθ)θ

)
and an application of Lemma 8.1 closes the proof. 2

3.2 Imprecise Models

Let (Qθ)θ∈Θ be an imprecise model on (Y,B) with
corresponding structures Mθ, θ ∈ Θ, and standard
upper prevision S. For a decision procedure σ ∈
T (Y, D) and a loss function (Wθ)θ∈Θ ⊂ L∞(D,D),
the risk function of (Qθ)θ∈Θ is

θ 7→ sup
qθ∈Mθ

σ(qθ)[Wθ]

and the Bayes risk is

R
(
(Qθ)θ, σ, (Wθ)θ

)
=

∑
θ∈Θ

πθ sup
qθ∈Mθ

σ(qθ)[Wθ]

Hence,

R
(
(Qθ)θ, σ, (Wθ)θ

)
= sup

(qθ)θ∈(Mθ)θ

R
(
(qθ)θ, σ, (Wθ)θ

)
These definitions includes that we have chosen the Γ-
minimax optimality criterion which represents a worst
case consideration (cf. Subsection 1.2) - as done in
[14] and [6].

Now, we can derive the analogues of Proposition 3.1
and Theorem 3.2 in case of imprecise models:

Proposition 3.3

inf
σ∈T (Y,D)

R
(
(Qθ)θ∈Θ, σ, (Wθ)θ∈Θ

)
=

= inf
σ∈Tr(Y,D)

R
(
(Qθ)θ∈Θ, σ, (Wθ)θ∈Θ

)

Proof: This is a direct consequence of Lemma 8.3 (a),
Proposition 3.1 and Lemma 8.3 (b). 2

Theorem 3.4

inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ, (Wθ)θ

)
= S

[
K

(
(Wθ)θ

)]
Proof: This is a direct consequence of Lemma 8.3,
Theorem 3.2 and the definition of the standard upper
prevision. 2

4 The General LeCam-Blackwell-
Sherman-Stein-Theorem

This section contains a generalisation of the LeCam-
Blackwell-Sherman-Stein-Theorem. We need this the-
orem in the proof of our main theorem, Theorem 5.4.

Let Θ be a finite index set. Let π be a prior distrib-
ution on (Θ, 2Θ) so that πθ := π[I{θ}] > 0 ∀ θ ∈ Θ.
Let (pθ)θ∈Θ be a precise model on (X ,A) and (Qθ)θ∈Θ

an imprecise model on (Y,B) where (Mθ)θ∈Θ is the
corresponding family of structures. Let s(pθ)θ be the
standard measure of (pθ)θ∈Θ and S the standard up-
per prevision of (Qθ)θ∈Θ on (U , C).

Let Ψ be the set of all functions k ∈ L∞(U , C)
such that there is some decision space (D,D) and
a loss function (Wθ)θ∈Θ ⊂ L∞(D,D) where k(u) =
infτ∈D

∑
θ∈Θ nπθWθ(τ)ιθ(u) ∀u ∈ U .

Theorem 4.1 The following statements are equiva-
lent:

(a) (pθ)θ∈Θ is worst-case-sufficient for (Qθ)θ∈Θ.

(b) s(pθ)θ [k] ≤ S[k] ∀ k ∈ Ψ

(c) For every finite decision space (D,D) and every
loss function (Wθ)θ∈Θ ⊂ L∞(D,D),

inf
ρ∈T (X ,D)

R
(
(pθ)θ, ρ, (Wθ)θ

)
≤

≤ inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ, (Wθ)θ

)
(d) For every decision space (D,D) and every loss

function (Wθ)θ∈Θ ⊂ L∞(D,D),

inf
ρ∈T (X ,D)

R
(
(pθ)θ, ρ, (Wθ)θ

)
≤

≤ inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ, (Wθ)θ

)
The proof of Theorem 4.1 is located in [11].



5 Least Favorable Models

Let the index set Θ be finite with cardinality n. Let
π be a prior distribution on (Θ, 2Θ) so that πθ :=
π[I{θ}] > 0 ∀ θ ∈ Θ. Let (Qθ)θ∈Θ be an imprecise
model on (Y,B) where (Mθ)θ∈Θ is the corresponding
family of structures. Let (D,D) be a fixed decision
space and let W be a set of loss functions (Wθ)θ∈Θ ⊂
L∞(D,D).

Definition 5.1 (qθ)θ∈Θ ∈ (Mθ)θ∈Θ is called least fa-
vorable (precise) model of (Mθ)θ∈Θ for W if

inf
σ∈T (Y,D)

R
(
(qθ)θ, σ, (Wθ)θ

)
=

= inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ, (Wθ)θ

)
for every (Wθ)θ∈Θ ∈ W. 3

We are not primarily interested in a set of loss func-
tions but in a set of prior distributions. However, a
set of prior distributions can always be transformed
into a set of loss functions (cf. Section 6).

For F ∈ (Mθ)θ∈Θ, put

ΦF :=
{
h ∈ L∞(U , C)

∣∣ sF [h] = S[h]
}

where sF is the standard measure of F and S is the
standard upper prevision of (Qθ)θ∈Θ on (U , C).

The following lemma is an easy consequence of the
definitions. A written proof may be found in [11].

Lemma 5.2 ΦF is a norm-closed convex cone in
L∞(U , C).

For every (Wθ)θ∈Θ ⊂ L∞(D,D), define K
(
(Wθ)θ

)
as

in (2).

ΨW :=
{
K

(
(Wθ)θ

) ∣∣ (Wθ)θ ∈ W
}
⊂ L∞(U , C)

Ψ̃W denotes the smallest norm-closed convex cone in
L∞(U , C) which contains ΨW . The following lemma
is a direct consequence of Theorem 3.2 and Theorem
3.4:

Lemma 5.3 F ∈ (Mθ)θ∈Θ is least favorable for W
if and only if

sF [k] = S[k] ∀ k ∈ ΨW

Theorem 5.4 is the analogue to [6, Theorem 8.2]. It
characterises the existence of least favorable models
in full generality.

3That is the minimal Bayes risk of the imprecise model is at-
tained in the least favorable model which represents the worst-
case. (This justifies the term “least favorable”.) Remember
that our definition of the Bayes risk corresponds to a worst-
case consideration.

Theorem 5.4 The following statements are equiva-
lent:

(a) There is some F := (qθ)θ∈Θ ∈ (Mθ)θ∈Θ which is
least favorable for W.

(b) S[k1 + k2] = S[k1] + S[k2] ∀ k1, k2 ∈ Ψ̃W

Proof:
(a)⇒(b): Statement (a) and Lemma 5.3 imply ΨW ⊂
ΦF . According to Lemma 5.2, Ψ̃W ⊂ ΦF and k1 +
k2 ∈ ΦF ∀ k1, k2 ∈ Ψ̃W . Hence, for every k1, k2 ∈
Ψ̃W

S[k1 + k2] = sF [k1 + k2] = sF [k1] + sF [k2] =
= S[k1] + S[k2]

(a)⇐(b): Put s[k] := S[k] ∀ k ∈ Ψ̃W and

s[k1 − k2] := s[k1]− s[k2] = S[k1]− S[k2]

for all k1, k2 ∈ Ψ̃W . Statement (b) implies that this
is defined well. Hence, s is a linear functional on the
vector space lin(Ψ̃W) = Ψ̃W − Ψ̃W . For every k =
k1 − k2 ∈ Ψ̃W − Ψ̃W = lin(Ψ̃W),

s[k] = S[k2 + k1 − k2]− S[k2] ≤
≤ S[k2] + S[k1 − k2]− S[k2] = S[k]

According to the Hahn-Banach-Theorem ([7, Theo-
rem II.3.10]), s can be extended to a linear functional
on L∞(U , C) (again denoted by s) so that

s[h] ≤ S[h] ∀h ∈ L∞(U , C) (3)

(3) implies, that s
[
IU

]
= 1 and s[ιθ] = 1

n ∀ θ ∈ Θ
(cf. Theorem 2.5). Then, sθ : h 7→ s[nιθh] defines a
precise model (sθ)θ∈Θ on (U , C). For every decision
space (D̂, D̂) and every (Ŵθ)θ ⊂ L∞(D̂, D̂),

inf
ρ∈T (U,D̂)

R
(
(sθ)θ, ρ, (Ŵθ)θ

)
= s

[
K

(
(Ŵθ)θ

)]
(4)

according to Lemma 8.1 and

inf
ρ∈T (U,D̂)

R
(
(sθ)θ, ρ, (Ŵθ)θ

) (4)
= s

[
K

(
(Ŵθ)θ

)]
≤

(3)

≤ S
[
K

(
(Ŵθ)θ

)]
= inf

σ∈T (Y,D̂)
R

(
(Qθ)θ, σ, (Ŵθ)θ

)
according to Theorem 3.4. Hence, Theorem 4.1 im-
plies that (sθ)θ∈Θ is worst-case-sufficient for (Qθ)θ∈Θ,
i.e. there is some T ∈ T (U ,Y) so that qθ := T (sθ) ∈
Mθ ∀ θ ∈ Θ. Finally for all (Wθ)θ∈Θ ∈ W,

inf
σ∈T (Y,D)

R
(
(Qθ)θ, σ, (Wθ)θ

)
=

= S
[
K

(
(Wθ)θ

)]
= s

[
K

(
(Wθ)θ

)]
=

(4)
= inf

ρ∈T (U,D)
R

(
(sθ)θ, ρ, (Wθ)θ

)
≤

≤ inf
σ∈T (Y,D)

R
(
(qθ)θ, σ, (Wθ)θ

)



where the last inequality follows from Lemma 8.2. 2

6 Application of Least Favorable
Models

Situations where we are faced with one precise prior
distribution and a set of loss functions seem to be of
secondary interest. More frequently, we are interested
in situations where we are faced with an imprecise
prior and one fixed loss function. However, the second
issue can be treated as a special case of the first one:

Let Θ be a finite index set with cardinality n and
(Wθ)θ∈Θ ⊂ L∞(D,D) be a loss function. Let (Qθ)θ∈Θ

be an imprecise model on (Y,B) where (Mθ)θ∈Θ is
the corresponding family of structures. Let Π be a
coherent upper prevision on L∞(Θ, 2Θ) i.e. Π cor-
responds to a set of prior distributions P :=

{
π ∈

ba(Θ, 2Θ)
∣∣ π[a] ≤ Π[a] ∀ a ∈ L∞(Θ, 2Θ)

}
.

For some π ∈ P, put πθ := π[I{θ}] ∀ θ ∈ Θ. Let σ be
a randomisation. For the prior π, the Bayes risk is

Rπ

(
(Qθ)θ, σ, (Wθ)θ

)
=

∑
θ∈Θ

πθσ(Qθ)[Wθ] =

=
1
n

∑
θ∈Θ

σ(Qθ)[nπθWθ] = R0

(
(Qθ)θ, σ, (nπθWθ)θ

)
where R0

(
(Qθ)θ, σ, (nπθWθ)θ

)
denotes the Bayes risk

for the uniform prior π0 defined by π0[Iθ] = 1
n .

That is every prior can be absorbed in the loss func-
tion. So, we can transform the set P of priors π into a
set W of loss functions (nπθWθ)θ∈Θ. Next, Theorem
5.4 yields a necessary and sufficient condition for the
existence of a precise model which is simultaneously
least favorable for the set of loss functionsW. We may
also say that such a precise model is simultaneously
least favorable for the set of priors P.

The next theorem shows how least favorable models
can be used to deal with situations where the distri-
bution of the data as well as the prior is assumed to
be imprecise. A decision procedure is optimal if it
minimises the upper Bayes risk

RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
= sup

π∈P
Rπ

(
(Qθ)θ, σ, (Wθ)θ

)
Theorem 6.1 If (q̃θ)θ∈Θ is a simultaneously least fa-
vorable model of (Mθ)θ∈Θ for P, there is a decision
procedure σ̃ ∈ T (Y, D) which minimises

RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
and also

RΠ

(
(q̃θ)θ, σ, (Wθ)θ

)
over T (Y, D).

Proof: For every σ ∈ T (Y, D) and π ∈ P, put

Γ1(σ, π) = Rπ

(
(Qθ)θ, σ, (Wθ)θ

)
and

Γ2(σ, π) = Rπ

(
(q̃θ)θ, σ, (Wθ)θ

)
It is easy to see that σ 7→ Γj(σ, π) is convex and
lower semicontinuous for every π ∈ P and j ∈ {1, 2}.
Then, [8, Theorem 2] and simultaneous least favora-
bility implies

inf
σ∈T (Y,D)

RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
=

= inf
σ∈T (Y,D)

sup
π∈P

Γ1(σ, π) = sup
π∈P

inf
σ∈T (Y,D)

Γ1(σ, π)

= sup
π∈P

inf
σ∈T (Y,D)

Γ2(σ, π) = inf
σ∈T (Y,D)

sup
π∈P

Γ2(σ, π)

= inf
σ∈T (Y,D)

RΠ

(
(q̃θ)θ, σ, (Wθ)θ

)
(5)

Lower semicontinuity of

σ 7→ RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
and compactness of T (Y, D) ensure existence of some
σ̃ which minimises RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
(cf. [17, The-

orem 3.7]). Additionally,

RΠ

(
(q̃θ)θ, σ̃, (Wθ)θ

)
≤ RΠ

(
(Qθ)θ, σ̃, (Wθ)θ

)
=

= inf
σ∈T (Y,D)

RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
=

(5)
= inf

σ∈T (Y,D)
RΠ

(
(q̃θ)θ, σ, (Wθ)θ

)
2

Remark 6.2 It can easily be read off from the
above proof that a decision procedure σ̃ which
minimises RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
also minimises

RΠ

(
(q̃θ)θ, σ, (Wθ)θ

)
. However, the reverse statement

will not always be true.4 So, it does not suffice
to find a decision procedure σ̂ which minimises
RΠ

(
(q̃θ)θ, σ, (Wθ)θ

)
. It still has to be checked that σ̂

really minimises RΠ

(
(Qθ)θ, σ, (Wθ)θ

)
. Theorem 6.1

only states that there is a decision procedure which
solves both minimisation problems.

7 Concluding Remarks

In decision theory, straightforward updating may lead
to suboptimal decisions if the data is distributed ac-
cording to imprecise probabilities (cf. [3]). There-
fore, data-based decision theory can be seen as a mat-
ter of its own. One of the major problems in data-
based decision theory is that direct solutions of the

4In case of hypothesis testing, for example, this follows from
[1, p. 162ff].



involved optimisation problems are quite often com-
putationally intractable. Theorem 6.1 offers an op-
portunity to reduce the computational effort signifi-
cantly if the imprecise model admits a least favorable
(precise) model. Therefore, it is important to know
for a given decision problem if such a least favorable
model exists or not.

This question has been addressed by [6]. The concept
of imprecise probability developed in [6] is very close
to that one developed in [24]. From a mathematical
point of view, the only difference is that [6] assumes
that precise probabilities (i.e. linear previsions) have
to be σ-additive. Surprisingly, this appears to be a
burden which significantly reduces the applicability of
[6].5 The present article shows that the same result
as in [6] is possible without any assumption on the
involved (coherent) upper previsions if we dispense
with σ-additivity.

This offers a general tool which makes it possible to
reduce the computational effort in data-based decision
theory under imprecision. However, further research
has to be done for using it in concrete problems: As
in [14], Theorem 5.4 is only concerned with the exis-
tence of a least favorable model but an algorithm for
calculating least favorable models has not yet been
developed. After [14], a lot of work was done to con-
struct least favorable pairs in hypothesis testing for
special cases (e.g. [19], [18], [12], [1]). In the much
more general case of the present article, this is a mat-
ter of further research.

The present article might not only be interesting be-
cause of its results but also because of the applied
tools: Getting around σ-additivity in the proofs of
the present paper was possible by the use of notions
and methods of [16]. This article is probably the first
one which explicitly uses concepts of [16] in the theory
of imprecise probability. Since these concepts were es-
pecially developed for large models, it is most likely
that they can profitably be used in the theory of im-
precise probability further on. Additionally, a the-
ory of “sufficiency” is used which is not formulated
in terms of conditional probabilities. In this way, a
sufficiency theory for imprecise probabilities may be
possible which is not affected by the problems which
arise for conditional imprecise probabilities.

8 Appendix

Lemma 8.1 Assume that s is a linear prevision on
L∞(U , C) so that s[ιθ] = 1

n ∀ θ ∈ Θ. Then, sθ : h 7→

5By topological reasons, insistence on σ-additivity enforces
an additional, restrictive assumption on the involved (coherent)
upper previsions (cf. Remark 2.2 and [10]).

s[nιθh] defines a precise model (sθ)θ∈Θ on (U , C) and

inf
ρ∈T (U,D)

R
(
(sθ)θ, ρ, (Wθ)θ

)
= s

[
K

(
(Wθ)θ

)]
(6)

for every decision space (D,D) and every (Wθ)θ ⊂
L∞(D,D). K

(
(Wθ)θ

)
is defined as in (2).

For a proof of Lemma 8.1, confer [9, §6.3].

Lemma 8.2 If a precise model (pθ)θ∈Θ on (X ,A) is
sufficient for the precise model (qθ)θ∈Θ on (Y,B), then

inf
ρ∈T (X ,D)

R
(
(pθ)θ, ρ, (Wθ)θ

)
≤

≤ inf
σ∈T (Y,D)

R
(
(qθ)θ, σ, (Wθ)θ

)
for every decision space (D,D) and every (Wθ)θ ⊂
L∞(D,D).

Proof: There is some T ∈ T (X ,Y) so that T (pθ) =
qθ ∀ θ ∈ Θ. Therefore,

inf
σ∈T (Y,D)

∑
θ∈Θ

πθσ(qθ)[Wθ] =

= inf
σ∈T (Y,D)

∑
θ∈Θ

πθσ
(
T (pθ)

)
[Wθ] =

= inf
σ∈T (Y,D)

∑
θ∈Θ

πθ

(
σ ◦ T

)
(pθ)[Wθ] ≥

≥ inf
ρ∈T (X ,D)

∑
θ∈Θ

πθρ(pθ)[Wθ]

because σ ◦ T ∈ T (X , D) ∀σ ∈ T (X , D). 2

The following lemma is a consequence of the minimax
theorem [8, Theorem 2]. Here, topological properties
are crucial (Subsection 2.1.3). For a proof, confer [11].

Lemma 8.3

(a) inf
σ∈Tr(Y,D)

R
(
(Qθ)θ, σ, (Wθ)θ

)
=

= sup
(qθ)θ∈(Mθ)θ

inf
σ∈Tr(Y,D)

R
(
(qθ)θ, σ, (Wθ)θ

)
(b) inf

σ∈T (Y,D)
R

(
(Qθ)θ, σ, (Wθ)θ

)
=

= sup
(qθ)θ∈(Mθ)θ

inf
σ∈T (Y,D)

R
(
(qθ)θ, σ, (Wθ)θ

)
Acknowledgements

I thank Thomas Augustin for valuable discussions.
His suggestions have also greatly improved the read-
ability of the article. Furthermore, I thank Helmut
Rieder and Peter Ruckdeschel, who have drawn my
attention to the work of Buja and Le Cam. I am
also much indebted to the Cusanuswerk (Foundation
of the Roman Catholic Church) for a Ph.D. scholar-
ship. Finally, I thank the reviewers for their helpful
comments.



References

[1] T. Augustin. Optimale Tests bei Intervallwahr-
scheinlichkeit. Vandenhoeck & Ruprecht, Göttin-
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Abstract

This paper introduces a new approximate inference al-
gorithm for credal networks. The algorithm consists
of two major steps. It starts by representing the credal
network as a compiled logical theory. The resulting
graphical structure is the basis on which the sub-
sequent steepest-ascent hill-climbing algorithm oper-
ates. The output of the algorithm is an inner ap-
proximation of the exact lower and upper posterior
probabilities.

Keywords. Credal Networks, Bayesian Networks,
Credal Sets, Approximate Inference, Logical Compi-
lation, Hill-Climbing, Local Search.

1 Introduction

Credal networks are like discrete Bayesian networks,
except that they specify closed convex sets of proba-
bility mass functions, so-called credal sets [36], instead
of single probability mass functions. They are usually
locally (or separately) specified [1, 16], i.e. every net-
work variable is associated with a collection of local
conditional credal sets, which do not interfere with
each other. It is possible to view a locally specified
credal network as a set of Bayesian networks with the
same directed acyclic graph [17].

In general, credal sets contain an infinite number of
probability mass functions, but they are normally
fully specified by a finite number of extreme points.
These are the vertices of a convex polytope in the
corresponding multi-dimensional space. In the case
of binary variables, the polytopes coincide with inter-
vals, which restricts the maximal number of necessary
extreme points to two. In a Bayesian network, each
polytope is restricted to a single (extreme) point.

Inference in a locally specified credal network usu-
ally means to derive lower and upper posterior prob-
abilities from the strong extension [16], i.e. from the
the largest joint credal set that satisfies strong inde-

pendence [15]. Except for the particular case of bi-
nary variables in polytree-shaped networks [30], this
is computationally extremely challenging, much more
than classical inference in Bayesian network. The case
of general categorical variables is NP–complete for
polytree-shaped networks and NPPP–complete for an
unbounded induced treewidth, thus making inference
in credal networks very inefficient [27].

In comparison with Bayesian networks, the additional
computational complexity results from the potentially
unbounded number of vertices needed to describe ar-
bitrary credal sets. This can quickly outperform the
benefits of applying local computation techniques to
graphical models such as Bayesian networks. Local
messages propagated through a credal network (resp.
through the join tree obtained from a credal network)
may thus possess the richness and complexity of the
(global) joint credal set [10]. In fact, inference in
credal networks is essentially a global multilinear opti-
mization problem on top of the given graphical struc-
ture [18].

Facing the inherent computational complexity of
credal networks, exact inference methods are only
exceptionally suitable. One exception is the above-
mentioned case of binary variables in polytree-shaped
networks, for which a polynomial-time algorithm ex-
ists [30]. All other exact methods (e.g. vertex enu-
meration, global optimization, and transformation al-
gorithms) are only applicable to very small problem
instances.

For large networks, approximate inference seems to
be the most natural solution. There is a general dis-
tinction between inner and outer approximations, de-
pending on whether the resulting interval is enclosed
in the exact solution or vice versa. The quest for such
approximate methods is currently one of the major re-
search topics in the imprecise probability community,
as the increasing number of corresponding publica-
tions in the last couple of years demonstrates, see e.g.
[2, 4, 5, 7, 8, 9, 19, 20, 31, 32].



1.1 General Ideas

In this paper, we present a new approximate method
for the inference problem in credal networks. The ap-
proach results from combining the following two basic
techniques:

Logical Compilation. This is an emerging infer-
ence technique for Bayesian networks [12, 13, 14,
23, 45]. The general idea is to represent the
graphical structure (topology) of the Bayesian
network by a propositional theory. Possible lo-
cal structures within the given CPTs can be ex-
ploited to simplify corresponding sentences of the
theory [12, 14]. The resulting logical encoding
is then compiled into an appropriate logical form
called d-DNNF [25, 46], which supports all neces-
sary operations to answer arbitrary queries (con-
ditional probabilities) in polynomial time. The
computational task is thus divided into an ex-
pensive (off-line) compilation phase and a fast
(on-line) query-answering phase.

Hill-Climbing. This is a generic combinatorial op-
timization technique, which is widely used in
many AI-related fields and applications [41]. The
goal is to maximize (or minimize) a function
f : X → R through local search, where X is
usually a discrete multi-dimensional state space.
Local search means to jump from one configura-
tion in the state space to a neighboring one, un-
til a local maximum or possibly the global max-
imum is reached. An obvious heuristic for the
selection of the neighboring configuration is to
jump to the configuration with the steepest as-
cent of the respective value of f (steepest-ascent
hill-climbing). The basic hill-climbing process is
usually iterated with randomly generated start-
ing points (random-restart hill-climbing), thus
making it an interruptible anytime algorithm.

The idea of compiling a credal network in the same
way as compiling a Bayesian network is quite obvi-
ous, but to our knowledge, this is still an unexplored
approach. Pointing out this possibility is one of the
goals of this paper.

Applying hill-climbing or other local search algo-
rithms to approximate inference in credal networks
is also quite obvious, as some of the existing approx-
imation algorithms have demonstrated [4, 5, 6, 20].
Most of them are oriented towards the local propa-
gation scheme in corresponding join trees [33, 43], in
which each hill-climbing step requires the updating of
the affected join tree messages. The hill-climbing pro-
cedure itself is guided by the current configuration of
so-called transparent variables, whose role consists in
selecting the actual vertices in the local credal sets.

1.2 Overview and Outline

In our method, we will also exploit the benefits of lo-
cal computation in join trees, but only to compile the
network structure into a d-DNNF during the inward
phase [13]. The necessary information for the hill-
climbing procedure is then available in a very simple
and compact logical structure. For the current selec-
tion of vertices, this structure can then be used to
efficiently compute or update the resulting posterior
probability. Moreover, without much computational
overhead, it is possible to determine the currently
unselected vertex (i.e. the neighboring configuration)
with the steepest ascent (resp. descent), which we can
use as a heuristic to improve the performance of the
local search.

After all, we get a simple but yet powerful steepest-
ascent, random-restart hill-climbing algorithm to ap-
proximate inference in credal networks. By running
the algorithm twice, once as a maximizing and once
as a minimizing procedure, it produces good inner ap-
proximations of the exact probability bounds.

With respect to existing hill-climbing techniques for
credal networks, our approach appears to be consid-
erably simpler, as no complicated management of a
bidirectional double message system is required, like
e.g. in [6]. The logical representation is also inherently
predestined to exploit existing local CPT regularities
in the form of context-specific independence [3], logical
relationships (pure or noisy), or determinism [12], for
which existing methods typically use so-called prob-
ability trees [6, 9]. Finally, from the possibility of
quickly finding the neighboring configuration with the
steepest ascent (respectively descent), our method is
likely to converge faster towards the exact results.

The rest of the paper is organized as follows. In
Section 2, we give a short introduction to the main
concepts of Bayesian and credal networks and the
terminology used in this paper. Section 3 summa-
rizes the compilation-based approach to inference in
Bayesian (and credal) networks. Section 4 introduces
hill-climbing and its application to compiled credal
networks. This is the main part of the paper. The
discussion and outlook in Section 5 concludes the pa-
per.

2 Bayesian and Credal Networks

A Bayesian network (BN) is an efficient representa-
tion of a joint probability mass function over a set
X = {X1, . . . , Xn} of variables [38]. We assume
throughout this paper that all variables X ∈ X are
categorical, i.e. their associated sets ΩX of possible
values are finite. The network itself consists of a
directed acyclic graph (DAG), which represents the



direct influences among the variables, each of them
attached to one node, and a set of conditional prob-
ability tables (CPT), which quantify the strengths of
these influences. The whole BN represents a joint
probability mass function p : ΩX → [0, 1] over its vari-
ables in a compact manner by

p(X) =
∏

X∈X

p(X|Π(X)), (1)

where Π(X) denotes the parents of node X in the
DAG. Figure 1 depicts the BN for the “Dog-Problem”
[11], which is often used in the literature for illustra-
tive purposes. It consists of five binary variables F , B,
L, D, and H, with corresponding CPTs p(F ), p(B),
p(L|F ), p(D|F,B), and p(H|D).

L

F B

D

H

p(D|F,B)
d1 d2

f1, b1 0.99 0.01
f1, b2 0.97 0.03
f2, b1 0.90 0.10
f2, b2 0.30 0.70

p(L|F )
l1 l2

f1 0.60 0.40
f2 0.05 0.95

p(H|D)
h1 h2

d1 0.70 0.30
d2 0.01 0.99

p(F )
f1 f2

0.15 0.85

p(B)
b1 b2

0.01 0.99

Figure 1: Example of a simple Bayesian network with
five binary variables.

Inference in Bayesian networks means to compute the
conditional probability P (H=h |E1=e1, . . . , Er=er),
or simply

P (h|e) =
P (h, e)
P (e)

, (2)

of a hypothesis h ∈ ΩH for some observed evidence
e = (e1, . . . , er) ∈ ΩE. We will call H ∈ X query
variable and the elements of E = {E1, . . . , Er} ⊆ X
evidence variables. To see how to solve the inference
problem, let Y = {Y1, . . . , Ys} ⊆ X be an arbitrary
subset of variables, y = (y1, . . . , ys) ∈ ΩY a configu-
ration of values yi ∈ Yi, and Z = X\Y. Then it is
sufficient to compute

P (y) =
∑
z∈ΩZ

p(yz) (3)

twice, once with Y = {H} ∪ E and y = (h, e) to get
the nominator and once with Y = E and y = e to
get the denominator of the above formula. Note that

the necessary sum-of-products involve exponentially
many terms, but if the computations are performed
locally in a join tree propagation or variable elimina-
tion process, it is almost always possible to replace it
by a compact factorization [28, 33, 43]. Join trees are
also useful to avoid redundant computations in the
case of multiple queries or updates.

Credal networks (CN) are similar to Bayesian net-
works, but they relax the uniqueness assumption for
the given probability values [16]. In a locally (or sep-
arately) specified CN, the CPT entries are replaced
by corresponding conditional credal sets, on which no
further restrictions are imposed [1]. A credal set for a
variable X ∈ X is a closed convex set K(X) of prob-
ability mass functions p(X) [36]. Similarly, a con-
ditional credal set K(X|π) is a closed convex set of
conditional probability mass functions p(X|π), where
π ∈ ΩΠ(X) is one particular assignment of values for
the direct influences Π(X) of X. With

K(X|Π(X)) = {K(X|π) : π ∈ ΩΠ(X)} (4)

we denote the collection of all such conditional credal
sets. This is what a CN needs to specify for all vari-
ables X ∈ X.

Normally, a single conditional credal set K(X|π) is
specified and represented by a finite set

Ext(K(X|π)) = {p1(X|π), . . . , pm(X|π)} (5)

of extreme points pi(X|π). Geometrically, these ex-
treme points are vertices of a polytope in the corre-
sponding additive subspace of [0, 1]|ΩX |. In the bi-
nary case, i.e. for |ΩX | = 2, the additive subspace
of [0, 1]2 is a simple straight line between (0, 1) and
(1, 0), on which credal sets degenerate into intervals
with at most two extreme points (the bounds of the
intervals).

If we generalize the BN of Fig. 1 to a CN, we need
to replace the rows in each CPT by corresponding
(conditional) credal sets. Since all involved variables
are binary, it is sufficient to specify two extreme
points for each credal set. As an example, consider
K(H|D), which consists of the credal sets K(H|d1)
and K(H|d2), and suppose that the precise values
p(H|di) from Fig. 1 are enlarged to sets of extreme
points Ext(K(H|di)) = {p1(H|di), p2(H|di)} with the
following values:

Ext(K(H|D))
p1(H|D) p2(H|D)
h1 h2 h1 h2

d1 0.70 0.30 0.80 0.20
d2 0.01 0.99 0.03 0.97

Note that the particularity of binary variables allows
us to specify the same information more compactly



by p(h1|d1) ∈ [0.7, 0.8] and p(h1|d2) ∈ [0.01, 0.03]
(and therefore by p(h2|d1) ∈ [0.2, 0.3] and p(h2|d2) ∈
[0.97, 0.99]), thus making the interval-shaped credal
sets more visible. This is an appealing view, in which
credal sets appear to be nothing but probability in-
tervals or interval-valued probabilities [35, 37, 44, 48],
but the simplicity of this view belies the fact that
credal sets are more general than probability intervals,
e.g. for variables with more than two values. Interval
representations are also problematical when it comes
to apply Bayes’ rule or to propagate them through a
network [6, 16].

For a given credal network, we use K(X) to denote
its joint credal set. Note that its actual definition de-
pends on how the concept of independence is adopted
for credal sets. In this paper, we follow the usual con-
vention of strong independence [15], which allows us to
define K(X) to be the strong extension of the credal
network, i.e. as the largest joint credal set such that
every variable X ∈ X is strongly independent [16].
This set contains all possible joint probability mass
functions, if we select corresponding elements p(X|π)
from each conditional credal set K(X|π). Formally,
we can write

K(X) =

{ ∏
X∈X

p(X|Π(X)) : p(X|π) ∈ K(X|π)

}
,

where π denotes respective configurations of Π(X).
Note that each element p(X) ∈ K(X) can be seen as
the joint probability mass function of a corresponding
Bayesian network (on the same DAG).

The convexity of K(X) guarantees its extreme points
to result only from combinations of extreme points
of each conditional credal set K(X|π) [17], and this
allows us to rewrite the above expression as

Ext(K(X)) =

CH

{ ∏
X∈X

p(X|Π(X)) : p(X|π) ∈ Ext(K(X|π))

}
,

where CH stands for an algorithm to compute the
convex hull of a set of points in a multi-dimensional
space [26]. This property reflects the fact that infer-
ence in credal networks is reducible to computations
of extreme points.

Inference for a given credal set K(X), a query h ∈
ΩH , and some observations e ∈ ΩE means to deter-
mine tight bounds over all possible probability values
P (h|e), i.e. to compute the lower posterior probabil-
ity

P (h|e) = min{P (h|e) : p(X) ∈ K(X)}, (6)

and the upper posterior probability

P (h|e) = max{P (h|e) : p(X) ∈ K(X)}. (7)

To compute these values under the assumption of
strong independence, we can again exploit the con-
vexity of K(X) to restrict the necessary search space
to the finite set Ext(K(X)) of extreme points [17].
Note that if N denotes the total number of involved
conditional credal sets, all of them described by k
extreme points, then Ext(K(X)) may possess up
to Nk elements, thus making the above minimiza-
tion/maximization problems very difficult tasks. Ex-
cept for polytree-shaped networks with binary vari-
ables, no algorithm can handle large credal networks
exactly [27, 30].

3 Compiling Bayesian Networks

The goal of compiling a Bayesian or credal network
is the construction of a logical representation ϕ, in
which all the topological and context-specific infor-
mation of the network is included in a compact and
easily manageable form. This construction is a one-
time preparatory step, which is intended to take place
off-line. The resulting logical representation ϕ con-
tains two types of propositional variables, the ones
linked to the CPT entries and the ones linked to the
individual values of the network variables. The cor-
responding sets of propositions are denoted by Θ and
∆, respectively.

To compute the probability P (y) of a configuration
y = (y1, . . . , ys) ∈ ΩY w.r.t. Y = {Y1, . . . , Ys} ⊆ X,
which is the basic computational task to answer ar-
bitrary probabilistic queries (see Equation 3 in Sec-
tion 2), ϕ is transformed into ϕy = (ϕ|y)−∆ by first
conditioning ϕ on y and then eliminating (or forget-
ting) from ϕ|y all ∆-variables. The remaining Θ-
variables in ϕy are all of the form θx|π, i.e. each of
them is linked to a CPT entry p(x|π).

To ensure that the above-mentioned computational
steps are always efficient, ϕ must be a so-called d-
DNNF [25, 46].1 A negation normal form (NNF) is
a rooted, directed acyclic graph, whose leaves are la-
beled with the literals of a propositional language.2

All other nodes denote either a logical AND or a logi-
cal OR. d-DNNFs are NNFs satisfying two important
properties called determinism (d) and decomposability
(D).3 Fig. 2 depicts the d-DNNF ϕh1 for the Bayesian

1The suggestion of using d-DNNFs as a target compilation
language for Bayesian networks goes back to [23]. The mathe-
matical explanation in [45] backups this choice.

2Note that NNFs are propositional directed acyclic graphs
(PDAG), for which the simple-negation property holds [46].

3NNFs, in which some propositional variables are implicitly
known to be exclusive and exhaustive, should be regarded as
corresponding multi-state directed acyclic graphs (MDAG), a
generalization of PDAGs (and NNFs) to arbitrary categorical
variables [47]. In the context of MDAGs, some properties (incl.
determinism and decomposability) and some operations (incl.
conditioning and variable elimination) are based on more gen-



network in Fig. 1 and the query y = h1. Note that the
network node L has no impact on P (h1), which is why
ϕh1 is not affected by variables of the form θli|fj

(they
disappear while l1 and l2 are eliminated from ϕ|h1).
Similarly, ϕh1 does not contain variables of the form
θh2|di

(they disappear while ϕ is conditioned on h1).

θd2|f2b2θd2|f2b1θd2|f1b2θd2|f1b1θd1|f1b1 θd1|f1b2 θd1|f2b2θd1|f2b1

θh1|d1 θh1|d2

θb1 θb2

θf2θf1

ϕh1

0.15 0.85

0.01 0.99

0.70 0.01

0.010.99 0.97 0.030.90 0.10 0.700.30

+ +

+ +++

+

∗ ∗

∗∗∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.2899

Figure 2: The d-DNNF obtained for the Bayesian net-
work in Fig. 1 and the query y = h1. AND- and OR-
nodes are denoted by M and O, respectively.

For a given d-DNNF ϕy, it is easy to compute P (y) =
P (ϕy) by simply propagating the conditional proba-
bilities p(x|π) from the leaves θx|π upwards to the root
of the DAG. At each OR-node, determinism allows the
incoming values to be added, and at each AND-node,
decomposability allows the incoming values to be mul-
tiplied, as indicated in Fig. 2 by the symbols + and
∗, respectively. The result we obtain at the root is
P (h1) = P (ϕh1) = 0.2899.

Computing probabilities is thus another efficient op-
eration supported by d-DNNFs. In other words, any
given compiled Bayesian network ϕ allows us to ef-
ficiently compute all possible simple queries P (y) =
P (ϕy). This in turn enables the efficient computa-
tion of all possible general queries P (h|e), namely in
terms of two simple queries P (h, e) = P (ϕh,e) and
P (e) = P (ϕe). Note that ϕh,e is often simpler than
ϕe. Moreover, it is very likely that ϕh,e and ϕe (or any
pair of related d-DNNFs) share a substantial num-
ber of common subgraphs.4 In Fig. 2, for example, it
turns out that ϕf1,h1 corresponds to the left subgraph

eral definitions, but their basic functionalities and properties
remain the same.

4This is a consequence of the linear running time of condi-
tioning, which restrains the number of newly created nodes.

of the root node of ϕh1 , whereas only three additional
nodes are required to construct ϕb1,h1 , two of them
pointing to respective subgraphs of ϕh1 . The shar-
ing of common subgraphs is important, as it allows
the bottom-up computation of several probabilities in
one single pass. We will heavily exploit this when it
comes to realize the selection of the steepest ascent
in the random-restart hill-climbing algorithm of the
following section.

For the compilation itself, there are two distinct
classes of methods. The methods of the first class
start from encoding the Bayesian network as a CNF
ψ, which is then converted into a d-DNNF ϕ =
CNF2dDNNF(ψ), e.g. by using Darwiche’s compiler
[22, 24]. This is the classical compilation approach in
the literature [12, 14, 42, 45].

The more recent methods of the second class, called
tabular compilation methods [13], avoid the detour
over a CNF. The idea is to run a simple variable elim-
ination procedure over all network variables. More
generally spoken, it is the application of the fusion
(or bucket elimination) algorithm to a particular type
of semiring valuations [34], in which the semiring con-
sists of all Boolean functions w.r.t. the variables Θ∪∆
(respectively of all classes of equivalent logical repre-
sentations). For appropriate input valuations, it is
easy to show that the output of the algorithm is in-
deed a d-DNNF. The fact that any algebra of semir-
ing valuations satisfies the general valuation algebra
axioms (see Theorem 2 in [34]) allows this type of
compilation to fully exploit the principle of local com-
putation. The worst-case complexity (for both time
and space) is thus identical to standard join tree al-
gorithms for Bayesian networks, i.e. exponential in
the network’s induced treewidth (= size of the largest
node in the join node). In fact, one can look at tabu-
lar compilation as a standard inward propagation in
a join tree, where the evolving d-DNNF keeps trace
of the effected computations [13, 21].

4 Hill-Climbing in Compiled Credal
Networks

Let’s assume now that a given credal network is com-
piled in the same way as a corresponding Bayesian
network, i.e. as if the attached credal sets were pre-
cise values. We will now show how to use the re-
sulting d-DNNF ϕ as a starting position for the inner
approximation of lower and upper posterior probabili-
ties P (h|e) and P (h|e), respectively. If the hypothesis
h and the evidence e are given, the first step is clear,
namely to transform ϕ into corresponding d-DNNFs
ϕh,e and ϕe (see previous section). Note that the
same ϕe can be used for several hypotheses as long as
e remains unchanged.



4.1 The Hill-Climbing Algorithm

To realize the approximation of P (h|e) and P (h|e) as
a hill-climbing algorithms, the next thing to do is to
define an appropriate search space. For this, we make
use of the fact that both P (h|e) and P (h|e) result
from corresponding extreme points of the joint credal
set K(X), i.e. from elements of the set Ext(K(X)).
This set in turn is determined by the extreme points
Ext(K(X|π)) of the local credal sets K(X|π) at each
node of the network (see Section 2).

To access individual elements of Ext(K(X)), we em-
ploy a strategy that is similar to the use of transparent
variables in [4, 6], but here we will not integrate them
as explicit nodes into the network structure. The idea
is thus to consider discrete variables TX|π, one for
each local credal set K(X|π), where the role of each
TX|π is to select an extreme point of the credal set
K(X|π). If kX|π = |Ext(K(X|π))| denotes the num-
ber of extreme points of the credal set K(X|π), then
ΩTX|π = {1, . . . , kX|π} is the set of possible values of
TX|π. Furthermore, if T denotes the set of all such
variables TX|π, then

ΩT =
∏

TX|π∈T

ΩTX|π (8)

denotes the set of all configurations with respect to T.
For a specific configuration t = stu ∈ ΩT, in which
t denotes the value of the transparent variable TX|π
in t, we can write pt(X|π) ∈ Ext(K(X|π)) to se-
lect the corresponding extreme point of the credal set
K(X|π). Similarly, we write pt(X) for the selected
joint probability mass function, Pt(h|e) for induced
posterior probabilities, and Pt(ϕh,e) and Pt(ϕe) for
probabilities of a compiled network. This formal set-
ting allows us to rephrase the definitions of lower and
upper posterior probabilities in Equation 6 and 7 by

P (h|e) = min
t∈ΩT

Pt(h|e) = min
t∈ΩT

Pt(ϕh,e)
Pt(ϕe)

, (9)

P (h|e) = max
t∈ΩT

Pt(h|e) = max
t∈ΩT

Pt(ϕh,e)
Pt(ϕe)

, (10)

respectively, i.e. ΩT is the discrete search space, on
which the following steepest-ascent, random-restart
hill-climbing procedure operates. The details of the
procedure are shown in Algorithm 1, which deserves
some additional explanations:

• Lines 2–3 describe the preparation phase. Line 4
sets the current global maximum Pmax to 0.

• The outer loop (lines 5–12) describes the
“random-restart” part of the algorithm. It starts
by selecting a random configuration t ∈ ΩT in
Line 8 and ends by updating the current value for

Algorithm 1: ApproxUpperProb(ϕ, h, e,T)

begin1

ϕh,e ← (ϕ|h, e)−∆;2

ϕe ← (ϕ|e)−∆;3

Pmax ← 0;4

for i← 1 to maxRuns do5

t← RandomConfiguration(T);6

repeat7

Pt ← Pt(ϕh,e)
Pt(ϕe)

;8

t← BestNeighbor(t,T, Pt, ϕh,e, ϕe);9

until t = nil;10

Pmax ← max{Pmax, Pt};11

return Pmax;12

end13

the global maximum. We assume the existence
of a global variable maxRuns, which determines
the number of passes.

• The actual hill-climbing takes place in the inner
loop (lines 7–10). The crucial step for this is
the selection of t’s best neighbor in the search
space ΘT by calling the function BestNeighbor
(Line 9). This is the “steepest-ascent” part of
the algorithm, which will later be discussed in
further details. If no neighbor improves the cur-
rent local maximum Pt = Pt(h|e), we expect
BestNeighbor to return nil.5

• The current value of the local maximum is up-
dated in Line 8. This involves the bottom-up
computation of the probabilities Pt(ϕh,e) and
Pt(ϕe) based on the current selection of extreme
points pt(X|π), from which the actual values
pt(θx|π) of all variables θx|π ∈ Θ are extracted.
Note that only those parts of ϕh,e and ϕe need to
be processed, which are affected by the transition
from the old to the new configuration. Of course,
common subgraphs of ϕh,e and ϕe are processed
in one single pass.

The corresponding minimization algorithm, i.e. the
approximation of the lower posterior probability
P (h|e), is almost identical, except for the initializa-
tion of the global maximum (Line 4), the selection of
the best neighbor (Line 9), and the updating of the
global maximum (Line 11). In the rest of this paper,
we will therefore restrict our discussion to the maxi-
mization problem.

5To avoid getting stuck on a plateau (flat part of the search
space), the algorithm should allow so-called sideway moves to
states with equal values. This may cause infinite loops, but they
can be avoided by keeping track of previously visited plateau
states. For simplicity, we do not explicitly take care of these
details in the proposed algorithm.



4.2 Selecting the Best Neighbor Efficiently

Let us now take a closer look at the problem of select-
ing the best neighbor of the actual configuration t.
For this, suppose that t ∈ ΩTX|π is the current value
of a transparent variable TX|π ∈ T in the actual con-
figuration t = stu. Every configuration t′ = st′u with
t′ ∈ ΩTX|π and t′ 6= t is then a possible neighbor of t
in ΩT. Selecting the best neighbor, i.e. the neighbor
with the most significant improvement with respect to
the actual local maximum Pt = Pt(h|e), means thus
to compute Pt′ = Pt′(h|e) for all such configurations
t′ and all transparent variables TX|π ∈ T. The follow-
ing algorithm shows a näıve solution for this simple
idea.

Algorithm 2: BestNeighbor(t,T,Pt,ϕh,e,ϕe)

begin1

tmax ← t;2

foreach TX|π ∈ T do3

t← value of TX|π in t;4

foreach t′ ∈ ΩTX|π\{t} do5

t′ ← replace t by t′ in t;6

Pt′ ← Pt′ (ϕh,e)
Pt′ (ϕe)

;7

if Pt′ > Pt then8

tmax ← t′;9

Pt ← Pt′ ;10

if t = tmax then return nil;11

else return tmax;12

end13

The problem with this näıve solution is the repeti-
tive probability calculation in the inner loop (Line 7).
This can be avoided by pre-compiling ϕh,e and ϕe ac-
cording to the following Shannon decomposition, in
which ϕy denotes a general instantiation of ϕ to a
vector y and X ∈ X the network variable affected by
the current transparent variable TX|π:

Pt′(ϕy) =
∑

x∈ΩX

Pt′(θx|π)Pt′(ϕy|θx|π)

=
∑

x∈ΩX

pt′(x|π)Pt(ϕy|θx|π). (11)

Note that in the second line of Equation 11, it is no
longer necessary to explicitly generate the neighbor-
ing configurations t′. In other words, if we first derive
from ϕh,e and ϕe all possible instantiations ϕh,e|θx|π
and ϕe|θx|π, respectively, we can use Equation 11 to
directly obtain the probabilities Pt′(h|e) of all neigh-
boring configurations t′, i.e. without actually gener-
ating them. In Algorithm 2, this can be realized by
skipping Line 6 and by replacing the right hand side
of Line 7 by corresponding versions of Equation 11.

4.3 Recapitulation and Complexity Analysis

To conclude this section, let’s first recapitulate the in-
dividual steps of the proposed method and then dis-
cuss their respective running time complexities.

To make the above steepest-ascent scheme work for a
given hypothesis h and the evidence e, we first need
to transform the compiled network ϕ into ϕh,e and ϕe

and then into ϕh,e|θx|π and ϕe|θx|π for all θx|π ∈ Θ.
The result is a collection

Φh|e ={ϕh,e, ϕe} ∪ {ϕh,e|θx|π : θx|π ∈ Θ}
∪ {ϕe|θx|π : θx|π ∈ Θ} (12)

of d-DNNFs, which are likely to overlap heavily. This
is illustrated in Fig. 3 in the form of a d-DNNF with
multiple roots.
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Figure 3: Probability computations in a multi-rooted
d-DNNF with overlapping subgraphs.

To always keep the involved probabilities at each root
up-to-date during the hill-climbing, we need to do
the bottom-up probability computation only once at
each hill-climbing step (i.e. at Line 8 of Algorithm 1),
namely for the entire multi-rooted d-DNNF. The deci-
sion about the steepest ascent with respect to the cur-
rent configuration t follows then from applying Equa-
tion 11 to all values t′ that are incompatible with t.

As discussed earlier, the worst-case running time and
space complexity of the compilation phase is O(2d),
where d denotes the network’s induced treewidth for
the given variable ordering. This is equivalent to
the complexity of standard join tree algorithms for
Bayesian networks. In other words, if s = |ϕ| denotes
the size (= number of edges) of the d-DNNF ϕ, then s
reflects roughly the number of basic arithmetic opera-
tions (additions and multiplications) to be performed
in the inward phase of a corresponding join tree propa-
gation algorithm. Note that in the presence of strong
local regularities in the form of context-specific in-
dependence, (pure or noisy) logical relationships, or



scarce CPTs, it is not untypical for the size s and
therefore for the problem-specific complexity of the
compilation phase to be much more favorable than
O(2d).

The second preparatory step for the actual hill-
climbing algorithm is the element-wise computation
of the set Φh|e. For a given d-DNNF ϕ of size s, com-
puting one such element requires O(s) steps, which is
a consequence of the fact that both conditioning and
the particular type of variable elimination run in O(s)
time for d-DNNFs [25, 46]. Thus the total running
time of the second step is O(s·|Φh|e|) and therewith
O(s·|Θ|), where |Θ| itself is proportional to both the
number of network variables n = |X| and the corre-
sponding maximal cardinality c = max{|ΩX | : X ∈
X}. This means that the worst-case running time of
the entire preparatory phase is O(c·n·2d). This shows
that the preparatory phase only depends on the net-
work parameters c, d, and n, but not on the concrete
local credal sets.

To analyze the running time of the actual hill-climbing
algorithm, let S denote the total size of the multi-
rooted d-DNNF on which the algorithm operates.
Note that probability computations are supported by
d-DNNFs in linear time, i.e. if K denotes the total
number of extreme points over all locally specified
credal sets (which correlates with the number of basic
steps in the selection of the steepest ascent), then each
individual hill-climbing step runs in O(S+K) time.
Since S is likely to be much larger than K, we can as-
sume that the running time of the entire hill-climbing
procedure is simply O(maxRuns·S). Due to the over-
lapping areas in the multi-rooted d-DNNF, S itself is
often of the same order of magnitude as s.

5 Discussion and Conclusion

The method presented in this paper is a new tech-
nique to approximate inference in credal networks.
The core of the approach is the idea of compiling the
network into an appropriate logical form ϕ, which al-
lows us to efficiently accomplish all necessary compu-
tational steps to answer probabilistic queries. Compi-
lation techniques are increasingly applied to Bayesian
networks, but the proposal to apply them to credal
networks and to combine them with local search tech-
niques is original.

With respect to existing approximation techniques for
credal networks, let’s point out some of the most im-
portant strengths of our approach.

• Simplicity. To make our approach work, only
few simple procedures need to be implemented.
The most important procedure is the compilation
itself. For this, e.g. by using Nenok [39, 40],

a generic framework for local computations in
(semiring) valuation algebras, only few lines of
code are necessary to handle the construction of
the d-DNNF ϕ. Further procedures to imple-
ment are the operation of conditioning ϕ|y and
the variable elimination ϕ−∆. Both of them can
be realized by simple recursions. The same holds
for computing (and updating) the involved prob-
abilities in the multi-rooted d-DNNF Φh|e, which
turns out to be a classical postorder (bottom-up)
traversal of a directed acyclic graph.

• Flexibility. The compiled logical form can be seen
as a general recipe with precise instructions for
the computation of all sorts of probabilities w.r.t.
a given network. This is a very flexible and pow-
erful starting position, which allows us to do all
sorts of different things very easily, e.g. the effi-
cient selection of the steepest ascent. The same
structure could thus be used to solve other prob-
lems such as MAP or MPE.

• Efficiency. For a given multi-rooted d-DNNF,
the updating of the probabilities during the hill-
climbing process and the selection of the steepest
ascent can be realized without any redundancy.
The avoidance of redundancy can be enforced by
exploiting local regularities already at the logical
level. In fact, this is one of the key arguments
for applying compilation techniques to Bayesian
networks [12].

A couple of key questions have not yet been addressed
in this paper. As corresponding implementations and
testbeds are currently under development, we are not
yet ready to say much about the empirical perfor-
mance of the proposed method compared to exist-
ing methods. Other open questions concern the im-
plementation of more sophisticated local search tech-
niques such as stochastic hill-climbing, simulated an-
nealing, or genetic algorithms [41]. These problems
will be attacked in our subsequent work.
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Abstract

We introduce a new rule for Bayesian updating of
classes of precise priors. The rule combines Wal-
ley’s generalized Bayes rule with a filter based on
prior quantiles of the observational evidence. We
introduce this new “quantile-filtered Bayesian up-
date rule” because in many situations, Walley’s gen-
eralized Bayes rule reveals counter-intuitively non-
informative, dilation-type results while an alternative
rule, the maximum likelihood update rule after Gilboa
and Schmeidler, is not robust against imprecise pri-
ors that are contaminated with spurious information.
Our new quantile-based update rule addresses the for-
mer issue and fully resolves the latter. By the new rule
we update an imprecise prior that was recently mo-
tivated by expert interviews with climate, ecosystem
and economic modelers: a “correlation class” of pre-
cise priors with arbitrary correlation structure, how-
ever, prescribed precise marginals. For an insurance
situation we demonstrate that under our new rule a
set of clients would be insured that is disregarded un-
der standard generalized Bayesian updating.

Keywords. Bayesian updating, Generalized Bayes
rule, imprecise probability, robust Bayesian approach,
modeling expert opinions, prescribed marginals, un-
known correlation structure.

1 Introduction

Complex numerical models provide key working
horses within climate, ecosystem and economic re-
search and hence their output strongly influences the
discussion on ecologically and economically sustain-
able climate policies. In turn, model output strongly
depends on various tuning parameters which cannot
fully be determined through objective data in general.
For that reason Bayesian methods become increas-
ingly popular in these fields as they would allow to
incorporate subjective prior knowledge on model pa-
rameters, often aggregated from scattered sources of

information in the brains of modelers, in a statistical
analysis. A recent semi-formalized expert elicitation
aimed at generic patterns of knowledge vs. ignorance
in modelers’ prior information on multivariate model
parameters [8, 9]. As a key result modelers across
disciplines stated to hold fundamentally more precise
information on marginals than on the (higher order)
correlation structure among parameters.

This key finding from above elicitation fueled our in-
terest in Tchen’s imprecise model [14] (further inves-
tigated in [2, 5, 6, 11, 12]) consisting of a class P
of precise measures P the marginals of which would
all equal certain prescribed marginals. We call this
class “correlation class”. When updating a correla-
tion class along the lines of global Bayesian robustness
[1], i.e. element-wise updating according to standard
Bayes rule, then observing the extremes of ensuing an-
swers as the prior varies over the class, we found non-
informative imprecise posteriors over a wide range of
potential observations y [8, 9].

This is in line with prior results on a similar P by
[11] (see also Seidenfeld and Wasserman [13] for a dis-
cussion of such a dilation phenomenon where poste-
rior bounds are dilated even for all possible measure-
ments y). In case the set P is convex this updating
procedure is equivalent to Walley’s generalized Bayes
rule [15]. We will call this element-wise updating and
subsequent extremizing “GBR” throughout this ar-
ticle regardless of whether P is convex or not. (An
alternative class displaying imprecise correlations is
introduced in [10] characterized by a radially sym-
metric possibility measure. However as no results on
Bayesian updating have been published for that class
so far, we disregard it in the context of this article.)

Gilboa’s and Schmeidler’s maximum likelihood up-
date rule [7] delivers much more informative results.
Their rule is equivalent to applying GBR – not to P
but – to the subset of those precise priors that would
maximize the prior expectation of the evidence y. In
[8, 9] that rule is generalized by not completely dis-



regarding those priors that would not maximize prior
expectation of y but by giving any element of P an
influence, weighted by its prior expectation of y. (y
may either represent a single sample or a number of
samples that can be combined to the multi-variate
observation y.) However as against GBR, both like-
lihood update rules face the problem that spurious
information may enter the final result: in case P con-
tains an unjustified element that accidentally displays
high prior expectation of y, this may result in a poste-
rior that is more precise than for the uncontaminated
version of P .

For that reason here we present a new updating rule
that combines important advantages of GBR and the
latter two likelihood updating rules: (i) it is more
informative than GBR and (ii) in case P is contami-
nated this contamination would not add spurious in-
formation to the posterior.

We are aware that there exists the further method
of reducing the class of priors in view of evidence as
described in [3, 4]. However the relation to our work
appears intricate and its elucidation shall be outlined
elsewhere.

This article is organized as follows. In Section 2 we
introduce the new updating rule. In Section 3 we
apply that rule to the briefly recapitulated imprecise
prior in [8, 9] motivated by above expert elicitation.
In Section 4 we regularize our prior by bounding the
gradients of densities making up the imprecise prior.
In Section 5 we offer an interpretation of our new
updating rule that involves also concepts from classi-
cal statistics and therefore might be controversial. In
Section 6 we compare the results of various updating
methods from the point of view of an idealized insur-
ance company. Finally, in Section 7 we summarize
our findings and outline the most pressing issues from
the point of view of a modeler.

2 The Quantile-Filtered Bayesian
Update Rule

The crucial element of our new updating rule is the
filter that acts on P , before GBR is applied.

Definition 1 Let P represent an imprecise prior

made up by a non-empty set of precise priors. Let

Q ∈]0, 1[. Let PL denote the probability measure in-

duced by a precise prior P ′ ∈ P and the precise like-

lihood L on the space of all potential observations

Y . Then YPLYQ is a generator of a Q-filtered

Bayesian update rule (QFB) iff YPLYQ : P →
2Y with ∀y∈Y ∀P ′∈P PL(y ∈ YPLYQ(P ′)) ≥ Q.
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Figure 1: Scheme for the construction of the subset V
in the class of priors. Any prior (here identified with
a different “expert”) induces – through a given likeli-
hood – a probability measure on the space of potential
measurements y′ (bottom). Once the measurement
has been realized, i.e. y′ := y, one can disregard pri-
ors that display y outside of a quantile, characterized
by a pre-set probability Q.

Hence Y maps P ′ ∈ P onto a prior (≥ Q)-quantile
in observation space. As an illustrative example, in
Figure 1, the two elements of P , P1, P2, are mapped
onto an interval ] − ∞, y′max] within the respective
abscissa (the latter denoting the space of potential
observations y′).

Definition 2 Let P , Q, L, PL, Y as above and YPLYQ
the accompanying generator of a Q-filtered Bayesian

update rule. Then VPLYQ is a Q-GBR-filter iff

VPLYQ : Y → 2P , y 7→ {P ′ ∈ P | y ∈ YPLYQ(P ′)}.

Hence for given observation y, V(y) represents those
priors for which y is not too “far-fetched” (see Fig-
ure 1).

Definition 3 Let V be according to previous Defs.

Then we call the operation GBR ◦ V a quantile fil-

tered Bayesian learning rule (QFB).

Before we discuss a desirable property of QFB w.r.t.
contaminations, we would like to recall that GBR
shares this property:

Theorem 1 Let UGBR : Y ⊗ P → R the “up-

dating operator” maximizing the ensuing answer of

Bayesian learning over the class of priors along

GBR, and UGBR the analogue minimization opera-

tor. Then ∀y∈Y UGBR(y,P ∪ Pc) ≤ UGBR(y,P) ≤
UGBR(y,P) ≤ UGBR(y,P ∪ Pc).

This relation simply follows from the fact that the
sup(inf)-operator is monotonous w.r.t. set-extension.



It implies that a contamination Pc would not add spu-
rious information to the posterior result. In general,
such a relation is violated by the two likelihood updat-
ing rules mentioned before, but importantly it holds
for QFB:

Theorem 2 Let UQFB : Y ⊗ P → R the “up-

dating operator” maximizing the ensuing answer of

Bayesian learning over the class of priors along

QFB, and UQFB the analogue minimization opera-

tor. Then ∀y∈Y UQFB(y,P ∪ Pc) ≤ UQFB(y,P) ≤

UQFB(y,P) ≤ UQFB(y,P ∪ Pc).

This Theorem readily follows from the fact that the
way the operator GBR ◦ V acts on P ′ ∈ P does not

depend on the other elements of P . This is in contrast
to the other two likelihood update rules for which the
relative weight (the prior expectation of y) of P ′, com-
pared to the other priors matters. We regard the fact
that those Theorems hold as a key advantage of QFB
and GBR. It now remains to show that QFB is signif-
icantly more informative than GBR in relevant cases.

3 Specification and updating of the
correlation class

3.1 The imprecise prior and the likelihood

In order to keep the discussion as transparent as pos-
sible we decide on the simplest non-trivial P and like-
lihood possible. We consider the uncertain parame-
ter (x1, x2)t ∈ R2, the “observation” or “evidence”
y ∈ R. Furthermore for any element of P , any of its
two marginals should equal N(µ, σ2), a Gaussian with
mean µ and σ2 variance1. A likelihood employed shall
write L(x1, x2) ≡ P (y|x1, x2) := N(�x1 + x2, σ

2
η)(y),

� known to the modeler. From now on whenever re-
sults are not displayed in analytic form, we choose the
specific parameter values µ = 1/2, σ = 1/4, �:=1.05
(as �=1 would lead to a degenerate and |�| � 1 to a
trivial case [8, 9]), ση := σ/10.

So far we have specified only marginals, hence we
do not rule out multi-modal densities. However we
find the subset of unimodal prior densities more con-
vincing a model for generic prior expert knowledge.
This is conveniently implemented by requiring that
any prior shall be a 2D Gaussian, although admit-
tedly hereby we potentially disregard too many pri-
ors. For pragmatic reasons, however, we stick to this
computationally convenient case for the remainder of
the article. It is shown in [8, 9] that then

1For a multivariate application, the first entry would repre-
sent a vector of means, the second the symmetric covariance
matrix.

Figure 2: Three extreme representatives of the class
of Gaussian priors with prescribed marginals. From
left to right: maximally anticorrelated case (f = −1),
uncorrelated case (f = 0), and maximally correlated
case (f = 1) – for a definition of the parameter f see
Eq. 1).

P = {P | ∃f∈[−1,1] P ∼ N((µ, µ)t,Σ(f))} with (1)

∀f∈[−1,1] Σ(f) := σ2

(
1 f
f 1

)

.

f = 0 represents standard Bayesian updating with
an uncorrelated prior, f = 1 (f = −1) the fully
(anti)correlated prior. Accompanying densities are
displayed in Figure 2.

Finally we select the functional we are interested in –
the probability of ruin:

Definition 4 Let P ∈ P. Let x∗1 ∈ R. Then we

define the probability of ruin as

P ∗ :=
∫∞
x∗

1

dx1

∫ +∞

−∞
dx2 P (x1, x2).

In the context of climate modeling, �x∗1 could repre-
sent a well-known critical value of global mean tem-
perature beyond which “catastrophic” global warming
impacts may occur, and x1, x2 two uncertain climate
model parameters.

3.2 Bayesian learning

In order to generate the posterior probability of ruin
per precise prior, the posterior marginal for x1 is key.
In [8, 9] it is shown that
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Figure 3: Probability of ruin (upper and lower) for the
correlation class parameterized by the correlation co-
efficient f ∈ [−1, 1] after Eq. 1 for � = 1.05, x∗1 = 0.95,
ση = σ/10. Horizontal dotted line: apriori value,
curved dotted: (standard) uncorrelated case, dashed-
dotted: GBR, solid: QFB for Q = 98%, the lower
probabilities of ruin for GBR and QFB coalescing.
GBR reveals quasi non-informative posterior results
for y ∈ [1.3, 1.8]. Quite the contrary the new QFB
is informative for any y ∈ R. For an expanded rep-
resentation of the “avoided crossing” region around
(2,1/2), see the following Figure.

Ppost(x1|y) ∼ N(µ′(f, y), σ′2(f, y)) with (2)

µ′(f, y) = (µ(1− (1− f)(�− 1) σ2/σ2
η)

+(f + �) y σ2/σ2
η)

/(1 + (1 + 2f�+ �2) σ2/σ2
η),

σ′(f) = σ

√
1 + (1− f2) σ2/σ2

η

1 + (1 + 2f�+ �2) σ2/σ2
η

.

We utilize this expression to calculate the posterior
probability of ruin

P ∗apost(f, y) =

∞∫

x∗
1

N
(
µ′(f, y), (σ′(f))2

)
(x1) dx1. (3)

From this we obtain the upper probability of ruin in
the case of GBR by

P
∗

apost.GBR(y) = sup
f∈[−1,1]

P ∗apost(f, y). (4)

For QFB we need to define generator of a Q-filtered
Bayesian update rule Y . As larger y will imply higher
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Figure 4: Expansion of the previous Figure’s center
that shows an “avoided crossing” of the solid lines.
We explain this feature of almost precise posterior
probability in Subsection 3.3 by an approximate sym-
metry in the transfer function (x1, x2)→ y in combi-
nation with Gaussian symmetry.

probabilities of ruin in general, we expect that the fol-
lowing prescription will lead to informative posteriors
(0 < Q < 1):

∀f∈[−1,1[ Y(f) := ]−∞, ymax(f)] with (5)

Q =:

ymax(f)∫

−∞

dy Py;f.prior(y) and

Y(f = 1) := ]−∞,∞[ (6)

Let V be the filter generated by Y . Then latter equa-
tion ensures that for all y, V(y) 6= ∅ (for a more ex-
tended discussion the reader is put off to the more
“philosophical” Subsection 5.3 – here we just point to
Theorem 1 which ensures that no spurious informa-
tion is added when making a class of priors, subject
to GBR, larger). In order to operationalize Eq. 5 we
need Py;f.prior. In [8, 9] we show

Py;f.prior ∼ N(µ(1 + �), σ2(1 + 2�f + �2) + σ2
η). (7)

Then

P
∗

apost.QFB(y) = sup
f∈f(V(y))

P ∗apost(f, y) (8)

if f(V(y)) denotes the set of f -values needed to pa-
rameterize V(y). (For P apost, “sup” is to be replaced
by “inf” in above equations.)



We do not claim that our choice of Y generates the
most informative QFB. Here we just would like to
demonstrate that even a rather unsophisticated choice
leads to much more informative results than GBR
does.

The dependency of the probability of ruin on y is de-
picted in Figure 3 for GBR (dashed-dotted curves for
upper and lower probability of ruin), the new QFB
(solid curves) under a choice of Q = 98%, for compar-
ison also the assumption of independent parameters
(uncorrelated case f = 0).

We observe that in general QFB is much more in-
formative than GBR – i.e. the difference of upper
and lower probability of ruin is smaller for QFB
than for GBR. A bizarre feature can be observed for
QFB however: the upper probability of ruin is not
a monotonous function of y, a feature occurring in
an even more pronounced way for the maximum like-
lihood update rule [8, 9]. There we attribute this
to a certain degenerate feature within P , related to
f = −1 and becoming virulent at y = (�−1)x∗1+2µ ≈
1.05. We propose that such effects would vanish if
a non-parametric class of priors were considered. A
skeptic of our new method may now argue that also
the superiority of QFB over GBR as displayed in Fig-
ure 3 may be a result of degenerate priors and would
vanish under more regular imprecise priors. In the
following Section we show that this is not the case,
but QFB is robustly more informative even when we
“regularize”P . Before that, however, we would like to
interpret the striking convergence of QFB-upper and
lower probability of ruin to the value 1/2 as displayed
in Figure 3.

3.3 An “avoided crossing” for QFB

The fact that we use a Gaussian class of priors leads to
a series of peculiar phenomena of which the “avoided
crossing” of upper vs. lower solid curve at ∼ (2, 1/2)
in Figure 3 may be of special interest. For readers that
would like to focus more on the general statements of
this article we suggest that they skip this Subsection
and proceed directly with Section 4.

The key reason for the almost precise QFB posterior
at y ≈ 2 is easiest accessed in considering the following
double limit of Eq. 3 on the posterior mean

∀f∈]−1,1] ∀y∈R lim
�→1

lim
ση→0

µ′(f, y;�, ση) =
y

2
, (9)

i.e. for the whole class, the posteriors will be centered
at y/2 (with differing variances).

This implies that

{y

2
= x∗1

}
⇒

{

∀f∈]−1,1] lim
�→1

lim
ση→0

P ∗apost(f, y) =
1

2

}

.

(10)

As f = −1 is not element of the volume of confidence
at y/2 = x∗1, from this Eq. we conclude a precise pos-
terior at that y ≈ 2.

We now investigate how this exact prosterior dilutes
into an avoided crossing for � = 1.05, ση = σ/10 =
1/40. For this, it is important to note that Eq. 3 can
be rewritten as

P ∗apost(f, y) =

y∫

−∞

dy′ N

(
x∗1 − µ0(f)

µ1(f)
,
σ′(f)

µ1(f)

)

(y′),

(11)

whereby the two new functions µ0(f) + yµ1(f) :=
µ′(f, y) are determined by the (in y) linear rela-
tion Eq. 3. From Eq. 11 we learn that for any f ,
P ∗apost(f, y) is an error function in y. Now we de-
duce the analytic form of the lower solid line be-
fore the crossing. After verifying ∂µ′/∂f < 0 (for
y > (1 + �)µ) and dσ′/df < 0, we conclude that
for given y, P ∗apost(f, y) decreases with f . Hence the
QFB lower bound is generated by the single posterior
P ∗apost(f = 1, y) for y < yc. We define yc as the “cross-
ing value” P ∗apost(f = 1, yc) := 1/2 ⇒ yc ≈ 1.9497,
also compare to Figure 4.

While the lower QFB bound before the crossing is
made up by a single f (i.e. a single prior) in terms
of one single error function, the QFB upper bound
is the envelope of error functions generated accord-
ing to Eq. 11 from different f ’s. This is related to
the fact that the upper bound per y is generated
from the lower bound f− of the interval of confidence
[f−(y), 1] and df−/dy > 0. However, locally in y, the
upper bound can be related to one single f . We find
numerically f−(yc) ≈ 1/2 (in accordance with Fig-
ure 4, QFB excludes the uncorrelated case (dotted
line ⇔ f = 0 /∈ [f−(yc), 1])). We can now address the
following question: what parameters determine the
width of the avoided crossing

�P ∗apost.QFB.ac := P ∗apost(f−(yc), yc)−
1

2
. (12)

Let �f := 1 − f−(yc), i.e. the difference of the QFB
upper bound f to the prior’s f that generates the
QFB lower bound. Utilizing Eq. 11 we then derive in
first order perturbation theory



Figure 5: Extreme cases of priors after bounding the
gradient. Left: f = −f∗, center: f = 0, right: f =
f∗, f∗ ≈ 0.95434. The bound f∗ was chosen such that
the expert “can resolve not more than 5 items per
typical marginal parameter scale” (in our case [0, 1],
spanning 4σ – for details see [8, 9]). For that reason,
the densities displayed in the left and the right panel
are smoother than their counterparts in Figure 2.

lim
ση→0

�P ∗apost.QFB.ac ≈
1

4
√
�

(�−1)
x∗1 − µ

σ

√
1−�f.

(13)

Inserting the values of our example, we obtain
�P ∗apost.QFB.ac ≈ 0.01, in accordance with the dis-
tance within the crossing displayed in Figure 4. The
last equation also reveals that the avoided crossing
becomes an exact crossing if x1, x2 influence y sym-
metrically, i.e. �→ 1, in accordance with Eq. 10.

4 Introducing a gradient filter

Following Walley [16] we regard it as meaningful to
bound the gradient of densities within a class of pri-
ors. It is very questionable that in general an expert
will hold such a sophisticated prior knowledge that
bizarre density structures of arbitrary gradient could
be distinguished in her or his brain. For our class this
would imply to disregard priors with too large |f |.

Working with such a “regularized” class of priors
comes with the additional advantage that effects like
those at y = (� − 1)x∗1 + 2µ ≈ 1.05 may vanish as
our class becomes more similar to a non-parametric,
however, gradient-bounded class which the “impre-
cise community” may find more adequate for generic
expert knowledge in the future.

The question now is how to restrict |f |. Following
[8, 9] we argue that in general, an expert will not be
able to distinguish more than 5 “major blocks” per
parameter dimension. This idea is formalized in [8, 9]
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Figure 6: Upper and lower probabilties of ruin as in
Figure 3, yet for bounded gradients of prior densities
(dashed-dotted lines: GBR, solid lines: QFB, dot-
ted curved line: updated uncorrelated precise prior,
horizontal). Note that even for this class of pri-
ors “regularized” by gradient bounding (equivalent to
|f | ≤ f∗ ≈ 0.95434), QFB is more informative than
GBR.

and leads to the prescription |f | ≤ 0.95434. Figure 5
then represents the bounded-gradient counterpart of
Figure 2. In the long run, this issue must ultimately
be addressed by suitable expert elicitations and so-
cial experiments that would reveal the expert’s “prior
resolution.”

In fact Figure 6 reveals that even after bounding
the density gradient over P QFB stays qualitatively
more informative than GBR. In addition, for this
“regularized imprecise prior” now also QFB responds
monotonously w.r.t. observation y what is more in line
with intuition.

Hence QFB seems to combine both desirable features
discussed in the Introduction: it is informative and
it does not absorb spurious information (Theorem 2).
For that reason we regard it as worthwhile to look for
an interpretation of QFB. (The reader may start using
QFB for pragmatic reasons even if she or he does not
want to follow the assumptions in the interpretation
given below.)

5 Interpretation and nesting of
quantile-filtered Bayesian learning

5.1 Interpretation of QFB

We present one possible interpretation QFB that is
based on the following two assumption:

(1) Any prior class of precise measures specified by an



expert contains “the adequate, yet un-identified” pre-

cise measure for that actual assessment;

(2) when considering the sequence of the expert’s as-

sessments over her or his life and transforming each

“adequate precise prior” to a uniform prior by a suit-

able coordinate transformation, then the sequence of

accordingly transformed “true states of the world” (the

sequence of true parameter values) would behave as

drawn from a uniform distribution.

Assumption 1 reminds of a situation in which a king
needs to listen to a series of agents, knowing that only
one agent has really been sent by the king’s friend
whereas the others are from “false friends”.

Assumption 2 shall be illustrated by a special case
first: suppose an expert performed a series of assess-
ments a1, ..., an, ..., aN , whereby at each assessment
an she or he would be asked for the probability of
whether a certain “true” state of the world sn be-
longed to a certain set Sn. We denote this probabil-
ity as P (sn ∈ Sn) and we assume further that for any
n, the expert would claim P (sn ∈ Sn) = p. We now
imagine that some time will have passed by and in the
corse of history the true nature of s1, ..., sN will have
become public, i.e. the expert’s customers will then
be able to objectively determine the index function
ind(sn ∈ Sn) – that is 1 in case the statement is true
and 0 otherwise. Then Assumption 2 requires that

lim
N→∞

1

N

N∑

n=1

ind(sn ∈ Sn)→ p (14)

in the sense of the law of large numbers. Hence we
require that in a frequentistic sense the expert will
have been neither over- nor under-confident, i.e. the
life-averaged assessment prior p was “adequate.”

Therefore in more general terms, Assumption 2 im-
plies that in a world in which an expert would spec-
ify prior knowledge always as uniform distribution on
[0,1] per assessment, later generations would find the
histogram of true states of the world, the expert had
assessed, converge to that uniform distribution over
the life-span of the expert.

That way, we choose an interpretation of subjective
probability that allows us to treat it not only as epis-
temic uncertainty, but also as aleatoric uncertainty,
i.e., as a stochastic process that governs the rela-
tion of the expert to reality during her or his life.
Those users that could accept such an interpretation
of experts’ knowledge have the chance to interpret the
combination of “choose the parameter” and “predict,
given that parameter, the measurement y” as a joint
stochastic process. If the former is described by P (x)
and the latter by P (y|x), then, given the expert’s P :
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...incorrect, i.e. -
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Figure 7: Nesting the classical volume of confidence V
in a decision situation. In our frequentist’s interpreta-
tion we can explicitly take care of the possibility that
V may not contain the adequate prior. For that we
utilize a probability tree, resulting in Eqs. 15 and 16.

P (y) =
∫
dx P (x) P (y|x).

As in our interpretation, for any prior, P (y) is gen-
erated by a stochastic process, it must be possible to
evaluate the elements within the set of priors on the
basis of the measurement utilizing frequentistic statis-
tics. In particular we are interested in defining a clas-
sical volume of confidence within the set of priors as
a filter, conditioned on y.

By construction V of Definition 2 is such a classical
volume of confidence with the confidence value Q. Q
can then be interpreted as follows: it represents a (life-
time averaged) lower bound for the relative frequency
that an expert does include the “adequate” precise
prior in V ⊂ P in case for any inference situation
such an “adequate prior” exists.

Given this interpretation we can make use of the fact
that upper (lower) posterior probabilities of the event
we are interested in are bounded functionals over P
and ask whether we can somehow also account for
those cases in which V fails, i.e. does not contain the
“adequate prior”.

5.2 Proposing a nesting formula

One may now ask how a decision-maker may deal with
the fact that the volume of confidence does not hold
with certainty but only with probability Q. If Q ≈ 1,
in many applications of classical tests, this aspect is
simply ignored and the volume of confidence is dealt
with as if it were certain.

However, here we would like to suggest an exact ap-



proach that explicitly takes care of those cases for
which the volume of confidence fails, appearing with
probability (1 − Q). We “nest” the classical un-
certainty (1 − Q) into the Bayesian scheme by a
probability-tree argument (see Figure 7).

Let P ∗+ and P ∗− the upper and lower probabilities of
ruin derived, after the quantile filter has been applied
before GBR. In case 1, the classical volume was cor-
rect, and P

∗

apost = P ∗+, being true with probability Q.
In case 2, the classical volume was wrong, and we set
P
∗

apost = 1 as a conservative estimate of that quan-
tity, with probability (1 − Q). (Analogously we can
proceed with the lower probability of ruin.)

According to the thereby induced tree diagram,

P ∗apost.QFB.nest = Q · P ∗− + (1−Q) · 0, (15)

P
∗

apost.QFB.nest = Q · P ∗+ + (1−Q) · 1. (16)

In the following, we will call the upper and lower prob-
abilities of ruin “nested”.

In case one subscribed to the two assumptions given
in the beginning of this Section, one could interpret
P ∗apost.QFB.nest and P

∗

apost.QFB.nest as upper and lower
bounds for relative frequencies of “ruins” over a se-
quence of equivalent assessments, in the limit of large
numbers (of assessments). To the best of our knowl-
edge, this is the first time the incompleteness of inter-
val estimates is addressed.

5.3 Treatment of an empty V(y)

How to proceed if y is such an “outlier” that V(y) =
∅? One could proceed in saying that no expert were
available, hence there were no information on P ∗apost.
However, that lack of posterior information is counter-
intuitive. If the quantile filter is used together with
GBR, we know that adding a prior to the class does
not result in spurious information. Hence if V(y) = ∅
we could add a prior Pa from the original class that is
most informative, e.g. the maximum likelihood prior.
No spurious information is added by re-introducing
Pa due to Theorem 1. This is exactly the argument
that was used when setting up Eq. 6.

We would like to illustrate what updating of the im-
precise prior with our new rule QFB may mean in a
decisions situation. Hence, before presenting the im-
plementation of above combinations of learning rules
and filters, we now introduce a stylized potential user
of our ideas.
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Figure 8: Inverting Figure 6: reading from a pre-
scribed maximum probability of ruin (horizontal line)
the accompanying maximum y∗, as needed for the
stylized insurance problem. As against Figure 6, here
we have involved the nesting correction for QFB, that
amounts, however, only to an upwards shift of 0.02.
We observe that according to QFB clients with char-
acteristic y ∈ [1.34, 1.66] could be insured in addition
to GBR.

6 Various updating rules for a
stylized insurance situation

Following [8, 9] we consider an admittedly rather
stylized insurance company that plans to insure a
fixed number of clients J each of which comes with
a potential standard loss of 1, the behaviorally iden-
tical clients’ willingness to pay (for a premium) of
2−1+1/αp1/α, α := 3, for the upper probability of ruin
per client p. If the company asks for a residual up-
per probability for bankrupt, i.e. net loss, of 0.1%,
then in a Gaussian approximation we obtain as upper
probabilities of ruin allowed per client: 0.12927417 or
0.27004601 for J = 30 or J = 100 respectively.

With these numbers we enter the ordinate in Fig-
ure 6 and read the maximum characteristic y∗ per
client with which that client would still be insured.
Within that Figure the concept of a maximum al-
lowed y makes sense as all curves monotonously in-
crease. In Figure 8 we further illustrate this inversion
for the case of 30 clients, i.e. P

∗

apost ≈ 27%. The
only difference is that for QFB we show the nesting-
corrected results according to Eqs. 15 and 16 (for the
upper probability of ruin, this amounts approximately
to an addition of 1−Q = 0.02 that is almost negligi-
ble). Interestingly, clients with much higher y could
be insured according to QFB than according to GBR.

We summarize threshold values y∗ that denote the
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Figure 9: y∗ as upper limit of y’s with which clients
would be insured: Circles: pooling with 30 clients;
crosses: pooling with 100 clients. The abscissa indi-
cates the four learning rules according to the tabu-
lar of this Section. (Any entry for � = 1.05, x∗1 =
0.95, ση = σ/10, Q = 98%.) According to QFB sig-
nificantly more risky clients could be insured than for
GBR.

maximum y with which a client would get insured in
the following tabular:

J 30 100
updating rule

1 GBR 1.23 1.37
2 QFB after nesting 1.26 1.66
3 QFB before nesting 1.34 1.69
4 uncorrelated prior 1.54 1.72

As expected, the standard Bayesian updating (uncor-
related prior) is found on the optimistic (upper) end of
y∗. Otherwise QFB significantly out-competes GBR
in that it would allow the insurance company to tap
a new class of clients. This tabular is visualized in
Figure 9.

7 Summary and Conclusions

This article introduces a new rule for Bayesian up-
dating of imprecise priors that can be represented by
classes of precise priors. Our quantile-filted Bayesian
learning rule (QFB) disregards those priors that
would see the evidence y outside a certain Q-quantile
before updating along (a modified version of) gener-
alized Bayes’ rule (GBR). The aspect of disregarding

priors in view of the evidence before applying GBR is
along the idea of Gilboa and Schmeidler to consider
only those priors that would maximize prior proba-
bility of y. However, in contrast to their rule, QFB
has the advantage that it does not add spurious in-
formation in case the imprecise prior is contaminated
by a “wrong” precise prior. QFB and GBR share the
latter advantage.

We demonstrate QFB for a (special version of a) class
of precise priors with prescribed marginals and arbi-
trary correlations. Such a class has been motivated
by a recent expert elicitation among modelers work-
ing along issues of climate policy advice in the broad-
est sense. We find that QFB is considerably more
informative than GBR for this class.

This suggests an interpretation of QFB. (The reader
may use QFB on pragmatic grounds even if she or
he would not like to follow the interpretation given
in this paragraph.) One possible interpretation as-
sumes (1) that within the class of priors, one prior is
the – un-identified – “adequate” and (2) that prior
measure can be given a frequentistic interpretation:
the life-averaged successes and failures of an expert.
Then QFB would imply that with probability ≥ Q,
QFB would acknowledge this adequate prior within
the GBR-step. A nesting correction would proba-
bilistically capture the cases if which the adequate
prior would be lost. This is possible as upper and
lower posterior probabilities are bounded functionals
over the set of priors. Hence a nesting-corrected QFB
would reveal upper and lower bounds on frequencies
of events when averaged over the life of an expert.
Remarkably, even after nesting-correcting QFB, QFB
remains much more informative than GBR. Hereby we
would like to stress that our implementation of QFB
is by no means optimized w.r.t. being as informative
as possible. One could further optimize Q together
with the quantile functional.

Finally we illustrate the effects of various updating
rules for the example of a stylized insurance situation.
Under QFB much more risky clients could be insured
compared to GBR.

A skeptic may argue that any updating rule which
disregards precise priors in view of the evidence be-
fore applying GBR would be logically inconsistent,
as the evidence were used twice: firstly, the evidence
is used to disregard priors from then applying GBR.
Secondly, those priors that “have made it,” are again
treated in view of the evidence, namely by standard
Bayes’ rule.

This counter-argument would apply for Gilboa’s and
Schmeidler’s rule as well as for QFB. Such type of
discussion is beyond the scope of this paper, however,



we observe that society very often just behaves like
that: it would listen more carefully to experts (i.e.
precise priors) that have stated the evidence stronger
in advance.

With this article we would like to fuel a discussion
on the adequate update rule when updating classes of
priors: is it allowed to disregard priors in view of the
evidence before Bayesian updating? If yes, what is a
meaningful filter? In addition, subsequent algorithms
are needed to update imprecise priors that are much
more precise on marginals than on (higher order) cor-
relations. Those items seem to be crucial when mod-
eling Bayesian updating of state-of-the-art models in
politically influential modeling areas.

In any case it appears as stimulating and satisfy-
ing to see experts’ relief when not being forced to
specify precise measures but instead much less infor-
mative measures. We regard this observation as a
key motivation for further investments in adequate
imprecise models of prior knowledge and generalized
Bayesian updating. This also implies the use of so-
cial data based choices of non-parametric priors and
subsequent numerics.

Finally, we ultimately understand this constribution
as an invitation to the “imprecise community” to de-
velop a sound axiom system (as suggested by one of
our reviewers) about updating and imprecision (in re-
lation to information).
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Abstract

An agent has Hurwicz criterion with pessimism-
optimism index α under imprecise risk and adopts
the root dictatorship version of McClennen’s Reso-
lute Choice in sequential decision situations, i.e. eval-
uates strategies at the root of the decision tree by the
Hurwicz criterion and enforces the best strategy, thus
behaving in a dynamically consistent manner. We
address two questions raised by this type of behav-
ior: (i) is information processed correctly? and (ii)
to what extent do unrealized outcomes influence de-
cisions (non-consequentialism)? Partial answers are
provided by studying: (i) the random sampling of
a binary variable, and finding the influence of the
pessimism-optimism index to be decreasing with the
sample size, and the optimal decision rule to asymp-
totically only depend on the relative frequencies ob-
served; and (ii) an insurance problem in which the
agent chooses his coverage at period two after observ-
ing the period one outcome (accident or no accident);
when no accident happened, a seemingly irrelevant
data - the first period deductible level- is found to be
able to influence the second period insurance choice.
We analyse this result in relation with the existence
and value of the pessimism-optimism degree.

Keywords. Imprecise risk, Hurwicz criterion, reso-
lute choice, non-consequentialism, learning

1 Introduction

This paper deals with the impact of information on
the decisions of an agent whose beliefs concerning the
events are imprecise and whose preferences are not
in accordance with the Subjective Expected Utility
(SEU) model. Precisely, we assume that preferences
are representable by the Hurwicz criterion: the value
of a decision is a weighted sum of its lowest possi-
ble expected value (pessimistic evaluation) and of its
highest one (optimistic evaluation).

It is well known that a SEU maximizer has dynam-
ically consistent preferences: future decisions which
seem the best today will still be judged the best to-
morrow; this justifies the determination of the op-
timal strategy by backward induction (sophisticated
choice). Preferences as modelled by the Hurwicz crite-
rion no longer verify this consistency property. Thus,
sophisticated choice no longer guarantees a rational
behavior: the selected strategy may well be domi-
nated.

An alternative to sophisticated choice which ensures
rationality is the version of McClennen’s Resolute
Choice (1990) where the best strategy at the root
is continued at every node (root dictatorship). We
adopt this model here: strategies are evaluated at the
root of the decision tree by the Hurwicz criterion; the
enforcement of the best strategy all along the tree au-
tomatically guarantees dynamic consistency.

The use of Resolute Choice in an imprecise probabil-
ity environment raises a first important question: is
information processed correctly in this model? The
existence of phenomena such as dilation (ambiguity
increase with new information, cf. Seidenfeld, Wasser-
man (1993)) makes the answer unclear. We provide
a positive answer in a particular case by considering
a situation where data are provided by the random
sampling of a binary variable and decisions are bets
on future values of that variable. This decision prob-
lem is closely related to simple hypothesis testing.

Optimal decision rules turn out to be based on ob-
served frequencies (just as likelihood ratio tests) and
the influence of the degree of pessimism fades progres-
sively when samples become larger.

A distinctive, controversial feature of Resolute Choice
is non-consequentialism: decisions may depend on
seemingly irrelevant data such as unrealized out-
comes. Since this is a theoretical result, the question
arises whether this phenomenon is widespread in real
world decision problems or not. As a first field of



investigation, we have chosen multi-period insurance
contracting which constitutes an active research do-
main (Dionne, Doherty, Fombaron 2000). In this do-
main, up to now, the environment has invariably been
described as a situation of risk (subjective or frequen-
tist probabilities) and the model used is EU theory.
However, for some risks, due to lacking or conflict-
ing data, this assumption is highly irrealistic which
is our justification for introducing imprecise risk in
the case of a two-period insurance problem in which
an individual has to chose his coverage for the sec-
ond period after observing the first period outcome
(loss, no loss). We apply Hurwicz’s criterion together
with a Resolute Choice behavior and determine to
which extent unrealized outcomes influence optimal
decisions. It turns out that such an influence indeed
exists but only to a limited extent and for individuals
who are neither extremely pessimistic, nor extremely
optimistic.

2 Dynamic decision making in

imprecise probabilities framework

2.1 Imprecise Risk

When facing common, general or personal, hazards,
and in particular insurable hazards, most agents do
not have a precise idea of their likelihoods. Statistics
may be inexistent, unavailable or just neglected by the
agent; also, important individual variations can exist.
Thus, whatever the reasons, an agent may prove to be
unable to ascribe specific probabilities to the relevant
events in a significant manner.

On the other hand, he may feel more comfortable with
associating with each event E a probability interval,
[P−(E), P+(E)] ; for instance, typical intervals would
be: [0.01, 0.10] for an event he considers as ”very un-
likely to happen but not impossible”; [0.10, 0.30] for
an event he judges ”rather unlikely to happen”; and
their union [0.01, 0.30] for an event he just thinks ”un-
likely to happen”.

If the agent moreover believes that there is a true
probability P0 on the events (which he is just not
able to identify), these judgments are submitted to
consistency rules, such as P+(E) ≥ 1 − P+(Ec) for
complementary events E and Ec; this circumscribes
P0 to P = {P : for all E, P (E) ∈ [P−(E), P+(E)]},
a subset of L, set of all probabilities on the event set.

Such an agent uses an imprecise probability represen-
tation of uncertainty and, accordingly, makes deci-
sions under imprecise risk.

2.2 The Hurwicz decision criterion

Various theories have been proposed for modelling de-
cision making under imprecise risk. The most popular
one (but not the only one, see § 2.3.4.) combines ex-
isting theories applying to the limiting cases of risk
and complete ignorance.

(i) Under risk, the standard criterion is Expected Util-
ity (EU). A decision maker (DM), believing the true
probability to be P0, ascribes to a decision δ value

UP0(δ) = EP0u (δ) =
∑

x u(x)P0(δ
−1(x))

i.e., the expectation of the utilities of the outcomes
x that δ may bring about depending on which event
δ−1(x) obtains;

(ii) Under complete ignorance, Hurwicz’s criterion,
proposed as early as 1951, ascribes to a decision δ

a value which is a weighted sum of its worst and best
possible outcomes, αmδ + (1 − α)Mδ; parameter α

being interpreted as a degree of pessimism.

Suppose now that complete ignorance prevails in P
and consider a DM for whom being only able to locate
probability P0 in a set P amounts to being uncertain
about which of the values UP (δ), P in P , is the cor-
rect one. Then, this DM will look at the worse and
best possible evaluations and, according to its degree
of pessimism, will put more or less weight on the for-
mer or the later, which is expressed by the following
formula:

V (δ) = α inf
P∈P

EP u (δ) + (1 − α) sup
P∈P

EP u (δ) (1)

This criterion being the natural extension of the Hur-
wicz one to imprecise risk, we will preserve its de-
nomination of ”Hurwicz criterion”. In a decision
making context, the interest of a preference model
depends crucially on its ability to induce economi-
cally rational behavior, which includes invulnerabil-
ity to Dutch books and money-pumps (Schick 1986,
Diecidue, Wakker 2002) in situations involving se-
quential choices. Obviously, economic rationality can-
not be guaranteed by a criterion which does not in-
crease with dominance - is not monotone - in some
sense.

Under suitable topological assumptions (P a com-
pact subset of a separable space), Hurwicz’s criterion
satisfies strict and weak monotonicity properties. If
the expected utility of decision δ is strictly higher
than that of decision d for every probability mea-
sure, i.e., EP u (δ) > EP u(d) for all P ∈ P (strict
pointwise dominance on P), then infP∈P EP u (δ) >

infP∈P EP u (d) , supP∈P EP u (δ) > supP∈P EP u (d) ,



and finally V (δ) > V (d) ; moreover, the weaker re-
lation, EP u (δ) ≥ EP u(d) for all P ∈ P , implies
V (δ) ≥ V (d) . In particular, if decision δ performs
strictly better (resp. better) than decision d whatever
happens, i.e., u(δ(e)) > (≥) u(d(e)) for every event e

on which both δ and d are constant, then EP u (δ) >

(≥) EP u(d) for all P ∈ P , hence V (δ) > (≥) V (d) .

On the other hand, if EP u (δ) ≥ EP u(d)
for all P ∈ P , with EP u (δ) > EP u(d)
for some P ∈ P , it may none- theless hap-
pen that infP∈P EP u (δ) = infP∈P EP u (d) and
supP∈P EP u (δ) = supP∈P EP u (d), hence that
V (δ) = V (d) ; in particular, u(δ(e)) ≥ u(d(e)) for
every e, plus u(δ(e)) > u(d(e)) for some e, do not im-
ply V (δ) > V (d) . Note however that for every ε > 0,

V (δ) > V (d − ε) and V (δ + ε) > V (d) will hold;
thus, although not monotone, Hurwicz’s criterion is,
in a straightforward sense, ε−monotone.

These monotonicity properties are sufficient to make
the model behave satisfactorily in one-shot decision
problems. Multiple decision situations are a different
matter, as illustrated in the following subsection.

2.3 Problems with dynamic decision making

and the Resolute Choice solution

2.3.1 An illustrative example

Consider a DM who at time 1 (node A of the decision
tree in Fig.1) has to choose between two decisions,
Up1 and Down1 ; then, at time 2 (node B), provided
he has chosen Up1 and event E obtains, he has again
a choice, Up2 or Down2, his gain further depending
on the realization or not of some events, G or Gc

and H or Hc; if at time 1 he has chosen Up1 and
event Ec obtains, or has chosen Down1, there is no
other choice to make. Gains are indicated next to the
corresponding leaves of the tree.

0
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0

0

25E

Ec

Down1

Down2

A

B

Up1

Up2
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B

[ 10 ]

G

H
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Figure 1: Dynamically inconsistent preferences

The DM’s criterion is Hurwicz’s, with the same pa-
rameters u and α, at both decision nodes, A and B.
For the sake of simplicity we assume α = 1/2, risk-

neutrality (u(x) = 2x for all x), and complete igno-
rance on the algebra of events generated by E, G and
H ; thus, P = L and a strategy (at A), as well as a
substrategy (at B), δ, giving outcomes δ(e) on events
e has value V (δ) = infe δ(e)+ supe δ(e).

At node A, the values of the three available strategies,
(Up1, Up2), (Up1, Down2), and Down1 ( (Up1, Up2)
means Up1 at node A; then Up2 at node B if E

happens; etc.) are, respectively, V (Up1, Up2) =
20; V (Up1, Down2) = 25; V (Down1) = 0; thus the
DM prefers (Up1, Down2) to (Up1, Up2) (and to
Down1) in A.

However at node B he prefers substrategy (decision)
Up2 to substrategy Down2 since V (Up2) = 30 >

V (Down2) = 25 ; thus, if he takes decision Up1 in
A and event E happens, then, once arrived in B, he
no longer considers Down2 to be the best feasible ac-
tion; his preferences are not dynamically consistent.

2.3.2 Resolute Choice

What are the decisions actually made by a DM with
a logical mind, who is able to anticipate on his fu-
ture actions (sophistication, as opposed to myopia),
and is aware that his preferences are not dynamically
consistent? Roughly, one can think of two different
patterns of behavior.

(i) If his future choices are always dictated by his fu-
ture preferences, then the DM should use backward
induction in the decision tree: at each given deci-
sion node, knowing which substrategies would be trig-
gered by each of his feasible actions, he can evaluate
and compare them, according to his criterion, and
choose the best available action. Coping locally in
that way with his preferential inconsistencies unfor-
tunately does not warrant him at the end (when ar-
rived at the root of the tree) the selection of a strategy
possessing a valuable global property. Indeed, going
back to the example, the DM would be willing to pay
up to 5 units to have the tree pruned and edge Up2

suppressed in B. Consider then the augmented tree in
which a new subtree offers this possibility to the DM;
strategy (Up1, Down2), which is still materially feasi-
ble, clearly strictly dominates the additional strategy,
which is nonetheless chosen by the backward induc-
tion procedure. In general, the use of that behavioral
procedure is always a potential source of unnecessary
waste: it is not economically rational.

How can any waste be avoided? There is a straight-
forward way:

(ii) If the strategy which is judged best according to
preferences at the root node is actually played, then,
the criterion being used only once as in one-shot deci-



sion problems, the monotonicity of Hurwicz’s criterion
guarantees economic rationality. This dictatorship of
the root node preferences means of course that future
choices do not have to bear any relation with future
preferences. More generally and less drastically, Res-
olute Choice (McClennen, 1990, p.260) only requires
the achievement of a compromise strategy reflecting
both present and future preferences; in McClennen’s
terms: ”the theory of resolute choice is predicated on
the notion that the single agent who is faced with
making decisions over time can achieve a cooperative
arrangement between his present self and his relevant
future selves that satisfies the principle of intraper-
sonal optimality”. Resolute Choice is not just a the-
oretical construct; it can be implemented in an oper-
ational way (see Jaffray-Nielsen 2006).

2.3.3 Non-consequentialism and unrealized

outcomes

A feature of Resolute Choice is non-consequentialism:
the choice at a given decision node, being induced by a
strategy which depends on all the data in the decision
tree, may in particular depend on those data which
are outside the subtree rooted at that node; these
elements are known as unrealized outcomes.

In Fig.1, if the best strategy in A, (Up1, Down2), can
be imposed, Down2 is played in B. Modify now a sin-
gle outcome, at the leaf following Up1 and Ec, by
changing 0 into 10; the best strategy in A is now
(Up1, Up2) and Up2 is played in B accordingly; thus
the action taken in B depends on a unrealized out-
come, the outcome at a leaf that is not part of the
subtree rooted at B.

For an illuminating discussion of consequentialism see
Machina (1989). Let us just note for the moment
that, since, as seen above, economic rationality cannot
provide arguments against non-consequentialism, any
defense of consequentialism must rely on a different
conception of rationality.

2.3.4 Alternative approaches

Resolute Choice should not be confused with conse-
quentialist approaches to dynamic decision making,
which have recourse to recursive models (see e.g. Ep-
stein, Schneider 2003 ); such models are straightfor-
wardly dynamically consistent and backward induc-
tion remains valid; on the other hand, economic ra-
tionality is not necessarily satisfied. Neither is it in
the non-consequentialist approach, preserving a weak
form od dynamic consistency of Hanany, Klibanoff
(2006).

Another approach to dynamic decision making un-
der uncertainty, called E-admissibility, has been sug-

gested by Levi (1974) and discussed by Seidenfeld
(2004). It works by first selecting all the last stage
Bayes rules and then moving backwards repeating this
selection stage by stage. In order to uniquely select a
strategy in the remaining set, a secondary criterion,
applied at the root node, is used. While more discrim-
inating than Resolute Choice with root dictatorship,
E-admissibility (with a suitable secondary criterion)
still guarantees normative qualities such as nonnega-
tive value of information.

Note that E-admissibility is a non-consequentialist so-
lution in general. However, de Cooman and Troffaes
(2005) prove the validity of dynamic programming
(which amounts to consequentialism) in the partic-
ular case of sequential decision making in the absence
of conditional decisions.

3 Learning with Resolute Choice

An urn contains red and black balls; the proportion of
red balls is either p− or p+, where 0 < p− < p+ < 1.

The DM is told that: n + 1 balls are going to be
drawn one by one from the urn, with replacement;
that he can make bets on the color of the (n + 1)th

being red; and that his decision of betting or not can
be conditioned on the outcome of the n first draws.
When betting, his stake is m and he will receive gain

M if the (n + 1)th is red. We assume p− <
m

M
< p+.

The DM conditions his bets on the outcomes of the
n first draws by just specifying a betting rule Kn ⊆
{0, 1, .., n} , ”k ∈ Kn” meaning: ”if k balls among the
n first drawn are red, bet (on red) at the (n + 1)th

draw”.

One denotes kn = mink∈Kn
k.

The DM uses the Hurwicz criterion, is risk neutral
(u(x) = x) and is resolute; he chooses his betting
rule when learning the sample size n and before the
observations begin.

We are interested in the evolution of the optimal bet-
ting rule when n tends to infinity.

A betting behavior is a sequence (Kn)n∈N. Betting
behavior (Kn)n∈N weakly dominates betting behav-
ior (K ′

n)n∈N if for all n ∈ N, V (Kn) ≥ V (K ′
n) ; if,

moreover, V (Kn) > V (K ′
n) for some value of n ∈ N,

then (Kn)n∈N dominates (K ′
n)n∈N. A betting behav-

ior which is not dominated by any other is admissible.
A betting behavior which weakly dominates all the
others is optimal.

A betting behavior (Kn)n∈N will be called consis-
tent when its betting rules are all of the form Kn =
{kn, kn + 1, .., n} (i.e., betting if and only if at least



kn red balls have been drawn).

Lemma 1 For a fixed n, let betting rules Kn and K ′
n

only differ in the case where k red balls are drawn:
k ∈ Kn; K ′

n = Kn\{k}; then

V (Kn) > [=]V (K ′
n) ⇐⇒

k

n
> [=]L +

1

n
R

with L =

ln
1 − p−

1 − p+

ln
p+(1 − p−)

(1 − p+)p−

and

R =

ln

[

α

1 − α
×

m − p−M

p+M − m

]

ln
p+(1 − p−)

(1 − p+)p−

N.B. The proofs of Lemma 1 and of the other results
can be found in Jaffray, Jeleva (2007).

The following proposition is a direct application of
Lemma 1.

Proposition 1 Consider betting behavior (Kn)n∈N ,

and let kn = mink∈Kn
k .

A necessary condition for the admissibility of (Kn)n∈N
is that
kn

n
→n→∞ L

with L defined in lemma 1.

Proposition 2 The consistent betting behavior,
(K∗

n)n∈N where K∗
n = {k∗

n, k∗
n + 1, k∗

n + 2, ..., n}, and
for each n, k∗

n is the smallest integer such that

k∗
n

n
≥ L +

1

n
R with L and R defined in emma 1.

is an optimal betting behavior.

Note that expression

[

p+

1 − p+
×

1 − p−

p−

]k

×
[

1 − p+

1 − p−

]n

is a likelihood ratio; in fact the mono-

tonicity properties of the Hurwicz criterion make
likelihood ratio (possibly random) tests an admis-
sible family as in the standard statistical decision
theory (Neyman-Pearson lemma). For related results
concerning hypothesis testing with imprecise prob-
abilities on the parameter space, see Jaffray, Säıd
(1994).

Note also that expression R , defined in emma 1, has a
strong similarity with the term that would appear in

a Bayesian model, which is

ln

[

π

1 − π
×

m − p−M

p+M − m

]

ln
p+(1 − p−)

(1 − p+)p−

,

with π the prior probability of p− being the true pro-
portion of red balls.

Let us finally emphasize the fact that, although all
betting decisions are made only on the basis of a single
ex ante evaluation, data are taken into account in a
sensible way: for high values of n, the DM acts as if he
used relative frequencies as estimators of probabilities;
however, for smaller n, the degree of pessimism has
some influence on the bets through the term R.

4 An application of Resolute Choice

to Two-period Insurance Demand

In this section, we study a two-period insurance prob-
lem in which an individual has to choose his coverage
at period 2 after observing the period 1 outcome ([a]
loss [occurred] or no loss [occurred]).

An individual with initial wealth W faces a risk with
a unique amount of potential loss L < W. This situ-
ation can be represented by a random variable X : if
E is the event loss (occurs) and Ec the event no loss,
X(ω) = L for ω ∈ E and X(ω) = 0 for ω ∈ Ec. The
individual’s information and/or beliefs allow him to
assert that the probability of loss occurrence during
a year is between p− and p+. The set of probability
distributions which are consistent with the available
information is:

P =
{

P ∈ L : P (E) ∈
[

p−, p+
]}

(2)

where L denotes the set of all probability distributions
on the relevant support.

Two periods of time are considered: in the first pe-
riod, the individual has no insurance choice to make;
for instance, he rents a car, and an insurance coverage
with a deductible K ≤ L is automatically included in
the contract. In the second period however, the indi-
vidual has to decide if he will subscribe an insurance
contract or not, for instance he will buy a car and has
to decide whether or not he will take a theft insurance
(which is not mandatory). We assume that only one
insurance contract is available: it corresponds to full
coverage and the premium is Π < L.

We assume that the individual needs to decide im-
mediately, at the beginning of the first period, what
his insurance policy will be; the reason may be, for
instance, that he still has then other opportunities
beside renting-then-buying a car and that their com-
parisons require accurate evaluations, or that he has
to plan out his expenses in advance.

Individual preferences are represented by the Hurwicz
criterion: a decision δ : Ω → R is evaluated by func-
tional V of formula (1) where u is a strictly increasing
function.



In the simpler, one period situation, where there is
no previous experience of loss, the set of strategies
D contains only two elements, denoted: d, the indi-
vidual subscribes an insurance contract, and d̄, the
individual does not buy any insurance. According to
(1), these decisions have the following values:

V (d) = u (W − Π)
V

(

d̄
)

= (αp+ + (1 − α) p−)u (W − L)+
(1 − αp+ − (1 − α) p−)u(W )

and the decision to buy coverage depends on the
pessimism-optimism index α and on the information
precision in the following way:

V (d) ≥ V
(

d̄
)

⇔ α
(

p+ − p−
)

≥
u(W ) − u (W − Π)

u(W ) − u (W − L)
−p−.

Thus, a higher degree of pessimism and a greater im-
precision both act in favor of the decision to buy in-
surance coverage.

4.1 Decisions evaluation

We now turn to the evaluation of the decisions of
an individual who acquires additional information re-
lated to a period one potential loss. His decisions can
then be conditioned on the realization of the loss in
the first period. Our goal is to determine the influence
of the first period loss realization on the second period
decision as well as the impact of α on that decision.
We further assume probabilistic independence of the
successive events, i.e., that for any given probability
p ∈ [0, 1], with Ei denoting the event ”loss in period
i”, if P (E1) = p then P (E2/E1) = p as well, hence
P (E2) = p and P (E1 ∩ E2) = p2.

A strategy is now characterized by a pair of decisions:
the first one conditional on the realization of E1, and
the second one on the realization of Ec

1. The set of
possible strategies D consists then in four pairs of
decisions: D = {dd, dd̄, d̄d, d̄d̄}, where dd = {d if
E1, d if Ec

1}, dd̄ = {d if E1, d̄ if Ec
1}, ... The decision

tree corresponding to this problem is given in Fig.2.

The evaluations of the strategies at the beginning of
period one by the Hurwicz criterion are given in the
following proposition. This evaluation requires the
determination of the probabilities in [p−, p+] at which
the lowest and highest expected utility are achieved.
It turns out that these probabilities may well differ
from p+ and p− and depend on the strategy.

Proposition 3 If Π, K, L, p−, p+ are such that:

• u (W − L − K) ≤
1

2p−
[u(W − Π) + (2p− − 1)u(W − K)]

E1

Ec
1

Ec
2

Ec
2

Ec
2

Ec
2

d

d

d̄

d̄

W − K − Π

W − K − Π

W − K − L

W − K

W − Π

W − Π

W − L

W

−K
E2

E2

E2

E2

Figure 2: Insurance Demand Tree

• p∗ = 1
2 + u(W )−u(W−Π−K)

2[u(W )−u(W−L)]

verifies p∗ ∈ [p−, p+] and p∗ >
1

2
(p− + p+),

then the available decisions are evaluated as follows:

V (dd) = A(p+, p−)u (W − Π − K) +
(1 − A(p+, p−))u (W − Π) ;

V (dd̄) = A(p∗, p−)u (W − Π − K) +
B(p∗, p−)u (W − L) +C(1 − p∗, 1 − p−)u(W );

V (d̄d) = C(p+, p−)u (W − L − K)+B(p+, p−)u(W −
K)+ A(1 − p+, 1 − p−)u(W − Π)

V (d̄d̄) = C(p+, p−)u (W − L − K) + B(p+, p−)
× (u(W − K) + u(W − L)) + C(1 − p+, 1− p−)u(W )

where

A(p, q) = αp + (1 − α)q,
B(p, q) = αp(1 − p) + (1 − α)q(1 − q),
C(p, q) = αp2 + (1 − α)q2.

In very ambiguous situations, the requirements above
are not too restrictive; for instance, in the limiting
case of complete ignorance, that is, for [p−, p+] =
[0, 1], these conditions reduce to Π > K.

From now on, we assume that these conditions are
satisfied.

Note that the pessimistic evaluation of strategy dd̄

is not achieved at the upper probability bound p+:
with p∗ smaller than p+ but close to it, the advantage
of incurring period 1 loss K with the smaller proba-
bility p∗ is not compensated by the disadvantage of
incurring period 2 loss L with probability (1 − p∗)p∗

greather than (1 − p+)p+.

Let us now turn to a specific feature of the model: the
relevance of unrealized outcomes.

Consider strategies dd and dd̄. They differ by the



decision that follows the period 1 no loss event. The
utilities involved in the direct comparison of these con-
ditional decisions do not depend on K, and its value
would be irrelevant in a consequentialist approach.
However, with our criterion, V (dd) − V

(

dd̄
)

=
α (p+ − p∗)u (W − Π − K) +
(1 − αp+ − (1 − α)p−)u (W − Π)
− (αp∗(1 − p∗) + (1 − α)p−(1 − p−))u (W − L)−
(

α(1 − p∗)2 + (1 − α)(1 − p−)2
)

u(W )

The sign of the previous expression is indeterminate
and depends on the value of K, which influences
both the lowest utility u (W − Π − K) and p∗. More
precisely, the influence of K on the discrepancy be-
tween V (dd) and V

(

dd̄
)

increases with the pessimism-
optimism index α, since

d[V (dd)−V (dd̄)]
dK

=

α{− dp∗

dK
u (W − Π − K) − (p+ − p∗)u′ (W − Π − K)

+ (2p∗ − 1) dp∗

dK
u(W − L) + 2 (1 − p∗) dp∗

dK
u(W )}

The reason why the comparison of V (dd) and V
(

dd̄
)

depends on the irrelevant outcome K is that the Hur-
wicz criterion is a limiting form of a rank depen-
dent utility (RDU) criterion and that in RDU theory
(Quiggin 1982) the decision weight associated with a
consequence depends on the rank of this consequence
in the set of consequences of a given decision. Deci-
sions dd and dd̄ have W − Π − K as a common con-
sequence but while with dd, W − Π − K is the worst
consequence, this is no longer the case with dd̄ for
which it is W − L. Consequently, the decision weight
of u (W − Π − K) is not the same in the evaluation
of dd and dd̄, even if this consequence is obtained for
the same event (E1) with both decisions. Thus, the
second period preference between insurance or not in
the case where no loss occurred in the first period may
depend on the deductible level which the individual
would have paid had loss occurred.

4.2 A numerical example

The following example illustrates the impact of K on
the optimal strategy1.

We consider an individual with initial wealth W =
1 000 000 who faces the risk of a loss of amount L =
40 000. Loss probability at each period, p, belongs to
[0.01, 0.7] . The insurance premium for full coverage
is Π = 4 000. The utility function is assumed to be in
the CRRA class (with constant relative risk aversion)

that is u(x) =
x1−R

1 − R
; here, we take R = 2.

The sign of V (dd) − V
(

dd̄
)

depends on α and K as
follows:

1Numerical results are obtained with Mathematica 4.1.

• for α ∈ [0, 0.22[, V (dd) − V
(

dd̄
)

< 0 for any
K ∈ [0, 40 000] ;

• for α ∈ [0.22, 0.29[, there exist K∗ < 40 000
such that V (dd) − V

(

dd̄
)

≤ 0 for K ≤ K∗ and

V (dd) − V
(

dd̄
)

> 0 for K > K∗;

• for α ∈ [0.29, 0.33[, there exist K∗ and K∗∗ with
0 < K∗ < K∗∗ < 40 000 such that V (dd) −
V

(

dd̄
)

< 0 for K∗ < K < K∗∗ and V (dd) −

V
(

dd̄
)

≥ 0 for K ≤ K∗ and K ≥ K∗∗;

• for α ∈ [0.33, 1], V (dd)− V
(

dd̄
)

> 0 for any K ∈
[0, 40 000] .

5000 10000 15000 20000 K

[V (dd) − V (dd̄)] × 1010

1

2
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0

Figure 3: Choice Dependence on K for α = 0.31

Let us now study the dependence of the optimal strat-
egy on K and α.

• We start by comparing dd̄ and d̄d: V
(

dd̄
)

−

V
(

d̄d
)

is a linear function of α; moreover,

for α = 0, as well as for α = 1, V
(

dd̄
)

−V
(

d̄d
)

>

0 for any K ∈ [0, 40000]; thus, for any α ∈ [0, 1],
dd̄ is preferred to d̄d.

• The same result is obtained for dd̄ when com-
pared with d̄d̄.

• The choice between dd and d̄d̄ depends on α in
the following way:

V (dd) − V (d̄d̄) < 0 for α ∈ [0, 0.003[;

V (dd) − V (d̄d̄) > 0 for α ∈ [0.003, 1].

Thus, for any K ∈ [0, 40000], strategies d̄d̄ and d̄d are
dominated so that, the best strategy is always either
dd or dd̄.

This dominance is due to the low insurance premium
Π that corresponds here to a probability estimation of
0.1. In consequence, individuals prefer either to fully



insure in any case (if they are pessimistic enough) and
thus benefit from the low premium, or to adapt their
decision to the observed loss. Fig.4 shows the optimal
strategy as a function of K and α. It appears that
the optimal decision results from a trade-off between
the attractivity of low price insurance and that of in-
formation depending decisions. For strong optimists,
the information effect dominates, whereas for strong
pessimists, the full coverage effect dominates. For in-
termediate values of α however, the deductible value
K may influence choice: a high value of K can even
influence all decisions by lowering the individual’s ex-
pected wealth perspectives and acting in favor of full
coverage.

K

α

dd̄

0.22 0.29

40000

0.33

dd dd

dd

dd̄ dddd̄

Figure 4: Choice Dependence on K and α

4.3 Optimal strategy for risk-neutral

individuals

To emphasize the impact of the pessimism index α

on the optimal insurance strategies, we now consider
the case when u(x) = x. This allows us to isolate the
influence of ambiguity attitude, characterized here by
α, from that of the risk attitude, characterized by u.

Proposition 4 Consider a two period insurance prob-
lem, where the individual’s imprecise information on
the loss probability is given by an interval [p−, p+]
with p− < 1

2 < p+ and the insurance premium Π
for full coverage is such that Π ∈ [p−L, p+L] . The
preferences of the individual are characterized by the
Hurwicz criterion with u(x) = x. Then, he orders the
different available strategies in the following way:

• dd̄ % d̄d for any α ∈ [0, 1] ;

• dd % d̄d̄ ⇔ α ≥ α∗ with α∗ = (Π−p−L)
(p+−p−)L where

α∗ < 1;

• if K = 0, dd % dd̄ ⇔ α ≥ α∗∗ with α∗∗ =
(1−p−)(Π−p−L)

(p∗−p−)(Π−p−L+L(1−p∗)) where α∗∗ < 1;

if K > 0, both dd % dd̄ and dd̄ % dd are possible
depending on the value of K.

• dd̄ % d̄d̄ ⇔ α ≥ α∗∗∗ with α∗∗∗ =
p−(Π−p−L)

(p+−p∗)(K+L)+(p∗−p−)[L(p∗+p−)−Π]

where α∗∗∗ < 1.

This proposition allows to determine, for K = 0
the impact of the pessimism index on the individ-
ual’s optimal strategy. More precisely, in this case,
α∗∗∗ < α∗ < α∗∗ and d̄d̄ is the optimal strategy
for α ∈ [0, α∗∗∗[ , dd̄ is the optimal strategy for
α ∈]α∗∗∗, α∗∗[ and dd is the optimal strategy for
α ∈]α∗∗, 1]. For α = α∗∗∗, the individual is indifferent
between d̄d̄ and dd̄, and for α = α∗∗, he is indifferent
between dd̄ and dd.

To sum up, in this model, neither a very optimistic
individual (α close to 0) nor a very pessimistic one
(α close to 1) takes advantage of the information: his
decisions do not depend on his period 1 observation.
The reason is that, strong pessimists are trying above
all to avoid the lowest possible consequences, which
are here W−L−K if E1 and W −L if Ec

1; choosing dd

is the strategy that makes it possible. The opposite is
true for strong optimists: they will prefer the decisions
that allow the higher possible consequences, which are
here W − K if E1 and W if Ec

1.

For moderate individuals, choice is less straightfor-
ward: for them, it is valuable both to avoid W−L−K

if E1 (which however means renouncing to get W−K)
and to preserve the possibility to obtain W if Ec

1

(which however means risking to get W − L); this
is only possible with dd̄, and trade-offs, which depend
on all the parameters (in particular on Π) may favor
this strategy.

5 Conclusion

The preceding results demonstrate the operational
tractability of the Resolute Choice dynamic adap-
tation of the Hurwicz criterion for decision making
under imprecise risk. This model is able to process
information correctly; in particular, for large sam-
ples, choices made show that the true probabilities
are learned correctly although implicitly.

Also, the puzzling influence of unrealized outcomes
appears as rather limited (only concerns individuals
whose pessimism index belongs to a small range) and
does not seem to lead to counter-intuitive decisions.
It is moreover interesting to note that sensitivity to
unrealized outcomes being excluded by Expected Util-
ity theory, the Resolute Choice model has a flexibility
that makes it attractive for descriptive purposes.
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[15] Seidenfeld, T., Wasserman, L. (1993) ”Dilation
for Sets of Probabilities,” Annals of Statistics 21
(3), 1139-1154.



 



5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007

Compositional Models of Belief Functions

Radim Jiroušek
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Abstract

After it has been successfully done in probability and
possibility theories, the paper is the first attempt to
introduce the operator of composition also for be-
lief functions. We prove that the proposed definition
preserves all the necessary properties of the opera-
tor enabling us to define compositional models as an
efficient tool for multidimensional models representa-
tion.

Keywords. Belief function, basic assignment, mul-
tidimensional frame of discernment, operator of com-
position, perfect sequence.

1 Introduction

Last years of the last century witnessed emergence
of a new approach to efficient representation of mul-
tidimensional probability distributions. This ap-
proach, which is an alternative to Graphical Markov
Modeling, is based on a simple idea: multidimen-
sional distribution is composed from a system of
low-dimensional (oligodimensional) distributions by
repetitive application of a special operator of com-
position. This is also the reason why the models
are called compositional models. In several papers, in
which the properties of the operator and models were
studied [3, 4, 5], it was shown (among others) that
these models are, in a way, equivalent to Bayesian
networks. Roughly speaking, any multidimensional
distribution representable by a Bayesian network can
also be represented with approximately the same num-
ber of parameters (probabilities) in the form of a com-
positional models, and vice versa.

Though Bayesian networks and compositional mod-
els represent the same class of distributions, they do
not do it in the same way. Bayesian networks use
conditional distributions whereas compositional mod-
els consist of unconditional distributions. Naturally,
both types of models bear the same information but

whilst some marginal distributions are explicitly ex-
pressed in compositional models, it may happen that
their computation from a corresponding Bayesian net-
work is rather computationally expensive. Therefore
it appears that some of computational procedures de-
signed for compositional models are (algorithmically)
simpler than their Bayesian network counterparts.

The goal of this paper is to show that the operator
of composition can also be introduced for belief func-
tions. Moreover, we will show that it inherits the basic
properties of its probabilistic pre-image and therefore
it will enable us to introduce compositional models
for multidimensional belief functions.

We will see that this approach enables us to rep-
resent, let us say, a 15-dimensional belief function
as a sequence of 3 or 4-dimensional belief functions.
Whilst representation of a 15-dimensional belief func-
tion is completely impossible (it would require in bi-
nary case 2215

= 232k numbers), representation of
a 4-dimensional belief function requires only 224

=
216 = 64k numbers and therefore a model consist-
ing of twelve 4-dimensional belief functions requires
“only” 12× 216 = 768k values.

Let us stress at the very beginning that this paper is
the first one dealing with compositional models for be-
lief functions. At this moment, we do not know what
is the connection of the introduced operator of compo-
sition to different concepts of conditioning (and condi-
tional independence) introduced for belief functions.
The reader should realize that composition defined in
this paper is different from that defined by Shenoy
in [7]. His composition meets the requirements given
by Shenoy’s axioms (commutativity, associativity and
distributivity) neither of which is met by the composi-
tion defined here. Therefore we do not know to what
extent his principles of local computations are appli-
cable to our model. This is one of many important
open problems, some of which will be mentioned in
Conclusions.



The reader familiar with the literature on belief func-
tions is accustomed to the conjunctive rule of com-
bination. Ben Yaghlane et al. [2] apply this rule to
the set of marginal and conditional belief functions
with the goal to compute a joint belief function in a
way analogous to Bayesian networks (so-called Belief
Chain Rule). This type of operation again substan-
tially differs from the composition considered in this
paper; the conjunctive rule of combination is com-
mutative and associative. Moreover, in older papers,
Xu and Smets consider only 2-dimensional belief func-
tions, see e.g. [10].

Though the present paper is a contribution to belief
function theory, we will not use the term of belief func-
tion any more in this paper. We are convinced that it
will make the paper more legible for the reader when
we will restrict our considerations to basic belief as-
signments, only. Therefore we will define a composi-
tion of basic assignments and show how to compose
a sequence of simple basic assignments to get an as-
signment corresponding to a multidimensional belief
function.

The contribution is organized as follows. In Section 2
we summarize basic notions, notation and introduce
the operator of composition. Its basic properties can
be found in Section 3, while Section 4 is devoted to
more advanced properties. Finally, in Section 5 we
introduce the notion of so-called perfect sequences and
demonstrate their importance.

2 Notation

Consider a finite index set N = {1, 2, . . . , n} and finite
sets {Xi}i∈N . In this text we will consider multidi-
mensional frame of discernment

Ω = XN = X1 ×X2 × . . .×Xn,

and its subframes. For K ⊂ N , XK denotes a Carte-
sian product of those Xi, for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e. for K = {i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will
denote a projection of A into XK :

A↓K = {y ∈ XK |∃x ∈ A : y = x↓K}.

Let us remark that we do not exclude situations when
K = ∅. In this case A↓∅ = ∅.

In addition to the projection, in this text we will need
also the opposite operation which will be called

extension. By an extension of two sets A ⊆ XK and
B ⊆ XL we will understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Consider a basic (probability or belief ) assignment (or
just assignment) m on XN , i.e.

m : P(XN ) −→ [0, 1]

for which
∑

A⊆XN
m(A) = 1. For each K ⊂ N its

marginal basic assignment is defined (for each B ⊆
XK):

m↓K(B) =
∑

A⊆XN :A↓K=B

m(A).

Having two basic assignments m1 and m2 on XK and
XL, respectively (we assume that K, L ⊆ N), we say
that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic as-
signment m on XK∪L such that both m1 and m2 are
marginal assignments of m.

Now, let us start considering how to define compo-
sition of two basic assignments. Consider two sets
K, L ⊂ N . At this moment we do not pose any re-
strictions on K and L; they may be but need not be
disjoint, one may be subset of the other. We even ad-
mit that one or both of them are empty1. Let m1 and
m2 be basic assignments on XK and XL, respectively.

Our goal is to define new basic assignment, denoted
m1 . m2, which will be defined on XK∪L and will
contain all of the information contained in m1 and
as much as possible of information of m2 (for the ex-
act meaning see properties (iii) and (iv) of Lemma 1).
The required property is met by the following defini-
tion.

Definition 1 For two arbitrary basic assignments
m1 on XK and m2 on XL a composition m1 . m2

is defined for all C ⊆ XK∪L by one of the following
expressions:

[a ] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b ] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K×XL\K then

(m1 . m2)(C) = m1(C↓K);
1Notice that basic assignment m on X∅ is defined m(∅) = 1.

Let us note that this is the only case where we accept m(∅) > 0,
otherwise m(∅) = 0 according to the classical definitions of
basic assignment and belief function, see [6].



[c ] in all other cases

(m1 . m2)(C) = 0.

Remark Notice what this definition yields in the
following degenerate situations:

• if K ∩ L = ∅ then m1 . m2 = m1 · m2 (recall
that m↓∅

2 (∅) = 1) — for details regarding this
situation see Example 1;

• if K ⊇ L then m1 . m2 = m1.

3 Basic properties of composition

Lemma 1 For arbitrary two basic assignments m1

on XK and m2 on XL the following properties hold
true:

(i) m1 . m2 is a basic assignment on XK∪L.

(ii) (m1 . m2)↓K = m1.

(iii) m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 .

(iv) If K ⊆ L then m↓K
2 . m2 = m2.

Proof. Let us first prove that for any B ⊆ XK∑
A⊆XK∪L:A↓K=B

(m1 . m2)(A) = m1(B). (1)

Since, due to Definition 1, (m1 . m2)(C) = 0 for any
C ⊆ XK∪L \ (XK ⊗ XL) (in other words for C 6=
C↓K ⊗ C↓L) we see that∑
A⊆XK∪L:A↓K=B

(m1 . m2)(A)

=
∑

A⊆XK⊗XL:A↓K=B

(m1 . m2)(A)

=
∑

C⊆XL:C↓K∩L=B↓K∩L

(m1 . m2)(B ⊗ C).

To prove formula (1), we have to distinguish two situ-
ations depending on the value of m↓K∩L

2 (B↓K∩L). If
this value is positive then∑

A⊆XK∪L:A↓K=B

(m1 . m2)(A)

=
∑

C⊆XL:C↓K∩L=B↓K∩L

m1(B) ·m2(C)

m↓K∩L
2 (B↓K∩L)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

∑
C⊆XL:C↓K∩L=B↓K∩L

m2(C)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

m↓K∩L
2 (B↓K∩L)

= m1(B).

If m↓K∩L
2 (B↓K∩L) = 0 then, according to Defini-

tion 1, there exists only one A ⊆ XK∪L for which
A↓K = B such that (m1 . m2)(A) may be positive;
namely A = B ×XL\K . Therefore∑

A⊆XK∪L:A↓K=B

(m1 . m2)(A)

= (m1 . m2)(B ×XL\K)
= m1(B),

Thus having proved that equality (1) holds true let us
start proving assertions (i) – (iv).

ad (i) To prove that m1 . m2 is a basic assignment
on XK∪L we have to show that for each A ⊆ XK∪L

value (m1 . m2)(A) is nonnegative (which is evident)
and that the sum of all these values equals 1. The
latter holds true, too, because (using equality (1))∑
A⊆XK∪L

(m1 . m2)(A)

=
∑

B⊆XK

∑
A⊆XK∪L:A↓K=B

(m1 . m2)(A)

=
∑

B⊆XK

m1(B) = 1.

ad (ii) The formula is another form of equality (1).

ad (iii) Let us first prove

m↓K∩L
1 = m↓K∩L

2 =⇒ m1 . m2 = m2 . m1.

Consider any A ⊆ XK∪L. If A 6⊆ XK⊗XL then both
(m1 .m2)(A) and (m2 .m1)(A) equal 0. Therefore we
have to prove the implication only for A ⊆ XK ⊗XL.

If m↓K∩L
1 (A↓K∩L) = m↓K∩L

2 (A↓K∩L) > 0 then

(m1 . m2)(A) =
m1(A↓K) ·m2(A↓L)

m↓K∩L
2 (A↓K∩L)

=
m1(A↓K) ·m2(A↓L)

m↓K∩L
1 (A↓K∩L)

= (m2 . m1)(A).

In opposite when m↓K∩L
1 (A↓K∩L) =

m↓K∩L
2 (A↓K∩L) = 0, both m1(A↓K) and m2(A↓L)

must equal 0 and therefore (according to Definition 1)
(m1 . m2)(A) = (m2 . m1)(A) = 0.

To prove the other side of the equivalence (i.e. m1 .

m2 = m2 .m1 implies m↓K∩L
1 = m↓K∩L

2 ) it is enough
to realize that if m↓K∩L

1 6= m↓K∩L
2 then also m1.m2 6=

m2 . m1 because, due to already proved (item ii) of
this assertion, m↓K∩L

1 = (m1.m2)↓K∩L and m↓K∩L
2 =

(m2 . m1)↓K∩L.



Table 1: Basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)
{a1} 0.2 {a2} 0.6
{b1} 0.3 {b2} 0
{a1b1} 0.5 {a1b2} 0.4

Table 2: Basic assignment m1 . m2.

C ⊆ X{1,2}
C =

C↓{1} ⊗ C↓{2} (m1 . m2)(C)

{a1a2} {a1} ⊗ {a2} 0.12
{a1b2} {a1} ⊗ {b2} 0
{b1a2} {b1} ⊗ {a2} 0.18

{b1b2} {b1} ⊗ {b2} 0

{a1a2, a1b2} {a1} ⊗X2 0.08
{a1a2, b1a2} X1 ⊗ {a2} 0.3
{a1a2, b1b2} 0
{a1b2, b1a2} 0
{a1b2, b1b2} X1 ⊗ {b2} 0
{b1a2, b1b2} {b1} ⊗X2 0.12

{a1a2, a1b2, b1a2} 0
{a1a2, a1b2, b1b2} 0
{a1a2, b1a2, b1b2} 0
{a1b2, b1a2, b1b2} 0{

a1a2, a1b2

b1a2, b1b2

}
X1 ⊗X2 0.2

ad (iv) This property follows directly from previ-
ously proved items (iii) and (ii).

Let us now illustrate the operator of composition and
its properties by two examples. The first shows what
happens when K ∩ L = ∅, the other demonstrates
non-commutativity of the operator.

Example 1 Consider two basic assignments mi (for
i = 1, 2) on Xi = {ai, bi} specified in Table 1.2 Since,
in this case, K ∩L is empty (recall that m↓∅

2 (∅) = 1),
composition simplifies to the expression

(m1 . m2)(C) = m1(C↓{1}) ·m2(C↓{2}).

Using Table 2, where the values of m1 . m2 are
presented, the reader can easily check that m1 =
(m1 .m2)↓{1}, and since m1 and m2 are trivially pro-
jective also m2 = (m1 . m2)↓{2}. �

2Let us note that, for the sake of simplicity, we use in ex-
amples x1 . . . xn instead of (x1, . . . , xn).

Example 2 Let for i = 1, 2, 3, Xi = {ai, bi} and let
us consider the following basic assignments m1 and
m2 on X1 ×X2 and X2 ×X3, respectively:

m1(X1 × {a2}) = 0.4,

m1(X1 ×X2) = 0.6,

m2(X2 × {a3}) = 0.5,

m2(X2 ×X3) = 0.5,

the values of both basic assignments m1 and m2 on
the remaining subsets being zero. From Definition 1
(case [a]) one can immediately see that both (m1 .
m2)(A) and (m2 . m1)(A) can be positive only for
those A ⊆ X1 ×X2 ×X3 for which

A↓{1,2} = X1 × {a2} or A↓{1,2} = X1 ×X2,

and

A↓{2.3} = X2 × {a3} or A↓{2,3} = X2 ×X3.

There are only two such sets

A1 = X1 ×X2 × {a3} and A2 = X1 ×X2 ×X3.

For these sets we get

(m1 . m2)(X1 ×X2 × {a3})

= m1(X1×X2)·m2(X2×{a3})
m
↓{2}
2 (X2)

= 0.6·0.5
1 = 0.3,

(m1 . m2)(X1 ×X2 ×X3)

= m1(X1×X2)·m2(X2×X3)

m
↓{2}
2 (X2)

= 0.6·0.5
1 = 0.3,

and similarly

(m2 . m1)(X1 ×X2 × {a3})

= m2(X2×{a3})·m1(X1×X2)

m
↓{2}
1 (X2)

= 0.5·0.6
0.6 = 0.5,

(m2 . m1)(X1 ×X2 ×X3)

= m2(X2×X3)·m1(X1×X2)

m
↓{2}
1 (X2)

= 0.5·0.6
0.6 = 0.5.

From case [b] of Definition 1 we will get yet another
focal element for m1 . m2, namely

A3 = X1 × {a2} ×X3,



Table 3: Composed basic assignments.

(m1 . m2)(A) (m2 . m1)(A)
A1 0.3 0.5
A2 0.3 0.5

A3 0.4 0

for which

A
↓{1,2}
3 = X1 × {a2} and A

↓{3}
3 = X3.

Since m
↓{2}
2 (A↓{2}

3 ) = 0 and A
↓{3}
3 = X3 we get

(m1 . m2)(X1 × {a2} ×X3) = m1(X1 × {a2})
= 0.4.

Notice that there does not exist such a focal element
for m2 . m1, as m

↓{2}
1 (A↓{2}

3 ) > 0.

Both the composed basic assignments m1 . m2 and
m2 .m1 are outlined in Table 3 (recall once more that
for all other A ⊆ X1 ×X2 ×X3 different from those
included in Table 3 both assignments equal to 0). �

As said in the Introduction, operator of composition
was originally introduced in probability theory. A ba-
sic assignment m degenerates into a probability distri-
bution if all its focal elements are singletons (in other
words: m(A) > 0 =⇒ |A| = 1).

In agreement with [6] we will call such assignments
Bayesian basic assignments. It would be strange if
the operator of composition we have introduced in this
paper would not coincide with the probabilistic one if
applied to Bayesian basic assignments. Fortunately,
it is not the case.

Lemma 2 Let m1 and m2 be Bayesian basic assign-
ments on XK and XL, respectively, for which

m2
↓K∩L(A) = 0 =⇒ m1

↓K∩L(A) = 0 (2)

for any A ⊆ XK∪L. Then m1.m2 is a Bayesian basic
assignment.

Proof. To prove that a basic assignment m1 . m2 is
Bayesian, it is enough to show that if A ⊆ XK∪L is
not a singleton then (m1 . m2)(A) = 0.

Consider any A ⊆ XK∪L, and two different elements
x, y ∈ A. Since x 6= y then either x↓K 6= y↓K or
x↓L 6= y↓L (or both). Therefore either A↓K or A↓L is
not a singleton and therefore m1(A↓K) ·m2(A↓L) = 0.
This means that if m2

↓K∩L(A↓K∩L) > 0 then, due to
Definition 1, (m1 . m2)(A) = 0.

If m2
↓K∩L(A↓K∩L) = 0 then, because we assume the

validity of implication (2), m1
↓K∩L(A↓K∩L) = 0 and

therefore also m1(A↓K) = 0. Therefore, according to
Definition 1, (m1 . m2)(A) = 0, too.

Remark The reader should however notice that the
definition of the operator of composition for Bayesian
basic assignments is not fully equivalent to the defi-
nition of composition for probabilistic distributions.
They equal to each other only in case that the
probabilistic version is defined. This is anchored in
Lemma 2 by assuming the implication (2). In case
it does not hold, the probabilistic operator is not de-
fined whilst its belief version introduced in this paper
is always defined. Nevertheless, in this case, the re-
sult is not a Bayesian assignment. We shall illustrate
it by a simple example.

Example 3 Let X1,X2 and X3 be as in the previ-
ous example and consider the following Bayesian basic
assignments m1 and m2 on X1 × X2 and X2 × X3,
respectively:

m1({a1a2}) = m1({a1b2})
= m1({b1a2}) = m1({b1b2}) = 0.25,

m2({a2a3}) = m2({a2b3}) = 0.5,

m2({b2a3}) = m2({b2b3}) = 0.

Let us compute m1 . m2 for singletons {x1x2x3} ∈
X1 ×X2 ×X3. If x2 = a2 then

(m1 . m2)({x1a2x3})

= m1({x1a2})·m2({a2x3})
m↓2

2 ({a2})

= 0.25·0.5
1 = 0.125.

For a singleton {x1b2x3} we get

(m1 . m2)({x1b2x3}) = 0,

because m↓2
2 ({b2}) = 0. In this case, however, we get

(m1 . m2)({x1b2} ×X3) = m1({x1b2})
= 0.25.

This means that in this case there are 6 focal elements
of m1 . m2, namely 4 singletons:

{x1a2x3}, for x1 ∈ X1, x3 ∈ X3,

and 2 two-element sets

{x1b2} ×X3, for x1 ∈ X1.

Let us remark that in contrast to m1 . m2, m2 . m1

is a Bayesian basic assignment, because whenever



Table 4: Basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)
{a1} 0.5 {a2} 0.4
{a1, b1} 0.5 {a2, b2} 0.6

m
↓{2}
1 (x2) = 0 then also m

↓{2}
2 (x2) = 0. Basic as-

signment m1 . m2 has 4 focal elements:

(m2 . m1)({a1a2a3})
= (m2 . m1)({a1a2b3})
= (m2 . m1)({b1a2a3})
= (m2 . m1)({b1a2b3}) = 0.25. �

Remark In Examples 2 and 3 we showed that the
operator of composition is not commutative. From
the following example we shall see that this operator
is neither associative.

Example 4 Let X1 and X2 be as in previous ex-
amples and let us consider the following three basic
assignments m1,m2 defined on X1 and X2, respec-
tively, as suggested in Table 4 and m3 have only one
focal element, namely

m3(X1 ×X2) = 1.

Then

(m1 . m2)({a1a2}) = 0.2,

(m1 . m2)({a1} ×X2) = 0.3,

(m1 . m2)(X1 × {a2}) = 0.2,

(m1 . m2)(X1 ×X2) = 0.3,

due to Definition 1 (the values on remaining sets being
again zero) and (m1 . m2) . m3 = m1 . m2 according
to Lemma 1 property (iv). On the other hand

(m2 . m3)(X1 × {a2}) = 0.4,

(m2 . m3)(X1 ×X2) = 0.6.

Now, computing m1 . (m2 . m3) we obtain

(m1 . (m2 . m3))({a1} ×X2) = 0.5,

(m1 . (m2 . m3))(X1 × {a2}) = 0.2,

(m1 . (m2 . m3))(X1 ×X2) = 0.3,

which evidently differs from (m1 . m2) . m3 (see Ta-
ble 5). �

Table 5: Composed basic assignments.

(m1 . m2) . m3 m1 . (m2 . m3)
{a1a2} 0.2 0

{a1} ×X2 0.3 0.5

X1 × {a2} 0.2 0.2
X1 ×X2 0.3 0.3

4 Advanced properties of composition

In this section we are going to study properties which
were proved for probabilistic version of the operator
of composition and which are applied when proving
important theorems regarding compositional models.
Unless expressed explicitly otherwise in this section
we will assume m1,m2,m3 be basic assignments on
XK1 ,XK2 ,XK3 , respectively.

Lemma 3 Let m1,m2,m3 be basic assignments on
XK1 ,XK2 ,XK3 , respectively. If K1 ⊇ (K2∩K3) then

(m1 . m2) . m3 = (m1 . m3) . m2. (3)

Proof. The goal is to prove that for any C ⊆
XK1∪K2∪K3

((m1 . m2) . m3)(C) = ((m1 . m3) . m2)(C). (4)

We will have to distinguish five special cases.

A. C 6= C↓K1 ⊗ C↓K2 ⊗ C↓K3 .
This is the simplest situation because in this
case both sides of formula (4) equal 0 due to
Definition 1 (case [c]).

B. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2
2 (C↓K1∩K2), m↓K1∩K3

3 (C↓K1∩K3) > 0.
In this case it is enough to realize that (under the
given assumptions) K3 ∩ (K1 ∪ K2) = K3 ∩ K1

and, analogously, K2 ∩ (K1 ∪ K3) = K2 ∩ K1.
Then we see that both sides of formula (4) again
coincide:

((m1 . m2) . m3)(C)

=
m1(C↓K1) ·m2(C↓K2)

m↓K2∩K1
2 (C↓K2∩K1)

· m3(C↓K3)

m
↓K3∩(K1∪K2)
3 (C↓K3∩(K1∪K2))

,

((m1 . m3) . m2)(C)

=
m1(C↓K1) ·m3(C↓K3)

m↓K3∩K1
3 (C↓K3∩K1)

· m2(C↓K2)

m
↓K2∩(K1∪K3)
2 (C↓K2∩(K1∪K3))

.



C. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3 ,
m↓K1∩K2

2 (C↓K1∩K2) > 0 = m↓K1∩K3
3 (C↓K1∩K3).

In this case, if C↓K3\K1 6= XK3\K1 then both
sides of formula (4) equal 0, because, due to
Definition 1, both assignments m1 . m2 and
(m1 . m3) . m2 equal 0. Therefore consider
C = C↓K1 ⊗ C↓K2 ⊗ XK3\K1 . For this we get
from Definition 1

((m1 . m2) . m3)(C) = (m1 . m2)(C↓K1∪K2).

For the right-hand side of formula (4) we get

(m1 . m3)(C↓K1∪K3) = m1(C↓K1)

and therefore

((m1 . m3) . m2)(C) = (m1 . m2)(C↓K1∪K2).

D. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3 ,
m↓K1∩K2

2 (C↓K1∩K2) = 0 < m↓K1∩K3
3 (C↓K1∩K3).

The proof is analogous to that under item C.

E. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3 ,
m↓K1∩K2

2 (C↓K1∩K2) = 0 = m↓K1∩K3
3 (C↓K1∩K3).

It is obvious from Definition 1 that both sides of
formula (4) equal 0 for all C but for C = C↓K1 ⊗
XK2\K1⊗XK3\K1 . For this special case, however,

((m1 . m2) . m3)(C) = m1(C↓K1),
((m1 . m3) . m2)(C) = m1(C↓K1).

Lemma 4 Let m1,m2 be basic assignments on
XK1 ,XK2 , respectively. If K1 ∪K2 ⊇ L ⊇ K1 then

(m1 . m2)↓L = m1 . m↓K2∩L
2 .

Proof. Consider first B ⊆ XL such that
m↓K1∩K2

2 (B↓K1∩K2) > 0. For this B we get

(m1 . m2)↓L(B)

=
∑

A⊆XK1∪K2 :A↓L=B

(m1 . m2)(A)

=
∑

A⊆XK1⊗XK2 :A↓L=B

(m1 . m2)(A)

=
∑

A⊆XK1⊗XK2 :A↓L=B

m1(A↓K1) ·m2(A↓K2)

m↓K1∩K2
2 (A↓K1∩K2)

=
∑

C⊆XK2 :C↓L∩K2=B↓L∩K2

m1(B↓K1) ·m2(C)

m↓K1∩K2
2 (B↓K1∩K2)

=
m1(B↓K1)

m↓K1∩K2
2 (B↓K1∩K2)

∑
C⊆XK2 :C↓L∩K2=B↓L∩K2

m2(C)

=
m1(B↓K1)m↓L∩K2

2 (B↓L∩K2)

m↓K1∩K2
2 (B↓K1∩K2)

= (m1 . m↓L∩K2
2 )(B).

If m↓K1∩K2
2 (B↓K1∩K2) = 0 for some B ⊆ XL, then

there is only one A ⊆ XK1∪K2 such that A↓K1 = B↓K1

for which (m1.m2)(A) may be positive, namely A∗ =
B↓K1 ⊗ XK2\K1 with (m1 . m2)(A∗) = m1(B↓K1).
Thus if B = B↓K1 ⊗XL\K1 ,

(m1 . m2)↓L(B) =
∑

A⊆XK1∪K2 :A↓L=B

(m1 . m2)(A)

= (m1 . m2)(A∗) = m1(B↓K1)

= (m1 . m↓K2∩L
2 )(A∗↓L)

= (m1 . m↓K2∩L
2 )(B).

If B 6= B↓K1 ⊗ XL\K1 and m↓K1∩K2
2 (B↓K1∩K2) = 0

then

(m1 . m2)↓L(B) = 0 = (m1 . m↓K2∩L
2 )(B).

Lemma 5 Let m1,m2 be basic assignments on
XK1 ,XK2 , respectively. If K1 ∪ K2 ⊇ L ⊇ K1 ∩ K2

then
(m1 . m2)↓L = m↓K1∩L

1 . m↓K2∩L
2 .

Proof. We will compute the required marginal assign-
ment in two steps. In the first step we will employ
Lemma 4, then (iv) of Lemma 1 and finally Lemma 3:

(m1 . m2)↓K1∪L = m1 . m↓K2∩L
2

= (m↓K1∩K2
1 . m1) . m↓K2∩L

2

= (m↓K1∩K2
1 . m↓K2∩L

2 ) . m1.

The last expression will be further marginalized with
the help of Lemma 4 and afterwards the final form
will be received with application of Lemma 3 and (iv)
of Lemma 1.

(m1 . m2)↓L =
(
(m↓K1∩K2

1 . m↓K2∩L
2 ) . m1

)↓L
= (m↓K1∩K2

1 . m↓K2∩L
2 ) . m↓K1∩L

1

= (m↓K1∩K2
1 . m↓K1∩L

1 ) . m↓K2∩L
2

= m↓K1∩L
1 . m↓K2∩L

2 .

Lemma 6 Let m1,m2 be basic assignments on
XK1 ,XK2 , respectively. Then

m1 . m2 = m1 . (m1 . m2)↓K2 .

Proof. Due to (ii) of Lemma 1 assignments m1 and
(m1 . m2)↓K2 are projective and therefore (due to
property (iii) of the same lemma) these arguments
may be commuted

m1 . (m1 . m2)↓K2 = (m1 . m2)↓K2 . m1

= (m↓K1∩K2
1 . m2) . m1,



where the last modification is made on the basis of
Lemma 5. The last expression meets the assumptions
of Lemma 3 and therefore we can exchange second and
third arguments, from which the required expression
is got by application of (iv) of Lemma 1:

(m↓K1∩K2
1 . m2) . m1 = (m↓K1∩K2

1 . m1) . m2

= m1 . m2.

5 Compositional models

Now we are starting to consider repetitive application
of the operator of composition with the goal to cre-
ate a multidimensional model. Since the operator is
neither commutative nor associative we have always
to specify in which order the oligodimensional assign-
ments are composed together. To make the formulas
more lucid we will omit brackets in case that the op-
erator is to be applied from left to right, i.e., in what
follows

m1 . m2 . m3 . . . . . mn−1 . mn

= (. . . ((m1 . m2) . m3) . . . . . mn−1) . mn.

Moreover, we will always assume mi be basic assign-
ment on XKi .

The reader familiar with some papers on probabilis-
tic or possibilistic compositional models knows that
one of the most important notions of this theory is
that of a so-called perfect sequence, which will be now
introduced also for a sequence of basic assignments.

Definition 2 A generating sequence of basic assign-
ments m1, m2, . . . ,mn is called perfect if

m1 . m2 = m2 . m1,

m1 . m2 . m3 = m3 . (m1 . m2),
...

m1 . m2 . . . . . mn = mn . (m1 . . . . . mn−1).

From the practical point of view it is also important
to have a tool enabling us to recognize whether a gen-
erating sequence is perfect or not. For this one can
take advantage of the following assertion.

Lemma 7 A generating sequence m1,m2, . . . ,mn is
perfect iff the pairs of basic assignments mj and (m1.
. . . . mj−1) are projective, i.e. if

m
↓Kj∩(K1∪...∪Kj−1)
j

= (m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1),

for all j = 2, 3, . . . , n.

Proof. This assertion is proved just by a multiple
application of assertion (iii) of Lemma 1:

m1 . m2 = m2 . m1 ⇐⇒ m↓K2∩K1
1 = m↓K2∩K1

2 ,

m1 . m2 . m3 = m3 . (m1 . m2)

⇐⇒ (m1 . m2)↓K3∩(K1∪K2) = m
↓K3∩(K1∪K2)
3 ,

...
m1 . m2 . . . . . mn = mn . (m1 . . . . . mn−1)

⇐⇒ (m1 . . . . . mn−1)↓Kn∩(K1∪...∪Kn−1)

= m↓Kn∩(K1∪...∪Kn−1)
n .

From Definition 2 one can hardly see what are the
properties of the perfect sequences; the main one is
expressed by the following characterization theorem.

Theorem 1 A generating sequence of basic assign-
ments m1,m2,. . . ,mn is perfect iff all the assignments
from this sequence are marginal to the composed basic
assignment m1 . m2 . . . . . mn:

(m1 . m2 . . . . . mn)↓Kj = mj ,

for all j = 1, . . . ,m.

Proof. The fact that all assignments mj from a perfect
sequence are marginals of (m1 . m2 . . . . . mn) follows
from the fact that (m1 . . . . .mj) is marginal to (m1 .
. . . .mn) (due to (ii) of Lemma 1) and mj is marginal
to mj . (m1 . . . . . mj−1) = m1 . . . . . mj .

Suppose now that for all j = 1, . . . , n, mj are marginal
assignments to m1 . . . . .mn. It means that all the as-
signments from the sequence are pairwise projective,
and that each mj is projective with any marginal as-
signment of m1 . . . . .mn, and consequently also with
m1 . . . . . mj−1. So we get that

m
↓Kj∩(K1∪...∪Kj−1)
j

= (m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1)

for all j = 2, . . . , n, which is equivalent, due to
Lemma 7, to the fact that m1,. . . ,mn is perfect.

Graphical Markov models (or rather decomposable
models) are recalled by the following (almost trivial)
assertion, which resembles assertions concerning de-
composable models.



Theorem 2 Let a generating sequence of pairwise
projective assignments m1,m2, . . . ,mn be such that
K1,K2, . . . ,Kn meets the well-known running inter-
section property:

∀j = 2, 3, . . . , n ∃`(1 ≤ ` < j)
such that Kj ∩ (K1 ∪ . . . ∪Kj−1) ⊆ K`.

Then m1,m2, . . . ,mn is perfect.

Proof. Due to Lemma 7 it is enough to show that
for each j = 2, . . . , n basic assignment mj and the
composed assignment m1 . . . . . mj−1 are projective.
Let us prove it by induction.

For j = 2 the required projectivity is guaranteed
by the fact that we assume pairwise projectivity of
all m1, . . . ,mn. So we have to prove it for general
j > 2 under the assumption that the assertion holds
for j − 1, which means (due to Theorem 1) that all
m1,m2, . . . ,mj−1 are marginal to m1 . . . . . mj−1.
Since we assume that K1, . . . ,Kn meets the running
intersection property, there exists ` ∈ {1, 2, . . . j − 1}
such that Kj∩(K1∪. . .∪Kj−1) ⊆ K`. Therefore (m1.

. . . . mj−1)↓Kj∩(K1∪...∪Kj−1) and m
↓Kj∩(K1∪...∪Kj−1)
`

are the same marginals of m1 . . . . . mj−1 and there-
fore they have to equal to each other:

(m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1)

= m
↓Kj∩(K1∪...∪Kj−1)
` .

However we assume that mj and m` are projective
and therefore also

(m1 . . . . . mj−1)↓Kj∩(K1∪...∪Kj−1)

= m
↓Kj∩(K1∪...∪Kj−1)
j .

It should be stressed at this moment that running
intersection property of K1,K2, . . . ,Kn is a sufficient
condition guaranteeing a perfectness of a generating
sequence of pairwise projective assignments. By no
means this condition is necessary as it will be shown
in the following example.

Example 5 Simple example is given by two basic as-
signments m1 and m2 from Example 1 (recall that
they are defined on X1 and X2, respectively, and their
values can be found in Table 1) and the third assign-
ment m3 = m1 . m2 (see Table 2). Considering se-
quence m1,m2,m3, it is evident that K1 = {1},K2 =
{2},K3 = {1, 2} do not meet the running intersec-
tion property. And yet the sequence m1,m2,m3 is
perfect because all the assignments are marginal (or
equal) to m1 . m2 . m3. Notice that if we chose any
other basic assignment m̂3 on X{1,2} different from

m3 = m1 . m2, the generating sequence m1,m2, m̂3

would not be perfect any more. So we see that per-
fectness of a sequence is not only a structural property
connected with the properties of K1,K2, . . . ,Kn but
depends also on specific values of the respective basic
assignments. �

The last assertion shows that each generating se-
quence defining a compositional model m1 . . . . . mn

can be transformed into a perfect sequence. It means,
any basic assignment representable by a generating se-
quence m1,m2, . . . ,mn can be represented also by a
perfect sequence m̂1, m̂2, . . . , m̂n

Theorem 3 For any generating sequence
m1,m2, . . . ,mn the sequence m̂1, m̂2, . . . , m̂n com-
puted by the following process

m̂1 = m1,

m̂2 = m̂↓K2∩K1
1 . m2,

m̂3 = (m̂1 . m̂2)↓K3∩(K1∪K2) . m3,

...
m̂n = (m̂1 . . . . . m̂n−1)↓Kn∩(K1∪...Kn−1) . mn

is perfect and

m1 . . . . . mn = m̂1 . . . . . m̂n.

Proof. The perfectness of the sequence m̂1, . . . , m̂n

follows immediately from Lemma 7 and from the def-
inition of this sequence as

m̂
↓Ki∩(K1∪...∪Ki−1)
i

= (m̂1 . . . . . m̂i−1)↓Ki∩(K1∪...∪Ki−1)

yields projectivity of (m̂1 . . . . . m̂i−1) and m̂i.

Let us prove

m1 . . . . . mn = m̂1 . . . . . m̂n

by mathematical induction. Since m1 = m̂1 by defi-
nition, it is enough to show that

m1 . . . . . mi = m̂1 . . . . . m̂i

implies also

m1 . . . . . mi+1 = m̂1 . . . . . m̂i+1.

In the following computations we will use the fact that
due to Lemma 5

(m̂1 . . . . . m̂i)↓Ki+1∩(K1∪...Ki) . mi+1

= ((m̂1 . . . . . m̂i) . mi+1)
↓Ki+1



and afterwards we will employ Lemma 6.

m̂1 . . . . . m̂i+1

= m̂1 . . . . . m̂i .(
(m̂1 . . . . . m̂i)↓Ki+1∩(K1∪...Ki) . mi+1

)
= m̂1 . . . . . m̂i . ((m̂1 . . . . . m̂i) . mi+1)

↓Ki+1

= m̂1 . . . . . m̂i . mi+1 = m1 . . . . . mi . mi+1,

where the last modification is an application of the
inductive assumption.

6 Conclusions

Graphical Markov Models were designed to enable de-
scription of real-life problems by probabilistic mod-
els. Since we are getting into problems when coping
with computational complexity of probabilistic mod-
els, all the more so problems naturally appear when
applying belief function models, for which there do
not exist distribution functions; we have to represent
them by set functions defined on the whole power set
of the frame of discernment Ω = XN . So, inspired
by the original probabilistic approach the paper is
the first attempt to build up compositional models
of multidimensional belief functions. We have defined
belief function operator of composition manifesting all
the main characteristics of its probabilistic pre-image.
Even more, there is one point in which the belief func-
tion operator of composition is superior to the prob-
abilistic one: thanks to the ability of belief functions
to model total ignorance, the operator of composition
is for basic assignments always defined, which is not
the case in the probabilistic framework.

In the paper we have proved the basic properties of the
operator necessary to introduce compositional mod-
els and their most important special case, perfect se-
quence models. Naturally, there are still many open
problems to be solved. The most important one is a
design of efficient computational procedures for this
type of models. It is also necessary to clarify interre-
lations between the operator of composition and con-
ditional independence. This problem is not easy be-
cause in the framework of belief functions there ex-
ist several notions corresponding to stochastic condi-
tional independence.

At this moment we know very little about similarities
and differences between the described compositional
models and other multidimensional models such as
[1, 2, 7], as well as about the relation between the
compositional models developed for belief functions
and those introduced in possibility theory [8, 9].
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ČR under grants A2075302 (Jiroušek), A100750603
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Abstract 
 

The theory of imprecise previsions admits the use of a 

wide variety of statistical evidence. Nevertheless, some 

existing evidence, for example, in reliability applications, 

cannot be utilized by models developed within its 

framework. In the pursuit of reducing imprecision, any 

available evidence should become an input to modeling. It 

is suggested to take a different look at the natural 

extension, the basic constructive step in the theory. It is 

shown that natural extension can be viewed as a problem 

belonging to the realm of variational calculus, which 

opens up new perspectives for obtaining tighter intervals.  

 

Keywords. Imprecise probability, statistical reasoning, 

natural extension, variational calculus, reliability analysis 

 

1   Introduction 
 

In spite of the existence of a number of risk/reliability and 

other applied models built on imprecise statistical 

reasoning, only a few of them have ever been used in 

practice – and then only hesitantly –, the rest remaining 

firmly in the academic realm. Do they lack adequate 

promotion by their practitioners, or are there other 

primary obstacles that prevent them from being widely 

applied? We believe that the main obstacle to the practical 

application of imprecise statistical models is thoroughly 

familiar to the group of experts who practise interval 

computations: it is namely the rapid growth in 

imprecision that occurs when intervals are propagated 

through mathematical models. 

 

Should this state of affairs be regarded as unalterable, or 

can this weakness in the model be remedied? If the 

growth in imprecision is due to a deficiency in the model, 

what is its basic cause in mathematical terms, and how 

can we attempt to develop a more adequate model? 

 

A cause of the large imprecision in computed previsions 

should be sought in the mechanism producing the 

previsions. It is called natural extension and it may be 

seen as the basic constructive step in statistical reasoning; 

it enables us to construct new coherent previsions from 

old ones [1]. 

 

Natural extension can appear in different forms. Four 

forms of it were described in [2]. Each of them has pros 

and cons in the context of a specific application. The use 

of a proper form can substantially facilitate inference and 

computation of the probability measures of interest. 

 

We suggest taking a different look at the natural 

extension, an approach which opens up new perspectives 

for obtaining tighter intervals. 

 

It is shown that natural extension can be viewed as the 

problem of finding an extremal of a functional, a problem 

which belongs to the realm of variational calculus. If this 

path is followed, the modeller can utilise more versatile 

information than is possible with the natural extension 

suggested by Walley [1] and Kuznetsov  [3]. For 

example, as demonstrated in this paper, bounds on 

probability density functions and their derivatives can be 

utilised by the new form of natural extension, which is an 

effective way of obtaining tighter bounds of statistical 

measures. 

 

2   Different Forms of Natural Extension 
 

Suppose there is a continuous random variable, for 

example, a lifetime X of a component or system defined 

on the sample space [0,T] and information about this 

variable is represented as a set of n interval-valued 

expectations of functions )(),...,(1 XfXf n . Denote these 

expectations )( ii fMa =  and )( ii
fMa = , ni ,...,1= , 

where ia  and 
i

a  upper and lower bounds for the 

expectations, correspondingly. For computing new 

expected values )(gM  and )(gM  of a function )( Xg  

from the available information, natural extension can be 

used in the following primal form: 
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Here the infimum and supremum are taken over the set P 

of all admissible (matching the constraints) probability 

density functions ρ(x) satisfying conditions (2). Solutions 

(1) exist if all the constraints (2) form a non-empty subset 

PP ⊆0 . If the subset 0P  is empty, this means that the set 

of evidence is conflicting. If all the evidence is interval-

valued (this is a particular case of imprecise evidence), 

then two interval-valued judgements on the same 

prevision are called conflicting if they do not intersect.  

 

It should be noted that problems (1)-(2) are linear and the 

dual optimization problems can be written for them. For 

)(gM , for example, the dual problem is the following 

[2], [3]: 
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0 Tx ≤≤ , )()()(0 xgxfdcc iii ≥−+∑  

 

Values )(gM  and )(gM  are often called upper and 

lower previsions and functions )(Xf i  and )( Xg  are 

called gambles. Note that the lower and upper previsions 

)(gM  and )(gM  can be regarded as the bounds for an 

unknown precise prevision )(gM  which is called a linear 

prevision. 

 

Natural extension is a general mathematical procedure for 

calculating new previsions from initial judgements. It 

produces a coherent overall model from a certain 

collection of imprecise probability judgements and may 

be seen as the basic constructive step in interval-valued 

statistical reasoning.  

 

The crux of optimisation problems (1)-(2) is that their 

solutions obtained as a result of solving linear programs 

are defined on the family of degenerate probability 

distributions
1
, which are included on equal footing in the 

set of all admissible probability distributions over which 

the solution is sought. As proven in [2], solving these 

optimisation problems on the set of all admissible 

probability distributions gives the same solution as that 

obtained on only the set of degenerate distributions: 
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where ck ∈ +R ,  ,1
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kc and ),( kxxδ  is the Dirac 

function which has unit area concentrated in the 

immediate vicinity of point kx . 

 

By substituting the degenerate class of densities (3) into 

objective function (1) for )(gM  and constraints (2) we 

obtain 
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We refer to the natural extension (4)-(5) as the degenerate 

form.  

 

All this would simply be mathematical subtlety – that is, 

of little interest to practitioners – if it did not give us a 

clue to deriving more precise previsions of interest for 

continuous random variables. For some variables it is 

often not realistic to assume that the probability masses 

are concentrated in a few points as opposed to being 

continuously distributed over the set of possible 

outcomes. In reliability applications, probability masses 

of time to failure cannot (except in very special cases) 

concentrate in a very few points of the positive real line. 

Ignoring this evidence is one of the causes (we hold it to 

be the root cause) of high imprecision in reliability 

applications as well as in other applications. 

 

Example 1. 

 

The sample set of a continuous random variable X is an 

interval [0, T]. The only available information about X is 

point-valued probability b of finding its value within an 

                                                 
1
 The probability distribution of a continuous random variable is 

referred to as degenerate if the probability masses are concentrated in a 

finite number of points belonging to the continuous set of possible states 



interval ],[ qq ⊆[0, T]. That is, bqqx =∈ ]),[(Pr . What 

are the lower and upper bounds for the expected value of 

X?  

 

Natural extension in its primal form appears as follows: 
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otherwise. 

 

Its counterpart in the degenerate form, as follows from 

(4)-(5), is the optimization problem 

 

)(inf)( 2211
,

xcxcXM
ii xc

+=   subject to  

0,121 ≥=+ iccc  and [ ] bxIcxIc
qqqq

=+ )()( 2,21],[1
. 

 

From the constraints it can be concluded that 

[ ] bxIcxIc
qqqq

=+ )()( 2,21],[1
 holds only if ],,[1 qqx ∉  

],[2 qqx ∈  and bc =2 , which entails bc −= 11 . 

Plugging 1c  and 2c  into the objective function brings us 

to the simple optimisation problem 

 

( )21)1(inf)( bxxbXM
ix

+−= . 

 

The infimum is attained with 01 =x  and qx =2 , that 

is, qbXM =)( . 

 

Thus, the probability distribution function delivering the 

infimum to the objective function degenerates into the 

one with probability masses concentrated in two points 

01 =x  and qx =2  with masses (1-b) and b, 

correspondingly. This case is presented in Fig. 1. 

 

 

 

3   An example Where Natural Extension 

Fails to Utilise Evidence 
 

An attempt to mitigate the influence of degenerate 

probability distributions on the solutions and to obtain 

tighter bounds was undertaken in [4]. No significant 

effect was obtained through the introduction of 

judgements on the skewness and unimodality of the 

distributions as, in this case, the peaks of degenerate 

distributions simply become repositioned and probability 

masses become redistributed among the peaks. The nature 

of the distributions defining the solutions remained 

unchanged. 

 

In the attempt to achieve tighter bounds, it seems natural 

to try to constrain the underlying probability distributions 

such that they rule out the degenerate distributions. This 

can be done through imposing a restriction on the upper 

bound of the probability density function. (This device is 

not new and was used, for example, in [5] and [6].) In 

some practical situations, such bounds can be elicited 

from experts. For example, in reliability applications, the 

expert could be asked: “What is the largest possible 

percentage of failures per year for a given component 

with a definite age?” In other cases, such bounds can be 

obtained from the statistical data or from a physical model 

of the corresponding phenomenon. 

 

Once an upper bound to the probability density function is 

known, it can be used to restrict the set of feasible 

probability distributions and rule out the degenerate ones. 

Let us introduce such an upper bound +∈ RK  on the 

values of the probability density function, i.e.,  

 

0≤ρ(x)≤K=const for ∀x.      (6) 

 

Since the overall probability over the interval [0,T] is 

equal to 1, the upper bound K satisfies the inequality 

KT≥1. 

 

By bounding the density function, the set of constraints to 

optimisation problem (1)-(2) is complemented by 

inequality (6) which, as it turns out, complicates the 

optimisation problem drastically.  

 

It is chiefly through duality theory that a linear program 

can be viewed in its proper perspective and solved. For 

primal problem (1)-(2) complemented by constraint (6), 

the dual optimisation problem has the infinite number of 

dual variables. This is because there are as many dual 

variables as primal constraints, and in our case the 

inequality ρ(x)≤K is to be regarded as denoting an infinite 

set of constraints ρ(xi)≤K i=1, …, n, n → ∞. Thus, not 

being able to employ the dual form of natural extension 

nor its degenerate form, we become devoid of the key 

))0,()1( xb δ−  ),( qxb δ  

0                  q            q                     T 

∞ ∞ 

Figure 1: Degenerate probability distribution function 

providing the infimum to the objective function 



mechanism for the construction of coherent imprecise 

models, natural extension. 

 

One would anyway arrive at this stopping point in case of 

trying to use non-linear constraints, as real-life statistical 

evidence in many cases cannot be confined to linear 

constraints. 

 

In the section below we suggest taking a different look at 

the primal form of natural extension (1)-(2), an approach 

which opens up new perspectives for obtaining tighter 

intervals. 

 

4   Natural Extension as a Problem of the 

Calculus of Variations 
 

The mathematical program (1)-(2) can be modified 

slightly to make it amenable to the calculus of variations. 

The calculus is based on the statement that we can always 

apply a small change ±δρ(x) to a function ρ(x). (Here 

δρ(x) denotes a variation of ρ(x), and the symbol δ should 

not be confused with the Dirac function). Applying 

variation ±δρ(x) to a function ρ(x) has the consequence 

that ρ(x) can become negative, which is in contradiction 

with the inequality ρ(x)≥0. 

 

The requirement ρ(x)≥0 can be satisfied differently by 

introducing another function z(x) for which 

 

).()( 2 xzxρ =        (7) 

 

We then have to replace )(xρ  by )(2 xz  in the 

expressions for the objective functions and constraints. 

 

The other inequalities in constraints (2) are turned into 

equalities by introducing yet other unknown functions 

)()1,( xu i  and )()2,( xu i , i=1,…,n, such that 
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More information on this technique can be found, for 

example, in [7]. 

 

After having made the above changes, the problem of 

finding the lower and upper bounds for M(g) now has 

z(x), )()1,( xu i and )()2,( xu i , i=1,2,…,n, as decision 

variables. Thus the original problem (1)-(2) turns into the 

following: 
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Optimization problem (10) subject to (8), (9) and (11) is 

another form of natural extension amenable to variational 

calculus. Constraints like (8), (9) and (11), which are 

integrals of some unknown functions, are called 

isoperimetric constraints [8].  

 

The conventional way of solving problem (10) subject to 

(8), (9) and (11) is to replace it with an unconstrained 

optimization problem. In this case the integrand of the 

objective function  
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is replaced by 
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where niλi 2,...0, =∈ R , are (unknown) Lagrange 

multipliers that could be derived from a system of the 

Euler-Lagrange equations (see below) complemented by 

equations-constraints (8), (9) and (11).  

 

The unconstrained optimization problem, which is to be 

solved now, appears as follows: 
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For an unconstrained optimization problem the solutions 

satisfying the necessary condition of optimality can be 

derived from the Euler-Lagrange equations [8]. For 

problem (14) these equations take the following form: 
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where ./    ,/   ;/ )2,()2,()1,()1,( dxduudxduudxdzz iiii === &&&  

 

By plugging (13) into (15) we obtain 
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Let us examine equation (16). It holds if z(x)=0 for all 

],0[ Tx ∈ . But this would be in contradiction with 

constraints (8), (9) and (11). Thus z(x)≠0, at least in some 

points or possibly inside some subintervals of [0,T]. From 

(16) for those points where z(x)≠0 it holds that 
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consider as an example [ ] )()(
1,0 xIxg x=  and all the other 

gambles nixf i ,...,2,1  ),( =  as linear functions. This case 

is depicted in Fig. 2. 

 

 
 

Figure 2: An example of )(xξ  satisfying the necessary 

condition of optimality 

 

In order to satisfy constraint (11) and to hold equation 

(16) true the probability density function delivering an 

extremum to the objective function 

∫
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ii dxxuuzF
0

)2,()1,( ),,,(  can only be degenerate, i.e., 

concentrated in the three points 10 , xx  and 2x . This is 
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kc  Thus, we have arrived at the case where 

optimal solutions belong to the family of degenerate 

distributions. 

 

5   Utilising Boundary Constraints with the 

Variational Form of Natural Extension 
 

Let us now turn back to the case where a boundary to the 

probability density function is known and we would like 

to utilise this knowledge to reduce, as we expect, 

imprecision in the probabilistic measures of interest. That 

is, we will seek inf and sup of the objective function (1) 

subject to constraints (2), (6). To solve this new problem, 

an approach based on the following theorem is proposed. 

 

Theorem 1. If for any interval Tβαβxα ≤<≤≤≤  0  ,  

and for any ∈nhhh ,...,, 10 R  it holds that  

∑
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then probability density function )(xρ , on which inf and 

sup are attained in problems (1) subject to (2) and (6), is 

a step-wise function whose values are either 0 or K.  

 

Proof. In this problem we have two direct constraints on 

the density function: ρ(x)≥0 and ρ(x)≤K. To adjust the 

constraints to the calculus of variations, we introduce 

some new functions z(x) and v(x) such that )()( 2 xzxρ =  

and 

 

Kxvxz =+ )()( 22     (20) 

 

Thus, we have a new optimisation problem with objective 

function (10) subject to (8), (9), (11) and (20). 

 

With respect to noted above, newly introduced equality 

(20) should be referred to as holonomic constraint. 

 

As we did it earlier, the primal problem with holonomic 

and isoperimetric constraints is replaced by a new 

unconstrained optimization problem 
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and nλλλxλ 210 ,...,,),(∗
 are (unknown) Lagrange 

multipliers. Note that )(xλ∗
 is to be a function of x 

because it is multiplied by a holonomic constraint, while 

nλλλ 210 ,...,,  are constants because they correspond to 

isoperimetric constraints [7]. 
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For an unconstrained optimization problem the solutions 

satisfying the necessary condition of optimality can be 

derived from the Euler-Lagrange equations [8]. By 

applying the Euler-Lagrange equations, as we did for 

(14), we arrive at the following set of equalities: 
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Let us an interval [ ] ],0[, Tβα ⊆  is that on which 

0)( ≠xz . How would )(xz  behave on this interval and 

what values would it take? 

 

According to (23), in those points x where 0)( ≠xz  it 

holds that  
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And according to (23), in those points x where 

0)( ≠∗ xλ  it holds that 0)( =xv , which in turn, 

according to (20), results in Kxzxρ == )()( 2
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From (27) it follows that if  
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By denoting 00 λh −=  and )( niii λλh ++−=  we can 

rewrite 
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which was to be proven. 

 

The theorem enables us to reduce the original variational 

optimization problem to an easier problem of optimizing 

a multivariate function under algebraic constraints.  

 

Indeed, let 

),[),...,,[),,[),,[ 122543210 +mm xxxxxxxx be the 
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Then, problem (1) subject to constraints (2), (6) takes the 

following form:  
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If the number of intervals m is known, this optimization 

problem can be solved by using standard numerical 

techniques such as gradient methods, simplex-based 

search methods, genetic algorithms, etc. In simple cases, 

the solution can be found in an analytical form.  

 

How can we find m? One idea is to start with the smallest 

value m, corresponding to having one interval with 

nonzero density, and to solve the optimization problem 

with this m. Then, increase m by 1 and solve the problem 

again, etc. Repeat the process until when for a new m you 

get exactly the same optimising function ρ(x) as for the 

previous m – this will mean that a further subdivision of 

intervals will probably not change the value of objective 

function (1). 

 

Example 2. Utilising knowledge on the boundary of the 

density function 

 

In this example, the statistical evidence about a random 

value X we have at hand is a boundary K on the 

probability density function and, as in Example 1, 

bqqx =∈ ]),[(Pr . What are the lower, )(XM , and upper 

bounds, )(XM , for the expected value of X?  

 

It is found that increasing m step by step by 1 starting 

from 0 does not change the optimising density function 

ρ(x) after m exceeds 1. That is, the solution of problem 

(30)-(32) must be sought for m=1. (Note that m=1 

corresponds to having two intervals on which the 

probability density function is different from 0.) 



Depending on the disposition of q  within the interval 

[0,T], the probability density function delivering the 

minimum to the objective function is calculated 

differently. 
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Let us assume that 
K

b
q

−
≥

1
. Then it can be concluded 

that optimization problem (30)-(32) for the lower bound 

becomes as follows:  
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The next step is to plug the constraints into the objective 

function and observe that minimum is attained if qx =2 . 

After doing this, we obtain  
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It is not difficult to see that the minimum is attained if 

00 =x . Thus 
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The probability density function delivering the minimum 

is shown in Fig. 3. 

 

For the case when 
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The solution to )(XM  can be obtained in a similar way 

to that for the lower bound. 

 

 

 
 

Figure 3: Bounded probability density function providing 

the infimum to the objective function 

 

6   Bounded densities and their derivatives 
 

In attempting to achieve tighter bounds, one can impose 

constraints on the derivatives (or their absolute values) of 

probability density functions. So, now we suppose that 

one has at hand an upper bound on the value of the 

probability density function and an upper bound on its 

derivative absolute value. Any other assumptions 

concerning the actual shape of the distribution are not 

introduced. 

 

Once the additional upper bound is known, it can be used 

to restrict the set of admissible probability distributions 

and rule out the functions which derivatives take 

excessively high values. 

 

Let us denote +∈ RM  an upper bound on the value of 

the probability density absolute value, i.e., for ∀x 

 

./)( constMdxxρd =≤     (33) 

 

In the variational calculus set-up, now we seek inf and 

sup of the objective function (1) subject to constraints (2), 

(6) and (33). To solve this new problem, an approach 

based on the following theorem is proposed. 
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Theorem 2. If for any interval Tβαβxα ≤<≤≤≤  0  ,  

and for any ∈nhhh ,...,, 10 R  it holds that  
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i

ii xfhhxg
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then the probability density function )(xρ , on which inf 

and sup are attained in problems (1) subject to (2), (6) 

and (33), is a stepwise linear function 

CMxxρ +±=)( whose values are bounded by K from 

above. 

 

Proof. The logic of the proof is similar to that used to 

prove Theorem 1. The proof can be found in [9] which 

has been submitted for publication. 

 

An example of the density function satisfying Theorem 2 

is depicted in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: An example of the density function satisfying 

Theorem 2 

 

The points in Fig. 5 marked with asterisks have the 

following values:  ,/   ,/ 1
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Theorem 2 enables to reduce the original variational 

optimization problem to an easier one. This can be done 

because the shape of the density function is now known. 

Unknown are the points ,...,,...,, *

1

*

010 xxxx , which 

become the parameters of the density function 

),...,,,...,,()( *

1

*

010 xxxxxρxρ =  and the decision variables 

in the new optimisation problem. 

 

Let ),[),...,,[),,[),,[ 122543210 +mm xxxxxxxx  be the 

intervals on which 0)( ≠xρ . They can be interpreted as 

lower bases of the trapezoids (see Fig. 5). The upper 

bases of the trapezoids are the intervals 

),...,/,/[),/,/[ 3210 MKxMKxMKxMKx −+−+  

)/,/[ 122 MKxMKx mm −+ + . And ),...,,[),,[ 4321 xxxx  

),[ 2212 ++ mm xx are the intervals on which 0)( =xρ .  

 

Now the optimisation problem appears as follows:  
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Example 3. Unbounded probability density function and 

bounded absolute values of its derivative 

 

Let us consider an example in which Mdxxd ≤/)(ρ  is 

the only restriction on ρ(x). What are the bounds on the 

expected value M(X) of the corresponding random 

variable? 

 

In this example g(x)=x, which implies that everywhere 

0)( hxg ≠  meaning that theorem 2 can be applied.  

 

Note first that as the condition Kx ≤)(ρ  is not imposed 

on the density function, the trapezoidal shape of the 

density is changed to the triangular one.  

 

Let us start with m=0 corresponding to having one 

interval ),[ 10 xx  on which the probability density function 

is different from 0 and denote 21 xxy −= .  

 

Here we have only one isoperimetric constraint: 
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The formula for the expected value M(X) takes the form: 
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And further 
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In the following we will keep in mind that 00 ≥x , 

Tx ≤1 , and hence .
2

0
M

Tx −≤  

 

It is easy to see that the smallest value of M(X) is attained 

when ,00 =x  so .
1
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XM =  

 

Similarly, to obtain )(XM , we take the largest possible 

value of ,0x i.e. 
M
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If we take m=1 and do manipulations similar to the above, 

we find that the solutions do not change. 

 

Example 4. Bounded probability density function and 

bounded absolute values of its derivative 

 

Now we have two constraints (6) and (33), i.e., 0≤ρ(x)≤K 

and Mdxxρd ≤/)( . The question to answer is still the 

same: What are the bounds on the expected value M(X)? 

 

As we keep the function g(x)=x introduced in Example 3, 

theorem 2 can be also applied for this case. 

 

Start with m=0. Here we have only one isoperimetric 

constraint (the area of the trapezoid equalised to 1): 
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The formula for the expected value M(X) takes the form: 
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And finally, 
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As 00 ≥x  and Tx ≤1 , hence .
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The smallest value of )( XM  is attained when 00 =x , 
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If we take m=1 and do manipulations similar to the above, 

we find that the solutions do not change. 

 

7   What is Still Dissatisfying?  
 

There are at least two remaining problems with applying 

imprecise statistical reasoning to reliability analysis. 

 

In reliability analysis, the pivotal characteristic is time to 

failure (or time between failures if a system is repairable), 

and a failure in a system can occur at any point of the 

lifetime. In contrast, the model presupposes that failures 

can take place only within some specific intervals but not 

at any point. This is because probability masses are not 

continuously distributed during the lifetime. In spite of 

bringing in more statistical evidence about time to failure, 

the situation does not seem to be remedied. 

 

The other principle obstacle to reliability applications is 

the bounding condition on gambles, which in practice 

means dealing with bounded random values. That is, 

applying the reasoning to reliability implies that time to 



failure is a bounded random value. Let us say, one must 

know the maximum time a system can survive in order to 

apply the theory. This is that what can hardly be known 

for certainty. Furthermore, as technical systems undergo 

preventive maintenance and are put out of operation 

based on volitional decisions rather than after observing 

their full inoperability, knowing the point behind which 

they become irrecoverable, and even defining what it 

means, make the bound on time to failure meaningless. 

 

8   Summary and Conclusions 
 

The usefulness of interval-valued statistical characteristics 

depends both on how tight the bounds are and on how 

easy they are to compute. The tightness of the bounds 

depends in turn on the amount of information available 

and that which can be utilised by the method, and on the 

method itself. The more relevant information the modeller 

has at hand and the greater the amounts of it that can be 

utilised by the model, the tighter the bounds are. We have 

been aiming at enhancing natural extension so that it 

could utilise a wider variety of statistical evidence, some 

of which is easy to acquire but not easy to utilise. 

 

As has been demonstrated, natural extension can be 

viewed as the problem of finding an extremal of a 

functional, a problem which belongs to the realm of 

variational calculus. If this path is followed, the modeller 

can utilise more versatile information than is possible 

with the natural extension suggested by Walley [1] and 

Kuznetsov [3]. The present paper has demonstrated that 

imposing a restriction on the upper bound of the 

probability density function of a random value is an 

effective way of obtaining tighter bounds of statistical 

measures. 

 

In some cases, common sense and intuition may suggest 

that the underlying distribution is for instance 

differentiable in any point or symmetrical without 

specifying a particular shape. Utilising this kind of 

evidence may drastically reduce imprecision in the 

resultant interval-valued statistical characteristics, and, it 

is clear, this evidence is acquired at a low cost; in some 

cases it can be gained at no effort. 

 

We have been attempting to demonstrate in relation to the 

approach based on variational calculus that there is room 

for improvement without having to use unreliable data 

and introduce debatable assumptions as a means of 

obtaining reasonably precise results.  

 

In the pursuit of robust reliability assessments, the next 

facing challenge is to update the existing reliability 

models so that they can take account of additional 

evidence, evidence that until now has not been requested 

owing to the models’ incapacity to utilise it. The fact that 

there is currently a substantial amount of alternative 

evidence at our disposal presents other challenges. For 

example, what kind of evidence is worth using in order to 

facilitate computations and make substantial headway in 

terms of tighter bounds? What constraints are most 

beneficial for what models? These are directions in 

which, we suggest, further work with the calculus of 

variations ought to proceed.  
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Abstract

Recently, Frittelli and Scandolo ([7]) extend the
notion of risk measures, originally introduced by
Artzner, Delbaen, Eber and Heath ([1]), to the risk as-
sessment of abstract financial positions, including pay
offs spread over different dates, where liquid deriva-
tives are admitted as financial instruments, and un-
bounded fincial positions are also allowed. Convex
risk measures may be viewed as convex upper previ-
sions for unbounded gambles, a notion originally in-
troduced by Pelessoni and Vicig [16]. The paper deals
with σ−additive robust representations of convex risk
measure, that means envelope theorems in terms of
σ−additive probability measures. We shall focus on
the aspect that the investor is faced with uncertainty
about the market model. It turns out that the results
may be applied for the case that a market model is
available, and that they encompass as well as improve
criteria obtained for robust representations of convex
risk measures in the genuine sense ([2], [5], [13]).

Keywords. Convex risk measures, convex upper pre-
visions, model uncertainty, σ−additive robust rep-
resentation, Greco’s representation theorem, Fatou
property, inner Daniell stone theorem, general Dini
theorem, strong σ−additive robust representation, Si-
mons’ lemma, nonsequential Fatou property, Krein-
Smulian theorem.

1 Introduction

The notion of risk measures has been introduced by
Artzner, Delbaen, Eber and Heath (cf. [1]) as the
key concept to found an axiomatic approach for risk
assessment of fincancial positions. Technically, risk
measures are functionals defined on sets of financial
positions, satisfying some basic properties to qualify
riskiness consistently. An outcome of such a func-

∗This research was supported by Deutsche Forschungsge-
meinschaft through the SFB 649 “Economic Risk”.

tional, that means the risk of a position, is usually
interpreted as the capital requirement of the posi-
tion to become an acceptable one. Genuinely, risk
measures has been defined for one-period positions.
Recently Fritelli and Scandolo ([7]) provide a general
framework which extends considerations to abstract
financial positions including pay off streams with liq-
uid derivatives as hedging positions. Applied to the
risk assessment of pay off streams such general risk
measures are used for an a priori qualification, which
means to take the static perspective. In contrary
the dynamic risk assessment take into account adjust-
ments time after time. Readers who interested in this
topic are referred to e.g. [6], [17], [21].

The main goal of this paper is to investigate risk mea-
sures ρ which admit a robust representation of the
form

ρ(X) = sup
Λ

(−Λ(X)− β(Λ)),

where X denotes a financial position, Λ a linear form
on the set of financial positions, and β stands for a
penalty function on the set of linear forms. Special
attention will be paid to the problem when these rep-
resenting linear forms may in turn be represented by
(σ−additive) probability measures. We shall speak of
a robust representation of ρ by probability measures
or a σ−additive robust representation. Necessarily,
only so-called convex risk measures, that means risk
measures which are convex mappings, may have such
a robust representation. The basic assumption of this
paper is that the investors are uncertain about the
market model underlying the outcomes of the finan-
cial positions. Within this setting a robust represen-
tation by probability measures offered an additional
economic interpretation of the risk measures. As sug-
gested by Föllmer and Schied (cf. [5]) such a repre-
sentation means that an investor has a set of possi-
ble market models in mind, and evaluates the worst
expected losses together with some penalty costs for
misspecification w.r.t. these models. In particular an
investor with such a risk measure may be viewed as



risk- and ambiguity-averse (cf. [19]).

The problem of σ−additive robust representation of
convex risk measures in the genuine sense has been
completely solved in the case that the investors have
market models at hand. Ruszczynski and Shapiro
showed that convex risk measures always admit ro-
bust representations by probability measures if for any
real p every integrable mapping of order p is avail-
able (cf. [18]). However the used methods can not
be applied to essentially bounded positions. Draw-
ing on methods from functional analysis, Delbaen as
well as Föllmer and Schied succeeded in giving a full
characterization (cf. [2], [5]) by the so-called Fa-
tou property. As pointed out by Delbaen, the Fatou
property fails to be sufficient in general when the in-
vestor is faced with model uncertainty. Moreover, the
problem of σ−additive robust representation is still
open when a market model is not available. Restrict-
ing considerations to bounded one-period positions,
Föllmer and Schied suggested a strict sufficient crite-
rion, Krätschmer showed that it is in some sense also
necessary, and he adds some more general conditions
([13]).

This paper may be viewed as a continuation of the
studies by in [5] as well as in [13]. The generalizations
will be proceeded into several directions. First of all
multiperiod positions and liquid hedging instruments
will be allowed. Secondly we shall drop the assump-
tions that only bounded positions are traded. This is
in accordance with empirical evidences that the distri-
butions of risky assets often show heavy tails. Thirdly
we want to investigate the issue of strong robust repre-
sentations by probability measures in the sense that
the optimization involved in the σ−additive robust
representation has a solution. Finally, the criteria
should encompass the results already derived within
a fixed market model.

The paper is organized as follows. Section 2 intro-
duces the concept of Frittelli and Scandolo to define
risk measures in general, and some representation re-
sults of risk measures will be presented as starting
points for the following investigations. The general
criterion is offered in section 3, extending a former re-
sult in [13] to unbounded positions, within a nontopo-
logical framework. It will be used for strong robust
representations of risk measures by probability mea-
sures in section 4. We shall succeed in giving a com-
plete solution. In particular the aboved mentioned
strict criterion by Föllmer and Schied will turn out
to be necessary and sufficient. Moreover, within a
given market model the solution by Jouini, Schacher-
mayer and Touzi (in [8]) may be recognized. After-
wards, section 5 deals with the question when the Fa-
tou property might be used as a sufficient condition.

In presence of a market model the results may be used
to retain the above mentioned equivalent characteri-
zation by Delbaen as well as Föllmer and Schied. In
general, as a rule a nonsequential counterpart is more
suitable unless in some special cases.

The proofs of the results presented within this paper
use several arguments from functional analyis, par-
ticularly from convex and superconvex analysis, as
well as from abstract measure and integration the-
ory. They are very technical in nature and must be
omitted due to limitations of scope. The interested
reader is kindly referred to the working paper version
[15].

2 Some basic representations of
convex risk measures

Let us fix a set Ω. Financial positions will be expressed
by mappings X ∈ RΩ. As a special case Ω = Ω̃ × T
with Ω̃ denoting a set of scenarios, equipped with a
family (Ft)t∈T of σ−algebras, and T being a time set,
we may consider financial positions X ∈ RΩ×T with
X(·, t) being Ft−measurable for every t ∈ T. They
may be viewed as discounted pay off streams, liqui-
dated at the dates from the time set. In the case of
T = {1} we shall speak of one-period positions.
The available financial positions are gathered by a
nonvoid vector subspace X ⊆ RΩ containing the con-
stants. Sometimes we shall in addition assume that
X ∧ Y := min{X,Y }, X ∨ Y := max{X,Y } ∈ X for
X,Y ∈ X. In this case X is a so-called Stonean vec-
tor lattice. For the space of bounded positions from
X the symbol Xb will be used. Furthermore let us
fix a vector subspace C ⊆ X of financial positions for
hedging, including the constants. This means that we
may take into account liquid derivatives like put and
call options as financial instruments. In particular, in
the case of pay off streams we may also allow invest-
ments and disinvestments varying over the time. The
financial positions are associated with a positive lin-
ear function π : C → R, π(1) = 1, where π(Y ) stands
for the initial costs to obtain Y. In the seminal paper
by Artzner et al. in [1] considerations are restricted
to one-period positions and π being the identity on
R. Let us now introduce the concept of risk measures
suggested by Frittelli and Scandolo in [7]. As for one-
period positions we may choose the axiomatic view-
point, defining a risk measure w.r.t. π to be a
functional ρ : X → R which satisfies the properties

• monotonicity:

ρ(X) ≤ ρ(Y ) for X ≥ Y

• translation invariance w.r.t. π:

ρ(X + Y ) = ρ(X)− π(Y ) for X ∈ X, Y ∈ C



The meaning of these conditions may be transferred
from the genuine concept of risk measures. Moreover,
it can be shown that a risk measure ρ w.r.t. π satisfies
ρ(X) = inf{π(Y ) | Y ∈ C, ρ(X+Y ) ≤ 0} for any X ∈
X ([7], Proposition 3.6). Regarding ρ−1(] −∞, 0]) as
the acceptable positions, an outcome ρ(X) expresses
the infimal costs to hedge it. This retains the original
meaning of risk measures as capital requirements.

In the following we shall focus on so-called convex
risk measures, defined to mean risk measures which
are convex mappings. Convexity is a reasonable con-
dition for a risk measure due to its interpretation
that diversification should not increase risk. From
the technical point of view convexity is a necessary
property for the desired dual representations of risk
measures. Convex risk measures may be viewed as
convex upper previsions as introduced in [16]. More
precisely, if P̄ denotes a convex upper prevision on the
gambles from X, then ρ defined by ρ(X) := P̄(−X) is
a convex risk measure w.r.t. the identity on R.

Let us now fix a convex risk measure ρ : X → R w.r.t.
π. It is associated with βρ : X∗ →] −∞,∞], defined
by

βρ(Λ) = sup
X∈X

(−Λ(X)− ρ(X)) = ρ∗(−Λ),

where X∗ gathers all real linear forms on X, and ρ∗

denotes the so-called Fenchel-Legendre transform of
ρ. It is easy to verify that every Λ from the domain
β−1

ρ (R) of βρ has to be a positive linear form extend-
ing π. The standard tools from convex analysis pro-
vide basic representation results for ρ with βρ as a
penalty function.

Proposition 1 Let X∗π+ denote the space of all pos-
itive linear forms on X which extend π, and let τ be
any topology on X such that (X, τ) is a locally convex
topological vector space with topological dual X′. Then
ρ(X) = max

Λ∈X∗π
+

(−Λ(X) − βρ(Λ)) for every X ∈ X.

Moreover, ρ(X) = sup
Λ∈X∗π

+ ∩X′
(−Λ(X) − βρ(Λ)) holds

for every X ∈ X if and only if ρ is lower semicontin-
uous w.r.t. τ.

The proof may be found in [15] (AppendixB).

The aim of the paper is to improve the representa-
tion results by allowing only representing linear forms
which are in turn representable by σ−additive prob-
ability measures. For notational purposes let us in-
troduce the counterpart of βρ w.r.t. the probability
measures on the σ−algebra σ(X) on Ω generated by
X

αρ : M1 →]−∞,∞], P 7→ sup
X∈X

(−EP[X]− ρ(X)).

HereM1 is defined to consist of all σ−additive proba-
bility measures P on σ(X) such that all positions from
X are P−integrable, and EP[X] denotes the expected
value of X w.r.t. P . We shall speak of a robust
representation by probability measures from
M or a σ−additive robust representation of ρ
w.r.t. M if M ⊆ M1 nonvoid, and the representa-
tion ρ(X) = sup

P∈M
(−EP[X] − αρ(P)) holds for every

X ∈ X. As an immediate consequence of Proposition
1 we obtain a first characterization of such represen-
tations.

Proposition 2 Let F be a vector space of bounded
countably additive set functions on σ(X) which sepa-
rates points in X such that each X ∈ X is integrable
w.r.t. any µ ∈ F. Then in the case that the set M1(F )
of all P ∈M1 ∩ F with EP|C = π is nonvoid

ρ(X) = sup
P∈M1(F )

(−EP[X]− αρ(P)) for all X ∈ X

if and only if ρ is lower semicontinuous w.r.t. weak
topology σ(X, F ) on X induced by F.

Remark 1 Retaking assumptions and notations from
Proposition 2, ρ admits a robust representation in
terms of M1(F ) if F contains the Dirac measures,
and if lim inf

i
ρ(Xi) ≥ ρ(X) holds for every net

(Xi)i∈I in X which converges pointwise to some X
from X.

In general the lower semicontinuity of ρ w.r.t. the
topology from Proposition 2 is not easy to verify.
Therefore we are looking for more accessible condi-
tions. The considerations will be based on the crucial
step to reduce the investigations to bounded financial
positions. That means ρ should admit a σ−additive
robust representation if and only if the restriction to
the bounded positions does so. In the case that X
is in addition a Stonean vector lattice this may be
achieved via Greco’s representation theorem (cf. [11],
Theorem 2.10 with Remark 2.3) if the linear forms
from the domain of βρ are representable as asymmet-
ric Choquet integrals w.r.t. a finitely additive proba-
bility measure (cf. [15], Lemma 6.5). The reader may
consult the monograph [4] for the concept of asym-
metric Choquet integrals w.r.t. isotone set functions.
Fortunately, drawing on Greco’s representation the-
orem again, we might express this condition equiv-
alently by the property that the cutting condition
lim

n→∞
ρ(−λ(X−n)+) = ρ(0) ((X−n)+ := (X−n)∨0)

is satisfied for every λ > 0 and any nonnegativeX ∈ X
(cf. [15], Proposition 6.6). To summarize

Proposition 3 Let X be a Stonean vector lattice, and
let lim

n→∞
ρ(−λ(X − n)+) = ρ(0) be fulfilled for every



λ > 0 and every nonnegative X ∈ X. Then for any
nonvoid M⊆M1 the following statements are equiv-
alent

.1 ρ(X) = sup
Q∈M

(−EQ[X] − αρ(Q)) for all bounded

X ∈ X

.2 ρ(X) = sup
Q∈M

(−EQ[X]− αρ(Q)) for all X ∈ X.

The cutting condition will be the basic assumption for
the general representation result of the paper. Essen-
tially, it says that for a seller of a derived call option
the risk of a loss tends to the risk of inactivity with
increasing strike price. Notice that the cutting condi-
tion is redundant if all positions in X are bounded.

Before going into the development of criteria for
σ−additive representations let us collect some nec-
essary conditions. In the case that the positions from
X are essentially bounded mappings w.r.t. a refer-
ence probability measure of a given market model
the so-called Fatou property plays a prominent role.
Adapting this concept, we shall say that a risk mea-
sure ρ fulfills the Fatou property if the inequality
lim inf
n→∞

ρ(Xn) ≥ ρ(X) holds whenever (Xn)n is a uni-
formly bounded sequence in X which converges point-
wise to some bounded X ∈ X. The Fatou property im-
plies obviously that ρ|Xb is continuous from above,
defined to mean ρ(Xn) ↗ ρ(X) for Xn ↘ X. Both
conditions coincide if sup

n
Xn ∈ X for any uniformly

bounded sequence (Xn)n in X.

Proposition 4 Let ρ admit a σ−additive robust rep-
resentation w.r.t. some nonvoid M ⊆ M1, then ρ
satisfies the Fatou property, and ρ|Xb is continuous
from above.

The proof may be found in [15] (section 7).

3 Robust representation of convex
risk measures by inner regular
probability measures

Throughout this section let X be a Stonean vector
lattice, and let L ⊆ X denote any Stonean vector
lattice which contains C as well as generates σ(X),
and which induces the set system S consisting of

all
∞⋂

n=1
X−1

n ([xn,∞[), where Xn ∈ L nonnegative,

bounded, xn > 0. Additionally, let E consist of all
bounded sup

n
Yn, where (Yn)n is a sequence of non-

negative bounded positions from L.

One might think of an investor who is not aware of
his or her preferences on the entire space X but only

on the subspace L. Let us also assume that he or she
has a class of possible market models in mind yielding
a σ−additive robust representation of ρ|L. Then for
the modelling of the preferences on the whole set X of
available positions it might be useful for the investor
to have conditions to hand which lead to a risk assess-
ment consistent with her or his risk- and ambiguity-
aversity expressed by the σ−additive robust represen-
tation of ρ|L.

First of all, in view of the inner Daniell-Stone theorem
(cf. [11], Theorem 5.8, final remark after Addendum
5.9) every probability measure P ∈ M1 has to be in-
ner regular w.r.t. S, i.e. P(A) = sup

A⊇B∈S
P(B) for

every A ∈ σ(X). So within this setting we are dealing
with robust representations of ρ by probability mea-
sures from M1(S) defined to consist of all probability
measures belonging to M1 which are inner regular
w.r.t. S and which represent π on C. As a conse-
quence we obtain the following necessary condition
for a σ−additive robust representation of ρ (cf. [15],
section 7).

Proposition 5 If ρ has a robust representation w.r.t.
some M⊆M1, then ρ(X) = sup

X≤Y ∈E
inf

Y≥Z∈X
ρ(Z) for

every bounded nonegative X ∈ X.

Imposing the cutting condition, it remains to focus on
the nonnegative bounded positions for representation
purposes due to Proposition 3 and the translation in-
variance of ρ. Then by the necessary regularity from
Proposition 5 the restriction of ρ to the bounded po-
sitions has to be already determined by the values
of ρ at the bounded positions from L. Moreover, a
σ−additive robust representation might be guaran-
teed if the following properties are satisfied

(*) Λ|L is representable by a probability measure
from M1(S) for βρ(Λ) <∞,

(**) αρ(P) = sup
Y ∈L

(−EP[Y ]− ρ(Y )) for αρ(P) <∞.

Property (∗) means that the investor’s risk assessment
of the positions from L relies on a class of possible
market models. Consequently the penalty of misspec-
ification should only take into account the values of ρ
at the positions from L, as stated in property (∗∗).

The general representation result w.r.t. inner regular
probability measures encloses conditions which imply
the properties (∗), (∗∗).

Theorem 1 Let ∆c (c ∈] − ρ(0),∞[) gather all P
from M1(S) with αρ(P) ≤ c, and let ρ satisfy the
following properties.



(1) lim
n→∞

ρ(−λ(X − n)+) = ρ(0) for every nonnega-
tive X ∈ X and λ > 0,

(2) ρ(X) = sup
X≤Y ∈E

inf
Y≥Z∈X

ρ(Z) for all nonnegative

bounded X ∈ X,

(3) ρ(Xn) ↘ ρ(X) for any isotone sequence (Xn)n

of bounded positions Xn ∈ L with Xn ↗ X ∈ L,
X bounded,

(4) inf
Y≥Z∈X

ρ(Z) = inf
Y≥Z∈L

ρ(Z) for Y ∈ E.

Then we may state:

.1 The initial topology τL on M1(S) induced by the
mappings ψX : M1(S) → R, P 7→ EP[X], (X ∈
L) is completely regular and Hausdorff.

.2 Each ∆c (c ∈] − ρ(0),∞[) is compact w.r.t. τL,
and furthermore for every Λ from the domain of
βρ there is some P ∈ M1(S) with Λ|L = EP|L
and αρ(P) ≤ βρ(Λ).

.3 ρ(X) = sup
P∈M1(S)

(EP[−X]−αρ(P)) for all X ∈ X.

Statement .1 is borrowed from [14] (p.12 there), the
proof of the remaining parts of Theorem 1 may be
found in [15] (section 7).

Remarks 1 Assumption (1) is just the cutting con-
dition as discussed in the previous section, whereas
assumption (2) is the necessary regularity condition
from Proposition 5. The continuity property (3) com-
bined with the cutting condition yield property (*). In
view of Theorem 2 property (*) is even equivalent with
(1), (3). Finally the assumptions (1), (4) imply prop-
erty (**). Moreover, the conditions (∗), (∗∗) together
are equivalent with the assumptions (1), (3), (4).

Remarks 2 Let us point out some special situations
where the assumptions on ρ, imposed in Theorem 1,
may be simplified:

.1 If X is restricted to bounded positions, then as-
sumption (1) is redundant. Also (2), (4) hold in
general in the case X = L.

.2 Assumption (3) is fulfilled in general whenever
L+b, consisting of all nonnegative bounded X ∈
L, is a so-called Dini cone, i.e. inf

n
sup
ω∈Ω

Xn(ω) =

sup
ω∈Ω

inf
n
Xn(ω) for any antitone sequence (Xn)n

in L+b with pointwise limit in L+b. The most
prominent Dini cones are the cones of nonnega-
tive upper semicontinuous and nonnegative con-
tinuous real-valued mappings on compact Haus-
dorff spaces due to the general Dini lemma (cf.
[9], Theorem 3.7).

.3 If E ⊆ X, then assumptions (1), (2) read as fol-
lows:

(1) ρ(X) = sup
X≤Y ∈E

ρ(Y ) for all nonnegative

bounded X ∈ X,

(2) ρ(Y ) = inf
Y≥Z∈L

ρ(Z) for Y ∈ E.

Let us now consider some special situations where
Theorem 1 might be used.

Remark 2 Let Ω = Ω̃ × T with Ω̃ denoting a set
of scenarios, equipped with a metrizable topology τeΩ
as well as the induced σ−algebra B(Ω̃), and T be-
ing a time set, endowed with a separably metrizable
topology τT as well as the generated σ−algebra B(T).
Furthermore let X consist of all bounded real-valued
mappings on Ω̃ × T which are measurable w.r.t. the
product σ−algebra B(Ω̃)⊗B(T), and let L be the set of
all bounded real-valued mappings on Ω̃× T which are
continuous w.r.t. the product topology τeΩ×τT. Finally
S is defined to gather the closed subsets of Ω̃×T w.r.t.
the metrizable topology τeΩ × τT. Using the introduced
notations, σ(X) = B(Ω)⊗B(T), the product σ−algebra
of B(Ω) and B(T), is generated by S, L ⊆ X, and we
may restate Theorem 1 with E being the space of all
bounded nonnegative lower semicontinuous mappings
on Ω×T. This version generalizes an analogous result
for the one-period positions (cf. [13], Theorem 2)

We may also utilize Theorem 1 for cadlag positions.

Remark 3 Let T = [0, T ],C = R, let (Ft)t∈T be
a filtration of σ−algebras on some nonvoid set Ω̃,
and let X be the set of cadlag positions, i.e. map-
pings X ∈ ReΩ×T such that X(·, t) is Ft−measurable
for every t ∈ T and X(ω, ·) is a cadlag function
for any ω ∈ Ω̃. Then σ(X) is the so-called optional
σ−algebra. We may associate for stopping times
S1, S2, S1 ≤ S2, the stochastic interval [S1, S2[, de-
fined by [S1, S2[(ω, t) := 1 if S1(ω) ≤ t < S2(ω), and
[S1, S2[(ω, t) := 0 otherwise. I stands for the set of all
such stochastic intervals. It can be shown that σ(X)
is generated by the stochastic intervals [S,∞[ (cf. [3],
IV, 64).

For L let us choose the vector space spanned by the
stochastic intervals [S,∞[. Using the introduced nota-
tions, we may restate Theorem 1.

Remark 4 Recently, convex risk measures has been
used as objectives of optimization problems like e.g.
the investment for asset allocations or the choice of
consumption-investment plans, when the investor is
risk- and ambiguity-averse (cf. e.g. [19], [22]). Then
Theorem 1 provides not only a criterion which rec-
ognizes an investor with such an risk attitude, but it



might be also the starting point to get on to tracks of
robust expected utility maximization. In particular the
compactness statement .2 of Theorem 1 may allow to
employ duality methods for the optimization problems.

4 Strong σ−additive robust
representation of convex risk
measures

We want to look for conditions which induce a strong
robust representation of ρ by probability measures in
the sense that

ρ(X) = max
P∈M1

(−EP[X]− αρ(P))

holds for any X ∈ X. The considerations are re-
duced to a Stonean vector lattice X being stable w.r.t.
countable convex combinations of antitone sequences
of financial positions. In this case the following re-
sult gives a complete answer to the problem of strong
robust representations.

Theorem 2 Let X be a Stonean vector lattice and let
us assume that for every antitone sequence (Xn)n in
X with Xn ↘ 0 and each sequence (λn)n in [0, 1] with
∞∑

n=1
λn = 1 there is some pointwise limit

∞∑
n=1

λnXn

of (
m∑

n=1
λnXn)m belonging to X. Then the following

statements are equivalent:

.1 ρ(X) = max
P∈M1

(−EP[X] − αρ(P)) holds for every

X ∈ X.

.2 ρ(Xn) ↘ ρ(X) for Xn ↗ X.

.3 Λ is representable by a probability measure from
M1 for βρ(Λ) <∞.

The implication .2 ⇒ .3 may be concluded from The-
orem 1, whereas .3 ⇒ .1 is trivial due to Proposition
1. The proof of the implication .1 ⇒ .2 may be found
in [15] (section 9), its crucial tool is Simons’ lemma
(cf. [20], Lemma 2). For application of this result we
need the assumed stability w.r.t. countable convex
combinations of positions.

Remark 5 The continuity property .2 in Theorem 2
is implied by a technically simplier one, which is even
equivalent in many cases (cf. [15], Theorem 4.1).

For bounded one-period positions, Theorem 2 enables
us to give an equivalent characterization of convex risk
measures that admit strong robust representations by
probability measures.

Corollary 1 Let F denote some σ−algebra on Ω,
and let X consist of all bounded F−measurable real-
valued mappings. Then the following statements are
equivalent:

.1 ρ(X) = max
P∈M1

(−EP[X] − αρ(P)) holds for every

X ∈ X

.2 ρ(Xn) ↘ ρ(X) for Xn ↗ X.

Originally, the implication .2 ⇒ .1 of Corollary 1 may
be found in [5], whereas the full equivalence has been
shown the first time in [13].

In the case of X = L∞(Ω,F ,P), the set of all essen-
tially bounded mappings w.r.t. a reference probability
measure P on a σ−algebra F , we may retain immedi-
ately the equivalent characterization of strong robust
representations for ρ shown in [8], where the identity
on R has been chosen for the price functional π. Note
that the condition ρ(Xn) ↘ ρ(X) forXn ↗ X P−a.s.
is equivalent with the property ρ(Xn) ↘ ρ(X) for
Xn ↗ X.

Corollary 2 Let X = L∞(Ω,F ,P), and let ρ satisfy
ρ(X) = ρ(Y ) for X = Y P a.s.. Then the represen-
tation ρ(X) = max

Q∈M1
(−EQ[X] − αρ(Q)) holds for all

X ∈ L∞(Ω,F ,P) if and only if ρ(Xn) ↘ ρ(X) for
Xn ↗ X P−a.s..

Remark 6 Besides the potential for robust expected
utility maximization as emphasized in Remark 4, The-
orem 2 has significance from the practical point of
view. In many cases the calculation of outcomes of
risk measures has to be employed by numerical op-
timization algorithms, and the most customary ones
assume the existence of solutions. Therefore Theorem
2 can be used to check whether the desired algorithms
may be applied.

5 Representation of convex risk
measures by probability measures
and the Fatou properties

In Proposition 4 we have indicated the Fatou property
and continuity from above as necessary conditions for
a σ−additive robust representation of the convex risk
measure ρ. They are even sufficient if a market model
is available for the investor, choosing the identity on
R for the price functional (cf. [5]). As pointed by
Delbaen (in [2]), they are not sufficient in general for
a robust representation of ρ by (σ−additive) proba-
bility measures, even if X contains bounded positions
only. It will turn out by the investigations within this



section that in the case of uncertainty about the mar-
ket model the nonsequential counterpart of the Fa-
tou property takes over partly the role that the Fatou
property plays when a reference probability measure
is given. We shall say that ρ satisfies the nonse-
quential Fatou property if lim inf

i
ρ(Xi) ≥ ρ(X)

holds whenever (Xi)i∈I is a uniformly bounded net in
X which converges pointwise to some bounded X ∈ X.

At least for the sufficiency of the Fatou property we
need further assumptions on the space X of available
positions. Since both Fatou properties are related to
the pointwise topology on the space B(Ω), gather-
ing the bounded real-valued mappings on Ω, we shall
impose additional assumptions on this topology. The
idea is to modify in view of Proposition 1 the classical
proofs for the case of a reference probability measure,
using again the Krein-Smulian theorem. Justified by
success we shall use the following conditions.

(5.1) For any r > 0, every Z ∈ Xb from the closure of
Ar := {X ∈ Xb | ρ(X) ≤ 0, sup

ω∈Ω
|X(ω)| ≤ r}

w.r.t. the topology of pointwise convergence on
Xb is the pointwise limit of a sequence in Ar.

(5.2) The sets Br := {X ∈ Xb | sup
ω∈Ω

|X(ω)| ≤ r}

(r > 0) are closed w.r.t. the topology of point-
wise convergence on B(Ω).

Assumption (5.1) provides an important special situ-
ation when the Fatou property and its nonsequential
counterpart are equivalent.

Lemma 1 Under (5.1) ρ satisfies the nonsequential
Fatou property if and only if it fulfills the Fatou prop-
erty.

The proof is enclosed in section 9 of [15].

Remark 7 The sequential condition (5.1) is closely
related with the concepts of double limit relations. For
a comprehensive exposition the reader is referred to
[12]. In general one may try to apply double limit
relations to Xb and suitable sets of bounded countably
additive set functions on σ(X).

We are now ready for the main result of this section.

Theorem 3 Let either X = Xb or X be a Stonean
vector lattice such that lim

n→∞
ρ(λ(X − n)+) = ρ(0)

holds for any nonnegative X ∈ X, λ > 0. Furthermore
let α−1(R) 6= ∅. Consider the following statements:

.1 ρ satisfies the nonsequential Fatou property.

.2 ρ has a σ−additive robust representation w.r.t.
M1.

.3 ρ fulfills the Fatou property.

If (5.2) is valid, then .1 ⇒ .2 ⇒ .3, and all statements
are equivalent provided that condition (5.1) holds in
addition.

The proof may be found in section 9 of [15].

Remark 8 The nonsequential Fatou property is not
necessary for a σ−additive representation of risk mea-
sures. Take for example X the space of all bound-
end Borel-measurable mappings on R, and define ρ
by ρ(X) = −EP[X], where P denotes any proba-
bality measure which is absolutely convex w.r.t. the
Lebesgue-Borel measure on R. Obviously, on one hand
ρ is a convex risk measure w.r.t. the identity on R,
having a trivial σ−additive robust representation. On
the other hand, consider the net (Xi)i∈I of all indica-
tor mappings of the cofinite subsets of R, directed by
set inclusion. It converges pointwise to 0, but unfor-
tunately lim inf

i
ρ(Xi) = −1 < 0 = ρ(0).

In the case of an at most countable Ω, we have a sim-
plified situation which admits an application of the
full Theorem 3. The reason is that then the topology
of pointwise convergence on the space B(Ω) is metriz-
able.

Corollary 3 Let Ω be at most countable, and let
X ⊆ B(Ω) be sequentially closed w.r.t. the pointwise
topology on B(Ω). Then ρ has a robust representation
by probability measures from M1 if and only it satis-
fies the Fatou property, or equivalently, if and only if
ρ is continuous from above.

Remark 9 Let a market model with reference proba-
bility measure P be given, and let X := L∞(Ω,F ,P) be
the space of all P−essentially bounded mappings on
Ω. Furthermore ρ is supposed to be a convex risk mea-
sure w.r.t. the identity on R, satisfying ρ(X) = ρ(Y )
for X = Y P−a.s.. We may apply the full Theorem
3 (cf. section 9 in [15]) to retain an equivalent char-
acterization of the robust representations for ρ which
may be found in [5] (Theorem 4.31). More precisely,
if M1(P) denotes the set of probability measures on
F which are absolutely continuous w.r.t. P, then the
following statements are equivalent.

.1 ρ(X) = sup
Q∈M1(P)

(−EQ[X] − αρ(Q)) for all X

from L∞(Ω,F ,P).

.2 ρ(Xn) ↗ ρ(X) for Xn ↘ X P−a.s..

.3 lim inf
n→∞

ρ(Xn) ≥ ρ(X) whenever (Xn)n is a
uniformly P−essentially bounded sequence in
L∞(Ω,F ,P) with Xn → X P−a.s..



It is unclear whether we may avoid in Theorem 3 con-
dition (2.2) in order to guarantee a σ−additive robust
representation of convex risk measures by the nonse-
quential Fatou property. Moreover, the nonsequen-
tial Fatou property is unsatisfactory in the way that
it does not work for trivial representations like those
indicated in Remark 8. However, we may only guar-
antee a sufficient substitution by the Fatou property
under the quite restrictive condition (2.1). So it seems
that in presence of model uncertainty the Fatou prop-
erty and its nonsequential counterpart are appropri-
ate conditions for σ−additive representations of con-
vex risk measures in quite exceptional situations only,
like an at most countable Ω.
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Abstract

Developing models to describe real systems is a chal-
lenge because it is difficult to assess and control the
residual between the two entities. Bayesian updating
of a belief about model accuracy across an ensemble of
available models can lead to spurious results, since the
application of Bayes’ rule presupposes that an accu-
rate model is contained in the ensemble with certainty.
We present a framework in which this assumption can
be dropped. The basic idea is to extend Bayes’ rule to
the exhaustive, but unknown space of all models, and
then contract it again to the known set of models by
making best/worst case assumptions for the remain-
ing space. We show that this approach leads to an
ε-contamination model for the posterior belief, where
the ε-contamination is updated along with the distri-
bution of belief across available models. In essence,
the ε-contamination provides an additional test on the
accuracy of the overall model ensemble compared to
the data, and will grow rapidly if the ensemble fails
such a test. We demonstrate our concept with an
example of autoregressive processes.

Keywords. Bayesian updating, prediction, model
accuracy, ε-contamination model, AR process

1 Introduction

A vital part of the scientific endeavor consists in de-
veloping models for real systems. Obviously, a model
can never be an identical copy of a real system, but
rather a proxy to understand a limited set of system
features, on the basis of which future observations of
these features may be predicted. In order to construct
a useful model, it is important to control the residual
between model and real system in a way that allows
the model to have some predictive accuracy. There-
fore, it is extremely helpful if the real system can be
studied in laboratory experiments where the exper-
imenter can force her ways on it to test the model.
However, controlling the residual becomes an enor-

mous challenge if the real system is not accessible to
laboratory studies. The situation is further exacer-
bated if available observations cover only a small part
of the phase space. The climate system and computer
models of it are a perfect example of this situation,
and we will have this example in mind in what follows.

In such cases, model quality is usually assessed with
a mixture of scientific knowledge about the system
and statistical inference from system measurements.
Here, we focus on model accuracy to predict certain
system features. While several definitions of accuracy
can be found in the literature (e.g. in terms of bias),
we use our own definition tailored to an application
to dynamic systems characterized by noisy time se-
ries. We say that a model S is accurate (to make
predictions) if it can describe the observables Y of a
(few) system feature(s) of interest – not of the en-
tire system – up to an additive Gaussian iid process
ǫ, i.e., Y − S = ǫ ∼ N(0, σ). The choice of a Gaus-
sian iid process for the residual between model and
data is a common, but subjective assumption, and
should be regarded as part of the model formulation.
In principle, our approach could be applied with an-
other choice of stationary stochastic process for the
residual.

Assume we have an ensemble of model hypotheses
M(θ), with θ ∈ Θ indexing the available models, and
some system data ŷ, from which we want to learn
about the relationship between M(θ) and an accurate
model S. If a probability P (M(θ) = S|ŷ) is sought,
we have to turn to Bayesian statistics. In our case,
this requires to

1. estimate a likelihood function L(θ; ŷ) ∼ ρ(ŷ|θ),
i.e., the probability of observing ŷ for a given
model M(θ) under the assumption that M(θ)
constitutes an accurate model (which defines the
likelihood function given our knowledge about
the residual Y − S = ǫ), and

2. updating it with a prior probability density ρ(θ) :



Ω → R
+
0

1 to derive the posterior probability den-
sity ρ(θ|ŷ) that model M(θ) constitutes an accu-
rate model S.

However, this approach requires us to make the as-
sumption that S is contained in our model ensemble
with certainty as evident from Bayes’ rule

ρ(θ|ŷ) =
L(θ; ŷ)ρ(θ)

ρ(ŷ)
(1)

with ρ(ŷ) :=

∫

θ

L(θ; ŷ)ρ(ŷ)dθ ,

where the denominator assures that the posterior
probability is normalized. In the following, we may
call the fact that

∫

θ
ρ(θ)dθ =

∫

θ
ρ(θ|ŷ)dθ = 1 closed

world assumption.

We believe that this assumption is at odds with the
open nature of the scientific endeavor, where a set of
possible models {M(θ)|θ ∈ Θ} imagined at some ini-
tial time is usually expanded as more data is obtained.
More precisely, the model development process con-
sists in (I) expanding the set Θ of known models, and
(II) updating our belief about model accuracy across
Θ. Obviously, only the later type (II) learning can be
described in terms of Bayesian learning. The former
type (I) may be informed by Bayesian inference, but
seems to be complementary to it, since it relates to the
emergence of positive belief in an area of the model
space that was not supported by the prior belief.

Acknowledging this fundamental difference, we will
not attempt to force type (I) learning in terms of ex-
panding Θ into the Bayesian updating framework. In-
stead, we aim at the more modest goal to include
an indicator for the necessity of type (I) learning
into the updating process. This is important because
naive application of Bayesian learning without con-
templating the possibility that the entire model en-
semble {M(θ)|θ ∈ Θ} might not contain an accurate
model can lead to spurious results. As the amount
of data ŷ increases, the likelihood function tends to
sharpen, and updating by means of Equation (1) will
decrease the spread of the posterior belief that a given
model M(θ) coincides with the accurate model S.
Hence, an analyst ignoring anything else will con-
verge in his belief on some model M(θ) = S. As a
consequence, his predictions of real system features,
based on his converging belief, will grow more and
more (over)confident – although off the mark – as the
data accumulates. This paradoxical behavior is a di-
rect consequence of the closed world assumption. It

1For the sake of simplicity, we assume throughout the paper
that Ω ⊆ R

n is a continuous space, and that a prior probability
measure P : σ(Θ) → [0, 1] over a σ-field of Θ is continuous, i.e.,
can be described by a probability density on Θ.

is therefore desirable to drop this assumption, and di-
rectly include an indicator for S 6∈ {M(θ)|θ ∈ Θ} in
the updating process. In this paper, we present such
a framework.

A similar concern about Bayesian learning on model
quality and the subsequent use of posterior beliefs for
prediction of future observations has been raised by
Draper [2] and, more recently, Goldstein and Rougier
[3, 4]. Draper criticizes the practice of neglecting
structural uncertainty, and proposes to extend prior
and likelihood to the space of possible model struc-
tures. His approach [2] leads to an increased spread
of the posterior on the model ensemble. Goldstein
and Rougier highlight the importance to assess the
discrepancy between the ensemble of available mod-
els and the ‘ideal’ model which captures the system
up to an additive noise term. They coined the term
‘reified’ for the ‘ideal’ reference model. Obviously,
the idea of a ‘reified model’ is closely related to what
we call accurate model here. In [3, 4], Goldstein and
Rougier propose to address model discrepancy by in-
cluding a meta-model of it in the updating process,
and offer guidelines how such a meta-model might be
constructed. This is a very challenging task. As indi-
cated above, we take a different approach. We do not
try to find a positive expression for model discrepancy,
or the extension of prior and likelihood to the space of
possible model structures, but rather seek to include
an indicator for the negative result that model dis-
crepancy impinges on the predictive accuracy of the
model ensemble.

The paper is organized as follows. Section 2 presents
a simple example of autoregressive (AR) processes in
which the application of standard Bayesian updating
is shown to fail if the model hypotheses have limited
accuracy to predict the real system. Section 3 con-
tains the core of the paper, detailing our derivation of
an open version of Bayes’ rule that allows to drop the
closed world assumption. This rule is put into opera-
tion for our example of AR processes in Section 4. We
conclude by highlighting the challenges for an appli-
cation of the open Bayes’ rule to real world problems
in Section 5.

2 Limitations of Bayes’ rule: Example

of autoregressive (AR) processes

Let us assume the following dynamic ‘real system’
evolving over n time steps.

Y (n) = (ξ1, α
∗
1ξ1 + ξ2, X3, ..., Xn) (2)

with Xt = α∗
1Xt−1 + α∗

2Xt−2 + ξt , t ≥ 3 (3)

ξt ∼ N(0, σ∗
ξ ) iid process (white noise) ,



where we require the AR(2) process Xt to be station-
ary. An AR(2) process described by Equation (3)
is stationary iff α∗

1 + α∗
2 < 1, α∗

2 − α∗
1 < 1, and

|α∗
2| < 1. For the sake of simplicity, we have ne-

glected any measurement error in observing the real
system, and therefore can identify it directly with the
observable Y (n). Let us further assume that our en-
semble of model hypotheses for Y (n) is restricted to
a closed set of stationary AR(1)-process with noise
term ξt ∼ N(0, σ∗

ξ ):

{M(α1) := (ξ1, X
′
2, ..., X

′
n) | X ′

t = α1X
′
t−1 + ξt ,

t ≥ 2 , −ᾱ ≤ α1 ≤ ᾱ , ᾱ := 0.995} . (4)

Obviously, the model ensemble contains an accurate
model S if α∗

1 ∈ [−ᾱ, ᾱ] and α∗
2 = 0. In this case,

we find S := M(α∗
1) = Y (n). We will discuss be-

low whether there can be an accurate model in the
ensemble if α∗

2 6= 0.

After having received a realization ŷ(n) = (ŷ1, ..., ŷn)
of Y (n), we can apply Bayesian updating to our prior
belief about the accuracy of the model hypotheses
M(α1) as defined by a probability density ρ(α1).
Without loss of generality, let the prior ρ(α1) be
uniformly distributed on [−ᾱ, ᾱ]. As shown in Ap-
pendix A, the likelihood of having obtained the real-
ization ŷ(n) from an AR(1)-process with propagator
α1 is given by

L(α1; ŷ(n)) ∼ N





α̂(n)

1 − β̂(n)
,

σ̂(n)
√

1 − β̂(n)



 , (5)

where α̂(n), σ̂(n), and β̂(n) are estimated from
the observed time series ŷ(n) as defined in Equa-
tion (26), (27), and (28), respectively. Hence, applica-
tion of Bayes rule (Equation 1) with a uniform prior
for α1 yields the following posterior probability den-
sity on [−ᾱ, ᾱ]:

ρ(α1|ŷ(n)) =

exp

(

− 1−β̂(n)
2σ̂(n)2

(

α1 −
α̂(n)

1−β̂(n)

)2
)

ᾱ
∫

−ᾱ

exp

(

− 1−β̂(n)
2σ̂(n)2

(

α1 −
α̂(n)

1−β̂(n)

)2
)

dα1

. (6)

Equation (6) can be used to test the effect of the
closed world assumption on the Bayesian updating
process. For the experiment, we generated 200 re-
alizations of time series ŷ(n) with length n = 5000
for four different AR(2)-processes with σ∗

ξ = 1, α∗
1 =

0.866 and α∗
2 = {−0.9,−0.3, 0, 0.06}. Note that in the

asymptotic limit n → ∞ any AR(k)-process is nor-

mally distributed ∼ N

(

0, σ/
√

1 −
∑k

i=1 αiρi

)

, with

ρi the autocorrelation of lag i [7]. Therefore, re-
moving the time index from the observations renders
AR-processes of different order indistinguishable from
each other. It is in this sense, that we can calculate
an AR(1)-equivalent of an AR(2)-process with prop-
agators α1 and α2. The AR(1)-equivalent yielding a
normal distribution with identical standard deviation
in the asymptotic limit has the propagator

αequiv =
√
α1ρ1 + α2ρ2 =

√

α2
1

1 + α2

1 − α2
+ α2

2 . (7)

For the four different AR(2)-processes chosen above
we find AR(1)-equivalents with propagators αequiv =
{0.922, 0.703, 0.866, 0.922}. It can be seen that the
asymptotic distribution of the two AR(2)-processes
with α∗

2 = −0.9 and α∗
2 = 0.06 are indistinguishable.

We have considered AR(2)-processes with very pro-
nounced tails compared to ξ, because we are inter-
ested in the ability of the model ensemble M(α1) to
predict in particular the tails of the distributions. In
practice, a good prediction of the tails is often what
matters most. Note that it follows from Equation (7)
that there will exist an accurate model S in the ensem-
ble of model hypotheses M(α1) even if the real system
is described by an AR(2)-process with α2 6= 0 - if we
are only interested in predicting the asymptotic distri-
bution of future observations. It will be interesting to
see whether Bayesian updating is capable to converge
to the propagator of the AR(1)-equivalent model.

Figure 1 shows the result of Bayesian updating for the
four different AR(2)-processes. We have updated the
posterior belief about α1 (see Equation 6) after each
20 new observations. Shown is the development of the
90% confidence limits for the mean value of the poste-
rior distribution. The confidence limits were derived
from the sample of 200 time series used in the updat-
ing process. It can be seen that the posterior mean
converges to the correct value of α∗

1 = 0.866 (hori-
zontal solid line) in the case where the real system
is described by an AR(1) process (α∗

2 = 0). Conver-
gence is still good if only a small deviation from the
AR(1) assumption is considered (α∗

2 = 0.06). In this
case, the posterior mean converges to the propaga-
tor αequiv = 0.922 of the AR(1)-equivalent process.
However, if the deviation from the AR(1) assumption
is negative and increases in magnitude (α∗

2 = −0.3),
the posterior belief converges to a biased value be-
low αequiv. In the extreme case α∗

2 = −0.9, Bayesian
learning leads to a spurious result. Since the pos-
terior distribution has contracted strongly after sev-
eral thousand observations (see black dots on the
right axis), the updating procedure has settled on the
wrong region of α1-space with very high confidence.
This is a direct consequence of the closed world as-
sumption.
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Figure 1: Updated belief about the propagator α of an
hypothetical AR(1)-process after n observations. The
lower and upper bound of the 90% confidence inter-
val for the mean value of the posterior belief (derived
from the sample of 200 time series) are plotted. Hor-
izontal lines indicate the propagator value αequiv of
the equivalent AR(1)-process in the asymptotic limit.
αequiv for the AR(2)-process with α∗

2 = −0.9 is identi-
cal to the case α∗

2 = 0.06. Black dots on the right axis
indicate the range between the 5% and 95% quantiles
of the posterior belief after 5000 observations.

We briefly assess the consequences for predicting the
distribution of system observations y in the asymp-
totic limit. As mentioned above, we know that
the asymptotic distribution of an AR(1) process for
given values of α1 and σξ is defined by ρ(y|α1) ∼

N(0, σξ/
√

1 − α2
1). Hence, if our belief about α1 is

described by the posterior ρ(α1; ŷ(n)), our prediction
for the distribution of system observations based on
past data ŷ(n) is given by

ρ(y|ŷ(n)) =

∫ ᾱ

−ᾱ

ρ(y|α1) ρ(α1; ŷ(n)) dα1 . (8)

Figure 2 shows predictions for the case of learning
from a realization of the AR(1)-process with α∗

1 =
0.866 and α∗

2 = 0. The dotted line depicts the pre-
diction on the basis of the uniform prior, before any
learning occurred. Interestingly, the assumption of
the uniform prior strongly underestimates the prob-
ability mass in the flanks of the distribution. The
example shows that in general it is not warranted to
associate the uniform prior with a conservative (or
non-informative) choice of belief. After the uniform
prior is updated with observations ŷ(n) the predic-
tions converge very quickly to the asymptotic distri-
bution of the ‘real’ system. Figure 2 shows that the
prediction after 5000 observations is nearly identical
with the ‘real’ distribution.

While Bayesian learning was very successful for the
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Figure 2: Predictions based on the belief about α1

for the case α∗
1 = 0.866 and α∗

2 = 0. The solid line
shows the asymptotic distribution of the ‘real’ AR(1)
process. The dotted line shows the prediction be-
fore any learning occurred (based on a uniform prior
for α ∈ [−ᾱ, ᾱ]). The updated prediction after 5000
observations (dashed line) lies almost exactly on the
asymptotic distribution of the ‘real’ system.
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Figure 3: Predictions based on the belief about α1 for
the case α∗

1 = 0.866 and α∗
2 = −0.9. Solid, dotted and

dashed lines as described in Figure 2.

case where the ‘real’ system is part of the ensemble
of model hypotheses, the situation is markedly differ-
ent for an AR(2)-process which strongly deviates from
the AR(1)-assumption (α∗

2 = −0.9). As depicted in
Figure 3, updating with observations ŷ(n) leads to a
further decrease in variance of the prediction as com-
pared to the initial prediction based on the uniform
prior. This is exactly the opposite of what should hap-
pen, because the asymptotic distribution of the ‘real’
system exhibits a much larger spread than both the
initial and informed prediction. As is apparent from
Figure 3, these spurious predictions strongly underes-



timate the tails of the distribution, and may therefore
provide a false sense of security. What makes matters
worse is that no amount of additional data will be able
to rectify the situation. In contrast, the posterior be-
lief will continue to sharpen, and the spread of the
prediction will further decrease. This example shows
that the closed world assumption underlying Bayes’
rule can lead to spurious beliefs and predictions.

3 Extension of Bayes rule: dropping

the closed world assumption

Given the spurious results that can emerge from a
naive application of Bayes’ rule, we are looking for
an extension of Bayesian updating that includes an
indicator for the overall accuracy of the model en-
semble to reproduce ‘real’ system observations. This
would allow us to drop the assumption that an accu-
rate model S has to be included in the set of available
models M(θ), θ ∈ Θ with certainty. A natural first
step in this direction is to extend Bayes rule to a larger
space Ω ⊃ Θ for which the assumption S = M(ω)
will be true for at least one ω∗ ∈ Ω. Similar exten-
sions are also the starting points for the proposals by
Draper [2], and Goldstein and Rougier [4]. We assert
that such a hypothetical space Ω is constituted by the
space of all models, known and unknown. We think
of Ω as a continuous vector space with large, but fi-
nite dimension that contains the parameter vectors ω
for a large, but finite list of time-discrete2 equations
and relations. A model ensemble, i.e., a reduced list
of parameterized equations, is characterized in this
space by fixing the parameter values in some dimen-
sions (collected in ψ), and allowing to vary – within
bounds – the remaining parameters θ. Hence, a choice
of model ensemble M(θ, ψ0), θ ∈ Θ, defines a Carte-
sian product Ω = Θ×Ψ, where the parameters ψ ∈ Ψ
are fixed at ψ0, and only θ ∈ Θ can be varied.

So far, we have gained little because the nature of
models in the residual space Θ × (Ψ − {ψ0}) is com-
pletely unknown to us. Thus, our prior belief about
the accuracy of unknown models in that space is
vacuous. Fortunately, imprecise probability theory
allows to capture a vacuous belief without having
to assess the cardinality of its underlying space [9].
This is simply done by the vacuous probability model
V(Θ× (Ψ−{ψ0})) comprising the set of all probabil-
ity distributions with support on Θ × (Ψ − {ψ0}) [8,
Chapter 2.9.1]. Since the complement space Θ×{ψ0}
has zero measure, V(Θ × (Ψ − {ψ0})) is identical to

2The assumption of time-discrete equations accounts for the
numerical implementation of time-continuous differential equa-
tions. It shall also extend to other, e.g. spatial, dimensions
if partial differential equations are concerned. Thus, we are
thinking of computer models here.

V(Θ×Ψ) almost everywhere. Therefore, we will con-
tinue to use the latter vacuous probability model in
what follows.

We assume that our prior belief about the ‘known’
model ensemble M(θ, ψ0), θ ∈ Θ, i.e. more precisely,
the set of models considered for our particular as-
sessment, is described by ν(θ, ψ0). How should we
combine this prior belief with the vacuous belief on
the complementary unknown space? It seems to be a
precondition of human agency that we assign non-zero
probability to our conception of the ‘real world’ even
though it exists on a space with zero measure. Thus,
when it comes to considering the unknown, our prior
belief on the space of all models will be degenerate,

ν(θ, ψ) ∈ p0 ν(θ, ψ0) δ(ψ − ψ0)

+ (1 − p0) V(Θ × Ψ) , (9)

where δ(ψ − ψ0) denotes the Dirac measure which
concentrates all probability mass on ψ = ψ0, i.e.,
the set of models available to us. The probability
0 ≤ p0 ≤ 1 weighs our prior belief across the two
different domains of knowledge, and may be associ-
ated with the prior level of confidence that the model
ensemble M(θ, ψ0), θ ∈ Θ can accurately describe
the ‘real’ system features of interest. For p0 = 1,
we completely ignore the possibility that the accurate
model may still be unknown. This choice reflects the
closed world assumption underlying the standard ap-
plication of Bayesian learning. In the other extreme,
p0 = 0, we are completely lost in the unknown, and
cannot expect to learn anything from whatever data
we receive. Here, we suggest to choose p0 as to re-
flect a typical confidence level used in statistics, e.g.,
p0 = 0.95. However, the choice of p0 will not influence
the posterior belief significantly (see Equation 15) as
long as it is not set to the extreme values of 0 or 1.

Since we cannot talk in positive terms about what we
do not know, we are not searching for the posterior be-
lief ν(θ, ψ|ŷ(n)) on the space of all models, but rather
for its marginal distribution ρ(θ|ŷ(n)) on the subspace
of known models. After receiving an observed time se-
ries ŷ(n), Bayes’ rule gives us the following expression
for the marginal posterior belief:

ρ(θ|ŷ(n)) =

∫

Ψ
L(θ, ψ; ŷ(n)) ν(θ, ψ) dψ

∫

Ψ×Θ
L(θ, ψ; ŷ(n)) ν(θ, ψ) dψdθ

. (10)

We follow the usual practice to normalize the likeli-
hood on the space of known models to one. Hence,
we divide both the nominator and denominator by
the maximum likelihood L(θ′, ψ0; ŷ(n)) that we find
on the model ensemble M(θ, ψ0), θ ∈ Θ. Inserting
the prior belief described by Equation (9) into above



expression, we then find

ρ(θ|ŷ(n)) ∈
p0 µL(θ) + (1 − p0)VL(Θ)

∫

Θ
(p0 µL(θ) + (1 − p0)VL(Θ) ) dθ

, (11)

µL(θ) :=
L(θ, ψ0; ŷ(n))

L(θ′, ψ0; ŷ(n))
ν(θ, ψ0) ,

VL(Θ) :=

∫

Ψ

L(θ, ψ; ŷ(n))

L(θ′, ψ0; ŷ(n))
V(Θ × Ψ)dψ ,

where VL(Θ) is the unknown set of marginals on Θ
that emerge from multiplying all prior probability dis-
tributions on Θ×Ψ with an unknown likelihood func-
tion. Note that it is not a vacuous probability model
itself, since its elements are not normalized. However,
this set of marginals is contained in the set of all prob-
ability distributions on Θ multiplied by the range of
values covered by the likelihood ratio, i.e.

VL(Θ) ⊂ [0,L∗(n)] · V(Θ)

with L∗(n) := max
(θ,ψ)∈Θ×Ψ

L(θ, ψ; ŷ(n))

L(θ′, ψ0; ŷ(n))
, (12)

Here, the zero lower bound of the interval accounts
for the fact that there will certainly be a model with
zero likelihood in the space of all models. Note that
the nominator of L∗(n) describes the likelihood func-
tion on the entire model space prior to normalization,
and therefore can take any value in R

+
0 . In the fol-

lowing, we will replace VL(Θ) in the extended Bayes’
rule (11) by its superset [0,L∗(n)]·V(Θ) due to greater
methodological convenience. This substitution will
give us outer bounds on the set of posterior proba-
bilities, but we assert that the associated information
loss is minimal. As an example, consider the asymp-
totic case n → ∞ for which the likelihood function
will concentrate around the accurate model at the
point (θ∗, ψ∗) (L(θ, ψ; ŷ(n)) → δ(θ − θ∗) δ(ψ − ψ∗)).
Then, VL(Θ) will contain only functions proportional
to δ(θ− θ∗), which constitutes a considerably smaller
set than the functions proportional to V(Θ). However,
since we are completely ignorant about the location
of θ∗, we need to consider δ(θ−θ∗) for all possible val-
ues θ∗ ∈ Θ, which coincides with the set of extreme
points of V(Θ).

The set of Dirac measures δ(θ− θ̃) δ(ψ− ψ̃), (θ̃, ψ̃) ∈
Θ × Ψ comprises the extreme points of the vacuous
probability model V(Θ×Ψ) on the entire model space.
They are all we need to calculate the extreme points
of the imprecise posterior probability given by Equa-
tion (11) [8, Theorem 8.4.8]. They also tell us that

0 ≤

∫

Θ

VL(Θ) dθ ≤ L∗(n) , (13)

where the upper bound is achieved for the Dirac prior
δ(θ − θ∗) δ(ψ − ψ∗).

We are now in the position to separate the extended
Bayes rule (11) into a term concerned with updating
our prior belief on the model ensemble M(θ, ψ0), θ ∈
Θ (the original Bayes’ rule), and a term that sum-
marizes the contribution from the residual space of
unknown models.

ρ(θ|ŷ(n)) ∈

(1 − ε(λ, p0))
µL(θ)

∫

Θ
µL(θ) dθ

+ ε(λ, p0)V(Θ) , (14)

ε(λ, p0) :=
(1 − p0)λ

p0

∫

Θ
µL(θ) dθ + (1 − p0)λ

, (15)

with λ ∈ [0,L∗(n)] .

Since the contamination ε(λ, p0) increases with λ, the
most conservative posterior belief – encompassing the
set of posterior probabilities for all possible choices
of λ – is obtained in the limit λ → L∗(n). There-
fore, we focus in the following on the most conser-
vative case, for which the vacuous probability model
is mixed into the posterior belief with contamina-
tion ε(L∗, p0). The ε-contamination model in Equa-
tion (14) has been investigated extensively in the con-
text of robust Bayesian and imprecise probability ap-
proaches (see, e.g., [1, 5]). It is a very tractable model,
since it can be easily characterized by its set of ex-
treme points or its coherent lower probability which
constitutes a belief function. Note that we can re-
cover the standard case of Bayesian learning under the
closed world assumption from Equations (14) and (15)
by choosing p0 = 1, implying ε(L∗, p0) = 0. For
p0 ∈ (0, 1), the ‘contamination’ ε(L∗, p0) of our poste-
rior belief will grow with increasing L∗(n) (see Equa-
tion 15). What can we say about L∗(n), and how will
it behave as a function of our observations ŷ(n)?

In general, we expect the likelihood L(θ, ψ; ŷ(n)) to
be largest at an unknown point (θ∗, ψ∗) where an ac-
curate model S is located. The probability that it will
be otherwise becomes infinitesimal as the number of
observations n → ∞. Hence, we assert that L∗(n) is
obtained at the point (θ∗, ψ∗). Given the definition of
an accurate model in the introduction, we know that
Yt−M(θ∗, ψ∗) = ǫt ∼ N(0, σ) at this point. Thus, for
a given observation ŷ(n) = (ŷ1, ..., ŷn), we construct
a random variable

L∗(n) :=

1√
2π

n
σ2n

exp
(

− 1
2σ2

∑n

t=1 ǫ
2
t

)

L(θ′, ψ0; ŷ(n))
,

= exp

(

−
1

2
(

n
∑

t=1

ǫ2t
σ2

− ŝ(θ′))

)

(16)

with ŝ(θ′) :=

n
∑

t=1

(ŷt −M(θ′, ψ0)t)
2

σ2
,



where the denominator (respectively the second term
in the exponent) includes the likelihood of the ‘best’
model M(θ′, ψ0) (respectively the least square sum
of its residual) in our ensemble of available models
(compare Equation 12). Hence, our quantity of inter-
est, i.e., the realization L∗(n) of L∗(n), depends on
the actual realization (ǫ̂1, ..., ǫ̂n) as well as the resid-
ual ŝ(θ′) of the ‘best’ model M(θ′, ψ0). While we can
calculate ŝ(θ′) after having received the observation
ŷ(n), we cannot access the realization ǫ̂ of the resid-
ual between ŷ(n) and the unknown accurate model
M(θ∗, ψ∗). We only know that ǫ ∼ N(0, σ) is an iid
Gaussian process, and its variance is distributed as
χ2:

s(n) :=
n
∑

t=1

ǫ2t
σ2

∼ χ2
n−1 . (17)

Therefore, we only can try to derive a useful estimator
E(L∗(n)) of L∗(n) from the asymptotic χ2

n−1 distri-
bution of s(n):

E(L∗(n)) = exp

(

−
1

2
(E(s(n)) − ŝ(θ′))

)

(18)

Such an estimator E(L∗(n)) will be useful for our pur-
pose, if it discriminates between the two cases where
an accurate model S is contained in the ensemble, i.e.,
it exists θ̃ ∈ Θ with S = M(θ̃), and where it is not.
In the former case, we can assume for large numbers
of observations that S will coincide with the ‘best’
model M(θ′, ψ0) which exhibits the maximum likeli-
hood on the space of available models Θ. In the latter
case (S 6= M(θ′, ψ0)), we assert for large numbers n
of observations that the residual ŝ(θ′) will grow faster
than any estimator E(s(n)) constructed from a χ2

n−1

distribution, i.e., E(s(n)) − ŝ(θ′) → −∞ for n → ∞,
and thus E(L∗(n)) → ∞ and ε(E(L∗), p0) → 1.

It remains to investigate the asymptotic behavior for
the case S = M(θ′, ψ0), for which the residual be-
tween the ‘best’ model and the data will also be a
realization of an iid Gaussian process N(0, σ). Hence
ŝ(θ′) will constitute a draw from the same χ2

n−1 dis-
tribution on which E(s(n)) is based. Since χ2

n−1 be-
comes approx. normal for n→ ∞, it can be seen that
s(n)− s(θ′) will also be approx. normally distributed
with zero mean and variance → ∞. This shows that
the estimator E(s(n)) needs to be carefully chosen in
order to avoid a situation where ε(E(L∗), p0) can take
any value between 0 and 1, if S = M(θ′). Therefore,
we select a q-quantile of the χ2

n−1-distribution

∫ qs

0

χ2
n−1(s) ds := q ,

as estimator E(s(n)). The quantile qs will be larger
than ŝ(θ) with probability q, if the accurate model S is

contained in the model ensemble. We use qs to define
our estimator E(L∗(n)) of L∗(n) in Equation 15), i.e.,

E(L∗(n)) := e
−n−1

2

(

qs

n−1−
ŝ(θ

′)
n−1

)

. (19)

Equation (19) constitutes the final building block for
our extension of Bayes’ rule that allows us to drop the
closed world assumption. This open version of Bayes’
rule is summarised by Equations (14), (15) (with
L∗(n) replaced by the estimator E(L∗(n))), and (19).
It should be noted that the extended Bayes’ rule de-
pends on the choice of confidence level q for the upper
limit of the variance of the residual ǫ̂. This makes it
clear that in our attempt to account for the space of
unspecified models, we allowed classical statistics to
enter our otherwise Bayesian approach through the
backdoor. For large n, the introduction of a contam-
ination term in the posterior belief amounts to a hy-
pothesis test on our best model M(θ′). In this case,
E(L∗(n)) will jump rapidly from zero to a very large
number, when the residual of our best model M(θ′)
crosses the upper limit qs at the q-confidence level (see
Equation 19). This will cause the contamination term
ε(E(L∗), p0) to jump from 0 to 1 (see Equation 15).
Therefore, our choice of E(L∗(n)) can lead to strong
fluctuations in the contamination term if the residual
of the best model M(θ′) is hovering around the up-
per limit qs. The responsiveness of the contamination
term can be reduced by replacing the linear scaling
of the exponent of E(L∗(n)) with increasing number
of observations by a sublinear function. We suggest
that this is most effectively done by using the scal-
ing of the χ2

n−1 distribution for increasing degrees of
freedom, and offer the following heuristic expression
as an alternative choice:

E(L∗(n)) := e
− 1

2 (qs−n+1)
(

qs

n−1−
ŝ(θ

′)
n−1

)

. (20)

4 Prediction with ε-contamination:

Example of AR processes continued

We now put the conceptual framework developed in
the previous section into operation for our example
of AR processes. The setup is identical to what was
described in Section 2. For applying our open ver-
sion of Bayes’ rule to this updating problem, we need
to calculate the development of the contamination
ε(E(L∗), p0) for time series of observations ŷ(n) with
increasing length. We do this for the random sample
of 200 time series from Section 2, and for both choices
of E(L∗(n)) proposed in Equations (19) and (20). We
use a prior weight p0 = 0.95 on our model ensemble
M(α1), α ∈ [−ᾱ, ᾱ], and choose a confidence level
of q = 0.99 to determine the upper limit qs on the
residual variance of the accurate model.
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Figure 4: Behavior of lower and upper bounds of
the 90% confidence interval for the ε-contamination.
The ε-contamination for the models α∗

1 = 0.866 and
α2 = {0, 0.06} falls immediately to zero and stays
there throughout the 5000 observations. In contrast,
the ε-contamination for the model with α∗

2 = −0.9
jumps quickly to one (after 100 observations).

The lower 5% and upper 95% quantile limits (de-
duced from the sample of 200 time series) for the
value of the contamination ε(E(L∗), p0) are shown in
Figure 4. The contamination is zero for the cases in
which standard Bayesian updating did well. Hence,
in these cases our posterior belief about model ac-
curacy and the associated prediction of the asymp-
totic distribution of system observations is identical
to what we have found in Section 2. In the re-
maining two cases where standard Bayesian updat-
ing failed, the situation is markedly different. For
α2 = −0.9, the contamination rapidly approaches
ε(E(L∗), p0) = 1, rendering our posterior belief vacu-
ous after 100 observations at the latest. For the less
extreme case α2 = −0.3, the increase in contamina-
tion is much slower, reflecting the results shown in
Figure 1 that the posterior belief about the true prop-
agator value remains in the vicinity of the AR(1)-
equivalent propagator for several thousand observa-
tions. In that boundary case, the contamination term
based on Equation (19) can fluctuate indeed strongly
up to n = 4000 observations depending on the ac-
tual time series. The alternative contamination term
based on Equation (20) offers a smoother response
(see Figure 4), but on the downside responds slower
to pick up the lack of accuracy in the model ensemble.
We suggest that the proper choice of contamination
term will depend on the application.

We now investigate the consequences of the grow-
ing contamination for the posterior belief in the case
α∗

2 = −0.9. Our main question is whether the as-

sociated predictions of the asymptotic distribution of
system observations can anticipate quickly the pos-
sibility of strong tails that was missed by standard
Bayesian updating (see Figure 3). The analysis will
also illustrate how the ε-contamination model can be
used in statistical inference.

Due to the mixture with the vacuous probability
model V(A1), A1 = [−ᾱ, ᾱ], the posterior belief as
expressed in Equation (14) is imprecise. Since it in-
cludes Dirac measures, the set of posterior probabil-
ities can be depicted as a band of cumulative distri-
butions (CDFs), but not as density band. The upper
and lower CDFs set up by the ε-contaminated pos-
terior belief model are given by (using the shorthand
ε∗ := ε(E(L∗), p0)):

F (α1; ŷ(n)) = (1 − ε∗)

∫ α1

−ᾱ

ρ(α′
1|ŷ(n)) dα′

1

+ ε∗ H(α1 − ᾱ) (21)

F (α1; ŷ(n)) = (1 − ε∗)

∫ α1

−ᾱ

ρ(α′
1|ŷ(n)) dα′

1

+ ε∗ , (22)

where H denotes the Heavyside function which adds
the missing probability mass at the upper bound of
the support for α1. It is important to note that
the distribution band defined by F (α1; ŷ(n)) and
F (α1; ŷ(n)) is not equivalent to the ε-contamination
model, but a true superset of it. Every distribution
contained in the ε-contamination model will be con-
tained in the distribution band, but not vice versa

Figure 5 shows the change of posterior distribution
band with increasing number of observations of an
AR(2) process with α∗

2 = −0.9. It can be seen that the
imprecision in the posterior belief increases quickly
with observations. After n = 80 observations the pos-
terior belief becomes vacuous, and the associated dis-
tribution band would cover the entire graph. At this
point, any predictive power has been lost.

We take a closer look on the prediction of the asymp-
totic distribution of system observations ρ(y|ŷ(n)) in
Figure 6. The prediction is again imprecise, and its
lower and upper bound can be calculated on the basis
of Equation (8) by recalling that these bounds are set
up by the Dirac measures contained in the vacuous
probability model V(A1). Those Dirac measures allo-
cate the probability mass carried by the contamina-
tion ε∗ := ε(E(L∗), p0) at a value of α that minimizes
respectively maximizes the contribution to ρ(y|ŷ(n)).

ρ(y|ŷ(n)) = (1 − ε∗)

∫ ᾱ

−ᾱ

ρ(y|α1) ρ(α1|ŷ(n)) dα1

+ ε∗ min
α1∈[−ᾱ,ᾱ]

ρ(y|α1) . (23)
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Figure 5: Cumulative posterior distribution bands for
the propagator α1 learned from a realization of the
AR(2)-process with α∗

1 = 0.866 and α∗
2 = −0.9. The

distribution band for n = 80 observations is vacuous
and covers the entire graph.

ρ(y|ŷ(n)) = (1 − ε∗)

∫ ᾱ

−ᾱ

ρ(y|α1) ρ(α1|ŷ(n)) dα1

+ ε∗ max
α1∈[−ᾱ,ᾱ]

ρ(y|α1) . (24)

Figure 6 shows the predicted bounds on the asymp-
totic distribution of system observations. It can be
seen that the imprecision in the prediction grows
quickly, and its range covers the tails after n = 60
observations. The full asymptotic distribution is con-
tained in the predicted range after n = 80 observa-
tions when the posterior belief has become vacuous.
At this point, the analyst employing our open ver-
sion of Bayes’ rule will have noticed that it is time to
engage in type (I) learning as defined in the introduc-
tion, and to try to extend the set of models that she
considers (e.g., to the set of all AR(2)-processes).

5 Conclusions

We have presented a framework for updating belief
about prediction accuracy across an ensemble of avail-
able models using observations of the system that
those models are supposed to predict. While following
the Bayesian approach to learning, we have dropped
the assumption that an accurate model – predicting
the system observations up to an iid Gaussian process
– is contained in the model ensemble with certainty as
would be required by Bayes’ rule in its conventional
form. This is an achievement because the closed world
assumption can lead to spurious beliefs about model
accuracy and false predictions, as was demonstrated
with an example of AR processes. By drawing on ele-
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Figure 6: Predictions for the asymptotic probabil-
ity distribution of system observations for the AR(2)-
process with α∗

1 = 0.866 and α∗
2 = −0.9. The quickly

growing ε-contamination destroys the predictive ac-
curacy of the model ensemble after 80 observations.

ments of imprecise probability theory and the knowl-
edge of asymptotic distributions for large samples, we
established an open version of Bayes’ rule that extends
its consideration to the unknown space of unspeci-
fied models, and thus includes the possibility that an
accurate model might not be contained in the set of
available models. Under the open Bayes’ rule, the pos-
terior belief takes on the form of an ε-contamination
model, where the contamination ε is updated along
with the prior belief on the set of available models. A
growing contamination will indicate limited accuracy
of the entire model ensemble, and will eventually lead
to a vacuous posterior belief. In this way, false pre-
dictions due to limitations of the models under con-
sideration can be avoided as was demonstrated again
with an example of AR processes.

Also the method presented here has proven success-
ful – in a stylized example – to discriminate between
cases where standard Bayesian updating works well,
and where it fails, this paper can offer only a proof of
concept. It will require further research to investigate
how the open Bayes’ rule works in practice. In a next
step we intend to apply it to the comparison of the
20th century temperature record with a simple cli-
mate model parameterized in terms of key quantities
influencing the temperature response [6]. As a matter
of concern, we will have to analyze whether the open
Bayes’ rule in its current form is too discriminative
as it may discount every model that cannot explain
the data up to an additive Gaussian process. In prac-
tice, such a strong requirement is hard to fulfill, not
the least because the observations might be overlaid
by a systematic non-Gaussian error due to changing



measurement practices over time. This, however, is
a general problem for model validation and model-
based prediction, and by no means limited to the ap-
plication of the open Bayes’ rule. In these cases it
may be unavoidable to attempt adding and updating
a positive model for the discrepancies between actual
measurements and ‘ideal’ measurements (and, if nec-
essary, between actual model and ‘ideal’ model) to
the analysis as has been proposed by [4]. In any case,
the open Bayes’ rule can be a valuable tool to assess
whether such additions are bearing fruit.

A Calculation of the likelihood for

the AR(1) propagator α

Let an AR(1) process be defined by X1 = ξ1, Xt =
αXt−1+ξt, t ≥ 2, and ξt ∼ N(0, σξ). Estimators α(n)
for the propagator α and s(n) for the variance of the
AR(1) process are defined in terms of the observation
Y (n) = (X1, ..., Xn) after n time steps

s(n) =
1

n− 1

n
∑

t=1

X2
t , (25)

α(n) =
1

n− 1

∑n

t=2 XtXt−1

s(n)
. (26)

Here, we deviate from the standard choice of these es-
timators [7] by omitting the subtraction of the sample
mean (1/n

∑n

t=1Xt → 0 for n→ ∞) in the estimator
for the variance, and by inflating the estimator for the
propagator by n/(n − 1). The reason for this is that
the distribution of those estimators for a given choice
of α, σξ can be calculated easily:

ρ(α(n), s(n)|α, σξ)

∼ e
− 1

2σ
2
ξ

(

n
∑

t=2
(Xt−αXt−1)

2+X2
1

)

= e
−

(n−1) s(n)

2σ
2
ξ

(

1+α2−2αα(n)−
α
2

X
2
n

(n−1) s(n)

)

.

Once we have observed an actual realization ŷ(n) =
(ŷ1, ..., ŷn), fixing the values of the estimators at α̂(n)
and V̂ (n), we can calculate a likelihood function
L(α; ŷ(n)) ∼ ρ(α̂(n), V̂ (n)|α, σξ) for the propagator
α of the underlying AR(1) process (assuming that σξ
is known). With

σ̂(n) :=
σξ

√

(n− 1) ŝ(n)
, (27)

β̂(n) :=
ŷ2
n

(n− 1) ŝ(n)
, (28)

we find

L(α; ŷ(n)) ∼ e
− 1

2σ̂(n)2
((α−α(n))2−b̂(n)α2)

∼ N





α̂(n)

1 − β̂(n)
,

σ̂(n)
√

1 − β̂(n)
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Abstract

A bookmaker takes bets on a two-horse race, attempt-
ing to minimise expected loss over all possible out-
comes of the race. Profits are controlled by manipu-
lation of customers’ betting behaviour; in order to do
this, we need some information about the probability
distribution which describes how the customers will
bet. We examine what information initial customers’
betting behaviour provides about this probability dis-
tribution, and consider how to use this to estimate the
probability distribution for remaining customers.

Keywords. EM Algorithm, bookmaker, horse race,
Markov decision process.

1 Introduction

A bookie takes bets on a contest for which there are
only two possible outcomes, which we will label as A
and B. The bookie wishes to maximise his minimum
expected profit purely by manipulation of customers’
betting practice. A gambler enters the bookie’s shop
seeking to place a wager on this contest. Let p denote
the gambler’s probability that outcome A will occur.
The bookie quotes odds of O1 against outcome A and
of O2 against outcome B. This means that a winning
wager of one unit on outcome A produces a return of
O1 + 1 while a winning wager of one unit on outcome
B produces a return of O2 + 1. Hence a wager on
outcome A will be attractive to the gambler if

p(O1 + 1) ≥ 1

or equivalently

p ≥ 1
O1 + 1

= θ1.

Similarly a wager on outcome B will be attractive to
the gambler if

1− p ≥ 1
O2 + 1

= θ2

or equivalently

p ≤ 1− θ2.

The quantities θ1 and θ2 are called the bookie’s quoted
probabilities for outcome A and B respectively. Hence
the strategy for an individual gambler is simple - he
places a wager on any outcome for which his proba-
bility exceeds that quoted by the bookie.

It should be noted that the “quoted probabilities”, θ1

and θ2, described above, are not probabilities, in the
sense that their sum will generally be greater than 1.
In fact, they may more properly be described as upper
probabilities, as defined in [13].It can be shown that it
is never to the advantage of the bookie to have these
upper probabilities sum to less than 1, as in Lemma
2 of [14]. Thus, for the remainder of this paper, we
shall assume that θ1 + θ2 ≥ 1.

We also assume that the quoted odds, O1 and O2, are
positive. This follows naturally from the requirement
that a wager of 1 unit leads to a return of O1 + 1 on
outcome A or O2+1 on outcome B, and the customer
is unlikely to wager more than the expected return.
By the definitions of θ1 and θ2, this means that θ1 and
θ2, in turn, are positive. These conditions on θ1 and
θ2 ensure the coherence of the upper probabilities in
this case.

We idealise the bookie’s shop by assuming that the
bookie sells two types of tickets - one which guar-
antees a return of one unit should outcome A occur
and costs θ1, and one which guarantees a return of
one unit should outcome B occur and costs θ2. This
avoids sure loss, as the customer’s only options are
to bet on A or B, individually; to bet on both would
ensure a loss for the customer, as he would be re-
quired to bet an amount θ1 + θ2, greater than his
(guaranteed) return of 1. We also assume that the
bookie knows, before opening the book, that N cus-
tomers will consider a wager on the contest and that
their probabilities p1, p2, ..., pN of outcome A occur-
ring behave like a random sample from a probability



distribution. Finally, we assume that customers can
buy at most one of each type of ticket and that the
bookie is free to alter the quoted probabilities after
each customer leaves.

The bookie seeks to manipulate customers’ betting
behaviour as best suits himself; this depends, how-
ever, on knowing the probability distribution from
which the customers’ probabilities p1, p2, ..., pN de-
rive. After first considering the optimal procedure
when the distribution is known, we will consider how
the bookie may estimate this probability distribu-
tion using information derived from customers’ bet-
ting practices.

2 Distribution Known

Assuming the distribution of customers’ probabilities
to be known, the optimal algorithm for the bookie to
follow is the “Dynamic Programming” Algorithm, as
described in Barry & Hartigan[2]. This iterative algo-
rithm depends on knowledge of the customers’ prob-
ability distribution, F , the number of customers left
to come, n, and the current “state of the book”, i.e.
the amount of the bookie’s profit on outcome A, de-
noted a, and on outcome B, denoted b, if the book
was closed at that instant, i.e. no more bets were
taken.

Assuming knowledge of these quantities, the algo-
rithm is then given as follows;

Rn(a, b) =
a + b

2
+ Pn(d)

where

Pn(d) = Pn−1(d)

+max
θ1,θ2

{
[1-F (θ1)][θ1 − 1

2 + Pn−1(d− 1)− Pn−1(d)]
+F (1-θ2)[θ2 − 1

2 + Pn−1(d + 1)− Pn−1(d)]

}

with P0(d) = − |d|
2 and d = a − b. Here, Rn(a, b)

denotes the expected value of the bookie’s final min-
imum profit between both outcomes. The algorithm
gives the bookie a method for deriving optimal quoted
probabilities for the next customer, given the current
state of the book, n customers left to go and F known.

The above equation for Pn(d) describes how it de-
pends on the previous value, Pn−1(d), then adds a
term, maximised over θ1 and θ2, which describes the
profit accruing if the customer bets on A, with prob-
ability 1− F (θ1), and if the bet is on B - with prob-
ability F (1− θ2); the only two possible bets.

3 Strategy for Distribution Unknown

Having determined a strategy for F known, we must
consider how to estimate F when it is unknown. We
subdivide the interval [0,1] into r subintervals of equal
width - the choice of the value of r will be discussed
in Section 4. We then estimate F by means of a his-
togram, with r intervals. For each of these r intervals,
the height of the histogram will be determined by the
probability assigned to that interval, πj . This proba-
bility will be determined by the betting behaviour of
the customers, as described hereafter. F (θ) may then
be determined by the formula

F (θ) =





rθπ1 0 ≤ θ ≤ 1
r

π1 + (rθ − 1)π2
1
r ≤ θ ≤ 2

r
π1 + π2 + (rθ − 2)π3

2
r ≤ θ ≤ 3

r
...

...∑j
i=1 πi + (rθ − j)πj+1

j
r ≤ θ ≤ j+1

r
...

...∑r−1
i=1 πi + (rθ − r + 1)πr

r−1
r ≤ θ ≤ 1

3.1 Estimation of F

This involves the EM Algorithm; we have an estima-
tion, and a maximisation, step.

3.1.1 Estimation

Each customer’s betting pattern gives us information
about their value of p, as follows;

Bet on Horse A θ1 ≤ p ≤ 1
Bet on Horse B 0 ≤ p ≤ 1− θ2

No Bet 1− θ2 < p < θ1

We denote the lower limit of the range in which p
falls by ak

1 for customer k and the upper limit by ak
2

such that ak
1 ≤ ak

2 . We also denote the lower and
upper limit of each of the subintervals of [0,1], Ij ,
by [Lj , Rj ], with Rj = Lj+1. We have an indicator
function, Xjk, defined as follows;

Xjk =
{

1 p ∈ [Lj , Rj ]
0 otherwise

In this case, the log likelihood function is given by

` =
N∑

k=1

r∑

j=1

Xjk log πj .

Given the customer’s behaviour, we have a range for
the customer’s probability - i.e. ak

1 ≤ p ≤ ak
2 . Let us

call this information Yk.



We will seek to maximize the Expected value of the
log likelihood, given this information, i.e.

E(`|Y ) =
N∑

k=1

r∑

j=1

E(Xjk|Yk) log πj .

E(Xjk|Yk) = P (Xjk = 1|Yk)
= P (p ∈ [Lj , Rj ]|p ∈ [ak

1 , ak
2 ])

=
P (p ∈ [Lj , Rj ] ∩ [ak

1 , ak
2 ])

P (p ∈ [ak
1 , ak

2 ])

=
P (p ∈ [Lj , Rj ] ∩ [ak

1 , ak
2 ])∑r

i=1 P (p ∈ [Li, Ri] ∩ [ak
1 , ak

2 ])

We have

P (p ∈ [Lj , Rj ] ∩ [ak
1 , ak

2 ]) = πj × ljk

Rj − Lj

where ljk is the length of [Lj , Rj ]∩[ak
1 , ak

2 ] and is given
by

ljk =





0 Rj ≤ ak
1

Rj − ak
1 Lj ≤ ak

1 ≤ Rj ≤ ak
2

ak
2 − ak

1 Lj ≤ ak
1 ≤ ak

2 ≤ Rj

Rj − Lj ak
1 ≤ Lj ≤ Rj ≤ ak

2

ak
2 − Lj ak

1 ≤ Lj ≤ ak
2 ≤ Rj

0 Lj ≥ ak
2

3.1.2 Maximisation

Next, we seek to maximise the expected value of the
log likelihood function. The Maximum Likelihood Es-
timate for πj is given by

π̂j =
∑N

k=1 E(Xjk|Yk)
N

.

Each of the subintervals of [0,1] was assigned an initial
probability, π1

j . For simplicity, this initial probability
was the same for each subinterval, assuming the Uni-
form distribution, so that, with r subintervals, the
initial values of π1

j are given by

r∑

j=1

π1
j = 1 ⇒ π1

j =
1
r
, ∀j.

This initial probability was then updated by observing
each customer’s behaviour.

As will be seen in this, and the next, subsection, we
will now divide our customers into three groups; the
very first will be used to initialise the information
matrix, the second group will be used for the pur-
pose of maximising the information we may obtain,

leaving us with the third and final group for maximis-
ing profit, once F has been satisfactorily estimated.
One of the questions with which we will be concerned
is how many customers should be allocated to each
group.

3.2 Early Customers

For the first few customers, the odds are chosen so as
to maximise the information obtained.

We derive the information matrix, I, using the for-
mula

Iij = E

[
− ∂2`

∂π̂i∂π̂j

]

where ` is the log likelihood, defined as before.

As described in the previous section, we decided to
divide the interval [0,1] into a number of subintervals,
each of which was assigned a probability, πj , which
was updated by observation of customers’ behaviour.

As before, we may express the log likelihood function
as

` =
N∑

k=1

r∑

j=1

Xjk log πj

=
N∑

k=1

[
r−1∑

j=1

Xjk log πj + Xrk log
(

1−
r−1∑

j=1

πj

)]

=
r−1∑

j=1

(
N∑

k=1

Xjk

)
log πj

+

(
N∑

k=1

Xrk

)
log

(
1−

r−1∑

j=1

πj

)

as πr = 1−∑r−1
j=1 πj .

Hence, we find that

∂`

∂πj
=

N∑

k=1

[
Xjk

πj
− Xrk

1−∑r−1
j=1 πj

]

and

∂2`

∂πi∂πj
= −

∑N
k=1 Xjk

π2
j

δij −
∑N

k=1 Xrk(
1−∑r−1

j=1 πj)2
,

where δij = {1 if i = j, 0 otherwise}. Thus, we have

E

[
− ∂2`

∂πi∂πj

]
=

Nδij

πj
+

N

1−∑r−1
j=1 πj

.

The entries are added for each successive customer.

Having calculated the information matrix, we use it
to choose the odds for each of the customers before F



is determined. Firstly, both θ1 and θ2 are set at 1
r , for

convenience of programming. The information matrix
is recalculated for each combination of θ1 and θ2, each
being incremented in steps of 1

r . Finally, that com-
bination of odds which maximises the determinant of
the information matrix is used for the next customer,
so long as it satisfies the condition θ1 + θ2 ≥ 1. In
practice, this condition was satisfied by every optimal
combination of odds. This procedure is repeated for
each of the customers in turn.

The optimal number of customers used to estimate F
is found by inspection. This procedure is described
later.

After each of these customers bets, our estimate of
F is updated using the EM Algorithm, as described
previously. Finally, we must initialise the information
matrix.

3.3 Initialisation

3.3.1 Odds for the Initial Customers

In order to initialise the information matrix, the
theta-values for the first few customers are chosen ac-
cording to the following plan;

If we divide the interval [0,1] into r equally-spaced
subintervals, placing the theta-values on the di-
visions of these subintervals will give us precise
information about the distribution of probability
within these subintervals. The optimal value of
r is found by inspection, and is described subse-
quently.

We do not need to set either a theta-value equal to
1, which guarantees no bets, or equal to 0, which
guarantees a bet from any customer.

Bearing these points in mind, we set the theta-values
for the first customer as

θ1 = θ2 =
r − 1

r

We then take each theta-value down by a value 1
r in

turn for each of the next few customers.

3.3.2 No. of Customers in this Group

As customers bet on Horse A with probability 1 −
F (θ1), the value of θ1 will provide us with infor-
mation about the probabilities of the subintervals
above θ1. Thus, this value provides us with infor-
mation about the subintervals at the upper end
of the interval [0,1].

Similarly, customers bet on Horse B with probability
F (1− θ2). Thus, the value of θ2 provides us with
information about the probabilities of the subin-
tervals below 1 − θ2, and thus provides us with
information about the subintervals at the lower
end of the interval [0,1].

So the theta-values for the very first customer tell
us something about the probability in the first, and
last, subintervals. Each successive customer’s set of
theta-values tells us about an additional subinterval.
Finally, we only need information about (r−1) subin-
tervals, as we know that the probabilities sum to 1 in
total. Altogether, this tells us that we need r− 2 cus-
tomers in the first group, to initialise the information
matrix.

4

Choice of No. of Subintervals and No.
of Customers to Use in Estimation

Firstly, as discussed previously, we divide the interval
[0,1] into r subintervals, to each of which is assigned
a probability, so as to estimate F .

We now need to determine

1. the optimal number of subintervals, and also

2. the optimal number of customers, as a percent-
age of the total (assumed known), whose odds
we should use in order to maximise the informa-
tion matrix, as described in the previous section.
This number is in addition to the r−2 customers
used in the beginning to initialise the information
matrix.

These were estimated simultaneously, by calculating
profits for the same Dynamic Programming profit
function for a variety of combinations of (1) num-
bers of subintervals and (2) numbers of customers
used in estimation of F , and choosing the combina-
tion which proved best overall. The state of the book
for a particular outcome denotes the bookie’s profit if
that outcome occurs. Let An denote the state of the
book for outcome A, and Bn the state of the book for
outcome B, when n of the N customers remain. In
the strategy which our bookie uses, we have

θ̃1

(An −Bn

n

)
and θ̃2

(An −Bn

n

)
,

which are chosen to maximise

min{E[A0|An = a,Bn = b], E[B0|An = a,Bn = b]}.



This gives the function to be maximised as

min
{d

2
− n(1− θ1)[1− F (θ1)] + nθ2F (1− θ2),

−d

2
+ nθ1[1− F (θ1)]− n(1− θ2)F (1− θ2)

}
,

where d = a− b. This is the objective function which
was used in the simulation study, a summary of whose
results follows. It assumes that the quoted probabil-
ities remain constant for all n remaining customers,
and calculates the final expected profit if A occurs as
the income from those customers who bet an amount
θ2 on B, with probability F (1 − θ2), less the outgo-
ing return of 1 unit to those who bet an amount θ1

on A, with probability 1 − F (θ1). A similar calcula-
tion determines the final expected profit if B occurs.
The algorithm involves the calculation of the mini-
mum of these two expected final profits, given the
current state of the book.

It will be noted that this is a different algorithm to
the optimal one discussed in Section 2; as discussed
in Barry & Hartigan[2], this algorithm provides an
easier method for calculation of the quoted probabili-
ties, without excessive penalty in terms of the bookie’s
profit.

The measure of which combination of (1) and (2)
proved best was provided by obtaining the mean
profit, over fifty replications in each case, for each in-
dividual combination. The difference between each of
these values and the maximum value over all combi-
nations was then obtained for each distribution. This
was repeated for each of N = 100, 500 and 1500 cus-
tomers, and for each of five distributions; namely,

1. Uniform i.e. F (θ) = θ

2.

F2(θ) =





0 0 ≤ θ ≤ 1
8

2
(
θ − 1

8

)
1
8 ≤ θ ≤ 5

8

1 5
8 ≤ θ ≤ 1

3.

F3(θ) =





0 0 ≤ θ ≤ 1
4

2θ − 1
2

1
4 ≤ θ ≤ 3

4
1 3

4 ≤ θ ≤ 1

4.

F4(θ) =
{

0 0 ≤ θ ≤ 3
4

4θ − 3 3
4 ≤ θ ≤ 1

5.

F5(θ) =





2θ 0 ≤ θ ≤ 1
4

1
2

1
4 ≤ θ ≤ 3

4
1
2 + 2

(
θ − 3

4

)
3
4 ≤ θ ≤ 1

We found the maximum difference, for each combi-
nation of number of subintervals and percentage of
customers, over the five distributions. This repre-
sents the maximum loss per customer. Thus, we use
the combination which provides the smallest value of
maximum loss. The maximum loss per customer over
all distributions is shown in the following tables.

Maximum Difference over Five Distributions

% of Customers to Estimate F
Intervals 0 1 2

1 0.0711 0.0715 0.0714
2 0.0358 0.0357 0.0356
3 0.0229 0.0216 0.0259
4 0.0259 0.0181 0.0195
5 0.03296 0.03624 0.03621
6 0.03305 0.03005 0.0295
7 0.03139 0.03453 0.03369
8 0.03531 0.03939 0.03728
10 0.03357 0.03355 0.0361

N=100

% of Customers to Estimate F
Intervals 0 1 2

1 0.015 0.015 0.015
2 0.009 0.009 0.009
3 0.0049 0.0054 0.0054
4 0.0035 0.0034 0.0036
5 0.0044 0.0057 0.0066
6 0.0049 0.0047 0.0051
7 0.005 0.005 0.0048
8 0.004 0.004 0.004
10 0.004 0.004 0.004

N=500

% of Customers to Estimate F
Intervals 0 1 2

1 0.005 0.0049 0.0049
2 0.0031 0.0031 0.0031
3 0.0016 0.0018 0.0018
4 0.0015 0.0015 0.0015
5 0.0015 0.0019 0.0022
6 0.0019 0.0019 0.0019
7 0.0019 0.0012 0.0017
8 0.0015 0.0015 0.0015
10 0.0015 0.0014 0.0014

N=1500



From these tables, we may see that the optimal % of
customers for maximisation of the information matrix
in all cases is 1%; higher percentages are not shown
here, as they led to greater loss. We also see that the
optimal number of subintervals into which to divide
the interval [0,1] is 4 for N = 100 and 500, and 7
intervals for N = 1500. The optimal combination
is that which minimises the difference shown in the
above tables.

We may further see from these tables, however, that
the maximum difference over all distributions de-
creases, for each combination, as the total number
of customers increases- demonstrating that, for larger
numbers of customers, there is reduced loss in using
a non-optimal combination.

5 Summary and Conclusions

In summary, the method described in this paper pro-
vides us with a means of estimating the overall distri-
bution of customers’ probabilities, based solely on the
betting practices of relatively few initial customers,
which provide us with interval estimates of these prob-
abilities. This proves a highly useful tool when distri-
butions are unknown.

Further work on this topic might include the examina-
tion of whether it is possible to incorporate an element
of profit maximisation into the stage where F is being
determined. Another obvious extension of the work
is to the case where there are more than two possi-
ble outcomes; however, each extra outcome leads to
multiple extra possibilities for the customer, who may
bet on any individual outcome, or possibly on a com-
bination of them. As well as leading to a much more
complicated model, this gives rise to the possibility of
incoherence, and to the incurrence of sure loss; care
needs to be taken in this scenario.
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Abstract

Starting from considering different definitions of con-
ditioning for decomposable measures, in particular for
totaly monotone measures (belief functions) and to-
taly alternating measures (plausibility functions), we
provide a concept of independence which covers some
natural properties. In particular, we characterize the
proposed independence for plausibility functions and
we check some relevant properties. Relationships with
other notions studied in literature are shown.

Keywords. Totaly monotone measures, Plausibility,
Conditioning, Independence.

1 Introduction

The subtle notion of conditioning is controversial
in several contexts, for example for non-additive
measures and more specifically for plausibility and
belief functions (which are totally alternating and
monotone, respectively). We consider a general ax-
iomatic definition of conditional measures proposed
in [7]: the conditional measure is directly defined as a
function on a set of conditional events which satisfies a
suitable set of axioms. In this framework conditional
measures are seen as a primitive notion, analogously
to conditional probability according to de Finetti ap-
proach [16]. Among the conditional measures we deal
with conditional plausibility and belief functions.

The theory of belief functions, also known as
Dempster-Shafer theory [18] and theory of evidence,
aims to model degree of belief. It can be regarded as a
generalization of the probability approach and many
interpretation have been proposed: a belief function
can be seen as a particular lower probability or it
can be derived from probability where a probability
space is mapped by a one-to-many mapping on an-
other space.

In [10] it is shown a sort of converse property of the
fact that a belief function is a specific lower proba-

bility: a lower probability obtained as extension of
a suitable coherent conditional probability is a belief
function.

Starting from this general framework some other well-
known definitions arise naturally (see also [6]). A
comparison of these different conditioning operators
has been carried out in [12] from another point of
view by looking to a comparative setting and, more
precisely, by studying local representability of ordinal
relations defined on a finite algebra.

In particular, we refer to a well-known definition (see
[19, 26]) of conditional belief, which can be obtained
from the above one as particular case and, for any
given conditioning event H, it can be seen as the dual
function of a conditional plausibility.

Actually, we refer to a generalization of the definition
provided in [26] that allows to deal also with events of
zero plausibility. Then, the problem of dealing with
“partial assessments” on (not necessarily structured)
domains, containing only elements of interest, is faced.
In any real situation the events of interest, and those
in which the field expert or the decision maker has
information, give rise usually to an arbitrary set. For
this reason we need a notion of consistency, which
allows to check whether a partial assessment is the
restriction of a conditional belief function (or a con-
ditional plausibility) [6]. A characterization of both
consistent conditional plausibility and conditional be-
lief, in terms of a suitable class of plausibility func-
tions, is carried out: a conditional belief/plausibility
is not always singled out by a unique unconditional
measure.

In such framework, we study an important concept
for uncertainty reasoning, which is independence. In
probabilistic theory this condition has been deeply
studied (see e.g. [15, 9, 32]); moreover such notion
has been studied also in other non-probabilistic frame-
works [1, 4, 11, 30, 31, 35] and in particular in up-
per and lower probabilities theory (see, for example,



[5, 8, 13, 34]).

However, the concept of independence has not been
widely treated in belief theory (see [2, 3, 27, 29]). In
addition to the theoretical reasons for the study of
independence, there are also practical interest: many
computational tasks can be simplified by using inde-
pendence notion.

In this paper we propose a definition of independence
for conditional plausibility, which can be reformulated
by means of duality property also for belief functions.
This notion covers some natural properties also in
the case of events with degree equal to 0 or 1. In
particular, we show that such independence notion
implies logical independence. This is an intuitive im-
plication: in fact if an event is “logically” related to
another one, the two events must be dependent un-
der any uncertainty measure. Handling logical con-
straints is interesting also from a practical point of
view, since in many real applications (e.g. in finance,
economics, medicine) variables are suitably linked (see
e.g. [20, 21]). Then, we get this natural implication,
which does not need to be required explicitly as in [2].
Actually, our definition of independence is inspirited
to that one given for coherent conditional probabil-
ity in [9, 32] and that for conditional possibilities in
[11, 24].

We give a numerical characterization of the proposed
definition of independence that helps to compare our
definition with other ones given in literature [2, 3, 27,
29].

In Section 2, we introduce conditional plausibility and
in Section 2.1 (through duality) conditional belief; we
briefly deal with a consistency notion for partial as-
sessments.

In Section 3 we provide an independence notion firstly
for plausibility and then for belief function. We study
its main properties by comparing it also with other
notions introduced in literature.

2 Conditional plausibility and belief
functions

Usually in literature conditional measures are pre-
sented as a derived notion of unconditional ones, but
this is a restrictive view of conditioning. It is instead
essential to adopt a general definition of generalized
(⊕,¯)-decomposable conditional (uncertainty) mea-
sure (introduced in [10]). The peculiarity of this ap-
proach consists in the fact that conditional measures
are directly defined on a suitable set of conditional
events.

Moreover, by specifying the two operations ⊕,¯ we

obtain some particular conditional uncertainty mea-
sures. In particular, by taking the usual sum and
product, respectively, we get a conditional probability
(in the sense of de Finetti [16]), while for⊕ = max and
¯ = min we obtain conditional possibility [4, 23]. In
[10] it is shown that for specific operations conditional
belief functions can be seen as particular generalized
decomposable measures.

In order to revisit the belief functions and their con-
nections with the so-called “imprecise” probabilities
and with extensions of coherent conditional proba-
bilities, we recall firstly some basic notions and then
some results given in [10]. An assessment p on a set
of conditional events C is a coherent conditional prob-
ability iff there exists a conditional probability P on
the product of an algebra E and an additive set (closed
under finite unions) H ⊆ E \ {∅} such that C ⊆ E ×H
and the restriction of P on C coincides with p (i.e.
P (E|H) = p(E|H) for any E|H ∈ C).
Given an arbitrary set C of conditional events, a coher-
ent lower conditional probability on C is a nonnegative
function P such that there exists a non-empty dom-
inating family P = {P (·|·)} of coherent conditional
probabilities on C whose lower envelope is P , that is,
for every E|H ∈ C ,

P (E|H) = inf
P

P (E|H) .

In particular, by taking C as a set of unconditional
events, we get a coherent lower probability.

It is well known that a belief function (totaly
monotone measure) is a lower probability; the follow-
ing result proved in [10] shows the converse property:
a lower probability obtained as extension of a suitable
coherent conditional probability is a belief function.

Theorem 1 Let D = {H1, . . . , Hn} be a finite set of
pairwise incompatible events. Denoting by K the addi-
tive set spanned by them, and given an algebra A ⊃ K,
put C = A×K. If P (·) is a coherent probability on D,
let P be the class of coherent conditional probabilities
P (·|·) extending P (·) on C. Consider, for E|K ∈ C,
the lower probability

P (E|K) = inf
P

P (E|K) ; (1)

then for any K ∈ K the function P (· |K) is a belief
function on A.

The involved set D is not a consequence of some par-
ticular circumstances, but it is always possible to find
it, as shown by the following theorem [10] (Section
3.1.):

Theorem 2 Let A be a finite algebra and Bel be a
belief function on A. Then, there exists a partition



D = {H1, . . . ,Hn} of Ω and a (coherent) probability
on D such that the lower envelope of the class of co-
herent conditional probabilities P (·|·) extending P (·)
on C = A×K (K is the additive set generated by D)
coincides with Bel on A.

The following axioms are naturally derived (see [6]):

Definition 1 Let E be an algebra and H ⊆ E \ {∅}
an additive set. A function Pl defined on C = E × H
is a conditional plausibility if it satisfies the following
conditions

i) Pl(E|H) = Pl(E ∧H|H);

ii) Pl(·|H) is a plausibility function ∀H ∈ H;

iii) For every E ∈ E and H, K ∈ H

Pl(E ∧H|K) = Pl(E|H ∧K) · Pl(H|K).

Moreover, given a conditional plausibility, a condi-
tional belief function Bel(·|·) is defined by duality as
follows: for every event E|H ∈ C

Bel(E|H) = 1− Pl(Ec|H).

It is possible to see that the above axiomatization
extends the Dempster’s rule, i.e.

Bel(F |H) = 1− Pl(F c ∧H)
Pl(H)

,

for all H such that Pl(H) > 0 (from condition
iii)). When all the conditioning events have pos-
itive plausibility, i.e. Ω ∈ H and Pl(H|Ω) > 0
for any H ∈ H, the above notions of conditional
plausibility and conditional belief coincide with that
given in [19, 26]. In fact, if Pl(H) > 0 it follows
Bel(F |H) = Pl(H)−Pl(F c∧H)

Pl(H) = Bel(F∨Hc)−Bel(Hc)
Pl(H) .

2.1 Coherent conditional belief

By regarding a conditional plausibility function as a
(⊕,¯)-decomposable measure, it is possible to study
the structure underlying the conditional measure and
to build an algorithm to check the consistency (with
the model of reference) of a partial assessment.

In the following we denote by F =
{E1|F1, E2|F2, . . . , Em|Fm} an arbitrary finite
set of conditional events, by E the algebra generated
by {E1, F1, . . . , Em, Fm} and by K the additive
set generated by the set of the conditioning events
{F1, . . . , Fm}.

Definition 2 A function f(·|·) on an arbitrary finite
set F is a coherent conditional belief (plausibility) if
there exists C ⊃ F , with C = E × K such that f(·|·)
can be extended from F to C as a conditional belief
(conditional plausibility).

The following theorem [6] characterizes (coherent)
conditional belief functions in terms of a class of plau-
sibilities {Pl1, ..., P lm}.

Theorem 3 Let F = {E1|F1, E2|F2, . . . , Em|Fm} be
an arbitrary finite set of conditional events and de-
note by E = {H1,H2, ..., Hn} the algebra generated by
{E1, . . . , Em, F1, . . . , Fm} and H0

0 = ∨m
j=1Fj. For a

real function Bel on F the following statements are
equivalent:

(a) Bel : F → [0, 1] is a coherent conditional belief
assessment;

(b) there exists (at least) a class L = {Plα} of plau-
sibility functions such that Plα(Hα

0 ) = 1 and
Hα

0 ⊂ Hβ
0 for all β < α, where Hα

0 is the greatest
element of K for which Pl(α−1)(Hα

0 ) = 0.

Moreover, for every Ei|Fi, there exists an index α
such that Plβ(Fi) = 0 for all α > β, Plα(Fi) > 0
and

Bel(Ei|Fi) = 1− Plα(Ec
i Fi)

Plα(Fi)
, (2)

(c) all the following systems (Sα), with α =
0, 1, 2, ..., k ≤ n, admit a solution Xα = xα

k =
mα(Hk):

(Sα)=





∑
HkFi 6=∅

xα
k · [1−Bel(Ei|Fi)] =

∑
HkEc

i Fi 6=∅
xα

k , ∀Fi⊆Hα
0

∑
Hk∈Hα

0

xα
k = 1

xα
k ≥ 0, ∀Hk⊆Hα

0

where Hα
0 is the greatest element of K such that∑

HiHα
0 6=∅

m(α−1)(Hi) = 0.

The above characterization result holds for coherent
conditional belief functions as well as for coherent
conditional plausibility. In particular condition (c)
stresses that this measure can be written in terms of
a suitable class of basic assignments, instead of just
one as in the classical case where all the conditioning
events have positive plausibility.

Note that every class L (condition (b) of Theorem 3)
is said to be agreeing with both the conditional belief
Bel and its dual conditional plausibility Pl. When-
ever there are events in K with zero plausibility the
class of unconditional plausibilities is formed by more



than one element and we can say that Pl1 gives a re-
finement of those events judged with zero plausibility
under Pl0.

The following example shows the construction of the
class L characterizing (in the sense of the above result)
a conditional belief.

Example 1 Let {C1, ..., C5} be a partition of Ω, E
the corresponding algebra and K = {C1 ∨ C5, C2 ∨
C3 ∨ C4, C1 ∨ C2 ∨ C5, Ω}.
Consider the following function f defined as follows
on E ×H:
for K ∈ {Ω, C2 ∨ C3 ∨ C4} and H ⊆ C1 ∨ C5

f(Ci|K) = f(H|K) = f(H ∨ Ci|K) = 0 for i = 3, 4
f(C2|K) = f(C2 ∨H|K) = f(C2 ∨ C4|K) =
f(C2 ∨ C4 ∨H|K) = 0.5,
f(C3 ∨ C4|K) = f(C3 ∨ C4 ∨H|K) = 0.2,
f(C2 ∨ C3|K) = f(C2 ∨ C3 ∨H|K) = 0.8
f(C2 ∨ C3 ∨ C4|K) = f(C2 ∨ C3 ∨ C4 ∨H|K) = 1;

moreover (for i = 1, 5)
f(Ci|C1 ∨ C2 ∨ C5) = f(C1 ∨ C5|C1 ∨ C2 ∨ C5) = 0,
f(C2|C1 ∨ C2 ∨ C5) = f(C2 ∨ Ci|C1 ∨ C2 ∨ C5) =
f(C1 ∨ C2 ∨ C5|C1 ∨ C2 ∨ C5) = 1;

and f(C1|C1 ∨ C5) = 0.2, f(C5|C1 ∨ C5) = 0.3,
f(C1 ∨ C5|C1 ∨ C5) = 1.

We can prove that the above function is a conditional
belief since there exists a suitable class L = {Pl0, P l1}
of plausibilities such that, for any E|F ∈ A ×K, one
has f(E|F ) = 1− Plα(Ec∧F )

Plα(F ) . The function Pl0 is de-
fined on A as follows: for any H ⊆ C1∨C5 Pl0(H) =
0, Pl0(C2) = Pl0(C2∨H) = 0.8, P l0(C4) = Pl0(C4∨
H) = 0.2, P l0(C3) = Pl0(C3 ∨H) = Pl0(C3 ∨ C4) =
Pl0(C3 ∨ C4 ∨H) = 0.5,
P l0(C2 ∨ C3) = Pl0(C2 ∨ C3 ∨H) = Pl0(C2 ∨ C4) =
Pl0(C2 ∨ C4 ∨H) = Pl0(C2 ∨ C3 ∨ C4) =
Pl0(C2 ∨ C3 ∨ C4 ∨H) = 1 .
Note that Pl0 is associated to the following basic as-
signment m(C2) = 0.5,m(C2 ∨ C3) = 0.3,m(C3 ∨
C4) = 0.2 and it is zero otherwise.
Then, H0

1 = C1 ∨ C5, and Pl1 is defined
as follows Pl1(C1) = 0.7, P l1(C5) = 0.8,
P l1(C1 ∨ C5) = 1.

Results similar to the above one, characterizing con-
ditional possibility and necessity in terms of a class
of unconditional possibilities, have been given in
[4, 11, 24], and for conditional probability see e.g. [9].

2.2 Zero–layers

The characterization of conditional plausibility (and
conditional belief function) in terms of a suitable class
of plausibilities gives rise to the following notion of
zero-layers.

Definition 3 Let Pl be a coherent conditional plau-
sibility on F , and L a class agreeing with Pl, then, for
every event H ∈ E, the zero–layer of H (denoted as
◦(H)) related to L is defined as the minimum number
α such that Plα(H) > 0.
Moreover, define ◦(∅) = +∞.

Zero-layers single-out a partition of the algebra, in
particular it follows that the zero-layer of any event
E with positive plausibility is zero. Then, if the class
L contains only an everywhere positive plausibility
Plo, there is only one (trivial) zero-layer.

Remark 1 It is immediate to prove that the zero-
layers, related to L, satisfy the following formal pro-
prieties

◦(A ∨B) = min{◦(A), ◦(B)},
◦(A ∧B) ≥ max{◦(A), ◦(B)}.

Note that zero-layers (which are obviously significant
for events of zero plausibility) are a tool to detect
“how much” a null event is ... null. In fact, if
◦(A) > ◦(B) (that is, roughly speaking, the plausi-
bility of A is a “stronger” zero than the plausibility
of B), then by Theorem 3 (b) Pl(A|A ∨ B) = 0 and
so Pl(B|A∨B) = 1. On the other hand ◦(A) = ◦(B)
iff Pl(A|A ∨B)Pl(B|A ∨B) > 0; this formula recalls
the probabilistic notion of commensurable given by de
Finetti in [17].

Definition 4 Let Pl be a coherent conditional plau-
sibility on F , and L a class agreeing with Pl, then,
for every event E|H ∈ E × K, the zero–layer of E|H
(denoted as ◦(E|H)) related to L is defined as the
(positive) number

◦(E|H) = ◦(E ∧H)− ◦(H).

Since ◦(∅) = ∞ it results ◦(E|H) = ∞ iff E ∧H = ∅.

Remark 2 More precisely, Pl(A|B) > 0 if and only
if ◦(A|B) = 0 (i.e. ◦(A ∧B) = ◦(B)).

Moreover, from the properties of conditional plausi-
bilities, for any conditioning event H, there is at least
an atom C ⊆ H such that ◦(C|H) = 0.

Example 1 (continued) Let us consider again the
conditional plausibility in Example 1, which admits
a unique agreeing class and note that ◦(C1 ∨C5) = 1
and ◦(C1|C1 ∨ C5) = ◦(C5|C1 ∨ C5) = 0.

The above properties recall those related to the no-
tion of zero-layer [9] arising in de Finetti conditional
probability framework and they satisfy the same prop-
erties of k-functions of Spohn [30], so suggest relevant
connections with the results shown in [11, 22, 24].



3 Independence

The background is now ready to introduce a definition
of independence for coherent conditional plausibilities
(i.e. the measure can be assessed on arbitrary set
of conditional events without requiring any algebraic
structure).

Definition 5 Given a coherent conditional plausibil-
ity Pl on a set of conditional events F containing
D = {A∗|B∗, A∗} - where A∗ (analogously B∗) stands
for either A or Ac-, A is independent of B under Pl
(in symbol A⊥⊥B[Pl]), if both the following condition
holds:

(a) Pl(A|B) = Pl(A|Bc) = Pl(A)
Pl(Ac|B) = Pl(Ac|Bc) = Pl(Ac),

(aa) there exists an agreeing class L = {Plα} for the
restriction of Pl to D such that

◦(A|B) = ◦(A|Bc) and ◦(Ac|B) = ◦(Ac|Bc).

Remark 3 Definition 5 requires for the statement
“A independent of B under [Pl]” that B 6= Ω and
B 6= ∅ (since conditioning events cannot be impossi-
ble).

This syntactical constraint has also a semantical
counterpart: Ω and ∅ correspond to a situation of
complete information (since the former is always true
and the latter always false), and so it does not make
sense to ask whether they could influence the plausi-
bility of another event.

Conversely, by definition it follows that, under any
coherent conditional plausibility, the events Ω and ∅
are independent of every possible (i.e. different from
Ω and ∅) event B. In fact, condition (i) holds and
for any agreeing class ◦(Ω|B) = ◦(Ω|Bc) = 0 and
◦(∅|B) = ◦(∅|Bc) = +∞.

This conclusion is natural, since the plausibility (1
and 0, respectively) of Ω and ∅ cannot be changed by
assuming the occurrence of any other possible event
B.

In condition (a) of Definition 5 we require equalities
that could seem very strong at the first light, this is
due to remove situations such as those arising in the
following examples:

Example 2 Let consider a basic assignment on the
algebra generated by two possible events A and B, with
focal elements

m(A ∧B) = m(A ∧Bc) = m(Ac ∧B) =

m(Ac ∧Bc) = m(A ∨B) =
1
5

(i.e. on all the other events of the algebra m(·) is equal
to zero). This basic probability assignment implies
Pl(A) = Pl(Ac) = Pl(B) = Pl(Bc) = 3

5 , Pl(A∧B) =
Pl(Ac∧B) = Pl(A∧Bc) = 2

5 but Pl(Ac∧Bc) = 1
5 . By

applying the conditioning rule (Definition 1) it follows
that Pl(A|B) = Pl(A|Bc) = 2

3 6= Pl(A). Moreover,
Pl(Ac|B) = 2

3 6= 1
3 = Pl(Ac|Bc).

The above example shows that Pl(A|B) = Pl(A|Bc)
does not imply neither Pl(A|B) = Pl(A) nor
Pl(Ac|B) = Pl(Ac|Bc), furthermore from the next
example it arises the necessity of requiring all the
equalities in condition (a).

Example 3 Consider the following basic assignment

m(A ∧B) = m(A ∧Bc) = m(Ac ∧B) =

m(Ac ∧Bc) = m(Ω) =
1
5
.

Then, Pl(A∗ ∧ B∗) = 2
5 , P l(A∗) = Pl(B∗) = 3

5 and
Pl(A∗|B∗) = 2

3 . This implies that

Pl(A|B) = Pl(A|Bc)

and
Pl(Ac|B) = Pl(Ac|Bc),

but Pl(A|B) 6= Pl(A).

When both Pl(A) and Pl(Ac) are greater than zero
condition (a) of Definition 5 assures that A⊥⊥B[Pl],
in fact in this case all the zero-layers in condition (aa)
are equal to 0 and so condition (aa) is trivially satis-
fied.

If condition (a) holds and Pl(A) = 0 [Pl(Ac) = 0],
then the second [first] equality under (aa) is trivially
satisfied, so that the statement A⊥⊥B[Pl] is ruled by
the first [second] one. In other words equality (a) is
not enough to assure independence in this situation:
it needs to be reinforced by the requirement that also
their zero-layers must be equal.

We finally note that the statement A⊥⊥B [Pl] depends
only on the restriction of the assessment Pl on D,
hence the statement is not effected by the values of
the assessment Pl on F \ D (actually the influence,
e.g. of Pl(B|A) is related to condition (aa), as it will
be clear from the next result). Since (aa) depends on
a class agreeing with the coherent conditional plausi-
bility, and since this class is in general not unique, it is
necessary to prove that independence is well-defined
by Definition 5, that means that is invariant with re-
spect to the choice of any agreeing class.

Theorem 4 Given two events A and B such that
B 6= ∅, Ω and a coherent conditional plausibility Pl
defined on F , containing D = {A∗|B∗, A∗}, such that



Pl(A|B) = Pl(A|Bc) = Pl(A)
Pl(Ac|B) = Pl(Ac|Bc) = Pl(Ac).

If there exists a class agreeing with Pl|D such that

◦(A|B) = ◦(A|Bc) and ◦(Ac|B) = ◦(Ac|Bc),

then this holds for any other class agreeing with Pl|D.

Proof: This theorem can be decomposed in three main
cases:

1. Pl(A) · Pl(Ac) > 0,

2. Pl(A) = 0,

3. Pl(Ac) = 0.

1. If Pl(A) · Pl(Ac) > 0 the theorem is true since
◦(A∗|B∗) = 0 for all agreeing class.

2. If Pl(A) = 0 then Pl(Ac) = 1 and the only masses
which can be greater than zero (i.e. the focal ele-
ments) are m(Ac ∧ B), m(Ac ∧ Bc), m(Ac). If an
agreeing class is such that Pl(B) · Pl(Bc) > 0 (i.e.
m(Ac) > 0 or m(Ac ∧ B) · m(Ac ∧ Bc) > 0) then
(in both the cases) ◦(Ac|B) = ◦(Ac|Bc) = 0. Now,
we need to look at B|A and Bc|A, through the system
(S1) (of Theorem 3), that can be written in a compact
form by referring to Pl1 and m1, i.e.

(S1) =





Pl1(A ∧B) = Pl(B|A) · Pl1(A),
P l1(A ∧Bc) = Pl(Bc|A) · Pl1(A),
m1(A ∧B) + m1(A ∧Bc) + m1(A) = 1,

m1(·) ≥ 0.

To second equality of condition (aa) of Definition 5
holds if and only if ◦(A ∧ B) = ◦(A ∧ Bc), that
means Pl(B|A) · Pl(Bc|A) > 0. Then, if Pl(B|A) ·
Pl(Bc|A) > 0 all the agreeing class with Pl|D are
such that ◦(A|B) = ◦(A|Bc) = 1 and ◦(Ac|B) =
◦(Ac|Bc) = 0; otherwise none agreeing class satisfies
condition (aa).

If Pl(B) = 0 (i.e. m(Ac ∧ Bc) = 1) then ◦(Ac|Bc) =
◦(Bc) = 0 and (S1) is

(S1) =





Pl1(A ∧B) = 0 · Pl1(B),
P l1(Ac ∧B) = 1 · Pl1(B),
P l1(A ∧B) = Pl(B|A) · Pl1(A),
P l1(A ∧Bc) = Pl(Bc|A) · Pl1(A),
m1(·) ≥ 0.

A solution of (S1) is such that m(D) = 0 for any
D ∧ (A ∧B) 6= ∅; then when Pl(B|A) = 0 we need to
take in consideration the following cases

- Pl1(A) · Pl1(B) > 0, then it follows
Pl1(A ∧Bc) · Pl1(Ac ∧B) > 0 and
◦(A|B) = ◦(A ∧ B) − 1 = 1, ◦(A|Bc) = 1 and
◦(Ac|B) = 1− 1 = 0 = ◦(Ac|Bc).
- Pl1(A) > 0 and Pl1(B) = 0, then it follows
◦(A|B) = ◦(A ∧ B) − 2 = 1, ◦(A|Bc) = 1 and
◦(Ac|B) = 2− 2 = 0 = ◦(Ac|Bc).
- Pl1(A) = 0 and Pl1(B) > 0, then it follows
◦(A|B) = ◦(A ∧ B) − 1 = 2, ◦(A|Bc) = 2 and
◦(Ac|B) = 1− 1 = 0 = ◦(Ac|Bc).
On the other hand, when Pl(B|A) > 0, it follows from
the above system Pl1(A) = 0, so Pl1(B) = 1 and
◦(Ac ∧B) = 1, ◦(A ∧B) = 2, while ◦(A ∧Bc) ≥ 2. It
implies ◦(A|B) = 1 while ◦(A|Bc) ≥ 2.

We can conclude this case: if Pl(B|A) = 0 any agree-
ing class of PlD satisfies the two equalities; while if
Pl(B|A) > 0 no agreeing class satisfies the two equal-
ities among the relevant zero-layers.

If Pl(Bc) = 0 is analogous to the previous one, just
exchange B with Bc.

3. If Pl(Ac) = 0 is the same as 2., with Ac playing
the role of A.

From the above result we get

Corollary 1 Given a coherent conditional plausibil-
ity Pl defined on F . If A is independent of B under
Pl, then

Pl(A ∧B) = Pl(A)Pl(B).

It follows that the proposed notion of independence
implies cognitive independence of Shafer [29], called
also weak independence by Kong [27].

We have also the converse implication under suitable
hypothesis, as shown in the next result.

Proposition 1 Given a coherent conditional plau-
sibility Pl defined on F . If Pl(B), Pl(Bc),
Pl(A), P l(Ac) are greater than 0, and

Pl(A ∧B) = Pl(A)Pl(B)
Pl(A ∧Bc) = Pl(A)Pl(Bc)
Pl(Ac ∧B) = Pl(Ac)Pl(B)

Pl(Ac ∧Bc) = Pl(Ac)Pl(Bc)

then A is independent of B under [Pl].

Proof: It follows directly from the definition of con-
ditional plausibility and the properties of zero-layers.

The following example shows that the positivity con-
dition cannot be avoided.



Example 4 Let A,B be two possible events and con-
sider the assessment
Pl(B) = 0, P l(Bc) = 1, P l(A ∧Bc) = Pl(Ac ∧Bc) =
Pl(A) = Pl(Ac) = Pl(A|Bc) = Pl(Ac|Bc) = 2

3 ,
P l(A|B) = Pl(Ac|B) = 1

2 .
It is easy to show that Pl is a coherent conditional
plausibility and for any atom generated by A and B,
e.g. A ∧ B, its plausibility is equal to the product of
the plausibilities of A and B, i.e.

Pl(A ∧B) = Pl(A)Pl(B).

But, under Pl, we have that A is not independent of
B.

Proposition 2 Under any coherent conditional plau-
sibility Pl, for any event A the statement “A is inde-
pendent of itself” does not hold.

Proof: Since by the axioms of conditional plau-
sibilities we have that Pl(A|A) = 1, while
Pl(A|Ac) = Pl(∅|Ac) = 0, if follows that the
statement does not hold.

The previous property (irreflexivity) is natural and
essential, in fact any event must be dependent on itself.

Moreover, independence implies logical independence,
as proved below. Recall that two events A and B
are logically independent if all the events of the form
A∗ ∧ B∗ (where A∗ stands for A or Ac) are possible,
i.e. the number of relevant atoms is maximal.

Theorem 5 Let Pl be a coherent conditional plausi-
bility defined on F . Given two possible events A,B ∈
F , if A is independent of B under Pl, then A and B
are logically independent.

Proof: If there is a logical constraint between A
and B we show that there is no agreeing class
satisfying condition (aa). If, for example, A ∧B = ∅,
then Pl(A|B) = 0 and ◦(∅) = ◦(A|B) = +∞;
while being A ∧ Bc = A a possible event
◦(A|Bc) ≤ ◦(A ∧ Bc) < +∞. The proof for
other logical constraints follows similarly.

This is an intuitive implication: in fact if an event
is “logically” related to another, the two events must
be not independent under any uncertainty measure.
Handling logical constraints is interesting also from a
practical point of view, since in many real applications
variables are suitably linked.

Remark 4 Actually, independence under a measure
assures the logical independence and this implication
is guaranteed by the requirement (aa) of Definition 5.

We recall that logical independence is taken into ac-
count also in [29] (as well in [2]), and it looks natural
looking on Dempster rule. However, the independence
notion introduced in [2] do not respect the above impli-
cation when events with degree of belief 0 are involved.

We recall that the main difference between the ap-
proaches of [29] and [2] is that the first is referred to
belief or plausibility function that are normalized (as
in this paper) while in the second approach are taken
in consideration also not normalized measures.

The following result characterizes independence in
terms of the conditional plausibility (avoiding zero-
layers).

Theorem 6 Let A and B be two logically indepen-
dent events. If a coherent conditional plausibility Pl
is such that

Pl(A|B) = Pl(A|Bc) = Pl(A)

and
Pl(Ac|B) = Pl(Ac|Bc) = Pl(Ac)

then A⊥⊥B[Pl] if and only if one (and only one) of
the following conditions holds:

1. Pl(A) · Pl(Ac) > 0;

2. Pl(A) = 0 and the coherent extension of Pl to
Pl(B), Pl(Bc), Pl(B|A), Pl(Bc|A) satisfies one
of the following:

a) Pl(B) · Pl(Bc) > 0 and
Pl(B|A) · Pl(Bc|A) > 0,

b) Pl(B) = 0 and Pl(B|A) = 0,

c) Pl(Bc) = 0 and Pl(Bc|A) = 0;

3. Pl(Ac) = 0 and the coherent extension of Pl
to Pl(B), Pl(Bc), Pl(B|Ac), Pl(Bc|Ac) satisfies
one of the following:

a) Pl(B) · Pl(Bc) > 0 and
Pl(B|Ac) · Pl(Bc|Ac) > 0,

b) Pl(B) = 0 and Pl(B|Ac) = 0,

c) Pl(Bc) = 0 and Pl(Bc|Ac) = 0;

Proof: The items highlighted in the theorem state-
ment follow directly by the proof of Theorem 4. In
particular when Pl(A) ·Pl(Ac) > 1 is obvious because
◦(A∗|B∗) = 0 for all agreeing class. Moreover cases
Pl(A) = 0 and Pl(Ac) = 0 correspond to the case 2.
and 3. of Theorem 4 respectively: this result follows
along the same proof of the previous result.



From the above result it comes out that the provided
independence notion is not symmetric, and this hap-
pens when events with zero plausibility are involved.
If Pl(A), P l(Ac), P l(B), P l(Bc) takes positive values
and A⊥⊥B under Pl, then

Pl(B|A) =
Pl(A|B)Pl(B)

Pl(A)
= Pl(B),

so going along the same computations Pl(B|A) =
Pl(B|Ac) and Pl(Bc|A) = Pl(Bc|Ac) = Pl(Bc),
which implies that also the statement B⊥⊥A holds.

Since coherent conditional probability are a particular
plausibility, and since the provided conditional inde-
pendence for conditional plausibility is just a general-
ization of that given for conditional probability [9, 32]
the fact that symmetry can fail when possible events
of zero plausibility are involved is not a surprise, dif-
ferent examples have been given in the quoted papers
to show that the lack of symmetry can be intuitive.

3.1 Independence for belief functions

By means of duality we obtain that if Pl is a coherent
conditional plausibility on a set of conditional events
C and Bel is its dual function on

C∗ = {E|H : Ec|H ∈ C},
then Bel is a coherent conditional belief function (see
Theorem 3).

Moreover, for A|B, A|Bc, A ∈ C
Pl(A|B) = Pl(A|Bc) = Pl(A)

if and only if

Bel(Ac|B) = Bel(Ac|Bc) = Bel(Ac)

for Ac|B, Ac|Bc, Ac ∈ C.
Then, it could seem reasonable to take A independent
of B under Bel if and only if A is independent of B
under the dual conditional plausibility Pl.

Recall that as shown in Section 2 a class L is agreeing
for Bel if and only if it is agreeing also for the dual
conditional plausibility Pl.

Note that this means that many properties of indepen-
dence under plausibilities continue to be valid under
belief functions, as for example independence implies
logical independence. Moreover, also several results
can be reformulated, as e.g. the characterization of
independence of two possible events in terms of their
belief (as done for plausibilities in Theorem 6).

Nevertheless, this notion of independence need to be
studied more deeply: we need to detect better the role
of zero-layers, and to exploit the relationship with the
factorization property, i.e.

Bel(A∗ ∧B∗) = Bel(A∗)Bel(B∗).

Actually, the factorization has been adopt (as notion
of independence) in [28] to prove under some technical
hypothesis a strong law of large numbers for belief
functions.

In the following example we propose a situation
where, under a plausibility Pl, the event A is inde-
pendent of B, but the factorization fails under the
dual function of Pl.

Example 5 Consider the following basic assignment
with focal elements

mA∧B =
1
2
,mA∨B = mΩ =

1
4
;

which gives rice to the following belief function
Bel(A ∧ B) = Bel(A) = Bel(B) = Bel(A ∨ Bc) =
Bel(Ac ∨ B) = 1

2 , Bel(Ac ∧ Bc) = Be(Ac) =
Bel(Bc) = Bel(Ac ∨ Bc) = 0, and so to plausibil-
ity Pl(A ∧ B) = Pl(A) = Pl(B) = 1 Pl(A ∧ Bc) =
Pl(Ac ∧B) = 1

2 Pl(Ac ∧Bc) = 1
4 .

Then, the induced conditional plausibility is such that
A⊥⊥B[Pl] (and B⊥⊥A[Pl]), but Bel(A ∧ B) = 1

2 6=
Bel(A)Bel(B) = 1

4 .

Thus, our notion of independence under a plausibil-
ity is stronger than cognitive independence [27, 29].
However, in the case of positive events it does not im-
ply evidential independence, called also strong inde-
pendence [29, 27], which coincides with the require-
ment of factorization of the belief function and its
dual. However, by adding to our independence notion
the factorization property with respect to the belief
function, we obtain a notion stronger than evidential
independence. These considerations are useful also
for comparing our notion with some concepts of in-
dependence, irrelevance and non-interactivity, given
in [2] (also for non necessarily normalized measures)
since the notion of doxastic independence and non-
interactivity coincide with evidential independence in
the case of interest, i.e. for normalized measures.

3.2 Conditional independence

The notion of independence between two events given
in Definition 5 can be generalized to that of condi-
tional independence:

Definition 6 Given a coherent conditional plausibil-
ity Pl on a set of conditional events F containing
D = {A∗|B∗ ∧ C, A∗|C}, A is independent of B con-
ditionally to C under Pl (in symbol A⊥⊥B|C [Pl]), if
both the following conditions hold:

i. Pl(A|B ∧ C) = Pl(A|Bc ∧ C) = Pl(A|C)
Pl(Ac|B ∧ C) = Pl(Ac|Bc ∧ C) = Pl(Ac ∧ C),



ii. there exists an agreeing class L = {Plα} for the
restriction of Pl to D such that

◦(A|B ∧ C) = ◦(A|Bc ∧ C) and
◦(Ac|B ∧ C) = ◦(Ac|Bc ∧ C).

Considerations similar to the unconditional case can
be done: when Pl(A|B ∧ C) and Pl(Ac|B ∧ C) are
both positive, then both equalities in condition ii. are
trivially (as 0=0) satisfied. While in the other two
cases (i.e. Pl(A|B ∧C) = 0 or Pl(Ac|B ∧C) = 0) the
equality i. is not enough to assure independence, so
it is “reinforced” by the requirement that also their
relevant zero-layers must be equal.

Remark 5 If the events A and C (or Ac and C) are
incompatible, then A is independent of any event B
given C whenever ∅ 6= B ∧C 6= C. This conclusion is
natural since the plausibility 0 (or 1) of A|C cannot
be changed by assuming the occurrence of B.

Actually, even if the restriction of Pl to D admits
more than one agreeing class, we can prove along the
line of Theorem 4, that condition ii. of Definition
6 holds either for all agreeing classes or for none of
them.

Going on the same line of the proofs given for Theo-
rem 4 and Theorem 6, we can characterize conditional
independence in terms of plausibilities: it would be a
simply generalization of Theorem 6.

4 Summary and Conclusions

In this paper, we look to conditional plausibility and
belief from a more general point of view. In partic-
ular we are able to handle events with null measure.
In this framework we provide a definition of indepen-
dence and we give a characterization of it, we study its
main properties, which allow us to compare our defin-
ition with other given in literature (in particular with
respect to the notions introduced in [2, 3, 27, 29]). We
recall that our notion of independence for plausibility
is in the same line of that studied in [9, 11, 24, 32] for
probability and possibility.

Through different examples we explain also the reason
for taking exactly the provided definition, our choice
has been guided mainly by two main reasons: to get
a natural condition overcoming critical aspects and
to get a suitable factorization of the joint plausibility
distribution.

We show that the provided independence notion is not
necessarily symmetric, then to represent such state-
ments we need to refer to some not necessarily sym-
metric separation criterion such as that proposed in

[33]. An open problem consists into looking for the
representability of the set of independence statements
induced by a conditional plausibility (belief) by means
of a directed or undirected graph by testing which
properties among the graphoid ones are satisfied: this
would allow to compare our definition also with other
independence notions given in the context of other
uncertainty formalisms.
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Abstract

We consider the task of proving Walley’s (joint or
strong) coherence of a number of probabilistic assess-
ments, when these assessments are represented as a
collection of conditional lower previsions. In order to
maintain generality in the analysis, we assume to be
given nearly no information about the numbers that
make up the lower previsions in the collection. Un-
der this condition, we investigate the extent to which
the above global task can be decomposed into simpler
and more local ones. This is done by introducing a
graphical representation of the conditional lower pre-
visions, that we call the coherence graph: we show
that the coherence graph allows one to isolate some
subsets of the collection whose coherence is sufficient
for the coherence of all the assessments. The situa-
tion is shown to be completely analogous in the case
of Walley’s notion of weak coherence, for which we
prove in addition that the subsets found are optimal,
in the sense that they embody the maximal degree
to which the task of checking weak coherence can be
decomposed. In doing all of this, we obtain a number
of related results: we give a new characterisation of
weak coherence; we characterise, by means of a spe-
cial kind of coherence graph, when the local notion of
separate coherence is sufficient for coherence; and we
provide an envelope theorem for collections of lower
previsions whose graph is of the latter type.

Keywords. Walley’s strong and weak coherence, co-
herent lower previsions, graphical models, coherence
graph.

1 Introduction

Suppose we plan to carry out a statistical analysis
about a certain domain modelled by the following

lower previsions:

P 1(X1), P 2(X2|X1), P 3(X3|X2), P 4(X4|X3),

P 5(X5, X6|X1), P 6(X2|X3), P 7(X7|X4), P 8(X8|X5),

P 9(X8|X6), P 10(X9, X10|X6, X7), P 11(X11|X9, X10).

Each of them represents a real functional interpreted
as a subject’s lower prevision (i.e., lower expectation)
for every bounded real-valued function of the random
variables on the l.h.s. of the bar, conditional on given
values of the variables on the r.h.s. of the bar.

In order to carry out the analysis, we should first ver-
ify that the assessments represented by the lower pre-
visions are self-consistent, or coherent. Indeed coher-
ence is a (minimal) requirement of rationality, and it
is the key that enables one to use a number of power-
ful theoretical tools to do statistical inference.

Yet, checking coherence can be particularly difficult
even in the simple setting illustrated above. In fact,
this is a common problem. The power of coherence
comes with a price: the technical complications that
arise when dealing explicitly with it.

This is the case of the coherence notion that is the fo-
cus of this paper, i.e., Walley’s definition of coherence
[4, Section 7.1.4(b)], which we also call joint or strong
coherence, so as to distinguish it from a weaker notion,
also developed by Walley, and called weak coherence.
Weak and strong coherence are reviewed in Section 2
of this paper, along with other introductory material
about Walley’s theory of coherent lower previsions.

We argue that the mentioned difficulty is strictly re-
lated to the fact that coherence, by its very nature, is
a global notion: as such, it seems to resist being repre-
sented and verified in a local fashion. This is enforced
by our initial results in Section 3: we show that a
number of (conditional) lower previsions, such as P 1,
. . . , P 11 in the above example, are weakly coherent if
and only if there is an extension, i.e., a lower previ-
sion P (X1, . . . , X11) in the example, that is pairwise
coherent with each of them; and they are strongly co-



herent if and only if they are globally coherent with
such an extension. In other words, strong coherence
seems to be much less amenable to local considera-
tions than other, weaker notions of coherence.

Still, locality is an important property: it is the ba-
sis for having compact and efficient models of uncer-
tainty, as well as models that are easier to understand,
as it is widely acknowledged after the lesson given
by graphical models in statistics and artificial intelli-
gence.

The question, at this point, is the following: can we
preserve both locality and (strong) coherence?

We regard the present paper as a first positive answer
to this question; such an answer is made possible by
a new graphical model that we propose in Section 5,
and that we call coherence graph. Coherence graphs
are graphical representations of the structural con-
nections of the lower previsions in a given collection.
For example, the coherence graph for the lower previ-
sions P 1, . . . , P 11 is shown in Figure 1. Its semantics
should be obvious once we identify the lower previ-
sions with the black solid circles in the graph.
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Figure 1: The coherence graph for P 1, . . . , P 11.

We talk of structural connections, or of collection tem-
plate, as defined in Section 4, because we do not focus
on the numbers that make up the lower previsions; by
coherence graphs we rather aim at revealing the struc-
ture behind the notion of coherence. This structure
tells us to what extent the task of checking coherence
can be made local. For instance, from the graph in
Figure 1 we shall deduce that P 1, . . . , P 11 are coher-
ent if so are the lower previsions

P 1(X1), P 2(X2|X1), P 3(X3|X2), P 5(X5, X6|X1),

P 6(X2|X3), P 8(X8|X5), P 9(X8|X6).

More generally speaking, our main result, stated in
Section 6, is that coherence graphs allow us to graph-
ically find out a so-called minimal partition of the
collection of lower previsions, such that the coherence

of the lower previsions in each set of the partition is
sufficient for the coherence of the overall collection.

We show that the situation is completely analogous if
we focus on weak coherence: proving weak coherence
within each set of the minimal partition is sufficient
for the weak coherence of the overall collection. In
addition, in the case of weak coherence we can show
that the partition found using the coherence graph is
indeed minimal, in the sense that it is not possible
to use non-coarser1 alternative partitions to the same
extent.

We should mention that these results are fully gen-
eral with respect to the kind of admissible possibility
spaces: they hold irrespective of the fact that we are
dealing with finite, countable, or continuous spaces,
possibly at the same time. Hence, our results can be
used in fields as diverse as expert systems and statis-
tics, just to name a few. Moreover, they are also valid
for collections of linear previsions, i.e., they do not
depend on the precise or imprecise character of the
assessments.

We see two major consequences of our results. The
first is directly related to proving coherence. We be-
lieve that coherence graphs, by making the structure
behind coherence explicit, have the potential to give a
boost to the theoretical advances in probability, and
especially in imprecise probability. Similarly, there
seems to be substantial hope for coherence graphs to
enhance also the state-of-the-art algorithms for prov-
ing coherence. In the case of finite spaces of possi-
bilities, this task is typically addressed by linear pro-
gramming problems [1, 2, 5] that tend to grow very
large as a consequence of the underlying NP-hardness
of the task itself. But, by exploiting the structure
of coherence graphs, it will often be possible to de-
compose the overall linear programming problem in a
number of smaller ones, thus speeding up computa-
tion.

The second consequence is more of a principled kind,
and is related to a subset of coherence graphs, called
of type A1, that leads to partitions entirely made up
of singletons. This implies that the related collections
are immediately known to be coherent, irrespective of
their numerical values, provided each of their elements
satisfies a local property, called separate coherence.
We should like to give a special perspective on these
collections, by making an analogy with propositional
logic. In propositional logic, the formulas that hold
irrespective of the values their Boolean variables take,
are called tautologies, and are regarded as the rules of

1Proving weak coherence within the sets of a coarser parti-
tion would immediately imply weak coherence within the sets
of the minimal partition.



logic. We think that collections of lower previsions
that have an A1-representation have a special role,
and may embody a kind of ‘compositional’ rules that
deliver jointly coherent collections by local considera-
tions alone.

2 Coherent lower previsions

Let us give a short introduction to the concepts and
results from the behavioural theory of imprecise prob-
abilities that we shall use in the rest of the paper. We
refer to [4] for an in-depth study of these and other
properties.

Given a possibility space Ω, a gamble is a bounded
real-valued function on Ω. This function represents a
random reward f(ω), which depends on the a priori
unknown value ω of Ω. We shall denote by L(Ω) the
set of all gambles on Ω. A lower prevision P is a real
functional defined on some set of gambles K ⊆ L(Ω).
It is used to represent a subject’s supremum accept-
able buying prices for these gambles, in the sense that
for any ǫ > 0 and any f in K the subject is disposed
to accept the uncertain reward f − P (f) + ǫ.

We can also consider the supremum buying prices for
a gamble, conditional on a subset of Ω. Given such a
set B and a gamble f on Ω, the lower prevision P (f |B)
represents the subject’s supremum acceptable buying
price for the gamble f , updated after coming to know
that the unknown value ω belongs to B, and nothing
else. If we consider a partition B of Ω (for instance a
set of categories), then we shall represent by P (f |B)
the gamble on Ω that takes the value P (f |B) if and
only if ω ∈ B. The functional P (·|B) that maps any
gamble f on its domain into the gamble P (f |B) is
called a conditional lower prevision.

Let us now re-formulate the above concepts in terms
of random variables, which are the focus of our
attention in this paper. Consider random vari-
ables X1, . . . , Xn, taking values in respective sets
X1, . . . ,Xn. For any subset J ⊆ {1, . . . , n} we shall
denote by XJ the (new) random variable

XJ := (Xj)j∈J ,

which takes values in the product space

XJ := ×j∈JXj .

We shall also use the notation Xn := X{1,...,n}. This
will be our possibility space in the rest of the paper.

Definition 1. Let J be a subset of {1, . . . , n}, and let
πJ : Xn → XJ be the so-called projection operator,
i.e., the operator that drops the elements of a vector
in Xn that do not correspond to indexes in J . A
gamble f on Xn is called XJ -measurable when for any
x, y ∈ Xn, πJ(x) = πJ (y) implies that f(x) = f(y).

There exists a one-to-one correspondence between
the gambles on Xn that are XJ -measurable and the
gambles on XJ : given an XJ -measurable gamble f

on Xn, we can define f ′ on XJ by f ′(x) := f(x′),
where x′ is any element in π−1

J (x); conversely, given
a gamble g on XJ , the gamble g′ on Xn given by
g′(x) := g(πJ (x)) is XJ -measurable.

Consider two disjoint subsets O, I of {1, . . . , n}.
Then, P (XO|XI) represents a subject’s behavioural
dispositions about the gambles that depend on the
outcome of the variables {Xk, k ∈ O}, after coming
to know the outcome of the variables {Xk, k ∈ I}.
As such, it is defined on the set of gambles that de-
pend on the values of the variables in O ∪ I only, i.e.,
in the set KO∪I of the XO∪I -measurable gambles on
Xn. Given such a gamble f and x ∈ XI , P (f |XI = x)
represents his supremum acceptable buying price for
the gamble f , if he came to know that the variable XI

took the value x (and nothing else). Under the nota-
tion we gave above for lower previsions conditional on
events and partitions, this would be P (f |B), where
B := π−1

I (x). When there is no possible confusion
about the variables involved in the lower prevision, we
shall use the notation P (f |x) for P (f |XI = x). The
sets {π−1

I (x) : x ∈ XI} form a partition of Ω. Hence,
we can define the gamble P (f |XI), which takes the
value P (f |x) on x ∈ XI . This is a conditional lower
prevision.

The XI -support S(f) of a gamble f in KO∪I is given
by S(f) := {π−1

I (x) : x ∈ XI , fIπ
−1
I

(x) 6= 0}, i.e., it is

the set of conditioning events for which the restriction
of f is not identically zero. Here, and in the rest of
the paper, IA will be used to denote the indicator
function of the set A, i.e., the function whose value is
1 in the elements of A and 0 elsewhere. Also, for any
gamble f in the domain KO∪I of the conditional lower
prevision P (XO|XI), and any x ∈ XI , we shall denote
by G(f |x) the gamble Iπ

−1
I

(x)(f − P (f |x)), and by

G(f |XI) the gamble that takes the value G(f |πI(y))
in all y ∈ Xn.

These assessments can be made for any disjoint sub-
sets O, I of {1, . . . , n}, and therefore it is not un-
common to model a subject’s beliefs using a finite
number of different conditional previsions. Then, we
should verify that all the assessments modelled by
these conditional previsions are coherent with each
other. The first requirement we make is that for any
disjoint O, I ⊆ {1, . . . , n}, the conditional lower previ-
sion P (XO|XI) defined on KO∪I should be separately
coherent.2 In this case, where the domain is a lin-
ear set of gambles, separate coherence holds if and

2We refer to [4] for more general definitions of the following
notions in this section in terms of partitions, and for domains
that are not necessarily (these) linear sets of gambles.



only if the following conditions are satisfied for any
x ∈ XI , f, g ∈ KO∪I , and λ > 0:

1. P (f |x) ≥ infy∈π
−1
I

(x) f(y).

2. P (λf |x) = λP (f |x).

3. P (f + g|x) ≥ P (f |x) + P (g|x).

Separate coherence means on the one hand that, if
a subject knows that the variable XI has taken the
value x, he cannot raise the (conditional) lower previ-
sion of a gamble by considering the acceptable buying
transactions that are implied by other gambles in the
domain, and on the other hand that he should bet at
any odds on the event that XI = x after having ob-
served it. In general, separate coherence is not enough
to guarantee the consistency of the lower previsions:
conditional lower previsions can be conditional on the
values of many different variables, and still we should
verify that the assessments they provide are consis-
tent not only separately, but also with each other.
Formally, we are going to consider what we shall call
collections of conditional lower previsions.

Definition 2. Consider a set of conditional lower pre-
visions {P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} with re-

spective domains K1, . . . ,Km ⊆ L(Xn), where Ki

is the set of XOi∪Ii
-measurable gambles,3 for i =

1, . . . , m. Then, this is called a collection on Xn when
for each i 6= j in {1, . . . , m}, either Oi 6= Oj or Ii 6= Ij .

This means that we do not have two different condi-
tional lower previsions giving information about the
same set of variables XO, conditional on the same set
of variables XI .

Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be a collection
of conditional lower previsions, and let us see the dif-
ferent ways in which we can guarantee their consis-
tency.

Definition 3. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are
weakly coherent when for any fi ∈ Ki, i = 1, . . . , m,
j ∈ {1, . . . , m}, f0 ∈ Kj , z ∈ XIj

,

sup
x∈Xn

[

m
∑

i=1

Gi(fi|XIi
) − G(f0|z)](x) ≥ 0.

Although this condition already assures that each of
the conditional lower previsions is separately coher-
ent, it does not prevent some inconsistencies from ap-
pearing: see [4, Example 7.3.5] for an example. This
is the reason why we consider a stronger notion, called
(joint or strong) coherence:

3We use K
i instead of KOi∪Ii

in order to alleviate the no-
tation.

Definition 4. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are
coherent when for every fi ∈ Ki, i = 1, . . . , m,
f0 ∈ Kj , z ∈ XIj

, there exists some B ∈ {π−1
J (z)} ∪

⋃m

i=1 Si(fi) such that

sup
x∈B

[

m
∑

i=1

Gi(fi|XIi
) − G(f0|z)](x) ≥ 0,

where Si(fi) is the XIi
-support of fi.

In the next section, we prove a number of results that
will help to understand better the differences between
weak and strong coherence. But before we do that,
we introduce a special case that will be of special in-
terest for us: that of conditional linear previsions. We
say that a conditional lower prevision P (XO|XI) on
the set KO∪I is linear if and only if it is separately
coherent and moreover P (f + g|x) = P (f |x)+ P (g|x)
for any x ∈ XI and f, g ∈ KO∪I . Conditional lin-
ear previsions correspond to the case where a sub-
ject’s supremum acceptable buying price (lower pre-
vision) coincides with his infimum acceptable selling
price (or upper prevision) for any gamble on the do-
main. When a separately coherent conditional lower
prevision P (XO|XI) is linear we shall denote it by
P (XO|XI).

If we consider a collection of conditional linear previ-
sions P1(XO1 |XI1), . . . , Pm(XOm

|XIm
) with domains

K1, . . . ,Km, then they are coherent if and only if they
avoid partial loss: for every fi ∈ Ki, i = 1, . . . , m,
there is some B ∈

⋃m

i=1 Si(fi) such that

sup
x∈B

[

m
∑

i=1

Gi(fi|XIi
)](x) ≥ 0,

where, again, Si(fi) = {π−1
Ii

(x) : x ∈ XIi
, fiIπ

−1
Ii

(x) 6=

0}.

One interesting feature of conditional linear previsions
allows to easily characterise separate coherence: a
conditional lower prevision P (XO|XI) is separately
coherent if and only if it is the lower envelope of a
closed (in the weak-* topology) convex set of dominat-
ing conditional linear previsions, where P (XO|XI) is
said to dominate P (XO|XI) when for every XO∪I -
measurable gamble f , P (f |x) ≥ P (f |x) for every
x ∈ XI . Note, however, that in general a collection of
coherent conditional lower previsions is not necessar-
ily the lower envelope of a collection of coherent (i.e.,
avoiding partial loss) conditional linear previsions.

Finally, one interesting particular case is that where
we are given only an unconditional lower previ-
sion P on L(Xn) and a conditional lower prevision
P (XO|XI) on KO∪I . Then, weak and strong coher-
ence are equivalent, and they both hold if and only if,
for any XO∪I -measurable f and any x ∈ XI ,



(C1) P (G(f |XI)) ≥ 0

(C2) P (G(f |x)) = 0.

If both P and P (XO|XI) are linear previsions, they
are coherent if and only if for any XO∪I -measurable
f it holds that P (f) = P (P (f |XI)).

3 Weak and strong coherence

The following theorem gives a new characterisation of
the weak coherence of the conditional lower previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

Theorem 1. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are
weakly coherent if and only if there is some coherent
lower prevision P on L(Xn) such that

{

P (Gi(f |XIi
)) ≥ 0 for any f in Ki

P (Gi(f |x)) = 0 for any f in Ki, x in XIi
.

Remark 1. When all the conditional previsions are
linear, then weak coherence is equivalent to the exis-
tence of a linear prevision that is coherent with each of
the conditionals: we can deduce from Theorem 1 and
[4, Section 6.5.5] that any linear prevision P dominat-
ing P will satisfy P (Gj(f |XIj

)) = 0 for any f ∈ Kj ,
and this implies that P is coherent with Pj(XOj

|XIj
).

When moreover all the spaces X1, . . . ,Xn are finite,
we deduce from Theorem 1 that the weak coherence of
the conditional previsions Pj(XOj

|XIj
), j = 1, . . . , m,

is equivalent to the existence of a linear prevision (a
finitely additive probability) on Xn inducing the con-
ditional previsions by means of Bayes rule. This is
not enough, however, for the conditional previsions
to be coherent. For a counterexample, see [4, Exam-
ple 7.3.5]. �

From this theorem, we can easily deduce the following
two results, that relate (weak or strong) coherence to
the existence of an unconditional lower prevision that
is (weakly or strongly) coherent with the collection.

Proposition 1. The conditional lower previ-
sions P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are coherent

if and only if there is some coherent uncondi-
tional lower prevision P on L(Xn) such that P ,
P 1(XO1 |XI1),. . . ,P m(XOm

|XIm
) are coherent.

Corollary 1. The conditional lower previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are weakly

coherent if and only if there is some coher-
ent lower prevision P on L(Xn) such that
P , P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are weakly

coherent.

These results allow us to understand a bit better
the conceptual difference between weak coherence and

(strong) coherence: weak coherence amounts to the
existence of a joint that is pairwise coherent with each
of the conditional lower previsions; coherence means
that there is a joint that is coherent with all the con-
ditional lower previsions, taken together.

4 Collection templates

In this paper we are interested in proving coherence
properties of lower previsions without assuming to
be given information about the numbers that make
up the lower previsions themselves, other than they
produce separately coherent assessments. For this we
need at least to focus on the ‘form’ of the lower pre-
visions, which we call template.

Definition 5. Let P j′(XOj′
|XIj′

) and
P j′′(XOj′′

|XIj′′
) be two lower previsions on Xn.

We say that they have the same template if
Oj′ = Oj′′ and Ij′ = Ij′′ . The class of all the lower
previsions on Xn with the same template is just
called lower prevision template on Xn (of the generic
lower previsions in the class). We denote a lower
prevision template in the same way as we denote a
lower prevision (the distinction should be clear from
the context): i.e., by P j(XOj

|XIj
).

Definition 6. Similarly, we say that two collections
of lower previsions on Xn have the same template if
they contain the same number m of lower previsions,
and if it is possible to order the elements in each col-
lection in such a way that for all j in {1, . . . , m} the
two respective j-th lower previsions have the same
template. The class of all the collections on Xn with
the same template is just called collection template
on Xn (of the generic collection in the class). We
denote a collection template in the same way as we
denote a collection of lower previsions (again, the dis-
tinction should be clear from the context): i.e., by
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)}.

The notion of a collection template should be regarded
a special kind of assessment about a collection of lower
previsions, in the sense that knowing the template of a
collection means knowing that the collection belongs
to a certain set. An equivalent way to look at a col-
lection template is as a collection of lower prevision
templates. For this reason, we shall sometimes refer
to the lower previsions templates in a collection tem-
plate.

5 Coherence graphs

In this section, we introduce a graphical representa-
tion of collection templates based on directed graphs.
For this, we start by recalling some terminology from
graph theory.



A directed graph is a structure made up of a set of
nodes and a set of directed arcs between nodes. Two
nodes connected by an arc are also called its end-
points. A sequence of at least two nodes for which
each pair of adjacent nodes is an arc in the graph,
is called directed path between the first and the last
node in the sequence (also called origin and destina-
tion nodes, respectively). When the origin and des-
tination nodes coincide, and this is the only case of
repeated node in the sequence, we say that the path
is a directed cycle, or just a cycle, for short. Note that
a path uniquely identifies a sequence of arcs; for this
reason, by an abuse of terminology, we shall some-
times refer to the arcs of a path.

The predecessors of a node are all the nodes that have
a directed path towards the given node. The prede-
cessors for which there is a directed path made up of a
single arc, are called parents. The indegree of a node
is the number of its parents. A node with indegree
equal to zero is called a root. Similarly, the successors
of a node are all the nodes that can be reached from
the given node following directed paths. The succes-
sors for which there is a directed path made up of a
single arc, are called children. The outdegree of a node
is the number of its children. A node with outdegree
equal to zero is called a leaf.

The union of the set of parents and children of a node
is called the set of its neighbors. The union of two
graphs is a graph created by taking the union of their
nodes and their arcs, respectively.

Now we are ready to define the most important graph-
ical notion used in this paper.

Definition 7. Consider two finite sets Z =
{X1, . . . , Xn} and D = {D1, . . . , Dm} of so-called ac-
tual and dummy nodes, respectively. Call N := Z∪D
the set of nodes, and a given A ⊆ N × N the set of
arcs. The triple < Z,D,A > is called a coherence
graph on Z if the following properties hold:

(CG1) Z is non-empty.

(CG2) All neighbors of dummy nodes are actual nodes,
and vice versa.

(CG3) The set of the parents and that of the children of
any dummy node have an empty intersection.

(CG4) Dummy nodes are not leaves.

(CG5) Different dummy nodes do not have both the
same parents and the same children.

Figure 1 used in the Introduction is just an example
of a coherence graph, with actual nodes X1, . . . , X11.
Note that to make graphs easier to see, we represent

dummy nodes in a simplified way: we do not show
their labels and rather represent each of them simply
as a black solid circle (this does not pose a problem
since each dummy node is univocally identified by its
neighbors); moreover, when a dummy node has ex-
actly one parent and one child, we do not represent
the arrow entering the dummy node (this is not going
to cause ambiguity either).

Next, we show that there is a one-to-one relationship
between coherence graphs on Z = {X1, . . . , Xn} and
collection templates on Xn. To this extent, it is useful
to isolate the notion of a D-structure in a coherence
graph.

Definition 8. Given a dummy node D of a coherence
graph, we call D-structure the subgraph whose nodes
are D and its neighbors, and whose arcs are those
connecting D to its neighbors.

In the graph of Figure 1 there are 11 D-structures, one
per dummy node. For example, a D-structure is the
subgraph made by the actual nodes X9, X10, X11, by
the dummy node in the middle, and by the arcs that
connect them; another D-structure is the subgraph
made by X1, X2, the dummy node in between, and
the arc(s) connecting them.

At this point we consider two functions: the first one,
that we shall denote by Γ, maps a collection tem-
plate {P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)}, related to

the variables {X1, . . . , Xn} =: Z, into a coherence
graph on Z, with dummy nodes {D1, . . . , Dm}. This
mapping is determined by the following procedure:

(Γ1) Let Z := {X1, . . . , Xn} be the set of actual nodes.

(Γ2) Let D := {D1, . . . , Dm} be the set of dummy
nodes.

(Γ3) Let A := ∅.

(Γ4) For all j ∈ {1, . . . , m}, all i′ ∈ Ij , all i′′ ∈ Oj ,
add the arcs (Xi′ , Dj) and (Dj , Xi′′) to A.

The second function, that we denote by Γ−1, maps a
coherence graph on Z = {X1, . . . , Xn}, with dummy
nodes {D1, . . . , Dm}, into the collection template
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)}, related to the

variables {X1, . . . , Xn}. This mapping is determined
by the following procedure:

(Γ−11) Set the collection of lower prevision templates
equal to the empty set.

(Γ−12) For all j ∈ {1, . . . , m}, add P j(XOj
|XIj

) to the
collection template, where Oj and Ij are the set
of indexes of the children and the parents of Dj ,
respectively.



The idea behind the two functions is very simple:
identifying lower prevision templates in a collection
with D-structures in the related coherence graph, and
vice versa.

Consider the graph of Figure 1 once again. By apply-
ing Function Γ−1 we, unsurprisingly, obtain the col-
lection of lower prevision templates used as starting
example in the Introduction:

{P 1(X1), P 2(X2|X1), P 3(X3|X2), P 4(X4|X3),

P 5(X5, X6|X1), P 6(X2|X3), P 7(X7|X4), P 8(X8|X5),

P 9(X8|X6), P 10(X9, X10|X6, X7), P 11(X11|X9, X10)}.

It is easy then to see that Function Γ gives back
the original graph once it is applied to such a collec-
tion template. The reason is that the two functions
turn out to be each other’s inverses. This is shown
by the next theorem, which also allows us to prove
the wanted one-to-one relationship between coherence
graphs and collection templates.

Theorem 2. There is one-to-one relationship be-
tween coherence graphs and collection templates.

Next, we introduce some graph-based terminology
that is more directly relevant to our subsequent re-
sults.

Definition 9. We say that an actual node of a coher-
ence graph is a (potential) source of contradiction (or
conflict) if it has more than one parent or if it belongs
to a cycle.

Definition 10. A coherence graph without sources of
contradiction is said to be of type A1 : i.e., acyclic
and with maximum indegree for actual nodes equal
to one. The corresponding collection template is said
to be representable as a graph of type A1, or simply
A1-representable.

The graph in Figure 2 is clearly not of type A1, as
there are three sources of contradiction: X8, given its
two parents; X2, because it has two parents and also
because it is part of a cycle; and X3, because it is in
such a cycle, too.

Definition 11. Given a source of contradiction Z, call
block for Z, or BZ , the subgraph obtained by taking
the union of the D-structures of the dummy nodes
that are predecessors of Z.

Definition 12. Call superblock of a coherence graph,
any union of all the blocks that share at least one
actual node.

Figure 2 displays the only two different blocks of the
coherence graph under consideration: the block for X8

and that for X3 (note that the latter coincides with
the block for X2). Those blocks have the node X1 in
common (besides its dummy parent); their union is
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Figure 2: The areas delimited by closed lines contain
two blocks of the coherence graph: BX8 and BX3 .
Their union is a superblock.

thus a superblock, which is also the only one in the
graph.

Observe that there can be many configurations of
blocks in a superblock: a superblock can be made
up of a single block; if it is made up of more than one
block, it may be the case that some blocks coincide
(as BX2 and BX3 in Figure 2), that one of them is
included in another, or that two of them share only
some nodes (as BX3 and BX8 in the same figure).

We use the notion of superblock in order to build a
partition of the dummy nodes.

Definition 13. Call minimal partition of the dummy
nodes in a coherence graph, the partition whose el-
ements are the sets of dummy nodes in each su-
perblock, and the singletons made up of the remain-
ing dummy nodes. The corresponding partition of
{1, . . . , m} is denoted by B and is simply called the
minimal partition.

Note that B refers also to a partition of the related col-
lection template, given the one-to-one correspondence
between dummy nodes and lower prevision templates.
With respect to the graph in Figure 2, we obtain the
following partition of the related collection template:

{{P1(X1), P 2(X2|X1), P 3(X3|X2), P 5(X5, X6|X1),

P 6(X2|X3), P 8(X8|X5), P 9(X8|X6)},

{P 4(X4|X3)}, {P 7(X7|X4)}, {P 10(X9, X10|X6, X7)},

{P 11(X11|X9, X10)}}.

Moreover, note that for A1-representable collection
templates, the minimal partition is entirely made up
of singletons, because their coherence graph has no
sources of contradiction.



6 Coherence graphs as tools to prove

coherence

The following theorem gives us conditions under
which the coherence of some subsets of a collection
of conditional lower previsions implies the coherence
of all the elements in the collection. It shows that it is
sufficient that the conditional lower previsions whose
indices belong to the same element in B are coherent.

Theorem 3. Consider a collection
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} of sepa-

rately coherent conditional lower previsions
with known templates. Then, if for any
B ∈ B, {P j(XOj

|XIj
)}j∈B are coherent, then

{P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

)} are coherent.

The intuition behind the proof of the theorem is
the following. We exploit the properties of the
coherence graph to create a total order on a set
of coherent lower previsions strongly related to
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
). That order allows

us to use the generalisation of the Marginal Exten-
sion Theorem (MET, in short) established in [3] to
show that the lower previsions in that set are co-
herent, and from this to derive the coherence of
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

It is easy to see a similar result holds when we work
with weak coherence instead of coherence:

Theorem 4. Consider a collection
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} of sepa-

rately coherent conditional lower previsions
with known templates. Then, if for any
B ∈ B, {P j(XOj

|XIj
)}j∈B are weakly coherent,

then {P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

)} are weakly
coherent.

Next, we investigate in which sense the partition B
given by Definition 13 is minimal. For this, we should
like to know if there are other partitions of {1, . . . , m}
that we can use for the same end, meaning that the
coherence of the conditional lower previsions within
each of the elements of the partition guarantees the
coherence of the collection template.

A first positive result in this regard is that the par-
tition B is indeed minimal when we are studying the
problem for weak coherence:

Proposition 2. Let B′ be a partition of
{1, . . . , m}, and assume that, for any B′

in B′, {P j(XOj
|XIj

)}j∈B′ are weakly coher-
ent. Then, this implies the weak coherence of
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} if and only if B

is finer than B′.

The sufficiency part in this proposition is actu-
ally Theorem 4, which can be proven in a simi-

lar way as Theorem 3. The idea for the neces-
sity part is to show that, when the necessary condi-
tion fails, we can create conditional linear previsions
P1(XO1 |XI1), . . . , Pm(XOm

|XIm
) that are not weakly

coherent and yet for all B′ in B′, {Pj(XOj
|XIj

)}j∈B′

are weakly coherent.

A basic step in the construction of such lower previ-
sions is to prove that for any given j ∈ {1, . . . , m}
and any x ∈ XOj

, we can define weakly coherent con-
ditional previsions P1(XO1 |XI1), . . . , Pm(XOm

|XIm
)

such that any compatible joint P satisfies
P (π−1

Oj
(x)) = 1. Even stronger, we can show

that any compatible joint with some of these con-
ditional previsions satisfies P (π−1

Oj
(x)) = 1. This is

proven using the following lemmas:4

Lemma 1. For any i = 1, . . . , n, let us con-
sider xi

1, x
i
2 ∈ Xi. Define the conditional previsions

P1(XO1 |XI1), . . . , Pm(XOm
|XIm

) with respective do-
mains K1, . . . ,Km by5

Pj(f |y) :=

{

f((xi
1)i∈Oj

, y) if y = (xi
1)i∈Ij

f((xi
2)i∈Oj

, y) otherwise,

for any j = 1, . . . , m, y ∈ XIj
and f ∈ Kj. Then,

P1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are coherent.

Lemma 2. For any i = 1, . . . , n, let us con-
sider xi

1, x
i
2 ∈ Xi. Define the conditional previ-

sions P1(XO1 |XI1), . . . , Pm−1(XOm−1 |XIm−1) with re-
spective domains K1, . . . ,Km−1 by

Pj(f |y) :=

{

f((xi
1)i∈Oj

, y) if y = (xi
1)i∈Ij

f((xi
2)i∈Oj

, y) otherwise,

for any y ∈ XIj
, f ∈ Kj , and define Pm(XOm

|XIm
)

by

Pm(f |y) := f((xi
2)i∈Om

, y)

for any y ∈ XIm
and f ∈ Km. Then,

P1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are weakly coher-
ent.

However, a similar result to Proposition 2 does not
apply for coherence, due, among other things, to the
fact that the previsions in Lemma 2 are weakly coher-
ent but not coherent. As a consequence, there exist
instances of collection templates where the coherence
within the elements of a partition which is not coarser
than B guarantees the coherence of all of them. One
such case is given in the following example.

4Although the previsions in these lemmas correspond to 0-1
valued probabilities, this is not essential for the developments
made in the proof of the theorem; it is possible to obtain similar
results using probabilities that are not 0-1 valued.

5We are using there the one-to-one correspondence between
gambles on X

j and gambles in K
j .



Example 1. Consider the collection template
{P 1(X1), P 2(X2|X1), P 3(X2, X3|X1)}. Then, the
minimal partition B associated to its coherence graph
is {1, 2, 3}. However, we can deduce the coherence
of the collection template using a smaller subset.
For this, we must prove first that the coherence
of P 2(X2|X1), P 3(X2, X3|X1) holds if and only if
for any X1 × X2-measurable gamble f and for any
x1 ∈ X1,

P 2(f |x1) = P 3(f |x1).

Using this property, we deduce that, when
P 2(X2|X1), P 3(X2, X3|X1) are coherent, then
{P 1(X1), P 2(X2|X1), P 3(X2, X3|X1)} are coherent
if and only if P 1(X1), P 3(X2, X3|X1) are. But
since P 1(X1), P 3(X2, X3|X1) are always coherent
because of the marginal extension theorem in [4,
Theorem 6.7.2], we deduce that the coherence of
P 2(X2|X1), P 3(X2, X3|X1) implies the coherence of
the collection template. �

It remains an open problem at this stage to deter-
mine a minimal partition with the property that the
coherence within each of the elements of the partition
guarantees the coherence of the collection template,
and that is minimal in the sense that it is finer than
any other partition with the same property.

In this respect, we can deduce from Theorem 3 that
the separate coherence of the conditional lower pre-
visions {P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} implies

their joint coherence when their associated coherence
graph is of type A1. Using Lemma 1, we can prove
that being of type A1 is also necessary for this prop-
erty.

Proposition 3. Consider a collection
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} of sepa-

rately coherent conditional lower previsions with
known templates. Then the separate coherence of
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} implies their

coherence if and only if their coherence graph is of
type A1.

Note on the other hand that, with respect to weak co-
herence, we also have a necessary and sufficient con-
dition for the separate coherence to imply the weak
coherence, because of Proposition 2:

Corollary 2. Consider a collection
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} of sepa-

rately coherent conditional lower previsions with
known templates. Then the separate coherence of
{P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)} implies their

weak coherence if and only if their coherence graph is
of type A1.

We should like to conclude this section remarking that

if the collection template is A1, then we can give the
following Bayesian sensitivity analysis interpretation:

Theorem 5. Consider a collection of separately co-
herent conditional lower previsions. If their coherence
graph is A1, then these lower previsions are lower en-
velopes of a family of coherent linear previsions.

The interest of this result lies in the fact that the
lower envelopes of a family of coherent conditional
linear previsions are coherent conditional lower pre-
visions, but the converse does not hold in general:
there exist instances of coherent conditional lower pre-
visions that are not even dominated by any family
of coherent conditional linear previsions. A sufficient
condition for the converse to hold is that the spaces
X1, . . . ,Xn are finite. This theorem shows that, if the
coherence graph is A1, then the coherent conditional
lower previsions are also lower envelopes of coherent
conditional linear previsions, no matter the cardinal-
ity of the spaces.

7 Discussion

Coherence can be regarded as the very essence of a
theory of personal probability. But working directly
with coherence can be particularly onerous.

This paper is an attempt to deal with this difficulty,
and to deliver tools that make checking coherence
easier. We have been inspired in this by the lesson
of graphical models, and have indeed defined a new
graphical model called a coherence graph.

Coherence graphs are means to render explicit the
structure behind the notion of coherence. We have
shown that such a structure induces a partition of the
available collection of lower previsions, with the char-
acteristic that the coherence within each set of the
partition implies the coherence of the overall collec-
tion.

This result is very general: it holds for lower previ-
sions and for any cardinality of the possibility spaces
involved. In particular, since it holds for lower previ-
sions, it is also applicable to determine the coherence
of a collection of conditional linear previsions, and
therefore is also useful in the precise context.

More generally speaking, we expect the results in this
paper to have substantial theoretical as well as prac-
tical consequences, whenever the focus is on the task
of proving coherence. They already appear to shed
light on specific aspects of coherence, thanks espe-
cially to coherence graphs of type A1. These graphs
correspond to collections of separately coherent lower
previsions that are coherent irrespective of the numer-
ical values that make them up.



Remember that we have shown that there are im-
portant conceptual differences between the notions
of weak and strong coherence proposed by Walley.
Weak coherence is equivalent to the existence of a
joint lower prevision that is coherent with each of the
assessments. In the particular case of conditional lin-
ear previsions and finite spaces, this is equivalent to
the existence of a joint mass function inducing each
of the conditionals by means of Bayes rule. The in-
troduction of the notion of strong coherence is needed
because some conditional lower previsions can have a
common joint and still be clearly incoherent with one
another. Remarkably, this happens even in the linear
and finite case mentioned above.

Taking this into account, we find it noteworthy that,
for the problem tackled here, weak and strong coher-
ence exhibit a similar behaviour: if we have a number
of assessments and all we know about them is that
each of them is separately coherent, we can guarantee
that they are weakly coherent exactly under the same
conditions for which we can deduce their joint coher-
ence: we just need the graph representing the col-
lection template to be A1. More generally, we have
established a partition of the graph for which weak
coherence inside implies weak coherence of them all,
and we have proven that strong coherence inside this
partition also implies the strong coherence of all the
assessments. It is worth pointing out that there are
also differences: we have shown that the minimal par-
tition obtained using a coherence graph is indeed min-
imal in the case of weak coherence and not necessarily
so for strong coherence.

Another point worth emphasising is the connection,
used repeatedly in the proofs of this paper, between
the A1 condition and the generalisation of the MET
established in [3]: the relationship arises as from the
A1 condition we can establish a total order on the con-
ditional lower previsions in our collection template,
and such an order is just what allows us to use the
generalised MET. In this way, we have also given an
easy graphical characterisation of the extent to which
the theorem can be applied: to A1-representable col-
lection templates.

Finally, we have proven that if the separate coherence
of the lower previsions in a collection template implies
their joint coherence (that is, if the associated coher-
ence graph is A1), then the conditional lower previ-
sions in the template are lower envelopes of coherent
linear previsions. This does not hold for all collec-
tions of coherent conditional lower previsions, as is
shown in [4, Section 6.6]. So it is remarkable that our
results lead naturally to a Bayesian sensitivity analy-
sis interpretation of the collection of conditional lower
previsions.

As a topic for future research, we should like to men-
tion the study of the coherence of collection templates
when we have some additional structural assessments,
such as considerations of irrelevance or independence.
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Abstract
Suppose that a risk-averse expected utility maximizer
with a precise probability distribution p bets opti-
mally against a risk neutral opponent (or equiva-
lently invests in an incomplete market for contingent
claims) whose beliefs (or prices) are described by a
convex setQ of probability distributions. This utility-
maximization problem is the dual of the problem of
�nding the distribution q in Q that minimizes a gen-
eralized divergence (relative entropy) with respect to
p. A special case is that of logarithmic utility, in
which the corresponding divergence is the Kullback-
Leibler divergence, but we present a closed-form so-
lution for the entire family of linear-risk-tolerance
(a.k.a. HARA) utility functions and show that this
corresponds to a particular parametric family of gen-
eralized divergences, which is derived from an entropy
measure originally proposed by Arimoto and which
is also related to a generalization of pseudospherical
scoring rule originally proposed by I.J. Good. A vari-
ant of this decision problem, in which the decision
maker has quasilinear utility for consumption over
two periods, leads to the family of power divergences,
which is related to a generalization of the power fam-
ily of scoring rules.

Keywords. entropy, divergence, scoring rules, port-
folio optimization, incomplete markets

1 Introduction

There are many applications in which it is of interest
to measure the di¤erence between a precise probabil-
ity distribution p and another precise probability q,
or between a precise probability and the nearest or
farthest point in some set of imprecise probabilities,
in terms of the gain or loss that a decision maker expe-
riences as a result of that di¤erence. For example, q
might be a prior probability distribution over some set
of events, which is later updated to a posterior distrib-
ution p based on new information, and the magnitude

of the di¤erence between p and qmight determine the
quantity or value of that information for purposes of
signal transmission or decision making. Or, p might
be the precise probability of a decision maker who has
the opportunity to bet or trade against an opponent
whose beliefs are described by a precise probability q
or by a set of imprecise probabilities Q, in which case
the decision maker can obtain a greater expected pay-
o¤ or expected utility the farther that p is from q or
from the nearest point in Q. Or, the decision maker�s
probability p might itself be imprecise, known only to
lie within some set P, and it might be of interest to
�nd the distribution that is nearest to the center of P
in the sense of minimizing the maximum loss that the
decision maker could su¤er by acting upon the wrong
probability.

The considerable literature on this topic includes (at
least) three distinct but intertwined strands: scor-
ing rules, entropy, and decision analysis. Scoring
rules are reward functions for eliciting and evaluating
probability forecasts, and the expected score associ-
ated with a forecast can be interpreted as a measure of
the value of the forecaster�s information. Entropy is
a measure of the channel capacity required to commu-
nicate a stream of signals generated by a stationary
process, and relative entropy measures the reduction
in channel capacity that is possible when new informa-
tion yields an updated signal distribution. Decision
analysis provides a general framework for measuring
information in terms of gains in expected utility, as
well for determining how to optimally use informa-
tion to choose portfolios of �nancial assets.

These information-theoretic tools have been used for
many decades, but new applications and theoreti-
cal developments have emerged during the last few
years on several fronts, including experimental eco-
nomics, robust Bayesian statistics, and �nancial engi-
neering. The objective of this paper is to add to this
recent stream of interdisciplinary literature by broad-
ening the concept of a scoring rule to include a not-



necessarily-uniform baseline distribution and to show
that this leads immediately to tight connections with
some well-known measures of divergence (relative en-
tropy) as well as with models of utility maximization
in markets under uncertainty. In the setting where
some probabilities are imprecise, we focus on the prob-
lem in which p is outside the set Q and the quantity
of interest is the divergence between p and its nearest
neighbor in Q. More details and proofs of the main
results are given in Jose et al. (2007)

2 Scoring rules

Scoring rules are reward functions for eliciting and
evaluating probabilities, and they have played an im-
portant role in the foundations of subjective probabil-
ity theory (de Finetti 1937 & 1974, Good 1952, Win-
kler 1967 & 1996, Savage 1971, Lindley 1982) as well
as practical applications such as incentive schemes for
paying weather forecasters (Brier 1950) and subjects
in economic experiments (Selten 1998) and for eval-
uating the quality of forecasts used in risk analysis
(Cooke 1991). Consider an individual (the �fore-
caster�) who is asked to assess a probability distri-
bution over a set of n mutually exclusive and col-
lectively exhaustive events. Let p denote the fore-
caster�s true distribution, let r = (r1; :::; rn) denote
her reported distribution (if di¤erent from p), and
let ei denote the probability distribution that assigns
probability 1 to event i and zero to all other events,
i.e., the indicator vector for event i. A scoring rule is
conventionally expressed as a function S(r;p), linear
in its second argument, such that the score obtained
if event i occurs is S(r; ei), and the forecaster�s ex-
pected score for reporting r when her true distribution
is p is S(r;p) =

P
i piS(r; ei). It is assumed that

the forecaster�s objective is to maximize her expected
score, which means that either she is risk neutral and
S(r; ei) is measured in units of money or else she is
non-risk neutral and S(r; ei) is measured in units of
utility.

The scoring rule is de�ned to be [strictly ] proper
if it encourages honest reporting in the sense that
S(p;p) � S(r;p) for every r and p [with equality only
when r = p], so that the forecaster whose true distrib-
ution is p maximizes her expected score by truthfully
reporting p rather than some other distribution. The
forecaster�s optimal expected score that is obtained
when her distribution is p will be denoted by merely
suppressing the �rst argument: S(p) � S(p;p). A
proper scoring rule has a canonical representation in
terms of its optimal-expected-score function, as noted
by McCarthy (1956) and further elaborated by Hen-
drickson and Buehler (1971) and Savage (1971). In
particular, if S(:) is a di¤erentiable function, then

S(�; �) is uniquely determined by the formula

S(r;p) = S(r) +rS(r) � (p� r): (1)

where rS(r) denotes the gradient of S(�) evaluated
at r, and conversely every function S that is [strictly]
convex and di¤erentiable uniquely de�nes a [strictly]
proper scoring rule. Written in this form, the
expected score yielded by a proper scoring rule is
seen to be closely related to a particular measure
of divergence between probability distributions that
is known as a Brègman divergence (Brègman 1967),
a connection that has been discussed by Grünwald
and Dawid (2004), Dawid (2006), and Gneiting and
Raftery (2007). Any strictly convex function F de-
�nes a Brègman divergence BF (pkr) as follows:

BF (pkr) = F (p)� F (r)�rF (r) � (p� r):

Letting F (p) = S(p), it follows that for any strictly
proper scoring rule, the function S(p)�S(r;p), which
represents the forecaster�s expected loss for reporting
r when her true distribution is p, is a Brègman di-
vergence, and vice versa. Thus, there is a one-to-one
correspondence between strictly proper scoring rules
and Brègman divergences.

The literature of scoring rules has mainly focused
on a few strictly proper rules with particularly
convenient parametric forms, axiomatic representa-
tions, and/or geometrical interpretations, namely the
quadratic, logarithmic, and spherical scoring rules.
The quadratic rule (a.k.a. �Brier score�) is S(p; ei) =
� (kei � pk2)

2. Thus, under the quadratic rule, the
forecast p is treated as an estimate of the indicator
vector of the uncertain event ei, and the forecaster
is ultimately penalized in proportion to the squared
Euclidean distance between p and the realized value of
ei, in the tradition of least squares estimation. The
logarithmic scoring rule is S(p; ei) = ln(pi), whose
optimal expected score function is the negative en-
tropy of the forecaster�s true distribution, an issue to
which we return below. (Some prescient comments
on the potential connection between scoring rules and
entropy were made by Good (1971).) The spherical
scoring rule is S(p; ei) = pi= kpk2, and it is obtained
by letting the set of feasible score vectors be the sim-
plest strictly convex object in Rn, namely the unit
sphere.

The quadratic and spherical rules can be generalized
into parametric families by replacing the 2-norm with

the vector �-norm, kpk� �
�Pn

j=1 p
�
j

�1=�
. The gen-

eralized spherical rule is the pseudospherical scoring
rule, pi=(kpk�)��1, which was �rst proposed by Good
(1971). The generalized quadratic rule is the power

scoring rule, �p��1i �(��1)
�
kpk�

��
. Written in this



conventional fashion, these families of rules are well-
de�ned and proper only for � > 1 and the correspond-
ing optimal-expected-score functions that generate

them via McCarthy�s formula are simply
�
kpk�

��
and kpk� , respectively. The logarithmic scoring rule
is the limiting case of both the pseudospherical and
power scores as � �! 1, but otherwise the two fami-
lies do not intersect.

3 Weighted score rules and
divergence measures

A key property of the aforementioned scoring rules
is that they treat events symmetrically in the sense
that if pi = [>] pj , then the score in event i is equal
to [greater than] the score in event j, regardless of
the descriptions of the events, and the forecaster�s ex-
pected score is smallest when p is the uniform distrib-
ution. Thus, they implicitly reward the forecaster in
proportion to some measure of the di¤erence of p from
a uniform distribution. However, in most real (and
even hypothetical) applications, the relevant reference
point is not a uniform distribution. For example, in
weather forecasting the events that are of interest are
often known to have widely varying a priori proba-
bilities, and �baseline�values for those probabilities,
upon which the forecaster is supposed to improve, are
obtainable from historical records (Winkler 1994) or
alternative forecasting models. In predicting the out-
comes of sporting events or movements of �nancial
markets, there are public betting lines or posted prices
for contingent claims that implicitly assign probabil-
ities to events. Therefore, we propose that scoring
rules should be generalized so as to reward the fore-
caster in proportion to some measure of the di¤erence
between p and an appropriate baseline distribution q.
Such a scoring rule will be henceforth referred to as
weighted scoring rule; it will be expressed as a func-
tion of three arguments, S(r;pkq), and its associated
optimal expected score will be expressed as a function
of two arguments, S(pkq).

There are various functional forms through which the
dependence of the score on the baseline distribution
could be modeled, and the one we that we �nd most
compelling, for both practical and theoretical reasons,
is that for �xed p and q the score in state i should
depend on the ratio pi=qi, so that if pi=qi = [>] pj=qj ,
then the score in event i should be equal to [greater
than] the score in event j. One simple rationale for
this desideratum is that when bets may be placed on
outcomes of events, relative rather than absolute dif-
ferences in probabilities are what matter, insofar as a
$1 bet on state i has an expected payo¤of $pi=qi when
the bettor�s probability is pi and the posted odds are

based on qi. Another rationale can be illustrated
by a simple example: suppose that the state space
consists of 4 states formed by the Cartesian product
of two binary events E and F , and suppose it hap-
pens that the forecaster and client both agree on the
probability of F and they also agree that E and F
are probabilistically independent. Then it seems rea-
sonable that the forecaster�s payment should depend
only on the outcome of E, not F , and this requires
the payo¤ in each of the four states to depend only
on the ratio of p to q, which is the relative change in
the evaluation of the probability of E.

The measurement of di¤erences between probabilities
in terms of ratios has a long history in statistics and
information theory. It was noted above that under a
strictly proper scoring rule, the forecaster�s expected
loss for reporting a distribution r that is other than
her true distribution p is a particular kind of diver-
gence between r and p, namely a Brègman divergence.
Under a weighted strictly proper scoring rule that
bases the score on the ratio pi=qi the forecaster�s ex-
pected gain for possessing a distribution p that di¤ers
from q is a second kind of divergence, which is not a
Brègman divergence. Rather, it turns out to be a spe-
cial case (or a simple transformation) of another kind
of generalized divergence known as an f -divergence
(Csiszár 1967). If f is a strictly convex function, the
corresponding f -divergence is de�ned as

Df (pkq) = Ep[f(p=q)]: (2)

Divergences of this general form have been widely
used in statistics for many years as �utility-free�mea-
sures of the value of the information - e.g., Goel
(1983) uses f -divergence to de�ne a �conditional
amount of sample information� for measuring prior-
to-posterior information gains in Bayesian hierarchi-
cal models. More recently it has been recognized
that f -divergences are interpretable as measures of
expected utility gains that are available to decision
makers who have opportunities to bet against less-
well-informed opponents or to invest in �nancial mar-
kets, as will be more fully discussed in later sections
of this paper.

When the ratio pi=qi is substituted for pi in the
pseudospherical and power scoring rules, and they are
a¢ nely transformed so as to yield scores of zero when
p = q, we obtain the weighted pseudospherical score,
denoted SS� , and the weighted power score, denoted



by SP� , with the following parametric forms:

SS� (p; eikq) � (3)

1

� � 1

0@ pi=qi

(Ep[(p=q)��1])
1=�

!��1
� 1

1A ;
SP� (p; eikq) � (4)

(pi=qi)
��1 � 1

� � 1 � Ep[(p=q)
��1]� 1
�

:

Note that for any �xed values of p, q;
and �, the pseudospherical score vector
(SS� (p; e1kq); :::; SS� (p; enkq)) is a positive
a¢ ne transformation of the power score vector
(SP� (p; e1kq); :::; SP� (p; enkq)), since both vectors
are a¢ ne transformations of (p=q)��1, although the
origins and scale factors of the transformations vary
with p, q; and �. Thus, although the two rules
yield di¤erent expected payo¤s as a function of p
(for the same q and �), and they create di¤erent
incentives for information-gathering and di¤erent
penalties for dishonest reporting, they nevertheless
present the same relative risk pro�le to a truthful
forecaster whose p is already �xed. At � = 1 both
rules converge to the weighted logarithmic score
ln(pi=qi). At � = 2, weighted forms of the quadratic
and spherical scoring rules are obtained. The cases
� = 0 and � = 1

2 have not received much (if any)
attention in the antecedent literature, but it will be
shown later that � = 0 corresponds to a decision
model involving exponential utility, which is the
utility function most commonly used in applied
decision analysis, while � = 1

2 arises from a decision
model involving reciprocal utility, which has some
appealing symmetry properties and is closely related
to the Hellinger distance between p and q. These
special cases will be further explored in the next two
sections.

The corresponding optimal-expected-score functions
for the two families of weighted scoring rules are:

SS� (pkq) =

�
Ep[(p=q)

��1]
�1=� � 1

� � 1 ; (5)

SP� (pkq) =
Ep[(p=q)

��1]� 1
�(� � 1) ; (6)

and one is a monotonically increasing function of the
other for any �xed �. Our �rst result is to point
out that these expected score functions correspond
exactly to two parametric families of generalized di-
vergence (cross-entropy) between probability distrib-
utions. In particular the weighted power expected
score SP� (pkq) is precisely the directed divergence of
order � between p and q proposed by Havrda and

Chavrát (1967), variants of which have been discussed
by Rathie and Kannappan (1972), Cressie and Read
(1984), and Haussler and Opper (1997). Cressie and
Read refer to this quantity as the power divergence,
which we shall also do here.

The weighted pseudospherical score SS� (pkq) is the
cross-entropy measure that arises from a general-
ized entropy introduced by Arimoto (1971) and fur-
ther elaborated by Sharma and Mittal (1975), Boe-
kee and Van der Lubbe (1980) and Lavenda and
Dunning-Davies (2003). Arimoto�s generalized en-
tropy of order � is de�ned for � > 0 by �=(� �
1)
�
Ep[p

��1]1=� � 1
�
: The factor of � in the nu-

merator plays no essential role when � is restricted
to be positive, and without it the measure is ac-
tually valid for all real �, and when p��1 is re-
placed by (p=q)��1 so as to de�ne a cross-entropy,
the weighted pseudospherical expected score is ob-
tained. It is therefore appropriate to refer to the
latter quantity as the pseudospherical divergence of
order � between p and q. Both of these general-
ized divergences reduce to the Kullback-Leibler di-
vergence Ep[ln(p=q)] at � = 1, and for other spe-
cial cases of � they are related to two other well
known divergences, namely the Chi-square divergence
�2(qkp) = Ep[p=q] � 1 and the Hellinger distance

DH(pkq) �
�Pn

j=1

�p
pj �

p
qj
�2�1=2

as shown in

the following table:

Table 1. Power & pseudospherical divergences

� SP� (pkq) SS� (pkq)
�1 1

2�
2(qkp) 1

2

�
1� (�2(qkp) + 1)�1

�
0 DKL(qkp) 1� exp(�DKL(qkp))
1
2 2DH(pkq)2 2

�
1�

�
1� 1

2DH(pkq)
2
�2�

1 DKL(pkq) DKL(pkq)
2 1

2�
2(pkq)

p
�2(pkq) + 1� 1

Note that the power divergence is symmetric around
� = 1

2 in the sense that S
P
� (pkq) = SP1��(qkp), i.e.,

the roles of p and q are merely reversed when � is
replaced by 1� �.

4 Decision models and information
measures

Our second result is to show that the same two fam-
ilies of generalized divergence arise naturally as the
solutions of two canonical expected-utility maximiza-
tion problems, involving the most widely-used para-
metric family of utility functions, in which a risk
averse decision maker with subjective probability dis-



tribution p bets against a non-strategic risk-neutral
opponent with distribution q, or equivalently, invests
in a contingent claims market where prices are de-
termined by taking expectations with respect to q.
A contingent claim is a claim to monetary payments
that are contingent on states of the world, and it can
be represented as an n-vector of payo¤s y that has
some market price p(y) at which it can be purchased
in arbitrary positive multiples. (In a �nancial mar-
ket, the relevant states of the world might be possible
values of a stock price or stock index on a particular
future date, and a contingent claim might be a share
of stock or an option to buy a share of that stock
at a pre-speci�ed strike price.). A decision maker
who buys � units of y at its market price receives a
net payo¤ of �(yi � p(y)) in state i, hence the vec-
tor �(y � p(y)1) is a feasible net payo¤ vector for
the decision maker for all positive �. The market is
complete if every contingent claim has a unique price
at which it can be both bought and sold, in which
case �(y � p(y)1) is a feasible payo¤ vector for all
real �, positive or negative. If the market prices are
also arbitrage-free (�coherent�), then there exists a
unique probability distribution q that prices all con-
tingent claims according to their expected payo¤s, so
that p(y) = Eq[y] for all y 2 Rn; and any x 2 Rn
that satis�es Eq[x] = 0 is a feasible net payo¤ vector.
In Bayesian theory this existence result is known as de
Finetti�s �fundamental theorem of probability,�with
p(y) referred to as the �prevision�of y, and in �nance
theory it is known as the �fundamental theorem of
asset pricing,� with q referred to as a �risk neutral
distribution� because assets are priced �as if� by a
risk neutral opponent whose probability distribution
is q.

In the �rst canonical problem (�S�), there is a single
time period in which consumption occurs and the de-
cision maker has a single-attribute vNM utility func-
tion u(x). The decision maker�s optimal expected
utility, denoted US(pkq), is determined by:

Problem S : (7)

US(pkq) � max
x2Rn

Ep[u(x)] s.t: Eq[x] = 0;

where u(x) � (u(x1); :::; u(xn)) denotes the vector
of utilities that u yields when applied to x. In
the second problem (�P�), there are two periods in
which consumption occurs and the decision maker
with probability distribution p has a quasilinear vNM
utility function u(a; b) = a + u(b) where a is money
consumed at time 0 and b is money consumed at time
1. The decision maker�s objective is to choose a vec-
tor x of time-1 payo¤s to be purchased from time-0
funds at market prices so as to maximize the expected
utility of consumption in both periods. The time-0

cost of purchasing x is Eq[x], so the optimal expected
utility, denoted UP(pkq); is the solution of:

Problem P : (8)

UP(pkq) � max
x2Rn

Ep[u(x)]� Eq[x]:

Next, let u be a utility function from the general expo-
nential/logarithmic/power family, which will be para-
meterized here as:

u�(x) �
1

� � 1((1 + �x)
(��1)=� � 1) (9)

for �x > �1. This parameterization has two key
properties. First, u�(0) = 0 and u0�(0) = 1; so
that for any � the marginal rate of substitution be-
tween time-0 consumption and time-1 consumption is
unity at x = 0 for the decision maker in Problem
P. Second, the corresponding risk tolerance func-
tion ��(x), which is the reciprocal of the Pratt-Arrow
risk aversion measure, is the following linear func-
tion of wealth: ��(x) � �u0�(x)=u00�(x) = 1 + �x.
Thus, the risk tolerance as well as the marginal util-
ity is normalized to a value of 1 at x = 0, and � is
the coe¢ cient of risk tolerance, i.e., the increase in
risk tolerance per unit of increase in wealth. The
linear-risk-tolerance utility functions are also known
as hyperbolic-absolute-risk-aversion (HARA) utility
functions in the literature of �nancial economics, al-
though parameterizing them in terms of their risk tol-
erance coe¢ cients rather than their risk aversion co-
e¢ cients is more useful for our purposes. Some im-
portant special cases of u� are given in Table 2:

Table 2. Linear-risk-tolerance utility functions

� u�(x) Functional form
�1 u�1(x) = � 1

2 ((1� x)
2 � 1) Quadratic

0 u0(x) = 1� exp(�x) Exponential
1
2 u1=2(x) = 2

�
1� 1

1+x=2

�
Reciprocal

1 u1(x) = ln(1 + x) Logarithmic
2 u2(x) =

p
1 + 2x� 1 Square-root

The utility functions fu�g also exhibit a symmetry
around � = 1

2 , namely that u1��(x) = �u�(�x), or
equivalently u�(�u1��(�x)) = x. In other words,
the graph of u1�� is obtained from the graph of
u� by merely re�ecting it around the line y = �x.
Note that the power (exponent) in u� is the term
(��1)=�, which has the property that ((��1)=�)�1 =
((1 � �) � 1)=(1 � �), so that swapping � for 1 � �
results in another power utility function whose power
is the reciprocal of the original. Thus, up to a¢ ne
scaling, the reciprocal utility function (� = 1

2 ) is self-
symmetric, the exponential and logarithmic utility



functions (� = 0 and � = 1) are symmetric to each
other, and the power utility function with exponent �
is symmetric to the power utility function with expo-
nent 1=� for any positive or negative � other than 0
or 1.

Let xS�(pkq) and xP� (pkq) denote the solutions of
Problems S and P when u = u� , with ith ele-
ments xS�;i(pkq) and xP�;i(pkq), respectively, and let
US� (pkq) and UP� (pkq) denote their corresponding ex-
pected utilities. In these terms, we have:

THEOREM 1:

(a) SS� (p; eikq) = u�(xS�;i(pkq)),

and SS� (pkq) = US� (pkq)

(b) SP� (p; eikq) = u�(xP�;i(pkq))� Eq[xP� (pkq)],

and SP� (pkq) = UP� (pkq)

(c) SP� (pkq) � SS� (pkq) for all p, q, and �.

Thus, the statewise utility gains to the decision
maker under problems S and P are precisely the
pseudospherical and power scores for the same p, q,
and �, and the expected utilities are the correspond-
ing divergences.

5 Utility/entropy duality in
incomplete markets

We now extend the preceding results to a setting in
which the decision maker�s risk neutral betting oppo-
nent has imprecise probabilities, which is equivalent to
an incomplete market where a contingent claim may
have a �bid-ask spread�rather than a single price at
which it can be both bought and sold. The bid-
ask spreads generally do not su¢ ce to determine a
unique risk neutral distribution; rather, they only de-
termine a convex set Q of risk-neutral distributions
such that x is a feasible net payo¤ vector for the de-
cision maker if and only if Eq[x] � 0 for all q 2 Q.
(The payo¤ to the opponent is �x, hence the con-
straint Eq[x] � 0 for all q 2 Q means that the oppo-
nent with imprecise probabilities Q will accept only
those bets yielding non-negative expected payo¤s for
all q 2 Q.) The problem of expected-utility maxi-
mization in incomplete markets has been widely stud-
ied in the mathematical �nance literature in recent
years, and it has been shown that there is a duality
relationship between maximization of expected utility
and minimization of an appropriate measure of rela-
tive entropy or divergence (e.g., Frittelli 2000, Rouge
and El Karoui 2000, Goll and Rüschendorf 2001, Del-
baen et al. 2002, Slomczyński and Zastawniak 2004,
Ilhan et al. 2004, Samperi 2005). Most of this lit-

erature has focused on the case of exponential utility,
for which the dual problem is the minimization of the
reverse KL divergence DKL(q;p), as well as on issues
that arise in multi-period or continuous-time markets.
In this section we will show that in a single-period or
two-period market, the duality relationship applies to
the entire spectrum of linear-risk-tolerance utility and
pseudospherical divergence or power divergence.

An incomplete, single-period market can be parame-
terized in either of two ways. One is in terms of an
m � n matrix A whose rows are feasible net payo¤
vectors, i.e., A = faijg where aij is the net payo¤
that the decision maker receives in the jth state of
the world for purchasing one unit of the ithcontingent
claim at its asking price. (It su¢ ces to consider only
purchases at asking prices, rather than sales at bid
prices, since a bid price of p for a contingent claim y
is equivalent to an asking price of �p for �y.) Alter-
natively, the market can be parameterized in terms of
a k � n matrix Q whose rows are risk neutral proba-
bility distributions that support the contingent claim
prices, i.e., Q = fqijg where qij is the probability
of the jth state of the world under the ith risk neu-
tral distribution. The rows of Q are the extremal
risk-neutral probability distributions assigning non-
positive expectation to all the rows ofA, i.e., the rows
of �Q are the dual cone of the rows of A. The sec-
ond parameterization will be adopted here, in terms
of which Q is the convex hull of the rows of Q, so that
a generic element of Q can be expressed as q = zTQ
where z is an element of 4k, the unit simplex in Rk,
and the feasibility requirement that Eq[x] � 0 for all
q 2 Q can be expressed as Qx � 0.

In the incomplete-market generalization of Problem
S, the problem of �nding the maximum expected util-
ity, which will be denoted as US� (pkQ), is dual to the
problem of �nding the minimum pseudospherical di-
vergence of order � between p and all q in the con-
vex hull of the rows of Q, which will be denoted as
SS� (pkQ):

Primal Problem S :

US� (pkQ) � max
x2Rn

Ep[u�(x)]; Qx � 0

Dual Problem S :

SS� (pkQ) � min
z24k

SS� (pkz
T
Q):

In the incomplete-market generalization of Problem
P, the decision maker�s objective is to determine an
amount w to be spent at time 0 to �nance consump-
tion in period 1. For the period-1 payo¤ vector x
that the decision maker wishes to purchase, the risk-
neutral expected value of x needs to be less than or
equal to w for all the extremal risk neutral distribu-
tions. The corresponding primal and dual problems



are:

Primal Problem P :

UP� (pkQ) � max
x2Rn

Ep[u�(x)]� w; Qx � w1

Dual Problem P :

SP� (pkQ) � min
z24k

SP� (pkz
T
Q):

The special case � = 1 corresponds to logarithmic
utility in the primal problem and KL divergence in
the dual problem, while � = 0 corresponds to expo-
nential utility in the primal problem and reverse KL
divergence in the dual problem, and the cases � = 1=2
and � = �2 are related to the squared Hellinger dis-
tance and the Chi-square divergence as shown in Ta-
ble 1. These duality relationships are formalized in:

THEOREM 2:
(a) In an incomplete, single-period market, maximiza-
tion of expected linear-risk-tolerance utility with risk
tolerance coe¢ cient � (Primal Problem S) is equiva-
lent to minimization of the pseudospherical divergence
of order � between the decision maker�s subjective dis-
tribution p and a risk neutral distribution q consis-
tent with contingent claim prices (Dual Problem S).
Their optimal objective values are the same and the
optimal values of the decision variables in one prob-
lem are equal to the normalized optimal values of the
Lagrange multipliers in the other.
(b) In an incomplete, two-period market, maximiza-
tion of quasi-linear expected linear-risk-tolerance util-
ity with second-period risk tolerance coe¢ cient �
(Primal Problem P) is equivalent to minimization of
the power divergence of order � between the decision
maker�s subjective distribution p and a risk neutral
distribution q consistent with contingent claim prices
(Dual Problem P). Their optimal objective values are
the same and the optimal values of the decision vari-
ables in one problem are equal to the normalized op-
timal values of the Lagrange multipliers in the other.

Note that because the pseudospherical divergence is
a monotonic transformation of the power divergence,
the distribution q (= zTQ) that solves Dual Prob-
lem S is the same one that solves Dual Problem P,
although the objective values and the primal payo¤
vectors are generally di¤erent. The geometry of the
dual solutions is illustrated in Figure 1.

Grünwald and Dawid (2004) have explored dual-
ity relationships among strictly proper scoring rules,
generalized entropies and divergences, and expected-
utility-maximization (or in their terms, expected-loss-
minimization) in the context of robust Bayesian in-
ference, where the decision maker does not know the
true probability distribution and her opponent is �Na-
ture�who chooses the true distribution p from some

Figure 1: Geometry of minimizing the divergence be-
tween p and the nearest element of Q (n = 3)

convex set P, such as the set of distributions satis-
fying a mean-value constraint. The robust Bayes
problem for the decision maker is to determine the
distribution r that minimizes her maximum expected
loss over all p 2 P, where the expected loss (in our
terms) is the negative expected score �S(r;p). Grün-
wald and Dawid show that the optimal-expected-loss
function, �S(p), is interpretable as a generalized en-
tropy, and minimizing the maximum expected loss is
equivalent to maximizing this entropy on the set P.
This scoring-rule entropy uniquely determines a cor-
responding Brègman divergence BS(pkr) � S(p) �
S(r;p), as noted earlier, and Grünwald and Dawid go
on to show that the distribution r that minimizes the
maximum expected loss on P is also the distribution
that minimizes this divergence with respect to an un-
informative �reference�distribution p0 at which the
entropy �S(p) is maximized. For typical symmet-
ric scoring rules, the reference distribution is the uni-
form distribution, but any scoring rule entropy can
be transformed so as to shift the reference point to
any other distribution p�0 by the addition of a linear
function of p, namely S(p�0;p). The reference distri-
bution p0 in their model therefore plays an analogous
role to the baseline distribution q in our model, in-
sofar as �S(pkr) is maximized in the uninformative
case where p = q. Grünwald and Dawid also discuss
scoring rules for continuous probability distributions
drawn from the generalized exponential family, focus-
ing in particular on the logarithmic and quadratic
scoring rules.



6 Summary and Conclusions

We have shown that when a risk averse decision maker
with a precise probability distribution p bets against
a risk neutral opponent with a convex set Q of im-
precise probabilities, or equivalently invests in an in-
complete market for contingent claims where Q is the
set of risk neutral distributions determined by market
prices, there is a natural duality between maximizing
LRT utility and minimizing pseudospherical or power
divergence with the same value of �. In particu-
lar, maximization of logarithmic utility (� = 1) cor-
responds to �nding the distribution q in Q that min-
imizes the KL divergence DKL(pkq), maximization
of exponential utility (� = 0) corresponds to min-
imizing the reverse KL divergence DKL(qkp), and
maximization of reciprocal utility (� = 1

2 ) or square-
root utility (� = 2) correspond to minimization of the
Hellinger distance DH(pkq) or the Chi-square diver-
gence �2(pkq), respectively.
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Abstract

This article addresses questions of sensitivity of out-
put values in engineering models with respect to vari-
ations in the input parameters. Such an analysis is an
important ingredient in the assessment of the safety
and reliability of structures. A major challenge in en-
gineering applications lies in the fact that high com-
putational costs have to be faced. Methods have to be
developed that admit assertions about the sensitivity
of the output with as few computations as possible.
This article serves to explore various techniques from
imprecise probability that may contribute to achiev-
ing this goal.

Keywords. Reliability of structures, sensitivity anal-
ysis, random sets, fuzzy sets, simulation methods,
aerospace engineering.

1 Introduction

The goal of this article is to demonstrate how vari-
ous methods from imprecise probability theory can be
employed in sensitivity analysis of engineering struc-
tures. We are motivated by a research project in
aerospace engineering1 which involves the determina-
tion of the buckling load of the frontskirt of the ARI-
ANE 5 launcher under various loading and flight sce-
narios. The frontskirt is a reinforced light weight shell
structure. The computation of the decisive parame-
ter indicating failure, the load proportionality factor
(LPF), is based on a finite element model2. Part of
the project is to determine the most influential input
parameters (loads, material constants, geometry) on
the load proportionality factor in a sensitivity analy-
sis. The goal is to evaluate the design and to assess

1ICONA-project, Intales GmbH Engineering Solutions and
University of Innsbruck, supported by TransIT Innsbruck and
by EADS Astrium ST.

2The load proportionality factor is defined as the limiting
value in an incremental procedure, in which the dynamic loads
during a flight scenario are increased stepwise until breakdown
of the structure is reached.

the safety of the structure. The calculation of the out-
put variable LPF – under a given single set of input
parameters – takes about 32 hours on a high perfor-
mance computer. In addition to the extremely high
computational cost, the LPF may depend in a non-
differentiable manner on some of the input parame-
ters, especially variations in the geometry. A classical
sensitivity analysis of the complete structure is cur-
rently out of reach.

Engineering information on the variability of the in-
put parameters usually consists of a central value and
a coefficient or range of variation. The basic strategy
for arriving at a sensitivity assessment will be to suc-
cessively freeze the input parameters and study the
effect on the variability of the output. We wish to
do this without artificial parametric assumptions and
with as few calls of the finite element program as pos-
sible. We will explore the usability of methods from
imprecise probability theory for this purpose. In par-
ticular, we shall model the input variability by means
of

– random sets and Tchebycheff’s inequality;

– fuzzy sets and Hartley-like measures;

– intervals and sampling from a Cauchy distribution;

– standard Monte-Carlo simulation and resampling.

A detailed description of the respective methods will
follow in four sections, with a final section devoted to
a comparison of the methods. The question of mod-
elling correlations between the input variables will be
addressed in the appropriate sections. We shall exem-
plify the results with the aid of a simplified finite ele-
ment model simulating part of a space craft launcher
(Figure 1). The computational cost for the simplified
model is one hour per call of the program.

In the sensitivity analysis, up to 17 input parameters
were taken into account. A tentative description of
the meaning of the parameters as well as their nominal
values can be read off from Table 1.



Figure 1: Simplified finite element model.

For background material on sensitivity analysis we re-
fer to the Special Issue [9], in particular the survey
article [10] and to [8], for random sets, to [18, 19],
for random and fuzzy sets, to [5, 14], for probability
boxes, to [3], for a review on probabilistic treatment
of uncertainty in structural engineering as well as in-
formation on variability of typical input parameters,
to [24].

i Parameter Xi Mean µi

1 Initial temperature 293 K
2 Step1 thermal loading cylinder1 450 K
3 Step1 thermal loading cylinder2 350 K
4 Step1 thermal loading cylinder3 150 K
5 Step1 thermal loading sphere1 150 K
6 Step1 thermal loading sphere2 110 K
7 Step2 hydrostatic pressure cylinder3 0.4 MPa
8 Step2 hydrostatic pressure sphere1 0.4 MPa
9 Step2 hydrostatic pressure sphere2 0.4 MPa
10 Step3 aerodynamic pressure −0.05 MPa
11 Step4 booster loads y-direction node1 40000 N
12 Step4 booster loads y-direction node2 20000 N
13 Step4 booster loads z-direction node1 3.e6 N
14 Step4 booster loads z-direction node2 1.e6 N
15 Step4 mechanical loads x-direction 100 N
16 Step4 mechanical loads y-direction 50 N
17 Step4 mechanical loads z-direction 300 N

Table 1: Description of input parameters no. 1 – 17.

2 Random set methods

It has been argued in [20, 21] that random intervals
constructed by Tchebycheff’s inequality can serve as
a non-parametric model of the variability of a param-
eter, given its mean value and variance as sole in-
formation. We begin with the univariate case of a
real-valued random variable X. Let µ = E(X) be its
expectation and σ2 = V(X) be its variance. Tcheby-
cheff’s inequality asserts that

P
(
|X − µ| > dα

)
≤ α, dα = σ/

√
α. (1)

Equipping the unit interval (0, 1] with the uniform
probability distribution, the non-parametric confi-

dence intervals

Iα = [µ− dα, µ + dα], α ∈ (0, 1] (2)

define a random set. By construction, the following
formulas for the belief in the set Iα and the plausibility
of its complement Ic

α hold:

P (Iα) =
∫
{β∈(0,1]:Iβ⊂Iα} dβ = 1− α ≤ P (Iα),

P (Ic
α) =

∫
{β∈(0,1]:Iβ∩Ic

α 6=∅}
dβ = α ≥ P (Ic

α).

This shows that the random set description provides
a conservative assessment of the variability X. In
applications, the range of the parameter X may be
confined to a compact interval [xmin, xmax]. In this
case, the random set will be truncated to

Iα = [(µ− dα) ∨ xmin, (µ + dα) ∧ xmax].

In the multivariate case X = (X1, . . . , Xd) where each
parameter Xi is modelled as a random set as in (2),
we form the joint random set (assuming random set
independence)

α = (α1, . . . , αd) → Aα = I1
α1
× . . .× Id

αd

again with the uniform distribution on the probability
space (0, 1]d.

Let g : Rd → R be a continuous function. If the input
variables X = (X1, . . . , Xd) are modelled as a random
set Aα, α ∈ (0, 1]d (equipped with the uniform prob-
ability distribution), the output variable is given by
the random set g(Aα), α ∈ (0, 1]d. A visualization of
the output can be obtained by means of the upper and
lower distribution functions (or probability box, [3])

F (x) = P
(
α : g(Aα) ∩ (−∞, x] 6= ∅

)
F (x) = P

(
α : g(Aα) ⊂ (−∞, x]

)
.

(3)

In the numerical evaluation, the joint random set is
approximated by a finite random set with focal ele-
ments

I1
α1
× . . .× Id

αd
, αj ∈ { 1

n , 2
n , . . . , 1},

each with probability weight n−d. The input-output
function is evaluated as follows: First, an interval
Q ⊂ Rd is determined that bounds the relevant range
of the input variables X. Next, the values of the func-
tion g are computed at the md nodes of a uniform
grid on Q. The output g(Q) is approximated by a re-
sponse surface ĝ(Q) obtained by multilinear splines.
More precisely, to compute the image of one of the
sets Aα, ĝ(Q) is evaluated at all grid points inside
Aα and all points on its edges intersecting one of the
grid lines. The interval g(Aα) is approximated by



the minimum and maximum value thus obtained. Fi-
nally, the probability box (3) is calculated by adding
the weights when appropriate. The essential compu-
tational effort thus amounts to md calls of the finite
element program.

Figure 2 shows the result of the calculation of the
load proportionality factor (LPF) where the three in-
put parameters X3, X13, X14 (temperature cylinder 2,
booster load node 1 in z-direction, booster load node
2 in z-direction) were kept variable. The variance
σ for the Tchebycheff model was adjusted such that
the base intervals [xmin, xmax] for each of the parame-
ters was symmetric around the corresponding mean µ
with spread ±0.15µ. In this case, d = 3 and we chose
m = 5 so that 125 calls to the FE-program were re-
quired.

Figure 2: Probability box: LPF, 3 input variables.

Example 1 To assess the sensitivity of the load pro-
portionality factor LPF with respect to the parame-
ters X3, X13, X14 we again use the Tchebycheff model
for each of the parameters with spread 0.15 times their
mean values. Then we successively set one of the re-
sulting σ3, σ13, σ14 equal to zero (while keeping the
others at their given value), go through the calcula-
tion indicated above and plot the resulting probabil-
ity box (solid lines – the thin lines indicate the un-
perturbed result from Figure 2). This is displayed in
Figure 3 and shows that setting σ13 = 0 produces the
biggest reduction of the width of the probability box,
while setting σ14 = 0 has little effect. We infer that
the parameter X14 has the least influence on the vari-
ability of the response, while X13 exerts the biggest
influence.

The pinching strategy in the case of probability boxes
is further explicated in [4] and applied in [21]. Ques-
tions of dependence or interactivity of the input vari-
ables are left aside in this section. Dependence could
be modelled by copulas on the underlying probability
space (0, 1]d or by restrictions on the set of probability
measures on Rd defined by the random set.

3 Fuzzy sets

In this section, one-dimensional input variables will be
modelled as normalized fuzzy numbers, that is as fuzzy
subsets B of the real line with upper semi-continuous

Figure 3: Probability box: LPF, frozen variables.

membership function πB(x) that attains the value 1.
The α-level set of B is the set

Bα = {x ∈ R : πB(x) ≥ α}, α ∈ (0, 1].

In the multivariate case, the non-interactive joint
fuzzy set is defined as follows. Given d univariate
fuzzy sets B1, . . . , Bd, the joint fuzzy set has the α-
level sets

Bα = B1
α × . . .×Bd

α, α ∈ (0, 1].

Interactivity will be modelled by certain parametric
restrictions on the α-level sets. To avoid combinato-
rial complications, we shall treat interactivity of at
most two out of the d variables. Since an α-level
set of the form Bi

α × Bj
α is a homothetic image of

the unit square, it suffices to give the definitions for
B1

α = B2
α = [0, 1]. Following [27], interactivity will be

modelled by replacing the unit square by a diamond-
shaped region, symmetric around one of the diagonals.
Let 0 ≤ ρ ≤ 1 and define the points P1, . . . , P4 by

P1 = (ρ/2, ρ/2), P2 = (1− ρ/2, ρ/2),
P3 = (1− ρ/2, 1− ρ/2), P4 = (ρ/2, 1− ρ/2).

Interactivity of positive degree ρ is modelled by tak-
ing the rhombus with corners {(0, 0), P2, (1, 1), P4}
as joint level set, while interactivity of negative de-
gree −ρ is modelled by the rhombus with corners
{(0, 1), P1, (1, 0), P3} as joint level set (Figure 4).



Figure 4: Positive/negative interactivity.

Let g : Rd → R be a continuous function. If the input
variables X = (X1, . . . , Xd) are modelled as a non-
interactive or interactive fuzzy set with α-level sets
Bα as above, Zadeh’s extension principle yields the
output variable as the fuzzy number with level sets
g(Bα), α ∈ (0, 1].

While a fuzzy set can be interpreted as a random set
(cf. e. g. [5]) and the procedure appears similar to
the one of Section 2, there is a fundamental differ-
ence in the multivariate case: in fuzzy set theory,
only α-level sets of the same level are combined to
produce the joint fuzzy set, while for random sets,
the focal elements are obtained as products with re-
spect to any combination and thus are indexed by the
product space (0, 1]d.

Example 2 In the assessment of the sensitivity of
the load proportionality factor LPF with respect to
the input parameters X3, X13, X14, these parameters
were modelled as symmetric triangular fuzzy num-
bers, with central values µi from Table 1 and spread
±0.15µi as before. The numerical calculation is based
on the response surface method explained in Exam-
ple 1. The images of the α-level sets are again com-
puted by piecewise multilinear combination. To han-
dle possible lack of monotonicity of the function g, we
start with level α = 1 and go the way down to α = 0,
insuring at each step that the approximations satisfy
g(Aβ) ⊂ g(Aα) for α < β.

In the non-interactive case, the procedure for deter-
mining the sensitivity of the output with respect to
the input variables is the same as in Example 1.
The initial calculation is performed with proportional
spreads ±0.15µi. Then we successively replace one of
the triangular fuzzy numbers by its crisp central value
µi, and compute the output as a fuzzy number. The
result gives a good visual representation of the change
of variability. This can be quantified using e. g. the
Hartley-like measure

HL(B) =
∫ 1

0

log
(
1 + λ(Bα)

)
dα

of fuzzy sets B as proposed by [14] (see also [1] for
further implementation of this idea in sensitivity anal-
ysis and [6] for interval-valued indices). The result is

Figure 5: Fuzzy sets: LPF, frozen variables, noninter-
active case.

depicted in Figure 5, where the outer contour is the
membership function of the fuzzy LPF with all input
parameters fuzzy, while the shaded region is bounded
by the membership function of the fuzzy LPF with
successively frozen input parameters. It confirms the
observations obtained by the random set method: X13

is the most influential parameter, followed by X3 and
then X14. This can be explained by the model set-up:
X13 refers to a large booster load on one side of the
frontskirt, while X14 signifies a much smaller booster
load on the opposite side. The Hartley-like measures
displayed in Table 2, though, show that some, albeit
small, influence of parameter X14 is detectable.

Fuzzy set HL-measure
no fixing 0.1481
X13 fixed 0.0398
X14 fixed 0.1430
X3 fixed 0.1268

Table 2: Hartley-like measures of outputs, non-
interactive input.

Example 3 This example serves to show how the ef-
fect of possible correlations between two of the input
parameters on the sensitivity can be assessed. Corre-
lation will be interpreted here as degree of interactiv-
ity as described above. In this example, we assume a
degree of interactivity ρ = 0.98 between parameters
X13 and X14. The remaining parameters are treated
as non-interactive. The α-level sets are of cylindrical
shape with a rhombic base Rα, say. Their images are
again computed by piecewise multilinear combination.
Otherwise, the procedure of successively freezing vari-
ables is similar: For example, when X13 is frozen at
its central value µ13, the interactivity restricts X14 to
vary along the intersection of Rα with the line through



µ13 parallel to the x14-axis, while X3 varies in its orig-
inal α-level interval.

The result is shown in Figure 6; the meaning of the
contour and the shaded region is the same as in Fig-
ure 5. The outcome confirms the prominence of pa-

Figure 6: Fuzzy sets: LPF, frozen variables, interac-
tive case.

rameter X13; as a consequence of the correlation,
parameter X14 is seen to exert a comparable influ-
ence. The result also demonstrates that the correla-
tion changes the sensitivity of the output with respect
to parameter X3. Table 3 shows the Hartley-like mea-
sures of the fuzzy output under successive freezing of
input variables. One may note that the study of the
influence of correlations can be implemented in the
fuzzy approach with ease.

Fuzzy set HL-measure
no fixing 0.1357
X13 fixed 0.0287
X14 fixed 0.0329
X3 fixed 0.1011

Table 3: Hartley-like measures of outputs, interactive
input.

As in Example 1, the computational effort using the
response surface consisted in 125 calls of the finite
element program. The vertical jumps of the mem-
bership function in Figure 6 indicate that the output
does not depend monotonically on the input variables.
Closer inspection (done by producing an array of two-
dimensional plots of the partial maps Xi → LPF)
showed that this is indeed the case. Therefore, the
accuracy of the method using just 125 grid values is
in question. A number of additional explicit evalua-
tions showed that the accuracy of the boundaries of
the α-level sets for the LPF is in the range of ±0.02
in absolute value.

4 Interval bounds

This section is devoted to interval estimates of input
and output parameters. Suppose that the variability
of each input parameter Xi is described by an interval
[µi−∆i, µi + ∆i] of spread ∆i around a central value
µi. It has been argued in [16], that an estimate of
the output interval can be obtained by Monte Carlo
simulation using the Cauchy distribution.

The underlying theory from [16] is as follows. Suppose
we wish to estimate the difference

∆y = g(x1, . . . , xd)− g(µ1, . . . , µd)

where |∆xi| = |xi − µi| ≤ ∆i. Linearization around
the mean value gives

|∆y| ≤ ∆ =
d∑

i=1

|ci|∆i, ci =
∂g

∂xi

(
µ1, . . . , µd

)
.

If the Xi are independent random variables following
a Cauchy distribution with scale parameter ∆i, then
Y = c1X1 + . . . + cdXd obeys a Cauchy distribution
with scale parameter ∆. This offers the possibility
of computing the bound ∆ on the output spread by
Monte Carlo simulation.

The algorithm runs along the following lines. To
produce a single realization, a d-dimensional sample
(z1, . . . , zd) of Cauchy distributed variables with scale
parameters 1 is taken. Setting K = max1≤i≤d |zi|,
one has that δi = ∆izi/K has a Cauchy distribution
with scale parameter ∆i/K. Putting xi = µi + δi it
follows that

Z = K
(
g(x1, . . . , xd)− g(µ1, . . . , µd)

)
is a realization of a Cauchy distributed variable with
desired scale parameter ∆ (this is true exactly when
g is linear and otherwise approximately). An n-fold
repetition yields the Monte Carlo sample of size n
of the variable Z. Fitting a Cauchy distribution –
e. g. by the maximum likelihood method – produces
an estimate of the spread ∆ of the output interval
[g(µ1, . . . , µd)−∆, g(µ1, . . . , µd) + ∆]. The computa-
tional effort for this estimate is n calls of the finite
element program and thus independent of the dimen-
sion d. This offers the possibility to include a larger
number of input variables in the analysis.

Example 4 In this calculation, 17 input parameters
were included with nominal values displayed in Ta-
ble 1. The spreads ∆i were taken as 0.15-times the
nominal values µi. We used a direct Monte Carlo
method to produce a sample of size n = 100. The
value of the load proportionality factor LPF was ob-
tained as µ = g(µ1, . . . , µd) = 3.5443. The simulation
resulted in an estimate for its spread of ∆̂ = 0.2924.



In the next step, the distribution of the resulting
spread ∆ was estimated by resampling. We employed
10000 random subsamples of size 100 (with repeti-
tion), following the suggestions in [23]. This resulted
in a 95%-confidence interval for ∆ of CI0.95(∆̂) =
[0.2281, 0.3685]. The essential computational effort
consisted in n = 100 calls of the finite element pro-
gram.

Remark 5 A sensitivity analysis could be based on
this method, again by freezing variables successively.
It is possible to reduce computational cost by using
the same Monte Carlo sample and approximating the
frozen variables by a truncated Cauchy distribution.
More precisely, instead of setting ∆1 = 0, say, we se-
lect the random numbers (x2, . . . , xd) computed above
from the part of the population (x1, x2, . . . , xd) which
satisfies |δ1| < ε for a suitably chosen small ε. This
is justified, because the resulting truncated (d − 1)-
dimensional random variables converge in distribution
to the ones with ∆1 frozen at the value 0 as ε → 0.
However, successive simultaneous freezing of two or
more variables requires repeated Monte Carlo simu-
lation because the sample size would be too small for
repeated truncation.

A more troublesome observation concerns the accu-
racy of the Cauchy method in our situation where the
output function g is a nonlinear finite element com-
putation resulting in the LPF. It turned out that the
simulations of the auxiliary variable Z actually failed
the KS-test for being Cauchy distributed. This means
that our output function g is too far away from linear-
ity and thus puts the accuracy of the Cauchy method
into question in this context.

5 Monte Carlo simulation

To complete the analysis, we have a glimpse at direct
Monte Carlo simulation in sensitivity analysis. Meth-
ods like scatterplots (input – output) and computing
the weighted contribution of each input variable to the
variance of the output are commonplace and will not
be discussed here. These methods suffer the problem
that hidden interactions may have a significant effect
on the decomposition of the variance (see, however,
[2]). We therefore turn to a method which intends
to remove the influence of co-variates on the correla-
tion between a given input variable Xi and the output
variable Y . This method is based on the partial rank
correlation coefficient (PRCC).

We recall that partial correlation between two ran-
dom variables Xi and Y given a set of co-variates
Xri = {X1, . . . , Xi−1, Xi+1, . . . , Xd} is defined as the
correlation between the two residuals eXi·Xri and
eY ·Xri

obtained by regressing Xi on Xri and Y on

Xri , respectively. More precisely, one first constructs
the two regression models

X̂i = α0 +
∑
j 6=i

αjXj , Ŷ = β0 +
∑
j 6=i

βjXj ,

obtaining the residuals

eXi·Xri = Xi − X̂i, eY ·Xri = Y − Ŷ .

Since eXi·Xri
and eY ·Xri

are those parts of Xi and Y
that remain after subtraction of the best linear esti-
mates in terms of Xri, the partial correlation coeffi-
cient

ρXi,Y ·Xri = ρ(eXi·Xri , eY ·Xri)

quantifies the linear relationship between Xi and Y
after removal of any part of the variation due to the
linear influence of Xri. Applying a rank transfor-
mation to the variables Xi and Y leads to the partial
rank correlation coefficient (PRCC). For further back-
ground on PCCs and PRCCs, see [7, 11, 22].

Example 6 To estimate the influence of each of the 17
input parameters from Table 1 on the output LPF, we
performed a Monte Carlo simulation of size n = 100
with uniformly distributed input variables (on the in-
tervals as in Example 4), using Latin hypercube sam-
pling, an efficient stratified sampling strategy.

To obtain a sample of size n, the Latin hypercube
sampling plan divides the range of each variable Xi

into n disjoint subintervals of equal probability. First,
n values of each variable Xi, i = 1, . . . , d, belonging
to the respective subintervals are randomly selected.
Then the n values for X1 are randomly paired with-
out replacement with the n values for X2. The re-
sulting pairs are then randomly combined with the n
values of X3 and so on, until a set of n d-tuples is
obtained. This set forms the Latin hypercube sam-
ple. The advantage of Latin hypercube sampling is
that sampled points are evenly distributed through
design space, thereby covering regions possibly impor-
tant for the input-output map which might be missed
by direct Monte Carlo simulation. It can be shown
that the variance of an estimator based on Latin hy-
percube sampling is asymptotically smaller than the
variance of the direct Monte Carlo estimator, and pos-
sibly markedly smaller when the input-output map is
partially monotonic [8, 17, 26].

For additional accuracy in view of the rather small
sample size we subjected the simulated variables to
correlation control (see [12, 13]). This procedure con-
sists in a rearrangement of the originally simulated
values such that the resulting empirical rank correla-
tion matrix is close to diagonal.

The resulting PRCCs can be seen in Figure 7. For fur-
ther statistical confirmation, we performed a resam-



pling procedure as in Example 4, producing bootstrap
confidence intervals for the partial rank correlation co-
efficients as displayed in Figure 8. Accordingly, only
the PRCCs of the parameters X1, X3, X9, X13 and
X14 test to be nonzero.

Figure 7: Partial rank correlation coefficients.

The outcome confirms the results of the sensitivity
analysis in the previous sections: Among the param-
eters X3, X13 and X14, the one with the biggest in-
fluence is X13, followed by X3 and X14.

We also ran various tests with correlated input as in
Example 3 which confirmed the observed sensitivities.
However, each test required a new Monte Carlo sim-
ulation with sample size n = 100. In addition, we
computed Sobol indices [25] for groups of variables;
this, however, again requires additional Monte Carlo
simulations.

6 Summary and Conclusions

Starting from a research project in aerospace engi-
neering one of whose goals was to determine the sen-
sitivity of the buckling load of the frontskirt of the
ARIANE 5 launcher with respect to certain input pa-
rameters, we explored various methods from proba-
bility and imprecise probability theory. In view of the
excessive computational costs of a single run of the
finite element program, the major challenge was to
develop methods with as few calls of the program as
possible. We used a simplified model of the launcher
for the numerical tests of the methods.

The methods under scrutiny were random sets and
Tchebycheff’s inequality, fuzzy sets and Hartley-like
measures, intervals and sampling from a Cauchy dis-
tribution, standard Monte-Carlo simulation and re-
sampling. Criteria for the evaluation are

– computational effort

Figure 8: Partial rank correlation coefficients, confi-
dence intervals.

– applicability to large scale problems

– accuracy

– avoidance of tacit assumptions

– reliability and clarity of interpretation

– possibility of analyzing correlated input.

Generally speaking, the Monte Carlo simulation
methods are computationally least expensive. For our
sensitivity study, a sample size of n = 100 appeared
sufficient. In addition – as is well known – the sample
size can be chosen independently of the number of in-
put variables, so that we could include all 17 variables
in our study. These methods are clearly applicable to
large scale problems. Disadvantages are that para-
metric assumptions on the input variables have to be
made and that freezing of variables requires repeti-
tion of the n = 100 simulations. Thus computing
PRCCs plus resampling is possible irrespective of the
problem scale, but variance decomposition by freez-
ing variables is not. The same applies to analyzing
sensitivity with respect to input correlations, which
requires repetition of the simulation as well. The nu-
merical accuracy of the Monte Carlo simulation is well
known to be of order 1/

√
n times the standard devi-

ation of the simulated variable. In view of the coef-
ficients of variation which were in the range of 10%
this appeared sufficient for the sensitivity study.

We emphasize that the results of a Monte Carlo sim-
ulation are amenable to resampling, which introduces
little additional computational effort (no further eval-
uations of the costly input-output map are needed).
In this way, bootstrap confidence intervals can be ob-
tained that may serve as statistical estimates of the
accuracy of the results. For example, we estimated
the bias of each partial rank correlation coefficient,
that is, the absolute value of the difference of the mean



of the resampled data and the initial estimate. The
estimated bias resulted to be less than 2% of the ini-
tial estimate. Further, the significance of the resulting
ranking of the influence of the respective input pa-
rameters can be assessed by comparing the bootstrap
confidence intervals.

The Cauchy method is a simulation method for es-
timating the spread of the output interval. The re-
sulting estimate is non-parametric in as much as only
the spreads of the input variables enter. As a subcase
of Monte Carlo simulation, everything that has been
said above applies here as well. A problematic point
is that the method is derived under the assumption
that the output function is approximately linear. In
our case, the output function is substantially nonlin-
ear. By means of repeated simulations we observed a
quite substantial lack of accuracy of the estimate of
the output spread in our case. Namely, direct Monte
Carlo simulations of size n = 100 of the output vari-
able LPF, with uniformly distributed input variables,
produced an output range of [3.45, 3.65]. This indi-
cates that the range was largely overestimated by the
Cauchy method (see Example 4). This could possibly
be overcome by the suggestion of [16] of repeated bi-
section of the input interval, though at an increase in
computational cost.

Both in the fuzzy set and random set methods, the
output α-level sets and focal sets, respectively, are
computed by searching for the maximum and mini-
mum of the corresponding output range. Sufficient
accuracy can only be obtained by a larger number of
calls of the output function, evaluated on a grid of
input data. In addition, the grid size increases expo-
nentially with the number of input variables. These
methods appear feasible only in the case of medium
size problems and a small number of input variables.
Monotonicity or partial monotonicity of the output
function increases accuracy and helps reducing the
number of computations required.

Test runs with finer grids showed that the numerical
error of the interpolation (i. e. replacing the true out-
put function by a piecewise bilinear response surface)
was less than 1%, thus definitely satisfactory. How-
ever, the optimization error introduced when calculat-
ing the boundaries of the output level sets turned out
to be about ±0.02 in absolute value, which is around
10 - 20% of the spread of the base level (see end of
Section 3).

The numerical error in the boundaries of the output
level sets appears less influential in the random set
method. This is due to a certain averaging effect. In-
deed, in the fuzzy model the computation of ` output
level sets corresponds to ` input level sets, whereas in

the random set model – at least when using random
set independence – a combination of `d input focal
sets enters (d the number of variables).

Both methods are essentially non-parametric. The
random set model we used is generated by Tcheby-
cheff’s inequality and hence non-parametric by defini-
tion. In the fuzzy set model, we used triangular fuzzy
numbers as input. These can be seen as a collection of
intervals of linearly changing length. The α-level sets
resulting from the computation determine the output
range when the input varies over d-dimensional inter-
vals of length proportional to 1− α.

The fuzzy model in combination with the response
surface technique has an additional advantage: it al-
lows the a-posteriori introduction of interactivity be-
tween the input variables without the need for new
calls of the output function. The effect of interactive
input can simply be evaluated by interpolation in the
response surface.

We finally comment on the practicality of upscaling
to the full problem. This remains a major challenge.
The computational structure of the given problem
consists in a nonlinear, incremental procedure. The
LPF is obtained as the ultimate load value beyond
which the computed solution cannot be prolonged.
This may be either due to a bifurcation point or to
a breakdown of the structure. We currently pursue
two strategies. One strategy is a perturbation method
that replaces the full model by a quadratic approxima-
tion when a bifurcation point is reached. This is based
on Koiter’s asymptotic analysis of post-buckling of
shells, see e. g. [15]. The sensitivity analysis would be
done with the asymptotic model in place of the full
model. The second strategy is to start the sensitiv-
ity analysis at a later stage of the iterative procedure.
Both methods require to access the finite element code
at a deeper level. A certain difficulty which we expect
to encounter stems from the fact that the incremental
procedure is path dependent. Thus varying the input
parameters late in the process could be misleading, as
initial variations might result in a quite different path
to breakdown.
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Abstract

When extending classical statistical models to impre-
cise probabilities, one fundamental difficulty, which
may have hindered some powerful practical applica-
tions, is the following gap: While classical statistical
models are typically based on absolutely continuous
probability distributions, most computational meth-
ods developed for handling imprecise probability mod-
els rely on finite sample spaces. A natural way to close
this gap is discretization of the underlying continuous
probability distribution. This, however, is far from
straightforward, because näıve discretization by mere
rounding may cause a substantial bias; even moments
of very low order would be distorted. The present pa-
per discusses the application of Luceños’ ([10]) so-to-
say adaptive discretization method in imprecise prob-
ability models. We firstly recall two theorems, show-
ing, for any fixed natural number r, how to construct
a discrete random variable such that its first, second,
... r-th moment coincides with the corresponding mo-
ment of the underlying continuous distribution. (In
addition, also coincidence of the distribution functions
in a fixed number of points can be enforced.) Then
we illustrate the power of the method by utilizing it
in decision problems under ambiguity.

Keyword: Decision making under ambiguity, dis-
cretization, Gaussian quadrature, imprecise probabili-
ties, interval probability, linear programming, Luceño,
numerical integration.

1 Introduction

Classical statistical models typically are based on
parametric, absolutely continuous probability distri-
butions on the real line. Handling extensions of these
models in the imprecise probability framework, quite
often becomes very demanding from the computa-
tional point of view, and then approximative tech-
niques are the best one can hope for, the more as also
in classical statistics many integrals of less smooth

functions can be only obtained numerically. A natural
idea in this context is discretization, in order to make
available powerful algorithms (for instance for han-
dling graphical models ([4]) or decision making ([9],
[17]) that explicitly rely on finite spaces to obtain ap-
proximate solutions in this generalized setting. How-
ever, such discretizations need some care; for more
than hundred years, since the work of Sheppard ([13])
at the end of the nineteenth century, statisticians have
been well aware that analysis based on rounded data
may be severely biased, and so discretization by mere
rounding or other ad-hoc techniques is a bad advice.
Sheppard also developed a simple correction formula,
the applicability of which, however, is restricted to
the r-th moment of a normal distribution and further
regularity conditions. Applying this “correction” to
other distributions or more complex functions of ran-
dom variables can even increase the bias ([18], [1]).

In this paper we study a more sophisticated discretiza-
tion procedure, which discretizes the underlying dis-
tribution in an adaptive way such that, for any r, the
r-th first moments of the new, discretized distribu-
tion agree with the ones from the original distribu-
tion. The method is based on Gaussian quadrature;
its power in statistical applications is advocated by
Luceño ([10]), to which we refer when describing the
essentials of the technique. We claim that these re-
sults are even more important in the area of impre-
cise probabilities, for the reasons outlined above. To
corroborate this thesis, we illustrate the discretiza-
tion technique by applying it to two types of decision
problems under ambiguity.

In more detail, the paper is organized as follows: In
Section 2 we prepare the ground by recalling Luceños
([10]) two main theorems and briefly discussing issues
of concrete calculation of the discretization. Our ap-
plication to decision theory is divided in four sections.
In Section 3 we recall basic notions, which then are
used to explain in Section 4 two different general types
of discretizations. In Section 5 it is shown how to use



one discretization technique in parametric situations
with non-elementary utility functions: prior informa-
tion is assumed to be described by a set of parametric
distributions with varying parameters. We calculate
E-admissible actions as well as the Γ-maximin solu-
tions. While these results may be understood as a
direct extension of numerical integration procedures
from classical probability to the imprecise probabil-
ity framework, the importance of the second type of
discretization, the construction of an approximately
equivalent decision problem becomes unambiguously
evident in Section 6, where envelopes of parametric
sets are considered. After choosing a reference distri-
bution which determines the concrete discretization,
we transform the whole decision problem on an infi-
nite state of natures to an approximately equivalent
decision problem based on a finite set of states of na-
ture, and then give E-admissible and Γ-maximin so-
lutions by adapting the algorithms from [9] and [17].

2 Luceños Discretization Method

2.1 Two Fundamental Theorems

One can understand Luceños article discrete approx-
imations to continuous univariate distributions ([10])
as a kind of ”translation” of the Gaussian quadrature
method for integration into probability theory.

The central idea of the Gaussian quadrature method
is to replace an integral over a function h(x) and its
weight function w(x) by a sum, i.e. to take

∫ b

a

h(x)w(x)d(x) ≈
N

∑

j=1

h(xj)wj , (1)

where wj and xj are chosen in a sophisticated way
such that one can approximate the value of the inte-
gral numerically with rather high accuracy. To find
the nodes xj and the weights wj , j = 1, . . . , N , the
roots of recursively defined orthogonal polynomials
of degree N are used, which depend on w(x). Un-
like some other numerical integration methods, e.g.
the Newton-Cotes formulas, the abscissae and weights
here are found dynamically, which means that they
are adapted to the shape of the original function and
therefore the approximation of the integral is very ac-
curate (for Gaussian quadrature and other numerical
integration methods see for example [15]).

In the following statistical application of this method
the weight function w(x) is the probability density
function (PDF) of a univariate continuous random
variable X, whereas wi, i = 1, . . . , N constitute the
probability mass function (PMF) of the corresponding
discrete random variable Y . The detailed proceeding

and some fundamental properties of the approxima-
tions are described in two theorems, which we recall
here from [10].

Proposition 1 (Luceño) Consider two univariate
random variables X and Y on a domain [a, b] with
−∞ ≤ a ≤ x ≤ b ≤ ∞.1 Let X be (absolutely) con-
tinuous with probability density function (PDF) w(x),
having finite moments of any order, and let Y be dis-
crete on N atoms x1, . . . , xN with probability mass
function (PMF) w1, . . . , wN . Then

E(Xr) = E(Y r),∀r ∈ {0, . . . , 2N − 1} (2)

if and only if the nodes x1, . . . , xN and the weights
w1, . . . , wN satisfy the following two conditions:

i) x1, . . . , xN are the roots of the polynomial QN (x)
of degree N defined by the three-term recursion

Qi+1(x) = (x− δi+1)Qi(x) − γ2
i+1Qi−1(x), (3)

i ≥ 0, where Q−1(x) ≡ 0, Q0(x) ≡ 1 and

δi+1=IE{XQ2
i (X)}/IE{Q2

i (X)}, i ≥ 0, (4)

γ2
i+1=

{

0, i = 0

IE{Q2
i (X)}/IE{Q2

i−1(X)}, i ≥ 1.
(5)

ii) the probabilities w1, . . . , wN are the solution of
the linear system

N
∑

j=1

Qk(xj)wj =

{

1, k = 0

0, k = 1, . . . , N − 1.
(6)

In addition, the cumulative distribution functions
(CDFs) of X and Y can be forced to agree at least in
a given set of points:

Proposition 2 (Luceño) Consider the situation of
Proposition 1. Let c0 = a < c1 < . . . < cM−1 <

cM = b such that Ii =
∫ ci

ci−1
w(x)dx > 0 for all i =

1, . . . ,M , and consider the discrete random variables
Yi, i = 1, . . . ,M with atoms xi1, . . . , xiN and weights
wi1, . . . , wiN arising from applying Proposition 1 to
the random variables Xi := X · 1[ci−1,ci].

Then, for the random variable Z with atoms
x11, . . . , x1N , x21, . . . , x2N , . . . , xM1, . . . , xMN and
weights I1 · w11, . . . , I1 · w1N , I2 · w21, . . . , I2 ·
w2N , . . . , IM · wM1, . . . , IM · wMN ,

E(Xr) = E(Zr), ∀r ∈ {0, . . . , 2N − 1} , (7)

and the CDFs of X and Y coincide at least at the
abscissae c0, c1, . . . , cM−1, cM .

1To include the statistical standard distributions, without
the need to distinguish between the domain IR and some
bounded domain, we allow for a = ∞ and b = ∞, but im-
plicitly assume f(−∞) = f(∞) = 0



2.2 Easier Calculations in Standard Cases

In the case where the weight function belongs to a
standard family, there are well known polynomials,
which can be used instead of the three-term recursion
just described to find the abscissae and correspond-
ing weights. For example, for the normal distribu-
tion with mean µ and variance σ2 one can use the
Gauss-Hermite polynomials with the weight function
w(x) = e−x

2

on the interval −∞ < x <∞:2

Hj+1(x) = 2xHj(x) − 2jHj−1(x) with H1(x) = 1

Given the roots x
(GH)
i and weights w

(GH)
i of the poly-

nomial with degree N , one can obtain the random
Variable Y and its PMF through (see [10], p.347):

Yj =µ+ σx
(GH)
j

√
2, wj =

1
√
π
w

(GH)
j , j = 1, . . . , N.

However there are only very few, classical families
where one can easily use well known polynomials to
find the new variable.

2.3 Nonstandard Case

For the partial intervals used in Proposition 2 the
weights do not generally belong to any of these clas-
sical families. As a consequence, there are no well
known polynomials which can be used to find the new
variable, and the three term recursion described above
has to be used, leading to another numerical problem:
how to solve the inner products in Part i) of Propo-
sition 1 to determine the γis and δis, if w(x) is no
classical weight?

Based on the knowledge of the so called ”modified

moments” νj =
∫ b

a
πj(x)w(x)dx of orthogonal polyno-

mials πj , Sack and Donavan ([12]) offer a numerically
stable algorithm to find the coefficients γ2

j and δj of
the recursion. Wheeler ([22]) improved this method
to an O(N2) algorithm. Other solutions are presented
by Gautschi ([6]). One simple and heuristic way is
to approximate the inner products with an adequate
quadrature rule. In the further calculations presented
here this simple method is used, because the focus of
this paper is mostly on the construction of the new
discrete random variable, not directly on the exact
calculation of an integral.

In a last step the weights wi and nodes xi of the new
variable have to be found. They result from the eigen-

2For some other distributions there are also well known poly-
nomials, which can be used directly to find the discretization:
For the gamma distribution the Gauss-Laguerre polynomials
can be used, for the beta distribution the Gauss-Jacobi poly-
nomials and for the uniform distribution the Gauss-Legendre
polynomials (for details see [10]).

values and eigenvectors of a tridiagonal matrix con-
sisting of the γ2

i and δi from (5) and (4) (for details
see [15], p.179f.).

2.4 Accuracy of the Approximation

If the focus of the approximation is on the shape of a
continuous CDF, one will use the method described in
Proposition 2. The accuracy of this discrete approx-
imation depends on the way the partition of [a, b] is
chosen. One first possibility is to split the support in
inner intervals [ci−1, ci], i = 2, . . . ,M − 1 of the same
size and two possibly larger outer intervals if the do-
main is infinite. The obvious problem is that then
one has the same number of interpolation points in
areas where the PDF is high (which means that the
CDF has a big increase) as in areas with low PDF.
A more satisfying method is to use the PDF (if it is
numerically manageable) to find a more appropriate
partition. One can split the support in M quantiles
and use them as the c′js. In this way the intervals
are adjusted to the shape of the original distribution:
they are small where the PDF is high and wide where
the PDF is low, and so finally in the important areas
of the support there are more nodes than in the less
important ones.3

3 Decision Making under Ambiguity,

Basic Notions

To illustrate and exemplify the power of Luceños
method in the area of imprecise probabilities, we ap-
ply it to some general decision problems under ambi-
guity. To prepare the ground we briefly recall the
basic setting of decision theory, where one has to
choose an optimal action from a non-empty, finite
set A = {a1, ..., an} of possible actions. The conse-
quences of every action depend on the true, but un-
known state of nature ϑ being an element of a space
Θ. The corresponding outcome is evaluated by the
utility function u : (A × Θ) → R and by the asso-
ciated random variable u(a) on Θ. Often it makes
sense to study randomized actions in addition, which
can be understood as a classical probability measure
λ = (λ1, ..., λn) on (A,Po(A)), where λi is interpreted
as the probability with which action ai is taken. Then
u(·) and u(·) are extended to randomized actions by
defining u(λ, ϑ) :=

∑n

s=1 u(as, ϑ)λs. (Next to sim-
plifying calculations, under some criteria the optimal
randomized action may be superior to the optimal
unrandomized one.)

3Several tests in [11], chapter 3 for this approximation to
the standard normal distribution show empirically that, for a
sufficiently large M , samples of the new discrete variable cannot
be distinguished any more from the original variable.



This model contains the essentials of every (formal-
ized) decision situation under uncertainty and is ap-
plied in a huge variety of disciplines. If the states of
nature are produced by a perfect random mechanism,
and if the corresponding probability measure π(·) on
(Θ,Po(Θ)) is completely known, the Bernoulli princi-
ple is nearly unanimously favored. One chooses then
the unrandomized action a∗ or the randomized action
λ∗ maximizing the expected utility

Eπu(a) :=

∫

u(a, ϑ)dπ(ϑ) (8)

and Eπu(λ) :=
∫

u(λ, ϑ)dπ(ϑ) among all a and all λ,
respectively. a∗ and λ∗, respectively, is called Bayes
action with respect to π. In many applications, how-
ever, it is not possible to describe the prior knowledge
on the stochastic behavior of the states of nature by a
classical probability measure, and a more general de-
scription of ambiguity is needed, as provided by im-
precise probabilities and related approaches (see, in
particular, [19] and [21]).

From the technical point of view, the usual concepts
of imprecise probability lead to convex sets M of clas-
sical probabilities. Every distribution π from M pro-
duces a classical expected utility Eπu(λ). Assuming
M 6= ∅, all possible expected utilities Eπu(λ) range
within the interval

[

EMu(λ) , EMu(λ)
]

, (9)

and this interval-valued quantity is called generalized
expected utility. Based on this notion of generalized
expected utility several optimality criteria are com-
mon. An overview is given in [16] where also further
references are provided. Here two of them are con-
sidered: the Γ-maximin criterion and the criterion of
E-admissibility.

The Γ-maximin criterion considers a worst case sce-
nario, which means EMu(λ) is evaluated only. Then
an action λ∗ is optimal iff for all λ

EMu(λ∗) ≥ EMu(λ). 4 (10)

The concept of E-admissibility on the other hand typ-
ically does not offer a unique action as the one to
choose, but a set of optimal actions: An action5 a∗ is
said to be E-admissible in M with respect to a set of
prior probabilities M, iff there exists a classical prior

4This concept is a very conservative decision rule, similarly
to the maximin rule in the classical decision theory: in the case
of complete ambiguity both criteria coincide.

5Under the criterion of E-admissibility usually consideration
is confined to the unrandomized actions. If needed, the algo-
rithms used later on can be extended to randomized actions
(cf. [17, p. 357]).

π(·) ∈ M such that a∗ is Bayes action with respect to
π(·) for all actions a under consideration.6

4 Two Types of Discretization

In the case of continuous distributions of the states of
nature practical handling these criteria may encounter
severe difficulties. Except in special cases, where the
distributions are stochastically ordered and or the ex-
pected utility is easily expressed by a underlying pa-
rameter, it is hard or even impossible to determine
optimal actions by evaluating the integrals (8). Since
for finite set of states of nature powerful algorithms
exist, decision making provides an area where Luceños
discretization techniques is quite welcome.

To implement the discretization, we apply Proposi-
tion 1 and 2 by assuming there is a random variable
X. In the background, that takes values in Θ pro-
ducing the states of natures. Applying the general
techniques to this variable X setting in (1) as well as
to w(·) = π(·) and h(·) = u(a, ·) and h(·) = u(λ, ·), re-
spectively, note that not only the weights but also the
nodes depend on the underlying probability distribu-
tion. Therefore, for a given set M of continuous distri-
butions on Θ ⊂ R (equipped with the corresponding
Borel σ−field B), two different types of discretization
have to be distinguished, depending whether a sepa-
rate or a common discretization scheme is used:

Type-I discretization: The first possibility is to
apply Proposition 1 or 2 to every element π(·) ∈ M
separately. This means that to every π(·) ∈ M a cor-
responding discrete distribution νπ(·) is constructed
with atoms ϑ1,π, . . . , ϑN,π, and Eπu(λ) is replaced by
its approximative equivalent

IEνπu(λ) =

N
∑

j=1

u(λ, ϑj,π)νπ (ϑj,π) . (11)

Type-II discretization: Here Θ itself is discretized.
For this, a certain reference distribution π0(·) ∈ M
is selected, to which then Proposition 1 or 2 is ap-
plied.7 The resulting nodes8 x1, . . . , xN are used to
define a new discrete space Θd = {θ1, . . . , θN} with
ϑ1 =

[

a, (x1 +x2)/2
]

, ϑ2 =
(

(x1 +x2)/2, (x2 +x3)/2
]

,

. . . , ϑN =
(

(xN−1 + xN )/2, b
]

, which then is used to
replace Θ. The utility function is then extended to Θd

6E-admissibility can be considered in a broader sense as a
generalization of the criterion of admissibility in classical deci-
sion theory.

7This method is described later on in Section 6. A glance
at Figure 4 may therefore be helpful.

8For the sake of readability, the dependence on π0(·) is sup-
pressed in the notation here throughout the following defini-
tions.



by assigning the values at the nodes, i.e. by defining

u(a, ϑj) := u(a, xj), ∀j ∈ {1, . . . , N}, ∀a ∈ A .

The nodes of the reference distribution are used to
discretize all elements of M. More precisely, the set
M of continuous probability distributions on (Θ,B)
is replaced by the set P of discrete probability distri-
butions, being the set of all classical probabilities in
accordance with P (·) = [L(·), U(·)] on (Θd,Po(Θd))

9

defined via:10

L
(

⋃

j∈J

{ϑj}
)

= inf
π∈M

π
(

⋃

j∈J

ϑj

)

(12)

and U
(

⋃

j∈J

{ϑj}
)

= sup
π∈M

π
(

⋃

j∈J

ϑj

)

(13)

∀J ⊂ {1, . . . , N + 1} . (14)

Since N may be quite large, in many applications the
computational effort may be substantially reduced by
a further approximation in which not all elements of
Po(Θd) are used in the assignment of P (·). Then the
power set of {1, . . . , N+1} in (14) is replaced by some
subset Jmax, and natural extension is applied to ob-
tain the remaining interval limits L(·) and U(·). A
natural choice for Jmax, that is also applied in Sec-
tion 6, is to consider only connected intervals in the
assignment procedure (cf. also Figure 4).

Both types of discretization have different types of ap-
plications. Type-I discretization necessarily requires
that the density functions of all elements of M have to
be known, in order to able to apply Luceño’s theorems
to each of them. In particular, the set M must be
dominated by the Lebesgue measure (in the measure-
theoretic sense) to guarantee the existence of appro-
priate densities. These conditions do not apply for
the second option, which therefore is more general.
There it is sufficient that the reference distribution
has a known density, the set M itself may even be
undominated, which is usually for instance the case
when considering neighborhood models from robust
statistics (e.g., [7], [3], [20], [14]).

We will discuss both methods, from the general point
of view as well as with the help of examples. For ease
of illustration we will use in both examples a set of
normal distributions. In Case i) it is used immediately
as the credal prior information M, in Case ii) it serves
as a building block to define an appropriate interval-
valued assignment.

9
Po(Θd) denotes the power set of Θd.

10By conjugacy (U(·) = 1 − L(·C)) either (12) or (13) would
be sufficient to describe P (·).

5 Applications of Type-I

Discretization

We start with Type-I discretization, where M is a
set of absolutely continuous probability distributions,
to each of which the discretization procedure is ap-
plied. We assume that M can be described by a set
(f(·)ψ))

ψ∈Ψ of densities with the parameter space Ψ

being a compact subset of R
k for some finite k. In this

situation, for every π(·) ∈ M, the expected utility of
an action can be (approximately) calculated by Equa-
tion (11), relying on the new discrete distribution νπ.
The optimal action (the action with the largest ex-
pected utility) can be found with linear optimization.
It can be seen as the value of a function depending
on the unknown parameter ψ. When n, the number
of competing actions is small, as in the following ex-
ample, E-admissible actions as well as the Γ-maximin
action can be extracted graphically by plotting these
functions. Section 5.2 then sketches general compu-
tational tools for complexer situations with larger n.

5.1 Numerical example

In the following the procedure should be firstly ex-
plained with the help of a numerical example. Con-
sider the actions a1, a2 and a3 with their utility func-
tions

u(a1, ϑ) = exp(− exp(ϑ))

u(a2, ϑ) = exp(− exp(ϑ2))

u(a3, ϑ) = 0.1 .

The associated state of nature follow a normal distri-
bution with µ = 1 and σ varying between 0.5 and 1.5.
This is an example where it is impossible to solve the
corresponding integrals of the expected utility analyt-
ically, and we have to rely on Luceños method.11

Relying on the criterion of E-admissibility, the results
can be found in Figure 1. As we are interested in
the expected utility of an action in dependence on σ,
which means in the value of an integral, it is reason-
able to use here the simple Gaussian quadrature rule
from Proposition 1 for the discretization.12 On the
left hand side one can identify the optimal action in
dependence on σ, while on the right hand side the
corresponding expected utility of the optimal action
is shown. Two of the three actions are optimal for
special values of σ; the set of E-admissible actions is
{a1, a2}.

11Such integrals for instance occur when handling frailty or
measurement error in survival models. Note further that with
the first utility function even such common techniques like Tay-
lor series expansion fail to calculate the integral.

12For Figure 1 a discretization with N = 10 points is used
for the normal distribution with µ = 1 and any fixed σ.
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Figure 1: Action with maximal expected utility de-
pending on σ (left), maximal possible utility depend-
ing on σ (right)

If additionally the mean µ is uncertain, the two-
dimensional Figure 1 becomes three-dimensional
(cf. Figure 2). The parameter µ now also varies in
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Figure 2: Action with maximal expected utility de-
pending on σ and µ (left), maximal possible utility
depending on σ and µ (right)

the interval [0.5, 1.5]. Like in the picture before, one
can identify on the left hand side for a special µ-σ
combination the optimal action. On the right there
are again the corresponding expected utilities. For
some µ-σ combinations now also action a3 is optimal,
which means that the set of E-admissible actions con-
sists of all three actions. The degree of the polynomial
was again chosen as 10, so that the continuous prior
distribution was substituted by 10 nodes.

Also the Γ-maximin action can be found graphically.
Figure 3 shows the values of the expected utility of the
actions from the example in dependence on σ, which
is calculated with the help of discretizations with 10
nodes. Action a2 has the highest minimal expected
utility, so it is Γ-maximin action.

5.2 General Algorithms

The method exemplified here is quite general. In more
complex situations, with less smooth utility functions,
or when the utility functions are very similar to each
other, the number of nodes can be enlarged to ob-
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Figure 3: Expected utility depending on σ

tain calculations of sufficient accuracy. This would
increase the computational effort, but does not make
a substantial difference. Of course, especially when
the set of actions is large, graphical solutions may be
insufficient, and general algorithms are needed. For
that purpose, also discretize Ψ, resulting in a grid
ψ1, . . . , ψs, . . . , ψQ of different values.13

That way a finite number of probability distributions
from M is processed, each of which is discretized by
one of Luceño’s theorems, and so eventually a finite
set of probability distributions with a finite domain is
considered. In such a setting the algorithm to deter-
mine Γ−Maximin solutions described in detail in [2,
Theorem 1] can be used mutatis mutandis.14

Also an algorithm to determine E-admissible actions
can be obtained. For its construction, consider the
elements πψ1

(·), . . . , πψQ(·) of M corresponding to the
parameter values ψ1, . . . , ψs, . . . , ψQ. Note that, with
defining for all l = 1, . . . , n and s = 1, . . . , Q,

zsl := Eπψs
u(a∗, θ) − Eπψs

u(al, θ), (15)

an action a∗ is E-admissible, if

∃s ∀l : zsl ≥ 0 , (16)

or equivalently if

∃s : zs := min
l=1,...,n

al ≥ 0 , (17)

which is the case iff the optimum (z∗1 , . . . , z
∗
Q) of the

following optimization problem

Q
∑

s=1

zs → max

zjl ≥ zj ∀l = 1, . . . , n, ∀j = 1, . . . , Q,

13If the parametrization of the elements of M is continu-
ous, as is the case in the commonly used statistical models,
no substantial loss of information should occur as long as Q is
sufficiently large.

14Only the set E(M) arising there in Equation (16) has to be
replaced by Q, and the states of natures have to be redefined
appropriately.



has a component z∗s0 which is non-negative. The fact
that the expectations in (15) can be approximated
according to (11) yields directly an algorithm based
on linear optimization.

6 Application of Type-II

discretization

6.1 Construction of the Discretized Prior

Information

Now we turn to Type-II discretization, which pro-
duces finally an interval probability on a finite state
of natures Θd with corresponding structure P. In
essence, we are now directly in a situation where we
can apply algorithms from [9] and [17] to determine
the E-admissible actions and the Γ-maximin action(s).
To illustrate the general procedure we discuss in some
detail the case where M is a set of parametric distrib-
utions, just as before, but now M is understood as the
prestructure of an interval probability, i.e. our prior
information consists of the lower and upper envelopes
of M, and therefore we explicitly take, for instance,
also convex mixtures of elements of M into consider-
ation allowing for some ambiguity in the shape of the
distributions.

Firstly, in order to define the nodes, a reference distri-
bution π0(·) ∈ M is chosen, which should be located
in the “middle” of M; in its neighborhood there are all
possible prior distributions. As described in Section 4
this reference distribution is discretized with N nodes
x1, . . . , xN , and based on this the new space Θd with
the elements ϕ1, . . . , ϕN is obtained.15 When con-
structing the interval probability P (·) on (Θd,Po(Θ)),
the next step is to determine the infima and suprema
in (12) and (13) from M.16 For this purpose, for every
element π(·) ∈ M the distribution on the discretized
space Θd has to be determined. Taking the lower
envelope over all these distributions, we confine our-
selves for complexity reasons to a support consisting
of connected intervals (and then apply natural exten-
sion). This means we take for every π(·) ∈ M17 the

15It may be helpful to look at Figure 4, which sketches graph-
ically several steps of the described procedure to find the lower
and upper bounds. The reference distribution chosen is de-
picted here together with one other distribution from M.
The curve in the middle shows the reference distribution π0,
while the steps represent its discretization with nodes xj,π0 , j =
1 . . . 5. The corresponding states ϑj are denoted at the abscissa;
the probability masses can be seen on the left. As an example,
one other distribution is discretized, the corresponding values
of the π({ϑj}) can be read at the right side.

16Note that when directly an F-probability on Θ is given,
for instance, by one of the neighborhood models used in robust
statistics, this step can be skipped. Moreover the methods
seem quite attractive to provide a further discretization when
p-boxes [5] are considered.

17In practical calculations most often a further discretization

lower and upper envelope, resulting in

bs,t := L
(

t−1
⋃

l=s

{ϑl}
)

and bs,t := U
(

t−1
⋃

l=s

{ϑl}
)

. (18)

An essential building block in the whole discretization
procedure are the nodes obtained by discretizing the
reference distribution: Its weights are in this context
much less important than the location of the nodes.
The location determines the intervals ϑj , constituting
the states, and so finally the bounds bs,t and bs,t. So a
discrete variable is aimed at, the distribution of which
approximates the continuous distribution function as
exactly as possible. This means, Proposition 2 should
be used here.

--------------

---------------------

-----------------------------

-----------------------------------
---------------------------------------------

x1
︸ ︷︷ ︸

ϑ1

x2
︸ ︷︷ ︸

ϑ2

x3
︸ ︷︷ ︸

ϑ3

x4
︸ ︷︷ ︸

ϑ4

x5
︸ ︷︷ ︸

ϑ5

π(0)({ϑ1})

π(0)({ϑ2})

π(0)({ϑ3})

π(0)({ϑ4})

π(0)({ϑ5})

------------------------------------------------
------------------------------------------

---------------------------------

-------------------------

π({ϑ1})
π({ϑ2})

π({ϑ3})

π({ϑ4})

π({ϑ5})

Figure 4: Finding of lower and upper probabilities
with the neighborhood of a reference distribution
(sketch). For details see footnote 15.

6.2 E-admissibility

If one now considers again the optimization problem
determining the expected utility, one has to respect
that the considered distributions are not known ex-
plicitly, they just have to satisfy the condition

L
(

t−1
⋃

l=s

{ϑl}
)

≤ π(
t−1
⋃

l=s

{ϑl}) ≤ U
(

t−1
⋃

l=s

{ϑl}
)

.

Next to the auxiliary conditions for λ, i.e.,
∑

i λi = 1
and λi ≥ 0 ∀i, now therefore also the constraints on
πd(·) ∈ P have to be considered.

This can be solved by adopting the algorithm devel-
oped independently by ([9]) and ([17]): With the help
of linear optimization it is possible to decide in the
situation with a discrete, but ambiguous state distri-
bution whether an action ai is E-admissible or not.
For this purpose, for every action ai, the set of all
probability measures from the structure P, for which

by considering a grid analogous to 5.2 has to be used.



ai is optimal, is considered:

Πi =
{

πd(·) ∈ P
∣

∣

∣

N
∑

j=1

u(ai, ϑj)πd({ϑj})

≥

N
∑

j=1

u(al, ϑj)πd({ϑj}), ∀l = 1, . . . , n
}

If Πi is not empty, then there is a classical proba-
bility measure in P under which ai is optimal and
consequently ai is an E-admissible action.

6.3 Γ-maximin Criterion

Linear programming can be used also for the
Γ-maximin criterion. A straightforward, but ineffi-
cient possibility is, to find the Γ-maximin action with
the help of n = |A| linear programming procedures,
where the expected utility of each action is minimized,
and then the action with the highest minimal value
has to be found. But it is also possible (and more
efficient) to find the optimal action, by considering a
single optimization problem. As described in ([17])
the optimization problem:

min
πd ∈ P

n
∑

i=1





N
∑

j=1

u(ai, θj)πd({ϑj})



λi −→ max
λ
,

subject to the additional constraint
∑

i λi = 1, can be
transformed into a single linear programming prob-
lem, either by introducing the vertices of the corre-
sponding structure P or by dualization.18 Straightfor-
ward implementations of the method with dualization
and the algorithm described before for the lower and
upper bounds have been used in the example below.

6.4 Numerical Example

In the following these algorithms are applied to a nu-
merical example. Let the utility functions u(ai, ϑ) of
the actions a1, . . . , a5 have the form:

u(a1, ϑ) = 1

u(a2, ϑ) = −(ϑ− 0.5)2 + 2.3

u(a3, ϑ) = −(ϑ+ 0.75)2 + 4.5

u(a4, ϑ) = −|ϑ− 1| + 2.1 and

u(a5, ϑ) = −
(ϑ− 1)2

4
+ 1.5.

Again we assume that M consists of all normal dis-
tributions with µ ∈ [0.75, 1.25] and σ ∈ [0.75, 1.25],

18A second advantage of this algorithm is the fact, that it
considers also the mixed extension of the set of actions: the
Γ-maximin action does not necessarily have to be a pure i.e.
non-randomized action (see [2]).

but, as discussed above, we explicitly want to allow for
ambiguity concerning the type of the distribution and
therefore take M only as a prestructure (cf. [21]), i.e.
as a building block to construct an interval-valued as-
signment - and a corresponding structure (set of com-
patible distributions) - by passing over to the lower
and upper envelope. Firstly the lower and upper
bounds have to be found. A normal distribution with
µ = 1 and σ = 1 seems to be a natural choice for
the reference distribution. This distribution is now
discretized with a fixed number N of nodes. Accord-
ingly normal distributions, which are inside the given
bounds for µ and σ2 are used to find the interval
limits bs,t and bs,t in (18). In the first part of this
example the discretization method based on Propo-
sition 2 with N = 3 and M = 10, i.e. together 30
nodes, has been chosen. To find the bounds, the nor-
mal distributions with µ ∈ [0.75, 0.76, . . . , 1.25] and
σ ∈ [0.75, 0.76, . . . , 1.25] have been considered. Im-
plementation of the algorithms from ([17]) yields for
the criterion of E-admissibility the vector (0, 1, 1, 1, 1):
actions a2, a3, a4 and a5 are E-admissible under these
constraints, action a1 is not E-admissible. The op-
timal action under the Γ-maximin criterion is a5

(λ = (0, 0, 0, 0, 1)) with a minimal expected utility
of 1.106. For comparison, the same calculation has
been made with the discretization method based on
Proposition 1 with N = 30 nodes. The resulting val-
ues differ: just a4 and a5 are E-admissible actions,
while a5 is also here Γ-maximin action with a mini-
mal expected utility of 1.087.

6.5 Notes on the Accuracy of the Results

It is certainly better to use the method of Proposi-
tion 2: it produces a new random variable with a dis-
tribution function which is more similar to the shape
of the original distribution than the function of a vari-
able produced with the ordinary Gaussian quadrature
rule. Indeed the results, as seen above, are different.
For explanation see the following Figure 5. It shows
the differences between the application of both propo-
sitions and their consequences for finding the lower
and upper bounds: The new variable produced with
the method in Proposition 1 shows big differences to
the distribution function of the original distribution,
while the curve of the second method can hardly be
distinguished from the continuous distribution (pic-
ture on the left). The number of nodes was in the
first theorem N = 60, while in the second one with
N = 3 and M = 20 was used, leading altogether again
to 60.

The relatively bad approximation of the original CDF
by Proposition 1 follows from the fact that in the sim-
ple Gaussian quadrature the nodes for the whole sup-
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Figure 5: Discretization with Proposition 1 respec-
tively 2 (left). Lower/upper bounds for the probabil-
ities π({ϑj}) calculated with both methods (right).

port are chosen with one single polynomial. For this
reason a lot of nodes are located in the less interesting
outer areas of the support. And, as explained above,
the locations of the nodes are more important to find
the bounds bs,t and bs,t than the weights (which would
be no problem for the method in Proposition 1). The
approximation in the inner areas of the support is
much exacter with the second method: with a clever
choice of the intervals there are a lot of nodes in the
important areas. At the end both methods lead to
different values of bs,t’s and bs,t’s, whereas the val-
ues obtained by applying Proposition 2 are to be pre-
ferred as explained above. On the right hand side
of Figure 5 one can see these differences in the dis-
played bj−1,j and bj−1,j . The curves in the middle
are the discretizations of the reference distribution,
below there are the bj−1,j , above the bj−1,j .

For the differences between both methods concerning
the evaluation of the Γ-maximin action watch Figure 6
which shows the results of the linear optimization for
obtaining the Γ-maximin solution with both methods.
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Figure 6: Γ-maximin action, found with Theorem 1
respectively Theorem 2. Upper part of the figure:
expected utility value of the Γ-maximin action, lower
part: which action is Γ-maximin?

In the upper part of each graph one can see the calcu-
lated minimal expected utility value of the Γ-maximin
action. The lower part shows the corresponding ac-
tion. The results based on Proposition 1 oscillate at
the beginning between a5 and a4 and stay finally sta-
ble at action a5. Also with the method of Proposition
2 (withN = 3) the Γ-maximin action at the beginning
is a4. But relatively quickly, from M = 4 on, which
is discretization with 12 nodes, a5 stays the optimal
solution.

The expected values oscillate with both methods in
the same way. But with a high number of nodes the
results become more stable. As explained above, the
results of Proposition 2 are better in a case, where the
results differ.

7 Concluding Remarks

We have discussed a sophisticated method for dis-
cretizing a continuous random variable. In contrast
to straightforward ad-hoc discretizations, for instance
by rounding, one is able to enforce important relations
between both variables: the discrete variable and the
continuous variable have a given number of moments
in common, and also their distribution functions can
be ensured to coincide in a certain set of points.

In our view this makes the method quite attractive
in imprecise probability theory far beyond decision
theory, where we have exemplified the power of the
method in two typical applications. Further fruitful
areas of application include the calculation of poste-
rior probabilities from the generalized Bayes rule for
continuous distributions and the extension of graph-
ical models based on continuous distributions to im-
precise probabilities.

Of course, the presentation given here is mainly an
exploratory sketch of some basic ideas. Deeper inves-
tigations are urgently needed in order to find general
recommendations on the trade-off between complexity
and accuracy of the approximation. In this respect,
also special attention has to be paid to the utility func-
tion, in particular when it is not smooth.19 Another
important detail is the sensitivity of the results with
respect to the choice of the reference distribution. In
rare case only, like the application in neighborhood
models (see the survey in [3, Section 4] as well as [7],
[20], [14]), there is a unambiguously natural candi-
date, and canonical examples providing well-accepted
recommendations have still to be developed.20

19One referee suggested to utilize duality of utility and prob-
ability for this purpose and to take discreteness of the utility
function explicitly into account as well.

20One general idea in this direction we owe a referee, who
suggested to choose that distribution in M which minimizes
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Abstract

In this paper we consider some bounds for lower pre-
visions that are either coherent or centered convex.
As for coherent conditional previsions, we adopt a
structure-free version of Williams’ coherence, which
we compare with Williams’ original version and with
other coherence concepts. We then focus on bounds
concerning the classical product and Bayes’ rules.
After discussing some implications of product rule
bounds, we generalise a well-known lower bound,
which is a (weak) version for coherent lower proba-
bilities of Bayes’ theorem, to the case of (centered)
convex previsions. We obtain a family of bounds and
show that one of them is undominated in all cases.

Keywords. Conditional lower previsions, product
rule, Bayes’ theorem, Williams’ coherence, centered
convex previsions.

1 Introduction

Quite recently, P.M. Williams’ 1975 seminal paper
Notes on conditional previsions was published in a
slightly revised version [21], preceded by an introduc-
tory paper discussing basic aspects and historical mo-
tivations for his work [14]. This fact confirms that
Williams’ ideas on coherence still play a very impor-
tant role in the theory of conditional imprecise previ-
sions.

One of the aims of this paper is to show that Williams’
coherence, while being more general than other co-
herence concepts that have been developed, may be
quite simple to work with in several problems. Pre-
cisely, we shall use a variant of Williams’ original co-
herence which does not impose any structural con-
straint on the set of conditional (bounded) random
variables forming the domain of the lower prevision
P and which is a generalisation of Walley’s coher-
ence for unconditional (bounded) random variables
(or gambles) [16].

After recalling some preliminary notions in Section
2, we discuss this variant in Section 3, comparing it
firstly with Williams’ original version and then with
other generalisations of Walley’s unconditional coher-
ence, either potential or proposed in [16]. When being
equivalent to the notion of coherence mainly adopted
by Walley in [16], as is the case in the sequel of the pa-
per, Williams’ coherence may be conveniently used to
prove certain results, which therefore hold in Walley’s
approach too.

We shall use Williams’ coherence to study some
bounds for conditional lower previsions. Actually we
prove that several results hold also for previsions that
are (centered) convex, i.e. satisfy a consistency no-
tion (introduced in [10]) which is more general than
Williams’ coherence.

We focus on generalisations of product rule and Bayes’
rule bounds together with other bounds which we
termed sign rules. A motivation for investigating all
these bounds is that they may give us some guid-
ance for extending coherent or convex lower previ-
sions. This is particularly relevant when conditioning,
given that many rules or standard procedures for in-
ferences or anyway for getting unconditional coherent
evaluations do not apply in a conditional framework
(for instance, convex combinations of coherent condi-
tional lower previsions are not necessarily coherent).

In Section 4 we discuss some inequalities (product
and sign rules), which are essentially known, explor-
ing some of the implications they have for extending P
under an epistemic irrelevance assumption. It appears
here that when the product rule may hold with equal-
ity, the lower prevision obtained from this equality is
not necessarily the natural extension as in the case of
events, but may also coincide with the opposite con-
cept of upper extension. In Section 5 we generalise the
well-known lower bound P (A|B) ≥ P (A∧B)

P (A∧B)+P (A∧B)

to the case of conditional random variables and of
lower previsions that are Williams’ coherent or, more



generally, centered convex. We derive a family of
bounds, proving that one of them, given by equation
(11), is the best in all cases.

Section 6 contains some further comments and con-
clusions.

2 Preliminaries

In the sequel, D is an arbitrary (non-empty) set
of bounded random variables (also termed gambles
[16] or random quantities [21]), or more generally of
bounded conditional random variables.

In the conditional case, if X|B ∈ D, X is a random
variable and B a non-impossible event. When B = Ω,
we obtain the (unconditional) random variable X =
X|Ω.

The supremum sup(X|B) of X|B may be computed
as supω⇒B X(ω) (supω∈B X(ω) in the set-theoretic
interpretation of events), where all ω belong to a large
enough partition (possibility space) IP . It will be also
denoted as supB X. Analogously, inf(X|B) = infB X.

We write B for both an event B and its indicator
function |B| (de Finetti’s convention), appearing from
the context which of the two meanings is intended.

A lower prevision P on D is a map P : D → R.
An upper prevision P may be defined through the
equality P (−X) = −P (X), which always lets us refer
to either lower or upper previsions only. A precise
prevision P is the special case P (X) = P (X) = P (X).

The consistency notions we shall consider for P are
those of coherence or (centered) convexity. More
specifically, when D is made of unconditional random
variables, P is said to be coherent when satisfying the
definition in [16], sec. 2.5.4 (a):

Definition 1 P : D → R is a coherent lower previ-
sion on D iff, for all n ∈ N+, ∀ X0, X1, . . . , Xn ∈ D,
∀ s0, s1, . . . , sn real and non-negative, defining G =∑n

i=1 si(Xi − P (Xi))− s0(X0 − P (X0)), supG ≥ 0.

This definition has a well-known behavioural interpre-
tation: P (X) is an agent’s supremum buying price for
X, and G is the agent’s gain resulting from her/his
buying siXi, for i = 1, . . . , n, and selling s0X0. We
shall use this terminology too, saying that the agent
bets on X0, . . . , Xn with stakes s0, . . . , sn respectively.

In a conditional environment, we adopt the follow-
ing generalisation of Definition 1 to define a coherent
P (·|·):

Definition 2 P : D → R is a coherent condi-
tional lower prevision on D iff, for all n ∈ N+,
∀X0|B0, . . . , Xn|Bn ∈ D, ∀ s0, s1, . . . , sn real and

non-negative, defining B =
∨n

i=0 Bi and G =∑n
i=1 siBi(Xi − P (Xi|Bi)) − s0B0(X0 − P (X0|B0)),

sup(G|B) ≥ 0.

Here the gain is G|B, a conditional random variable
itself. Conditioning on B has the meaning of con-
sidering only those values for G when at least one of
B0, . . . , Bn is true. It is easy to realise that we would
get an equivalent definition (adopted in [18]) by re-
placing G|B with G|S, where the support S is defined
as S = ∨{Bi : si 6= 0, i = 0, . . . , n}.

Throughout the paper, Definition 2 will be referred
to as Williams’ coherence, or W-coherence or simply
coherence, but as we will explain in Section 3, it is ac-
tually a structure-free version of the original Williams’
coherence.

A weaker notion than W-coherence is that of lower
prevision that avoids uniform loss [16, 18]. It may be
obtained from Definition 2 by ruling out the bet on
X0|B0 and modifying B and G accordingly. In the
unconditional environment it is termed condition of
avoiding sure loss and is defined in [16], Sec. 2.4.4 a).

The consistency notion of centered convexity [10, 11] is
weaker than coherence, but sufficiently stronger than
the conditions of avoiding sure or uniform loss to al-
low for interesting properties and applications (for in-
stance, in risk measurement [10]). In fact, several of
the results in the next sections apply to centered con-
vex previsions too.

Formally, the definition of convex lower prevision is
obtained from Definition 1 and Definition 2 by intro-
ducing just the extra convexity constraint

∑n
i=1 si =

s0 (> 0) and eventually by further imposing (this is
not restrictive) that s0 = 1 [9, 10]. Again, we could
condition G on its support S rather than on B, getting
an equivalent definition of convex conditional lower
prevision. This is done in [10, 11]. Centered convex-
ity requires in addition that (0 ∈ D and) P (0) = 0 in
the unconditional case, and further that ∀X|B ∈ D,
0|B ∈ D and P (0|B) = 0 in the conditional case.

Centering is quite a natural requirement: non-
centered convex previsions have rather weak consis-
tency properties, but special instances of them may
be found in the risk literature (cf. [10]).

Proposition 1 If P : D → R is centered convex,
then necessarily [10]:

P1) inf X ≤ P (X) ≤ supX (internality);

P2) Y ≤ X ⇒ P (Y ) ≤ P (X), ∀X, Y ∈ D
(monotonicity);

P3) P (λX + (1 − λ)Y ) ≥ λP (X) + (1 − λ)P (Y ),
∀X, Y ∈ D, ∀λ ∈ [0, 1].



These properties obviously hold for coherent lower
previsions too, while P1) might fail for non-centered
convex previsions.

Let P be a lower prevision defined on an arbitrary set
D. Any consistency condition satisfied by P should
guarantee that there exists an extension of P on any
D′ ⊃ D which satisfies the same consistency condi-
tion. If such an extension is not unique, its vaguest or
least-committal one, if existing, has a special impor-
tance. This peculiar extension is the natural extension
E in the case of coherent or, when conditioning, W-
coherent previsions [14, 16, 21], the convex natural
extension Ec for centered convex (unconditional or
conditional) previsions [9, 10]. The natural or convex
natural extensions always exist for these consistency
notions, not necessarily with other ones, like Walley-
coherence in [16], Section 7.1.4 (b), or non-centered
convexity. Hence, the consistency notions we shall be
working with always allow for extensions of the same
kind on any superset: we shall often use this fact in
the proofs of the results, without always mentioning
explicitly that we are performing an extension.

When working with conditional random variables, like
G|B, we shall employ the equality

f(X1, . . . , Xn)|B = f(X1|B, . . . , Xn|B) (1)

where f is any real function [3].

3 Two or Three Things on Williams’
Coherence

3.1 About Williams’ definition

Williams’ original definition ([21], Definition 1) dif-
fers formally from our definition of W-coherence. One
reason is that it refers to upper rather than lower
previsions, but this is unimportant, since using the
conjugacy relation P (−X) = −P (X) our condition
supG|B ≥ 0 corresponds exactly to his inequality in
(A∗) of [21]. The true difference is that his notion is
not completely structure-free, as it asks that for every
X|B in D, P (X|B) is assigned for any X in a linear
space XB . It follows for instance that Williams’ defin-
ition does not formally generalise Walley’s coherence
for unconditional previsions (our Definition 1), which
is structure-free: when B = Ω for all X|B ∈ D, the
set of all X is constrained to form a linear space XΩ.
On the contrary, Definition 2 is in particular a gen-
eralisation of Walley’s unconditional coherence and
appears to be, in general, nimbler. For instance, the
bounds in Section 4 involve just a few random vari-
ables and no structure is actually needed for proving
them. The fundamental link between the two versions

of Williams’ coherence is ensured by the following ex-
tension theorem.

Proposition 2 If P : D → R is W-coherent on D
(according to Definition 2), it has a W-coherent ex-
tension on any D′ ⊃ D.

Although we are not aware of any published proof for
this proposition, nevertheless it should be regarded
as essentially known. In fact, it can be proven by
adapting the proofs concerning the convex natural ex-
tension in [10], thus proving that there always exists
the natural extension of a W-coherent lower previ-
sion on any D′ ⊃ D. Alternatively, the scheme of
de Finetti’s extension theorem can be followed, with
suitable (but basically minor) modifications. After
de-Finetti’s path-breaking proof concerning precise
(unconditional) previsions in [6], this scheme was em-
ployed in several generalisations (see e.g. [1, 4]). Its
two-step proof shows in the first step that there exist
W-coherent extensions on D′ = D ∪ {X|B}, ∀X|B,
while the second step generalises the proof to any
D′ using Zorn’s lemma or equivalent results. A by-
product of the first step is that the set of admissi-
ble W-coherent extensions on X|B is proved to be
a closed interval. Its lower endpoint is the natural
extension E(X|B), while the upper endpoint is the
upper extension U(X|B) of P . We shall meet again
upper extensions in Section 4.

As an important implication of Proposition 2 in our
framework, when D in Definition 2 does not meet
Williams’ structure requirements in his definition it
is always possible to coherently extend P on a set
D′ such that these requirements hold, and there the
two notions of coherence coincide. It follows that our
W-coherent lower previsions have all the properties
established for Williams’ coherence in [21], including
the important envelope theorem, stating that P is co-
herent on D if and only if

P (X|B) = inf
P∈M

P (X|B),∀X|B ∈ D

where M is the set of the coherent precise pre-
visions P (·|·) dominating P (·|·) on D (P (X|B) ≥
P (X|B),∀X|B ∈ D).

3.2 Alternative concepts of coherence

Another issue concerning Definition 2 of W-coherence
is: equivalent formulations of Definition 1 are known,
so why not rather generalise them in a conditional
environment? An answer is that Definition 2 seems
more appropriate for further generalisations. In fact,
an equivalent version of coherence in Definition 1 is
obtained by restricting the stakes s0, . . . , sn to be in-
teger (this is Walley’s Definition 2.5.1 in [16]), and



this can be done in a conditional environment too.
However, considering integer combinations only is not
sufficient when the random numbers are unbounded,
even in the unconditional case, as shown in [12].

Another definition, less used 1 but equivalent to Def-
inition 1, is:

Definition 3 P : D → R is a coherent lower previ-
sion on D iff, for all n ∈ N+, ∀ X0, X1, . . . , Xn ∈
D, ∀ s1, . . . , sn ≥ 0, ∀ λ0 ∈ R such that
X0 ≥

∑n
i=1 siXi + λ0, it holds that P (X0) ≥∑n

i=1 siP (Xi) + λ0.

To the best of our knowledge, no generalisation of this
definition to a conditional environment is available in
the literature, nor does the problem of generalising it
to an equivalent version of W-coherence seem to have
a straightforward solution.

A further issue is that a number of different gener-
alisations of coherence (Definition 1 or equivalent) to
a conditional framework have been proposed in [16]:
how do they relate to W-coherence? We observe some
basic facts about it.

a) The generalisations in [16] are not structure-free:
the conditioning events have some special fea-
tures. When being comparable, W-coherence in
Definition 2 is equivalent to the following two of
them:

• the concept of coherence defined in Sec.
7.1.4 (b) (referred to as Walley-coherence
here), with the extra assumption that all
partitions Bi in that definition are finite
(this equivalence is stated (without proof)
in [16]);

• the concept of separate coherence defined in
Sec. 6.2.2, without any other extra assump-
tion (this equivalence is proved in the Ap-
pendix).

b) In general, W-coherence may be weaker than
Walley-coherence (when at least one Bi is infi-
nite). This fact may lead to the disadvantages
discussed in [16], but has the non-negligible ad-
vantages over Walley-coherence that the natural
extension always exists and that the envelope
theorem characterises W-coherence. A weaker
notion than Walley-coherence, weak coherence
defined in Sec. 7.1.4 (a), is sometimes stronger
and sometimes weaker than W-coherence. This

1Definition 3 has a curios story: not mentioned explicitly
in Walley’s book [16], although following directly from results
established there, it appears in [2], but without being related
to coherence for imprecise previsions. It was then discussed
extensively in [7].

notion is anyway rather counterintuitive, and
Walley-coherence is in fact the major conditional
coherence condition in [16].

c) At any rate, properties of W-coherence involving
only finitely many distinct conditioning events
hold for Walley-coherence too (a W-coherent as-
sessment or possibly one of its W-coherent exten-
sions, cf. Proposition 2, may be referred in this
case to a finite set of finite partitions Bi). In par-
ticular, the bounds we investigate later on hold
in Walley’s framework too.

Last but not least, we note that the notion of con-
ditional random variable (and of conditional event)
is often left at an informal level in the literature, in-
cluding [16, 21]. A formal approach to these and other
descriptive tools of uncertainty is developed in [3, 4].

Although this issue is seemingly not particularly rel-
evant in many matters, a greater formalisation turns
out to be useful with other ones. For an example,
consider Lemma 6.2.4 in [16]: this lemma states that,
if BX = BY and other coherence conditions hold for
a lower prevision P , then P (X|B) = P (Y |B). But
using (1), BX|B = (B|B) · (X|B) = X|B, thus con-
dition BX = BY alone implies X|B = Y |B. Conse-
quently µ(X|B) = µ(Y |B) whatever the uncertainty
measure µ is, not because of coherence (µ could even
be incoherent), but merely because we are evaluating
the same thing.

4 Product and Sign Rules

The product rule is among the basic inferential rules
in Bayesian statistics. In its simplest version for prob-
abilities, it requires that P (A ∧B) = P (A) · P (B|A);
in a more general version involving a precise prevision
P , events A and B and a random variable X, we have
P (AX|B) = P (A|B) · P (X|A ∧B).

We investigate now some generalisations of this rule,
and related properties, for coherent lower previsions.

Proposition 3 Let P be coherent on D ⊃
{AX|B,A|B,X|A ∧B}. Then, necessarily:

a) (product rule) if P (X|A ∧B) > 0, then

P (AX|B) ≥ P (A|B) · P (X|A ∧B) (2)

b) (product rule) if P (X|A ∧B) < 0, then

P (AX|B) ≤ P (A|B) · P (X|A ∧B) (3)

c) P (AX|B) = 0 iff P (A|B) · P (X|A ∧B) = 0



d) (sign rules)

P (AX|B) > 0 ⇒ P (X|A ∧B) > 0;

P (AX|B) < 0 ⇒ P (X|A ∧B) < 0;

Proof. Put p1 = P (AX|B), p2 = P (A|B), p3 =
P (X|A ∧ B), and consider a gain G in Definition 2
arising from betting on AX|B, A|B, X|A ∧ B: G =
s1B(AX−p1)+s2B(A−p2)+s3AB(X−p3) = ((s1+
s3)AX + (s2 − s3p3)A − s1p1 − s2p2)B. Now choose
s1, s2, s3 such that

s1 = −s3, s2 = s3p3 (4)

and G specialises into

G = (p1 − p2p3)s3B. (5)

Proof of a). We have p3 > 0. Choose s3 > 0. Then
from (4) s1 < 0, s2 > 0. Since only one of the stakes
s1, s2, s3 is negative, we have an admissible bet ac-
cording to Definition 2. To ensure sup G|B ≥ 0 it is
necessary from (5) that p1 − p2p3 ≥ 0, which is (2).

Proof of b). Analogous to a), after choosing s3 < 0.

Proof of c). To prove the implication P (X|A ∧ B) ·
P (A|B) = 0 ⇒ P (AX|B) = 0, note that when
P (X|A ∧ B) · P (A|B) = p2p3 = 0 the gain G in (5)
reduces to G = s3p1B, and G|B = s3p1. To ensure
supG|B ≥ 0, whatever the sign of s3 may be, it is
necessary that p1 = P (AX|B) = 0. The proof of the
converse implication is similar.

Proof of d). For the first implication, suppose
P (AX|B) > 0. Then P (X|A ∧ B) can be neither
negative (since then b) would contradictorily imply
P (AX|B) ≤ 0), nor zero (c) would imply P (AX|B) =
0). Hence P (X|A ∧B) > 0. The other implication is
proven similarly. �

4.1 Comments

The sign rules are obtained here from the product
rule. A simpler version of the first rule holds for con-
vex previsions too, and may be derived from Lemma
1 (cf. Section 5.1). Sign rules introduce some rough
inferential constraints. For instance, let B = Ω. Then
knowing or assuming that P (AX) > 0 implies neces-
sarily P (X|A) > 0 (no matter what sign P (X) has).

The product rule has interesting implications, involv-
ing the natural and upper extension. To outline this
point, let B = Ω, and suppose that A is epistemically
irrelevant for X, so P (X|A) = P (X). If we have as-
sessed P (A) and P (X), but not P (AX), it is tempting
to extend P on AX putting P (AX) = P (A) · P (X)
(multiplicative rule). There are instances when this
is possible: if X is an event too, under an additional

assumption (logical independence of A and X); in
this case P (AX) is the natural extension E(AX) [13].
These properties do not necessarily hold if we fur-
ther introduce some constraints on P . For instance,
it was shown in [8] that the multiplicative rule holds
only in very special cases if we require P to be a
necessity measure. However, as long as only events
are involved, we can hope to simultaneously apply
P (AX) = P (A) ·P (X) and obtain the natural exten-
sion E(AX) = P (AX). Proposition 3 informs us that
in the realm of random variables the situation is more
complex: even assuming that P (AX) = P (A) · P (X)
is a coherent extension of P on AX, there are in-
stances (cf. a)) when P (AX) = E(AX), but other
conditions (cf. b)) imply that P (AX) is just the op-
posite, i.e. the upper extension of P .2 This happens
in particular when supX < 0 (hence P (X) < 0 by
P1) of Proposition 1), or also X ≤ 0 if P (X) 6= 0.

Finally, note that some sign constraints arise as a
joint consequence of a), b), c), depending on the
sign of P (A|B): if P (A|B) > 0 then P (AX|B) and
P (X|A ∧ B) must take the same sign (both positive,
both negative, or both null), while if P (A|B) = 0 then
P (AX|B) = 0, but P (X|A ∧B) is unconstrained.

5 Bayes’ Rule Bounds for Centered
Convex Previsions

The following inequality, which holds if P (B) > 0 and
its terms are well-defined, is well-known in the theory
of coherent imprecise probabilities [15, 16, 17]:

P (A|B) ≥ P (A ∧B)
P (A ∧B) + P (A ∧B)

(6)

Together with an analogous bound, eq. (6) generalises
Bayes’ theorem for precise probabilities (when P =
P = P it reduces to P (A|B) ≥ P (A∧B)/P (B). The
reverse inequality may be obtained from P (A|B) ≤
P (A ∧ B)/(P (A ∧ B) + P (A ∧ B))). In fact, an im-
mediate, inferential way of interpreting (6) is to sup-
pose that an unconditional coherent P is assigned:
then (6) gives a lower bound for extending P on A|B,
hence also a lower bound for its natural extension
E(A|B). It is well-known [15] that when P is de-
fined on an algebra A and is 2-monotone there (i.e.
P (A ∨ B) ≥ P (A) + P (B) − P (A ∧ B), ∀A,B ∈ A),
the bound in (6) is precisely equal to E(A|B), which
under these assumptions may be written in terms of
Choquet integrals. Inequality (6) was also studied in
various other papers, including [17], where it is also
compared with Dempster’s rule of conditioning, and
[19].

2Upper extensions received little attention in [16], while they
were investigated in [20].



Our main purpose in this section is to generalise eq.
(6) introducing a more general bound, holding for
random variables with corresponding lower previsions
that are centered convex. For this, we need a pre-
liminary Lemma, which has also other implications,
commented below.

Lemma 1 Let P : D → R.Whenever the lower pre-
visions below are defined,

a) if P is convex on D, then for λ ∈ R

P (B(X − λ)) > 0 ⇒ P (X|B) > λ;
P (X|B) > λ ⇒ P (B(X − λ)) ≥ 0;

b) if P avoids uniform loss on D, then for λ ∈ R,

P (B(λ−X)) > 0 ⇒ P (X|B) < λ.

Proof. To prove a), write the gain G|Ω = G for a
bet on B(X −λ), X|B with stakes s1 = s0 (note that
s1 = s0 is the convexity condition in this case): G =
s1(B(X − λ)−P (B(X − λ)))− s1B(X −P (X|B)) =
s1(B(P (X|B)− λ)− P (B(X − λ))).

To prove the first inequality, put s1 = 1. To en-
sure supG ≥ 0 (note that G varies only with B),
the following inequality must be false for at least one
value of B: B(P (X|B) − λ) < P (B(X − λ)). If
P (B(X − λ)) > 0, then necessarily P (X|B)− λ > 0.

To prove the second inequality, put s1 = −1. To
guarantee now that supG ≥ 0, the reversed inequality
B(P (X|B) − λ) > P (B(X − λ)) must be false. If
P (X|B) > λ, it is necessary for this that P (B(X −
λ)) ≥ 0.

To prove b), consider the bet on B(λ−X), X|B with
gain G = B(λ−X)−P (B(λ−X))+B(X−P (X|B)),
and argue similarly to the preceding cases. �

Corollary 1 Under the assumptions of Lemma 1, b),
P (B(X − λ)) < 0 ⇒ P (X|B) < λ.

Proof. Follows from Lemma 1, b) and P (B(λ−X)) =
−P (B(X − λ)). �

5.1 Comments

Only the first inequality in a) will be actually used to
generalise (6), but the three inequalities deserve some
comments. The inequalities in a) imply when λ = 0 a
simpler version of the first inequality in Proposition 3
d) (sign rules), but holding under the weaker assump-
tion that P is convex. As for the inequality in b), it
holds also for centered convex previsions, since these
previsions avoid uniform loss [10].

5.2 A Generalised Lower Bound

We obtain now a generalisation of the lower bound
(6).

Proposition 4 Let P be an unconditional cen-
tered convex lower prevision on D ⊃ {B,B(X −
sup(X|B)), B(X − inf(X|B))} and P (B) > 0. If
P (B(X − inf(X|B))) − P (B(X − sup(X|B))) 6= 0,
any (centered) convex extension of P on X|B is such
that, ∀h ≤ inf(X|B), ∀k ≥ sup(X|B),

P (X|B) ≥ φ(h, k) = kP (B(X−h))−hP (B(X−k))
P (B(X−h))−P (B(X−k)) (7)

Proof. We preliminarily observe that the denomina-
tor in (7) is positive. This follows from the assump-
tions and internality and monotonicity of P (Proposi-
tion 1, P1) and P2)), which imply: B(X − h) ≥ 0 ⇒
P (B(X−h)) ≥ 0, B(X−k) ≤ 0 ⇒ P (B(X−k)) ≤ 0,
and then 0 < P (B(X − inf(X|B))) − P (B(X −
sup(X|B))) ≤ P (B(X − h))− P (B(X − k)).

To start now the proof, note that for any λ ∈ R,
B(X−((1−λ)h+λk)) = (1−λ)B(X−h)+λB(X−k).
From this equality, we get for any λ ∈ [0, 1] (use P3)
of Proposition 1) P (B(X−((1−λ)h+λk))) = P ((1−
λ)B(X − h) + λB(X − k)) ≥ (1 − λ)P (B(X − h)) +
λP (B(X − k)) = P (B(X − h)) − λ(P (B(X − h)) −
P (B(X − k))). Defining λ = P (B(X−h))

P (B(X−h))−P (B(X−k)) ,
λ ∈ [0, 1]. We can therefore replace λ with λ in the
above derivation, getting P (B(X− ((1−λ)h+λk)) ≥
P (B(X − h))− λ[P (B(X − h))− P (B(X − k))] = 0.

If P (B(X − ((1 − λ)h + λk))) > 0, use Lemma 1, a)
to obtain P (X|B) > (1− λ)h + λk = φ(h, k).

If P (B(X − ((1 − λ)h + λk))) = 0, then P (X|B) =
(1 − λ)h + λk = φ(h, k). We apply here Proposi-
tion 9 in [10], which generalises to convex lower pre-
visions a result known for coherent lower previsions
[16], ensuring that r = P (X|B) is the unique solution
of P (B(X − r)) = 0, if P is convex and P (B) > 0. �

Notation. When unambiguous we write SB =
sup(X|B), IB = inf(X|B).

Remark 1 When P is coherent, the assumptions
in Proposition 4 ensuring that the denominators are
non-zero simplify as follows: it is sufficient to ask that

i) X|B is non-constant;

ii) P (B) > 0.

In fact, i) and ii) imply P (B(X − IB)) − P (B(X −
SB)) > 0. To see this, consider a bet on B, B(X −
SB), B(X − IB) with stakes SB − IB, 1, −1 respec-
tively. Then G = (SB − IB)(B − P (B)) + B(X −



SB)−P (B(X−SB))−B(X− IB)+P (B(X− IB)) =
P (B(X − IB))− P (B(X − SB))− (SB − IB)P (B) =
supG. Thus supG ≥ 0 iff P (B(X − IB))−P (B(X −
SB)) ≥ (SB − IB)P (B) > 0.

As a further remark, note that P (B) = 0 (P coher-
ent) implies P (B(X − IB))− P (B(X − SB)) = 0, by
Proposition 3 c).

The lower bound (7) is as a matter of fact a family
of lower bounds, indexed on h and k. The immediate
question is therefore: which h, k should be chosen?
It is not clear a priori that there should be a unique
couple (h, k) preferable in all cases, but the follow-
ing proposition solves the problem in favour of the
remarkable couple h = inf(X|B), k = sup(X|B).

Proposition 5 Under the assumptions of Proposi-
tion 4, φ(IB , SB) ≥ φ(h, k), ∀h ≤ IB, ∀k ≥ SB.

Proof. The proof is made up of two steps. In the first
step we prove that for any fixed h ≤ IB , φ(h, k) ≤
φ(h, SB); in the second that φ(h, SB) ≤ φ(IB , SB).

To shorten notation, we define f(r) = P (B(X−r)), so
that for instance f(h) = P (B(X − h)) and φ(h, k) =
kf(h)−hf(k)
f(h)−f(k) .

First step. Fix h and define δ = δ(k) = k − h. We
have δ ≥ SB − IB > 0 (the last inequality is implied
by the assumption P (B(X−IB))−P (B(X−SB)) 6= 0
in Proposition 4, which rules out the trivial case that
X|B is constant).

We write now φ(h, k) as a function u(δ) of δ: u(δ) =
(h+δ)f(h)−hf(h+δ)

f(h)−f(h+δ) , or also

u(δ) = φ(h, h + δ) = h + δ
f(h)

f(h)− f(h + δ)
. (8)

We now consider the function of δ in (8), δ/[f(h) −
f(h + δ)], proving that:

δ1 > δ2 (> 0) ⇒ δ1
f(h)−f(h+δ1)

≤ δ2
f(h)−f(h+δ2)

. (9)

To prove (9), we first verify that f(r) is concave on R.
In fact, for λ ∈ [0, 1] and using also P3) of Proposition
1, f(λr1 + (1− λ)r2) = P (B(X − λr1 − (1− λ)r2)) =
P (λB(X−r1)+(1−λ)B(X−r2)) ≥ λP (B(X−r1))+
(1− λ)P (B(X − r2)) = λf(r1) + (1− λ)f(r2).

For a standard property of concave real functions,
F (δ) = f(h+δ)−f(h)

δ is monotone non-increasing for
δ ∈ R, hence in particular for δ ∈ I = [SB − IB ,+∞[.
Interval I is the domain of δ in our case; here δ > 0
and (cf. the beginning of the proof of Proposition 4)
f(h+δ)−f(h) is negative, thus F (δ) < 0, ∀δ ∈ I. Re-
calling this, we easily get (9) from δ1 > δ2 ⇒ F (δ1) ≤
F (δ2).

Using (9), and recalling that f(h) ≥ 0, u(δ) is max-
imised, for a given h, by minimising δ, putting hence
δ = SB − h. This is equivalent to choosing k = SB in
φ(h, k). Thus φ(h, k) ≤ φ(h, SB), ∀k ≥ SB .

Second step. Define δ = δ(h) = h− SB < 0 and write
φ(h, SB) as a function v(δ) of δ:

v(δ) = φ(SB + δ, SB) = SB − δ
f(SB)

f(SB + δ)− f(SB)
.

We prove now that

δ1 < δ2 (< 0) ⇒ v(δ1) ≤ v(δ2). (10)

For this, we can follow a scheme similar to the proof of
the first step (alternatively, a longer proof essentially
exploiting the definition of convex prevision is possi-
ble). As before, the function F (δ) = f(SB+δ)−f(SB)

δ
is monotone non-increasing, and negative for δ ∈] −
∞, IB−SB ]. From this and recalling that f(SB) ≤ 0,
(10) follows straightforwardly.

We conclude that φ(h, k) ≤ φ(h, SB) ≤ φ(IB , SB),
∀h ≤ IB , ∀k ≥ SB , where the first inequality follows
from step 1, whilst the second is a consequence of step
2. �

The most notable consequence of Proposition 5 is that
we get the following lower bound for P (X|B):

P (X|B) ≥ SBP (B(X−IB))−IBP (B(X−SB))
P (B(X−IB))−P (B(X−SB)) . (11)

When X is an event, X = A, (11) reduces to

P (A|B) ≥ P (A ∧B)
P (A ∧B)− P (B(A− 1))

and then to (6), with simple manipulations (B(A −
1) = −BA).

Thus the lower bound in (11) generalises (6) to ran-
dom variables and to lower previsions that are cen-
tered convex (in particular, W-coherent).

An upper bound for P (X|B) can be derived from (11):

Corollary 2 In the assumptions of Proposition 4 and
whenever the relevant previsions are defined 3

P (X|B) ≤ IBP (B(SB−X))−SBP (B(IB−X))
P (B(SB−X))−P (B(IB−X)) (12)

Proof. Write (11) for −X|B:

P (−X|B) ≥ −IBP (B(SB−X))+SBP (B(IB−X))
P (B(SB−X))−P (B(IB−X)) .

3When X is an event A, (12) reduces to P (A|B) ≤
P (A∧B)

P (A∧B)+P (A∧B)
. We already met this bound in the paragraph

following eq. (6).



Eq. (12) follows, reversing signs in the above inequal-
ity and since −P (−X|B) = P (X|B). �

An issue which remains to be investigated is under
what conditions the bound in (11) is sharp, i.e. it is
actually equal to the natural extension E(X|B) if P is
coherent, or to the convex natural extension Ec(X|B),
when P is centered convex. The following example
illustrates the case of coherence.

Example Given the partition IP = {e1, e2, e3, e4},
define X such that X(e1) = 1, X(e2) = −1, X(e3) =
0, X(e4) = 2. Given the precise probabilities P1,
P2, having the following values on IP : P1(e1) = 0.2;
P1(e2) = 0.3; P1(e3) = 0.2; P1(e4) = 0.3; P2(e1) =
0.5; P2(e2) = 0.1; P2(e3) = 0; P2(e4) = 0.4, and call-
ing A(IP ) the powerset of IP , each of P1, P2 has a
unique coherent extension to a precise prevision on
U = A(IP ) ∪ {X} ∪ {B(X − r) : r ∈ R}, where
B is a given event in A(IP ). A coherent lower pre-
vision P may be defined on any subset D of U as
P (Y ) = min{P1(Y ), P2(Y )}, ∀Y ∈ D (lower enve-
lope theorem). We choose D = A(IP ) ∪ {B(X −
inf(X|B)), B(X − sup(X|B))}. Thus in particular
P (e1) = 0.2, P (e1 ∨ e2 ∨ e3) = 0.6, etc. Note that the
restriction of P on A(IP ) is a lower probability which
is not 2-monotone (for instance P (e1∨e3∨e4) = 0.7 <
P (e1 ∨ e3)+P (e3 ∨ e4)−P (e3) = 0.8). We have 10
non-trivial different choices for the conditioning event
B in A(IP ). It may be verified that the bound is sharp
in all of these but one.

a) For instance, let B = e1 ∨ e2 ∨ e3. This is
one of the 9 choices for B giving a sharp bound
(11). In fact, SB = 1, IB = −1. Since
P1(B(X−r)) = P1(BX)−rP1(B) = −0.1−0.7r
and P2(B(X − r)) = 0.4 − 0.6r, we obtain
P (B(X − r)) = min{−0.1 − 0.7r, 0.4 − 0.6r} =
−0.1 − 0.7r iff r ≥ −5. Then the bound (11) is
φ(IB , SB) = φ(−1, 1) = − 1

7 = E(X|B), because
P1(X|B) = P1(BX)

P1(B) = − 1
7 . Note that φ(−1, 1) is

not the only sharp bound in the φ(h, k) family:
φ(h, k) = − 1

7 for h ∈ [−5,−1], k ≥ 1.

b) Let now B = e1 ∨ e4. This choice corresponds to
the unique non-exact bound (11). In fact, now
P1(B(X − r)) = 0.8 − 0.5r, P2(B(X − r)) =
1.3−0.9r, P (B(X−r)) = 1.3−0.9r iff r ≥ 5

4 and
the bound is φ(IB , SB) = φ(1, 2) = 11

8 . To see
that the bound cannot be reached, note that [15]
if it were sharp, there would be a precise prevision
P , in the set MD(P ) of precise previsions dom-
inating P on D, such that its extension on X|B
ensures that P (X|B) = P (BX)

P (B) = P (e1)+2P (e4)
P (e1)+P (e4)

=

11
8 , which means that

P (e4) =
3
5
P (e1) (13)

It is then easy to check that no such P may be
found in MD(P ): just verify that there is no
real solution for the system of linear inequalities
formed by (13), the dominance constraints P ≥ P
on D, and the non-negativity and normalisation
constraints for P on IP .

c) Let us introduce partition IP ′ = {ω1, ω2,3, ω4}
which is a coarsening of IP : ω1 = e1, ω2,3 =
e2 ∨ e3, ω4 = e4. We do not modify the uncer-
tainty evaluations of b), defining P1, P2 on IP ′ as
the restrictions of the previously defined P1, P2

respectively (thus P1(ω1) = 0.2, P1(ω2,3) = 0.5,
P1(ω4) = 0.3, P2(ω1) = 0.5, P2(ω2,3) = 0.1,
P2(ω4) = 0.4) and P as their lower envelope
on D′ = A(IP ′) ∪ {B(X − sup(X|B)), B(X −
inf(X|B))}, B ∈ A(IP ′). Here B = ω1 ∨ ω4,
and X(ω1) = 1, X(ω4) = 2, while X(ω2,3) may
take any value, it does not influence the following
computations. Note that now P is 2-monotone on
A(IP ′), since IP ′ is a three-atom partition [15].
Obviously, the bound (11) is again 11

8 as in b),
since, when passing from b) to c), we essentially
only grouped together e2 and e3, which are irrel-
evant in the computation of φ(1, 2). However,
there is now a prevision P in MD′(P ) which
reaches the bound, i.e. such that P (X|B) = 11

8 :
its values on IP ′ are P (ω1) = 0.5, P (ω2,3) = 0.2,
P (ω4) = 0.3.

6 Conclusions

In a first part of the paper (Section 3) we related
W-coherence with Williams’ original definition, and
also with other notions of coherence in a conditional
framework, especially Walley-coherence. Our main
purpose here was to show that W-coherence can be
profitably employed to obtain results which hold for
Walley-coherence too (Section 4). A more extended
comparison between these two coherence concepts is
beyond the aims of the present paper, but is an un-
doubtedly interesting question. It requires analysing
further issues, like the role of the conglomerative prop-
erty or the interpretation of Walley’s updating prin-
ciple.

In the sequel of the paper, we have discussed some
implications of product rule bounds and generalised
a Bayes’ theorem bound to either W-coherent or cen-
tered convex lower previsions. Although we did not
consider them here, other similar bounds or simple
generalisations may be found (for instance, for upper



previsions), with analogous properties. A less imme-
diate question is that of investigating further the re-
lationships of these bounds with important concepts
in the theory of imprecise previsions: epistemic irrele-
vance and natural and upper extension for (more gen-
eral) product rule bounds, 2-monotonicity and possi-
bly Choquet integration for the bound (11). Concern-
ing the latter issue, a generalisation to lower previ-
sions of 2-monotonicity with related results was re-
cently proposed in [5]. There remain anyway two
features in our approach which, while ensuring gen-
erality, make it difficult to apply pre-existing results
to sufficiently general situations, for instance in the
problem of establishing when the bound (11) is sharp.
One feature is that we are working in a structure-free
environment, while 2-monotonicity is customarily re-
ferred to algebras of events [15] or (linear) lattices of
random variables [5]. With respect to this feature,
our example is still rather peculiar: there is a parti-
tion IP there such that A(IP ) ⊂ D, but this inclusion
is generally not required. A second issue is that we
consider also the centered convexity condition, and
relationships of 2-monotonicity (for previsions) with
convexity are still largely to be explored.

Appendix. W-coherence and separate
coherence

Let IP be an arbitrary (finite or not) partition of non-
impossible events. We recall the definition of separate
coherence in [16]:4

Definition 4 The conditional lower previsions
PB(X|B), defined for any B ∈ IP and X ∈ H(B),
where H(B) is an arbitrary set of gambles containing
B, are separately coherent iff, for every B ∈ IP ,

i) PB(B|B) = 1

ii) ∀s0, . . . , sn ≥ 0, ∀X0, . . . , Xn ∈ H(B), defining
G =

∑n
i=1(Xi − P (Xi|B))− s0(X0 − P (X0|B)),

it holds that supG ≥ 0.

When defined on the same domain, separate coher-
ence and W-coherence are equivalent, as we now
prove. Define for this the conditional lower previ-
sion P such that P (X|B) = PB(X|B), ∀B ∈ IP ,
∀X ∈ H(B) (P is the collection of all PB).

Proposition 6 The lower previsions PB (B ∈ IP )
in Definition 4 are separately coherent iff P is W-
coherent on D = ∪B∈IPDB, where DB = {X|B : X ∈
H(B)}.

4The integer stakes in [16] may be equivalently replaced by
real non-negative ones, as we do here.

Proof. We prove first that W-coherence implies
separate coherence. If P is W-coherent, i) neces-
sarily holds. As for ii), it follows from supG =
max{supB G, supB G} ≥ supB G = supG|B =
sup(BG|B) ≥ 0, the last equality holding by (1), the
inequality by W-coherence.

To prove the converse implication, suppose that sep-
arate coherence holds. Betting on B, X0, . . . , Xn,
it follows then sup(s(B − P (B|B)) +

∑n
i=1 si(Xi −

P (Xi|B))−s0(X0−P (X0|B))) = sup(s(B−1)+G) =
max(supB(s(B − 1) + G), supB(s(B − 1) + G)) ≥ 0.
The last inequality implies supB(s(B − 1) + G) ≥
0, if we choose s > max(supB G, 0), since then
supB(s(B − 1) + G) = −s + supB G < 0. Us-
ing also (1), supB(s(B − 1) + G) = sup(G|B) =
sup(BG|B) = sup(

∑n
i=1 siB(Xi − P (Xi|B)) −

s0B(X0 − P (X0|B))|B) ≥ 0, which means, given the
arbitrariness of n, X0, . . . , Xn and s0, . . . , sn ≥ 0, that
P is W-coherent on DB . It is then a simple exercise to
prove that W-coherence of P on each DB implies W-
coherence of P on D, because of the special structure
of D. �
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Abstract

The modus ponens (A → B, A ∴ B) is, along with
modus tollens and the two logically not valid coun-
terparts denying the antecedent (A → B,¬A ∴

¬B) and affirming the consequent, the argument
form that was most often investigated in the psychol-
ogy of human reasoning. The present contribution
reports the results of three experiments on the proba-
bilistic versions of modus ponens and denying the an-

tecedent. In probability logic these arguments lead
to conclusions with imprecise probabilities.

In the modus ponens tasks the participants inferred
probabilities that agreed much better with the coher-
ent normative values than in the denying the an-

tecedent tasks, a result that mirrors results found
with the classical argument versions. For modus po-

nens a surprisingly high number of lower and up-
per probabilities agreed perfectly with the conjugacy
property (upper probabilities equal one complements
of the lower probabilities). When the probabilities of
the premises are imprecise the participants do not ig-
nore irrelevant (“silent”) boundary probabilities. The
results show that human mental probability logic is
close to predictions derived from probability logic for
the most elementary argument form, but has consid-
erable difficulties with the more complex forms involv-
ing negations.

Keywords. Mental probability logic, modus ponens,
coherence, imprecise probabilities

1 Introduction

While there is a long tradition of probabilistic ap-
proaches in human judgment and decision mak-
ing [10], only recently probabilistic approaches are
adopted in the psychology of reasoning [16, 17, 7,
19, 12, 14, 18, 27, 26, 29]. Traditionally, classical
logic dominated the psychology of human reasoning
[6, 28, 2]. Classical logic was the normative standard

mp cmp da cda

P1: A → B A → B A → B A → B

P2: A A ¬A ¬A

Concl.: B ¬B ¬B B

L-valid: yes no no no
Vi(C) t f ? ?

Table 1: Non-probabilistic version of the modus po-

nens (mp), denying the antecedent (da), and their
respective complementary versions (cmp, and cda).
A and B denote propositions. → and ¬ denote the
material implication and negation, respectively, and
are defined as usual. L-valid denotes logical validity,
and Vi denotes the logical valuation-function V of the
conclusion C under the interpretation i that assigns
t (“true”), to all premises (P1 and P2). If the an-
tecedents, A, of the conditional premise is false, then
the truth value of the conclusion is not determined
(denoted by the question mark).

of reference and used as a criterion for the rationality
of human inferences. See Table 1 for often investi-
gated argument forms in psychology.

Traditional psychological research on human reason-
ing designates human inference as rational/not ra-
tional if it corresponds to logically valid/not valid
argument forms. Everyday life situations, though,
are inherently uncertain. The uncertainty cannot be
captured by classical logic. Reasoning about uncer-
tainty and uncertain knowledge is a fundamental hu-
man competence. Thus, classical logic cannot be an
adequate normative standard of reference for the psy-
chology of reasoning.

We proposed a psychological theory of human reason-
ing, called “mental probability logic” [20, 22, 21, 23,
24, 25], which evaluates the rationality of human rea-
soning not by means of logical validity but by means
of coherence [9, 8, 4]. Mental probability logic is a
psychological competence theory about how humans



interpret common sense conditionals, represent the
premises of everyday life arguments and draw infer-
ences by coherent manipulations of mental represen-
tations.

Why a competence theory? Many investigations on
cognitive processes report errors, fallacies, or biases.
Well known are perceptual illusions, biases in judg-
ment under uncertainty, or errors in deductive rea-
soning. While these phenomena may be startling and
stimulating in the scientific process, they do not lead
to theories that explain human performance in a sys-
tematic way. Collecting slips of the tongue does not
lead to a theory of speaking. Psycholinguistics distin-
guishes performance and competence. Competence
describes what functions a cognitive system can com-
pute. Human reasoning can solve complex problems
and perform sophisticated inferences. While develop-
ing a theory of reasoning one should have the explana-
tion of these processes in mind. One should strive for
a competence theory. The distinction between com-
petence and performance was introduced by Noam
Chomsky [3]. The analogy to deductive reasoning is
obvious. The emphasis on the function a cognitive
system should compute is due to David Marr [15].

Mental probability logic claims that the common sense
conditionals are represented as subjective conditional
probabilities. Based on the available information, the
premises are evaluated and represented by coherent
precise (point) probabilities, coherent imprecise prob-
abilities, or logical information. Coherent imprecise
probabilities can be represented by coherent interval
probabilities or second order probability distributions.
Human reasoning is a mental process that forms new
representations from old ones by using probabilistic
versions of formal inference rules. We assume that
a certain core set of probabilistic inference rules are
hard wired in the human inference engine.

The normative standard of mental probability logic is
based on coherence. Coherence is the key concept in
the tradition of subjective probability theory. It was
originally developed by de Finetti [5]. More recent
work includes [31, 13, 4, 8]. A probability assessment
is coherent1 if it does not admit one or more bets with
sure loss. Coherence provides an adequate normative
foundation for the mental probability logic and has
many psychologically plausible advantages compared
with classical concepts of probability:

• In the framework of coherence a complete Boolean
algebra is is not required for probabilistic infer-
ence. Full algebras are psychologically unrealis-
tic as they can neither be unfolded in working

1Throughout we use “coherent” as synonymous with “to-
tally coherent” [9].

memory nor be stored in the long term memory.
Mental probability logic suggests that humans try
to keep the memory load as small as possible and
process only relevant informations (see also [30]).

• Conditional probability, P (B|A), is a primitive
notion. The probability values are assigned di-
rectly. Conditional probability is not “defined”—
as in probability textbooks—via the fraction of
the “joint”, P (A∧B), and the “marginal”, P (A),
probabilities.2 Conditional probabilities are di-
rectly encoded or just directly connected to the
arguments of the if–then relation.

• Because lack of knowledge (time, effort) it may be
impossible for a person to assign precise probabil-
ities to an event. If a person is uncertain about
probabilities, then mental probability logic sup-
poses that human subjects make coherent impre-
cise probabilistic assessments (by interval-valued
probabilities or by second order probability dis-
tributions).

• Coherence is in the tradition of subjective proba-
bility theory in which probabilities are conceived
as degrees of belief. Degrees of belief are naturally
affine to psychology.

Imprecise versions of the argument forms presented in
Table 1 are formalized by interval probabilities [23] or
by second order probability distributions [25]. In the
present study we focus on interval probabilities only.
We now present imprecise versions of the four argu-
ment forms of Table 1. While only the modus ponens

is logically valid, all four argument forms admit to
infer coherent probability intervals for the conclusion.

The imprecise version of the modus ponens has the
form:

P (B|A) ∈ [x′, x′′] , P (A) ∈ [y′, y′′]

∴ P (B) ∈ [x′y′, 1 − y′ + x′′y′] . (1)

Since P (¬C) = 1−P (C) (conjugacy principle [31]) the
complement of an interval [l, u] is [1−u, 1− l], it triv-
ially follows that the imprecise complement modus

ponens has the form:

P (B|A) ∈ [x′, x′′] , P (A) ∈ [y′, y′′]

∴ P (¬B) ∈ [y′ − x′′y′, 1 − x′y′] . (2)

The imprecise denying the antecedent has the form:

P (B|A) ∈ [x′, x′′], P (¬A) ∈ [y′, y′′]

∴ P (¬B) ∈ [(1−x′′)(1−y′′), 1−x′(1−y′′)] (3)

2The definition P (B|A) =df. P (A∧B)/P (A) is problematic
if P (A) = 0.



The imprecise complement denying the antecedent

has the form:

P (B|A) ∈ [x′, x′′], P (¬A) ∈ [y′, y′′]

∴ P (B) ∈ [x′(1 − y′′), x′′+ y′′− x′′y′′] (4)

Equations (1)-(4) may be obtained by natural exten-
sion [31], likewise, by de Finetti’s Fundamental The-
orem [5] or by Lad’s generalized version [13]—or by
elementary probability theory (for a demonstration
see [23]).

In the psychological literature, the non-probabilistic
versions of the modus ponens and the denying the an-

tecedent were studied extensively. Meta-analytical
results show that the modus ponens is endorsed by
89-100% of human subjects [6]. The denying the

antecedent is endorsed by 17-73% of the subjects
[6]. We do not judge the 17-73% of subjects as ir-
rational. Rather, we propose to reinterpret the data
in the light of mental probability logic. The question
is not whether the human subjects endorse the non-
probabilistic denying the antecedent, but whether
they infer coherent probabilities from the premises of
the imprecise denying the antecedent. In the next
sections we present empirical data on the four impre-
cise argument forms (1)-(4).

2 Experiment 1

2.1 Method and Procedure

Thirty students of the University of Salzburg partici-
pated in Experiment 1. No students with special log-
ical or mathematical education were included.

Each participant received a booklet containing a gen-
eral introduction, one example explaining the re-
sponse modality with point percentages, and one ex-
ample explaining the response modality with interval
percentages. Three target tasks were presented on
separate pages. Eight additional target tasks were
presented in tabular form. The first three modus po-

nens target tasks had the following form:

Please imagine the following situation. Several cars
are parked on a parking lot. About these cars we
know the following:

Exactly 80% of the red cars on this parking
lot are two-door-cars.
Exactly 90% of the cars on this parking lot
are red cars.

Imagine all the cars that are on this parking lot.
How many of these cars are two-door-cars?

Then, the participants were informed that the solu-

tion is either a point percentage or a percentage be-
tween two boundaries (from at least . . . to at most . . .).
The booklet offered two response modalities where the
participants had to choose one deliberately.

Response Modality 1:

If you think that the correct answer is a point per-
centage, please fill in your answer here:
Exactly . . . . . .% of the cars on this parking lot are
two-door-cars.

Point percentage:

|——————————————|
0 25 50 75 100 %

Response Modality 2:

If you think that the correct answer lies within two
boundaries (from at least . . . to at most . . .), please
mark the two values here:
At least . . . . . .% and at most . . . . . .% of the cars
on this parking lot are two-door-cars.

Within the bounds of:

|——————————————|
0 25 50 75 100 %

The subsequent two tasks were formulated accord-
ingly. In the second task the numerical values in two
premises were 20 and 40%, and in the third task 60
and 90%, respectively. Each task was on a separate
page. After the third task the participants answered
eight analogous tasks presented on one page in tab-
ular form. Again, the cover story was kept constant,
only the numerical values contained in the premises
varied (see Table 2).

The thirty participants were divided into two groups,
fifteen participants received the modus ponens tasks,
as just described, and fifteen participants received
denying the antecedent tasks. The denying the an-

tecedent tasks were formulated exactly as the modus

ponens tasks, with two differences. First, a negation
was added in the second premise: “Exactly 90% of
the cars on this parking lot are not red cars”. Sec-
ond, a negation was added to the question: “How
many of these cars are not two-door-cars?”. Both re-
sponse modalities were adopted accordingly. Adding
the negations to the second premise and to the conclu-
sion as just described clearly reflects the form of the
corresponding imprecise denying the antecedent. In
both conditions, we presented the same percentage
numbers to the participants.

The booklets were mixed and assigned arbitrarily to



P1 P2 clb cub lbr ubr

80 90 72 82 75.80 (5.16) 82.60 (8.33)
20 40 8 68 14.60 (11.15) 55.60 (30.24)
60 90 54 64 51.93 (10.13) 63.87 (14.21)
40 40 16 76 25.13 (12.65) 64.07 (35.43)
80 70 56 86 53.00 (21.91) 71.20 (27.26)
20 60 12 52 18.60 (13.37) 46.27 (23.59)

100 100 100 100 100.00 (0.00) 100.00 (0.00)
60 70 42 72 48.00 (15.08) 67.60 (22.04)
40 60 24 64 33.27 (13.88) 59.47 (23.55)
70 80 56 76 61.33 (13.80) 76.73 (12.40)
30 50 15 65 20.67 (12.80) 51.33 (30.32)

Table 2: Mean lower (lbr) and mean upper bound
responses (ubr) of the modus ponens tasks of Exper-
iment 1 (n1 = 15). The standard deviations are in
parenthesis. P1 and P2 denote the percentages in the
premises. clb and cub denote the normative/coherent
lower and upper bounds, respectively.

the participants. All participants were tested individ-
ually in a quiet test room in the department. They
were told to take as much time as they wanted. In
case of questions, the they were asked to reread the
instructions carefully.

2.2 Results and Discussion

Table 2 lists the probabilities presented in the
premises, the normative lower and upper bounds, and
the participants’ mean lower and upper bound re-
sponses for the modus ponens tasks. In the task with
certain premises (i.e., “100%” in both premises) all fif-
teen participants responded with point value of 100%,
which is normatively correct.

Table 3 lists the respondents’ mean lower and up-
per bound responses for the denying the antecedent

tasks. In the task with certain premises four of the
fifteen participants responded with the unit interval
0-100%. These four participants clearly understood
that the denying the antecedent is probabilistically
not informative if all premises have probabilities equal
to 1. One participant responded with the point value
100 and one with the point value 50%. The majority
(nine out of the fifteen participants) responded with
the point value 0%.

In the modus ponens tasks on the average 30% of
the responses were point values (the task with the
certain premises not included). In the denying the

antecedent tasks on the average 23% of the responses
were point values (the task with the certain premises
was not averaged).

In both conditions the standard deviations are high.

P1 P2 clb cub lbr ubr

80 90 2 92 27.13 (33.58) 64.13 (37.94)
20 40 48 88 36.07 (27.71) 62.80 (31.97)
60 90 4 94 22.47 (22.17) 73.00 (29.30)
40 40 36 76 33.87 (20.87) 62.67 (23.25)
80 70 6 76 22.93 (23.20) 55.27 (34.74)
20 60 32 92 29.07 (17.90) 66.53 (24.65)

100 100 0.00 100 10.00 (28.03) 36.67 (48.06)
60 70 12 82 28.40 (26.26) 60.93 (30.39)
40 60 24 84 22.53 (17.01) 59.07 (23.71)
70 80 6 86 19.93 (23.91) 54.93 (31.25)
30 50 35 85 27.87 (20.76) 62.67 (25.13)

Table 3: Mean lower lbr and mean upper bound re-
sponses ubr of the denying the antecedent tasks of
Experiment 1 (n2 = 15). The standard deviations
are in parenthesis. P1 and P2 denote the percent-
ages in the premises. clb and cub denote the norma-
tive/coherent lower and upper bounds, respectively.

This may be a consequence of the explicit presentation
of the point value response modality. The participants
could actually have some imprecise value in mind, but
nevertheless respond with a representative point value
just to reduce the complexity of the task. Such point
value responses bias the mean lower and upper bound
responses. To avoid constantly pointing explicitly to
the possibility to give an interval value response we
dropped the response point response modality in Ex-
periment 2. Dropping the point response modality
forces the participants to respond by intervals while
still allowing point value responses by equating the
lower and the upper bound responses.

Table 4 reports the frequencies of interval response
categories of the modus ponens condition in 3 × 3
tables. Each table contains the six possible inter-
val responses together with the according empirical
frequencies of the interval responses. The columns
designate whether the participants’ lower bounds are
below (LB), within (LW ), or above (LA) the norma-
tive intervals. The rows designate whether the upper
bounds are above (UA), within (UW ) or below (UB)
the normative intervals.

Table 5 reports the frequencies of interval response
categories of the denying the antecedent condition
in 3×3 tables. Figure 1 presents the averaged interval
response frequencies in the modus ponens tasks. The
data of Task 2 and of Task 7 were not averaged. The
normative lower bound of Task 2 is ≤ 10%. Both
normative bounds of task 7 are equal to 100%. Figure
1 shows that in the modus ponens tasks the majority
of the participants gave coherent interval responses.

Figure 2 presents the averaged interval response fre-



quencies in the denying the antecedent tasks. The
data of Task 1, 3, 5, 6, 7, and 10 were not aver-
aged. The normative upper bounds of Task 1, 3,
6, and 7 are ≥ 90%. The normative lower bounds
of Task 2, 5, 7 and 10 are ≤ 10%. Figure 2 shows
that in the denying the antecedent tasks the par-
ticipants responded with more incoherent intervals
than in the modus ponens tasks. More coherent in-
terval responses were observed in the modus ponens

tasks (62.93% of the participants) compared with the
denying the antecedent tasks (41.33% of the partic-
ipants).

In the modus ponens condition, the mean responses
agree very well with the normative lower (rLBR,CLB =
.99) and upper (r(UBR,CUB) = .92) probabili-
ties. The good agreement remains when the lower
(r(LBR,CLB).P1 = .91) and upper (r(UBR,CUB).P2 =
.95) percentages in the premises are partialled out.
Partialling out the values contained in the tasks
reduces the possible influence of anchoring and/or
matching effects.

In the denying the antecedent condition we ob-
served a different pattern. While the mean re-
sponses still agree well with the normative lower
(r(LBR,CLB) = .76) probabilities, the correlation is
slightly negative for the upper (r(UBR,CUB) = −.20)
probabilities. Partialling out Premise 1 and Premise
2 reduces the correlations to r(LBR,CLB).P1

= .25 and
r(UBR,CUB).P2

= .03. The results may be explained
by assuming that the participants just respond with
values close to those contained in the description of
the tasks (known as “matching heuristic”).

It is well known that logical tasks involving nega-
tions are difficult. In probabilistic inference tasks
we consider the correlations between the probabil-
ities of the premises and the normative lower and
upper probabilities of the conclusions. For the set
of our modus ponens tasks the four correlations are
all positive, r(P1,CLB) = .97 and r(P2,CLB) = .92
for the lower probabilities, and r(P1,CUB) = .86 and
r(P2,CUB) = .51 for the upper ones.

For the denying the antecedent tasks (with the
identical numerical probabilities of the premises!)
the lower bound correlations are highly negative,
r(P1,CLB) = −.92 and r(P2,CLB) = −.93, and for
the upper bounds positive, r(P1,CUB) = .24 and
r(P2,CUB) = .62. The weighting and integration
of affirmative and non-affirmative information makes
tasks like the denying the antecedent especially dif-
ficult. We note that linear regression predicts lower
probabilities better than upper ones.

The overall conclusion of Experiment 1 is that the re-
sponses of the participants in the modus ponens con-

Schema Task 1 Task 2
UA a b c 0 4 1 0 4 0
UW d e - 0 10 - 0 11 -
UB f - - 0 - - 0 - -

LB LW LA LB LW LA LB LW LA

Task 3 Task 4 Task 5
UA 0 5 0 0 5 0 0 2 0
UW 2 7 - 0 9 - 1 10 -
UB 1 - - 1 - - 2 - -

LB LW LA LB LW LA LB LW LA

Task 6 Task 7 Task 8
UA 0 4 1 - - - 0 4 1
UW 1 9 - 0 15 - 0 9 -
UB 0 - - 0 - - 1 - -

LB LW LA LB LW LA LB LW LA

Task 9 Task 10 Task 11
UA 0 5 0 0 3 1 0 4 0
UW 0 10 - 1 10 - 0 11 -
UB 0 - - 0 - - 0 - -

LB LW LA LB LW LA LB LW LA

Table 4: Frequencies of the interval responses in the
modus ponens condition of Experiment 1 (n1 = 15).
UA: the participants’ upper bound response is above
the normative upper bound, UW : upper bound re-
sponse is within the normative interval, UB: upper
bound response is below the normative lower bound;
LA, LW , and LB: same for the participants’ lower
bound responses. a: too wide interval responses, b:
lower bound responses coherent, c: both bound re-
sponses above, d : upper bound responses coherent, e:
both bound responses coherently within ±5% (bold),
f : both bound responses below the normative lower
bounds.

dition are very close to the normative values while in
the denying the antecedent condition the responses
might be explained by matching based guessing.

The presence of the negations in the denying the an-

tecedent is a possible explanation, why there were
less coherent interval responses compared with the
modus ponens tasks. It is easier to cognitively rep-
resent an affirmed than a negated proposition. An
affirmed proposition can be visualized, for example,
more directly than a negated one. Classical modus

ponens was proposed as a basic and “hard wired” in-
ference rule [28, 2]. Probabilistic modus ponens is a
similar candidate.

In addition to the modus ponens and the denying the

antecedent, the respective complementary versions
are investigated in Experiment 2. By investigating
the complementary versions as well, the presence of
the negation is more balanced.



Schema Task 1 Task 2
UA a b c - 2 0 0 1 0
UW d e - - 13 - 3 6 -
UB f - - - - - 5 - -

LB LW LA LB LW LA LB LW LA

Task 3 Task 4 Task 5
UA 0 1 0 0 3 0 0 4 0
UW 0 14 - 5 6 - 2 9 -
UB 0 - - 1 - - 0 - -

LB LW LA LB LW LA LB LW LA

Task 6 Task 7 Task 8
UA 0 2 0 - - - 0 4 0
UW 6 6 - - 15 - 4 7 -
UB 1 - - - - - 8 - -

LB LW LA LB LW LA LB LW LA

Task 9 Task 10 Task 11
UA 0 2 0 0 2 0 0 2 0
UW 5 7 - 3 10 - 6 5 -
UB 1 - - 0 - - 2 - -

LB LW LA LB LW LA LB LW LA

Table 5: Frequencies of the interval responses in the
denying the antecedent condition (n2 = 15). For
explanation of the schema see Table 4.

0% 100%

coherent interval

62.93%

26.67% 3.73%

2.93%3.73%

0.00%

Figure 1: Averaged interval response frequencies over
nine selected modus ponens tasks (see text, n1 = 15).

0% 100%

coherent interval

41.33%

30.67% 16.00%

0.00%12.00%

0.00%

Figure 2: Averaged interval response frequencies over
five selected denying the antecedent tasks (see text,
n2 = 15).

3 Experiment 2

3.1 Method and Procedure

Method and procedure of Experiment 2 are analog
to Experiment 1. Sixty students of the University of
Salzburg participated in Experiment 2. No students
with special logical or mathematical education were
included. Thirty participants were assigned to the
modus ponens condition and thirty participants were
assigned to the denying the antecedent condition.

In the modus ponens condition, each participant
worked out three modus ponens tasks and three com-

plement modus ponens tasks. To counterbalance
position position effects, fifteen participants got the
modus ponens tasks at the beginning, and fifteen par-
ticipants got the modus ponens tasks at the end of the
session. The modus ponens tasks had the following
form:

Please imagine the following situation. Around
Christmas time a certain ski-resort is very busy.
This region is very popular among sportsmen, like
skiers, snow-boarders, and sledge-rider. Every hour
a cable-car brings the sportsmen to the top. About
this cable-car we know:

Exactly 100% of the skiers wear red caps.
Exactly 100% of the sportsmen are skiers.

Imagine all the sportsmen in this cable car. How
many of these sportsmen wear a red cap?

Speaking about a closed room (cable-car) instead of
an unspecified parking lot (Experiment 1) should help
to represent and visualize the problems. As in Ex-
periment 1, participants were free to respond either
in terms of point percentages or in terms of interval
percentages. In Experiment 2, however, the response
modality 1 (point response) was dropped. The partic-
ipants were informed by two examples at the begin-
ning that point values can be given by equating the
lower and the upper bounds.

All three modus ponens tasks had the same structure.
The percentages of the two premises in the first task
were 100 and 100%, in the second task were 70 and
90%, and in the third task the percentages were 70
and 50%, respectively. The three complement modus

ponens tasks contained the same percentages and dif-
fered from the modus ponens task only in one respect:
a negation was added to the conclusion (“How many
of these sportsman do not wear a red cap?”).

The denying the antecedent condition was ana-
logue. Fifteen participants first received the three
denying the antecedent tasks and then the three
complementary versions of the denying the an-



P1 P2 clb cub lbr ubr

modus ponens

100 100 100 100 100.00 (.00) 100.00 (.00)
70 90 63 73 62.43 (11.77) 69.17 (9.71)
70 50 35 85 42.5 (15.13) 54.83 (21.19)

complement modus ponens

100 100 .00 .00 .00 (.00) .00 (.00)
70 90 27 37 35.40 (16.73) 42.03 (17.45)
70 50 15 65 41.00 (18.82) 53.67 (17.71)

denying the antecedent

100 100 .00 100 37.37 (47.53) 85.00 (35.11)
70 20 20 44 18.63 (15.25) 41.63 (15.97)
70 50 15 65 25.4 (21.12) 59.23 (20.73)

compl. denying the antecedent

100 100 .00 100 0.83 (4.56) 53.33 (49.01)
70 20 56 80 51.9 (19.12) 75.87 (20.19)
70 50 35 85 32.70 (12.92) 65.17 (27.43)

Table 6: Mean lower lbr and mean upper bound re-
sponses ubr of the modus ponens condition (n1 = 30)
and of the denying the antecedent condition (n2 =
30) of Experiment 2. The standard deviations are in
parenthesis. P1 and P2 denote the percentages in the
premises. clb and cub denote the normative/coherent
bounds.

tecedent tasks. The order was reversed for the other
fifteen participants. The premises and the conclu-
sions were adopted accordingly. The only difference
in the percentages between the modus ponens condi-
tion and the denying the antecedent condition was,
that “90%” was replaced by “20%”. The reason for
this was to avoid non-informative assessments.

3.2 Results and Discussion

The results of t-tests indicate that there were no po-
sition effects. We therefore pooled the data in the
modus ponens condition (n1 = 30) and in the deny-

ing the antecedent condition (n2 = 30).

Table 6 lists the probabilities presented in the
premises, the normative lower and upper bounds, and
the participants’ mean lower and upper bound re-
sponses for the modus ponens tasks and the comple-

ment modus ponens tasks of Experiment 2.

In the modus ponens tasks with certain premises
(“100%” in both premises) all thirty participants re-
sponded with that point value 100%, which is norma-
tively correct. In the according complement modus

ponens tasks all thirty participants responded cor-
rectly with the point value 0.00%. Thus, in Task 1
all participants inferred (correctly) point values. In
the other tasks (both modus ponens and complement

modus ponens), between 50 and 60% of the responses
were point value responses, which is about double
compared with Experiment 1.

This result is surprising, since dropping the explicit
point value response modality should decrease and not
increase the number of point value responses. A pos-
sible explanation is that, as for all participants the
first task contained certain premises and as all par-
ticipants responded by point values in the first task,
they simply continued to give point value responses
later on.

In the denying the antecedent tasks with certain
premises (i.e., “100%” in both premises) fourteen
of the thirty participants inferred a unit interval,
[≤ 1, 100]%. Four participants inferred a point value
equal to zero, and ten inferred a point value equal to
100%. One participant inferred a point value of 50%
and one an interval between 70 and 100%. In the ac-
cording complement denying the antecedent tasks
fifteen of the thirty participants inferred a unit inter-
val, [≤ 1, 100]%. Thirteen responded a point value
equal to zero. One participant inferred a [25, 50]% in-
terval and one inferred a [0, 50]% interval. Practically
half of the participants understood that only a non-
informative interval can be inferred if each premise is
certain.

In the two denying the antecedent tasks with 70
and 20%, and 70 and 50%, in the premises, 0 and
16.67% point value responses were observed, respec-
tively. This amount of point value responses is smaller
than in Experiment 1. In both according complement

denying the antecedent tasks 26.67% point value
responses were observed, which is comparable to the
results of Experiment 1.

Table 7 reports the frequencies of interval response
categories of the modus ponens condition and of the
denying the antecedent condition in 3 × 3 tables.
80.22% of the participants inferred coherent inter-
vals in the modus ponens condition on the average
(the tasks with certain premises were not averaged).
55.00% of the participants inferred coherent intervals
in the denying the antecedent condition on the av-
erage (the tasks with certain premises were not aver-
aged).

In the modus ponens tasks 85.00% (Experiment 1:
62.93%) of the interval responses were coherent on
the average. In the denying the antecedent tasks
56.66% (Experiment 1: 41.33%) of the interval re-
sponses were coherent on the average. The improved
cover-story explains why more coherent interval re-
sponses in Experiment 2 than in Experiment 1 were
observed.



modus ponens tasks
Task 2 Task 3 Coh. Bounds

UA 0 4 1 0 0 0 Task 2:
UW 2 22 - 1 29 63–73
UB 1 - - 0 - - Task 3:

LB LW LA LB LW LA 35–85
complement modus ponens tasks
Task 2 Task 3 Coh. Bounds

UA 0 0 6 0 2 1 Task 2:
UW 5 19 - 0 27 27–37
UB 0 - - 0 - - Task 3:

LB LW LA LB LW LA 15–65
denying the antecedent tasks
Task 2 Task 3 Coh. Bounds

UA 3 4 0 0 5 0 Task 2:
UW 6 16 - 7 18 20–44
UB 1 - - 0 - - Task 3:

LB LW LA LB LW LA 15–65
complement denying the antecedent tasks

Task 2 Task 3 Coh. Bounds
UA 1 8 0 1 6 0 Task 2:
UW 6 14 - 4 18 56–80
UB 1 - - 1 - - Task 3:

LB LW LA LB LW LA 35–85

Table 7: Frequencies of the interval responses in the
modus ponens (n1 = 30) and the denying the an-

tecedent condition (n2 = 30) of Experiment 2. For
explanation see Table 4.

All participants inferred a probability(interval) of a
conclusion C, P (C) ∈ [z′

C
, z′′

C
], and the probability of

the negated conclusion, P (¬C) ∈ [z′¬C
, z′′¬C

]. To test
the conjugacy principle of the interval responses, we
checked for each participant whether (i) z′

C
+ z′′¬C

=
100%, and whether (ii) z′¬C

+ z′′
C

= 100%.

In the modus ponens tasks with certain premises, all
participants satisfied both equalities, (i) and (ii). In
the tasks with 70% and 90% in the premises sixteen
of the thirty participants satisfied both, (i) and (ii).
In the tasks with 70% and 50% in the premises fif-
teen of the thirty participants satisfied both, (i) and
(ii). It is surprising that in the modus ponens tasks
more than half of the participants gave intervals that
with lower/upper probabilities that exactly add up to
1. In the denying the antecedent tasks with cer-
tain premises, twenty of the thirty participants satis-
fied both, (i) and (ii). In the tasks with 70 and 20%
premises nobody satisfied both, (i) and (ii), eleven
satisfied (i), and one satisfied (ii). In the tasks with
70 and 50% ten satisfied both, (i) and (ii).

In sum, more additive responses and more coherent
interval responses were observed in modus ponens

tasks than in the denying the antecedent tasks. It is

reasonable that humans are better in argument forms
that guarantee high probabilities of the conclusion if
each premise is highly probable. If the premises of
the modus ponens are certain, then the conclusion is
certain. However, if the premises of the denying the

antecedent are certain, then the probability of the
conclusion is in the unit interval [0, 1].

4 Experiment 3

This section reports data of an experiment with im-
precise probabilities in the premises conducted by Flo-
rian Bauerecker [1]. Specifically, we focus on human
understanding of what we call “silent bounds”. We
call a probability bound b of a premise silent if, and
only if, b is irrelevant for the probability propagation
from the premise(s) to the conclusion. E.g., in the
probabilistic modus ponens y′′ is silent (y′′ doesn’t
occur in the lower or upper probabilities of the con-
clusion, see (1)). Experiment 3 introduces an espe-
cially critical test of the claim that human subjects
are capable to make coherent probabilistic inferences.

Method and procedure of Experiment 3 are analog
to Experiment 1. Eighty participants were recruited
for investigating questions going beyond the scope of
the present study. Therefore, we report selected data
on the imprecise modus ponens only (n = 40). The
modus ponens tasks were formulated as follows:

Please imagine the following situation. Claudia
works at blood donation services. She investigates
to which blood group the donated blood belongs and
whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated
blood belongs to the blood group 0, then
the donated blood is Rhesus-positive.
Claudia knows as well that donated blood
belongs with more than 75%
certainty to the blood group 0.

How certain should Claudia be that a recent donated
blood is Rhesus-positive?

Contrary to Experiment 1 and Experiment 2, the con-
ditional premise is here formulated in a if–then form.
The cover-story remained constant, only the numbers
in the premises varied. Table 8 lists the probabilities
presented in the premises, the normative lower and
upper bounds, and the participants’ mean lower and
upper bound responses for the modus ponens tasks
with and without silent bounds.

The participants inferred higher upper bounds in the
modus ponens task containing silent bounds (M =
71.79) compared with the according task not contain-
ing silent bounds (M = 60.20; t(39)=3.53, p=.001).



P1/P2 ci lbr ubr

60/[75,100∗] [45,70] 44.50 (21.57) 71.78 (20.07)
60/75 [45,70] 46.83 (23.76) 60.20 (16.86)

[75,100]/60 [45,100] 43.42 (22.00) 72.38 (22.98)
75/60 [45,85] 46.27 (21.73) 59.90 (17.19)

Table 8: Mean lower lbr and mean upper bound re-
sponses ubr of the modus ponens tasks (n = 40) in [1].
∗ denotes the silent bound. The standard deviations
are in parenthesis. P1 and P2 denote the percentages
in the premises. ci denotes the normative/coherent
interval.

Thus the participants were sensitive to the silent
bounds. They did not understand the irrelevance of
the silent bound for the probability propagation from
the premises to the conclusion.

[21] report data on a conjunction problem where in
one condition interval-values in the premises were pre-
sented. All upper bounds were equal to 100%. In the
other condition only corresponding point values were
presented. The point values were equal to the lower
bounds of the interval condition. Higher mean lower
bounds were observed in the interval condition than
in the point condition. An explanation for this finding
is, that the participants reduced the processing load
of the interval valued premises by representing only
the means of the lower and upper bounds. Then, of
course, the coherent lower bound must be higher.

This explanation of the [21] data on the conjunc-
tion problem is, however, not applicable to the data
from the imprecise modus ponens task. If the sec-
ond premise (containing silent bounds) is represented
as 88%, then the coherent interval of the conclusion
is [53%, 65%]. Assuming that the participants repre-
sent “88” instead of the interval “[75, 100]”, then the
participants’ mean upper bounds should be lower in
the interval value condition than in the point value
condition.

An alternative explanation is that higher explicit im-
precision (by communicating interval-values in the
premises) elicits larger interval responses. It could be
that conversational implicatures [11] modulate the ac-
cumulation of imprecision. The participant assumes
by conversational implicature that the experimenter
communicates only relevant informations. Thus the
silent bound is not understood as irrelevant, rather,
the silent bound is understood by the participant as a
hint from the experimenter to add imprecision to the
conclusion: to infer wider intervals.

Task 1 Task 2 Coh. Bounds
(60/[75,100∗]) (60/75)

UA 1 14 0 0 2 4 Task 1:
UW 8 16 - 7 25 45–70
UB 1 - - 2 - - Task 2:

LB LW LA LB LW LA 45–70
Task 3 Task 4 Coh. Bounds

([75,100]/60) (75/60)
UA - - - 0 2 0 Task 3:
UW 7 32 - 8 29 45–100
UB 1 - - 1 - - Task 4:

LB LW LA LB LW LA 45–85

Table 9: Frequencies of the interval responses in the
modus ponens (n = 40) tasks of Experiment 3. Co-
herent interval responses are bold (±5% tolerance in-
terval). Further explanation in Table 4.

5 Concluding Remarks

We reported three psychological experiments on the
probabilistic versions of two prominent argument
forms in the framework of mental probability logic.
Clearly more coherent responses were observed in
modus ponens than in denying the antecedent

tasks. Human subjects employ inference rules that
guarantee high probability conclusions if the premises
are highly probable. Practically no participant in-
ferred “too wide” intervals such that the coherent in-
tervals are subintervals. While most participants did
not understand the irrelevance of the silent bounds in
the modus ponens task of Experiment 3 they are not
completely “blind” for them. The close agreement of
the mean responses and the normative values of the
lower probabilities in Experiment 3 is stunning. One
may speculate that human subjects are doing better in
processing lower than upper probabilities. More than
half of the participants responded with lower/upper
probabilities that agreed perfectly with the conjugacy
principle.
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Abstract
It is well known that complete prior ignorance is not com-
patible with learning, at least in a coherent theory of (epis-
temic) uncertainty. What is less widely known, is that
there is a state similar to full ignorance, that Walley calls
near-ignorance, that permits learning to take place. In this
paper we provide new and substantial evidence that also
near-ignorance cannot be really regarded as a way out of
the problem of starting statistical inference in conditions of
very weak beliefs. The key to this result is focusing on a
setting characterized by a variable of interest that is latent.
We argue that such a setting is by far the most common
case in practice, and we show, for the case of categorical
latent variables (and general manifest variables) that there
is a sufficient condition that, if satisfied, prevents learning
to take place under prior near-ignorance. This condition is
shown to be easily satisfied in the most common statistical
problems.

Keywords. Prior near-ignorance, latent and manifest vari-
ables, observational processes, vacuous beliefs, imprecise
probabilities.

1 Introduction

Epistemic theories of statistics are often concerned with
the question of prior ignorance. Prior ignorance means
that a subject, who is about to perform a statistical anal-
ysis, has not any substantial belief about the underlying
data-generating process. Yet, the subject would like to ex-
ploit the available sample to draw some statistical infer-
ence, i.e., the subject would like to use the data to learn,
moving away from the initial condition of ignorance. This
situation is very important as it is often desirable to start a
statistical analysis with weak assumptions about the prob-
lem of interest, thus trying to implement an objective-
minded approach to statistics.

A fundamental question is if prior ignorance is compati-
ble with learning. Walley gives a negative answer for the
case of his self-consistent (or coherent) theory of statis-

tics: he shows, in a very general sense, that vacuous prior
beliefs lead to vacuous posterior beliefs, irrespective of
the type and amount of observed data (Walley, 1991, Sec-
tion 7.3.7). But, at the same time, he proposes focusing on
a slighlty different state of beliefs, called near-ignorance,
that does enable learning to take place (Walley, 1991, Sec-
tion 4.6.9). Loosely speaking, near-ignorant beliefs are
beliefs close but not equal to vacuous (see Section 3). The
possibility to learn under prior near-ignorance is shown,
for instance, in the special case of the near-ignorance prior
defining the imprecise Dirichlet model (IDM). This is a
popular model used in the case of inference from categor-
ical data generated by a discrete process (Walley (1996);
Bernard (2005)).

In this paper, we also focus on a categorical random vari-
able X, expressing the outcomes of a multinomial process,
but we assume that such a variable is latent. This means
that we cannot observe the realizations of X, so we can
learn about it only by means of another (not necessarily
categorical) variable S, related to X in some known way.
Variable S is assumed to be manifest, in the sense that its
realizations can be observed (see Section 2).

In such a setting, we introduce a condition in Section 4, re-
lated to the likelihood of the observed data, that is shown to
be sufficient to prevent learning about X under prior near-
ignorance. The condition is very general as it is developed
for any prior that models near-ignorance (not only the one
used in the IDM), and for very general kinds of relation
between X and S. We show then, by simple examples,
that such a condition is easily satisfied, even in the most
elementary and common statistical problems.

In order to appreciate this result, it is important to real-
ize that latent variables are ubiquitous in problems of un-
certainty. It can be argued, indeed, that there is a persis-
tent distinction between (latent) facts (e.g., health, state
of economy, color of a ball) and (manifest) observations
of facts: one can regard them as being related by a so-
called observational process; and the point is that these
kinds of processes are imperfect in practice. Observational
processes are often neglected in statistics, when their im-



perfection is deemed to be tiny. But a striking outcome of
the present research is that, no matter how tiny the imper-
fection, provided it exists, learning is not possible under
prior near-ignorance.

In our view, the present results raise serious doubts about
the possibility to adopt a condition of prior near-ignorance
in real, as opposed to idealized, applications of statis-
tics. As a consequence, it may make sense to consider
re-focusing the research about this subject on developing
models of very weak states of belief that are, however,
stronger than near-ignorance.

2 Categorical Latent Variables

In this paper, we follow the general definition of latent and
manifest variables given by Skrondal and Rabe-Hesketh
(2004): a latent variable is a random variable whose real-
izations are unobservable (hidden), while a manifest vari-
able is a random variable whose realizations can be di-
rectly observed. The concept of latent variable is central in
many sciences, like for example psychology and medicine.
Skrondal and Rabe-Hesketh (2004) list several fields of ap-
plication and several phenomena that can be modeled us-
ing latent variables, and conclude that latent variable mod-
eling “pervades modern mainstream statistics,” although
“this omni-presence of latent variables is commonly not
recognized, perhaps because latent variables are given
different names in different literatures, such as random ef-
fects, common factors and latent classes,” or hidden vari-
ables.

But what are latent variables in practice? According to
Boorsbom et al. (2002), there may be different interpreta-
tions of latent variables. A latent variable can be regarded,
for example, as an unobservable random variable that
exists independently of the observation. An example is
the unobservable health status of a patient that is subject
to a medical test. Another possibility is to regard a latent
variable as a product of the human mind, a construct
that does not exist independent of the observation. For
example the unobservable state of the economy, often
used in economic models. In this paper, we assume the
existence of a latent categorical random variable X, with
outcomes in X = {x1, . . . , xk} and unknown chances θ ∈
Θ := {θ = (θ1, . . . , θk) |

∑k
i=1 θi = 1, 0 ≤ θi ≤ 1},

without stressing any particular interpretation.

Suppose now that our aim is to predict, after N realiza-
tions of the variable X, the next outcome (or the next N ′

outcomes). Because the variable X is latent and therefore
unobservable by definition, the only possible way to learn
something about the probabilities of the next outcome is
to observe the realizations of some manifest variable S re-
lated, in a known way, to the (unobservable) realizations
of X. An example of known relationship between latent

and manifest variables is the following.

Example 1 We consider a binary medical diagnostic test
used to assess the health status of a patient with respect
to a given disease. The accuracy of a diagnostic test1 is
determined by two probabilities: the sensitivity of a test
is the probability of obtaining a positive result if the pa-
tient is diseased; the specificity is the probability of ob-
taining a negative result if the patient is healthy. Medi-
cal tests are assumed to be imperfect indicators of the un-
observable true disease status of the patient. Therefore,
we assume that the probability of obtaining a positive re-
sult when the patient is healthy, respectively of obtaining
a negative result if the patient is diseased, are non-zero.
Suppose, to make things simpler, that the sensitivity and
the specificity of the test are known. In this example, the
unobservable health status of the patient can be consid-
ered as a binary latent variable X with values in the set
{Healthy, Ill}, while the result of the test can be consid-
ered as a binary manifest variable S with values in the set
{Negative result, Positive result}. Because the sensitivity
and the specificity of the test are known, we know how X
and S are related. ♦

We continue discussion about this example later on, in the
light of our results, in Example 2 of Section 4.

3 Near-Ignorance Priors

Consider a categorical random variable X with outcomes
in X = {x1, . . . , xk} and unknown chances θ ∈ Θ. Sup-
pose that we have no relevant prior information about θ
and we are therefore in a situation of prior ignorance. How
should we model our prior beliefs in order to reflect the
initial lack of knowledge?

Let us give a brief overview of this topic in the case of co-
herent models of uncertainty, such as Bayesian probability
and Walley’s theory of coherent lower previsions.

In the traditional Bayesian setting, prior beliefs are mod-
eled using a single prior probability distribution. The prob-
lem of defining a standard prior probability distribution
modeling a situation of prior ignorance, a so-called non-
informative prior, has been an important research topic in
the last two centuries2 and, despite the numerous contribu-
tions, it remains an open research issue, as illustrated by
Kass and Wassermann (1996). See also Hutter (2006) for
recent developments and complementary considerations.
There are many principles and properties that are desirable
to model a situation of prior ignorance and that have been
used in past research to define noninformative priors. For
example Laplace’s symmetry or indifference principle has

1For further details about the modeling of diagnostic accuracy with
latent variables see Yang and Becker (1997).

2Starting from the work of Laplace at the beginning of the 19th cen-
tury (Laplace (1820)).



suggested, in case of finite possibility spaces, the use of the
uniform distribution. Other principles, like for example
the principle of invariance under group transformations,
the maximum entropy principle, the conjugate priors prin-
ciple, etc., have suggested the use of other noninformative
priors, in particular for continuous possibility spaces, sat-
isfying one or more of these principles. But, in general,
it has proven to be difficult to define a standard noninfor-
mative prior satisfying, at the same time, all the desirable
principles.

In the case of finite possibility spaces, we agree with De
Cooman and Miranda (2006) when they say that there are
at least two principles that should be satisfied to model a
situation of prior ignorance: the symmetry principle and
the embedding principle. The symmetry principle states
that, if we are completely ignorant a priori about θ, then
we have no reason to favour one possible outcome of X to
another, and therefore our probability model on θ should
be symmetric. This principle recalls Laplace’s symmetry
or indifference principle that, in the past decades, has sug-
gested the use of the uniform prior as standard noninfor-
mative prior. The embedding principle states that, for each
possible event A, the probability assigned to A should not
depend on the possibility space X in which A is embed-
ded. In particular, the probability assigned a priori to the
event A should be invariant with respect to refinements and
coarsenings of X . It is easy to show that the embedding
principle is not satisfied by the uniform distribution. How
should we model our prior ignorance in order to satisfy
these two principles? Walley (1991) gives a compelling
answer to this question: he proves3 that the only proba-
bility model consistent with coherence and with the two
principles is the vacuous probability model, i.e., the model
that assigns, for each non-trivial event A, lower probability
P(A) = 0 and upper probability P(A) = 1. It is evident
that this model cannot be expressed using a single proba-
bility distribution. It follows that, to model properly and
in a coherent way a situation of prior ignorance, we need
imprecise probabilities.4

Unfortunately, adopting the vacuous probability model for
X is not a practical solution to our initial problem, be-
cause it produces only vacuous posterior probabilities.
Walley (1991) suggests, as practical solution, the use of
near-ignorance priors. A near-ignorance prior is a large
closed convex set M0 of probability distributions for θ,
very close to the vacuous probability model, which pro-
duces a priori vacuous expectations for various functions
f on Θ, i.e., such that E(f) = infθ∈Θ f(θ) and E(f) =
supθ∈Θ f(θ).

An example of near-ignorance prior that is particularly
instructive is the set of priors M0 used in the impre-
cise Dirichlet model (IDM). The IDM models a situation

3In Note 7, p. 526. See also Section 5.5.
4For a complementary point of view, see Hutter (2006).

of prior ignorance about the chances θ of a categorical
random variable X. The near-ignorance prior M0 used
in the IDM consists in the set of all Dirichlet densities
p(θ) = dirs,t(θ) for a fixed s > 0 and all t ∈ T , where

dirs,t(θ) :=
Γ(s)∏k

i=1 Γ(sti)

k∏
i=1

θsti−1
i , (1)

and

T := {t = (t1, . . . , tk) |
k∑

j=1

tk = 1, 0 < tj < 1}. (2)

The particular choice of M0 in the IDM implies vacuous
prior expectations for all functions f(θ) = θN ′

i , for all
N ′ ≥ 1 and all i ∈ {1, . . . , k}, i.e., E(θN ′

i ) = 0 and
E(θN ′

i ) = 1. Choosing N ′ = 1, we have, a priori,

P(X = xi) = E(θi) = 0, P(X = xi) = E(θi) = 1.

It follows that the particular near-ignorance priorM0 used
in the IDM implies vacuous prior probabilities for each
possible outcome of the variable X. It can be shown that
this particular set of priors satisfies both the symmetry and
embedding principles.

But what is the difference between the vacuous probability
model and the the near-ignorance prior used in the IDM?
In fact, although both models produce vacuous prior prob-
abilities and both models satisfy the symmetry and embed-
ding principles, the IDM yields posterior probabilities that
are not vacuous, while the vacuous probability model pro-
duces only vacuous posterior probabilities. The answer
to this question is the reason why we use the term near-
ignorance: in the IDM, although we are completely ig-
norant about the possible outcomes of the variable X, we
are not completely ignorant about the chances θ, because
we assume a particular class of prior distributions, i.e., the
Dirichlet distributions for a fixed value of s.

4 Limits of Learning under Prior
Near-Ignorance

Consider a sequence of independent and identically dis-
tributed (IID) categorical latent variables (Xi)i∈N with
outcomes in X and unknown chances θ ∈ Θ, and a se-
quence of independent manifest variables (Si)i∈N. We
assume that a realization of the manifest variable Si can
be observed only after an (unobservable) realization of the
latent variable Xi and that the probability distribution of
Si given Xi is known for each i ∈ N. Furthermore, we
assume Si to be independent of the chances θ of Xi given
Xi. Define the random variables X := (X1, . . . ,XN ),
S := (S1, . . . ,SN ) and X′ := (XN+1, . . . ,XN+N ′).



We focus on the problem of predictive inference.5 Sup-
pose that we observe a dataset s of realizations of manifest
variables S1, . . . ,SN related to the (unobservable) dataset
x ∈ XN of realizations of the variables X1, . . . ,XN . Us-
ing the notation defined above we have S = s and X = x.
Our aim is to predict the outcomes of the next N ′ vari-
ables XN+1, . . . ,XN+N ′ . In particular, given x′ ∈ XN ′

,
our aim is to calculate P(X′ = x′ |S = s) and P(X′ =
x′ |S = s). To simplify notation, when no confusion is
possible, we denote in the rest of the paper S = s with s
and X′ = x′ with x′. The (in)dependence structure can be
depicted graphically as follows:

���
θ ���

Xi
n���

Si

i=1...N+N ′

- -

Modelling our prior ignorance about the parameters θ
with a near-ignorance prior M0 and denoting by n′ :=
(n′1, . . . , n

′
k) the frequencies of the dataset x′, we have

P(x′ | s) = inf
p∈M0

Pp(x′ | s) :=

= inf
p∈M0

∫
Θ

k∏
i=1

θ
n′

i
i p(θ | s)dθ =

=: inf
p∈M0

Ep

(
k∏

i=1

θ
n′

i
i | s

)
=

= E

(
k∏

i=1

θ
n′

i
i | s

)
,

where, according to Bayes theorem,

p(θ | s) =
P(s | θ)p(θ)∫

Θ
P(s | θ)p(θ)dθ

,

provided that
∫
Θ

P(s | θ)p(θ)dθ 6= 0. Analogously, substi-
tuting sup to inf in (3), we obtain

P(x′ | s) = E

(
k∏

i=1

θ
n′

i
i | s

)
. (3)

The central problem now is to choose M0 so as to be as
ignorant as possible a priori and, at the same time, to be
able to learn something from the observed dataset of man-
ifest variables s. Theorem 1 and the following corollaries
yield a first partial solution to the above problem, stating
several conditions for learning under prior near-ignorance.

Theorem 1 Let s be given. Consider a bounded contin-
uous function f defined on Θ and denote with fmax the
Supremum of f on Θ. If the likelihood function P(s | θ)

5For a general presentation of predictive inference see Geisser (1993);
for a discussion of the imprecise probability approach to predictive infer-
ence see Walley et al. (1999).

is strictly positive6 in each point in which f reaches its
maximum value fmax and it is continuous in an arbitrary
small neighborhood of these points, and M0 is such that
a priori E(f) = fmax, then

E(f | s) = E(f) = fmax.

Many corollaries to Theorem 1 are listed in Section B of
the Appendix. Here we discuss only the most important
corollary. Consider, given a dataset x′, the particular func-
tion f(θ) =

∏k
i=1 θ

n′
i

i . This function is particularly impor-
tant for predictive inference, because its lower and upper
expectations correspond to the lower and upper probabil-
ities assigned to the dataset x′. It is easy to show that, in
this case, the minimum of f is 0 and is reached in all the
points θ ∈ Θ with θi = 0 for some i such that n′i > 0,
while the maximum of f is reached in a single point of Θ
corresponding to the relative frequencies f ′ of the sample
x′, i.e., at f ′ =

(
n′

1
N ′ , . . . ,

n′
k

N ′

)
∈ Θ, and the maximum

of f is given by
∏k

i=1

(
n′

i

N ′

)n′
i

. It follows that vacuous
probabilities regarding the dataset x′ are given by

P(x′) = E

(
k∏

i=1

θ
n′

i
i

)
= 0,

P(x′) = E

(
k∏

i=1

θ
n′

i
i

)
=

k∏
i=1

(
n′i
N ′

)n′
i

.

Corollary 1 Let s be given and let P(s | θ) be a continu-
ous strictly positive function on Θ. Then, if M0 implies
vacuous prior probabilities for a dataset x′ ∈ XN ′

, the
predictive probabilities of x′ are vacuous also a posteri-
ori, after having observed s, i.e.,

P(x′ | s) = P(x′) = 0,

P(x′ | s) = P(x′) =
k∏

i=1

(
n′i
N ′

)n′
i

.

In other words, Corollary 1 states a sufficient condition
that prevents learning to take place under prior near-
ignorance: if the likelihood function P(s | θ) is continuous
and strictly positive on Θ, then all the dataset x′ ∈ XN ′

for which M0 implies vacuous probabilities have vacu-
ous probabilities also a posteriori, after having observed s.
It follows that, if this sufficient condition is satisfied, we
cannot use near-ignorance priors to model a state of prior
ignorance for the same reason for which, in Section 3,

6The Assumption about P(s | θ) in Theorem 1 can be substituted by
the following weaker assumption. For a given arbitrary small δ > 0,
denote with Θδ the measurable set, Θδ := {θ ∈ Θ | f(θ) ≥ fmax −
δ}. If P(s | θ) is such that, limδ→0 infθ∈Θδ

P(s | θ) = c > 0, then
Theorem 1 holds.



we have excluded the vacuous probability model: because
only vacuous posterior probabilities are produced.

The sufficient condition described above is satisfied very
often in practice, as illustrated by the following striking
examples.

Example 2 Consider the medical test introduced in Ex-
ample 1 and an (ideally) infinite population of individu-
als. Denote with the binary variable Xi ∈ {H, I} the
health status of the i-th individual of the population and
with Si ∈ {+,−} the results of the diagnostic test ap-
plied to the same individual. We assume that the variables
in the sequence (Xi)i∈N are IID with unknown chances
(θ, 1 − θ), where θ corresponds to the (unknown) propor-
tion of diseased individuals in the population. Denote with
1− ε1 the sensitivity and with 1− ε2 the specificity of the
test. Then it holds that

P(Si = + |Xi = H) = ε1 > 0,

P(Si = − |Xi = I) = ε2 > 0,

where (I,H, +,−) denote (patient ill, patient healthy, test
positive, test negative).

Suppose that we observe the results of the test applied to N
different individuals of the population; using our previous
notation we have S = s. For each individual we have,

P(Si = + | θ) =
=P(Si = + |Xi = I)P(Xi = I | θ)+
+P(Si = + |Xi = H)P(Xi = H | θ) =
= (1− ε2)︸ ︷︷ ︸

>0

·θ + ε1︸︷︷︸
>0

·(1− θ) > 0.

Analogously,

P(Si = − | θ) =
=P(Si = − |Xi = I)P(Xi = I | θ)+
+P(Si = − |Xi = H)P(Xi = H | θ) =
= ε2︸︷︷︸

>0

·θ + (1− ε1)︸ ︷︷ ︸
>0

·(1− θ) > 0.

Denote with ns the number of positive tests in the observed
sample s. Then, because the variables Si are independent,
we have

P(S = s | θ) = ((1− ε2) · θ + ε1 · (1− θ))ns

·
·(ε2 · θ + (1− ε1) · (1− θ))N−ns

> 0

for each θ ∈ [0, 1] and each s ∈ XN . Therefore, according
to Corollary 1, all the predictive probabilities that, accord-
ing to M0, are vacuous a priori remain vacuous a posteri-
ori. It follows that, if we want to avoid vacuous posterior

predictive probabilities, then we cannot model our prior
knowledge (ignorance) using a near-ignorance prior im-
plying some vacuous prior predictive probabilities. This
simple example shows that our previous theoretical results
raise serious questions about the use of near-ignorance pri-
ors also in very simple, common, and important situations.

The situation presented in this example can be extended, in
a straightforward way, to the general categorical case and
has been studied, in the special case of the near-ignorance
prior used in the imprecise Dirichlet model, in Piatti et al.
(2005). ♦

Example 2 focuses on discrete latent and manifest vari-
ables. In the next example, we show that our theoretical
results have important implications also in models with
discrete latent variables and continuous manifest variables.

Example 3 Consider the sequence of IID categorical
variables (Xi)i∈N with outcomes in XN and unknown
chances θ ∈ Θ. Suppose that, for each i ≥ 1, after a
realization of the latent variable Xi, we can observe a real-
ization of a continuous manifest variable Si. Assume that
p(Si |Xi = xj) is a continuous positive probability den-
sity, e.g., a normal N(µj , σ

2
j ) density, for each xj ∈ X .

We have

p(Si | θ) =
∑

xj∈XN

p(Si |Xi = xj) · P(Xi = xj | θ) =

=
∑

xj∈XN

p(Si |Xi = xj)︸ ︷︷ ︸
>0

·θj > 0,

because θj is positive for at least one j ∈ {1, . . . , N} and
we have assumed Si to be independent of θ given Xi. Be-
cause we have assumed (Si)i∈N to be a sequence of inde-
pendent variables, we have,

p(S = s | θ) =
N∏

i=1

p(Si = si | θ)︸ ︷︷ ︸
>0

> 0.

Therefore, according to Corollary 1, if we model our prior
knowledge using a near-ignorance prior M0, the vacuous
prior predictive probabilities implied by M0 remain vac-
uous a posteriori. It follows that, if we want to avoid vac-
uous posterior predictive probabilities, we cannot model
our prior knowledge using a near-ignorance prior imply-
ing some vacuous prior predictive probabilities. ♦

Examples 2 and 3 raise, in general, serious criticisms about
the use of near-ignorance priors in practical applications.

The only predictive model in the literature, of which we
are aware, where a near-ignorance prior is used success-
fully to obtain non-vacuous posterior predictive probabil-
ities is the IDM. In the next example, we explain how the
IDM avoids our theoretical limitations.



Example 4 In the IDM, we assume that the IID categori-
cal variables (Xi)i∈N are observable. In other words, we
have Si = Xi for each i ≥ 1 and therefore the IDM is not
a latent variable model. Having observed S = X = x, we
have

P(S = x | θ) = P(X = x | θ) =
k∏

i=1

θni
i ,

where ni denotes the number of times that xi ∈ X has
been observed in x. We have P(X = x | θ) = 0 for all θ
such that θj = 0 for at least one j such that nj > 0 and
P(X = x | θ) > 0 for all the other θ ∈ Θ, in particular for
all θ in the interior of Θ.

The near-ignorance prior M0 used in the IDM consists in
the set of all the Dirichlet densities dirs,t(θ) for a fixed
s > 0 and all t ∈ T , where dirs,t(θ) and T have been
defined in (1) and (2).

The particular choice of M0 in the IDM implies, for each
N ′ ≥ 1 and each i ∈ {1, . . . , k}, that

E(θN ′

i ) = 0, E(θN ′

i ) = 1.

Consequently, denoting with di ∈ XN ′
the dataset with

n′i = N ′ and n′j = 0 for each j 6= i, a priori we have,

P(X′ = di) = 0, P(X′ = di) = 1,

and in particular

P(X1 = xi) = 0, P(X1 = xi) = 1.

It can be shown that other prior predictive probabilities are
not vacuous. For example, for i 6= j, we have

E(θiθj) =
s

4(s + 1)
<

1
4

= sup
θ∈Θ

θiθj .

The IDM produces, for each possible observed data set
x, non-vacuous posterior predictive probabilities for each
possible future data set (see Walley (1996)). This means
that our previous theoretical limitations are avoided in
some way. To explain this result we consider two cases.
We consider firstly an observed data set x where we have
observed at least two different outcomes. Secondly, we
consider a data set x formed exclusively by outcomes of
the same type, in other words, a data set of the type di.

In the first case we have that P(x | θ) =
∏k

j=1 θ
nj

j is equal
to zero for θ = ei for each i ∈ {1, . . . , k}. In fact, θi = 1
implies θj = 0 for each j 6= i and there is at least one j
with nj > 0. Therefore, the assumptions of Corollaries 4
and 5 are not satisfied. And in fact the IDM produces non-
vacuous posterior predictive probabilities for each data set
that, a priori, has vacuous predictive probabilities. On the
other hand, all the datasets whose prior predictive proba-
bility reaches its maximum in a relative frequency f ∈ Θ

such that P(x | f) > 0, are characterized by non-vacuous
prior predictive probabilities.

The second case yields similar results. The only differ-
ence is that P(di | θ) = θN ′

i for a given i ∈ {1, . . . , k}.
In this case P(x | ei) = 1 > 0 and in fact, according to
Corollaries 4 and 5, we obtain

P(xi |x) = P(xi) = 1,

P(X′ = di |x) = P(di) = 1,

and consequently, for each j 6= i and each y 6= di,

P(xj |x) = P(xj) = 0,

P(X′ = y |x) = P(y) = 0.

But, on the other hand, we obtain

P(xi |x) > 0, P(X′ = di |x) > 0,

P(xj |x) < 1, P(X′ = y |x) < 1,

and therefore the posterior predictive probabilities are not
vacuous for each possible future data set. ♦

Yet, since the variables (Xi)i∈N are assumed to be observ-
able, the successful application of a near-ignorance prior
in the IDM is not helpful in addressing the doubts raised
by our theoretical results about the applicability of near-
ignorance priors in situations where the variables (Xi)i∈N
are latent.

5 Conclusions

In this paper we have proved a sufficient condition that
prevents learning about a latent categorical variable to take
place under prior near-ignorance about the data-generating
process.

The condition holds as soon as the likelihood is strictly
positive (and continuous), and so is satisfied frequently,
even in the simplest settings. Taking into account that the
considered framework is very general and pervasive of sta-
tistical practice, we regard this result as a form of sub-
stantial evidence against the possibility to use prior near-
ignorance in real statistical problems. Given that complete
prior ignorance is not compatible with learning, as it is
well known, we deduce that there is little hope to use any
form of prior ignorance to do objective-minded statistical
inference in practice.

As a consequence, we suggest that future research efforts
should be directed to study and develop new forms of
knowledge that are close to near-ignorance but that do not
coincide with it.
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A Technical preliminaries

In this appendix we provide some technical results that are
used to prove the theorems in the paper. First of all, we
introduce some notation used in this appendix. Consider a
sequence of probability densities (pn)n∈N and a function
f defined on a set Θ. Then, we use the notation,

En(f) :=
∫

Θ

f(θ)pn(θ)dθ,

Pn(Θ̃) :=
∫

eΘ pn(θ)dθ, Θ̃ ⊆ Θ.

In addition, for a given probability density p on Θ,

Ep(f) :=
∫

Θ

f(θ)p(θ)dθ,

Pp(Θ̃) :=
∫

eΘ p(θ)dθ, Θ̃ ⊆ Θ.

Finally, with → we denote limn→∞.

Theorem 2 Let Θ ⊂ Rk be the closed k-dimensional
simplex and let (pn)n∈N be a sequence of probability den-
sities defined on Θ w.r.t. the Lebesgue measure. Let f ≥ 0
be a bounded continuous function on Θ and denote with
fmax the supremum of f on Θ. For this function define the
measurable sets

Θδ = {θ ∈ Θ | f(θ) ≥ fmax − δ}. (4)

Assume that (pn)n∈N concentrates on a maximum of f for
n →∞, in the sense that

En(f) → fmax, (5)

then, for all δ > 0, it holds

Pn(Θδ) → 1.

Theorem 3 Let L(θ) ≥ 0 be a bounded measurable func-
tion with

lim
δ→0

inf
θ∈Θδ

L(θ) =: c > 0, (6)

under the same assumptions of Theorem 2. Then

En(Lf)
En(L)

=

∫
Θ

f(θ)L(θ)pn(θ)dθ∫
Θ

L(θ)pn(θ)dθ
→ fmax. (7)

Remark 1 If f has a unique maximum in θ = θ0 and L is
a function, continuous in an arbitrary small neighborhood
of θ = θ0, such that L(θ0) > 0, then (6) is satisfied.

B Corollaries to Theorem 1

The following Corollaries to Theorem 1 are necessary
to prove Corollary 1, and are useful to understand more
deeply the limiting results implied by the use of near-
ignorance priors with latent variables.

Corollary 2 Let x′ and s be given. Denote with f ′ :=(
n′

1
N ′ , . . . ,

n′
k

N ′

)
∈ Θ the vector of relative frequencies of

the dataset x′. If P(s | θ) is continuous in an arbitrary
small neighborhood of θ = f ′, P(s | f ′) > 0 and M0 is
such that

P(x′) = sup
θ∈Θ

(
k∏

i=1

θ
n′

i
i

)
=

k∏
i=1

(
n′i
N ′

)n′
i

,

then
P(x′ | s) = P(x′).

Corollary 3 Let x′ and s be given. If P(s | θ) > 0 for
each θ ∈ Θ with θi = 0 for at least one i with n′i > 0, and
M0 is such that P(x′) = 0, it follows that

P(x′ | s) = P(x′) = 0.

Corollary 4 Let s be given. Consider an arbitrary xi ∈
X and denote with ei the particular vector of chances with
θi = 1 and θj = 0 for each j 6= i. Suppose that M0 is
such that, a priori, P(X1 = xi) := E(θi) = 1. Then, if
P(s | ei) > 0 and P(s | θ) is continuous in a neighborhood
of θ = ei, we have

P(XN+1 = xi | s) = P(X1 = xi) = 1, (8)

and consequently,

P(XN+1 = xj | s) = P(Xj = xi) = 0, (9)

for each j 6= i.

Corollary 5 Let s and N ′ be given and consider an ar-
bitrary xi ∈ X . Suppose that M0 is such that, a priori,
P(X1 = xi) := E(θi) = 1. Denote with di ∈ XN ′

the
data set with ni = N ′ and nj = 0 for each j 6= i. Then, if
P(s | ei) > 0 and P(s | θ) is continuous in a neighborhood
of θ = ei, we have

P(X′ = di | s) = 1,

and consequently,

P(X′ = y | s) = 0,

for each y 6= di.
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Abstract

We propose a new definition for conditioning in the
Chaotic Probability framework. We show that the
Conditional Chaotic Probability model that we pro-
pose can be given the interpretation of a generalized
Markov chain. Chaotic Probabilities were introdu-
ced by Fine et al. as an attempt to model chance
phenomena with a usual set of measures M endowed
with an objective, frequentist interpretation instead of
a compound hypothesis or behavioral subjective one.
We follow the presentation of the univariate case cha-
otic probability model and provide an instrumental
interpretation of random process measures consistent
with a conditional chaotic probability source, which
can be used as a tool for simulation of our model. Gi-
ven a finite time series, we also present a universal
method for estimation of conditional chaotic probabi-
lity models that is based on the analysis of the relative
frequencies taken along a set of subsequences chosen
by a given set of rules.

Keywords: Imprecise Probabilities, Founda-
tions of Probability, Church Place Selection
Rules, Probabilistic Reasoning, Conditioning,
Complexity

1 Introduction

1.1 What is Chaotic Probability About?

Unlike the standard theory of real valued probability
which since its beginning was Janus faced having to
deal with both objective and subjective phenomena,
sets of measures are mainly used to model behavior
and subjective beliefs. Chaotic Probabilities were de-
veloped by Fine et al. [2] [4] [12] as an attempt to
make sense of an objective, frequentist interpretation
of a usual set of probability measures M. In this set-
ting, M is intended to model stable (although not
stationary in the standard stochastic sense) physical
sources of finite time series data that are highly irre-

gular. The work was in part inspired in the following
quotation from Kolmogorov 1983 [7]:

“In everyday language we call random those pheno-
mena where we cannot find a regularity allowing us
to predict precisely their results. Generally speaking,
there is no ground to believe that random phenomena
should possess any definite probability. Therefore, we
should distinguish between randomness proper (as ab-
sence of any regularity) and stochastic randomness
(which is the subject of probability theory). There
emerges the problem of finding reasons for the applica-
bility of the mathematical theory of probability to the
real world.”

Despite that fact pointed out by Kolmogorov, the idea
of models of physical chance phenomena sharing the
precision of real number system is so well-entrenched
that identifications of chaotic probability phenomena
are difficult to make and hard to defend.

1.2 Previous Work and Overview

A large portion of the literature on imprecise proba-
bilities gives a behavioral, subjective interpretation
of this model Walley 1991 [14]. But some work has
been done on the development of a frequentist inter-
pretation of imprecise probabilities. Fine et al. have
worked on asymptotics or laws of large numbers for
interval-valued probability models [9] [13] [11] [6].

The work of Cozman and Chrisman 1997 [1] studying
estimation of credal sets by analyzing limiting rela-
tive frequencies along a set of subsequences of a time
series is very similar to the approach taken by Fierens
and Fine, except that the latter restrict themselves to
studying finite time series data. Another quote from
Kolmogorov 1963 [8] explains the reason for such a
restriction:

“The frequency concept based on the notion of limiting
frequency as the number of trials increases to infinity,
does not contribute anything to substantiate the ap-



plicability of the results of probability theory to real
practical problems where we have always to deal with
a finite number of trials.”

In their work on Chaotic Probability models [2] [4],
Fierens and Fine provided an instrumental interpre-
tation of the model, a method for simulation of a ran-
dom sequence given the model, and a method for esti-
mation of the model given a finite random sequence.
They have worked both on the univariate case and
in the conditional case. This paper will parallel their
approach on a different conditional setting that can
be interpreted as a generalized Markov chain. We
discuss the differences between their approach to con-
ditioning and ours in Section 3.5. Roughly speaking,
in our setting we have that a conditional chaotic pro-
bability model M|K is a function that associates for
each possible sequence y of K-previous outcomes a
univariate chaotic probability model M|K(y), i.e., a
set of probability measures.

Section 2.1 provides an instrumental interpretation of
conditional chaotic probability models. Although we
do not claim this interpretation for explaining real
world data, it is useful to develop it because it provi-
des a means to understand the behavior of conditional
chaotic probabilities using standard well-known tools
of probability theory, it also provides the basis for si-
mulation of these models, and finally it extends the
interpretation proposed by Fierens and Fine for uni-
variate chaotic probabilities. With that interpretation
in mind we also provide a method for simulation of a
data sequence given the Conditional Chaotic Proba-
bility model in Section 2.2.

In Section 3, we analyze the problem of estimating
conditional chaotic probabilities from data. As in the
univariate setup, we do that by studying the relative
frequency taken along selected subsequences. We de-
fine three properties of a set of subsequence selection
rules: Conditional Causal Faithfulness, Conditional
Homogeneity and Conditional Visibility. By Conditi-
onal Causally Faithful rules we mean rules that, for
each fixed sequence of past K outcomes, select subse-
quences such that the empirical and theoretical time
averages along the selected subsequence are sufficien-
tly close together. A set of rules renders M|K con-
ditionally visible if, for each fixed sequence y of past
K outcomes, all measures in M|K(y) can be estima-
ted by relative frequencies along the selected subse-
quences. Finally, a set of rules is conditionally ho-
mogeneous if, for each fixed sequence y of past K
outcomes, it cannot expose more than a small neigh-
borhood of a single measure contained in the convex
hull of M|K(y), intuitively a set of rules is conditi-
onally homogenous if the relative frequencies taken
along the terms selected by the rules and that have

y as the previous K outcomes are all close to a sin-
gle measure in the convex hull of M|K(y). We then
prove the existence of families of causal subsequence
selection rules that can make M|K conditionally visi-
ble. Following the steps of Rêgo and Fine 2005 [12],
in Section 4 we describe a universal methodology for
finding a family of causal subsequence selection ru-
les that can make M|K conditionally visible, and in
Section 5, we strengthen this result by assuring that
the relative frequency taken along every subsequence
analyzed is close to some measure in ∪yM|K(y) with
high probability. In Section 6, we give the interpreta-
tion of conditional chaotic probabilities as a Genera-
lized Markov Chain that instead of a single transition
probability measure has a set of transition probabili-
ties. We conclude in Section 7.

2 From Model to Data

2.1 Instrumental Interpretation

Let X = {z1, z2, ..., zξ} be a finite sample space.1 We
denote by X ∗ the set of all finite sequences of elements
taken from X . A particular sequence of n samples
from X is denoted by xn = {x1, x2, ..., xn}. P denotes
the set of all measures on the power set of X and
xi:j = {xi, xi+1, ..., xj−1, xj}. A conditional chaotic
probability model given the past K outcomes M|K :
XK → 2P is a function associating for each sequence
of past K outcomes a subset of P. Intuitively, M|K
models the “marginals” of the next outcome of some
process generating sequences in X ∗ given the previous
K outcomes. This section provides an interpretation
of such a process.

Let F be a conditional chaotic selection function,
F : X ∗ → ∪y∈XKM|K(y). At each instant i, a mea-
sure νi = F (xi−1) is chosen according to this selection
function F . We require that the complexity of F be
neither too complex, so that M|K can not be exposed
on the basis of a finite time series, nor too simple so
that a standard stochastic process can be used to mo-
del the phenomena. We also require that F satisfies
the following restriction

F (xi−1) ∈M|K(xi−K:i−1), ∀i > K. (1)

Let µF ∈ PK be the initial probability distribution
over the first K symbols.

An actual data sequence xn is assessed by the graded
potential of the realization of a sequence of random

1Recently, Fierens 2007 [3] extended the univariate Chaotic
Probability Model to be defined on any subset of the reals. For
ease of exposition, we focus on the finite case here.



variables Xn described by:

P (X1 = x1, X2 = x2, ..., Xn = xn) =

= µF (X1 = x1, ..., XK = xK)
n∏

l=K+1

vl(xl) (2)

where νl ∈ M|K(xl−K:l−1)

We denote by M∗
|K the family of all such process me-

asures P . This interpretation is usually considered
instrumental (i.e., without commitment to reality),
although theory also applies if there is empirical rea-
lity in the description of F , but F is simply unknown.

In the unconditional chaotic probability model, it is
understood that all relevant information produced by
the source is captured by the coarse-grained descrip-
tion provided by the set of measures M and the
further information contained in the fine-grained des-
cription, F , has no empirical reality (Rêgo and Fine
2005 [12] emphasize that a similar situation occurs in
quantum mechanics, see Gell-Mann 1994 [5], pg. 144–
146). With this conditional model, we try to develop a
model that does not discard all information provided
by F , it considers the fact that for different previous
K outcomes the source behaves differently. That is,
it allows for the existence of a simple structure in the
choice selection function.

Notice also, that in this account, for each sequence y
of previous K outcomes, it is the whole set M|K(y)
that models the chance phenomena and not a “true”
individual measure in M|K(y) that is unknown to us,
as in the usual compound hypothesis modeling.

Like in the unconditional case, no matter how com-
plex the conditional selection function is, the process
measure P is a standard stochastic process, the is-
sue is whether it reflects the reality of the underlying
phenomena. In the unconditional case, if the selection
function is chaotic,2 then all we can hope to learn and
therefore predict for future terms in the sequence is
the coarse-grained description of the model given by
M, a subset of P. However, in the conditional case
that we present here, the conditional selection func-
tion satisfies (1), and one can hope to learn M|K(y)
for each y ∈ XK . Therefore, in the conditional cha-
otic probability model, there is some structure in the

2As in the original work of Fierens and Fine [2] [4], the ad-
jective “chaotic” is not used in the traditional technical sense
of the mathematical literature on chaos, rather it is used in
the sense of the selection function F being neither too simple
nor too complex, where the complexity of the selection func-
tion can be measured, for example, in terms of Kolmogorov
Complexity [10]. As well stated by an anonymous referee, “the
term ‘chaotic probabilities’ refers to viewpoint in which there
is no true measure that is the model, because models for indi-
vidual outcomes vary unpredictably while remaining in a given
set M”.

chaotic behavior of the conditional selection function
so that, as we will see in Section 3, the fact that the
previous K outcomes were equal to some sequence y
allow us to have a finer description of the model than
just the coarse-grained description of the model given
by M|K .

The next subsection digresses on a new statistical mo-
del that gives an application for the mathematical to-
ols developed here. Fierens 2007 [3] also provides a
motivation for the mathematical tools developed in
the theory of chaotic probabilities using it for robust
stochastic simulation.

2.1.1 Digression on a New Statistical Model

While our primary interest is not in a statistical com-
pound hypothesis, the results of this paper do bear
on a new statistical estimation model.

We can partially specify any stochastic process model
P ∈ P by specifying the following set of conditional
measures for the individual times for all possible y ∈
XK :

MP
|K(y) = {ν : (∃j ≥ K)(∃xj), xj−K+1:j = y,

ν(Xj+1 ∈ A) = P (Xj+1 ∈ A|Xj = xj), ∀A ⊂ X}

Note that we do not keep track of the full conditioning
event, only of the measure ν and of the previous K
outcomes. We then wish to estimate MP

|K(y), ∀y ∈
XK , from data xn. Also note that, in general, the
process is not Markovian in the traditional sense, as
the conditional selection function F depends on the
whole history. Although, as we show in Section 6, it
can be given the interpretation of a generalized Mar-
kov chain.

The model can be used in the following situation.
Suppose we have an opponent in a game who can de-
cide whether or not to act upon a trial t after exami-
ning the history of outcomes xt−1 prior to that trial.
Certain distributions P (Xt ∈ A|Xt−1 = xt−1) for the
trial at time t are favorable to us and others to our op-
ponent. An assessment of the range of consequences
to us from choices made by an intelligent opponent
can be calculated from MP

|K(y), ∀y ∈ XK .

2.2 Simulation

In this section, we provide a method for sequence ge-
neration according to a source that is modeled by a
conditional chaotic probability. First of all, we define
a distance metric between probability measures as:



(∀µ, µ′ ∈ P) d(µ, µ′) .= max
z∈X

|µ(z)− µ′(z)|

Note that P is compact with respect to d, so for all ε >
0 we can find a minimal finite covering of it by Qε balls
of radius ε, {B(ε, µi)}, where µi are computable mea-
sures. Let Nε be the size of the smallest subset of the
above covering of the simplex that covers the actual
set of probabilities that can be selected by the condi-
tional chaotic selection function, ∪y∈XKM|K(y), and
denote this subset by Mε. Let Mε(y) be the smal-
lest subset of Mε that covers the set of probabilities
that can be selected after the string of outcomes y,
M|K(y). Then, given an appropriate chaotic selection
function F : X ∗ → Mε, where Mε = ∪y∈XKMε(y),
satisfying F (xi−1) ∈ Mε(xi−K:i−1), ∀i > K, and
an appropriate initial probability distribution µF , the
following algorithm can be used for simulation:

• Use a pseudo-random number generator to gene-
rate xK according to µF

• For i = K + 1 to n

– Choose νi = F (xi−1) ∈Mε(xi−K:i−1)

– Choose any ν′i ∈ B(ε, νi) ∩M|K(xi−K:i−1)

– Use a pseudo-random number generator to
generate xi according to ν′i

Since we want to expose all of M|K(y), ∀y ∈ XK ,
in a single but sufficiently long simulated sequence,
we require F to visit several times each measure in
Mε. In the following sections, we study the problem
of estimating a conditional chaotic probability model
given a long enough but finite data sequence.

3 From Data to Model

3.1 Subsequence Analysis

The estimation process in the conditional chaotic pro-
bability framework uses a finite time series and analy-
zes it calculating ξK sets of relative frequencies taken
along subsequences selected by causal subsequence se-
lection rules (also known as Church place selection ru-
les). These rules are called causal because the next
choice is a function only of past values in the sequence
and not, say, of the whole sequence. These rules sa-
tisfy the following:

Definition 3.1: An effectively computable function
ϕ is a causal subsequence selection rule if:

ϕ : X ∗ → {0, 1}

and, for any xn ∈ X ∗, xk is the j-th term in the
generated subsequence xϕ,n, of length λϕ,n, if:

ϕ(xk−1) = 1,
k∑

i=1

ϕ(xi−1) = j, λϕ,n =
n∑

k=1

ϕ(xk−1)

Given a set of causal subsequence selection rules, Ψ,
for each ϕ ∈ Ψ and y ∈ XK , define the empirical and
theoretical conditional time averages along a chosen
subsequence by:

(∀A ⊂ X ),

µϕ,n,y(A) .=
n∑

i=K+1

IA(xi)I{y}(xi−K:i−1)ϕ(xi−1)
λϕ,n,y

νϕ,n,y(A) .=
1

λϕ,n,y

n∑

i=K+1

E[IA(Xi)|Xi−1 = xi−1]×

×I{y}(xi−K:i−1)ϕ(xi−1)

where IA is the {0, 1}-valued indicator function of the
event A and λϕ,n,y

.=
∑n

i=K+1 I{y}(xi−K:i−1)ϕ(xi−1).

νϕ,n(.|y) can be rewritten in terms of the instrumental
understanding as:

νϕ,n,y(A) .=
1

λϕ,n,y

n∑

i=K+1

νi(A)I{y}(xi−K:i−1)ϕ(xi−1)

A rule ϕ applied to xn is said to be conditionally cau-
sally faithful if ∀y ∈ XK , d(νϕ,n,y, µϕ,n,y) is small.
Essentially, ϕ is conditionally faithful if it does not
extract an arbitrary pattern. The existence of such
rules is shown by the following theorem.

Theorem 3.2: Let ξ be the cardinality of X and de-
note the cardinality of Ψ by ||Ψ||. Let m ≤ n. If
||Ψ|| ≤ t, then for any process measure P ∈M∗

|K and
y ∈ XK :

P (max
ϕ∈Ψ

{d(µϕ,n,y, νϕ,n,y) : λϕ,n,y ≥ m} ≥ ε) ≤

≤ 2ξt exp{ −ε2m2

2(n−K)
}

Proof: Follows immediately from Theorem 1 of Fie-
rens and Fine 2003 [4], considering

I{y}(xi−K:i−1)ϕ(xi−1)

to be a selection rule, ϕ′(xi−1), for the original se-
quence xn.

Note that, as long as the size of the family of selection
rules is not too big, conditional faithfulness is guaran-
teed with high probability if the subsequence selected is



long enough. Note that the restriction on the size of
Ψ is necessary, since if we allow all possible selection
rules, we will get all the measures giving probability
1 to each one of the elements of the sample space X .

Note also that, if we take m = α(n−K), for α ∈ (0, 1),
the size t of the family of selection rules can be as large
as eρ(n−K), for ρ < α2ε2

2 ; conditional faithfulness of
the rules is guaranteed with high probability for large
n.

3.2 Conditional Visibility and Estimation

The property that a set of rules, Ψ, must satisfy in
order to expose all of M|K(y), ∀y ∈ XK , is given by
the following definition:

Definition 3.3: (Conditional Visibility) M|K is
conditionally made visible (Ψ, θ, δ,m, n) by
P ∈M∗

|K if ∀y ∈ XK :

P (
⋂

ν∈M|K(y)

⋃

ϕ∈Ψ

{Xn : λϕ,n,y ≥ m,

d(ν, µϕ,n,y) ≤ θ}) ≥ 1− δ

Let M̂θ,Ψ,y
|K be an estimator of M|K(y) defined by:

∀xn ∈ X ∗, M̂θ,Ψ,y
|K (xn) =

⋃

ϕ∈Ψ:λϕ,n,y≥m

B(θ, µϕ,n,y)

where, B(θ, µϕ,n) .= {µ ∈ P : d(µ, µϕ,n) < θ}.
Let [A]ε denote the ε-enlargement of a set A defined
by:

(∀A ⊆ P)(∀ε > 0)[A]ε .= {µ : (∃µ′ ∈ A)d(µ, µ′) < ε)}

The next theorem shows that for an appropriate set
of rules Ψ, it is possible to conditionally expose M|K .

Theorem 3.4: (Estimability) Let P render M|K
conditionally visible (Ψ, θ, δ,m, n). Then, ∀y ∈ XK :

P [[ch(M|K(y))]θ+ε ⊃ M̂θ,Ψ,y
|K ⊃M|K(y)] ≥ 1−δ−τn

where τn = 2ξ||Ψ|| exp( −ε2m2

2(n−K) ) and ch(M) is the
convex hull of M.

Proof: Follows immediately from Theorem 3 of Fie-
rens and Fine 2003 [4] and Theorem 3.2 above, consi-
dering each fixed y ∈ XK .

3.3 Conditional Homogeneity

There are some families of causal subsequence selec-
tion rules that are too simple to expose the structure
underlying the conditional chaotic probability model,
such families have the following property:

Definition 3.5: (Conditional Homogeneity) P ∈
M∗

|K is conditionally homogeneous (Ψ, θ, δ,m, n)
if ∀y ∈ XK :

P ( max
ϕ1,ϕ2∈Ψ

{d(µϕ1,n,y, µϕ2,n,y) :

λϕ1,n,y, λϕ2,n,y ≥ m} ≤ θ) ≥ 1− δ

3.4 Consistency Between Conditional
Visibility and Conditional Homogeneity

Theorem 3.6: (Consistency) Let ε > 1/m. As-
sume that ∀y ∈ XK , there is an ε-cover of M|K(y)
by Nε(y) open balls with centers in a set Mε(y) .=
{µy

1, µ
y
2, ..., µ

y
Nε(y)} such that, for each µy

i , there is a
recursive probability measure ν ∈ B(ε, µy

i ) ∩M|K(y).
Let Ψ0 be a set of causal subsequence selection rules.
Assume also:

p
.= inf

ν∈∪y∈XKM|K(y)
min
z∈X

ν(z) > 0

Then, there are a process measure P and a family
Ψ1 such that, for large enough n, P will both render
M|K conditionally visible (Ψ1, 3ε, δ,m, n) and ensure
conditional homogeneity (Ψ0, 6ε, δ,m, n) with

δ = 2(ξtn + 1) exp(
−ε2m2

2(n−K)
)

where tn = max{||Ψ0||, ||Ψ1||}

Proof: It follows closely proofs contained in the Ap-
pendix C and D of [2]; we omit details here.

The importance of this result is that there are con-
ditional chaotic sources for which analysis by simple
selection rules would give us the impression that the
phenomena can be modeled by a standard probability
model (indeed, it will look like a Markov chain where
the set of states is XK). But if we further analyze the
source with a set of more complex selection functions
we can expose the underlying structure of the model.
In this way, as pointed out by Fierens and Fine 2003,
the family of causal subsequence selection rules deter-
mines the power of the resolution of the model we see.

3.5 Fierens and Fine’s Approach to
Conditioning

Fierens and Fine 2003 [2] also provided a model for
Conditional Chaotic Probabilities, where the condi-
tioning events are the previous K outcomes in the
sequence. In their approach, they define

P|K = {ν : (∀A ⊆ X )

ν(A,XK) = Eµ(IA(XK+1)|XK), µ ∈ PK+1}.



For them, a conditional chaotic probability model
M|K is any subset of P|K . They also provide an ins-
trumental understanding of the model, by defining
a selection function F : X ∗ → M|K . It is easy to
see that there is a one-to-one correspondence between
their model and the one presented here. Given M|K ,
a conditional chaotic probability model according to
our definition is given by:

M|K(y) = {µ ∈ P : ∀z ∈ X , µ(z) = ν(z,XK = y),

ν ∈ M|K}, ∀y ∈ XK .

For the converse, given M|K , a conditional chaotic
probability model according to Fierens and Fine’s de-
finition is given by:

M|K(y) = {ν ∈ P|K : ∃y ∈ XK , ∀z ∈ X ,

ν(z, XK = y) = µ(z), µ ∈M|K(y)}.

The major difference between both approaches is the
estimation procedure; the set of subsequence selec-
tion rules Fierens and Fine allow for estimating the
conditional chaotic probability model is a subset of
the set we allow. Unlike us, for each fixed sequence
of K outcomes y, Fierens and Fine analyze the sub-
sequence xy,n of xn, that is formed by all terms in
xn whose previous K outcomes are equal to y, using
causal subsequence selection rules that depend only
on past terms that appear in xy,n, not on all past
terms of the whole original sequence xn, as we do in
our approach. As the chaotic selection function both
in their approach and in ours is allowed to depend on
all past symbols of the sequence xn, we believe that
it is more appropriate to allow the more general set
of selection rules we allow.

Although Fierens and Fine were able to prove results
analogous to Theorems 3.2, 3.4, and 3.6 using their
restricted set of selection rules, they did not provide
a procedure for finding a family of selection rules Ψ
that renders M|K conditionally visible. We will now
extend the result of Rêgo and Fine 2005 [12] providing
a procedure for finding a family of selection rules Ψ
that renders M|K conditionally visible. In the next
section, we provide a methodology for finding such a
family of rules Ψ that works for any conditional chao-
tic probability source, and we call it a universal family
of selection rules. As we see in the next section, for
finding such a universal family it is crucial that we al-
low the more general set of subsequence selection rules
that depend on the whole past terms in the sequence
xn. Unfortunately, as in the univariate case, such a
family may “extract” more than ∪y∈XKM|K(y). We
return to this point in Section 5.

4 Universal Family of Selection Rules

In this section we prove that there exists a universal
family, which depends basically on the precision we
want our estimator to have, that is able to conditio-
nally expose all measures of any set of probabilities
M|K .

Let λy,n
.=

∑n
i=K+1 I{y}(xi−K:i−1).

Define for each family of causal selection rules, Ψ, and
each y ∈ XK the estimator based on this family as:

M̂Ψ,y
|K

.= {µϕ,n,y : ϕ ∈ Ψ, λy,n ≥ m0, λϕ,n,y ≥ m}

Approximate F (xj−1) by Fε(xj−1) = µj if µj is the
closest measure to F (xj−1) among all µi’s that be-
longs to Mε(xj−K:j−1). Let Fε,n be the restriction of
Fε to X 1:n (all sequences of length not greater than n).
The following theorem provides the desired method of
finding a universal family of selection rules for condi-
tional chaotic probability sources.

Intuitively, Theorem 4.1 states that as long as the
Kolmogorov Complexity [10] of the conditional cha-
otic measure selection function is not too high, and
we have a long enough data sequence, then for every
given sequence y ∈ XK of past K symbols that ap-
peared frequently enough, we are able to make visible
with high probability all measures in M|K(y) that
were selected frequently enough in the sequence.

Theorem 4.1: Choose f, f0 ≥ 1, α0 = (f0ξ
K)−1,

α = (fNε)−1 and let m0 = α0(n − K) and m =
αλy,n. Define Mf

|K(y) .= {ν : ν ∈ M|K(y) and ∃µi ∈
Mε(y) such that d(ν, µi) < ε and µi is selected at
least m times by Fε,n when the previous K outcomes
were equal to y and λy,n ≥ m0 }. Given β smaller
than α2

0α2ε2

2 , choose ε′ ∈ (0, β log2 e) and assume the
Kolmogorov complexity, K(Fε,n), of Fε,n satisfies the
following condition:

∃κ ≥ 0, ∃Lε′,κ such that ∀n ≥ Lε′,κ,

K(Fε,n)
n

< β log2 e +
κ log2 n

n
− ε′ (3)

Define M∗
|K,R

.= {P : P ∈ M∗
|K and the corres-

ponding F satisfies condition (3)}. Then, for n >

max{Lε′,κ, 2dlog2 Qεe
ε′ }, there exists a family of causal

subsequence selection rules ΨU , depending only on α0,
α, κ and ε, such that ∀M|K , and ∀P ∈M∗

|K,R:

P (
⋂

y∈XK

{Xn : [ch(M|K(y))]4ε ⊃

[M̂ΨU ,y
|K ]3ε ⊃Mf

|K(y)}) ≥ 1− δ,



where γ = α2
0α2ε2

2 −β and δ = 2ξK+1nκeα2
0α2ε2Ke−γn.

Remark 4.2: Note that if λy,n < m0, then by
definition we have M̂ΨU ,y

|K = Mf
|K(y) = ∅. Thus, we

fail to estimate M|K(y) in this case. But the fraction
of times a string of outcomes y ∈ XK such that λy,n <
m0 appears in a sequence Xn is bounded from above
by (1/f0). Therefore, for f0 sufficiently large it is
reasonable to expect that such measures may not be
estimated.

Remark 4.3: Note also that if λy,n ≥ m0, then
the fraction of times a measure in M|K(y) \Mf

|K(y)
is used to generate an outcome in a sequence Xn is
bounded from above by (1/f). Therefore, for f suffi-
ciently large it is reasonable to expect that such me-
asures may not be estimated.

Proof: Define a family of selection functions, ΨG,
that corresponds to Fε,n as follows: ΨG = {ϕG

i , for
1 ≤ i ≤ Nε}, where, for 0 ≤ j ≤ n− 1:

ϕG
i (xj) .=

{
1 if Fε,n(xj) = µi

0 otherwise. (4)

As each ϕG
i is a function of Fε,n and µi, and dlog2 Qεe

is an upper bound on the number of bits necessary to
specify the index i of the particular measure µi, the
Kolmogorov complexity, K(ϕG

i ), of ϕG
i satisfies:

max
i

K(ϕG
i ) ≤ K(Fε,n) + dlog2 Qεe (5)

It then follows, from our hypothesis, that for 1 ≤
i ≤ Nε and ∀n ≥ Lε′,κ, K(ϕG

i ) satisfies the following
condition:

K(ϕG
i )

n
< β log2 e +

κ log2 n

n
− ε′ +

dlog2 Qεe
n

Therefore, for n > max(Lε′,κ, 2dlog2 Qεe
ε′ ):

K(ϕG
i )

n
< β log2 e +

κ log2 n

n
− ε′

2

Let ΨU consist of all rules of Kolmogorov complexity
less than or equal to βn log2 e + κ log2 n − 1. Note
that since for n > max{Lε′,κ, 2dlog2 Qεe

ε′ }, nε′
2 > 1, so

ΨU includes ΨG for n large enough.

As ||ΨU || ≤ 2nβ log2 e+κ log2 n = nκeβn, m0 = α0(n −
K), m = αλy,n and γ = α2

0α2ε2

2 −β > 0, by the causal
faithfulness theorem, for any P ∈M∗

|K ,

P (Xn : max
y∈XK

max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ m} ≥ ε) =
= P (Xn : max

y∈XK
max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ αλy,n} ≥ ε) ≤
≤ P (Xn : max

y∈XK
max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ αm0} ≥ ε) ≤
≤ P (Xn : max

y∈XK
max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λϕ,n,y ≥ α0α(n−K)} ≥ ε) ≤

≤ 2ξK+1nκe
α2
0α2ε2K

2 e−γn

Note that, since for α0 = (f0ξ
K)−1, for all Xn, there

exists y such that λy,n ≥ m0. And for α = (fN−1
ε ),

we know that for all Xn and for all y, there exists i
such that λϕG

i
,n,y ≥ m, as ΨG ⊂ ΨU , we have that for

all Xn the maximum above is taken over a non-empty
set.

To prove the theorem, let ϕG
i be as defined in Equa-

tion (4), then for a fixed Xn, by definition of Mf
|K(y),

∀ν ∈ Mf
|K(y), ∃µi ∈ Mε(y) such that d(ν, µi) < ε,

λϕG
i

,n,y ≥ m and λy,n ≥ m0 (Note the index i depends
on Xn). Then, using the triangle inequality property:

max
y∈XK

sup
ν∈Mf

|K(y)

d(ν, µϕG
i

,n,y) ≤

max
y∈XK

sup
ν∈Mf

|K(y)

d(µϕG
i

,n,y, νϕG
i

,n,y) +

max
y∈XK

sup
ν∈Mf

|K(y)

d(νϕG
i

,n,y, µi) +

max
y∈XK

sup
ν∈Mf

|K(y)

d(µi, ν)

and since νϕG
i

,n,y is the time average of the ac-
tual measures selected by F in the ball B(ε, µi),
d(νϕG

i
,n,y, µi) < ε, and as ΨG ⊂ ΨU , the following

holds,

{Xn : max
y∈XK

max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ m} < ε} ⊂
{Xn : max

y∈XK
sup

ν∈Mf

|K(y)

min
ϕ∈ΨU

{d(ν, µϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ m} < 3ε}. (6)

Equation 6 implies,

{Xn : max
y∈XK

max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λϕ,n,y ≥ m} < ε} ⊂



{
⋂

y∈XK

{Xn :

[ch(M|K(y))]4ε ⊃ [M̂ΨU ,y
|K ]3ε ⊃Mf

|K(y)}} (7)

Theorem 4.1 follows from the causal faithfulness The-
orem 3.2.

The problem with the sort of estimator provided by
the above theorem is that on one hand it is able to
conditionally expose all measures in M|K(y) that ap-
peared frequently enough in the process, if y also ap-
peared frequently enough in the outcomes. On the
other hand, we have that for each y ∈ XK that ap-
peared frequently enough, the estimator is only gua-
ranteed to be included in an enlarged neighborhood
of M|K(y)’s convex hull and in some cases this can
be rather larger than M|K(y).

The following section proves a theorem that given xn

provides a methodology for finding a universal family
of subsequences, Ψ(xn), that is both able to conditi-
onally expose all measures in M|K(y) that appeared
frequently enough in the process, if y appeared fre-
quently enough, and contains only these subsequen-
ces whose empirical time averages are close enough
to M|K(y) with high probability. We will call this
family to be conditionally strictly faithful.

5 Conditionally Strictly Faithful
Family of Subsequences

In this section, we propose a methodology for finding
a conditionally strictly faithful family of subsequen-
ces that can both conditionally expose all measures
in M|K(y) that appear frequently enough in the pro-
cess, if y appears frequently enough; and contains only
these subsequences whose empirical time averages are
close enough to M|K(y) with high probability.

The problem with the set of rules ΨU is that it may
contain rules that are not conditionally homogeneous,
i.e., rules that given that the previous outcomes are
equal to y select subsequences generated by mixtures
of measures µi’s. In our proposed methodology in this
section, we will analyze each rule ϕ ∈ ΨU with a uni-
versal family Ψϕ

U (see definition below) and include
ϕ in Ψ(xn) only if it is conditionally homogeneous.
As Ψϕ

U is universal for the subsequence selected by ϕ,
it will be able to identify if it is or not conditionally
homogeneous with high probability. Thus, our family
of sequences Ψ(xn) is constructed in a two-stage pro-
cess: first we consider the family of selection rules ΨU

which consists of all rules of at most a certain comple-
xity value which is able to make M|K conditionally
visible; then we filter the rules contained in ΨU so

that it contains only conditionally homogenous sub-
sequences whose relative frequencies are close enough
to a measure in ∪y∈XKM|K(y).

The following theorem proves the desired result, i.e., if
the Kolmogorov complexity of the conditional chaotic
measure selection function is not too high and we have
a long enough data sequence, with high probability we
can conditionally make visible all and only measures
that were used frequently enough in the sequence.

Theorem 5.1: Choose f0, f ≥ 1, α0 = (f0ξ
K)−1,

α1 = (fNε)−1, α2 = N−1
ε and let m0 = α0(n − K),

m = α1λy,n. Define Mf
|K(y) .= {ν : ν ∈ M|K(y)

and ∃µi ∈ Mε(y) such that d(ν, µi) < ε and µi is
selected at least m times by Fε,n when the previous K
outcomes were equal to y and λy,n ≥ m0} and define
Mf

ε (y) .= {µi : µi ∈ Mε(y) and µi is selected at
least α2m times by Fε,n when the previous K outcomes
were equal to y and λy,n ≥ m0 }. Given β smaller
than α2

0α2
1α2

2ε2

2 , choose ε′ ∈ (0, β log2 e) and assume
the Kolmogorov complexity, K(Fε,n), of Fε,n satisfies
the same condition (3), i.e.,:

∃κ ≥ 0, ∃Lε′,κ such that ∀n ≥ Lε′,κ,

K(Fε,n)
n

< β log2 e +
κ log2 n

n
− ε′

Define M∗
|K,R

.= {P : P ∈ M∗
|K and the corres-

ponding F satisfies condition (3)}. Then, for n >

max{Lε′,κ, 2dlog2 Qεe
ε′ }, for each xn, there exists a fa-

mily of subsequences Ψ(xn), depending only on α0,
α1, α2, κ and ε, such that ∀M|K and ∀P ∈M∗

|K,R:3

P ({Xn : max
y∈XK

sup
µ∈Mf

|K(y)

min
ν∈M̂Ψ(Xn),y

|K

d(µ, ν) < 3ε}

∩{Xn : max
y∈XK

max
ν∈M̂Ψ(Xn),y

|K

min
µ∈Mf

ε (y)
d(µ, ν) < 6ε})

≥ 1− δ1

where γ1 = α2
0α2

1α2
2ε2

2 − β, Sε
.= min{Qε, n

κeβn} and

δ1 = 4ξK+1Sεn
κe

α2
0α2

1α2
2ε2K

2 e−γ1n.

Proof: It follows closely the proof of Theorem 3 con-
tained in the appendix of [12]; we omit details here.

3If Ψ(Xn) = ∅, we adopt the following convention:

max
y∈XK

sup
µ∈Mf

|K(y)

min
ν∈M̂∅,y

|K

d(µ, ν) = ∞

and
max

y∈XK
max

ν∈M̂∅,y

|K

min
µ∈Mf

ε (y)

d(µ, ν) = 0.



6 Interpretation as Generalized
Markov Chain

The conditional chaotic probability model studied in
this paper can be given the interpretation of a gene-
ralized Markov chain (GMC). The difference from the
standard Markov chain is that the transition proba-
bilities are given by sets of probability measures ins-
tead of single probabilities. Therefore, consider the
following definitions of the parameters of the GMC:

• States: There are ξK states, one state for each
y ∈ XK .

• Initial Probabilities: They are given by the
initial probability of the first K symbols of the
sequence, µF ∈ PK .

• Transition Set of Probabilities:

M|K(yi+1|yi)
.=





{ν(yi+1(K)) : ν ∈M|K(yi)},
if yi(l + 1) = yi+1(l),
for 1 ≤ l ≤ K − 1

{0}, otherwise.

where yi(l) is the l-th position of the i-th state
of the GMC.

Although this GMC looks like a partially specified
Markov chain, they differ in the fact that in the GMC
there is no single underlying “true” transition proba-
bility as in the partially specified Markov chain.

As pointed out by an anonymous referee, we must
take care with the interpretation of the conditional
chaotic probability model as a GMC. On one hand,
usually a Markov chain describes a random phenome-
non without memory. On the other hand, the instru-
mental interpretation of the conditional chaotic pro-
bability model proposed is sensible to the initial con-
ditions of the realization of the random experiment;
each initial condition determines a unique process P
as defined in (2). As argued in Section 2.1, the issue
is that P does not reflect the reality of the underlying
phenomena. In a chaotic probability model, all that
can be learnt and used to predict the next outcome
in the sequence is M|K(y) for each y ∈ XK , i.e., the
transition set of probabilities of the GMC. Thus, a
GMC is memoryless in the sense that once one knows
the transition set of probabilities of the GMC all that
we can learn and use to predict about the distribution
of the next outcome in the sequence is given by the
present state y ∈ XK of the GMC, and it is chaotic in
the sense that given that the present state is y ∈ XK

which measure will actually produce the next outcome
varies unpredictably while remaining in M|K(y).

7 Conclusions and Future Work

For ease of exposition, in this paper we focused on the
case of conditioning on the previous K outcomes. It
is easy to see that the results presented can be easily
generalized to conditioning on a family of selection
rules Φ such that ∃L < n− 1 such that the following
two conditions hold:

1. ∀φ1, φ2 ∈ Φ, φ1 6= φ2 implies φ1(xi) · φ2(xi) =
0, L < i ≤ n− 1

2.
∑

φ∈Φ φ(xi) = 1, L < i < n

The development of chaotic probability theory is an
important conceptual achievement, since it will pro-
vide us with a more powerful and general tool for
analyzing time series. With the increasing size and
number of data sets available nowadays, a different
way of looking at them, provided by this theory, can
have a huge impact in our world.

Although we do not have analyzed any practical real
world data supporting the model, the main mathema-
tical tools that enhance our capability of recognizing
such phenomena (since we believe that we are only
likely to find what we expect to see) have been pre-
sented. Therefore, new concepts of probability are
likely to open our perception and understanding of
chance phenomena.

To further develop the chaotic probability theory, a
method to evaluate self-consistency of simulation and
estimation needs to be studied (for details, see Fierens
and Fine 2003 [2] [4]). Also, implications of this the-
ory for inference and decision making problems have
to be investigated.

In a broader perspective, the possibility of modeling
physical chance phenomena with a set of measures,
raises the question about the existence of other phy-
sical quantities that have properties that cannot be
quantified by a single real number, but only as a set
of them.

Acknowledgements

We want to specially thanks Terry Fine and Pablo
Fierens for useful talks about Chaotic Probabilities
Models. We also would like to thank Terry Fine for
important suggestions and comments in early drafts
of this work. Last but not least, we thank anonymous
referees that made useful comments about this work.



References

[1] F. Cozman and L. Chrisman, Learning con-
vex sets of probability from data, Tech. Report
CMU-RI-TR-97-25, Robotics Institute, Carnegie
Mellon University, 1997.

[2] P. I. Fierens, Towards a Chaotic Probability
Model for Frequentist Probability, PhD thesis,
Cornell University, 2003.

[3] P. I. Fierens, An extension of chaotic probabi-
lity models to real-valued variables, in ISIPTA’07
Proceedings, July 2007.

[4] P. I. Fierens and T. L. Fine, Toward a Chao-
tic Probability Model for Frequentist Probability:
The Univariate Case., July 2003, pp. 245–259.

[5] M. Gell-Mann, The Quark and The Jaguar,
W. H. Freeman and Company, 1994.

[6] Y.-L. Grize and T. L. Fine, Continuous lower
probability-based models for stationary processes
with bounded and divergent time averages, An-
nals of Probability, 15 (1987), pp. 783–803.

[7] A. N. Kolmogorov, On logical foundations of
probability theory, vol. 1021 of Lecture Notes in
Mathematics, Springer-Verlag, 1983.

[8] A. N. Kolmogorv, On tables of random num-
bers, Sankhya: The Indian Journal of Statistics,
(1963), p. 369.

[9] A. Kumar and T. L. Fine, Stationary lower
probabilities and unstable averages, Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebi-
ete, 69 (1985), pp. 1–17.
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Abstract

Reasoning with qualitative and quantitative uncer-
tainty is required in some real-world applications [6].
However, current extensions to logic programming
with uncertainty support representing and reasoning
with either qualitative or quantitative uncertainty. In
this paper we extend the language of Hybrid Proba-
bilistic Logic programs [28, 25], originally introduced
for reasoning with quantitative uncertainty, to sup-
port both qualitative and quantitative uncertainty.
We propose to combine disjunctive logic programs
[10, 17] with Extended and Normal Hybrid Proba-
bilistic Logic Programs (EHPP [25] and NHPP [28])
in a unified logic programming framework, to allow
directly and intuitively to represent and reason in the
presence of both qualitative and quantitative uncer-
tainty. The semantics of the proposed languages are
based on the answer set semantics and stable model
semantics of extended and normal disjunctive logic
programs [10, 17]. In addition, they also rely on
the probabilistic answer set semantics and the sta-
ble probabilistic model semantics of EHPP [25] and
NHPP [28].

Keywords. Probabilistic reasoning, probabilistic
logic programming, knowledge representation.

1 Introduction

Reasoning under uncertainty is crucial in most real-
world applications such as planning with uncertain
domains and reasoning about actions with uncertain
effects—such as the actions that arise from robotics in
real-world environments. The literature is rich with
different forms of uncertainty in logic programming.
These forms of uncertainty can be classified into qual-
itative and quantitative models of uncertainty. Quali-
tative uncertainty is represented in logic programming
using disjunctive logic programs [17, 10, 2]. It often
happens that a∨b∨c occurs because we are uncertain
which of these propositions is true [2]. There might

be states of the world where a is true or b is true or
c is true or any combinations of them might also be
true [2]. Quantitative uncertainty is represented in
logic programming by means of different formalisms
including probability theory (see [27] for a survey).
Probabilistic logic programming is motivated by the
need to provide the ability to represent both logical as
well as probabilistic knowledge by logic programs (see
[28] for a survey). The semantics of such frameworks
provide ways to systematically derive logical conclu-
sions along with their associated probabilistic proper-
ties. Although, representing and reasoning with both
forms of uncertainty is needed in some real-world ap-
plications [6], this issue has not been addressed by
the current work in qualitative or quantitative uncer-
tainty in logic programming.

We propose to combine disjunctive logic programs
[10, 2] with Extended and Normal Hybrid Probabilis-
tic Logic Programs (EHPP [25] and NHPP [28]) in
a unified logic programming framework, to allow di-
rectly and intuitively to represent and reason in the
presence of both qualitative and quantitative uncer-
tainty. This is achieved by introducing the notions of
Extended and Normal Disjunctive Hybrid Probabilis-
tic Logic Programs (EDHPP and NDHPP). EDHPP
and NDHPP generalize extended and normal disjunc-
tive logic programs of classical logic programming
[10, 2], respectively, as well as, generalizing EHPP
and NHPP [25, 28]. The semantics of EDHPP and
NDHPP are based on the answer set semantics and
stable model semantics of extended and normal dis-
junctive logic programs [10, 2], as well as the prob-
abilistic answer set semantics and the stable proba-
bilistic model semantics of EHPP and NHPP [25, 28].
The semantics of EDHPP employs the Open World
Assumption, whereas, the semantics of NDHPP em-
ploys the Closed World Assumption. Therefore, any
event represented by a program in NDHPP is asso-
ciated with a probability interval. Any event that
cannot be derived from a program in NDHPP is as-
signed the probability [0, 0], by default. But, an event



that can be derived from the program is assigned
a probability [a, b] 6= [0, 0]. However, in EDHPP
events may not be assigned probability intervals to
represent information incompleteness. If this is the
case we say that the probabilities associated with
these events are unknown or undecidable. We show
that EDHPP naturally subsumes extended disjunc-
tive logic programs[10] and EHPP [25], and NDHPP
naturally subsumes normal disjunctive logic programs
[2] and NHPP [28]. Moreover, we show that the prob-
abilistic answer set semantics of EDHPP is reduced to
the stable probabilistic model semantics of NDHPP.
The importance of that is, computational methods de-
veloped for NDHPP can be applied to the language of
EDHPP. Moreover, we show that EDHPP subsumes
Baral et al.’s answer set programming approach for
probabilistic reasoning with causal Bayes networks
[1]. We show that some commonsense probabilistic
knowledge can be easily represented in EDHPP and
NDHPP.

Another reason why the proposed languages are in-
teresting is that, in addition to allowing represent-
ing and reasoning with both qualitative and quan-
titative uncertainty, they can also be used in some
real-world applications in which quantitative uncer-
tainty needs to be defined over qualitative uncertainty,
where probabilistic measures are assigned over the
possible outcomes of qualitative uncertainty. For ex-
ample, flipping a fair coin leads to a head or tail with
0.5 probability each. This fact can be implicitly rep-
resented as a disjunctive logic program (since both
events are equally likely) as head(coin) or tail(coin)
with {head(coin)} and {tail(coin)} as the possible
answer sets, according to the answer set semantics
[10]. However, the explicit representation of proba-
bilities and the explicit assignment of probabilities to
the possible outcome of flipping the coin cannot be
presented by disjunctive logic programs syntax and
semantics. Moreover, consider if the coin is biased
to the head, where flipping the coin produced a head
with 0.58 probability or a tail with 0.42 probability. In
this case a disjunctive logic program cannot represent
it neither implicitly nor explicitly. On the other hand,
the coin-flipping example cannot be represented intu-
itively and directly in NHPP or EHPP either, since a
corresponding notion of disjunctions is not allowed in
NHPP or EHPP.

1.1 Probabilistic Logic Programming
Approaches

The current work in the literature supports either
qualitative uncertainty [17, 10, 2] or quantitative un-
certainty [12, 18, 23, 24, 29, 19, 20, 21, 4, 15, 16, 3, 27,
28, 25]. The closest to our work are the frameworks

presented in [27, 28, 25, 29, 16, 1].

Hybrid Probabilistic Logic Programs (HPP) [27]
is probabilistic logic programming frameworks that
modifies the original Hybrid Probabilistic Logic Pro-
gramming framework of [4], and generalizes and mod-
ifies the probabilistic annotated logic programming
framework, originally proposed in [19] and further ex-
tended in [20]. Probabilities in [27] are presented as
intervals where a probability interval represents the
bounds on the degree of belief a rational agent has
about the truth of an event. The semantics of HPP
[27], intuitively, captures the probabilistic reasoning
about how likely are the various events to occur. It
was shown that the HPP [27] framework is more suit-
able than [4] for reasoning and decision making tasks.
In addition, it subsumes Lakshmanan and Sadri’s [14]
probabilistic implication-based framework as well as
being a natural extension of classical logic program-
ming. As a step towards enhancing its reasoning ca-
pabilities, the framework of HPP was extended to
cope with non-monotonic negation [28] by introducing
the notion of Normal Hybrid Probabilistic Logic Pro-
grams (NHPP) and to provide two different seman-
tics, namely stable probabilistic model semantics and
well-founded probabilistic model semantics. Further-
more, NHPP was extended to Extended Hybrid Prob-
abilistic Logic Programs (EHPP) [25] to cope directly
with classical negation as well as non-monotonic nega-
tion to allow reasoning in the presence of incomplete
knowledge.

In [28], it was shown that the relationship between
the stable probabilistic model semantics and the well-
founded probabilistic model semantics of NHPP pre-
serves the relationship between the stable model se-
mantics and the well-founded semantics for normal
logic programs [8]. More importantly, the stable prob-
abilistic models semantics naturally extends the sta-
ble model semantics [9] of normal logic programs and
the well-founded probabilistic model semantics natu-
rally extends the well-founded semantics [8] of normal
logic programs. A consequence of this is that efficient
algorithms and implementations for computing those
semantics can be developed by extending the existing
efficient algorithms and implementations for comput-
ing the stable model semantics and the well-found se-
mantics for normal logic programs, e.g., SMODELS
[22]. However, NHPP is developed to represent and
reason in the presence of quantitative uncertainty.

However, in [25], it was shown that EHPP explic-
itly encodes negative information, which is important
to provide the capability to reason with incomplete
knowledge. The semantics of EHPP relies on a prob-
abilistic generalization of the answer set semantics,
originally developed for extended logic programs [10].



The probabilistic answer set semantics of EHPP nat-
urally extends the answer set semantics for classical
extended logic programs [10]. Moreover, it was shown
that Baral et al.’s probabilistic logic programming ap-
proach for reasoning with causal Bayes networks (P-
log) [1] is naturally subsumed by EHPP. Furthermore,
it was shown that the probabilistic answer set seman-
tics of EHPP is reduced to the stable probabilistic
model semantics of NHPP proposed in [28]. The im-
portance of that is computational methods developed
for NHPP can be applied to the language of EHPP.
Moreover, it was described in [25] that some com-
monsense probabilistic knowledge can be easily rep-
resented in EHPP. Similar to NHPP, EHPP is used to
represent and reason in the presence of quantitative
uncertainty.

Although [29] allows disjunctions in the head of rules,
the probabilistic logic programming framework in [29]
is used to represent and reason with quantitative un-
certainty to reason with Bayes networks. In addi-
tion, EDHPP (NDHPP) is more expressive than [29],
since, for example EDHPP, unlike [29], allows classical
negation, non-monotonic negation, different modes of
probabilistic combinations (since [29] considers inde-
pendence of probabilities which is a fixed mode of
probabilistic combination), and compound events to
appear in the body of rules, as well as, Bayes reason-
ing and representation.

Similar to [29], another approach for probabilistic
logic programming has been provided in [16] for quan-
titative uncertainty reasoning. In [16], a possible
world semantics for reasoning about probabilities has
been introduced by assigning probabilistic measures
over the possible worlds using normal disjunctive logic
programs. A probabilistic logic program in [16] con-
sists of a set of normal disjunctive logic program
clauses with associated probabilities. A normal dis-
junctive clause in [16] is treated as a classical for-
mula with an associated probability, where the im-
plication in such a clause is treated as material im-
plication. In addition, an approximate semantics for
probabilistic logic programming in [16] has been pre-
sented, where probabilities are treated as a lattice
of truth values. In this case, the probability of a
conjunction Prob(A ∧ B) = min(Prob(A), P rob(B))
and the probability of a disjunction Prob(A ∨ B) =
max(Prob(A), P rob(B)). This is considered a fixed
mode of combination. Whereas, in our framework
conjunctions and disjunctions are treated differently
according to the type of dependency between events.
In addition, unlike [16], we allow classical negation
and compound events to appear in the body of rules.

A logical approach has been presented in [1] to rea-
son with causal Bayes networks by considering a body

of logical knowledge, by using the answer set seman-
tics of classical answer set programming [10]. Al-
though, full answer set programming (logic programs
with classical negation, non-monotonic negation, and
disjunctions) is used, the probabilistic logic program-
ming framework in [1] is used to reason in the pres-
ence of quantitative uncertainty. Answer set seman-
tics [10] has been used to emulate the possible world
semantics. Probabilistic logic programs of [1] is ex-
pressive and straightforward and relaxed some restric-
tions on the logical knowledge representation part ex-
isted in similar approaches to Bayesian reasoning, e.g.,
[12, 18, 23, 24, 29]. Since [19, 20, 21, 4] provided a
different semantical characterization to probabilistic
logic programming, it was not clear that how these
proposals relate to [1]. However, the work presented
in this paper and [28, 25], which are modification and
generalization of the work presented in [19, 20, 21, 4],
are closely related to [1]. The framework presented
in this paper, as well as the framework of [25], is
strictly syntactically and semantically subsumes prob-
abilistic logic programs of [1]. This can be argued
by the fact that EDHPP naturally extends classi-
cal extended disjunctive logic programs with answer
set semantics [10], and probabilistic logic programs
of [1] mainly rely on extended disjunctive logic pro-
grams with answer set semantics [10] as a knowledge
representation and inference mechanism for reason-
ing with causal Bayes networks. In this sense, the
comparisons established between [1] and the existing
probabilistic logic programming approaches such as
[12, 18, 23, 24, 29, 19, 20, 21, 4, 15, 16, 3] also carry
over to EDHPP and these approaches. In addition,
unlike [1], EDHPP does not put any restriction on
the type of dependency existing among events.

1.2 Paper Organization

This paper is organized as follows. Sections 2 and
3 describe the syntax, stable probabilistic model se-
mantics of NDHPP, and the probabilistic answer set
semantics of EDHPP. Finally, conclusions with some
perspectives are presented in section 4.

2 Syntax

In this section we introduce the basic notions asso-
ciated to the languages of EDHPP and NDHPP de-
scribed throughout the rest of the paper [4, 28, 25].
EDHPP (NDHPP) is EHPP (NHPP) with disjunc-
tions of annotated literals (atoms) in the head of rules.



2.1 Probabilistic Strategies

Let C[0, 1] denotes the set of all closed intervals in
[0, 1]. In the context of EDHPP, probabilities are
assigned to primitive events (literals) and compound
events (conjunctions or disjunctions of literals) as in-
tervals in C[0, 1]. Let [α1, β1], [α2, β2] ∈ C[0, 1]. Then
the truth order asserts that [α1, β1] ≤t [α2, β2] iff
α1 ≤ α2 and β1 ≤ β2. The set C[0, 1] and the relation
≤t form a complete lattice. The type of dependency
among the primitive events within a compound event
is described by probabilistic strategies, which are ex-
plicitly selected by the user. We call ρ, a pair of func-
tions 〈c,md〉, a probabilistic strategy (p-strategy),
where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic
composition function, which is commutative, associa-
tive, monotonic w.r.t. ≤t, and meets the following
separation criteria: there are two functions c1, c2

such that c([α1, β1], [α2, β2]) = [c1(α1, α2), c2(β1, β2)].
Whereas, md : C[0, 1] → C[0, 1] is the maximal in-
terval function. The maximal interval function
md of a certain p-strategy returns an estimate of
the probability range of a primitive event, e, from
the probability range of a compound event that
contains e. The composition function c returns the
probability range of a conjunction (disjunction) of
two events given the ranges of its constituents. For
convenience, given a multiset of probability intervals
M = {{[α1, β1], . . . , [αn, βn]}}, we use cM to denote
c([α1, β1], c([α2, β2], . . . , c([αn−1, βn−1], [αn, βn])) . . .).
According to the type of combination among events,
p-strategies are classified into conjunctive p-strategies
and disjunctive p-strategies. Conjunctive (disjunc-
tive) p-strategies are employed to compose events
belonging to a conjunctive (disjunctive) formula
(please see [4, 27] for the formal definitions).

2.2 The Languages of EDHPP and NDHPP

Let L be an arbitrary first-order language with finitely
many predicate symbols, function symbols, constants,
and infinitely many variables. In addition, let S =
Sconj∪Sdisj be an arbitrary set of p-strategies, where
Sconj (Sdisj) is the set of all conjunctive (disjunctive)
p-strategies in S. The Herbrand base of L is denoted
by BL. A literal is either an atom a or the nega-
tion of an atom ¬a, where ¬ is the classical nega-
tion. We denote the set of all literals in L by Lit.
More formally, Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}.
An annotation denotes a probability interval and it
is represented by [α1, α2], where α1, α2 are called an-
notation items. An annotation item is either a con-
stant in [0, 1], a variable (annotation variable) ranging
over [0, 1], or f(α1, . . . , αn) (called annotation func-
tion) where f is a representation of a monotonic total
function f : ([0, 1])n → [0, 1] and α1, . . . , αn are an-

notation items.

The building blocks of the language of EDHPP are hy-
brid literals. Let us consider a set of literals l1, . . . , ln
and the p-strategies ρ and ρ′. Then l1 ∧ρ . . . ∧ρ ln
and l1∨ρ′ . . .∨ρ′ ln are called hybrid literals. A hybrid
literal L is ground if each literal li in L is ground.
bfS(Lit) is the set of all ground hybrid literals formed
using distinct literals from Lit and p-strategies from
S, such that for any collection of equivalent hybrid lit-
erals, Y = {l1 ∗ρ l2 ∗ρ . . . ∗ρ ln, l2 ∗ρ l1 ∗ρ . . . ∗ρ ln, . . .},
where ∗ ∈ {∧,∨}, only one li1 ∗ρ li2 ∗ρ . . . ∗ρ lin

∈ Y is
in bfS(Lit). An annotated hybrid literal is an expres-
sion of the form L : µ, where L is a hybrid literal and
µ is an annotation. Note that any hybrid literal L
can be represented in terms of another hybrid literal
L′ such that L = ¬L′, since ¬¬a = a, (a1 ∧ρ a2) =
¬(¬a1 ∨ρ ¬a2) and (a1 ∨ρ′ a2) = ¬(¬a1 ∧ρ′ ¬a2) and
∧ρ,∨ρ,∨ρ′ , and ∧ρ′ are associative and commutative.

However, the building blocks of the language of
NDHPP are hybrid basic formulae. Let us consider
a collection of atoms a1, . . . , an and the p-strategies
ρ and ρ′. Then a1 ∧ρ . . . ∧ρ an and a1 ∨ρ′ . . . ∨ρ′ an

are called hybrid basic formulae. A hybrid basic for-
mula F is ground if each atom Ai in F is ground.
bfS(BL) is the set of all ground hybrid basic for-
mulae formed using distinct atoms from BL and p-
strategies from S, such that for any collection of
equivalent hybrid basic formulae, X = {a1 ∗ρ a2 ∗ρ
. . . ∗ρ an, a2 ∗ρ a1 ∗ρ . . . ∗ρ an, . . .}, where ∗ ∈ {∧,∨},
only one ai1 ∗ρ ai2 ∗ρ . . . ∗ρ ain

∈ X is in bfS(BL). An
annotated hybrid basic formula is an expression of the
form F : µ where F is a hybrid basic formula and µ
is an annotation.

3 Extended and Normal Disjunctive
Hybrid Probabilistic Logic
Programs

In this section we define the syntax, declarative se-
mantics, the probabilistic answer set semantics of
Extended Disjunctive Hybrid Probabilistic Logic Pro-
grams (EDHPP), and the stable probabilistic model
semantics of Normal Disjunctive Hybrid Probabilistic
Logic Programs (NDHPP).

Definition 1 (Rules) An extended disjunctive hy-
brid probabilistic rule (ed-rule) is an expression of the
form
l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,

not (Lm+1 : µm+1), . . . , not (Ln : µn),
whereas a normal disjunctive hybrid probabilistic rule
(nd-rule) is an expression of the form
A1 : ν1 or . . . or Ak : νk ← F1 : µ1, . . . , Fm : µm,

not (Fm+1 : µm+1), . . . , not (Fn : µn),



where l1, . . . , lk are literals, A1, . . . , Ak are atoms, Li

(1 ≤ i ≤ n) are hybrid literals, Fi (1 ≤ i ≤ n) are hy-
brid basic formulae, and νi(1 ≤ i ≤ k), µi (1 ≤ i ≤ n)
are annotations.

An ed-rulenot is an ed-rule without non-monotonic
negation—i.e., n = m, and a d-rule is an nd-rule
without non-monotonic negation—i.e., n = m.

The intuitive meaning of an ed-rule, in Definition 1,
is that, if for each Li : µi, where 1 ≤ i ≤ m, the
probability interval of Li is at least µi and for each
not (Lj : µj), where m + 1 ≤ j ≤ n, it is not known
(undecidable) that the probability interval of Lj is at
least µj , then there exist at least li, where 1 ≤ i ≤ k,
such that the probability interval of li is at least νi.
However, the meaning of an nd-rule, is that, if for each
Fi : µi, where 1 ≤ i ≤ m, the probability interval of
Fi is at least µi and for each not (Fj : µj), where
m + 1 ≤ j ≤ n, it is not provable that the probability
interval of Fj is at least µj , then there exist at least
Ai, where 1 ≤ i ≤ k, such that the probability interval
of Ai is at least νi.

Definition 2 (Programs) An extended (normal)
disjunctive hybrid probabilistic logic program over S,
ed-program (nd-program), is a pair P = 〈R, τ〉,
where R is a finite set of ed-rules (nd-rules) with p-
strategies from S, and τ is a mapping τ : Lit→ Sdisj

(τ : BL → Sdisj). An extended (normal) disjunc-
tive hybrid probabilistic logic program without non-
monotonic negation is an ed-program (nd-program)
where each rule in the program is an ed-rulenot (d-
rule).

The mapping τ in the above definition associates to
each literal li (similarly for atoms in nd-programs) a
disjunctive p-strategy that will be employed to com-
bine the probability intervals obtained from different
rules having li in their heads. An ed-program (nd-
program) is ground if no variables appear in any of
its rules.

3.1 Satisfaction and Models

In this subsection, we define the declarative semantics
of EDHPP and NDHPP. We define the notions of in-
terpretations, models, and satisfaction of ed-programs
and nd-programs.

Definition 3 A probabilistic interpretation (p-
interpretation) of an ed-program is a partial or total
mapping h : bfS(Lit) → C[0, 1]. A probabilistic
interpretation (p-interpretation) for an nd-program
is a total mapping h : bfS(BL)→ C[0, 1].

Since we allow both an event and its negation to be de-
fined in p-interpretations for ed-programs, more con-

ditions need to be imposed on p-interpretations to
ensure their consistency. This can be characterized
by the following definitions.

Definition 4 A total (partial) p-interpretation h
for an ed-program is inconsistent if there exists
L,¬L ∈ bfS(Lit) (L,¬L ∈ dom(h)) such that

h(¬L) 6= [1, 1]− h(L).

Definition 5 We say a set C, a subset of Lit, is a
set of consistent literals if there is no pair of comple-
mentary literals a and ¬a belonging to C. Similarly,
a consistent set of hybrid literals C∗ is a subset of
bfS(Lit) such that there is no pair of complementary
hybrid literals F and ¬F belonging to C∗.

Definition 6 A consistent p-interpretation h of an
ed-program is either not inconsistent or maps a con-
sistent set of hybrid literals C∗ to C[0, 1].

The notion of truth order can be extended
to p-interpretations of nd-programs. Given p-
interpretations h1 and h2 of an nd-program P , we
say (h1 ≤t h2) ⇔ (∀F ∈ bfS(BL) : h1(F ) ≤t

h2(F )). The set of all p-interpretations of P and
the truth order ≤t form a complete lattice. In ad-
dition, given the p-interpretations h1 and h2 for an
ed-program P ′, we say (h1 ≤o h2) ⇔ (dom(h1) ⊆
dom(h2) and ∀L ∈ dom(h1), h1(L) ≤t h2(L)). The
set of all p-interpretations of P ′ and the partial order
≤o form a complete lattice.

Definition 7 (Probabilistic Satisfaction) Let
P = 〈R, τ〉 be a ground ed-program, h be a p-
interpretation, and
r ≡ l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,

not (Lm+1 : µm+1), . . . , not (Ln : µn).
Then

• h satisfies Li : µi(li : νi) (denoted by h |= Li :
µi(h |= li : νi)) iff Li ∈ dom(h)(lj ∈ dom(h))
and µi ≤t h(Li)(νi ≤t h(li)).
• h satisfies not (Lj : µj) (denoted by h |=
not (Lj : µj)) iff Lj ∈ dom(h) and h(Lj) <t µj

or Lj /∈ dom(h).
• h satisfies

Body ≡ L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ m), h |=
Li : µi and ∀(m + 1 ≤ j ≤ n), h |= not (Lj : µj).
• h satisfies Head ≡ l1 : ν1 or . . . or lk : νk (de-
noted by h |= Head) iff there exists at least i
(1 ≤ i ≤ k) such that h |= li : νi.
• h satisfies Head ← Body iff h |= Head when-
ever h |= Body or h does not satisfy Body.
• h satisfies P iff h satisfies every ed-rule in R
and for every literal li ∈ dom(h),



cτ(li){{νi (1 ≤ i ≤ k) | l1 : ν1 or . . . or lk : νk ←
Body ∈ R, h |= Body, and h |= li : νi}} ≤t h(li).

Observe that the definition of probabilistic satisfac-
tion for nd-programs is the same as the definition
of probabilistic satisfaction for ed-programs described
in Definition 7. The only difference is that classical
negation is not allowed in nd-programs, in addition,
p-interpretations of nd-programs are total mappings
from bfS(BL) to C[0, 1].

Definition 8 (Models) A probabilistic model (p-
model) of an ed-program (nd-program), with or with-
out non-monotonic negation, P is a p-interpretation
of P that satisfies P .

Definition 9 (Minimal Models) Let P be an ed-
program (nd-program). A p-model h of P is minimal
w.r.t. ≤o (≤t) iff there does not exist a p-model h′ of
P such that h′ <o h (h′ <t h).

We call a minimal p-model of an ed-program a proba-
bilistic answer set. It is possible to get a probabilistic
answer set of an ed-program, P , and this probabilistic
answer set is inconsistent. If this is the case, we say
P is inconsistent. If P is inconsistent, LIT , where
LIT : bfS(Lit) → [1, 1], is the probabilistic answer
set of P . We adopt this view from the answer set
semantics of classical logic programming [10].

Example 1 Consider the following ed-program
P = 〈R, τ〉, without non-monotonic negation, where
R contains
a : [0.1, 0.2] or ¬b : [0.15, 0.3]
¬c : [0, 0.21] ← a : [0.1, 0.13]
d : [0.12, 0.18] ← ¬b : [0.1, 0.21]
¬d : [0.45, 0.55] ← a : [0, 0.15],¬b : [0.02, 0.22],

¬c : [0.1, 0.1]
and τ is any arbitrary assignment of disjunctive
p-strategies. It is easy to verify that P has two
probabilistic answer sets h1 and h2, where
h1(a) = [0.1, 0.2] h1(¬ c) = [0, 0.21] and
h2(¬ b) = [0.15, 0.3] h2(d) = [0.12, 0.18].

3.2 Probabilistic Answer Set and Stable
Probabilistic Model Semantics

In this subsection we define the probabilistic answer
set and the stable probabilistic model semantics of ed-
programs and nd-programs respectively. The seman-
tics are defined in two steps. First, we guess a prob-
abilistic answer set (stable probabilistic model) h for
a certain ed-program (nd-program) P , then we define
the notion of the probabilistic reduct of P with re-
spect to h. The probabilistic reduct is an ed-program
(nd-program) without non-monotonic negation. Sec-
ond, we determine whether h is a probabilistic answer

set (stable probabilistic model) for P . This is verified
by determining whether h is a probabilistic answer
set (minimal p-model) of the probabilistic reduct of
P w.r.t. h.

Definition 10 (Probabilistic Reduct) Let P =
〈R, τ〉 be a ground ed-program (nd-program) and h be
a p-interpretation. The probabilistic reduct Ph of P
w.r.t. h is Ph = 〈Rh, τ〉 where:

Rh =


l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm |

l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn) ∈ R and
∀(m + 1 ≤ j ≤ n), h(Lj) <t µj or Lj /∈ dom(h)

Note that the definitions of the probabilistic reduct
for ed-programs and nd-programs are similar. Except
that classical negation is not allowed in nd-programs.
In addition, p-interpretations in nd-programs are to-
tal mappings from bfS(BL) to C[0, 1], therefore, for
nd-programs, the condition Lj /∈ dom(h) is not appli-
cable.

The probabilistic reduct Ph is an ed-program (nd-
program) without non-monotonic negation. For any
not (Lj : µj) in the body of r ∈ R with h(Lj) <t

µj means that it is not known (not provable for nd-
program) that the probability interval of Lj is at least
µj given the available knowledge, and not (Lj : µj)
is removed from the body of r. In addition, for ed-
program, if Lj /∈ dom(h), i.e., Lj is undefined in h,
then it is completely not known (undecidable) that
the probability interval of Lj is at least µj . In this
case, not (Lj : µj) is also removed from the body of
r. If µj ≤t h(Lj) (similarly for nd-programs), then
we know that the probability interval of Lj is at least
µj and the body of r is not satisfied and r is trivially
ignored.

Definition 11 A p-interpretation h of an ed-program
(nd-program) P is a probabilistic answer set (stable
probabilistic model) of P if h is a minimal p-model of
Ph.

The domain of a probabilistic answer set of an ed-
program or a stable probabilistic model of an nd-
program represents an agent set of beliefs. However,
the probability intervals associated to these beliefs
bound the agents belief degrees on these beliefs. ed-
programs without classical negation (nd-programs),
i.e., ed-programs that contain no negative literals nei-
ther in head nor in the body of ed-rules, have proba-
bilistic answer sets with hybrid literals consist of only
atoms (hybrid basic formulae). Moreover, the defini-
tion of probabilistic answer sets coincides with the def-
inition of stable probabilistic models for nd-programs.
This means that the application of the probabilistic
answer set semantics to nd-programs is reduced to the



stable probabilistic model semantics for nd-programs.
However, there are a couple of main differences be-
tween the two semantics. A probabilistic answer set
may be a partial p-interpretation, however, a stable
probabilistic model is a total p-interpretation. In ad-
dition, each hybrid basic formula F with probability
interval [0,0] in a stable probabilistic model of an nd-
program corresponds to the fact that the probability
interval of F is unknown, and hence undefined, in its
equivalent probabilistic answer set.

Proposition 1 Let P be an ed-program without clas-
sical negation. Then h is a probabilistic answer set
for P iff h′ is a stable probabilistic model of P , where
h(F ) = h′(F ) for each h′(F ) 6= [0, 0] and h(F ) is
undefined for each h′(F ) = [0, 0].

Proposition 1 suggests that there is a simple reduction
from ed-programs to nd-programs. The importance
of that is, under the consistency condition, compu-
tational methods developed for nd-programs can be
applied to ed-programs.

Example 2 Consider the following example adapted
from [11]. Tom and Fred are two policemen who are
challenging their firing gun skills, by shooting a bot-
tle at a quite long distance. In one of the shoots,
at the same time, both Tom and Fred shoot a bottle
and the bottle shattered. In fact, we cannot deter-
mine whether Tom or Fred is the one who shattered
the bottle. However, from Tom’s shooting experience
on similar targets at similar distances, Tom is capable
of hitting targets with probability interval from 75% to
80%. Similarly, Fred can hit similar targets with prob-
ability interval from 72% to 87%. Normally, a shooter
shoots a target. If a shooter sneezes while shooting, it
is an exception. Hence, a shooter’s shoot is abnormal
with probability interval from 30% to 65% if a shooter
sneezes while shooting. It was heard that somebody
sneezed, however, we do not know whether Tom or
Fred is the one who sneezed. A shooter shatters a
bottle with probability interval from 82% to 90% if a
shooter is capable of hitting similar targets with prob-
ability interval from 70% to 79%, and it is not known
that a shooter’s shoot is abnormal with probability in-
terval from 30% to 60%. This can be represented by
the following ed-program P = 〈R, τ〉, where R con-
tains:

sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1]←
ab(shoot, X) : [0.3, 0.65]← shoot(X) : [1, 1],

sneeze(X) : [1, 1]
shatter(X) : [0.82, 0.9]← hit(X) : [0.7, 0.79],

not (ab(shoot, X) : [0.3, 0.6])
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←
hit(tom) : [0.75, 0.8]←
hit(fred) : [0.72, 0.87]←

and τ is any arbitrary assignment of disjunctive p-
strategies. The ed-rules in Example 2 encode two
forms of uncertainty. Qualitative uncertainty repre-
sented by the first ed-rule that arises from the fact
that we do not know whether Tom or Fred is the
one who sneezed. And quantitative uncertainty rep-
resented by the probability intervals associated to the
various events presented in R. The probability in-
terval [1, 1] represents the truth value true. There-
fore, the rule sneeze(tom) : [1, 1] or sneeze(fred) :
[1, 1]← is intuitively interpreted as a disjunctive rule
in classical disjunctive logic programming. The above
ed-program P has two probabilistic answer sets h1

and h2, where

h1(sneeze(fred)) = [1,1]
h1(ab(shoot, fred)) = [0.3,0.65]
h1(shatter(tom)) = [0.82, 0.9]
h1(shoot(tom)) = [1,1]
h1(shoot(fred)) = [1,1]
h1(hit(tom)) = [0.75,0.8]
h1(hit(fred)) = [0.72,0.87]

h2(sneeze(tom)) = [1,1]
h2(ab(shoot, tom)) = [0.3,0.65]
h2(shatter(fred)) = [0.82, 0.9]
h2(shoot(tom)) = [1,1]
h2(shoot(fred)) = [1,1]
h2(hit(fred)) = [0.72,0.87]
h2(hit(tom)) = [0.75,0.8]

For example, h1 can be verified as a probabilistic an-
swer set of P by computing the probabilistic reduct,
Ph1 = 〈Rh1 , τ〉, of P w.r.t. h1, where Rh1 contains
sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1]←
ab(shoot, tom) : [0.3, 0.65]← shoot(tom) : [1, 1],

sneeze(tom) : [1, 1]
ab(shoot, fred) : [0.3, 0.65]← shoot(fred) : [1, 1],

sneeze(fred) : [1, 1]
shatter(tom) : [0.82, 0.9]← hit(tom) : [0.7, 0.79]
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←
hit(tom) : [0.75, 0.8]←
hit(fred) : [0.72, 0.87]←

It can be easily seen that h1 is a probabilistic answer
set for Ph1 .



Example 3 Assume that either we believe that Tom
is the one who hit the bottle or we believe that Fred
is the one who hit the bottle. However, if Tom is the
one who hit the bottle he can only hit it with probability
interval from 75% to 80%. Similarly, if Fred is the one
who hit the bottle he can only hit it with probability
interval from 72% to 87%. This means that either
Tom hit the bottle with probability interval from 75%
to 80% or Fred hit the bottle with probability interval
from 72% to 87%. This leads to the following encoding
of the ed-program P = 〈R, τ〉 presented in Example 2,
where R now contains:

hit(tom) : [0.75, 0.8] or hit(fred) : [0.72, 0.87]←
sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1]←
ab(shoot, X) : [0.3, 0.65]← shoot(X) : [1, 1],

sneeze(X) : [1, 1]
shatter(X) : [0.82, 0.9]← hit(X) : [0.7, 0.79],

not (ab(shoot, X) : [0.3, 0.6])
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←

and τ is any arbitrary assignment of disjunctive p-
strategies. The first ed-rule in R presents that quanti-
tative uncertainty (the probability intervals [0.75, 0.8]
and [0.72, 0.87]) can be defined over qualitative un-
certainty, where probabilistic measures are assigned
over the possible outcomes (hit(tom) and hit(fred))
of qualitative uncertainty. The above ed-program P
has four probabilistic answer sets h1, h2, h3, and h4,
where

h1(hit(tom)) = [0.75,0.8]
h1(sneeze(tom)) = [1,1]
h1(ab(shoot, tom)) = [0.3,0.65]
h1(shoot(tom)) = [1,1]
h1(shoot(fred)) = [1,1]

h2(hit(fred)) = [0.72,0.87]
h2(sneeze(fred)) = [1,1]
h2(ab(shoot, fred)) = [0.3,0.65]
h2(shoot(tom)) = [1,1]
h2(shoot(fred)) = [1,1]

h3(hit(tom)) = [0.75,0.8]
h3(sneeze(fred)) = [1,1]
h3(ab(shoot, fred)) = [0.3,0.65]
h3(shatter(tom)) = [0.82, 0.9]
h3(shoot(tom)) = [1,1]
h3(shoot(fred)) = [1,1]

h4(hit(fred)) = [0.72,0.87]
h4(sneeze(tom)) = [1,1]
h4(ab(shoot, tom)) = [0.3,0.65]
h4(shatter(fred)) = [0.82, 0.9]
h4(shoot(tom)) = [1,1]
h4(shoot(fred)) = [1,1]

For example, h3 can be verified as a probabilistic an-
swer set of P by computing the probabilistic reduct,
Ph3 = 〈Rh3 , τ〉, of P w.r.t. h3, where Rh3 contains

hit(tom) : [0.75, 0.8] or hit(fred) : [0.72, 0.87]←
sneeze(tom) : [1, 1]or sneeze(fred) : [1, 1]←
ab(shoot, tom) : [0.3, 0.65]← shoot(tom) : [1, 1],

sneeze(tom) : [1, 1]
ab(shoot, fred) : [0.3, 0.65]← shoot(fred) : [1, 1],

sneeze(fred) : [1, 1]
shatter(tom) : [0.82, 0.9]← hit(tom) : [0.7, 0.79]
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←

It can be easily seen that h3 is a probabilistic answer
set for Ph3 .

Now we show that EDHPP and NDHPP naturally
extend EHPP and NHPP respectively.

Proposition 2 The probabilistic answer set seman-
tics of EDHPP is equivalent to the probabilistic an-
swer set semantics of EHPP [25] for all ed-programs
P = 〈R, τ〉 such that ∀ r ∈ R, k = 1. In addition,
the stable probabilistic model semantics of NDHPP is
equivalent to the stable probabilistic model semantics
of NHPP [28] for all nd-programs P = 〈R, τ〉 such
that ∀ r ∈ R, k = 1.

Let us show that the probabilistic answer set seman-
tics of EDHPP and the stable probabilistic model se-
mantics of NDHPP generalize the answer set seman-
tics and the stable model semantics of extended and
normal disjunctive logic programs [2, 10] respectively.
An extended disjunctive logic program P can be rep-
resented as an ed-program P ′ = 〈R, τ〉 where each
extended disjunctive rule

l1 or . . . or lk ← l′1, . . . , l
′
m, not l′m+1, . . . , not l′n ∈ P

can be represented, in R, as an ed-rule of the form

l1 : [1, 1] or . . . or lk : [1, 1]← l′1 : [1, 1], . . . , l′m : [1, 1],
not (l′m+1 : [1, 1]), . . . , not (l′n : [1, 1]) ∈ R

where l1, . . . , lk, l′1, . . . , l
′
n are literals and [1, 1] repre-

sents the truth value true. τ is any arbitrary assign-
ment of disjunctive p-strategies. We call the class of
ed-programs that consists of only ed-rules of the above
form as EDHPP1. Recall that nd-programs are ed-
programs without classical negation. NDHPP1 is the
same as EDHPP1, except that, only atoms (positive
literals) are allowed to appear in rules of the above
form. The following result shows that EDHPP1 and
NDHPP1 subsume classical extended and normal
disjunctive logic programs [2, 10].

Proposition 3 Let P1 be an extended disjunctive
logic program. Then S1

′ is an answer set of P1 iff h1 is
a probabilistic answer of P1

′ ∈ EDHPP1 that corre-



sponds to P1 where h1(l) = [1, 1] iff l ∈ S1
′ and h1(l′)

is undefined iff l′ /∈ S1
′. Let P2 be a normal disjunc-

tive logic program. Then S2
′ is a stable model of P2 iff

h2 is a stable probabilistic model of P2
′ ∈ NDHPP1

that corresponds to P2 where h2(a) = [1, 1] iff a ∈ S2
′

and h2(b) = [0, 0] iff b ∈ BL \ S2
′.

In the following result, we show that EDHPP nat-
urally subsumes the probabilistic logic programming
framework (P-log) of [1]. This means that any P-log
program can be represented as an ed-program. In
[1], a logical approach has been presented to reason
with causal Bayes networks, by considering a body of
logical knowledge, using the answer set semantics of
classical logic programming [1]. Answer set semantics
has been used to emulate the possible world semantics
in [1].

Proposition 4 The language of EDHPP subsumes
P-log, a probabilistic logic programming framework for
reasoning with causal Bayes networks [1].

4 Conclusions and Future Work

We extended Extended and Normal Hybrid Proba-
bilistic Logic Programs [25, 28] to Extended and Nor-
mal Disjunctive Hybrid Probabilistic Logic Programs,
to allow classical negation, non-monotonic negation,
and disjunctions in the head of rules. The extension
is necessary to provide the capability of reasoning in
the presence of both qualitative and quantitative un-
certainty in a unified logic programming framework.
In addition to the ability to assign quantitative un-
certainly over qualitative uncertainty, where proba-
bilistic measures are assigned over the possible out-
comes of qualitative uncertainty. We developed se-
mantical characterizations of the extended languages,
which rely on generalizations of the answer set se-
mantics and the stable model semantics, originally
developed for extended and normal disjunctive logic
programs [10, 2], and the probabilistic answer set se-
mantics and the stable probabilistic model semantics
for Extended and Normal Hybrid Probabilistic Logic
Programs [25, 28]. We showed that the probabilis-
tic answer set semantics of EDHPP naturally gener-
alizes the answer set semantics of extended disjunc-
tive logic programs [10] and the probabilistic answer
set semantics of EHPP [25]. In addition, the stable
probabilistic model semantics of NDHPP generalizes
the stable model semantics of normal disjunctive logic
programs [2] and the stable probabilistic model se-
mantics of NHPP [28]. Furthermore, we showed that
the probabilistic answer set semantics of EDHPP is
reduced to stable probabilistic model semantics of
NDHPP. The importance of that is computational
methods developed for NDHPP can be applied to the

language of EDHPP. Moreover, we showed that some
commonsense probabilistic knowledge can be easily
represented in EDHPP and NDHPP. In addition, we
showed that EDHPP naturally subsumes the proba-
bilistic logic programming framework of [1].

The main topic of future research is to investigate
the computational aspects of the probabilistic an-
swer set semantics of EDHPP and stable probabilis-
tic model semantics of NDHPP—by developing algo-
rithms and implementations for computing these se-
mantics. The algorithms and implementations we will
develop will be based on appropriate extensions of the
existing techniques for computing the answer set (sta-
ble model) semantics for extended (normal) disjunc-
tive logic programs, e.g., DLV [7].
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Abstract 
 
We discuss several features of coherent choice functions 
– where the admissible options in a decision problem are 
exactly those which maximize expected utility for some 
probability/utility pair in fixed set S of probability/utility 
pairs.  In this paper we consider, primarily, normal form 
decision problems under uncertainty – where only the 
probability component of S is indeterminate.  Coherent 
choice distinguishes between each pair of sets of 
probabilities.  We axiomatize the theory of choice 
functions and show these axioms are necessary for 
coherence.  The axioms are sufficient for coherence 
using a set of probability/almost-state-independent utility 
pairs.  We give sufficient conditions when a choice 
function satisfying our axioms is represented by a set of 
probability/state-independent utility pairs with a common 
utility. 
 
Keywords. Choice functions, coherence, Γ-Maximin, 
Maximality, uncertainty, state-independent utility. 
 
1 Introduction 
In this paper we continue our study of coherent choice 
functions, which we started in our (2004) “Rubinesque” 
theory of decision.  Coherent choice function theory 
provides a more general account of Imprecise 
Probabilities than the theory of coherent strict preference, 
which we used in our (1995).  Coherent choice function 
theory does not reduce to binary comparisons between 
options, as Example 1 (below) illustrates.  By contrast, 
coherent strict preference is a binary relation that fails, in 
principle, to distinguish between some convex sets of 
probabilities that have the same convex hull.   

Specifically, as we show in Section 2, with coherent 
choice functions, for each two different sets of 
probabilities it requires only a simple decision problem 
in order to distinguish by admissibility between them.  
That is, with coherent choice functions, each set of 
probabilities has its own footprint of admissible options.   
In Section 4, we illustrate this added generality with a 

non-convex (even a disconnected) set S of probabilities 
that share the common structure that, for each 
distribution in S, two specific events are independent.   
Coherent choice with respect to the set S avoids making 
information about one event valuable in decisions that 
depend solely on the other event.   This is in sharp 
contrast with theories that rely on convex sets to depict 
Imprecise Probabilities 

Let O be a (closed) set of feasible options.  A choice 
function C(O) identifies the (non-empty) subset of O that 
are the admissible options in the decision problem given 
by the feasible set O.  We say that C(••••) is coherent 
provided that there is a non-empty set S of 
probability/utility pairs S ={(p,u)} such that the 
admissible options under C are precisely those that are 
Bayes with respect to some probability/utility pair (p,u) 
in S.  That is, for each admissible option, for each o ∈ 
C(O), there is a pair (p,u) ∈ S such that o maximizes the 
p-expected u-utility over O.  For short, we will call these 
the Bayes-admissible options in O (with respect to S).  

Aside:  If the option set O is not closed, then given a set S 
there may be no coherently admissible options in O.  For 
example, if utility is linear and increasing in the quantity 
X, then in the decision-under-certainty problem with O = 
{0 ≤ x < 1}, each option is inadmissible with respect to S.  

In Section 3 we adapt Anscombe-Aumann Horse-lottery 
theory in order to axiomatize coherent choice functions 
for cases where only probability (not utility) is 
indeterminate.   This affords a representation of choice 
functions in the style of our previous work (1995), where 
we represented coherent strict (binary) preference 
between options using sets of probabilities and almost-
state-independent utilities.  One way to understand how 
the new representation generalizes our previous work is 
to consider the partial order 〈 defined on pairs of sets of 
options {O1,O2}: where O1 〈 O2 obtains whenever there 
are no admissible options from set O1 in a choice 
problem given the combined set of options O1 ∪ O2.   
When the two sets {O1,O2} are singletons, this relation 



reduces to the binary comparison of strict preference 
between options.  Because our (1995) theory leads to a 
representation in terms of sets of probabilities and 
almost-state-independent utilities, that feature is inherited 
by our representation in Section 3. 

The use of a coherent choice function coincides with 
Levi’s (1980) principle of E-admissibility in cases where 
the set S is a cross-product of a convex set of 
probabilities and a convex set of utilities: S = P×U  for 
convex sets P and U.  Also, we find that Savage [1954, 
pp. 123-124, particularly where he argues that option b is 
“superfluous” for the decision pictured by his Figure 1] 
endorses a coherent choice rule with S a convex set of 
probabilities and a common utility. The following 
example, which we repeat from our ISIPTA-03 paper, 
illustrates how coherent choice does not reduce to binary 
comparisons in a setting where only probability is 
indeterminate.  

Example 1: Consider a binary decision problem, Ω = 
{ω1, ω2} with three feasible options O = {f,g,h}, and 
where utility is determinate: u(f(ω1)) = u(g(ω2)) = 0.0, 
u(f(ω2)) = u(g(ω1)) = 1.0, and u(h(ω1)) = u(h(ω2)) = 0.4. 
Let uncertainty over the states be indeterminate, with P = 
{p: 0.25 ≤ p(ω2) ≤ .75}.  We rehearse three decision rules 
for this problem. 

Γ-Maximin – Maximize minimum expected utility over 
the feasible options.  This rule is well studied in Gilboa 
and Schmeidler (1989).  In brief, Γ-Maximin induces a 
preference ordering over options, but fails the von 
Neumann-Morgenstern Independence postulate.  Under 
Γ-Maximin only {h} is admissible from the set {f,g,h}. 

Maximality (Sen/Walley) – admissible options are those 
that are undominated in expectations (over p ∈ P) by any 
single alternative option.  Under Maximality all three 
options are admissible from the set {f,g,h} as none 
dominates the others in pairwise comparisons.  
Maximality does not induce a preference ordering over 
options; however, admissibility is given by pairwise 
comparisons.  As is evident from Example 1, whether an 
option (e.g., option h) is admissible under Maximality 
depends upon whether the feasible options are closed 
under mixtures. 
 
Coherent choice.  Since the set of probabilities P is 
convex in this example, coherent choice reduces to 
Levi’s rule of. E-admissibility – admissible choices have 
Bayes’ models, i.e., they maximize expected utility  for 
some probability in the (convex) set P.   Subset {f,g} 
identifies  the Bayes-admissible options  from {f,g,h} 
under Coherent Choice.   This rule does not induce an 
ordering over options and does not reduce to pairwise 
comparisons.  
 

Note that h, which is never “Bayes” with respect to P, is 
uniformly dominated by some mixtures of f and g, e.g.,  
the mixed option given by .5f  ⊕ .5g, with expected 
utility 0.5 independent of p, uniformly dominates h.  This 
is no coincidence, as the following result establishes. 
 
Let Ω = {ω1, ω2, …, ωn} be a finite  partition of states.  
Let O = {o1, o2, …, om } be a finite set of  options defined 
on Ω, such that for oi ∈ O, u(oi(ωj)) = uij, a cardinal 
utility of the consequence of oi when state ωj obtains.  
Let P be the class of all probability distributions over Ω.  
Similarly, let Q be the class of all (simple) mixed acts 
over O, with a mixed act denoted q. 
 
Theorem 1 (Pearce, 1984, p.1048).    
Suppose for each p ∈ P, act o* ∈ O fails to maximize 
expected utility.  Then there is a mixed alternative q* that 
uniformly, strictly dominates o*.  That is,  u(q*(ωj)) > 
u(o*(ωj)) + ε,  for  j = 1, ..., n, with ε  > 0.   
 
Aside: With this result we are able to apply the strict 
standard of de Finetti’s “incoherence” (= uniform, strict 
dominance) to a broad class of decisions under 
uncertainty, analogous to traditional Complete Class 
Theorems for Bayes decisions (Wald, 1950).  The 
standard of incoherence used here is notably stronger 
than the mere inadmissibility (= weak dominance) of 
non-Bayes decisions, as is used in those Complete Class 
theorems. 
 
Let H(O) denote the result of taking the closed, convex 
hull of the option set O.  That is, H(O) is the set of all 
(simple) mixed acts based on O.  Since O is finite, q* of 
Theorem 1 may be taken to be an option that also is 
Bayes for some p*∈ P.  That is, in Theorem 1 we may 
choose q* ∈ H(O) such that q* ∈ C(H(O)) for a coherent 
choice function using the set P of all probability 
distributions on Ω.  
 
Aside: Theorem 1 generalizes to infinite states spaces Ω 
and infinite, closed options sets O by using Theorem 2.1 
of Kindler (1983) to replace Pearce’s use of von 
Neumann’s Minimax Theorem, which does not 
generalize to infinite games. 
 
In terms of Theorem 1, in Example 1 with o* = h, then 
qx* = xf ⊕ (1-x)g  for .4 < x < .6 uniformly dominates o*.    
But each such qx* is Bayes with respect to H(O) for 
precisely for one probability on Ω: p(ω1) = .5.   We use 
this fact, next, to establish that each set of probabilities 
has its own unique coherent choice function.    
 
2. Distinguishing sets of probabilities by 
their coherent choice functions 
Consider a finite state space  Ω = {ω1, …, ωn} with the 
class of all options given by horse lotteries (Anscombe 
and Aumann, 1963) defined on two consequences 1 and 



0.  In general horse-lottery theory there is a denumerable 
set of prizes, {r1, r2, ... }.  A (simple) horse lottery is a 
function from states to (simple) probability distributions 
over the set of prizes.  In this section we use decision 
problems involving horse lotteries defined on only two 
consequences, 0 and 1, with a strict preference for the 
constant act 1 over the constant act 0, as explained 
below.  And we consider coherent choice using a state-
independent utility, u where u(1) = 1 and u(0) = 0 in 
each state, ω.  Our goal is to show that if P and P’ are 
different sets of probabilities, the coherent choice 
function based on P×{u} is different from the coherent 
choice function based on P’×{u}.   
 
Let P be a set of probabilities.  For a (closed) set O, C(O) 
is the non-empty set of Bayes-admissible options.  Let 
R(O) = O\C(O) be the associated Bayes-rejection 
function that identifies the inadmissible options in O.    
So, we assume that {0} = R{0, 1}. 
 
Let p = (p1, …, pn) be a probability distribution on Ω .  
Let p be the smallest nonzero coordinate of p. 
Define the constant horse lottery act a = p1 + (1-p)0. 
For each  j = 1, .., n, define the act hj  by 
hj(ωi)  = 1  if i = j and pj  = 0, 

=   a  if i ≠ j and pj  = 0, 
=  (p/pj)1 + (1- p/pj)0  

if i = j and pj  > 0, 
=  0  if i ≠ j and pj  > 0. 

 
Define the option set Op = {a, h1, …, hn}. 
Theorem 2: p ∈ P  if and only if  R(Op) = ∅. 
 
Proof:  First, note that for all j and every utility u, 
Ep(u(hj)) = p = Ep(u(a)).  For the “only if” direction, 
assume that (p; u) ∈ S for some utility u. Then by this 
equality, every element of Op is Bayes with respect to (p; 
u) and R(Op) = φ.  For the “if” direction, assume that 
R(Op) = φ. Notice that Eq(v(a)) = p for every probability 
/utility pair (q, v).  Let (q, v ) be a probability/utility pair 
with q ≠ p. First, consider the case with p < 1. Then there 
exists j with qj > pj .  So,  
                     qj p / pj  >  p  if  pj > 0, 
Eq(v(hj))     =          

qj + (1-qj)p  > p  if  pj = 0. 
 

Hence, for each (q, v) with q ≠ p, Eq(v(hj)) > Eq(v(a)). It 
follows that a ∈ R(Op) unless (p, u) ∈ S for some utility 
u. Finally, consider the case with p = 1. In this case, Op = 
{1, hj} where pj = 1. So, Eq(v (hj)) = qj < 1 = Eq(v (a)) for 
every probability/utility pair (q, v) with q ≠ p. It follows 
that hj ∈ R(Op) unless (p, u) ∈ S for some utility u.◊  
 
Corollary Let P1 and P2 be two distinct (nonempty) sets 
of probabilities with corresponding Bayes rejection 
functions R1 and R2.  There exists a finite option set Op, 
as above, such that R1(Op)  ≠ R2(Op). 

 
Thus, each set of probabilities P has its own distinct 
pattern of Bayes rejection functions with respect to 
option sets Op for p ∈ P. 
 
Aside: This is a generalization of Theorem 1 that appears 
at the end of our (2004) paper.  That Theorem 1 is the 
restriction of the corollary to pairs of convex sets of 
probabilities. 
 
3. Axiomatizing coherent choice functions 
We turn, next, to a system of axioms for choice functions 
that are necessary for coherence, and which are jointly 
sufficient for a representation of choice by a set S of 
probability/almost-state-independent utility pairs, as 
explained below. We provide sufficient conditions when 
these pairs have a common state-independent utility.  In 
such a case the coherent choice function corresponds to 
choice under indeterminate uncertainty with a 
determinate utility. 

We continue within the framework of the previous 
section: horse lotteries over a finite state space Ω = {ω1, 
…, ωn}.  In that we are using choice functions over sets 
of options, the theory presented here extends our (1995) 
work, which deals solely with binary choice problems.  
Thus, results that follow from binary choice problems are 
available also within this theory.  For example, it follows 
from Section II.6 of our (1995) theory that each agreeing 
cardinal utility for the choice function C(•), if one exists, 
is a bounded utility function.  
 
Aside:  The aspects of the theory given here that compel 
the use of almost-state-independent utilities parallel the 
same issues that arise in Section IV of our (1995) 
representation for partially ordered preferences.  In the 
context of this paper, that theory, which addresses binary 
choice only, can be taken to axiomatize choice under the 
Maximality rule. 

In this paper, we focus on a representation for choice 
when utility is determinate, i.e., regarding the two 
distinguished prizes 1 and 0,  the constant act 1 is better 
than, and the constant act 0 is worse than, all other 
constant acts.  Also, we assume that all cardinal utilities 
are scaled so that u(1) = 1 and u(0) = 0.   
 
Given a strict preference between these two prizes, the 
Anscombe-Aumann (1963) theory of  horse-lotteries is 
given by four substantive axioms, which we summarize 
as follows.  
A-A Axiom 1: Choice over horse lotteries reduces to a 
pairwise comparison of options since binary preference 
satisfies ordering. 
A-A Axiom 2: Preference satisfies the von Neumann-
Morgenstern postulate of Independence. 
A-A Axiom 3: An Archimedean postulate is introduced 
in order to assure that preference has a real-valued 



representation, thus insuring also a real-valued 
representation for subjective probability over Ω and a  
real-valued cardinal utility over prizes. 
A-A Axiom 4: To insure existence of a state-independent 
utility representation for preference over horse lotteries, a 
final axiom requires that the decision maker’s preference 
for constant horse lotteries reproduces under each non-
null state in the form of called-off horse lotteries. 
 
We adapt our presentation here to match these four 
axioms.   
 
Axiom 1a (Sen’s property alpha):  
If O2 ⊆ R(O1) and O1⊆ O3, then O2 ⊆ R(O3). 
You cannot promote an unacceptable option into an 
acceptable option by adding to the choice set of options. 
  
Axiom 1b (a variant of Aizerman’s 1985 condition):  
If O2 ⊆ R(O1) and O3 ⊆ O2, then O2\O3 ⊆ 
R(closure[O1\O3]). 
You cannot promote an unacceptable option into an 
acceptable option by deleting unacceptable options from 
the option set. (We require closure[O1\O3] since O1\O3 
may not be closed, despite closure of O1 and of O3.) 
 
With Axioms 1a and 1b, define a strict partial order  〈  on 
sets of options as follows.   Let O1 and O2 be two option 
sets. 

Defn:  O1 〈 O2   if and only if    O1   ⊆   R[O1 ∪ O2]. 
 
Lemma 1 of our (2004) establishes that given Axioms 1a 
and 1b, the binary relation 〈 is a strict partial order over 
pairs of sets of options: 〈  is  transitive  and  anti-
symmetric. 
 
The role of mixtures is captured in the following pair of 
axioms for  〈.  With  O1 an option set and o an option, the 
notation αO1 ⊕ (1-α)o  denotes the set of pointwise 
mixtures,  αo1 ⊕ (1-α)o  for o1 ∈ O1.   
 
Axiom 2a Independence is formulated for the relation 〈 
over sets of options.  Let o be an option and 0 < α ≤ 1. 
O1 〈  O2   if and only if   αO1 ⊕ (1-α)o   〈  αO2 ⊕ (1-α)o. 
Axiom 2b Mixtures  If o ∈ O and o ∈  R[H(O)], then o ∈ 
R[O]. 
Axiom 2b asserts that unacceptable options from a mixed 
set remain so even before mixing. 
 
Aside: Independence (Axiom 2a) fails in Γ-Maximin 
theory.  Mixing (Axiom 2b) fails for the choice function 
determined by Maximality. 
 
The Archimedean condition requires a technical 
adjustment, as the canonical form used by, e.g. von 
Neumann-Morgenstern theory or Anscombe-Aumann 
theory is too restrictive in this setting.  (See section II.4 
of our 1995.) The reformulated version of the 

Archimedean condition is as a continuity principle 
compatible with strict preference as a strict partial order.   
It reads as follows. 
 
Let An and Bn (n = 1, …) be sets of options converging 
pointwise, respectively, to the option sets A and B.  Let 
N be an option set. 
Axiom 3a: If, for each n, Bn 〈 An and A 〈 N, then B 〈 N. 
Axiom 3b: If, for each n, Bn 〈 An and N 〈 B, then N 〈 A.  
 
State-neutrality / dominance is captured by the following 
relations.  Consider horse lotteries h1 and h2, with hi(ωj) 
=  βij1 ⊕ (1-βij)0;  i = 1,2  j = 1, …, n. 
 
Definition: h2 weakly dominates h1 if β2j  ≥ β1j for j = 1, 
…, n. 
 
Axiom 4: Assume that o2 weakly dominates o1, and that a 
is an option different from each of these two. 
4a: If o2 ∈ O and a ∈ R({o1} ∪ O) then a ∈ R(O). 
4b: If o1 ∈ O and a ∈ R(O) then a ∈ R({o2}∪O\o1). 
 
In words, Axiom 4a says that when a weakly dominated 
option is removed from the set of options, other 
inadmissible options remain inadmissible.  So, by Axiom 
1, when an option is replaced in the option set by one that 
it weakly dominates, other admissible options remain 
admissible. 
 
Axiom 4b says that when an option is replaced by one 
that weakly dominates it, (other) inadmissible options 
remain inadmissible.  Trivially by Axiom 1, merely 
adding a weakly dominating option cannot promote an 
inadmissible option into one that is admissible. 
 
Axiom 4 captures key aspects of what Savage’s postulate 
P3 asserts about state-independent utility of the prizes 1 
and 0 without assuming states are not-null.  That is, the 
intended representation for the choice function C(•) is by 
the expected utility rule applied with a set of probability 
distributions P.  However, it may be that for each state ωj 
there is a probability distribution pj ∈ P such that Pj(ωj) 
= 0.  In the language of our (1995) paper, each state in Ω 
is potentially null under P.  Then Savage’s P3 (or the 
corresponding axiom of Anscombe-Aumann theory) is 
vacuous.   Nonetheless, Axiom 4 reports two facts about 
weakly dominated lotteries that obtain even when each 
state is potentially null. 
 
Theorem 3:  Axioms 1–4 are necessary for a coherent 
choice function.   
That is, let S be a non-empty set of pairs of 
probability/state-independent utilities, and let CS(•) be 
the coherent choice function defined by setting the 
admissible options in feasible set O to be exactly those 
that are Bayes-admissible with respect to S.    Then CS(•) 
satisfies Axioms 1–4. 



 
Proof:  The argument for the necessity of  Axioms 1–3 is 
given in our (2004).  That Axiom 4 is necessary as well 
follows immediately by noting  that whenever o2 weakly 
dominates o1 then for each (p,u) ∈ S, Ep(u(o2)) ≥ 
Ep(u(o1)). ◊ 
 
The following result is helpful in linking our theory with 
Theorem 1. 
Definition: h2 strongly dominates h1 if β2j  > β1j for j = 1, 
…, n. 
Lemma–Inadmissibility of  strongly dominated options:  
If h2 strongly dominates h1 then {h1} = R({h1, h2}). 
 
Proof:  The strategy of the proof is as follows: Use the 
Independence axiom to convert the problem with option 
set O = {h1, h2} into an equivalent problem O` = {h`1, 
h`2}, where h`1 is a constant horse lottery, and where h`2 
strongly dominates h`1.  Then we show that h`2

 weakly 
dominates another constant horse lottery, h``2 which also 
strongly dominates h`1.  Then, by Independence {h`1} = 
R({h`1, h``2}) and by Axiom 4b, {h`1} = R({h`1, h`2})    
Last, by Independence, {h1} = R({h1, h2}). 
 
Here are the details.  Let 0 ≤ β* = min{β1j} and 1 > β* = 
max{β1j}.  Let h3(ωj) = β3j1 ⊕ (1-β3j)0, where β3j = β* + 
β* - β1j.  Then the horse lottery h`1 = .5h1 ⊕ .5h3 is the 
constant (von Neumann-Morgenstern) lottery with β`1j = 
(β*+β*)/2.  Define h`2 = .5h2 ⊕ .5h3.   The Independence 
axiom asserts that {h1} = R({h1, h2}) if and only if {h1`} 
= R({h1`, h2`}).  But h2` strongly dominates h1`, because 
h2 strongly dominates h1.  In fact, β`2j -β`1j = (β2j -β1j )/2 
> 0.  So,  let 0 < δ = min{β2j -β1j}, and then δ/2 = 
min{β`2j -β`1j}.  Let h``2 be the constant (von Neumann-
Morgenstern) lottery defined with β``2j = β`1j + δ/2 = 
(β*+β* + δ)/2  > β`1j.  Observe, also, that h`2 weakly 
dominates h``2. 
 
Then, as announced before, by Independence {h`1} = 
R({h`1, h``2}) and by Axiom 4b, {h`1} = R({h`1, h`2}), 
and by another application of Independence, {h1} = 
R({h1, h2}).◊ 

 
Next we introduce two concepts central to our argument 
for representing coherent choice functions.   
 
Definitions:  The pair (p,u) is a local Bayes model for 
option o provided that o maximizes (p,u)-expected utility 
with respect to the options in set O. 
 
The pair (p,u) is a global Bayes model for the choice 
function C(•) provided that, for each option set O, if  o ∈ 
O maximizes (p,u)-expected utility with respect to the 
options in set O  then o ∈ C(O). 
 
We adapt the concept of a set of almost state-
independent utilities, presented  in our (1995, Definition 

31), as follows.  Let {r1, ..., rm} be a set of rewards and 
assume that  for each constant horse lottery r ∈ {r1, ..., 
rm} , {0} 〈 {r} 〈 {1}, so that the constant acts 0 and 1 
strictly bound the value of the other constant acts.    
 
The set of probability/utility pairs S# = {(pj, uj): j = 1, 
....} form a set of almost state independent utilities for 
{r1, ..., rm} provided that for each ε > 0, there is a pair 
(pε, uε) ∈ S# and a set of states Ω(1-ε) ⊆ Ω  with  pε( Ω(1-ε)) 
≥ 1-ε such that for each r ∈ {r1, ..., rm} 

εωω −Ω∈ 1j,imax | uε,ωi(r) - uε,ωj(r) | ≤ ε. 

 
The remaining theorem we seek is this one.   
 
Theorem 4:  A choice function C(•) defined on the class 
H of simple Anscombe-Aumann Horse-lotteries using 
(at least) three prizes {0, r, 1}, with {0} 〈 {r} 〈 {1},  
satisfies our 4 axioms only if it is represented by a set S 
of probability/almost-state-independent utility pairs. 
 
A sufficient condition is given at the end of Appendix 2 
for the global Bayes models of S to be comprised solely 
of probability/state-independent utility pairs. 
 
This theorem follows from three lemmas, described next. 
 
Lemma 1: For each choice set O and admissible option o 
∈ C(O), o has at least one local Bayes model. 
Proof:  By Theorem 1, an option lacking a local Bayes 
model is strongly dominated by a finite mixture of other 
options already available in the same choice problem.  
Then, Axiom 3 and the Lemma on inadmissibility of 
strongly dominated acts demonstrates Lemma 1.  
 
Aside: Let o ∈ C(O).  If (p,u) and (p’,u) both are local 
Bayes models for o, then so too is each pair (q,u) of the 
form q = xp + (1-x)p’ (0 ≤ x ≤ 1).  Likewise, if each of 
(pj,u) (j = 1, ... ) is a local Bayes model for o and the 
sequences of distributions {pj} converges to distribution 
q, then also (q,u) is a local Bayes model for o.  Hence, 
we have the following corollary 
 
Corollary:  The set of local Bayes models for o ∈ C(O) 
with a common utility u is given by a non-empty, closed, 
convex set of probabilities. 
 
Next, following the ideas presented in Section 2, given a 
distribution p, we identify a special choice problem O* 
so that precisely when all of its options are admissible, 
then p is a global Bayes model for the choice function.  
Thus, the notation for the special choice problem should 
be ‘O*p’ with the subscript identifying the distribution p.  
To make the proofs readable, that subscript is suppressed 
here. 
 



Lemma 2:  Suppose that C(O*) = O*.  Then p is a global 
Bayes model for the choice function C(•).   
Proof:  See Appendix 1. 
 
Lemma 3: For each admissible option o ∈ C(O) at least 
one of its local Bayes models is a global Bayes model or 
else there is a set of probability/almost-state-independent 
utility pairs that represent C. 
Proof: See Appendix 2. 
   
4. An example of coherent choice using a 
non-convex set P reflecting “expert” opinion 
In this section we illustrate how coherent choices may 
represent “expert” opinions while preserving 
independence between two events.   
 
Example 2: Consider a decision problem among three 
options – three treatment plans {T1, T2, T3} defined over 
4 states Ω = {ω1, ω2, ω3, ω4} with determinate utility 
outcomes given in the following table.  That is, the 
numbers in the table are the utility outcomes for the 
options (rows) in the respective states (columns)  
  ω1  ω2  ω3 ω4 
 
T1  0.00 0.00 1.00 1.00 
 
T2  1.00 1.00 0.00 0.00  
 
T3  0.99 -0.01 -0.01 0.99 
 
Let a convex set P of probabilities be generated by two 
extreme points, distributions p1 and p2, defined by the 
following table.  Distribution p3 is the .50-.50 (convex) 
mixture of  p1 and p2. 

ω1  ω2  ω3 ω4 
 
p1  0.08 0.32 0.12 0.48 
 
p2  0.48 0.12 0.32 0.08  
 
p3  0.28 0.22 0.22 0.28 
Note that (for i = 1, 2, 3) under probability pi, only option 
Ti is Bayes-admissible from the option set of {T1, T2, 
T3}.   
 
Without convexity – that is, using only the set comprised 
by the two (extreme) distributions {p1, p2} –  option T3 is 
the sole Bayes-inadmissible option from among the three 
options {T1, T2, T3}.  
 
Now, interpret these states as the cross product of two 
binary partitions: a medical event A (patient allergic) and 
its complementary event NA (patient not-allergic), with a 
binary meteorological partition. S (sunny) and NS 
(cloudy).   Specifically: ω1 = A&S  ω2 = A&NS  ω3 = 
NA&S  ω4 = NA&NS.   

 

Under  probability distribution p1, the two partitions are 
independent events with p1(A) = .4 and p1(S) = .2.  
Likewise, under probability distribution p2, the two 
partitions are independent events with p2(A) = .6 and 
p2(S) = .8.  And under distribution p3 the events A and S 
are positively correlated: .56 = p3(A | S ) >  p3(A) = .5, as 
happens with each distribution q  that is a non-trivial 
mixture of p1 and p2. 
 
Continuing with the example, we see that the three 
options have the following interpretations: T1 and T2 are 
ordinary medical options for how to treat the patient, 
with outcomes that depend solely upon the patient’s 
allergic state.  T3 is an option that makes the allocation of 
medical treatment a function of the meteorological state, 
with a “fee” of 0.01 utile assessed for that input.  That is, 
T3 is the option “T1 if cloudy and T2 if sunny, while 
paying a fee of 0.01.” 
 
Suppose that p1 represents the opinion of medical expert 
1, and p2 represents the opinion of medical expert 2.  
Without convexity of the credal probabilities, T3 is 
inadmissible.  This captures the shared agreement 
between the two medical experts that T3 is unacceptable 
from the choice of three {T1, T2, T3}, and it captures the 
pre-systematic understanding that under T3 you pay to 
use medically irrelevant inputs about the weather in order 
to determine the medical treatment.  However, with 
convexity of the set generated by p1 and p2, then T3 is 
admissible as well.  Convexity of the set of indeterminate 
probabilities, we note, is required in each of Gilboa and 
Schmeidler’s (1989) version of Γ-Maximin, in Walley’s 
(1990) version of Maximality, and in Levi’s (1980) 
account of E-admissibility.. 
 
Aside: This illustration relies on the fact that normal and 
extensive form decisions are generally not equivalent in 
decision theories with indeterminate probabilities. 
Example 2 is in the normal form, as are all the choice 
problems considered in this paper.  In the extensive form 
of this decision problem, the decision maker has the 
opportunity to make a terminal choice between T1 and T2 
first, or to take as a third option a sequential alternative: 
pay a fee of 0.01 utiles in order to learn the state of the 
weather before choosing between T1 and T2.  Under 
decision rules for extensive form  problems that we 
endorse, and which we believe also are endorsed by Levi, 
then it is E-inadmissible to postpone the immediate 
medical decision between T1 and T2 in order to pay an 
amount to acquire the irrelevant meteorological evidence.  
And this holds whether the indeterminate probability set 
is convex or not. Related results about independence with 
indeterminate probability are presented in Cozman and 
Walley (2005). 
 
5. Concluding Remarks 
We have discussed coherent choice functions – where the 
admissible options in a decision problem are exactly 



those which maximize expected utility for some 
probability/utility pair in fixed set S of probability/utility 
pairs.  All of the decision problems used here to 
characterize and axiomatize coherent choice functions 
are normal form decision problems. But, as indicated in 
section 4, normal and extensive form decisions generally 
are not equivalent when probability (or utility) is 
indeterminate.  One of our future projects is to study 
coherent choice for extensive form, i.e., sequential 
decision problems 
 
Also, as noted in Lemma 3, in parallel with our findings 
about coherent strict partial orders (1995) the axioms are 
sufficient for coherence using a set of probability/almost-
state-independent utility pairs. Though we give sufficient 
conditions when a choice function satisfying our axioms 
is represented by a set of probability/state-independent 
utility pairs with a common utility, also we intend to 
study how to modify the axioms to avoid the use of 
almost-state-independent utilities. 
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Appendix 1 – Lemma 2 
Lemma 2:  Suppose that C(O*) = O*.  Then p is a global 
Bayes model for the choice function C(•).   
Proof.  Let p = (p1, …, pn) be a probability distribution 
on Ω with p its smallest nonzero coordinate.  O* is 
comprised by a set of acts that span all the elements of H 
with p-Expected utility p. 

Partition the states in Ω in two sets: p
1Ω  = {ω1, …, ωk} 

those that comprise the support of p and, p
2Ω  = {ωk+1, 

…, ωn} those states null under p.  Clearly, p
2Ω  = φ if and 

only if p has full support.  We define O* by two cases, 

depending whether p
2Ω  = φ or not. 

Case 1: p
2Ω  = φ and p has full support.  O* is comprised 

by n-many acts, { ja : j = 1, …, n}  For each  j = 1, …, n, 

define the act ja   by 

ja (ωi)   =    
jp

p
1  ⊕  (1-

jp
p

)0   if i = j 

=  0     if i ≠ j. 

Case 2: p
2Ω ≠ φ. O* is defined by k(n+2-k)-many acts 

which can be understood to be the product of acts 

defined on p
1Ω  ×××× p

2Ω .  With respect to p
1Ω , O* 

contains k-many acts that span horse lotteries defined on 

p
1Ω  that have p-Expected utility p, similarly to Case 1. 

With respect to p
2Ω , O* contains (n+2-k)-many acts that 

span all horse lotteries defined on p
2Ω , including the two 

constants 0 and 1. 
For each  j = 1, …, k,  and m = k+1, …, n+2 define the 

act m
ja   by 

m
ja (ωi)   =   

jp
p

1  ⊕  (1-
jp

p
)0   if i = j 

    =      1 if i = m  or (m= n+2 and i > k) 
    =      0     otherwise 

 

Note that 1+n
ja (ωi)  ≠  0 if and only if i = j.  In particular, 

it equals 0 on p
2Ω . And note that 2+n

ja (ωi)  ≠  0 if and 

only if, either i = j or i > k.  It equals 1 on p
2Ω . 

 
Let O* be the choice problem formed by taking the 
convex hull of these options: 

In Case 1  O* = H{ ja : j = 1, …, n}, the convex hull of 

n-many options.  In Case 2 O* = H{ m
ja : j = 1, …, k; m 

= k+1, ..., n+2}, the convex hull of  k(n+2-k)-many 
options. 
 
Let ap denote the constant horse lottery that awards the 
identical von Neumann-Morgenstern lottery in each state, 
with ap = p1 ⊕ (1- p)0. 
 
Claim 1: ap ∈ O*. 
Proof: In Case 1, when p has full support,  p1a1 ⊕ p2a2 ⊕ 
… ⊕ pnan

 is the horse lottery ap.   In Case 2, when p-null 
states exist, for each  j = 1, …, k, define the horse lottery 

bj = (1-p) 1+n
ja  ⊕  p 2+n

ja  with  payoffs: 

jb (ωi)   =     ap    if i > k 

jb (ωi)   =   
jp

p
1  ⊕  (1-

jp
p

)0   if i = j 

jb (ωi)   = 0     if i ≠ j and  i ≤.k. 

 
Then  p1b1 ⊕ p2b2 ⊕ … ⊕ pkbk

  is the horse lottery ap. 
◊−claim 1. 
 
Note that (p,u) is a local Bayes model for each element 
of O* as the p-Expected utility for each element of O* is 
the same value, namely p. 
 
Claim 2: If p < 1 then (p,u) is the only local Bayes model 
for ap 



Proof:  Note that regardless the distribution q on Ω,  ap 
has q-Expected utility p.  We argue by cases that when p 
< 1, q is not a local model for ap with respect to O*. 

If p has full support ( p
2Ω  = φ), the q-Expected utility of 

ja  =  qj
jp

p
> p.  And if  j = m > k, so that pj = 0 and 

q( p
2Ω ) > 0, then the q-Expected utility of 

p1
2

1
+na  ⊕ p2

2
2

+na ⊕ … ⊕ pk
2+n

ka   

=   q(Ω1) p + q(Ω2)    >  p. 
Hence, (q,u) is not a local Bayes model for ap . ◊-claim 2 
 
Note also that for the case p1  = p = 1, ap = 1 and then O* 

= H{1 , 
2
1a , … 2

1
+na }.  In which case if q ≠ p, q is not a 

local Bayes model for 1
1

+na , which has a q-expected 
value of q1 < 1.  Thus, we have  
Proposition:  

p is the sole local Bayes model for all of O*.  
 
Claim 3: O* contains all the horse lotteries in H with p-
expected utility equal to p. 
Proof: Let o be a horse lottery with p-Expected utility p.  
Write o(ωj) = αj1 ⊕ (1- αj)0,  j = 1, …, n.     

Case 1 (p has full support.): For ωi ∈ Ω = p
1Ω  we have 

that ∑i piαi = p and 0 ≤ αi ≤ 1.  The set of α-vectors 
satisfying these two equations is closed and convex, with 
extreme points given by the acts {aj}.  That is, if α* = 
<α∗1, …., α∗n> is an extreme point of this set of α-
vectors, then α* = aj for some 1 ≤  j ≤  n.   Since a 
closed, convex set is identified by its extreme points, this 
establishes that o ∈ O*. 
Case 2 (There are null states under p.):  The reasoning is 
similar to Case 1, noting that O* spans all horse lotteries 

defined over p
2Ω .◊−Claim 3. 

We complete the proof of Lemma 2, as follows. Let O be 
a choice set and let φ ≠ Op ⊆ O be those options for 
which p is a local Bayes model.   So, each a ∈ Op 
maximizes the p-Expected utility of options in O at 
common value r.   There are two cases, depending upon 
whether r  ≥ p or  r  < p. 
In the former case, mix 0 into each act in O to form the 

choice set O` =  r
p

O  ⊕  (1-
r
p

)0, with the  isomorphism 

between O and O` that associates each o ∈ O with o’ ∈ 

O, where o` = r
p

o  ⊕  (1- r
p

 )0. 

In case r  < p mix 1 into each act in O to form the choice 

set O` =  r
p

−
−

1
1

O  ⊕  ( r
rp

−
−

1
)1, with the  isomorphism 

between O and O` that associates each o ∈ O with o’ ∈ 

O,  where o` = r
p

−
−

1
1

o  ⊕  ( r
rp

−
−

1
 )1. 

The argument continues in parallel between the two 
cases.  By the Axiom 2, a ∈ C(O) if and only if a` ∈ 
C(O`).  Also evident is the fact that for each a` ∈ O`p the 
p-Expected utility of a` equals p.  Thus, by Claim 3, for 
each a` ∈ O`p, a`∈ C(O*). 
 
Claim 4: Let o`∈ O`  and o`∉ O`p .  Then each local 
Bayes model q for o` with respect to O* ∪ {o`} is 

singular with respect to p, i.e., q
1Ω ∩ p

1Ω = φ. 

Proof: Because o`∉ O`p  then Ep(o`) < p and, trivially,  p 
is not a local Bayes model for o`.  Fix a distribution q ≠ p 

where q
1Ω ∩ p

1Ω ≠ φ.  We argue indirectly that q is not a 

local Bayes model for o’ with respect to O* ∪ {o`}. 

First consider the case where q
1Ω  ⊆ p

1Ω , that is where q 
is absolutely continuous with respect to p.  Within the n-
1 dimensional simplex of distributions on Ω, let Lpq be 
the line determined by the two points p and q, having 
endpoints denoted q* and q*.  Identify these endpoints by 
placing q in the closed line segment [q*, p], and thus p 
lies in the closed line segment [q, q*], from which we 
know that p ≠ q*, though it is possible that q = q*. 

Moreover, since q
2Ω  ⊇ p

2Ω  we have that p ≠ q*, since 
each endpoint of Lpq has some null-state not shared as a 
null state with any other point on that line.   So, p is 
internal to the line Lpq.  Because q* is an endpoint of Lpq, 

as just argued, *q
2Ω ∩ p

1Ω ≠ φ. Assume that ωk ∈ 

*q
2Ω ∩ p

1Ω .  Since p lies on the line [q*, q*], ωk ∈ *q
1Ω . 

Consider the act 1+n
ka  (or the act ka  if p has full 

support).  Since Eq(o`)  ≥  Eq( 1+n
ka ) and  Ep(o`) < 

Ep( 1+n
ka ) = p, there exists a unique distribution rk 

situated on the line Lpq and between p and q (possibly 

with rk = q), such that krE (o`) = krE ( 1+n
ka ).  Because 

expected utility is linear in probability, for each 
distribution t in the half open interval   (rk, q*],  Et(o`) < 

Et( 1+n
ka ).  But *qE [ 1+n

ka ] = 0 > *qE [o`], which is a 
contradiction as no act has a negative expected value. 
This completes the argument when q is absolutely 
continuous with respect to p. 

Next, assume that q
1Ω ∩ p

1Ω ≠ φ and write 

q(•) = q(• | p
1Ω )q( p

1Ω )  +  q(• | p
2Ω )q( p

2Ω ), 

where  q( p
1Ω ) > 0.  So, q(•| p

1Ω ) is absolutely 
continuous with respect to p. 



Eq(•) = Eq(• | p
1Ω )q( p

1Ω )  +  Eq(• | p
2Ω )q( p

2Ω ).  Since 

2+n
ka ∈ O* and Eq(o`)  ≥  Eq( 2+n

ka ), it follows that  

Eq(o`| p
1Ω ) ≥  Eq( 2+n

ka  | p
1Ω )  =  Eq( 1+n

ka  | p
1Ω ).  

However, as q(• | p
1Ω ) is absolutely continuous with 

respect to p, we have the same situation involving q(• | 
p
1Ω ) and p as when q is absolutely continuous with 

respect to p, completing the proof.  ◊-Claim 4 
 
Next, we show that if there is a local Bayes model for o’ 
with respect to O* ∪ {o`}, then no element of O* 
becomes inadmissible by adding option o`. 
 
Claim 5:  Assume that a ∈ C(O* ), o`∈ O`  but o`∉ O`p, 
and let  o` have a local Bayes model q with respect to O* 
∪ {o`}.  Then a ∈ C(O* ∪ {o`}). 
Proof: Assume the premise.  In the light of Axiom 4 we 
are done proving Claim 5 if we identify an act a* ∈ O* 
such that a* weakly dominates o’.   This we do as 
follows. 
 
By Claim 4, q is singular with respect to p.  Consider an 

act 2+n
ka  for ωk ∈ p

1Ω . 

Definition: For W ⊆ Ω and act o, define the act  o|W  by: 
o(ω)|W = o(ω),  for ω ∈ W, 

and  o(ω)|W  = 0,  otherwise. 
 

Write o` as an sum of three acts o` = o`| q
1Ω + 

o`|( p
2Ω ∩ q

2Ω ) + o`| p
1Ω , and likewise for 2+n

ka  = 

2+n
ka | q

1Ω   +  2+n
ka |( p

2Ω ∩ q
2Ω ) +  2+n

ka | p
1Ω .  

Because 2+n
ka (ω) = 1 for ω ∈ p

2Ω , then 2+n
ka | q

1Ω  

weakly dominates o`| q
1Ω , and likewise 

2+n
ka |( p

2Ω ∩ q
2Ω ) weakly dominates o`|( p

2Ω ∩ q
2Ω ).  

By Claim 4,  o`| p
1Ω  fails to have a local Bayes model 

with respect to O* ∪ {o`| p
1Ω }.  So, by Lemma 1, there 

exists an option b ∈ H(O*) that uniformly dominates 

o`| p
1Ω .  Let  a* = 2+n

ka | q
1Ω  + 2+n

ka |( p
2Ω ∩ q

2Ω ) + 

b| q
1Ω .  Then a* weakly dominates o` and, as Ep[a*] = 

Ep[b| q
1Ω ] = p, we have a*∈ O*.◊-Claim 5 

 
Assume that a` ∈ C(O*).  Let N` ={o`: o` ∈ O` and o`∉ 
O`p but o` has no local Bayes model with respect to O* 
∪ {o`}}.  Then by Lemma 1, o`∈ R(O* ∪ N`).  By 

Axiom 1, as a` ∈ C(O*) then a` ∈ C (O* ∪ N`) .   If  o` 
∈ O` \N` , then using Claim 5, a` ∈ C(O* ∪ N` ∪ o`). 
By a simple induction on an arbitrary well-ordering of 
O`\N`, then a` ∈ C(O* ∪ N` ∪ O`\N`)  =  C(O* ∪ O`). 
By Axiom 1, if a`∈ O` then a`∈ C(O`).  Finally, by 
Axiom 2, a ∈ C(O).  ◊-Lemma 2 

 
Appendix 2 – Lemma 3 

Lemma 3: For each admissible option o ∈ C(O) at least 
one of its local Bayes models is a global Bayes model or 
else there is a set of probability/almost-state-independent 
utility pairs that serve as a global Bayes-model. 
Proof:  The next claim, which we use to establish 
Lemma 3, extends the idea of Axiom 4 to the strict 
partial order 〈. 
Claim 6: Suppose that for option sets A, B and D, B 〈 A 
and B ∩ C(D) ≠ φ.  Then A ∩ C(closure{D\B ∪ A}) ≠ φ.   
Proof (indirect): Suppose that A ⊆ R(closure{D\B ∪ 
A}).  By Axiom 1 applied twice, A ⊆ R(D ∪ A) and A ⊆ 
R(D ∪ A ∪ B).  Since B 〈 A, likewise B ⊆ R(D ∪ A ∪ 
B).  Thus, A ∪ B 〈 D.  By transitivity, B 〈 D and so B ∩ 
C(D) = φ. ◊-Claim 6 
 
Given o ∈ C(O) and following the ideas we used in 
(1995, Definition 19), we introduce the notion of a target 
set T(o,O) of probability distributions for o with respect 
to choice problem O.  The target set for o is a subset of 
the local Bayes models for o which, we show, contains 
all of its global Bayes models.  We demonstrate that 
whenever the target set includes a boundary point, that 
boundary point is a global Bayes model.   
 
Given a probability distribution p, recall the decision 

problem Op = {ap, ph1 , …, ph1 } defined in Section 2.  
We state without proof that whenever C(Op) = Op then 
C(O*) = O* for O* defined with respect to p as in 
Lemma 2, and so p is a global Bayes model. 
 
Definition:  T(o,O)   = {p: p is local Bayes model for o in 

choice problem O and  { ph1 , …, p
nh } ⊆ C(Op)} 

 
Claim 7: T(o,O) is a non-empty, convex set. 
Proof: Without loss of generality, and to simplify the 
presentation, we give  the proof for a binary state space 
Ω = {ω1, ω2} .  Convexity is shown as follows. Note that 

for p defined by p(ω2) = 0, ph2 ∈ C(Op), and for p 

defined by p(ω2) = 1, ph1 ∈ C(Op).  And by Claim 6, if 

ph2 ∈ C(Op), then for all distributions q with q(ω2) ≤ 

p(ω2) we have qh2 ∈ C(Oq); and if ph1 ∈ C(Op), then for 

all distributions q with q(ω2) ≥ p(ω2) we have qh1 ∈ 



C(Oq).  In the general case, with more than 2 states, the 
same result follows by noting that T(o,O) is an 
intersection of half-planes.  We show that T(o,O) is non-
empty by an indirect argument using the Archimedean 

axiom.  So, assume that for each p, C{ ph1 , ph2 } is a unit 
set, and by the observation above, let q be the lub 

{p(ω2):
ph2 ∈ C{ ph1 , ph2 }.  There are two cases. 

Case 1: { qh2 } = C{ qh1 , qh2 }  So q(ω2) < 1 and then 

qh1 〈〈〈〈    
qh2 and for all p(ω2) > q(ω2),  

ph2 〈〈〈〈    
ph1 .  But as p 

approaches q, p
ih  converges to q

ih  for i = 1, 2.  Then by 

Axiom 3, qh1 〈〈〈〈    
qh1 . 

Case 2: { qh1 } = C{ qh1 , qh2 } .  So q(ω2) > 0 and then 

qh2 〈〈〈〈    
qh1 and for all p(ω2) < q(ω2),  

ph1 〈〈〈〈    
ph2 .   But as p 

approaches q, p
ih  converges to q

ih  for i = 1, 2.  Then by 

Axiom 3, qh2 〈〈〈〈    
qh2 .◊-Claim 7 

To complete the proof of Lemma 3 there are two cases to 
consider. 
Case 1: T(o,O) contains at least one of its boundary 

points.  Suppose, e.g., that q is the lub {p(ω2):
ph2 ∈ 

C{ ph1 , ph2 } and  that R{ qh1 , qh2 } = φ.  Then for each 0 

≤  x ≤ 1, R{ qh1 , qh2 , x qh1 ⊕ (1-x) qh2 } = φ, as the 
following reasoning establishes.   
 
Assume that q(ω2) < 1, or we are done.  Then for all 

p(ω2) > q(ω2),  ph2 〈〈〈〈    
ph1 as before.  For 0 < x ≤ 1, by 

Axiom 2, ph2 〈〈〈〈     x ph1 ⊕ (1-x) ph2 .  As p approaches q, by 

Axiom 3, then x qh1 ⊕ (1-x) qh2 ∈ C{ qh1 , qh2 , x qh1 ⊕ (1-

x) qh2 }, on pain of contradiction otherwise  that qh2 〈〈〈〈    
qh2 .  

The reasoning is similar if the target set T(o,O) is closed 
at the other end.  Then, at each point p of closure for 
T(o,O), R(Op) = φ and p is global Bayes model. 
 
Case 2: If the target set is entirely open and there is no p 
∈ T(o,O) such that R(Op) = φ, we arrive at the parallel 
situation studied in Section IV.2 of our (1995).  That 
situation is one where, first, a coherent choice function C 
is induced by a finite set P of linearly independent 
probabilities on Ω.  The convex target sets for C include 
subsets of P as extreme points, i.e., R(Op) = φ for each p 
∈ P. Hence, C is represented by the set P of global Bayes 
models.  Then, this choice function C is changed into 
another C+ which is formed by adding the strict 

preferences associated with finitely many conditions  of 
the form T(o,O)∩R(Op) ≠ φ.  The results established in 
Section IV.2 of our (1995) show that then C+ satisfies the 
axioms.  Also, those results show that in a neighborhood 
of the extreme points of the target sets for C there are 
sets of probability/almost-state-independent utility pairs 
that are local Bayes models for C, and which then 
represent the choice function C+.  These almost-state-
independent utilities result by adding at least one new 
prize {r} to the two {0, 1} used to create the horse 
lotteries studied here. ◊-Lemma 3 

 

Corollary: If for each choice problem O and o ∈ C(O) 
and the target set T(o,O) includes at least one of its 
boundary points, then C is represented by a set of 
probability/state-independent utility pairs. 
 
References 
[1]  Aizerman, M.A. (1985) “New Problems in General 
 Choice Theory,” Soc Choice Welfare 2: 235-282.  
[2]  Anscombe, F.J. and Aumann, R.J. (1963) “A 
 definition of subjective probability,” Ann. Math. 
 Stat. 34: 199-205. 
[3]  Cozman, F.G. and Walley, P. (2005) “Graphoid 
 properties of epistemic irrelevance and 
 independence,” Ann. Math. and A.I. 45: 173-195. 
[4]  Gilboa, I. and Schmeidler, D. (1989) “Maxmin 
 expected utility with non-unique prior,” J. 
 Math.Econ. 18: 141-153. 
[5]  Kadane, J.B., Schervish, M.J., and Seidenfeld, T. 
 (2004) “A Rubinesque theory of decision,” IMS  
 Lecture Notes Monograph 45: 1-11. 
[6]  Kindler, J. (1983) “A General Solution Concept for 
 Two Person, Zero Sum Games,” J. Optimization 
 Theory and Applications 40: 105-119. 
[7]  Levi, I. (1974) “On indeterminate probabilities” 
 J.Phil. 71: 391-418. 
[8]  Pearce, D. (1984) “Rationalizable Strategic Behavior 
 and the Problem of Perfection,” Econometrica 52: 
 1029-1050. 
[9]  Savage, L.J. (1954) The Foundations of Statistics. 
 Wiley, New York. 
[10] Schervish, M.J., Seidenfeld, T, Kadane, J.B., and 
 Levi, I. (2003) “Extensions of expected utility theory 
 and some limitations of pairwise comparisons”  In 
 Proceedings of the Third International Symposium 
 on Imprecise Probabilities and Their Applications 
 (J-M Bernard, T.Seidenfeld, and M.Zaffalon, eds.) 
 496-510. Carleton Scientific. 
[11] Seidenfeld, T., Schervish, M.J., and Kadane, J.B. 
 (1995) “A representation of partially ordered 
 preferences,” Ann Stat. 23: 2168-2217. 
[12] Sen, A. (1977) “Social choice theory: a re-
 examination,” Econometrica 45: 53-89. 
[13] Wald, A. (1950) Statistical Decision Functions. John  
 Wiley, New York. 
[14] Walley, P. (1990) Statistical Reasoning with 
 Imprecise Probabilities. Chapman and Hall, London. 



5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007

Multilinear and Integer Programming for Markov Decision

Processes with Imprecise Probabilities

Ricardo Shirota Filho

Escola Politécnica,
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Abstract

Markov Decision Processes (MDPs) are extensively
used to encode sequences of decisions with probabilis-
tic effects. Markov Decision Processes with Imprecise
Probabilities (MDPIPs) encode sequences of decisions
whose effects are modeled using sets of probability dis-
tributions. In this paper we examine the computation
of Γ-maximin policies for MDPIPs using multilinear
and integer programming. We discuss the application
of our algorithms to “factored” models and to a recent
proposal, Markov Decision Processes with Set-valued
Transitions (MDPSTs), that unifies the fields of prob-
abilistic and “nondeterministic” planning in artificial
intelligence research.

Keywords. Markov Decision Processes with Im-
precise Probabilities, Γ-maximin criterion, multilinear
and integer programming.

1 Introduction

In this paper we are concerned with the computation
of policies, or plans, that aim at maximizing reward
over a possibly countably infinite sequence of stages.
At each stage, our decision maker finds herself in a
state and she must select an action. As a result of this
decision, she gets a reward, and she moves to a new
state. The process is then repeated. We focus on sit-
uations where transitions between states are modeled
by credal sets; that is, by sets of probability distribu-
tions. Thus we focus on Markov Decision Processes
with Imprecise Probabilities (MDPIPs), following a
sizeable literature that has steadily grown in the last

few decades. We review the basic concepts on MD-
PIPs in Section 2; we offer a relatively long review
as we attempt to capture, in a somewhat organized
form, various concepts dispersed in the literature.

There are several possible criteria that we might use to
evaluate policies in an MDPIP. The term optimal pol-
icy is used in this paper in connection with Γ-maximin
expected total discounted reward; that is, highest ex-
pected total discounted reward under the worst pos-
sible selection of probabilities.

We show how to reduce the generation of optimal
policies for an MDPIP to multilinear/integer program-
ming in Section 3. We also discuss in that section the
practical reasons to pursue such a programming solu-
tion. We comment on the relationship between multi-
linear programming and “factored” models in Section
4. We then move, in Section 5, to a recently pro-
posed special type of MDPIP that has particularly
pleasant properties and important applications, the
Markov Decision Process with Set-valued Transitions
(MDPSTs).

2 Background

In this section we review basic facts about MDPs,
MDPIPs, evaluation criteria, and algorithms.

2.1 MDPs

Markov Decision Processes (MDPs) are used in many
fields to encode possibly infinite sequences of decisions
under uncertainty. For historical review, basic techni-
cal development, and substantial reference to related



literature, the reader may consult books by Puter-
man [29] and Bertsekas [5]. In this paper we consider
MDPs that are described by:

• a countable set T of stages; a decision is made at
each stage.

• a finite set S of states.

• a finite set of actions A; the set of actions may be
indexed by states, but we simplify notation here
by assuming a single set of actions for all states.

• a conditional probability distribution Pt that
specifies the probability of transition from state
s to state r given action a at stage t. We assume
that probabilities are stationary (do no depend
on t) and write P(r|s, a).

• a reward function Rt that indicates how much is
gained (or lost, by using a negative value) when
action a is selected in state s at stage t. We
assume the reward function to be stationary and
write R(s, a).

We refer to the state obtained at stage t, in a par-
ticular realization of the process, as st; likewise, the
action selected at stage t is referred to as at.

The history ht of an MDP at stage t is the se-
quence of states and actions visited by the pro-
cess, [s1, a1, . . . , at−1, st]. The Markov assumption
that is adopted for MDPs is that P(st|ht−1, at) =
P(st|st−1, at); consequently:

P(ht|s1) = P(st|st−1, at−1)P(st−1|st−2, at−2)

. . . × P(s3|s2, a2)P(s2|s1, a1). (1)

A decision rule dt(s, t) indicates the action that is
to be taken in state s at stage t. A policy π is a
sequence of decision rules, one for each stage. A policy
may be deterministic or randomized; that is, it may
prescribe actions with certainty, or rather it may just
prescribe a probability distribution over the actions.
A policy may also be history-dependent or not; that
is, it may depend on all states and actions visited in
previous stages, or just on the current state. A policy
that is not history-dependent is called Markovian. A
Markovian policy induces a probability distribution
over histories through Expression (1).

We also assume that an MDP with infinite horizon
(that is, with infinite T ) may always stop with some
probability. In fact, we assume that the process stops
with geometric probability: the process stops at stage
t with probability (1 − γ)γt−1 (independently of all
other aspects of the process). Then γ is called the
discount factor of the MDP [29, p. 125].

2.2 MDPIPs

Additional realism and flexibility can be attached to
MDPs by allowing imprecision and indeterminacy in
the assessment of transition probabilities. A deci-
sion process with states, actions, stages and rewards
as described before, but where a set of probability
distributions is associated with each transition, has
been called a Markov Decision Process with Imprecise
Probabilities (MDPIP) by White III and Eldeib [44],
a name we adopt in this paper. Satia and Lave Jr.
use instead the name MDP with Uncertain Transition
Probabilities [31], in what may be the first thorough
analysis of this model in the literature; Harmanec uses
the term generalized MDP to refer to MDPIPs [21].

MDPIPs can represent incomplete and ambiguous be-
liefs about transitions between states; conflicting as-
sessments by a group of experts; and situations where
one wishes to investigate the effect of perturbations in
a “base” model. MDPIPs have also been investigated
as representations for abstracted processes, where de-
tails about transition probabilities are replaced by an
enveloping set of distributions [17, 20]. Similar mod-
els are encoded by the controlled Markov set-chains
by Kurano et al [26, 24]. Slightly less related are the
vector-valued MDPs by Wakuta [41]. Some of these
efforts have also adopted interval-valued rewards; in
this paper we focus on imprecision/indeterminacy
only in transition probabilities.

Thus an MDPIP is composed of a set of stages T ,
a set of states S, a set of actions A, a reward func-
tion Rt and sets of probability distributions, each con-
taining transition probabilities Pt. We assume T to
be the non-negative integers, S and A to be finite,
and A to be constant for all states. We assume Rt

to be a stationary function R(s, a). We also assume
stationarity for the sets K(r|s, a) of probability dis-
tributions. Note, however, that now we have to dis-
tinguish two situations. First, the sets of transition
probabilities may be identical across stages, while a
history of the process may be associated with dif-
ferent draws within these sets (that is, probabilities
are selected from sets that do not depend on t, but
the selection depends on t). We might refer to these
MDPIPs as set-stationary. Alternatively, it may be
that each history ht is associated with stationary
probability distributions P(st|st−1, at−1) that them-
selves satisfy the Markov condition (and of course
P(st|st−1, at−1) ∈ K(st|st−1, at−1)). We might refer
to the second MDPIPs as elementwise-stationary or
simply stationary. In this paper we only deal with
elementwise-stationary MDPIPs; in fact it does not
seem that set-stationary MDPIPs have received any
attention in the literature.



In the remainder of this paper we will use the follow-
ing notation and terminology regarding sets of proba-
bility distributions. A set of probability distributions
is called a credal set [27]. The credal set K(X) con-
tains distributions for variable X, and the conditional
credal set K(X|A) contains conditional distributions
for variable X given event A. Conditioning is ele-
mentwise: K(X|A) is obtained from K(X) by condi-
tioning every distribution in K(X) on the event A.
The notation K(X|Y ) represents a set of credal sets:
there is a credal set K(X|Y = y) for each nonempty
event {Y = y}. A set of credal sets K(X|Y ) is
separately specified if the joint credal set K(X,Y ) is
such that, whenever P(X|Y = y1) ∈ K(X|Y = y1),
P(X|Y = y2) ∈ K(X|Y = y2), then P(X|Y = y1) and
P(X|Y = y2) are conditional distributions obtained
from a single P(X,Y ) in K(X,Y ). That is, K(X|Y )
is separately specified if we can select conditional dis-
tributions independently from its sets, an assumption
we make throughout for our credal sets. We loosely
use K(r|s, a) to indicate a separately specified collec-
tion of credal sets, for a given action a, where r and
s refer to states.

Given a credal set K(X), we can compute lower
and upper probabilities respectively as P(A) =
infP∈K P(A) and P(A) = supP∈K P(A). We can
also compute lower and upper expectations for any
bounded function f(X) as E[f ] = infP∈K E[f ] and
E[f ] = supP∈K E[f ], and likewise for conditional
lower/upper probabilities/expectations. We assume
all credal sets to be closed, so infima and suprema
can be replaced by minima and maxima.

2.3 Evaluation criteria and algorithms

Given an MDP that starts at state s, we might eval-
uate a policy π by its expected reward:

Vπ(s) = Es,π

[

ET

[

T
∑

t=1

R(st, at)

]]

; (2)

that is, the expectation of the expected reward assum-
ing the process stops at stage T . Now if the process
has a geometric probability of stopping at T , with
parameter γ, we have [29, p. 126]:

Vπ,γ(s) = Es,π

[

∞
∑

t=1

γt−1R(st, at)

]

. (3)

We refer to Vπ,γ(s) as the expected total discounted
reward. There are other criteria to evaluate poli-
cies in MDPs; for example, the expected total re-
ward Es,π[

∑∞
t=1 R(st, at)], and the average reward

limT→∞(1/T )Es,π

[

∑T

t=1 R(st, at)
]

[5, 29]. These cri-

teria may be useful in specific problems but they are

usually less realistic than Expression (2) and the asso-
ciated discounted reward (3). We focus on the latter
in this paper.

When we move to MDPIPs, we find that several crite-
ria may be used to evaluate policies, even if we adopt
total discounted reward. Three possible criteria are:

• Select the policy that yields the largest value
of minVπ(s), where the minimum applies to all
transition probabilities, subject to the fact that
these probabilities must belong to given credal
sets [4]. That is, the optimal policy produces the
highest expected total discounted reward even
when probabilities are most unfavorable. This
is the Γ-maximin total discounted reward, where
an optimal policy starting from state s must yield

max
π

min
P

Vπ,γ(s),

where we append a subscript P in the minimiza-
tion operator, to emphasize that it applies with
respect to all transition probabilities that are im-
precise/indeterminate.

• Select the policy that yields, when starting from
state s,

max
π

max
P

Vπ,γ(s).

That is, both decisions and probabilities can be
selected so as to maximize expected total dis-
counted reward. This criterion is referred to as
Γ-maximax total discounted reward.

• Select any policy (or perhaps select all of those
policies) that maximizes Vπ,γ(s) for at least one
choice of transition probabilities. This is the cri-
terion of E-admissibility [27].

Note that Γ-maximin and Γ-maximax create a com-
plete order over policies, while E-admissibility is con-
tent to explore the partial order of policies induced
by credal sets in any convenient way. To date, most
authors have adopted the Γ-maximin criterion. An
exception is Harmanec’s algorithm [21] which employs
interval dominance (Harmanec presents his algorithm
as providing maximal policies, however [14, 38] ar-
gue that in fact is adopts interval dominance). Sev-
eral other criteria can be found in the literature
[14, 37, 38].

In this paper we focus on Γ-maximin total discounted
reward; we refer to it as ΓETDR (for Expected Total
Discounted Reward)1. The work of Satia and Lave

1It is not our goal to discuss here the adequacy of the Γ-
maximin criterion; it is investigated in this paper because of
its wide application in MDP problems. Other criteria will be
investigated by the authors in the future. For discussions on
the different criterions see [4, 25, 34, 32, 37, 42].



Jr. has derived several important results for this situ-
ation [31]. First, there exists a deterministic station-
ary policy that is optimal. Second, the optimal policy
induces a value function that is the unique solution of

V ∗(s) = sup
a

inf
P

(

R(s, a)+γ
∑

r

P(r|s, a)V ∗(r)

)

. (4)

We can take maximum and minimum in this equation
whenever the set of actions A is finite and the credal
sets K(r|s, a) have finitely many vertices. We assume
this to be true in the remainder of this paper.

Expression (4) can be compactly written as V ∗ =
VV ∗, by lumping the supremum, infimum, and sum-
mation into the operator V. Whenever the transition
probabilites are fixed (or are precisely specified) at
some value P , we indicate it through the operator VP

(where the infimum is either suppressed or unneces-
sary). In fact, for an MDP with transition probabil-
ities P , the optimal policy satisfies V ∗ = VP V ∗, the
Bellman equation.

2.4 Algorithms for MDPs and MDPIPs

Consider now algorithms that solve the Bellman equa-
tion. There are three “classic” algorithms for generat-
ing optimal policies in MDPs: value iteration, policy
iteration, and reduction to linear programming [5, 29].
Most of the literature focuses on value or policy itera-
tion. However, there are at least three reasons to pay
attention to linear programming solutions to MDPs.
First, a linear program produces an exact solution
without the need to specify any stopping criteria (as
needed for value and policy iteration). This property
is useful in practice and particularly important while
testing other algorithms. Second, several algorithms
based on approximating the value function by lower
dimensional functions are based on linear program-
ming [19, 22, 33]. Third, and perhaps more impor-
tantly, linear programs seem to offer the only orga-
nized way to deal with problems where maximization
of expected total discounted reward is subject to ad-
ditional constraints on expected rewards [1, 29].

The linear programming algorithm for MDPs solves
the equation V ∗ = VP V ∗ for the precisely specified
transition probabilities as follows [16]:

min
V ∗

∑

s

V ∗(s) (5)

s.t. V ∗(s) ≥ R(s, a) + γ
∑

r

P(r|s, a)V ∗(r),

where each pair (s, a) corresponds to a constraint.

Policy and value iteration have known counterparts
for ΓETDR. Satia and Lave Jr. presented a policy

iteration algorithm for ΓETDR. The results by Satia
and Lave Jr., and by Denardo [15], produce a value
iteration algorithm as indicated by White III and El-
deib [44]; the same algorithm was later derived in the
special case of Bounded-parameter Markov Decision
Processes (BMDPs) [17]. The value iteration algo-
rithm starts with a candidate value function V ′

0(s)
and iterates:

V ′
i+1 = VV ′

i (6)

until ||V ′
i+1 − V ′

i || is sufficiently small.2 Convergence
of this procedure is based on the fact that the operator
V is a contraction mapping.3

3 A multilinear/integer solution for

ΓETDR

Expression (5) describes the linear program for solv-
ing MDPs with precisely specified probabilities. It
does not seem possible to produce a linear program-
ming solution for ΓETDR; however, as we show in this
section, it is possible to generate solutions using well
known programming problems. We do not attempt
to produce algorithms that surpass value/policy iter-
ation in execution time; rather, our reasons to pursue
a programming solution mirror the reasons why oth-
ers have investigated linear programming for MDPs
(summarized in Section 2.4). First, the results pro-
duced by multilinear and integer programming, and in
particular the latter, depend on combinatorial proper-
ties of credal sets, and can be produced exactly; this is
useful, for instance, while evaluating other algorithms
that only promise ǫ-optimal policies. Second, several
approximate algorithms for MDPs that can possibly
be extended to MDPIPs depend on linear program-
ming; we conjecture that these potential extensions
to MDPIPs will depend on the results in this section.
In fact, it seems that multilinear programming is un-
avoidable in factored models, as we discuss in Section
4. Third, solutions based on optimization seem to be
the only way to handle constraints on expected re-
wards, a topic we wish to pursue in connection with
planning (Section 5).

Our main result is, in essence, simple. We start from
Expression (4), and note that its solution can be found
by solving the following optimization problem:

min
V ∗

∑

s

V ∗(s) (7)

s.t. V ∗(s) ≥ R(s, a) + γ min
P

∑

r

P(r|s, a)V ∗(r).

2The norm ||V || = maxs V (s) is typically used in the liter-
ature.

3A mapping V : U → U , where U is a complete normed
linear space, is a contraction mapping iff ||Vu1 − Vu2|| ≤

γ||u1 − u2|| for some γ ∈ [0, 1).



This can be shown to be an instance of bilevel pro-
gramming [8, 40]. Similar problems have been tack-
led before in connection with linear programming
with uncertainty, with obvious application to ΓETDR
[2, 3]. Current algorithms for bilevel programming are
complex, and convergence guarantees are not as sharp
as one would like. It would be interesting to reduce
Program (7) to a form that were closer to existing,
well studied optimization problems. We do this by
reducing Program (7) to multilinear and then to in-
teger programming.

The multilinear program we consider is:

min
V ∗,P

∑

s

V ∗(s) (8)

s.t. V ∗(s) ≥ R(s, a) + γ
∑

r

P(r|s, a)V ∗(r).

Denote by (V ∗
R, P ∗

R) a solution of Program (7) and
by (V ∗

G, P ∗
G) a solution of Program (8). In order to

use Program (8), we must prove that V ∗
G and V ∗

R are
identical.

Theorem 1 V ∗
G = V ∗

R

Proof. Let ΩR and ΩG be the solution spaces for
Programs (7) and (8) respectively. We prove that ΩR

is a subset of ΩG. Then, we show that no solution in
ΩG \ΩR can have better performance than one in ΩR.
We have:

ΩR = {(V, P ) : V ∈ V, P = arg min
P∈P

∑

r

P(r|s, a)V (r)},

ΩG = {(V, P ) : V ∈ V, P ∈ P}.

Given that the solution space in the second case is
the whole space V × P, while in the first case P can
only be in a subspace V × PR of V × P (hence re-
stricted), Program (8) produces a value function at
least as low as Program (7). So, V ∗

G ≤ V ∗
R, because

ΩG ⊃ ΩR. Now suppose V ∗
G < V ∗

R. For a state s ∈ S
we have V ∗

G(s) = R(s, a)+γ
∑

r P ∗
G(r|s, a)V ∗

G(r), with
P ∗

G(r|s, a) 6= arg minP

∑

r P(r|s, a)V (r). If we take
P ′(r|s, a) = arg minP

∑

r P(r|s, a)V (r), then V ′(s) =
R(s, a) + γ

∑

r P ′(r|s, a)V ∗
G(r) < V ∗

G(s) and V ∗
G is not

optimal. Since V ∗
G is optimal (given that it considers

the whole state space), then V ∗
G 6< V ∗

R. This implies
that V ∗

G = V ∗
R. •

Apparently we have moved from a difficult problem
(bilevel programming) to another difficult problem
(multilinear programming). However, the significance
of this result is that multilinear programming is a
widely studied field, with close connections to geo-
metric and linear programming [18, 23, 28, 35, 39].
Implementations can deal with hundreds of variables;

in our tests we resort to Sherali and Adams’ algorithm
[35], a branch-and-bound scheme based on linear pro-
gramming relaxations. Our implementation is an op-
timized version of this algorithm, that has been used
to solve a variety of large and challenging multilinear
programs [10, 11, 13, 12]. The examples presented
later in this section were solved using this implemen-
tation.

An even more interesting result obtains if we assume
that the vertices of credal sets K(r|s, a) are known.
Consider a list of vertices (each vertex is a distribu-
tion over S) for a credal set K(r|s, a), {p1, . . . , pM}.
Every distribution in this credal set can be expressed
as a convex combination

∑M

i=1 αipi where αi ≥ 0 and
∑

i αi = 1. We can then write our goal as:

min
V ∗,αi,s,a

∑

s

V ∗(s) (9)

s.t. V ∗(s) ≥ R(s, a) +

γ
∑

r

∑

i

αi,s,api(r|s, a)V ∗(r),

αi,s,a ≥ 0,
∑

i

αi,s,a = 1,

where we explicitly indicate that αi,s,a depends on
(s, a).

We now use the fact that a multilinear program
has a maximum at the vertices of the credal sets;
thus we necessarily have αi,s,a ∈ {0, 1} at a solu-
tion. We then resort to the following transformation
to produce an integer program out of the multilin-
ear program (9), just assuming that we can bound
V ∗ from above and below (such bounds can be pro-
duced quite generally using results by White III and
Eldeib [44]). First, we replace V ∗(r) ∈ [l, u] by
l + (V ∗(r) − l), and create a new variable βr =
V ∗(r) − l ∈ [0, u − l]. Each αi,s,api(r|s, a)V ∗(r) is
thus replaced by αi,s,api(r|s, a)l + αi,s,api(r|s, a)βr.
Note that αi,s,api(r|s, a)l is easy to evaluate. As
αi,s,a can be restricted to 0 or 1, we take each term
αi,s,api(r|s, a)βr and replace αi,s,aβr by a new vari-
able βi,r,s,a. To ensure that this replacement does
not change the original problem, we introduce linear
restrictions:

0 ≤ βi,r,s,a ≤ βr,

βi,r,s,a ≤ αi,s,a(u − l),

βr − (u − l) + αi,s,a(u − l) ≤ βi,r,s,a.

The first and second restrictions are obvious (limi-
tations on βr and αi,s,a. The last restriction im-
poses the following. When αi,s,a = 1, βr ≤ βi,s,a.
However, since from the first restriction βi,s,a ≤ βr,
then βi,s,a = βr, and the full V ∗(r) will be consid-
ered. If αi,s,a = 0, then βr − (u − l) ≤ βi,r,s,a, but



βr−(u−l) < 0 (since βr ≤ (u−l)), so βi,r,s,a = 0, and
this non-optimal pair state-action will not be consid-
ered.

We end up with the following integer program:

min
V ∗,αi,s,a

∑

s

V ∗(s) (10)

s.t. V ∗(s) ≥ R(s, a) +

γ
∑

r

∑

i

[αi,s,api(r|s, a)l +

pi(r|s, a)βi,r,s,a]

αi,s,a ≥ 0,
∑

i

αi,s,a = 1

βr = V ∗(r) − l

0 ≤ βr ≤ u − l

0 ≤ βi,r,s,a ≤ βr

βi,r,s,a ≤ αi,s,a(u − l)

βr − (u − l) + αi,s,a(u − l) ≤ βi,r,s,a

We close this section with two examples of MDPIPs.
We focus on multilinear programming solutions; later
we will consider examples where integer programming
is used.

3.1 A small MDPIP

This is a very simple, abstract example. Consider two
states, s1 and s2. In each state, the decision maker
can choose between two actions. In s1 the transi-
tion probability for both actions are imprecisely spec-
ified, while transition probabilities in s2 are precisely
specified. Probabilities and rewards are presented in
Table 1 (left). The transition probabilities are de-
fined from the states in the first column (origin states)
to the states on the first row under P (destination
states). The solution given by multilinear program-
ming leads to the optimal solution; the value function
V ∗ is shown in Table 1 (right).

3.2 Planning airplane maintenance through

MDPIPs

This example is based on a problem described by
White [43, p. 171]:

An airline classifies the condition of its planes

into three categories, viz. excellent, good and

poor. The annual running costs for each cate-

gory are 0.25 × 106, 106 and 2 × 106 [monetary

units] respectively. At the beginning of each

year the airline has to decide whether or not

to overhaul each plane individually. With no

overhaul a plane in excellent condition has prob-

abilities of 0.75 and 0.25 of its condition being

excellent or good, respectively, at the beginning

of the next year. A plane in good condition has

probabilities of 0.67 and 0.33 of its condition be-

ing good or poor, respectively, at the beginning

of the next year. A plane in poor condition will

remain in a poor condition at the beginning of

the next year. An overhaul costs 2 × 106 and

takes no significant time to do. It restores a

plane in any condition to an excellent condition

with probability 0.75, and leaves it in its current

condition with probability 0.25. The airline also

has an option of scrapping a plane and replacing

it with a new one at a cost of 5 × 106. Such a

new plane will be in excellent condition initially.

There is an annual discount factor of γ = 0.5.

We consider a variant of this problem where proba-
bilities are specified as in Table 2 (left). Multilinear
programming produces the value function in Table 2
(right).

4 Factored MDPs

The specification of transitions between states is par-
ticularly burdensome in large MDPs. One strategy
that has been often employed is to encode transi-
tion probabilities in factored form; usually this means
that transition probabilities are encoded by Bayesian
networks [7]. Here the state space is defined by the
configurations of variables {X1, . . . , Xn}. We denote
by Xi,t the ith variable at stage t. For each action
a, we specify a bipartite directed acyclic graph con-
taining 2n nodes denoted by X+

i and X−
i ; node X−

i

and X+
i represent respectively Xi,t−1 and Xi,t for any

t > 0. One layer of the graph contains nodes X−
i for

all i, and no edge between them. The other layer con-
tains nodes X+

i for all i, and edges between them.
Edges are allowed from nodes in the first layer into
the second layer, and also between nodes in the sec-
ond layer. We denote by pa(X+

i ) the parents of X+
i

in the graph. The graph is assumed endowed with the
following Markov condition: a variable X+

i is condi-
tionally independent of its nondescendants given its
parents. This implies the following factorization of
transition probabilities:

P(X+
1 , . . . , X+

n ) =
n
∏

i=1

P(X+
i |pa(X+

i )). (11)

Now suppose that conditional probability distribu-
tions P(X+

i |pa(X+
i )), or a subset of them, are not

known precisely, but rather up to inclusion in credal
sets K

(

X+
i |pa(X+

i )
)

. We assume the Markov condi-
tion to operate over all combinations of distributions
from these credal sets, thus producing a possibly large
set of joint distributions, each one of them satisfying



S A P R(s, a)
s1 s2

s1 a1,1 [0,0.5] [0.5,1] 7
a1,2 [0,0.2] [0.8,1] 3

s2 a2,1 0.3 0.7 -1
a2,2 0.6 0.4 9

V ∗(s1) 21.486474
V ∗(s2) 18.108099
∑

s V ∗(s) 39.594573

Table 1: Specification of simple MDPIP example (left), and value function V ∗ (right).

S A P R(s, a)
s1 s2 s3

a1,1 [0.5,1] [0,0.4] [0,0.1] −0.25 × 106

s1 a1,2 1 0 0 −2 × 106

a1,3 1 0 0 −5 × 106

a2,1 0 [0.67,1] [0,0.33] −106

s2 a2,2 [0.75,1] [0,0.25] 0 −2 × 106

a2,3 1 0 0 −5 × 106

a3,1 0 0 1 −2 × 106

s3 a3,2 [0,0.25] [0.5,0.8] [0,0.25] −2 × 106

a3,3 1 0 0 −5 × 106

V ∗(s1) -1265664.1604
V ∗(s2) -2496240.6015
V ∗(s3) -4000000.0
∑

s V ∗(s) -7761904.7619

Table 2: Specification of MDPIP for plane maintenance (left), and value function V ∗ (right).

the factorization in Expression (11) — the resulting
structure is a credal network for each action [9].

The main point of this section is to indicate that Ex-
pression (11) defines a multilinear product for the
probabilities that appear in Program (8). Thus,
the multilinear character of Program (8) is left un-
changed: the computation of Γ-maximin policies is
still a matter of multilinear programming. The devel-
opment of algorithms that produce optimal policies
and that exploit the factorization in Expression (11)
is left for the future; this is a promising avenue of re-
search as the most advanced algorithms for factored
MDPs do use all available structure encoded in the
factorization [19, 22].

5 MDPSTs

In this section we explore the properties of a class
of MDPIPs that have an important application in
the field of artificial intelligence planning. Roughly
speaking, planning in artificial intelligence focuses on
sequential decision making problems that are speci-
fied using high-level languages. There are many vari-
ants of AI planning, depending on the properties of
the specification language; for example, we have de-
terministic planning, where actions have determinis-
tic effects; probabilistic planning, where actions have
probabilistic effects; and nondeterministic planning,
where an action may cause a transition to a set of
states without any clue at to what state will be moved

into [30]. The latter name is somewhat unfortunate as
“nondeterminism” is an overloaded term, but it is the
usual terminology in the field. Typically deterministic
and nondeterministic planning are tackled by search
through state spaces, while probabilistic planning is
tackled by generation of equivalent MDPs.

There has been considerable effort in the field of
AI planning to develop general algorithms that can
be instantiated for different types of planning prob-
lems [6]. However, until recently no model consid-
ered actions with simultaneously “probabilistic” and
“nondeterministic” effects. In response to this situ-
ation, Trevizan et al. have proposed a jointly prob-
abilistic/nondeterministic framework, based on MD-
PIPs [36]. Their proposal is based on a class of
MDPIPs, called Markov Decision Processes with Set-
valued Transitions (MDPSTs), defined as follows.

An MDPST is composed by a set of stages T , a set
of states S, a set of actions A, a reward function R,
a state transition function F (s, a) mapping states s

and actions a ∈ A into reachable sets of S, i.e., into
nonempty subsets of S, and a set of mass assignments
m(k|s, a) for all s, a ∈ A, and k ∈ F (s, a). Here we
also assume T to be the non-negative integers, S and
A to be finite, A to be constant for all states, and
R(s, a) to be a stationary function. The state transi-
tion function F (s, a) and mass assignments m(k|s, a)
are also stationary. MDPSTs satisfy a simplified ver-



sion of Expression (4) [36]:

V ∗(s) = max
a∈A



R(s, a)+γ
∑

k∈F (s,a)

m(k|s, a)min
r∈k

V ∗(r)



 .

(12)
MDPSTs form a strict subset of MDPIPs [36]; thus
Programs (8) or (10) can be used to solve MDPSTs.
These solutions require an enumeration on mass as-
signments m(k|s, a). However we can produce simpler
programs if we study Expression (12) carefully.

Given any action a ∈ A, we can collect all feasi-
ble k ∈ F (s, a), and define a binary vector I(s, a)
with as many elements as sets of states in F (s, a),
such that Ii(s, a) ∈ {0, 1} for i ∈ {1, . . . , N}, and
∑

i Ii(s, a) = 1. Because each Ii(s, a) can only be
equal to 0 or 1, and their sum is equal to one, only
an unique Ii(s, a) can be equal to one at a time. We
now write Expression (12) as:

V ∗(s) = max
a∈A

R(s, a) + (13)

γ
∑

k∈F (s,a)

m(k|s, a)

k
∑

i=1

Ii(s, a)V ∗(ri).

We now transform each product Ii(s, a)V ∗(ri) into
a new variable, following the procedure outlined in
Section 3. We first replace V ∗(ri) by l + (V ∗(ri)− l),
where V ∗(ri) ∈ [l, u]; we then define βi = V ∗(ri) − l,
with βi ∈ [0, u − l]. We define a variable βi,s,a =
Ii(s, a)βi, and add the necessary constraints to the
optimization problem. The final integer program is
very similar to the Program (10):

min
V ∗,I

∑

s

V ∗(s) (14)

s.t. V ∗(s) ≥ R(s, a) +

γ
∑

k

∑

i

[Ii(s, a)m(k|s, a)l +

m(k|s, a)βi,s,a]

Ii(s, a) ≥ 0,
∑

i

Ii(s, a) =

βi = V ∗(ri) − l

0 ≤ βi ≤ u − l

0 ≤ βi,s,a ≤ βi

βi,s,a ≤ Ii(s, a)(u − l)

βi − (u − l) + Ii(s, a)(u − l) ≤ βi,s,a.

This is a very useful transformation, once integer
programming is much simpler than multilevel pro-
gramming. There are many powerful integer program
solvers that guarantee global optimal solutions, where
multilevel program solvers only achieve global opti-
mals in certain specific cases.

5.1 A small MDPST

Consider 3 states, s1, s2 and s3. At state si, there are
actions ai,1 and ai,2. All actions define probabilistic
transitions from one state to itself or to the set com-
posed by the other 2 states, however with different
assignments of rewards and transition probabilities.
The values assigned to each state and action can be
found in Table 3. The optimal solution was obtained
by solving an integer program.

5.2 Probabilistic/nondeterministic planning

of airplane maintenance

Consider the example of airplane maintenance in Sec-
tion 3. Suppose that transition probabilities follow
Table 4 (left); a transition that “fills” more than a
column is a nondeterministic one. The optimal solu-
tion obtained can be seen in Table 4 (right).

6 Conclusion

We have reviewed the basic theory of MDPIPs under
the criterion of Γ-maximin expected total discounted
reward, and we have shown how to produce policies
using multilinear and integer programming. This type
of solution may be useful to handle problems with
further constraints on expected rewards, and to deal
with factored models and factored approximations.
We plan to continue the present work by exactly ad-
dressing such constraints and factorizations.

We have then looked into the recently proposed MDP-
STs. We have briefly reviewed the application of
these processes as a unifying language for “proba-
bilistic” and “nondeterministic” planning, and then
showed how these processes nicely lead to integer pro-
gramming solutions. As indicated previously, one of
the reasons to investigate a programming solution for
MDPIPs is the promise it holds for treating problems
with constraints on policy. For instance, it may be
required that a policy, besides maximizing minimum
expected total discounted reward, also guarantees the
probability of some set of states to be higher than
some value (in practice: maximization of profit for a
company, subject to the probability that a client is left
unattended being smaller than a given value). Markov
decision processes subject to such constraints are
called constrained MDPs [1, 29], and the main method
of solution there is linear programming. We conjec-
ture that constrained MDPIPs will require solutions
based on multilinear/integer programming. This will
be even more important in the context of MDPSTs,
because “nondeterministic” planning is usually asso-
ciated with contraints on policies.



S A P R(s, a)
si S \ {si}

s1 a1,1 0.8 0.2 5
a1,2 0.1 0.9 -1

s2 a2,1 0.8 0.2 4
a2,2 0.3 0.7 7

s3 a3,1 0.7 0.3 3
a3,2 0.25 0.75 9

V ∗(s1) 17.670251
V ∗(s2) 19.820789
V ∗(s3) 22.153796
∑

s V ∗(s) 59.644836

Table 3: Specification of small MDPST (left), and value function V ∗ (right).

S A P R(s, a)
s1 s2 s3

a1,1 0.5 0.5 −0.25 × 106

s1 a1,2 1 0 0 −2 × 106

a1,3 1 0 0 −5 × 106

a2,1 0 1 −106

s2 a2,2 0.75 0.25 0 −2 × 106

a2,3 1 0 0 −5 × 106

a3,1 0 0 1 −2 × 106

s3 a3,2 0.8 0.2 −2 × 106

a3,3 1 0 0 −5 × 106

V ∗(s1) -1666666.6666
V ∗(s2) -3000000.0
V ∗(s3) -4000000.0
∑

s V ∗(s) -8666666.666

Table 4: Specification of MDPST for plane maintenance (left), and value function V ∗ (right).
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Abstract

In Markov chain theory a stochastic matrix P is reg-
ular if some matrix power Pn contains only strictly
positive elements. Regularity of transition matrix of
a Markov chain guarantees the existence of a unique
invariant distribution which is also the limiting distri-
bution. In the present paper a similar result is shown
for the generalized Markov chain model that replaces
classical probabilities with interval probabilities. We
generalize the concept of regularity and show that for
a regular interval transition matrix sets of probabil-
ities corresponding to consecutive steps of a Markov
chain converge to a unique limiting set of distribu-
tions that only depends on transition matrix and is
independent of the initial distribution. A similar con-
vergence result is also shown for approximations of
the invariant set.

Keywords. Markov chains, interval probabilities

1 Introduction

Markov chains are one of the most important tools to
model random phenomena evolving in time. They are
enough simple to allow detailed description but also
enough general to allow many possibilities for appli-
cations (see [6]). A weak point of the most widely
used model is that transition probabilities have to be
constant and precisely known.

An attempt to relax this restriction was proposed in
[7], where classical probabilities are replaced by in-
terval probabilities. The approach presented there
extends a previous approach given in [5], where the
assumption of precisely known initial and transition
probabilities is relaxed so that probability intervals
are used instead of precise probabilities. Their model
is based on the assumption that constant classical
probabilities rule the process but only approximations
are known instead of precise values. Several estimates
based on this model are also given in [2] and [4].

Our approach presented in [7] uses the more gen-
eral model of interval probabilities based on Weich-
selberger’s theory (see [10] or [9]) instead of simple
probability intervals, and omits the assumption that
transition probabilities that rule the process are con-
stant in time. In the sequel we refer to this model
as Markov chains with interval probabilities (MCIP).
The model allows computation of possible probability
distributions at consecutive steps and estimation of
invariant distributions, which are of great importance
in Markov chain theory. But there is a fundamental
problem of those estimations that the sets of distri-
butions corresponding to further steps become much
more complicated than sets representable by interval
probabilities. A way to overcome this problem is the
use of approximations.

In this paper we examine the relationship between in-
variant sets of distributions and long term behaviour
of generalized Markov chains. In the classical theory
an important class of Markov chains, so called regu-
lar chains, has the property that its unique invariant
distribution is also the limiting distribution to which
probabilities converge after long time. Here we gener-
alize the concept of regularity to MCIP and show that
generalized regular Markov chains have a similar con-
vergence property. Moreover, we show a similar result
for a class of approximations with interval probabili-
ties.

The paper has the following structure. In Section 2
we introduce basic concepts of the theory of interval
probabilities and MCIP. In Section 3 we give our main
results on convergence for MCIP.

2 Markov chains with interval
probabilities

2.1 Interval probabilities

First we introduce basic elements of interval proba-
bility due to Weichselberger ([10]), some of them in



a simplified form. Let Ω be a non-empty set and A
a σ-algebra of its subsets. The term classical proba-
bility or additive probability will denote any set func-
tion p : A → R satisfying Kolmogorov’s axioms. Let
L and U be set functions on A, such that L ≤ U
and L(Ω) = U(Ω) = 1. The interval valued function
P ( . ) = [L( . ), U( . )] is called an interval probability.

To each interval probability P we associate the set M
of all additive probability measures on the measurable
space (Ω,A) that lie between L and U . This set is
called the structure of the interval probability P . The
basic class of interval probabilities are those whose
structure is non-empty. Such an interval probability
is denoted as R-field. The most important subclass
of interval probabilities, F-fields, additionally assumes
that both lower bound L and upper bound U are strict
according to the structure M:

L(A) = inf
p∈M

p(A) and U(A) = sup
p∈M

p(A) (1)

for every A ∈ A.

The above property is in a close relation to coherence
in Walley’s sense (see [8]). The difference is that the
definition of coherence allows finitely additive prob-
abilities while Weichselberger’s model only allows σ-
additive probabilities. However, in the case of finite
probability spaces, both terms coincide, because fi-
nite additivity and σ-additivity then coincide. The re-
quirement (1) implies the relation U(A) = 1−L(¬A)
for every A ∈ A, and therefore, only one of the bounds
L and U is needed. Usually we only take the lower
one. Thus, an F-field is sufficiently determined by the
triple (Ω,A, L).

MCIP require several approximations involving lower
expectations with respect to sets of probabilities. Let
C be a set of probability measures on (Ω,A) and let
a random variable X : Ω → R be given. The lower
and the upper expectation ECX and ECX of X with
respect to C are defined as the infimum and supremum
of mathematical expectations of X with respect to
members of C:

ECX = inf
p∈C

EpX

ECX =sup
p∈C

EpX.

An important class of interval probabilities are those
whose lower bounds L are 2-monotone (convex, su-
permodular), i.e. for every A,B ⊆ Ω

L(A ∪B) + L(A ∩B) ≥ L(A) + L(B). (2)

If equality holds in the above equation the set func-
tion L is said to be modular, which in the case where
L(∅) = 0 is equivalent to finite additivity.

In the finite case, 2-monotonicity implies the F-
property, which is then equivalent to coherence that
is always implied by 2-monotonicity. Moreover, in the
case of a 2-monotone coherent lower probability L on
a finite measurable space, the lower and the upper ex-
pectation operators with respect to the corresponding
structure can be found in terms of Choquet integral
with respect to L and the corresponding upper prob-
ability U respectively, where Choquet integral with re-
spect to a set function L is defined as

∫

Ω

X dL =
∫ 0

−∞
(L(X > t)− L(Ω)) dt

+
∫ ∞

0

L(X > t) dt.

The right hand side integrals are both Riemann inte-
grals. Further, if L is an additive measure, Choquet
integral coincides with Lebesgue integral.

Let Ω be a finite set. If M is the structure of an
F-field P = (Ω,A, L) with L 2-monotone, we have

EMX =
∫

Ω

X dL (3)

for every random variable X. (For the proof see
e.g. [3], and note that for an infinite Ω, instead of
the structure M, the set of all finitely additive mea-
sures dominating L would be required for the above
equality.) In fact, the equality in (3) for every X is
equivalent to 2-monotonicity if the lower expectation
is taken with respect to the set of all finitely addi-
tive measures dominating L. For a non-2-monotone
L Choquet integral is in general lower than the lower
expectation.

2.2 Markov chains with interval probabilities

Now we introduce the framework of MCIP model pro-
posed in [7]. Let Ω be a finite set with elements
{ω1, . . . , ωm} and 2Ω the algebra of its subsets. Fur-
ther let

X0, X1, . . . , Xn, . . . (4)

be a sequence of random variables such that

P (X0 = ωi) = q(0)(ωi) =: q0
i ,

where q(0) is a classical probability measure on (Ω, 2Ω)
such that

L(0) ≤ q(0), (5)

where Q(0) = (Ω, 2Ω, L(0)) is an F-probability field.
Thus, q(0) belongs to the structure M(0) of Q(0).
This means that initial probability distribution is not
known precisely, but only a set of possible distribu-
tions is given as a structure of an F-field.



Transition probabilities in a classical finite Markov
chain can be given by a matrix whose (i, j)-th entry
represents the probability that the process that is in
the state ωi at time n will be in the state ωj at time
n + 1. Each row of a transition probability matrix is
then a probability distribution on (Ω, 2Ω).

The idea of the generalized transition matrix is to
replace classical probability distributions in rows with
interval probabilities. Thus, suppose that

P
(
Xn+1 = ωj | Xn = ωi,

Xn−1 = ωkn−1 , . . . , X0 = ωk0

)

= pn+1
i (ωj) =: pn+1

ij , (6)

where pn+1
ij is independent of X0, . . . , Xn−1 for all n ≥

1, and
Li ≤ pn+1

i , (7)

where Pi = (Ω, 2Ω, Li), for 1 ≤ i ≤ m, is an F-
probability field. Thus, pn+1

ij are transition proba-
bilities at time n + 1, and they are not assumed to
be constant in n. Instead, on each step they are only
supposed to satisfy the inequality (7), where Li are
constant in time.

The above generalization of transition matrices sug-
gests the following generalization of the concept of
stochastic matrix to interval probabilities. Let P =
[P1 . . . Pm]T where Pi are F-fields for i = 1, . . . ,m.
We will call such P an interval stochastic matrix. The
lower bound of an interval stochastic matrix is simply
PL := [L1 . . . Lm]T , where Li is the lower bound of
Pi and the structure of an interval stochastic matrix
is the set M(P ) of stochastic matrices p = (pij) such
that pi ≥ Li, where pi, for i = 1, . . . , m, is the clas-
sical probability distribution on (Ω, 2Ω) generated by
pi(ωj) = pij for j = 1, . . . , m.

To represent an F field on a given probability space,
one value has to be given for each event A; usually,
this is the lower probability L(A) of A. Thus, a row
of an interval stochastic matrix can be represented as
a row of 2m − 2 values, where ∅ and Ω, whose lower
probabilities are always 0 and 1 respectively, are ex-
cluded. All other events correspond to each column in
a given order. In general, this requires m(2m−2) val-
ues for the transition matrix and 2m−2 values for the
initial distribution. The (i, j)-th entry of the transi-
tion matrix is then the lower probability of transition
from the state ωi to the set Aj .

We demonstrate this by the following example.

Example 1. Take Ω = {ω1, ω2, ω3}. The alge-
bra 2Ω contains six non-trivial subsets, which we de-
note by A1 = {ω1}, A2 = {ω2}, A3 = {ω3}, A4 =
{ω1, ω2}, A5 = {ω1, ω3}, A6 = {ω2, ω3}. Thus, besides

L(∅) = 0 and L(Ω) = 1 we have to give the values
L(Ai) for i = 1, . . . , 6. Let the lower probability L of
an interval probability Q be represented through the
n-tuple

L = (L(A1), L(A2), L(A3), L(A4), L(A5), L(A6))
(8)

and take L = (0.1, 0.3, 0.4, 0.5, 0.6, 0.7). Further we
represent the interval transition matrix P by a ma-
trix with three rows and six columns, each row repre-
senting an element ωi of Ω and the values in the row
representing the interval probability Pi through its
lower probability Li. Take for example the following
matrix:

PL =




0.5 0.1 0.1 0.7 0.7 0.4
0.1 0.4 0.3 0.6 0.5 0.8
0.2 0.2 0.4 0.5 0.7 0.7


 . (9)

The probability of transition from ω1 to A2 is thus
at least 0.1, and to A5 at least 0.7. Since A2 = Ω −
A5, the corresponding upper probability of transition
from ω1 to A2 is 1− 0.7 = 0.3.

Note that the case where |Ω| = 3 is somewhat spe-
cific, because every non-trivial subset is either atomic
or a complement of an atomic set. Therefore, lower
probabilities of the non-atomic sets can be obtained
from the upper probabilities corresponding to atomic
sets using L(A) = 1 − U(¬A). However, in gen-
eral, lower probabilities given for all non-trivial sub-
sets carry more information than probability intervals
on atomic sets alone. Another specific feature of the
case with |Ω| ≤ 3 is that the lower probability corre-
sponding to any F-field is 2-monotone.

2.3 Computing distributions at further steps

The main advantage of Markov chains is that knowing
the probability distribution at time n we can easily
compute the distribution at time n+1. This is done by
multiplying the given distribution with the transition
matrix.

In the case of MCIP, where initial distribution as well
as transition matrix are interval valued, we would
want the probability distribution at the next step to
be of a similar form. Thus, in an ideal case, the
next step probability distribution would be an interval
probability or even an F-field. But this is in general
not possible. According to MCIP model, the actual
distribution at each step is a classical probability dis-
tribution which is assumed to be a member of some
set of distributions forming a structure of an interval
probability. Similarly, the transition matrix is a clas-
sical transition matrix belonging to a set of matrices,
also given in terms of interval probabilities.



Let q(0) be an initial distribution, thus satisfying (5),
and p1 a transition probability, satisfying (7). Ac-
cording to the classical theory, the probability at the
next step is q(1) = q(0)p1. Thus, the corresponding set
of possible probability distributions at the next step
must contain all the probability distributions of this
form. Consequently, in the most general form, the
set of probability distributions corresponding to Xk

would be

Ck := {q(0)p1 . . . pk | q(0) ∈M(Q(0)),

pi ∈M(P ) for i = 1, . . . , k}. (10)

But these sets in general cannot be represented as
structures of interval probabilities. Thus, they can-
not be observed in terms of interval probabilities, or
even in terms of convex sets. However, a possible ap-
proach using interval probabilities is to calculate the
lower and the upper envelope of the set of probabilities
obtained at each step and do further calculations with
this interval probability and its structure. The result-
ing set of possible distributions at n-th step is then
in general larger than Ck, and could only be regarded
as an approximate to the true set of distributions. In
a similar way also more general convex envelopes of
sets Ck can be constructed.

Approximation with interval probabilities

Here we describe how to compute approximations of
the sets Cn with interval probabilities. We define a se-
quence (Q(n))n≥0 of F-fields, where Q(0) denotes the
initial interval probability distribution, such that the
structure M(n) of each member of the sequence con-
tains the set Cn.

For every n let Q(n+1) be the F-field generated by the
set of all products of the form q(n)pn+1 where q(n) be-
longs to the structure M(Q(n)) and pn+1 is a member
of M(P ). Such Q(n+1) is thus the narrowest F-field
whose structure contains all the products q(n)pn+1.
The products q(n)pn+1 would be the possible distri-
butions at time n + 1 if every q(n) ∈ M(Q(n)) was a
possible distribution at time n. Clearly, the inclusions
Cn ⊆ M(Q(n)) = M(n) hold, but the intervals are in
general wider than necessary to bound the sets Cn.
However, finding exact intervals is a computationally
difficult problem.

Let L(n) be the lower probability corresponding to
Q(n) and L(n+1) the one corresponding to Q(n+1).
Further, let q(n) be any member of the structure
M(Q(n)) and q(n+1) the corresponding distribution
at time n + 1. For every A ⊆ Ω we have

q(n+1)(A) =
∑

ωj∈A

m∑

i=1

q
(n)
i pn+1

ij

=
m∑

i=1

q
(n)
i

∑

ωj∈A

pn+1
ij

=
m∑

i=1

q
(n)
i pn+1

i (A)

≥
m∑

i=1

q
(n)
i Li(A). (11)

Since pn+1
i can be chosen independently of each other

and of q(n) and because Li have the F-property, they
can be chosen so that

pn+1
i (A) = Li(A) for every 1 ≤ i ≤ m.

Therefore, equality can be achieved in (11). Conse-
quently, we obtain:

L(n+1)(A) = inf
q(n)≥L(n)

m∑

i=1

q
(n)
i Li(A). (12)

The above infimum can be viewed as a lower expecta-
tion with respect to M(n) of the function XA(ωi) :=
Li(A).

If the lower probability L(n) is 2-monotone, (12) can
(because of finiteness) equivalently be expressed in
terms of Choquet integral (see e.g. [3])

L(n+1)(A) =
∫

Li(A) dL(n) =
∫

XA dL(n). (13)

The above expression is linear in L(n) and thus re-
quires significantly less computation to evaluate than
(12). But even if both L(n) and Li, for 1 ≤ i ≤ m,
are 2-monotone, the resulting lower probability L(n+1)

need not be 2-monotone. Therefore, the use of (13)
would in general produce less accurate results.

2.4 Invariant distributions

The invariant set of distributions

One of the main concepts in the theory of Markov
chains is the existence of an invariant distribution.
In the classical theory, an invariant distribution of a
Markov chain with transition probability matrix P is
any distribution q such that q P = q. In the case of
regular Markov chain an invariant distribution is also
the limiting distribution.

In MCIP model, a single transition probability ma-
trix as well as initial distributions are replaced by sets
of distributions given by structures of interval prob-
abilities. Consequently, an invariant distribution is
replaced by a set of distributions, which is invariant
for the interval transition probability matrix P . An



invariant set of distributions is thus a set C satisfying
the condition

C = {qp | q ∈ C, p ∈M(P )}. (14)

Thus, the invariant set of probabilities is closed for
multiplication with the set of possible transition ma-
trices. Of course, this does not mean that all its mem-
bers are invariant distributions corresponding to some
matrices from M(P ), but it will follow from the con-
struction that the largest such set must contain all
those invariant distributions.

Given an interval transition matrix P it is in principle
easy to find its largest invariant set of distributions.
We start with the set C0 of all probability distribu-
tions on (Ω, 2Ω) and construct the sequence of sets of
probability measures:

Ci+1 := {q p | q ∈ Ci, p ∈M(P )}, (15)

starting with C0. The above sequence corresponds to
sequence (10), where the initial set of distributions is
equal to the set of all probability distributions. In this
case the sequence is monotone and the limiting set of
distributions

C∞ :=
∞⋂

i=1

Ci. (16)

is the largest invariant set of distributions.

The set C∞ is non-empty because it obviously contains
all invariant distributions of the matrices in M(P ),
and in the finite case invariant distributions always ex-
ist, although are not necessarily unique. Even though
the invariant set of distributions is easy to find in prin-
ciple, its shape can be very complicated and therefore
approximations may be useful for practical purposes.

We have defined the invariant set of distributions as
the limiting set of the sequence (10) starting with the
set of all probability distributions. But this does not
say anything about limiting set if the initial set is dif-
ferent. In Section 3 we show that the limiting set is
unique and independent of the initial set C0 if a reg-
ularity condition is satisfied, which is the main result
of this paper.

Approximating invariant distributions with
interval probabilities

To approximate the invariant set of distributions with
interval probabilities we try to find the F-field Q =
(Ω, 2Ω, L) such that

L(A) = inf
q∈M

m∑

i=1

qiLi(A) (17)

or in terms of lower expectations

L(A) = EMXA

where XA(ωi) = Li(A). If the approximation with
Choquet integral is used instead, the conditions be-
come

L(A) =
∫

XA dL (18)

which is a system of linear equations with unknowns
L(A).

The minimal solution L of either of the sets of equa-
tions (17) or (18) approximates the largest invariant
set of distributions C∞ in the sense that all its mem-
bers dominate L, or in other words, the set C∞ is
contained in the structure of the interval probability
(Ω, 2Ω, L). This can be seen on the following way. Let
L(0) be the lower probability with L(A) = 0 for every
A ⊂ Ω and L(Ω) = 1. It can be shown that both se-
quences of lower probabilities obtained through (12)
and (13) starting with L(0) are monotone and there-
fore convergent. Clearly, their suprema are the min-
imal solutions of the equations (17) and (18) respec-
tively. The inclusions Cn ⊆ M(n) for every n ≥ 0
imply the required inclusion.

Example 2. We approximate the invariant set of dis-
tributions of the Markov chain with interval transition
probability matrix given by the lower bound (9). We
obtain the following solution to the system of equa-
tions (18):

L(∞) = (0.232, 0.2, 0.244, 0.581, 0.625, 0.6),

where L(∞) is of the form (8). The intervals corre-
sponding to the above solutions are then

P (∞) = ([0.232, 0.4], [0.2, 0.375], [0.244, 0.419],
[0.581, 0.756], [0.625, 0.8], [0.6, 0.768]).

The above lower bound is of course only an approxi-
mation (from below) of the true lower bound for the
invariant set of distributions. For comparison we in-
clude the lower bound of the set of invariant distribu-
tions corresponding to 100,000 randomly generated
matrices dominating PL:

(0.236, 0.223, 0.275, 0.587, 0.628, 0.608).

Since all invariant distributions of the members of the
structure M(P ) must belong to the set C∞, the above
lower bound is an approximation from above of the
true lower bound and yields the intervals:

([0.236, 0.392], [0.223, 0.372], [0.275, 0.413],
[0.587, 0.725], [0.628, 0.777], [0.608, 0.764]).

Thus, the lower bound of the true invariant set of
distributions lies somewhere between the two approx-
imations.



3 Convergence to equilibrium

3.1 Regular interval stochastic matrices

One of the main results of classical Markov chain the-
ory is that chains with irreducible and aperiodic tran-
sition matrices always converge to a unique invariant
distribution. Such transition matrices are sometimes
called regular. In short, a transition matrix is regular
if p

(n)
ij > 0 holds for all sufficiently large n, where p

(n)
ij

is the (i, j)-th entry of the matrix power Pn. Note
that if all entries of P r are strictly positive then also
P k, where k > r, has the same property. This follows
from the properties of matrix multiplication and the
fact that P has no zero rows. Therefore, a stochas-
tic matrix is regular if all entries of P r are strictly
positive for at least one integer r.

If λ is any initial distribution and (Xn)n≥0 is Markov
(λ, P ) with P regular then

P (Xn = j) → πj as n →∞ for all j,

where π is the unique invariant distribution.

Regularity can similarly be defined for the case of
Markov chains with interval probabilities. Let us first
define the n-th power of an interval stochastic matrix
P .
Definition 1. Let P be an interval stochastic ma-
trix. We will call the set Pn = {p1p2 . . . pn | pi ∈
M(P ) for i = 1, . . . , n} the n-th power of P .

Note that the n-th power of an interval stochastic
matrix is in general not an interval stochastic matrix,
but a more general set of stochastic matrices, which
are not easily tractable. Therefore, approximations in
terms of interval probabilities will be useful. We also
note that powers of interval stochastic matrices are
associative in the sense that PmPn = Pm+n, where
the product of sets of matrices on the left hand side
denotes the set of all products of matrices from cor-
responding sets.

Now we generalize the concept of regularity to interval
stochastic matrices.
Definition 2. An interval stochastic matrix P is reg-
ular if there exists n > 0 such that pij > 0 for every
p ∈ Pn.

Clearly, this condition of regularity implies that ev-
ery matrix in M(P ) is regular, but inverse does not
necessarily hold. In a similar way as in the classical
case, it can be seen that if all matrices from Pn have
strictly positive entries, then Pk, where k > n, has
the same property.

As we have pointed out before, powers of stochastic
matrices as defined here are not easily tractable, thus

checking regularity could be difficult in general. How-
ever, some simpler to check sufficient conditions easily
follow from approximations presented before.

First we define two pseudo-powers for stochastic ma-
trices that approximate powers from Definition 1.
Both pseudo-powers are based on two operations sim-
ilar to matrix multiplication, using approximations
(12) and (13).

Definition 3. Let P be an interval stochastic ma-
trix with lower probability matrix PL = [L1 . . . Lm]T .
Define Pn

L = [Ln
1 . . . Ln

m]T where L1
i = Li and Ln

i =
infq≥Ln−1

i

∑m
i=1 qjLj(A) for i = 1, . . . ,m and n ≥ 2.

Corollary 1. If P is an interval stochastic matrix
with lower probability matrix PL such that Pn

L =
[Ln

1 . . . Ln
m]T and Ln

i (A) > 0 for every i = 1, . . . , m
and A ⊆ Ω, A 6= ∅ then P is regular.

Definition 4. Let P be an interval stochastic ma-
trix with lower probability matrix PL = [L1 . . . Lm]T .
Define Pn

L = [Ln
1 . . . Ln

m]T where L1
i = Li and Ln

i =∫
Lj(A)dLn−1

i for i = 1, . . . , m and n ≥ 2, and the
integral used is Choquet integral (as in (13)) .

Corollary 2. If P is an interval stochastic matrix
with lower probability matrix PL such that Pn

L =
[Ln

1 . . . Ln
m]T and Ln

i (A) > 0 for every i = 1, . . . , m
and A ⊆ Ω, A 6= ∅ then P is regular.

The above corollaries present sufficient conditions for
regularity because each power Pn as a set of stochas-
tic matrices is contained within the structure of the
corresponding pseudo-power, which is representable
in terms of interval probabilities. Since powers from
Definition 1 have no such representation, the suffi-
cient conditions should be easier to check for pseudo-
powers. Clearly, the sufficient condition in Corollary 2
implies the one in Corollary 1, but is much easier to
check.

Even though the operations used in Definitions 3 and
4 resemble matrix multiplication, such a multiplica-
tion has an important weakness that it is not asso-
ciative. But associativity is crucial in most methods
concerning Markov chains and there is no obvious way
to define an associative matrix multiplication for in-
terval stochastic matrices, which is one of the main
problems of the model.

3.2 Convergence to equilibrium

The main result of this section states that there is
a unique compact set corresponding to a MCIP with
a regular interval transition matrix to which its sets
of distributions converge. To prove the theorem we
use Banach fixed point theorem on the multivalued
mapping between compact sets of probabilities corre-
sponding to the transition matrix in Hausdorff metric.



Let (M, d) be a metric space. A mapping T : M → M
is a contraction if there exists a constant 0 ≤ k <
1 such that d(Tx, Ty) ≤ k d(x, y) for all x, y ∈ M .
If k = 1 is allowed in the above condition then the
mapping T is said to be non-expansive.

An element x ∈ M is a fixed point of an operator T if
T (x) = x.
Theorem 1 (Banach fixed point theorem). Let
(M, d) be a non-empty complete metric space and
T : M → M a contraction. Then there exists a unique
fixed point x ∈ M of T . Furthermore, this fixed point
is the limit of the sequence {xn}n∈N where xi+1 = Txi

and x0 is an arbitrary element of M .

Given a metric space M and non-empty compact sub-
sets X, Y ⊂ M , Hausdorff distance is defined as

dH(X,Y ) =

max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

.

This distance makes the set of non-empty compact
sets a metric space F (M). Moreover, if M is a com-
pact space, so is F (M) (see e.g. [1], p. 87). Note also
that every compact metric space is complete.

To justify the use of Hausdorff metric, we show that
all sets used are indeed compact. As the set of all
probability distributions on a finite space is com-
pact, we only have to note that the sets are closed.
We start with a set of probabilities forming struc-
ture of an interval probability Q with lower prob-
ability L. Such a set is of the form M(Q) =
{q | q is a probability measure on (Ω, 2Ω), q ≥ L} and
thus clearly closed and consequently compact. To see
that M(P ) is compact too, note that in topological
sense it is a direct product of m structures correspond-
ing to each row of P .

All sets of distributions corresponding to further steps
are of the form CP = {qp | q ∈ C, p ∈ M(P )}. Those
sets are images of the compact sets C ×M(P ) with
the continuous mapping (q, p) 7→ qp, and are therefore
compact too.
Proposition 1. Let p be a stochastic matrix. Then
the mapping from the set of all probability distribu-
tions q 7→ qp is non-expansive in the metric

d(q, q′) = max
A⊆Ω

|q(A)− q′(A)|

=
1
2

∑

ω∈Ω

|q(ω)− q′(ω)|.

Moreover, if pij > 0 for every 1 ≤ i, j ≤ m and
k = 1 − inf1≤i,j≤m pij then the mapping q 7→ qp is
a contraction and

d(qp, q′p) ≤ k d(q, q′).

Proof. Take arbitrary A ⊆ Ω and let pi(A) =∑
ωj∈A pij . Further let q and q′ be probability dis-

tributions on Ω with q 6= q′, and denote B = {ω ∈
Ω | q(ω) ≥ q′(ω)} ( Ω. Clearly, k = supA(Ω pi(A)
where 1 ≤ i ≤ m.

We have

|qp(A)− q′p(A)|

=

∣∣∣∣∣
m∑

i=1

qipi(A)−
m∑

i=1

q′ipi(A)

∣∣∣∣∣

=

∣∣∣∣∣
m∑

i=1

pi(A)(qi − q′i)

∣∣∣∣∣

=

∣∣∣∣∣
∑

ωi∈B

pi(A)|qi − q′i|

−
∑

ωi 6∈B

pi(A)|qi − q′i|
∣∣∣∣∣

≤ max

{ ∑

ωi∈B

pi(A)|qi − q′i|,

∑

ωi 6∈B

pi(A)|qi − q′i|
}

≤ max





∑

ωi∈B

k|qi − q′i|,
∑

ωi 6∈B

k|qi − q′i|




= k max





∑

ωi∈B

|qi − q′i|,
∑

ωi 6∈B

|qi − q′i|




≤ k d(q, q′)

Since k ≤ 1, the mapping is non-expansive. Further-
more, if pij > 0 for every 1 ≤ i, j ≤ m then k < 1 and
thus the mapping is a contraction.

The next proposition shows that the mapping C 7→
CPn is a contraction if P is a regular interval stochas-
tic matrix and n is large enough.

Proposition 2. Let P be a regular interval stochas-
tic matrix and n > 0 an integer such that pij >
0 for every p ∈ Pn where 1 ≤ i, j ≤ m. Let
k = 1 − inf

1≤i,j≤m
p∈Pn

pij. The mapping C 7→ CPn =

{qp1 . . . pn | q ∈ C, pi ∈ M(P ) for i = 1, . . . , n} is
then a contraction and

dH(CPn, C′Pn) ≤ k dH(C, C′).

Proof. By the assumption, pij > 0 for every p ∈ Pn



and 1 ≤ i, j ≤ m. We have

dH(CPn, C′Pn) =

max

{
sup
q∈C

p∈Pn

inf
q′∈C′
p′∈Pn

d(qp, q′p′),

sup
q′∈C′
p′∈Pn

inf
q∈C

p∈Pn

d(qp, q′p′)

}
.

Take for instance

sup
q∈C

p∈Pn

inf
q′∈C′
p′∈Pn

d(qp, q′p′)

≤ sup
p∈Pn

sup
q∈C

inf
q′∈C′

d(qp, q′p)

≤ sup
q∈C

inf
q′∈C′

k d(q, q′)

≤ k dH(C, C′),
where the second inequality follows from Proposi-
tion 1. Finally, this clearly implies dH(CPn, C′Pn) ≤
k dH(C, C′).

Finally we prove the main convergence theorem.

Theorem 2. Let P be a regular interval stochastic
matrix and C a compact set of probability distributions
on (Ω, 2Ω) where Ω is a finite set. Then the sequence
{CPn}n∈N converges in Hausdorff metric to a unique
compact invariant set C∞ that only depends on P and
coincides with (16).

Proof. Let n > 0 be an integer such that every p ∈ Pn

satisfies pij > 0 for every 1 ≤ i, j,≤ m. By Propo-
sition 2, the mapping C 7→ CPn is a contraction,
and so, by Banach fixed point theorem, the sequence
{C(Pn)k}k∈N converges to C∞.

To see that the sequence {CPk}k∈N converges to the
same set C∞, we use associativity of powers of P .
Thus, we have CPk = CPr(Pn)s, where r < n and
s goes to infinity as k goes to infinity. Since CPr is a
compact set, the sequence converges to C∞.

3.3 Convergence of approximations

The limiting set of probabilities is computationally
very difficult to find directly; therefore, approxima-
tions would be very useful in practice. Now we show
that also a family of approximations converges inde-
pendently from the initial distribution.

Proposition 3. Let PL = [L1 . . . Lm]T be a lower
transition probability matrix such that Li(A) < 1 for
every 1 ≤ i ≤ m and A ( Ω. Let the mapping

L 7→ LPL = L∗

be given, where L∗ is the lower probability such that
L∗(A) =

∫
Li(A) dL. This mapping is then a contrac-

tion in the maximum distance metric

d(L,L′) = max
A⊆Ω

|L(A)− L′(A)|.

Further, if k = sup
1≤i≤m

A(Ω

Li(A) then

d(LPL, L′PL) ≤ k d(L,L′).

Proof. Take an arbitrary set A ( Ω. We have:

|LPL(A)− L′PL(A)|

=
∣∣∣∣
∫

Li(A) dL−
∫

Li(A) dL′
∣∣∣∣ .

Let π be a permutation such that Lπ(i)(A) ≥
Lπ(i+1)(A) for every 1 ≤ i ≤ m and denote Si =
{π(1), . . . , π(i)} and xi = Lπ(i)(A) where xm+1 = 0.
The above Choquet integrals can then be transformed
into (see [3])

∣∣∣∣
∫

Li(A) dL−
∫

Li(A) dL′
∣∣∣∣

=

∣∣∣∣∣
m∑

i=1

(xi − xi+1)L(Si)

−
m∑

i=1

(xi − xi+1)L′(Si)

∣∣∣∣∣

=

∣∣∣∣∣
m∑

i=1

(xi − xi+1)(L(Si)− L′(Si))

∣∣∣∣∣

≤
m∑

i=1

(xi − xi+1)d(L,L′)

=x1 d(L,L′)
≤k d(L, L′).

Thus, d(LPL, L′PL) = max
A⊆Ω

|LPL(A) − L′PL(A)| ≤
k d(L,L′), which completes the proof.

In previous sections we approximated sets of distri-
butions corresponding to consecutive steps by lower
probabilities L(n) where L(0) = L is the initial lower
probability and L(n)(A) =

∫
Li(A) dL(n−1). A prob-

lem with this approximation is its non-associativity,
but associativity was crucial in the proof of Theo-
rem 2.

Because of this inconvenience we can only prove a
convergence theorem for a slightly different approxi-
mation. The construction easily implies that for ev-
ery n > 0 the pseudo-power Pn

L approximates the
n-th power of P in the sense that every p ∈ Pn



satisfies p ≥ Pn
L. Therefore, the sequence of lower

probabilities {L(kn)}k∈N defined by L(0) = L and
L(kn) = L((k−1)n)Pn

L, where L is the initial lower
probability, approximates the sets of distributions at
kn-th steps in the sense that p ≥ L(kn) for every
p ∈ Ckn.

Now we give a convergence theorem for those approx-
imations.

Theorem 3. Let P be an interval stochastic matrix
with the lower bound PL such that Pn

L = [Ln
1 . . . Ln

m]T

satisfies Ln
i (A) < 1 for every 1 ≤ i ≤ m and A (

Ω. Further let L be any lower probability on (Ω, 2Ω).
Then the sequence {L(kn)}k∈N converges to a unique
lower probability L(∞) that only depends on Pn

L.

Proof. By Proposition 3 the mapping L 7→ LPn
L is

a contraction in the maximum distance metric. By
Banach fixed point theorem the sequence {L(kn)}k∈N
converges to a unique lower probability L(∞) which is
the fixed point for the mapping L 7→ LPn

L.

4 Conclusion

Results in the paper show that even if the assump-
tions of Markov chain model are substantially relaxed,
the behaviour remains similar as in the most widely
used model with constant precisely known initial and
transition probabilities. However, several interesting
questions still remain open. Especially those related
to approximations of the intractable true sets of dis-
tributions with convex sets representable with interval
probabilities.
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Abstract
This paper uses the minimax regret criterion to ana-
lyze choice between two treatments when one has ob-
served a finite sample that is plagued by missing data.
The analysis is entirely in terms of exact finite sample
regret, as opposed to asymptotic approximations or fi-
nite sample bounds. It thus extends Manski (2007),
who largely abstracts from finite sample problems, as
well as Stoye (2006a), who provides finite sample re-
sults but abstracts from missing data. Core findings
are: (i) Minimax regret is achieved by randomizing
over two rules that were identified in the aforecited
papers. (ii) For every sample size, there exists a suffi-
ciently small (but positive) proportion of missing data
such that if less data are missing, the missing data
problem is ignored altogether and Stoye’s (2006a) re-
sults apply. (iii) For every positive fraction of missing
data, the value of additional observations drops to
zero at a finite sample size. I also provide the de-
cision problem’s value function and briefly touch on
optimal sample design as well as unknown propensity
scores.

Keywords. Minimax regret, missing data, statisti-
cal decision theory, partial identification, treatment
evaluation.

1 Introduction

Consider a planner who has to decide whether to as-
sign a binary treatment — e.g., a medical treatment
or a labor market intervention — to members of some
target population. She can base her choice on observa-
tions of outcomes experienced by a sample of subjects,
some of whom received the treatment and some of
whom served as control group. The signal generated
by these observations has two limitations: First, it is
generated by a finite sample. Second, it is assumed
that some data are missing, that is, a subset of the tar-
get population is not represented in the sample, and
members of this subset may react to treatment differ-

ently from the observable subjects. Thus, the choice
scenario simultaneously generates finite sample prob-
lems (a standard issue in statistics and econometrics)
and problems of incomplete identification (a less stan-
dard issue; see Manski 2003 for a survey).

I analyze this situation using minimax regret with re-
spect to expected outcomes as optimality criterion.
Importantly, the analysis is entirely in terms of exact
finite sample regret, as opposed to asymptotic approx-
imations (as in Hirano and Porter 2005) or bounds on
finite sample quantities (as in Manski 2004). It thus
extends, and connects, Manski (2007), who analyzes
a somewhat more general case but largely abstracts
from finite sample problems, and Stoye (2006a), who
provides finite sample results but abstracts from miss-
ing data.

In fact, both of the aforementioned papers analyze
special cases of the present scenario, and their results
are linked in a specific way here. Stoye (2006a), by ig-
noring missing data, characterizes finite sample min-
imax regret rules for the boundary case where the
proportion of missing data vanishes. Manski (2007)
provides a finite sample minimax regret rule if at least
half the data are missing. The respective solutions
are quite different from each other. The perhaps sur-
prising upshot of this paper is that minimax regret
can generally be achieved by randomizing over them,
where the mixture is degenerate on the previous two
findings’ domains but creates a smooth transition in
between. For the case where the proportion of observ-
able data p is known a priori, two intriguing aspects
of the result are the following:

• For every sample size N , there exists a critical p∗N
such that if p ≥ p∗N , then the presence of missing
data is ignored altogether and the treatment rules
from Stoye (2006a) apply. Those decision rules
therefore have a certain degree of robustness to
missing data.

• The minimax regret value of the decision problem



exhibits nonstandard asymptotic behavior: For
every p, the limiting value of regret is exactly
achieved beyond some finite N . Thus the value
of additional observations drops to zero at some
finite sample size.

If p is not known a priori, minimax regret is achieved
by presuming that p equals the lowest value that the
decision maker considers possible. In particular, if
p cannot be bounded away from zero a priori, then
minimax regret is achieved by a “no-data rule.”

The remainder of this paper is structured as follows. I
first set up the decision problem, introduce notation,
and provide a brief motivation for minimax regret.
The heart of this paper is section 2.2, which provides
relevant results from the aforecited papers and then
their joint generalization. In section 2.3, I show how
to compute the decision problem’s value function, sec-
tion 2.4 briefly discusses optimal sample design, and
section 2.5 considers unknown p. Section 3 concludes,
and the appendix collects all proofs.

2 Analysis of the Treatment Choice
Problem

2.1 Setup and Notation

There is a binary treatment, T ∈ {0, 1}, that must
be assigned, possibly at random, to members of a tar-
get population. Two classic examples are clinical tri-
als, where the target population would be all people
who suffer from a certain condition, T = 1 would de-
note a medical innovation, and T = 0 would be the
status quo treatment, and job training for the un-
employed, where T = 1 would denote training and
T = 0 no training. To model treatment effects, I use
the standard “potential outcomes” notation (Rubin
1974): For every member of the target population,
the random variable Y1 ∈ [0, 1] denotes the outcome
that she would experience if assigned to treatment,
whereas Y0 ∈ [0, 1] is the outcome she would experi-
ence if assigned to the control group.1 Of course, only
one of the two random variables will be actualized; the
other realization remains counterfactual.

The decision maker observed outcomes experienced in
a size N simple random sample from a sample popula-
tion. Members of the sample were assigned treatment
according to some design that will initially be taken as
given; the question of optimal sample design is consid-
ered later. The sample generates an imperfect signal
for two reasons: First, it is finite, and random vari-
ation in observed outcomes will be fully considered.

1The restriction to [0, 1] is w.l.o.g. if, and only if, some
bounds on outcomes are known a priori.

Second, only a subset of the target population is ob-
servable. I model this by presuming that the sample
population is a subset of relative probability mass p
of the target population. Importantly, it is assumed
that while (Y0, Y1) is distributed identically across the
sample population, its distribution in the unobserv-
able part of the target population can be different. A
leading example is if a study was performed on vol-
unteers who might not be fully representative of the
target population. As a consequence, the distribu-
tion of (Y0, Y1) would only be partially revealed even
by an infinitely large sample. This is why the prob-
lem is inherently a decision problem under ambiguity,
and very similar in structure to interval probability
problems as well as robust Bayesian inference. See,
in particular, Manski (2002, 2005). Previous analyses
of the same problem either largely abstracted from
the finite sample problem (Manski 2007) or from the
ambiguity caused by missing data (Stoye 2006a).

To model the problem, let the random variable Z ∈
{0, 1} indicate whether a member of the target popu-
lation is in the sample population (Z = 1) or not (Z =
0). Define the random variables Ytz ≡ (Yt|Z = z) and
write p ≡ Pr(Z = 1), the proportion of observable
subjects in the population. I initially assume that
p is known. Then a state of nature s can be iden-
tified with a true distribution of (Y01, Y00, Y11, Y10).
Assume that a priori bounds on Y0 and Y1 are finite,
coincide, and that there are no restrictions on their
joint distribution, then it is without further loss of
generality to set the state space S equal to ∆([0, 1]4),
the set of distributions over [0, 1]4. Most of the discus-
sion will actually restrict outcomes to be binary, i.e.
set S = ∆

¡
{0, 1}4

¢
, more on which below. It is worth

noting that (Y01, Y00, Y11, Y10) are not restricted to be
independent. I will use the following notational con-
ventions: If Yi is a random variable, then μi denotes
its expectation and yi a sample mean.

The sample is a simple random sample from the sam-
ple population. For any sample point, one treatment
is assigned according to the sample design and the ac-
cording outcome is observed, thus the decision maker
sees realizations (t, yt1). Let SN = ({0, 1} × [0, 1])N ,
with typical element sN , denote the sample space in-
duced by a sample of size N , i.e. the collection of
possible sample realizations. The decision maker has
to choose a treatment rule δ : SN → [0, 1] that maps
possible sample outcomes into probabilities of assign-
ing treatment 1. In particular, she is allowed to ran-
domize. The set of decision rules δ is labelled D.
Any combination of state and decision rule induces an



expected outcome

u(δ, s) ≡ μ1Eδ(sN ) + μ0 (1− Eδ(sN ))
= (pμ11 + (1− p)μ10)Eδ(sN )

+ (pμ01 + (1− p)μ00) (1− Eδ(sN ))

Here, Eδ(sN ) is evaluated given s; although sup-
pressed in the notation, it will also depend on the
sample design. Strictly speaking, u is already a risk
function with respect to an underlying loss function
L(yt) = −yt. I will take for granted that if s were
known, treatments rules would be evaluated accord-
ing to u. With unknown s, the efficacy of δ will be
measured in terms of minimax regret relative to u,
thus a treatment rule δ∗ is optimal if

δ∗ ∈ argmin
δ∈D

½
max
s∈S

R(δ, s)

¾
,

R(δ, s) ≡ max
δ0∈D

©
u(δ0, s)

ª
− u(δ, s).

The minimax regret criterion minimizes worst-case
performance relative to the ex-post optimal expected
outcome or, equivalently, relative to the performance
of an infeasible “oracle” treatment rule that utilizes
full knowledge of E(Y01, Y00, Y11, Y10). Minimax regret
was originally suggested by Savage (1951). In the
present formulation — which is not the only possible
one — it was recently reconsidered in statistics and
related fields (Droge 1998, 2006; Eldar et al. 2003;
Hirano and Porter 2005; Manski 2004, 2005, 2007;
Schlag 2003, 2006; Stoye 2006a, 2007).2 A motivation
for it is that it avoids the imposition of priors and
optimizes against states of the world in which the de-
cision maker’s action has a large effect. This sets it
apart from its main competitors: The Bayesian de-
cision rule requires specification of a subjective prior
over states; maximin utility also avoids priors but op-
timizes against states in which outcomes are very bad,
irrespective of whether they are affected by actions.
For a historical overview and further heuristic as well
as axiomatic discussion, see Stoye (2006b).

Of course, there are many possible sample designs. I
will focus on those considered in Stoye (2006a); they
may serve as stylized models of real-world sampling
schemes and will turn out to be minimax regret opti-
mal. By stratified assignment, I henceforth mean that
N is even and that exactly half of the sample is al-
located to treatment 1. By randomized assignment, I
mean that sample points are assigned to treatments
by independent tosses of a fair coin.

Some comments on this setup are in order.

2Minimax regret is also closely related to the competititve
ratio; indeed, it could as well be called competititve difference.

• In this paper, p cannot depend on t, and N is not
a random variable. The story behind this setting
is that missing data occur before treatments are
assigned, an example being selection of subjects
into experimental pools. Manski (2007) consid-
ers the more general case where attrition from an
experimental pool can be selective by, and poten-
tially in reaction to, treatment assignment. Un-
fortunately, finite sample analysis of this case is
extremely involved, because sample composition
becomes a random variable whose exact distrib-
ution must be taken into account. Although one
specific such case is analyzed below, a general
treatment is left to future research.

• The below results presume binary outcomes, i.e.
Y0, Y1 ∈ {0, 1}. For lemma 2, it will be pointed
out that this is not necessary. For the other cases,
minimax regret treatment rules for Y0, Y1 ∈ [0, 1]
can — under regularity conditions on the state
space — be generated by a technique due to Schlag
(2003, 2006). The trick, which will be called bi-
nary randomization, is to replace every sample
realization yi by the outcome of one independent
toss of a coin with parameter yi and then apply
the below treatment rules to the resulting, binary
samples.

• Covariates are not introduced into this paper’s
notation, but the results immediately extend to
the case of finite-valued covariates by means of
proposition 3 in Stoye (2006a). Specifically, let
there be a covariate X and let the sample be
stratified by covariate, then minimax regret is
achieved by applying the below treatment rules
separately across covariates. For treatment as-
signment conditional on X = x, the treatment
rule therefore utilizes only the subsample with
covariate value x. The surprising aspect of this
is that there is no inference across covariates. See
Stoye (2006a) for an in-depth discussion.

• The decision problem can clearly be interpreted
as an imprecise probability problem. The present
specification respresents a very special case, how-
ever, because complete ignorance about true
probabilities is presumed. Prior information can
be introduced by restricting the state space S, as
is done in Stoye (2006a). This poses no concep-
tual difficulties but may, of course, change com-
putations.

The remainder of the paper is concerned with finding
δ∗ for different decision scenarios. The proofs exploit
the fact that δ∗ can be represented as the decision
maker’s equilibrium strategy in a fictitious zero-sum



game against Nature. This allows one to infer exis-
tence of a minimax regret treatment rule from known
game theoretic results (Glicksberg 1952). Other than
that, it just restates that the minimax regret decision
rule can be characterized as a saddle point, but the
game theoretic interpretation facilitates the import of
heuristics and solution strategies developed by econo-
mists.

2.2 Treatment Rules

The first step is to analyze the aforementioned bound-
ary cases, namely p = 1 and p ≤ 1/2.

Lemma 1 If p = 1, minimax regret is achieved by

δ∗1 ≡

⎧⎨⎩ 0, IN < 0
1/2, IN = 0
1, IN > 0

,

where

IN ≡ #(observed successes of treatment 1)

+#(observed failures of treatment 0)

−#(observed failures of treatment 1)
−#(observed successes of treatment 0)

∝ N1(y11 − 1/2)−N0(y01 − 1/2),

where Nt is the number of sample subjects assigned
to treatment t. For a stratified sample design, this is
equivalent to

δ∗1 ≡

⎧⎨⎩ 0, y11 < y01
1/2, y11 = y01
1, y11 > y01

.

Lemma 2 If p ≤ 1/2, minimax regret is achieved by

δ∗2 ≡
1

2
+

p

2(1− p)

IN
N

.

This applies for either stratified or randomized sample
design; in the former case, it can be rewritten as

δ∗2 ≡
1

2
+

p (y11 − y01)

2(1− p)
=
(py11 + 1− p)− py01

2(1− p)

as in Manski’s (in press) proposition 2.

Lemma 1 is from Stoye (2006a, proposition 1).
Lemma 2 follows from Manski (2007, proposition 2)
for stratified samples but not for randomized ones.
The latter design allows for empty sample cells, a case
that Manski has to exclude. The generalization pre-
sented here is new.

Also, while lemma 2 is here stated for Y0, Y1 ∈ {0, 1},
inspection of the proof reveals that δ∗2 can be extended

to Y0, Y1 ∈ [0, 1] by using the above definition of IN in
terms of (N0,N1, y01, y11). This is not the rule that
would emerge from applying the binary randomiza-
tion technique and then operating δ∗2 on the result-
ing, binary sample; in particular, it randomizes with
probability 0 if (Y01, Y11) has a continuous distribu-
tion. This illustrates that minimax regret treatment
rules need not be unique.

The next lemma and definition set the stage for the
general problem, i.e. p ∈ [0, 1]. From Manski (2007,
see also Stoye 2007), we know a minimax regret deci-
sion rule for the limiting case where the expectations
(μ01, μ11) of (Y01, Y11) are known.

Lemma 3 Let (μ01, μ11) be known, then minimax re-
gret is achieved by

δ∗3 ≡

⎧⎨⎩ 0, δ < 0
δ, 0 ≤ δ ≤ 1
1, 1 < δ

δ ≡ 1

2
+

p

2(1− p)
(μ11 − μ01).

This rule is essentially the population analog of δ∗2; it
just adds a truncation to insure that δ∗3 ∈ [0, 1]. As
final preliminary step, I define its sample analog:

Definition 1 The sample analog of δ∗3 is

δ∗4 ≡

⎧⎨⎩ 0, δ < 0
δ, 0 ≤ δ ≤ 1
1, 1 < δ

δ ≡ 1

2
+

p

2(1− p)

IN
N

.

To accommodate both sample designs, δ∗4 is based on
IN/N rather than (y11 − y01). Of course, these ex-
pressions coincide under the stratified design.

I am now ready to state this paper’s main result.

Theorem 4 Consider any fixed N < ∞ as well as
p ∈ (0, 1]. Then minimax regret is achieved by the
following randomization over δ∗1 and δ

∗
4:

δ∗ ≡
½

δ∗1 with probability α∗

δ∗4 with probability (1− α∗)
,



where

α∗ ≡ min

(
p

2(1−p) −A

B −A
, 1

)

A ≡ 2−N
∗ X
n≥N∗(1− 1

2p )

µ
N∗

n

¶
(2n−N∗)

×min
½
1

2
+

p

2(1− p)

2n−N∗

N∗
, 1

¾
B ≡ 2−N

∗ X
n>N∗/2

µ
N∗

n

¶
(2n−N)

and

N∗ =

½
N, N is odd
N − 1, N is even

.

In particular, α∗ equals 1, and the decision rule there-
fore collapses to δ∗1, iff p ≥ p∗N ≡ 2B

2B+1 . This thresh-
old value converges to 1 as N → ∞. On the other
hand, α∗ equals 0, and the decision rule therefore col-
lapses to δ∗4, iff p ≤ 1/2.
If p = 0, then δ∗ = 1/2.

Substantively, it turns out that minimax regret is
achieved by randomizing over δ∗1 and δ∗4. In words,
the decision maker should toss a (biased) coin and
then use rule δ∗1 if the coin came up head. The ran-
domization parameter α∗ changes with p and N in
interesting ways:3

• For any given N , δ∗4 applies for p ≤ 1/2 and its
weight then decreases, with δ∗1 being attained for
p ≥ p∗N , a value that is strictly below 1. Thus for
every N , a sufficiently small but nonzero mass
of missing data can be ignored. Although p∗N
converges to 1 at rate N−1/2, it significantly dif-
fers from 1 for rather large N , so that δ∗1, which
was developed for fully observable data, exhibits
quite some robustness to missing data.

• For any given p ∈ (1/2, 1), the randomization
changes with N as follows: For N small enough,
the presence of missing data is ignored, i.e. α∗ =
1, but α∗ converges to zero as N grows, so that
the limit rule is approximated (but not attained)
for large N . Again, the convergence of α∗ to 0 is
perhaps surprisingly slow; it is also nonuniform
in p. It should be pointed out, however, that for
anyN , δ∗4 becomes similar to δ

∗
1 as p→ 1; thus, it

does not follow that convergence of the treatment

3MATLAB code that evaluates α∗ is available on the au-
thor’s webpage at http://homepages.nyu.edu/~js3909.

rule to its limit is “slow” (or nonuniform in p) in
every interesting metric.

2.3 Value Function

By evaluating regret on the fictitious game’s equilib-
rium path, one can find the minimax regret achievable
under either treatment assignment rule.

Proposition 5 For either treatment assignment
scheme, the decision problem has minimax regret
value (1− p)/2 if p < p∗N and

max
a∈[1/2,1]

⎧⎨⎩ (2p(a− 1) + 1)

×
P

n<N∗
2

µ
N∗

n

¶
an (1− a)N

∗−n

⎫⎬⎭
otherwise, where N∗ is as in theorem 4. In particular,
if p ≤ 1/2, then the minimax regret value equals (1−
p)/2 for any N .

As in Stoye (2006a) and Schlag (2006), learning only
occurs with every other sample point. Unlike in those
papers, learning is incomplete: As N → ∞, regret
does not converge to zero but to (1 − p)/2. This re-
flects the fact that in the presence of missing data,
even the asymptotic decision problem will generate
positive regret. An especially unusual feature is that
learning occurs only as long as p ≥ p∗N ⇔ α∗ = 1.
When this region of parameter space is left, regret
“locks in” at its limiting value.4 Recall that this oc-
curs for some finite sample size for any p < 1; what’s
more, it is the case for any sample size if p ≤ 1/2.
This insight generalizes Manski’s (2007) finding that
when at least half of the data are missing, minimax
regret is independent of sample size. More generally,
the presence of any missing data whatsoever means
that the limiting decision quality is exactly attained
for some finiteN , and additional observations are use-
less beyond that threshold. At least from an econo-
metrician’s perspective, this finding is unexpected.

2.4 Optimal Sample Design

The preceding analysis took two different sample de-
signs as given. They turn out to generate the same
maximal expected regret whenever both are feasible,
i.e. when N is even. An obvious question is whether
this regret is optimal when sample design is itself a
choice variable. The answer is in the affirmative.

4The intuition is that in the fictitious game, the switch to
α∗ < 1 marks the transition to a pooling equilibrium in which
the signal generated by sample data is noninformative about
the true state of the world. Hence, the decision maker ceases
to learn from the signal.



To formalize this idea, let hn ≡ (ti, yit1)ni=1 denote the
sample history up to realization n (with the under-
standing that h0 = ∅). If assignment of treatments
to sample points is a choice variable, this can be mod-
elled by letting the decision maker choose a vector of
mappings τ = (τn)

N
n=1, where τn(N,hn−1) ∈ [0, 1]

specifies the probability of assigning treatment 1 to
sample point n conditional on history hn−1 in a sam-
ple of overall size N . The randomized assignment
scheme corresponds to τ randn = 1/2,∀n, whereas one
way to realize the stratified sample design is to set
τstratn ≡ I {n is even}. Observe that the sampling
scheme τ may depend on sample history, but that
the decision maker has to specify it before seeing any
sample points. This is a common formalization in
econometrics because it corresponds to the concept
of risk functions in statistical decision theory, but
also because it is often realistic for the problems that
economists consider. For example, assignment to job
training is typically planned by the researcher but exe-
cuted by caseworkers or other third parties. However,
if one wanted to model an online problem, one might
also want to allow the decision maker to re-optimize
τ along the sample path, which does not in general
lead to the same problem.5

Proposition 6 Both τ rand and τstrat (when applica-
ble) are minimax regret optimal assignment schemes.

This result and proposition 3 in Stoye (2006a) jointly
imply that if one faces a random sample from a popu-
lation with a finite-valued covariate and can choose
the sample design, then one can achieve minimax
regret by using the randomized assignment scheme
and applying theorem 4 separately across covariates.
Compared to Manski (2007), this result applies to a
narrower range of missing data scenarios but is more
general on two other dimensions: p may exceed 1/2,
and the treatment scheme is defined even when some
sample cells are empty.

2.5 Treatment Choice with Unknown
Propensity Score

I now turn to the case where p is not known a priori
but has to be learned from the data. Thus, assume
that p can merely be restricted to lie in an interval

5One might think that the difference cannot matter, because
the definition of τ allows the decision maker to prescribe reac-
tions to sample observations. In fact, this depends on how the
decision maker reacts to the arrival of information, that is, on
her updating rule. Under the most intuitive such rule, namely
pointwise Bayesian updating of the state space, both minimax
regret and maximin utility are dynamically inconsistent, mean-
ing that the conjecture is false. What’s more, the present choice
of suppressing updating then appears not only realistic but sen-
sible (e.g., Augustin 2003). Hanany and Klibanoff (2005) pro-
vide an updating rule that renders the conjecture true.

£
p, p
¤
⊆ [0, 1]. The sample size N continues to refer

to the number of observed units. This leaves open
the question of how exactly learning about p happens
as samples are realized. It turns out that this ques-
tion is irrelevant: Minimax regret can be achieved by
presuming that p equals p.

Proposition 7 Consider the setting of theorem 4,
except that p ∈

£
p, p
¤
. Then minimax regret is

achieved by setting p = p and applying δ∗.

The intuition for this result is straightforward: As can
be seen from proposition 6, minimax regret decreases
in p. This is also intuitive since a higher p means that
signals are representative of a larger part of the target
population, and should thus be more informative. It
implies that the worst case scenario is given by p = p.

Proposition 4 has an unsettling implication: If p = 0,
minimax regret is achieved by setting δ∗ = 1/2 irre-
spective of the observed sample, i.e. by a “no-data
rule.” As observed by Savage (1954) and recently by
Manski (2004), Schlag (2003), and Stoye (2006a), no-
data rules are a frequent problem with the maximin
utility criterion. Only Stoye (2006a) previously found
similar problems to arise with minimax regret. Propo-
sition 7 provides another, realistic problem that leads
to a no-data minimax regret treatment rule. It sug-
gests that the issue of no-data rules may not consti-
tute the most compelling argument for minimax re-
gret over maximin utility.

3 Summary and Outlook

This paper added to the recently growing literature on
minimax regret and specifically to research by Manski
(2007) and Stoye (2006a). It provided a joint general-
ization of much of those papers’ analyses by consider-
ing a treatment choice problem where information is
incomplete in two ways, firstly because of finite sam-
ple variation but also, and more fundamentally, be-
cause of missing data and hence incomplete identifi-
cation of population distributions. The core finding is
that results by Manski (2007) and Stoye (2006a) can
be linked in a particular way: Each of them identi-
fies a minimax regret treatment rule for a boundary
case of the present problem, and a smooth transition
between these solutions is generated by randomizing
over them. This insight also strengthens the general
finding that minimax regret tends to prescribe ran-
domization, a point stressed by Schlag (2003, 2006).
The result was extended by presenting the decision
problem’s value function, by allowing for unknown or
partially known propensity scores, and by showing op-
timality of certain sample designs.

Many questions remain open on minimax regret treat-



ment choice. For example, Stoye (2007) generalizes
Manski (2007) in a different direction, namely by al-
lowing for a multi-valued treatment. This general-
ization could be further extended by considering fi-
nite samples. The same remark holds for additional
results that Stoye (2006a) presents with respect to
covariates and the effect of restricting S, as well as
Manski’s (2007) consideration of sample attrition that
may vary by assigned treatment. When designing
sample designs, one could also consider the possibility
that outcomes experienced by the sample subjects are
taken into account when evaluating the design. This
possibility was ignored here for simplicity; it leads to
intricate “bandit” problems as in Schlag (2003).
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A Proofs

Preliminaries Most proofs proceed by analyzing
the following zero-sum game: (i) The decision maker
(DM) chooses a statistical treatment rule δ : θ →
[0, 1], Nature chooses a mixed strategy σ ∈ ∆ (S)
over states. (ii) A neutral meta-player draws s ac-
cording to σ, then θ according to s. (iii) DM’s payoff
is
R
R(δ, s)dσ. This game is useful because of the fol-

lowing fact (e.g., Berger 1985).

Lemma 8 Assume that σ∗ ∈ ∆(S) and δ∗ are such
that (δ∗, σ∗) is a Nash equilibrium of the above game,
that is, δ∗ ∈ argminδ∈D

R
R(δ, s)dσ∗ and σ∗ ∈

argmaxσ∈∆(S)
R
R(δ∗, s)dσ. Then δ∗ is a minimax

regret treatment rule.

Proofs will, therefore, proceed by conjecturing and
then verifying Nash equilibria of the fictitious game
(as also in Schlag 2003, 2006, and Stoye 2006a, 2007).

Lemma 1 See Stoye (2006a, propositions 1 and 2).

Lemma 2 Consider first the randomized treatment
assignment scheme. Assume that DM plays δ∗, then
any P (Y01, Y00, Y11, Y10) in the support of σ∗ must
maximize R(δ∗, s). Expansion of R(δ∗, s) yields

max{(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

× E
µ
1

2
+

p

2(1− p)

IN
N

¶
,

(pμ01 + (1− p)μ00 − pμ11 − (1− p)μ10)

× E
µ
1

2
− p

2(1− p)

IN
N

¶
}.

Simple calculations show that distribution of IN de-
pends on P (Y01, Y00, Y11, Y10) only through (μ01, μ11).
Thus R(δ∗, s) depends on P (Y01, Y00, Y11, Y10) only
through (μ01, μ00, μ11, μ10). Furthermore, symme-
try of the two components of the max-operator
means that (μ01, μ00, μ11, μ10) = (a, b, c, d) maximizes
R(δ∗, s) iff (μ001, μ

0
00, μ

0
11, μ

0
10) ≡ (c, d, a, b) does. One

can thus construct a best response to δ∗ by finding
some (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) that maximizes

(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

× E
µ
1

2
+

p

2(1− p)

IN
N

¶
and presuming that Nature randomizes evenly be-
tween (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) and its symmetric counter-

part. I will now find (μ∗01, μ
∗
00, μ

∗
11, μ

∗
10) and then ver-

ify that δ∗ is a best response to Nature’s strategy.

In the proof of proposition 1(ii) in Stoye (2006a),
it is established that the distribution of IN depends
on (μ01, μ11) only through μ11 − μ01. Without loss
of generality, I therefore presume that (μ01, μ11) =¡
1−∆
2 , 1+∆2

¢
for some ∆ ∈ [−1, 1]. Observe fur-

thermore that since IN is a sum of N realizations
of an i.i.d. random variable, E(IN/N) = EI1 =
1
2(μ11 − (1 − μ11)) − 1

2 (μ01 − (1 − μ01)) = ∆. Thus,
we can define (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) as maximizer of

(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

×
µ
1

2
+

p(μ01 − μ11)

2(1− p)

¶
.

Clearly this requires that μ∗10 = 1, μ
∗
00 = 0, and that

∆∗ ≡ μ∗11 − μ∗01 maximize

(p∆+ 1− p)×
µ
1

2
+

p∆

2(1− p)

¶
=
1− p

2
− p2∆2

2(1− p)
,

which obtains whenever ∆ = 0 ⇔ μ01 = μ11. It fol-
lows that under Nature’s best response, observations
of Y01 and Y11 are uninformative, and the decision
maker is indifferent between all treatment rules. In
particular, δ∗ is a best response.

The proof is essentially the same for stratified sam-
pling. In that case, EIN can be directly written as
linear function of (μ01, μ11), so that proposition 1(ii)
from Stoye (2006a) need not be invoked.

Lemma 3 Follows from Manski (2007, proposition
1); see also Stoye (2007, corollary 1).

Theorem 4 I restrict attention to the randomized
treatment assignment scheme and also assume N to
be odd; the extension to stratified sampling as well
as even N follows along the lines of proposition 1



in Stoye (2006a). The core idea is to restrict DM’s
(pure) strategy space to {δ∗1, δ∗4}, rendering the game
more tractable. Of course, it must be shown that
equilibria of the simplified game are also equilibria of
the original one. Thus, identify DM’s strategy with
α ∈ [0, 1], the probability with which δ∗1 is played.
As in lemma 2, the distribution of δ∗ depends on s
only through ∆ ≡ μ11 − μ01. Nature will therefore
pick (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) ∈ [0, 1]4 to maximize R(α, s),

which can be expanded to

max{(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

× (1− αf1(μ11 − μ01)− (1− α)f0(μ11 − μ01)),

(pμ01 + (1− p)μ00 − pμ11 − (1− p)μ10)

× (αf1(μ11 − μ01) + (1− α)f4(μ11 − μ01))},

where
fi(d) ≡ E(δ∗i |μ11 − μ01 = d).

Some observations from the proof of lemma 2 apply:
The objective function is symmetric, so that to find
best responses, one can restrict attention to maximiz-
ers of the first element. Such maximizers must have
(μ10, μ00) = (1, 0), and the optimization problem can
be reduced to maximization over ∆ ∈ [−1, 1] of

φ(∆; p, α) ≡ (p∆+1−p)(1−αf1(∆)− (1−α)f4(∆)).

Notice that fi and φ are differentiable in their argu-
ments; this will be used as first-order conditions will
be evaluated. To construct Nash equilibria, it will
be assumed that Nature randomizes evenly over the
maximizer such found and its symmetric counterpart.
The new arguments relative to lemma 2 are as follows.

Step 1: By the same arguments that apply to the
original game, the simplified game possesses Nash
equilibria. These must fall into one of three classes:

(i) Separating equilibria: Assume ∆ > 0, then the
better treatment is the one that has higher expected
success in observable units. The sampling distribution
is binomial and thus possesses a monotone likelihood
ratio property. It follows that δ∗1 (respectively α = 1)
is a best response.

(ii) Pooling equilibria: Assume ∆ = 0, then the sig-
nal generated by the sample is uninformative. Any
decision rule constitutes a best response to this. The
equilibrium from lemma 2 is an example of this case.

(iii) Negatively separating equilibria: Assume ∆ < 1,
then the sample generates an informative signal, but
the decision maker wants to act against this signal. In
the simplified game, her best response would therefore
be δ∗4, which is less sensitive to the signal than δ∗1.

The first two cases have in common that DM’s equi-
librium strategy remains a best response in her un-

restricted strategy space. Whenever the simplified
game’s equilibrium falls into one of these cases, it
therefore is an equilibrium of the original game as
well. This does not hold if the equilibrium is nega-
tively separating, in which case the decision maker’s
unrestricted best response would be δ∗5 ≡ 1− δ∗1.

Step 2: I will now show that a negatively separating
equilibrium cannot obtain. It follows that equilibria of
the simplified game are either separating or pooling,
and thus coincide with equilibria of the original game.

To show the claim, suppose that DM plays δ∗4. This
leads to a negatively separating equilibrium iff Na-
ture’s best response is some ∆∗ < 0. The accordingly
constrained value of her response problem is

sup
∆∈[−1,0)

φ(∆; p, 0)

= sup
∆∈[−1,0)

(p∆+ 1− p)(1− f4(∆)).

For comparison, the problem of maximizing

ρ(∆; p) ≡ (p∆+ 1− p)(1− f3(∆))

was considered in lemma 2; recall it is solved by∆ = 0
and has value (1− p)/2. Substitute the definitions of
δ∗3 and δ∗4 into the definition of fi to find

f3(∆) = EB(∆,N)d∗

f4(∆) = EB(∆,N)d,

where

d∗ =
1

2
+

p(2n−N)

2N(1− p)

d =

⎧⎨⎩ 0, d∗ < 0
d∗, 0 ≤ d∗ ≤ 1
1, d∗ > 1

and where EB(∆,N) denotes expectation with respect
to the distribution of n, which is binomial with para-
meters (∆, N). From inspection of these, it is elemen-
tary that f4(∆) lies between f3(∆) and 1/2 for any
(∆, p); specifically, f4(∆) ≥ f3(∆) whenever ∆ < 0.
It follows that ∆ ≤ 0⇒ φ(∆; p, 0) ≤ ρ(∆; p). Hence,

sup
∆∈[−1,0)

φ(∆; p, 0) ≤ sup
∆∈[−1,0)

ρ(∆; p) = (1− p)/2,

and this supremum is furthermore not attained on
[−1, 0). But φ(∆; p, 0) = (1 − p)/2, so ∆ = 0 is a
strictly better response to δ∗4 than any ∆ < 0.

Step 3: It remains to characterize separating respec-
tively pooling equilibria. The main tool for this will be
evaluation of first-order conditions. For a separating
equilibrium, one must have 0 ≤ argmax∆ φ(∆; p, 1).
Consider the partial derivatives

φ∆(∆; p, 1) = −f 01(∆) (p∆+ 1− p) + p(1− f1(∆))

φ∆p(∆; p, 1) = (1−∆)f 01(∆) + 1− f1(∆) > 0.



Since the cross-derivative is positive,
argmax∆ φ(∆; p, 1) increases in p in strong set
order (that is, its smallest and largest element
increase) by standard supermodularity arguments.
Hence, the separating equilibrium can be maintained
for p > p∗N , where p

∗
N is implicitly defined by

0 ∈ arg max
∆∈[−1,1]

φ(∆; p∗N , 1).

An expression for p∗N can be derived by inspecting the
first-order condition:

φ∆(0, p
∗
N ; 1) = 0.

The previous expression for φ∆(∆, p; 1) can be sim-
plified at ∆ = 0. Write

f1(∆) = Pr(IN > N/2)

=
X

n>N/2

µ
N
n

¶µ
1 +∆

2

¶nµ
1−∆
2

¶N−n
,

which implies that (after some simplification)

f 01(0) = 2
−N

X
n>N/2

µ
N
n

¶
(2n−N) ≡ B.

Also observing that f1(0) = 1/2, the first-order con-
dition becomes

−(1− p)B +
p∗N
2
= 0 =⇒ p∗N =

2B

2B + 1
.

To see convergence of p∗ = 2B
2B+1 to 1, notice that B

can be rewritten as

B = E(|n|−N/2),

where n is the number of successes recorded inN inde-
pendent coin tosses. The convergence rate of binomial
distributions to the Normal immediately implies that
B = O

¡
N1/2

¢
and hence that 1− p∗N = O(N−1/2).

Consider now the pooling equilibrium. This equilib-
rium requires that ∆ = 0 maximizes φ(∆, p;α). A
necessary condition for this is

0 = φ∆(0; p, α)

= (p · 0 + 1− p) (−αf 01(0)− (1− α)f 04(0))

+p (1− αf1(0)− (1− α)f4(0)) .

Some of the previous simplifications apply again; in
particular, f4(0) = 1/2. Substituting in for f4(∆) =
EB(∆,N)d, one finds that (after simplification)

f 04(0) = 2
−N

NX
n=0

µ
N
n

¶
(2n−N) d ≡ A.

The first-order condition thus simplifies to

0 = −(1− p)(αB + (1− α)A) +
p

2

=⇒ α∗ =

p
2(1−p) −A

B −A
.

This yields an equilibrium iff α∗ ∈ [0, 1]. I will show
below that B > A and that A ≤ p

2(1−p) , with equality
iff p ≤ 1/2. Hence, α∗ ≥ 0 as required, and α∗ = 0
iff p ≤ 1/2, yielding the equilibrium from lemma 2.
Furthermore, α∗ equals 1 if p

2(1−p) = B ⇔ p = 2B
2B+1 ,

the condition identified for a separating equilibrium.

I conclude by filling the gaps in the preceding para-
graph. To see that A ≤ p

2(1−p) , with equality iff
p ≤ 1/2, observe that f 04(0) ≤ f 03(0) because f

0
4(∆) ≤

f 03(∆) was shown for ∆ < 0 in step 2, yet these deriv-
atives are continuous. Hence A ≤ f 03(0), but

f 03(0) =
d

d∆
EB(∆,N)

µ
1

2
+

p(2n−N)

2N(1− p)

¶
=

p

2(1− p)

because EB(∆,N)
¡
2n−N
N

¢
= ∆. For p > 1/2, one can

minimally expand on arguments from step 2 to show
f 04(0) < f 03(0), hence A < p

2(1−p) .

To see B > A, take explicit derivatives of binomial
expectations to find (after some simplification)

B = 2−N
NX
n=0

µ
N
n

¶
(2n−N) I {d∗ > 1/2} ,

thus

B−A = 2−N
NX
n=0

µ
N
n

¶
(2n−N) (I {d∗ > 1/2}− d) ,

but (2n−N) (I {d∗ > 1/2}− d) is easily seen to be
over nonnegative for any (n,N). Furthermore, the
above sum is strictly positive whenever there exists n
for which I {d∗ > 1/2} − d 6= 0, that is, whenever δ∗1
and δ∗4 do not agree. (They agree iff p ≥ N/(N + 1),
a number that is well above p∗ for all N .)

Proposition 5 Follows by algebraically evaluating
maxsR(δ

∗, s) using the above simplifications.

Proposition 6 Assume the decision maker can pick
(τ , δ) and that the worst-case prior σ∗ is as in proposi-
tion 1, then due to that prior’s symmetry, the distrib-
ution of (In+1|In) does not depend on τn. Hence, the
decision maker is indifferent between all possible τ ;
in particular, the randomized design, in conjunction
with δ∗, constitutes a best response. That σ∗ remains
a best response follows immediately from the proof of
proposition 1. The conclusion extends to the strat-
ified design because that design generates the same



maximal regret as the randomized one, yet a zero-sum
game cannot have two Nash equilibria with different
values.

Proposition 7 The proof is just as in theorem 4,
with the following adjustment: Extend the decision
problem, and hence the fictitious game, by identifying
the state space with S × [0, 1] with typical element
(s, p). Assume DM sets p = p and then uses δ∗ from
proposition 4. Then by following steps from theorem
4, Nature’s best-response problem can be reduced to

max
p∈[p,p],∆∈[−1,1]

!

{(p∆+ 1− p) (1− αf1(∆)− (1− α)f4(∆))} .

The objective decreases in p — notice especially that
since DM uses p = p, f4(∆) is not a function of Na-
ture’s choice of p. Hence, Nature will choose p = p.
The remainder of the proof is unchanged.
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Abstract

This paper studies and bounds the effects of approxi-
mating loss functions and credal sets, under very weak
assumptions, on choice functions. In particular, the
credal set is assumed to be neither convex nor closed.
The main result is that the effects of approximation
can be bounded, although in general, approximation
of the credal set may not always be practically pos-
sible. In case of pairwise choice, I demonstrate how
the situation can be improved by showing that only
approximations of the extreme points of the closure
of the convex hull of the credal set need to be taken
into account, as expected.

Keywords. decision making, E-admissibility, maxi-
mality, numerical analysis, lower prevision, sensitivity
analysis

1 Introduction

Classical decision theory tells a decision maker to
choose that option which maximises his expected util-
ity. A generalisation of this principle is compelling
when the probabilities and utilities relevant to the
problem are not well known. Choice functions are
one such generalisation, and select a set of optimal
options: instead of pointing to a single solution based
on possibly wrong assumptions, choice functions pro-
vide a set of optimal options. The decision maker can
then investigate further if the set is too large, or not,
if for instance the optimal set is a singleton, or if a
single option from the set stands out from the rest by
other arguments.

However, in modelling decision problems, we often af-
ford ourselves the luxury of infinite spaces and infinite
sets, making those problems sometimes hard to solve
analytically. In such cases we must resort to com-
puters, and these cannot handle gambles on infinite
spaces, let alone arbitrary infinite sets of probabili-
ties. Hence, in that case we must approximate our

infinite sets by finite ones. By taking the finite sets
sufficiently large, hopefully the approximation reflects
the true result accurately. This paper confirms this
intuition when modelling choice functions induced by
arbitrary (not necessarily convex) sets of probabilities
and a single cardinal utility, extending similar results
known in classical decision theory [5, 10].

The paper is organised as follows. Section 2 intro-
duces notation, and briefly reviews the theory of co-
herent choice functions and their role in decision the-
ory. In Section 3 the building blocks for a theory of
approximation are introduced, along with some useful
results on what they imply for loss functions, sets of
probabilities, and expected utility. The main part of
the paper begins in Section 4, studying and bound-
ing the effects of approximation on coherent choice
functions. Section 5 improves the results of the pre-
vious section for pairwise choice. Section 6 concludes
the paper. Some essential but technical results on ap-
proximating the standard simplex in Rn are deferred
to an appendix.

2 Choice Functions

Let Ω denote an arbitrary set of states. Bounded
random quantities on Ω, i.e. bounded maps from Ω to
R, are also called gambles [17], and will be denoted
by f , g, . . . L(Ω) denotes the set of all gambles on
Ω. Finitely additive probability measures, or briefly
probability charges [2], are denoted by P , Q, . . . and
P(Ω) denotes the set of all probability charges on the
power set ℘(Ω) of Ω.

In a decision problem, we desire to choose an optimal
option d from a set D of options. Choosing d induces
an uncertain reward r from a set R of rewards, with
probability charge µd(·|w) over ℘(R), depending on
the outcome of the uncertain state w ∈ Ω. For each
w ∈ Ω, µd(·|w) is a lottery over R, and as a function
of w, µd(·|·) : w 7→ µd(·|w) is a horse lottery or act.



If we model our belief about states and rewards by a
probability charge P on ℘(Ω) and a state dependent
utility function U(·|w) on R, then utility theory [16,
1, 4] tells us to choose a decision d which maximises
the expected utility, or prevision:

E(d) =
∫

Ω

(∫
R

U(r|w) dµd(r|w)
)

dP (w)

=
∫

Ω

fd(w) dP (w)

where fd(w) =
∫

R
U(r|w) dµd(r|w) is the gamble asso-

ciated with decision d, and the integrals are Dunford
integrals [2]. For simplicity, in this paper, we assume
U(r|w) to be bounded, i.e.

sup
r,w

U(r|w)− inf
r,w

U(r|w) < +∞

Among other things, this ensures that relative approx-
imation can be defined, as in Section 3, without tech-
nical complications.

A decision which maximises expected utility is called a
Bayes decision for the decision problem (Ω, D, P, U).

However, if we are not sure about the probability of
all events and the utility of all rewards, a more reliable
design is to use a family (Pα, Uα)α∈ℵ of probability-
utility pairs (where ℵ is an index arbitrary set), and
to elicit from D those options which maximise ex-
pected utility with respect to at least one of the pairs
(Pα, Uα). First, for each α ∈ ℵ, let

Eα(d) =
∫

Ω

fα
d (w) dPα(w)

where fα
d (w) =

∫
R

Uα(r|w) dµd(r|w) is the gamble as-
sociated with decision d and model α ∈ ℵ. Then we
define:

Definition 1. A decision d ∈ D is called an optimal
decision for the decision problem (Ω, D, (Pα, Uα)α∈ℵ)
if d belongs to the set

opt(Ω, D, (Pα, Uα)α∈ℵ)
= {d ∈ D : (∃α ∈ ℵ)(∀e ∈ D)(Eα(d) ≥ Eα(e))}

=
{

d ∈ D : (∃α ∈ ℵ)
(

Eα(d) = sup
e∈D

Eα(e)
)}

As such, the operator opt selects a set of optimal de-
cisions, namely all decisions which are Bayes with re-
spect to (Ω, D, Pα, Uα) for at least one α ∈ ℵ. Such
an operator is called a choice function or optimality
operator [3, 15].

In case (Pα, Uα)α∈ℵ = M× U for some convex sets
M and U , optimality as defined above is also called
E-admissibility [9, Sec. 4.8].

There are many ways to define a choice function start-
ing from a set (Pα, Uα)α∈ℵ (see [9, 12, 17, 8, 15]). The
one in Definition 1 satisfies an interesting set of ax-
ioms [8, 13], and is subject of a representation theorem
in case utility is precise and state independent (i.e. if
Uα(r|w) depends on neither on α nor on w) and Ω is
finite (for infinite Ω the representation theorem is sub-
ject to additional constraints, which preclude merely
finitely additive probabilities over Ω) [13].

For the sake of simplicity, we shall only be concerned
about decision problems with precise and state in-
dependent utility functions, i.e. when (Pα, Uα)α∈ℵ =
M× {U} with U : R → R a bounded state indepen-
dent utility over R and

M = {Pα : α ∈ ℵ}

The set M is called a credal set as it represents our
belief about w ∈ Ω. We can identify M itself as index
set, and write

EP (d) =
∫

Ω

fd(w) dP (w)

with fd(w) =
∫

R
U(r) dµd(r|w), for any P ∈M.

Finally, defining the loss function L : D × Ω → R
as L(d, w) = −fd(w), the expected value EP (d) is
uniquely determined by P and L alone: we need not
be concerned explicitly with R, µd(r|w), and U(r).

3 Approximate Gambles,
Probabilities, and Previsions

Let A = {A1, . . . , An} denote a finite partition of Ω.
As we approximate Ω by the finite set A, we also need
to approximate decisions, gambles, and probability
charges on Ω.

Let ε ≥ 0. For a gamble f in L(Ω) and a gamble f̂ in
L(A), we shall write f ∼ε f̂ if

max
A∈A

sup
w∈A

∣∣∣f(w)− f̂(A)
∣∣∣ ≤ [sup f − inf f ]ε

Note that f ∼ε f̂ implies af +b ∼ε af̂ +b, for any real
numbers a and b, a > 0. Therefore, the relation ∼ε

is invariant with respect to positive linear transfor-
mations of utility: it only depends on our preferences
over lotteries, and not on our particular choice of util-
ity scale.

For a probability charge P in P(Ω), and a probability
charge P̂ in P(A), we shall write P ∼ε P̂ if∑

A∈A

∣∣∣P (A)− P̂ (A)
∣∣∣ ≤ ε



Note that this implies |P (A) − P̂ (A)| ≤ ε for any
A ∈ ℘(A). Also note the differences between the def-
initions of ∼ε for gambles and bounded charges.

For a loss function L on D ×Ω and a loss function L̂
on D ×A we write L ∼ε L̂ if for all d ∈ D

fd ∼ε f̂d

(with fd(w) = −L(d, w) and f̂d(A) = −L̂(d, A)).

For a subset M of P(Ω) and a subset M̂ of P(A), we
write M ∼ε M̂ if for every P in M there is a P̂ in
M̂ such that P ∼ε P̂ , and for every P̂ in M̂ there is
a P in M such that P ∼ε P̂ .

A few useful results about approximations are stated
in the next lemmas.

Lemma 2. Assume that D is finite. Then, for every
loss function L on D × Ω and every ε > 0, there is a
finite partition A of Ω and a loss function L̂ on D×A
such that L ∼ε L̂ and |A| ≤ (1 + 1/ε)|D|.

Proof. Consider any d in D, and let Rd = sup fd −
inf fd. Because fd is bounded, we can embed the
range of fd in k intervals I1, . . . , Ik of length Rdε,
say

[inf fd, inf fd + Rdε), [inf fd + Rdε, inf fd + 2Rdε),
. . . , [inf fd + (k − 1)Rdε, inf fd + kRdε)

with k such that sup fd ∈ Ik. Therefore, inf fd + (k−
1)Rdε ≤ sup fd < inf fd + kRdε and hence k − 1 ≤
1/ε < k. Observe that k is independent of d ∈ D.

The sets A1, . . . , Ak defined by

Aj = f−1
d (Ij)

form a finite partition Ad = {Aj : Aj 6= ∅} of cardi-
nality |Ad| ≤ k ≤ 1 + 1/ε and the gamble f̂d ∈ L(Ad)
defined by

f̂d(Ai) = inf
w∈Ai

fd(w)

satisfies

sup
w∈Aj

∣∣∣fd(w)− f̂d(Aj)
∣∣∣

= sup
fd(w)∈Ij

∣∣∣∣fd(w)− inf
fd(w)∈Ij

fd(w)
∣∣∣∣

≤ sup Ij − inf Ij = Rdε

for all Aj ∈ Ad; hence fd ∼ε f̂d. Defining L̂(d, A) =
−f̂d(A) for all d ∈ D, we have L ∼ε L̂.

The finite collection of partitions {Ad : d ∈ D} has
a smallest common refinement A. Since each Ad has
no more than 1 + 1/ε elements, A has no more than

ε:
0.2 0.1 0.05 0.02 0.01

|D|: 2 1.6 2.1 2.6 3.4 4.0
4 3.1 4.2 5.3 6.8 8.0
8 6.2 8.3 10.6 13.7 16.0

16 12.5 16.7 21.2 27.3 32.1
32 24.9 33.3 42.3 54.6 64.1

Table 1: Upper bound on log10(|A|), i.e. the loga-
rithm of the cardinality of the finite partition A for
various values of precision ε > 0 and number of deci-
sions (see Lemma 2).

(1 + 1/ε)|D| elements. Indeed, two partitions of car-
dinalities k1 and k2 respectively have a smallest com-
mon refinement of cardinality no more than k1k2.By
induction, n partitions of cardinalities k1, . . . , kn have
a smallest common refinement of cardinality no more
than

∏n
j=1 kj and hence,

|A| ≤ (1 + 1/ε)|D|

Table 1 lists upper bounds on the size of the partition,
to ensure L ∼ε L̂, for various values of ε and |D|,
according to Lemma 2.

Let
(
a
b

)
be the binomial coefficient, defined for all real

numbers a ≥ b ≥ 0 by(
a

b

)
=

Γ(a + 1)
Γ(b + 1)Γ(a− b + 1)

with Γ the Gamma function.

Lemma 3. For every subset M of P(Ω), every δ > 0,
and every finite partition A of Ω, there is a finite
subset M̂ of P(A) such that M ∼δ M̂ and |M̂| ≤(|A|(1+1/δ)

|A|−1

)
.

Proof. Consider any P in M. Let n = |A| and let the
elements of A be A1, . . . , An. Consider the vector
x = (P (A1), . . . , P (An)) in ∆n. Let N be the smallest
natural number such that N ≥ n/δ.

By Lemma 13 there is a vector y in ∆n
N such that

|x− y|1 < n/N ≤ δ

Define P̂ in P(A) by

P̂ (Ai) = yi

for all i ∈ {1, . . . , n}—by finite additivity, P̂ is well
defined on ℘(A). By construction, P ∼δ P̂ because

n∑
i=1

∣∣∣P (Ai)− P̂ (Ai)
∣∣∣ = |x− y|1 < δ



δ:
0.2 0.1 0.05

|A|: 4 3.3 4.1 5.0
8 7.9 9.8 11.8

12 12.5 15.5 18.7
16 17.1 21.3 25.6
20 21.8 27.1 32.6
24 26.4 32.9 39.5
28 31.1 38.6 46.5
32 35.8 44.4 53.4

log10(|A|): 0.7 4.4 5.5 6.7
1.4 27.6 34.3 41.3
2.1 144.6 179.5 215.5
2.8 731.3 906.8 1088.2
3.5 3666.1 4544.7 5452.8
4.2 18341.5 22735.9 27277.5
4.9 91719.7 113693.0 136402.5

Table 2: Upper bound on log10(|M̂|), i.e. the loga-
rithm of the cardinality of the finite set of probability
charges M̂, for various values of precision δ > 0 and
cardinality of the partition |A| (see Lemma 3).

Approximating each P in M in this manner, the set

M̂ = {P̂ : P ∈M}

is finite as each of its elements corresponds to an ele-
ment of the finite set ∆n

N , and therefore |M̂| ≤ |∆n
N |.

By Lemma 12,

|M̂| ≤
(

N + n− 1
n− 1

)
≤

(
n/δ + 1 + n− 1

n− 1

)
=

(
|A|(1 + 1/δ)
|A| − 1

)
The second inequality follows from the fact that

(
a
b

)
is strictly increasing in a, for fixed b (for integer a and
b this follows immediately from Pascal’s triangle; the
general case follows from the properties of the Gamma
function).

Table 2 lists upper bounds on the cardinality of M̂
on a logarithmic scale, for some values of |A| and δ.
The cardinality follows an exponential trend in |A|
and in 1/δ. The table shows that the influence of |A|
is much larger than the influence of δ: more precisely,
doubling |A| increases |M̂| by far more than halving
δ.

Next, we study the effect on the expectation if both
gambles and probabilities are approximated. Let us
use the notation EP (f) =

∫
Ω

f(w) dP (w). In the
lemma below, assume 0 < ε < 1/2.

Lemma 4. For every finite partition A of Ω, every
f ∈ L(Ω), f̂ ∈ L(A), P ∈ P(Ω), and P̂ ∈ P(A), the

following implications hold. If f ∼ε f̂ and P ∼δ P̂
then∣∣∣EP (f)− EP̂ (f̂)

∣∣∣ ≤ [sup f − inf f ](ε + δ(1 + 2ε))

and∣∣∣EP (f)− EP̂ (f̂)
∣∣∣ ≤ [sup f̂ − inf f̂ ]

(
ε

1− 2ε
+ δ

)

Proof. Let R = sup f − inf f , R̂ = sup f̂ − inf f̂ ,
and write infA f for infw∈A f(w) and supA f for
supw∈A f(w). Then∣∣∣EP (f)− EP̂ (f̂)

∣∣∣ =

∣∣∣∣∣ ∑
A∈A

(∫
A

f dP − f̂(A)P̂ (A)
)∣∣∣∣∣

and since P (A) infA f ≤
∫

A
f dP ≤ P (A) supA f ,

there is an rA ∈ [infA f, supA f ] such that P (A)rA =∫
A

f dP , and hence

=

∣∣∣∣∣ ∑
A∈A

(
rAP (A)− f̂(A)P̂ (A)

)∣∣∣∣∣
but, because |f(w) − f̂(A)| ≤ Rε for all
w ∈ A, and infA f ≤ rA ≤ supA f ,
it must also hold that |rA − f̂(A)| ≤ Rε,
and therefore

∣∣∣∑A∈A

(
rAP (A)− f̂(A)P (A)

)∣∣∣ ≤∑
A∈A

∣∣∣rA − f̂(A)
∣∣∣ P (A) ≤

∑
A∈A RεP (A) = Rε,

whence

≤

∣∣∣∣∣ ∑
A∈A

(
f̂(A)P (A)− f̂(A)P̂ (A)

)∣∣∣∣∣ + Rε

=

∣∣∣∣∣ ∑
A∈A

f̂(A)
(
P (A)− P̂ (A)

)∣∣∣∣∣ + Rε

and because
∑

A∈A(P (A)− P̂ (A)) = 0,

=

∣∣∣∣∣ ∑
A∈A

(f̂(A)− inf f̂)
(
P (A)− P̂ (A)

)∣∣∣∣∣ + Rε

≤
∑
A∈A

(f̂(A)− inf f̂)
∣∣∣P (A)− P̂ (A)

∣∣∣ + Rε

≤ (sup f̂ − inf f̂)
∑
A∈A

∣∣∣P (A)− P̂ (A)
∣∣∣ + Rε

≤ R̂δ + Rε

and since R(1 + 2ε) ≥ R̂ ≥ R(1− 2ε)

≤

{
R(1 + 2ε)δ + Rε = R(ε + δ(1 + 2ε))
R̂δ + R̂ε/(1− 2ε) = R̂ (ε/(1− 2ε) + δ)
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Figure 1: Upper bound on log10 |M̂| for various values
of ε, with ε + δ = 0.2 and |D| = 2.

Let us now investigate what is the most optimal choice
for ε > 0 and δ > 0. The cardinality of M̂ is of largest
concern as it follows an exponential trend in the car-
dinality of the finite partition A and in the inverse of
the required precision δ > 0 (see Table 2). Therefore,
as a first step, let us see how we can minimise |M̂|,
assuming a fixed relative error ε + δ on the expecta-
tion (see Lemma 4)—omitting higher order terms in
ε and δ to simplify the analysis.

We wish to minimise the upper bound (neglecting
lower order terms) (

(1/(ε|D|δ)
1/ε|D|

)

on |M̂| along the ε–δ-curve γ(ε, δ) = ε + δ = γ∗. Fig-
ure 1 demonstrates a typical case: the ε–δ-ratio has
a large impact on the upper bound of |M̂|. In par-
ticular, the curve grows extremely large for small ε,
because a small ε corresponds to a large partition A,
and the cardinality of the partition has a huge impact
on the cardinality of M as shown in Table 2.

4 Approximate Choice

Let us now consider again the decision problem
(Ω, D,M, L) with state space Ω, decision space D,
credal set M, and loss function L, and reflect upon
how the results in the previous section could be of use
in finding the optimal decisions opt(Ω, D,M, L). Can
we still find the optimal decisions after approximating
the loss function L and the set of probabilities M?

As we admit a relative error on gambles and prob-
abilities, and therefore also on previsions, we should
admit a relative error on the choice function as well.

Let RD be defined by (recall that fd(w) = −L(d, w))

RD = sup
d∈D

[sup fd − inf fd]

Definition 5. Let ε ≥ 0. A decision d in D is
called an ε-optimal decision for the decision problem
(Ω, D,M, L) if it belongs to the set

optε(Ω, D,M, L) ={
d ∈ D : (∃P ∈M)

(
sup
e∈D

EP (e)− EP (d) ≤ εRD

)}

Note that

optε(Ω, D,M, aL + b) = optε(Ω, D,M, L)

for any real numbers a and b, a > 0. In other words,
optε(Ω, D,M, L) is invariant with respect to positive
linear transformations of utility: ε-optimality does not
depend on our choice of utility scale.

Clearly,

opt(Ω, D,M, L) ⊆ optε(Ω, D,M, L)

because

optε(Ω, D,M, L) ⊆ optδ(Ω, D,M, L)

whenever ε ≤ δ, and

opt0(Ω, D,M, L) = opt(Ω, D,M, L)

In approximating a decision problem (Ω, D,M, L), we
start with a finite partition A, consider a (possibly
finite) set M̂ such that M ∼δ M̂, and approximate
the loss L(d, w) by a loss L̂(d, A) such that L ∼ε L̂.

Theorem 6. Consider two decision problems
(Ω, D,M, L) and (A, D,M̂, L̂). If L ∼ε L̂ and M∼δ

M̂ then, for any γ ≥ 0,

optγ(Ω, D,M, L)

⊆ opt
γ

1−2ε +2( ε
1−2ε +δ)(A, D,M̂, L̂) (1)

and

optγ(A, D,M̂, L̂)

⊆ optγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L) (2)

Proof. We prove Eq. (1). Let d ∈ optγ(Ω, D,M, L).
Then

sup
e∈D

EP (fe)− EP (fd) ≤ γRD (3)



for some P ∈ M. Let P̂ be such that P ∼δ P̂ . Be-
cause, by Lemma 4,∣∣∣∣sup

e∈D
EP̂ (f̂e)− sup

e′∈D
EP (fe′)

∣∣∣∣
≤ sup

e∈D

∣∣∣EP̂ (f̂e)− EP (fe)
∣∣∣

≤ sup
e∈D

[sup f̂e − inf f̂e](ε/(1− 2ε) + δ)

= (ε/(1− 2ε) + δ)R̂D (4)

it follows that

sup
e∈D

EP̂ (f̂e)− EP̂ (f̂d)

≤ sup
e∈D

EP (fe)− EP̂ (f̂d) + (ε/(1− 2ε) + δ)R̂D

and again by Lemma 4,

≤ sup
e∈D

EP (fe)− EP (fd) + 2(ε/(1− 2ε) + δ)R̂D

and by Eq. (3),

≤ γRD + 2(ε/(1− 2ε) + δ)R̂D

≤ [γ/(1− 2ε) + 2(ε/(1− 2ε) + δ)]R̂D

hence, d ∈ optγ/(1−2ε)+2(ε/(1−2ε)+δ)(A, D,M̂, L̂).

Next, we prove Eq. (2). Let d ∈ optγ(A, D,M̂, L̂).
Then

sup
e∈D

EP̂ (f̂e)− EP̂ (f̂d) ≤ γR̂D (5)

Because, by Lemma 4,∣∣∣∣sup
e∈D

EP̂ (f̂e)− sup
e′∈D

EP (fe′)
∣∣∣∣

≤ sup
e∈D

∣∣∣EP̂ (f̂e)− EP (fe)
∣∣∣

≤ sup
e∈D

[sup fe − inf fe](ε + δ(1 + 2ε))

= (ε + δ(1 + 2ε))RD (6)

we have that

sup
e∈D

EP (fe)− EP (f)

≤ sup
e∈D

EP̂ (f̂e)− EP (f) + (ε + δ(1 + 2ε))RD

and again by Lemma 4,

≤ sup
e∈D

EP̂ (f̂e)− EP̂ (f̂e) + 2(ε + δ(1 + 2ε))RD

and by Eq. (5)

≤ γR̂D + 2(ε + δ(1 + 2ε))RD

≤ [γ(1 + 2ε) + 2(ε + δ(1 + 2ε))]RD

so d ∈ optγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L).

If we ignore higher order terms in γ, ε, and δ, then
the above theorem says that when moving from an
original decision problem to an approximate decision
problem, or the other way around, with relative error
ε in gambles and relative error δ in probabilities, the
relative error in optimality increases by 2(ε + δ). For
example, for small ε and δ the following holds, up to
a small error: if L ∼ε L̂ and M∼δ M̂, then

opt(Ω, D,M, L)

⊆ opt2(ε+δ)(A, D,M̂, L̂) ⊆
opt4(ε+δ)(Ω, D,M, L)

So, the approximate problem with relative error 2(ε+
δ) will contain all solutions to the original problem
with no relative error, and will, so to say, not con-
tain any solutions to the original problem with rel-
ative error over 4(ε + δ). Because of this property,
opt2(ε+δ)(A, D,M̂, L̂) seems a logical choice when
solving decision problems in practice.

5 Pairwise Choice

Table 2 reveals that the credal set is a serious com-
putational bottleneck. Therefore, it is worth to in-
vestigate how the size of M̂ can be reduced, without
compromising the accuracy δ > 0. One way to this
end is to restrict to pairwise comparisons, i.e. using
maximality [17, Sec. 3.7–3.9].

5.1 Maximality

Definition 7. A decision d ∈ D is called a maxi-
mal decision for the decision problem (Ω, D,M, L) if
d belongs to the set

max(Ω, D,M, L)
= {d ∈ D : (∀e ∈ D)(∃P ∈M) (EP (d) ≥ EP (e))}

Denote by co(M) the convex hull of M. Obvi-
ously max(Ω, D,M, L) = max(Ω, D, co(M), L), be-
cause for any λ ∈ [0, 1] and any two P and Q in M,
the inequalities EP (d) ≥ EP (e) and EQ(d) ≥ EQ(e)
imply the inequality

EλP+(1−λ)Q(d) ≥ EλP+(1−λ)Q(e)

This does not hold for optimality as defined in Defi-
nition 1: assuming Ω finite, for any two distinct sub-
sets M and M′ of P(Ω), we can always find a set
D and a loss function L such that opt(Ω, D,M, L) 6=
opt(Ω, D,M′, L) (see Kadane, Schervish, and Seiden-
feld [8, Thm. 1, p. 53]).

To understand why the above notion of optimality is
called maximality, consider the strict partial ordering



> on D defined by

(e > d) ⇐⇒ (∀P ∈M) (EP (e) > EP (d))

for any d and e in D, that is, e is strictly preferred to
d if e is strictly preferred to d with respect to every
P ∈M. Then,

max(Ω, D,M, L) = {d ∈ D : (∀e ∈ D)(e 6> d)}

so max(Ω, D,M, L) elects those decisions d which are
maximal with respect to >. Therefore, maximality
can be expressed through pairwise preferences only—
again in contrast to opt(Ω, D,M, L) as demonstrated
by Kadane, Schervish, and Seidenfeld [8, Sec. 4, p. 51].

However, because

opt(Ω, D,M, L) ⊆ max(Ω, D,M, L)

we may interpret max(Ω, D,M, L) as an approxima-
tion to opt(Ω, D,M, L), an approximation which dis-
cards all preferences but the pairwise ones.

Let us admit a relative error on the choice function
max as well. Recall, RD = supd∈D[sup fd − inf fd].

Definition 8. Let ε ≥ 0. A decision d in D is
called an ε-maximal decision for the decision problem
(Ω, D,M, L) if it belongs to the set

maxε(Ω, D,M, L) =
{d ∈ D : (∀e ∈ D)(∃P ∈M)

(EP (e)− EP (d) ≤ εRD)}

5.2 Approximating Extreme Points

It turns out that we can restrict our attention to the
extreme points of the closure of the convex hull of M,
with respect to the topology of pointwise convergence
on members of L(Ω). This topology is characterised
by the following notion of convergence: limn Pn = P
if

lim
n

EPn
(f) = EP (f) for all f ∈ L(Ω)

Without further mentioning, I will assume this topol-
ogy on P(Ω).

There is a nice connection between the closure of M,
denoted by cl(M), and ε-maximality.

Lemma 9. Assume that RD > 0. Let ε ≥ 0. For any
decision problem (Ω, D,M, L), the following equality
holds:

maxε(Ω, D, cl(M), L) = lim
δ

>→0

maxε+δ(Ω, D,M, L)

Proof. Assume d ∈ maxε(Ω, D, cl(M), L). Consider
any e ∈ D. By assumption, there is a P ∈ cl(M)

such that EP (e)−EP (d) ≤ RDε. Hence, there is a se-
quence (Pn ∈M)n∈N such that limn EPn

(f) = EP (f)
for all gambles f , and therefore also limn EPn

(e) −
limn EPn

(d) ≤ RDε. This implies that for every δ > 0,
there is an n ∈ N such that EPn

(e) − EPn
(f) ≤ (ε +

δ)RD. So, for every δ > 0, there is a P ∈M such that
EP (e) − EP (f) ≤ (ε + δ)RD. Whence, because this
holds for any e ∈ D, d ∈ maxε+δ(Ω, D,M, L) for all
δ > 0, and therefore, d ∈ lim

δ
>→0

maxε+δ(Ω, D,M, L).

Conversely, assume d ∈ lim
δ

>→0
maxε+δ(Ω, D,M, L).

Consider any e ∈ D. Then, for all δ > 0, there is
a Pδ ∈ M such that EPδ

(e) − EPδ
(f) ≤ (ε + δ)RD.

Hence, for all n ∈ N, there is a Pn ∈M such that

EPn
(e)− EPn

(d) ≤ 1/n + εRD (7)

For any m ∈ N, consider the following closed subset
of P(Ω):

Rm = cl({Pn : n ≥ m})
The collection {Rm : m ∈ N} satisfies the finite inter-
section property. By the Banach-Alaoglu-Bourbaki
theorem [11, §28.29(UF26)] P(Ω) is compact, and
hence

R = ∩m∈NRm

is non-empty as well [11, §17.2].

Take any R ∈ R. Since each Pn ∈ M, it follows
that each Rm ⊆ cl(M), and hence R ∈ cl(M). If
we can show that ER(e) − ER(d) ≤ εRD, then d ∈
maxε(Ω, D, cl(M), L) is established.

Indeed, because R ∈ Rm, there is a sequence (Pnk
)k∈N

in {Pn : n ≥ m}—so nk ≥ m, but nk is not necessarily
an increasing function of k—such that limk Pnk

(fe −
fd) = R(fe − fd). Hence, by Eq. (7), for each γ > 0,
there is a k ∈ N such that ER(e)−ER(d) ≤ Pnk

(e)−
Pnk

(d)+γ, and hence ER(e)−ER(d) ≤ 1/nk+εRD+γ.
Because this inequality holds for every m and every
γ > 0, and nk ≥ m, it follows that ER(e)− ER(d) ≤
εRD.

In particular, assuming RD > 0, if for any δ > ε > 0

maxε(Ω, D,M, L) = maxδ(Ω, D,M, L)

then

maxε(Ω, D,M, L) = maxε(Ω, D, cl(M), L)

As a special case, Lemma 9 implies an interesting con-
nection between maximality and ε-maximality:
Corollary 10. Assume that RD > 0. For any de-
cision problem (Ω, D,M, L), the following equality
holds:

max(Ω, D, cl(M), L) = lim
ε

>→0

maxε(Ω, D,M, L)



In the following theorem, assume that 0 < ε < 1/2.

Theorem 11. Consider two decision problems
(Ω, D,M, L) and (A, D,M̂, L̂). Assume that RD >
0. If L ∼ε L̂ and ext(cl(co(M))) ∼δ M̂ then, for any
γ ≥ 0,

maxγ(Ω, D,M, L)

⊆ max
γ

1−2ε +2( ε
1−2ε +δ)(A, D,M̂, L̂) (8)

and

maxγ(A, D,M̂, L̂)

⊆ lim
η

>→0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L) (9)

Proof. First, note that

maxγ(Ω, D,M, L)
= maxγ(Ω, D, co(M), L)
⊆ maxγ(Ω, D, cl(co(M)), L)
= maxγ(Ω, D, ext(cl(co(M))), L)

because, by convexity of cl(co(M)) [11, §26.23] and
the Krein-Milman theorem [6, p. 74], the convex hull
of ext(cl(co(M))) is cl(co(M)). Now apply the same
argument as in the proof of Theorem 6 to recover
Eq. (8).

To establish Eq. (9), observe that M′ ∼δ M̂′ implies
co(M′) ∼δ co(M̂′) because if P ∼δ P̂ and Q ∼δ Q̂
then, for any λ ∈ [0, 1],

λP + (1− λ)Q ∼δ λP̂ + (1− λ)Q̂

In particular, because ext(cl(co(M))) ∼δ M̂, and be-
cause the convex hull of ext(cl(co(M))) is cl(co(M))
(again see [11, §26.23] and [6, p. 74]), it follows that

cl(co(M)) ∼δ co(M̂)

So,

maxγ(A, D,M̂, L̂)

= maxγ(A, D, co(M̂), L̂)

and again from the same argument as in the proof of
Theorem 6

⊆ maxγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, cl(co(M)), L)

= lim
η

>→0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, co(M), L)

= lim
η

>→0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L)

Again, if we ignore higher order terms in γ, ε, and
δ, then the above theorem says that when moving
from the original decision problem to the approximate
decision problem, with relative error ε in gambles and
relative error δ in probabilities, the relative error in
maximality increases by 2(ε + δ). Hence, for small
ε and δ the following holds, up to a small error: if
L ∼ε L̂ and ext(cl(co(M))) ∼δ M̂, then

max(Ω, D,M, L)

⊆ max2(ε+δ)(A, D,M̂, L̂) ⊆
max4(ε+δ)(Ω, D,M, L)

Again, max2(ε+δ)(A, D,M̂, L̂) seems a logical choice
when calculating maximal decisions in practice.

6 Conclusion and Remarks

With this paper, I hope to have consolidated at least
part of our every day intuition when approximating
decision problems involving sets of probabilities, for
instance when those problems have to be solved by
computer.

One result is quite depressing: Lemma 2 and Lemma 3
seem to tell us that except in the simplest cases, any
approximation will need too many resources to be of
any practical value, as demonstrated by Table 1 and
Table 2.

Fortunately, not all is lost. If we resort to pairwise
comparison, we may restrict ourselves to the extreme
points of the closure of the convex hull of the credal
set, which can be much smaller than the original
credal set. Closing the credal set only has an arbitrary
small effect on maximality, and in part for this rea-
son, it turns out that approximating extreme points
suffices when restricting to pairwise preference.

I wish to emphasise that the bounds on the cardinal-
ities of the approximating partition and the approxi-
mating credal set are only upper bounds under very
weak assumptions. These bounds are only attained in
extreme situations. In many cases the credal set and
the loss function have additional structure which may
allow for much lower upper bounds.

In case the problem has sufficient structure, an al-
ternative approach is to develop algorithms which do
not need to traverse the complete credal set (or an
approximation thereof) to compute the optimal solu-
tion. The imprecise Dirichlet model has already been
given considerable attention in this direction [7].

Finally, one could also simply sample elements from
the credal set, for instance through Monte-Carlo tech-
niques, and solve a classical decision problem for



each of these samples. If the sample s from M̂
is large enough, then—since

⋃
P∈s opt(A, D, P, L) =

opt(A, D, s, L)—hopefully

opt(A, D,M, L) =
⋃
P∈s

opt(A, D, P, L)

The question how large a sample we need to ensure
convergence is definitely worth further investigation.
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A Discretisation Of The Standard
Simplex In Rn

In this appendix a simple discretisation of ∆n, the
standard simplex in Rn, is studied—these results are
not new and are in fact related to well known notions
from combinatorics, in particular multisets [14]. The
standard simplex ∆n is defined as

∆n = {x ∈ Rn : x ≥ 0, |x|1 = 1}

where | · |1 denotes the 1-norm, i.e. |x|1 =
∑n

i=1 |xi|.

For any non-zero natural number N , let ∆n
N denote

the following finite subset of ∆n:

∆n
N = {m/N : m ∈ Nn, |m|1 = N}

(above, N is the set of natural numbers including 0).

Lemma 12. The cardinality of ∆n
N is

(
N+n−1

N

)
.

Proof. There is an obvious one-to-one and onto corre-
spondence between ∆n

N and all multisets of cardinal-
ity N with elements taken from {1, . . . , n}—for any
m/N ∈ ∆n

N , interpret mi as the multiplicity of i. The
number of all such multisets is precisely

(
N+n−1

N

)
(see

Stanley [14]).

Lemma 13. For every x in ∆n there is a y in ∆n
N

such that
|x− y|1 < n/N

Proof. For each i ∈ {1, . . . , n}, let mi be the unique
natural number such that xi ∈ [mi/N, (mi + 1)/N),
or equivalently, let mi be the largest natural number
such that mi/N ≤ xi. Define M =

∑n
i=1 mi. Then,

M ≤ N < M + n since M/N = |m/N |1 ≤ |x|1 = 1
and (M + n)/N = |(m + 1)/N |1 > |x|1 = 1. Define

ei =

{
1 if i ∈ {1, . . . , N −M}
0 if i ∈ {N −M + 1, . . . , n}

and let y = (m + e)/N . Note that y ∈ ∆n
N because

|y|1 = |m + e|1/N = (M + (N −M))/N = 1. Finally,

|x−y|1 =
N−M∑
i=1

|xi−mi+1
N |+

n∑
i=N−M+1

|xi−mi

N | < n/N

as |xi − mi+1
N | ≤ 1/N and |xi − mi

N | < 1/N .
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Abstract

Given an imprecise probabilistic model over a con-
tinuous space, computing lower (upper) expectations
is often computationally hard to achieve, even in
simple cases. Building tractable methods to do so
is thus a crucial point in applications. In this pa-
per, we concentrate on p-boxes (a simple and popu-
lar model), and on lower expectations computed over
non-monotone functions. For various particular cases,
we propose tractable methods to compute approxima-
tions or exact values of these lower expectations. We
found interesting to compare two approaches: the first
using general linear programming, and the second us-
ing the fact that p-boxes are special cases of random
sets. We underline the complementarity of both ap-
proaches, as well as the differences.

Keywords. P-boxes, Random sets, Linear program-
ming, Lower/upper expectation, Optimization

1 Introduction

When dealing with scarce information or with inde-
terminate beliefs, imprecise probability theory [11],
together with lower previsions (expectations), offer
a very appealing framework, for its mathematical
soundness as well as for its well-defined behavioral
interpretation. Nevertheless, computing lower previ-
sions by means of the so-called natural extension when
beliefs are modeled by a set of precise probability dis-
tributions on a continuous space (here, the reals) is
often a very hard problem. Thus, building tractable
methods to compute good approximations or exact
values of such lower previsions is essential in applica-
tions.

First, let us note that the methods proposed here are
"interpretation"-independent, and are valid both in
Walley’s behavioral theory (where the existence of an
"ideal" precise distribution is not generally assumed)
as well as in a more classical Bayesian sensitivity

analysis framework (where not enough information is
available to precisely know the "true" probability dis-
tribution). Thus, although interpretation issue is very
important, we won’t deal with it in the sequel, where
an "interpretation-free" vocabulary is adopted.

In this paper, we concentrate on the case when proba-
bilistic models are p-boxes and when the function (i.e.
gamble in Walley’s theory) over which is computed
the lower expectation is non-monotone and whose be-
havior is (partially) known . In other words, we pro-
pose efficient algorithms for computing lower and up-
per expectations of non-monotone functions of various
types under the condition that the given uncertainty
model is p-box.

P-boxes are one of the simplest and most popular
model of sets of probability distributions, directly ex-
tending cumulative distributions used in the precise
case. Although we admit that the poor expressive
power of p-boxes (a price to pay for the simplicity of
the model) is a limitation, we believe that they can
be a good first approximation that allows for more
efficient computations, and that if a decision can be
taken using them, there is no reason to use a more
complex model. Moreover, we should be able to ef-
ficiently compute with simple models before thinking
of stepping towards more complex ones.

Although we will briefly deal with the trivial case of
monotone functions, they are, as well as functions
whose behavior is completely unknown, two extreme
cases that will seldom be encountered in real applica-
tions (at least in "human sized" models). In most real
applications, the function of interest is non-monotone
but some of its characteristics are known.

Methods developed in the paper are based on two dif-
ferent approaches, and we found interesting to em-
phasize similarities and differences between these ap-
proaches, as well as how one approach can help the
other: the first is based on the fact that natural exten-
sion can be viewed as a linear programming problem,



while the second use the fact that a p-box is a partic-
ular case of random set.

The next section states the problem we’re going to
deal with. Section 3 then explores how to com-
pute both the unconditional and conditional interval-
valued expectations of a function of one variable hav-
ing one maximum. The multivariate case when the
function of a set of variables has one maximum is then
explored in section 4 . Finally, section 5 illustrates
how results could be extended to more complicated
functions.

2 Problem statement

We assume that the information about a (real) vari-
able X is (or can be) represented by some (continu-
ous) lower F and upper F probability distributions
defining the p-box [F , F ] [5]. Lower F and upper F
thus define a set of precise distributions s.t.

F (x) ≤ F (x) ≤ F (x), ∀x ∈ R. (1)

Given a function h(X), lower (E) and upper (E) ex-
pectations over [F , F ] of h(X) can be computed by
means of a procedure called natural extension [11, 12],
which corresponds to the following equations:

E(h) = inf
F≤F≤F

∫

R
h(x)dF , E(h) = sup

F≤F≤F

∫

R
h(x)dF (2)

and computing the lower (upper) expectation can be
seen as finding the "optimal" distribution F reaching
the infimum (supremum) in equations (2). We now
detail the two generic approaches used throughout the
paper.

2.1 Linear programming view

Numerically solving the above problem can be done
by approximating the probability distribution func-
tion F by a set of N points F (xi), i = 1, ..., N , and by
translating equations (2) into the corresponding lin-
ear programming problem with N optimization vari-
ables and where constraints correspond to equation
(1). Those linear programming problems are of the
form

E
∗(h)=inf

N∑

k=1

h(xk)zk or E
∗
(h)=sup

N∑

k=1

h(xk)zk

subject to

zi ≥ 0, i = 1, ..., N,

N∑

k=1

zk = 1,

i∑

k=1

zk ≤ F (xi),

i∑

k=1

zk ≥ F (xi), i = 1, ..., N.
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Figure 1: P-box as random set, illustration

where the zk are the optimization variables, and ob-
jective function E

∗(h) (E
∗
(h)) is an approximation of

the lower (upper) expectation. This way of deter-
mining the lower and upper expectations meets some
computation difficulties when the value of N is rather
large. Indeed, the optimization problems have N vari-
ables and 3N + 1 constraints. On the other hand, by
taking a small value of N , we take the risk of obtain-
ing bad approximations of the exact value.

2.2 Random set view

Now that we have given a global sketch of the linear
programming approach, we can detail the one using
random sets. Formally, a random set is a mapping
Γ from a probability space to the power set ℘(X)
of another space X, also called a multi-valued map-
ping. This mapping induces lower and upper proba-
bilities on X [3]. Here, we shall consider the probabil-
ity space [0, 1] equipped with Lebesgue measure, and
space ℘(X) will be the measurable subsets of the real
line R.

Given the (uniformly continuous) p-box [F , F ], we
will note Aγ = [a∗γ , a∗

γ ] the set s.t.

a∗γ := sup{x ∈ [ainf , asup] : F (x) < γ} = F
−1

(γ),

a∗
γ := inf{x ∈ [ainf , asup] : F (x) > γ} = F−1(γ),

By extending results from [7, 5, 4] to the continuous
real line, we can conclude that the p-box [F , F ] is
equivalent to the continuous random set with a uni-
form mass density on [0, 1] and a mapping (see fig-
ure 1) s.t.

Γ(γ) = Aγ = [a∗γ , a∗
γ ] γ ∈ [0, 1].

The interest of this mapping is that it allows us to
rewrite equations (2) and the Choquet integral in a



"Lebesgue" type integral, namely

E(h) =

∫ 1

0

inf
x∈Aγ

h(x) dγ, (3)

E(h) =

∫ 1

0

sup
x∈Aγ

h(x) dγ. (4)

Finding analytical solutions of such integrals is not
easy in the general case, but approximations (either
inner or outer) can be more or less easy to compute
by discretizing the p-box on a finite number of levels
γi, the main difficulty in the general case being to find
the infimum or supremum of h(X) for each discretized
level. As in the case of linear programming, choosing
too few levels γi or using poor heuristics can lead to
bad approximations.

In both cases, it is obvious that the optimal probabil-
ity distribution F providing the minimum (maximum)
expectation of h depends on the form of the function
h. If this form follows some typical cases, efficient so-
lutions can be found to compute lower (upper) expec-
tations. The simplest examples (for which solutions
are well known) of such typical cases are monotone
functions.

2.3 The simple case of monotone functions

Let h be a monotone function that is non-decreasing
(non-increasing) in R, then we have [12]:

E(h) =

∫

R
h(x)dF

µ

E(h) =

∫

R
h(x)dF

¶

, (5)

E(h) =

∫

R
h(x)dF

µ

E(h) =

∫

R
h(x)dF

¶

, (6)

and we see from (5)-(6) that lower and upper expec-
tations are completely determined by bounding dis-
tributions F and F . Using equations (3)-(4), we get
the following formulas

E(h) =

∫ 1

0

h(a∗γ)dγ

µ

E(h) =

∫ 1

0

h(a∗
γ)dγ

¶

, (7)

E(h) =

∫ 1

0

h(a∗
γ)dγ

µ

E(h) =

∫ 1

0

h(a∗γ)dγ

¶

, (8)

which are the counterparts of equations (5)-(6). Here,
expectations are totally determined by extreme values
of the mappings. When h is non-monotone, equations
(5)-(8) provide inner approximations of E(h),E(h).

We then explore the cases where our knowledge of h
can greatly improve those approximations (and even
make them become exact values) without too much
extra computational cost.

3 Function with one maximum -

univariate case

In this section, we study the case where the function
h has one maximum at point a, i.e. h is increasing
(decreasing) in (−∞, a] ([a,∞)). The case of h having
one minimum easily follows.

3.1 Unconditional expectations

Proposition 1. If the function h has one maximum
at point a ∈ R, then the upper and lower expectations
of h(X) on [F , F ] are

E(h)=

a∫

−∞

h(x)dF +h(a)
[
F (a) − F (a)

]
+

∞∫

a

h(x)dF , (9)

E(h) =






F
−1

(α)∫

−∞

h(x)dF +

∞∫

F−1(α)

h(x)dF




 , (10)

or, equivalently

E(h)=

F (a)∫

0

h(a∗
γ
)dγ+[F (a) − F (a)]h(a)+

1∫

F (a)

h(a
∗γ

)dγ (11)

E(h) =

α∫

0

h(a∗γ)dγ +

1∫

α

h(a∗
γ)dγ, (12)

where α is one of the solution of the equation

h
³
F

−1
(α)

´
= h

¡
F−1(α)

¢
. (13)

Proof using linear programming. We assume
that the function h (x) is differentiable in R and
has a finite value by x → ∞. The lower and upper
cumulative probability functions F and F are also
differentiable. Then the following primal and dual
optimization problems can be written for computing
the lower expectation of the function h:

Primal problem:

Minimize v =
∫ ∞

−∞
h (x) ρ (x) dx

subject to
ρ (x) ≥ 0,

∫ ∞

−∞
ρ (x) dx = 1,

−
∫ x

−∞
ρ (x) dx ≥ −F (x) ,∫ x

−∞
ρ (x) dx ≥ F (x) .

Dual problem:

Max. w = c0 +
∫ ∞

−∞

¡
−c (t) F (t) + d (t) F (t)

¢
dt

subject to
c0 +

∫ ∞

x
(−c (t) + d (t)) dt ≤ h (x) ,c0 ∈ R,

c (x) ≥ 0, d (x) ≥ 0.



The proof that equations (9)-(10) and (13) are right
then follows in three main steps:

1. We propose a feasible solution of the primal prob-
lem.

2. We then consider the feasible solution of the dual
problem corresponding to the one proposed for
the primal problem.

3. We show that the two solutions coincide and,
therefore, according to the basic duality theorem
of linear programming, these solutions are opti-
mal ones.

First, we consider the primal problem. Let a′ and a′′

be real values. The function

ρ (x) =






dF (x) /dx, x < a′

0, a′ ≤ x ≤ a′′

dF (x) /dx, a′′ < x

is a feasible solution to the primal problem if the fol-
lowing conditions are respected:

∫ ∞

−∞

ρ (x) dx = 1,

which, given the above solution, can be rewritten

∫ a′

−∞

dF +

∫ ∞

a′′
dF = 1,

which is equivalent to the equality

F (a′) = F (a′′) . (14)

We now interest ourselves in the dual problem. Let
us first consider the sole constraint

c0 +

∫ ∞

x

(−c (t) + d (t)) dt ≤ h (x) , (15)

which is the equivalent of the primal constraint
ρ (x) ≥ 0. We then consider the following feasible
solution to the dual problem as c0 = h (∞),

c (x) =

½
h′ (x) , x < a′

0, x ≥ a′ d (x) =

½
0, x < a′′

−h′ (x) , x ≥ a′′ .

The inequalities c (x) ≥ 0 and d (x) ≥ 0 are valid
provided we have the inequalities a′ ≤ a ≤ a′′ (i.e.
interval [a′, a′′] encompasses maximum of h). By inte-
grating c (x) and d (x), we get the increasing function

C (x) = −

∫ ∞

x

c (t) dt =

½
h (x) − h (a′) , x < a′

0, x ≥ a′

and the decreasing function

D (x) =

∫ ∞

x

d (t) dt =

½
h (a′′) − h (∞) , x < a′′

h (x) − h (∞) , x ≥ a′′ .

Let us rewrite condition (15) as follows:

c0 + C (x) + D (x) ≤ h (x) . (16)

If x < a′, equation (16) reads

c0 + h (x) − h (a′) + h (a′′) − h (∞) = h (x) .

Hence
h (a′′) = h (a′) . (17)

If a′ < x < a′′, we have c0 + h (a′′) − h (∞) ≤
h (x) which means that for all x ∈ (a′, a′′) we have
h (a′′) (= h (a′)) ≤ h (x) (i.e. h (a′′) and a′ are
the minimal values of the function h (x) in interval
x ∈ (a′, a′′).) If x ≥ a′′, then we get the trivial equal-
ity c0 + h (x) − h (∞) = h (x). The two proposed
solutions are valid iff equation (14) is valid for the pri-
mal problem and equation (17) is valid for the dual
problem. To show that they are actually valid, let us
consider the function

ϕ (α) = h
³
F

−1
(α)

´
− h

¡
F−1 (α)

¢
,

which, being a substraction of two continuous func-
tions (by supposition), is continuous. Since the func-
tion h has its maximum at point x = a, then, by
taking α = F (a), we get the inequality

ϕ (F (a)) = h
³
F

−1
(F (a))

´
− h (a) ≤ 0

and, by taking α = F (a), we get the inequality

ϕ
¡
F (a)

¢
= h (a) − h

¡
F−1

¡
F (a)

¢¢
≥ 0.

Consequently, there exists α in the interval¡
F (a) , F (a)

¢
such that ϕ (α) = 0 (since ϕ is con-

tinuous). Therefore, there exist a′ = F
−1

(α) and
a′′ = F−1 (α) (hence, equality (14) holds) such that
equality h (a′) = h (a′′) in (17) is valid. We find the
values of the objective functions

vmin =

∫ a′

0

h (x) dF +

∫ ∞

a′′
h (x) dF ,

wmax = c0 +

∫ ∞

0

¡
−c (t) F (t) + d (t) F (t)

¢
dt.

and, by using integration by parts together with equa-
tions (14)-(17), we can show that equality wmax =
vmin holds, with α the particular solution of equa-
tion (13) for which optimum is reached, as was to be
proved.

Proof using random sets. Let us now consider
equations (4)-(3). Looking first at equation (4), we
see that before γ = F (a), the supremum of h on Aγ is



h(a∗
γ), since h is increasing between [∞, a]. Between

γ = F (a) and γ = F (a), the supremum of h on Aγ is
f(a). After γ = F (a), we can make the same reason-
ing as for the increasing part of h (except that it is
now decreasing). Finally, this gives us the following
formula:

E(h) =

F (a)∫

0

h(a∗
γ)dγ +

F (a)∫

F (a)

h(a)dγ +

1∫

F (a)

h(a∗γ)dγ (18)

which is equivalent to (11). Let us now turn to the
lower expectation. Before γ = F (a) and after γ =
F (a), finding the infinimum is again not a problem (it
is respectively h(a∗γ) and h(a∗

γ)). Between γ = F (a)

and γ = F (a), since we know that h is increasing
before x = a and decreasing after, infinimum is either
h(a∗γ) or h(a∗

γ). This gives us equation

Eh=
F (a)

R

0

h(a∗γ)dγ+
F (a)

R

F (a)

min(h(a∗γ),h(a∗γ))dγ+
1

R

F (a)

h(a∗γ)dγ (19)

and if we use equations (14),(17) as in the first proof
(reasoning used in the first proof to show that they
have a solution is general, and thus applicable here),

we know that there is a level α s.t. h(F
−1

(α)) =
h(F−1(α)), and for which equation (19) reduce to
equation (13).

Solutions for a function h having a minimum di-
rectly follow, due to the duality between lower and
upper expectations [12] (i.e. E(−h) = −E(h) and
E(−h) = −E(h)). Of course, both proofs lead to
similar formulas and, in applications, would lead to
the same lower and upper expectations. Neverthe-
less, each view suggests a different way to solve the
problem or to approximate the solution.

The proof using linear programming and the associ-
ated formulas suggest a more analytical and explicit
solution, where we have to find the level α satisfying
equation (14). If an analytical solution is not avail-
able, then the solution is generally approximated by
scanning a larger or smaller range of possible values
for α(see [10] for an example). On the other side, the
proof is shorter in the case of random set, but the
presence of a level α is hardly visible at first sight,
and analytical results are more difficult to derive.
Compared to the linear programming view, equations
(11),(12),(19) suggest numerical methods based on a
discretization of the levels γ rather than a heuristic
search of the level α satisfying equation (14). Let us
note that in the worst case, two evaluations are needed
at each of the discretized levels (using equation (19)).

If the function h is symmetric about a, i.e., the equal-
ity h(a − x) = h(a + x) is valid for all x ∈ R, then

the value of α in (13) does not depend on h and is
determined as

a − F
−1

(α) = F−1(α) − a.

Note that expressions (5),(6) can be obtained from
(9),(10) by taking a → ∞.

3.2 Conditional expectations

Suppose that we observe an event B = [b0, b1]. Then
the lower and upper conditional expectations under
condition of B can be determined as follows:

E(h|B) = inf
F≤F≤F

∫
R h(x)IB(x)dF
∫

R IB(x)dF
,

E(h|B) = sup
F≤F≤F

∫
R h(x)IB(x)dF
∫

R IB(x)dF
.

Generally speaking, the above problems can numeri-
cally be solved by approximating the probability dis-
tribution function F by a set of N points F (xi),
i = 1, ..., N , and by writing linear-fractional optimiza-
tion problems and then linear programming problems.
Problems mentioned for the unconditional case can
again occur. Figure 2 illustrates a potential optimal
distribution F for which upper conditional expecta-
tion is reached (under the condition B = [1, 8]) when
h has one maximum (which value is 5 in figure 2).

Proposition 2. If the function h has one maximum
at point a ∈ R, then the upper and lower conditional
expectations of h(X) on [F , F ] after observing the
event B are

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β),

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),

Ψ(α, β) = I(α < F−1(a))

∫ a

F−1(α)

h(x)dF

+I(β > F
−1

(a))

∫ F
−1

(β)

a

h(x)dF

+ h(a)
¡
min(F (a), β) − max(F (a), α)

¢

=

∫ β

α

sup
x∈Aγ

h(x)dγ.

Φ(α, β) = h(b0)
¡
F (b0) − α

¢
+

∫ F
−1

(ε)

b0

h(x)dF

+ h(b1) (β − F (b1)) +

∫ b1

F−1(ε)

h(x)dF

=

∫ β

α

inf
x∈Aγ

h(x)dγ.



Figure 2: Optimal distribution (thick) for computing
upper conditional expectation on B = [1, 8]

Here I(a < b) is the indicator function taking 1 if
a < b and 0 if a ≥ b; ε is one of the roots of the
following equation:

h
³
F

−1
(ε)

´
= h

¡
F−1(ε)

¢
. (20)

General proof. We consider only upper expecta-
tion. We do not know how the optimal distribution
function behaves outside the interval B. Therefore,
we suppose that the value of the optimal distribution
function at point b0 is F (b0) = α ∈ [F (b0), F (b0)] and
its value at point b1 is F (b1) = β ∈ [F (b1), F (b1)] (see
Fig. 2). Then there holds

∫

R
IB(x)dF (x) = β − α.

Hence, we can write

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

F≤F≤F

1

β − α

∫

R
h(x)IB(x)dF (x)

= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α









sup
F≤F≤F
F (b0)=α
F (b1)=β

∫

R
h(x)IB(x)dF (x)









= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

sup
x∈Aγ

h(x)dγ. (21)

Here Aγ = B∩[F−1(γ), F
−1

(γ)]. By using the results
obtained for the unconditional upper expectation, we
can see that the integrand is equal to Ψ(α, β). The
lower expectation is similarly proved, and conditional
expectations when h has one minimum immediately
follow.

Equation (21) shows that, as value β − α increases,
so do the numerator and denominator, thus playing

opposite role in the evolution of the objective func-
tion. Hence, computing the upper (lower) conditional
expectation consists in finding the values β and α s.t.
any increase (decrease) in the value β − α is greater
(lower) than the corresponding increase (decrease) in
Ψ(α, β).

A crude algorithm to approximate the solution would
be to start from the largest (tightest) interval [α, β]
and then to gradually shrink (enlarge) it, evaluat-
ing each time equation (21) and retaining the high-
est obtained value (let us note that we can have
F (b0) ≥ F (b1), thus the tightest interval can be void).

Another interesting point to note is that the proof
takes advantage of both views, since the idea to use
levels α and β comes from fractional linear program-
ming, while the final equation (21) can be elegantly
formulated by using the random set view.

4 Function with one maximum -

multivariate case

Now, let h be a function from R
2 → R which depends

on two variables X and Y . The uncertainty model
becomes the following bivariate p-box:

F (x, y) ≤ F (x, y) ≤ F (x, y), ∀(x, y) ∈ R
2.

Again, we assume that h has one global maximum
at point (x0, y0) and that ∀z, ∂h(x, z)/∂x = 0 and
∂h(z, y)/∂y = 0 respectively have solutions at points
x = x0 and y = y0, making the task to find infinima
and suprema easier in further equations . In the next
sections, we explore how we would solve the problem,
under some common independence hypothesis exist-
ing in the framework of imprecise probabilities [2]. In
this paper, we only provide an outline, giving general
ideas and underlining the most interesting points.

In the sequel, we will consider, for the marginal ran-
dom set of variable Y , the sets Bκ = [b∗κ, b∗κ] s.t.

b∗κ := sup{y ∈ [binf , bsup] : F (y) < κ} = F
−1

(κ),

b∗κ := inf{y ∈ [binf , bsup] : F (y) > κ} = F−1(κ).

Moreover, following Smets [9], we will note fM
X

and fM
Y the basic belief densities corresponding to

the continuous random sets of [F , F ]X ,[F , F ]Y when
needed.

4.1 Strong Independence

In the case of strong independence, we can write

E(h) = inf
F

1
≤F1≤F 1

inf
F

2
≤F2≤F 2

∫

R

∫

R
h(x, y)dF1dF2,



E(h) = sup
F

1
≤F1≤F 1

sup
F

2
≤F2≤F 2

∫

R

∫

R
h(x, y)dF1dF2.

The simplest case is when the function h can be rep-
resented as h(X,Y ) = h1(X)h2(Y ). Then E(h) =
E(h1) · E(h2) and E(h) = E(h1) · E(h2). However, we
consider a more complex case. Let us fix the second
variable Y at point z. Denote

ξ(z) =

∫

R
h(x, z)dF1(x).

Then we have

E(h(X,Y )) =

∫

R
ξ(z)dF2(z).

Let us fix variable Y to value z. Given our particular
h(X,Y ) and Proposition 1, we have

E(h(X, z)) = sup
F

1
≤F1≤F 1

ξ(z)

= h(x0, z)
[
F 1(x0) − F 1(x0)

]
+

∫ x0

−∞

h(x, z)dF 1 +

∫ ∞

x0

h(x, z)dF 1. (22)

Given the assumption we’ve made on h(X,Y ) behav-
ior, function ξ(z) has a maximum at point z = y0 and
is monotone in intervals (−∞, z0) and (z0,∞), what-
ever the value of x. This implies that the optimal
distribution F2 is of the form considered in Proposi-
tion 1. Moreover, the following inequality

sup
F

2
≤F2≤F 2

∫

R
ξ(z)dF2(z) ≥ sup

F
2
≤F2≤F 2

∫

R
ξ̂(z)dF2(z)

holds if ξ(z) ≥ ξ̂(z). Then it follows from the above
and from the form of the optimal distribution F2 de-
termined in Proposition 1 that

E(h(X,Y )) = sup
F

2
≤F2≤F 2

∫

R
E(h(X, z))dF2(z)

= sup ξ(y0)
[
F 2(y0) − F 2(y0)

]
+

∫ y0

−∞

sup ξ(z)dF 2(z) +

∫ ∞

y0

sup ξ(z)dF 2(z)

and sup ξ(z) is given by equation (22). Upper expec-
tation under strong independence can then be found
in an almost explicit form. The same is not true for
the lower expectation, since, relying on the first proof
of Proposition 1, inf ξ(z) is obtained in this case by
solving the equation

h(F
−1

1 (α), z) = h(F−1
1 (α), z).

where the root α obviously depends on z. By denoting
this dependency as αz, we can nevertheless derive the

following formula

E(h(X,Y )) = inf
F

2
≤F2≤F 2

∫

R
E(h(X, z))dF2(z)

=

∫ F
−1

2 (β)

−∞

∫ F
−1

1 (αz)

−∞

h(x, z)dF 1dF 2

+

∫ F
−1

2 (β)

−∞

∫ ∞

F−1

1
(αz)

h(x, z)dF 1dF 2

+

∫ ∞

F−1

2
(β)

∫ F
−1

1 (αz)

−∞

h(x, z)dF 1dF 2

+

∫ ∞

F−1

2
(β)

∫ ∞

F−1

1
(αz)

h(x, z)dF 1dF 2.

where β is a root of the equation

E(h(X,F−1
2 (β))) = E(h(X,F

−1

2 (β)).

and only an approximation of such a lower bound can
be found.

For the strong independence case, results rely heav-
ily on the linear programming view and allow us to
derive nice analytical formulas. Although we could
set the problem in a random set framework, it would
lead to numerical solutions less efficient than the one
presented here (difficult problems already arise when
computing lower and upper probabilities [6]).

Next cases emphasize the random set view, since this
view makes solutions easier to state (especially, as
could be expected, in the random set independence
case).

4.2 Random set Independence

In the case of random set independence, lower and
upper expectations can be computed by the following
formulas:

E(h) =

∫ 1

0

∫ 1

0

inf
(x,y)∈[Bκ×Aγ ]

h(x, y)dκdγ,

E(h) =

∫ 1

0

∫ 1

0

sup
(x,y)∈[Bκ×Aγ ]

h(x, y)dκdγ,

for which we can get a numerical approximation as
close as we want to the exact value, by discretizing
each integral. Moreover, in our particular case, eval-
uating inf h(x, y) or suph(x, y) is easy.

Indeed, if h is as stated above, finding the supremum
or infimum of h on [Bκ × Aγ ] will often require only
one computation: when b∗κ ≤ y0 and a∗

κ ≤ x0, the
supremum and infimum values are respectively on the
vertices (b∗κ, a∗

κ) and (b∗κ, a∗γ) of the square. when
b∗κ ≤ y0 ≤ b∗κ and a∗

γ ≤ x0, the supremum is at point



(a∗
γ , y0) and the infimum is either at point (a∗γ , b∗κ) or

(a∗γ , b∗κ). In the case where the square contains point
(x0, y0), this point is the supremum and the infimum
is on one of the four vertices of the square. All other
situations easily follow.

From a numerical standpoint, we can note that assum-
ing random set independence is equivalent to assum-
ing independence in a Monte-Carlo sampling scheme
where each sample consists of two randomly chosen
intervals Aγ and Bκ.

4.3 Unknown Interaction

Since p-boxes are special case of random sets, we can
follow Fetz and Oberguggenberger [6], who show that
considering unknown interaction when marginals are
random sets is equivalent to consider the set of all pos-
sible joint random sets having the latter for marginals,
and using results from [9] (where the extension of
continuous belief functions to n-dimensional case is
briefly sketched), computing lower (upper) expecta-
tion can be expressed as follows:

E(h) = inf
fMXY ∈JXY

∫

x1

∫

x2

∫

y1

∫

y2

inf
x∈[x1,x2]
y∈[y1,y2]

h(x, y)DfM
XY ,

E(h) = sup
fMXY ∈JXY

∫

x1

∫

x2

∫

y1

∫

y2

sup
x∈[x1,x2]
y∈[y1,y2]

h(x, y)DfM
XY ,

with

DfM
XY = fM

XY (x1, x2, y1, y2)dx1dx2dy1dy2,

where JXY is the set of all possible joint basic belief
densities fM

XY over R
4 which have fM

X and fM
Y as their

marginals.

Although the above equations are nice ways to for-
mulate the problem, solving them analytically will be
impossible in most cases. Again, the result can be ap-
proximated by approximating each p-box by a finite
random set.

For instance, let us consider the two random sets
Γγ ,Γκ approximating the p-boxes [F , F ]X ,[F , F ]Y
with sets Aγi , Bκj , where i, j = 1, . . . , n and where all
sets have equal weights (i.e. γi − γi−1 = κj − κj−1 =
1/n ∀ i, j). The problem of approximating lower ex-
pectation then comes down to finding

E
∗(h) = inf

Γγ,κ∈Γ∗γ,κ

∑
inf

x∈Aγi
y∈Bκj

h(x, y)mΓγ,κ(Aγi × Bκj )

subject to

n∑

j=1

mΓγ,κ(Aγi × Bκj ) = mΓγ (Aγi),

n∑

i=1

mΓγ,κ(Aγi × Bκj ) = mΓγ (Bκj ),

where Γ∗
γ,κ is the set of joint random sets having

Γγ ,Γκ for marginals, and mΓγ,κ(Aγi ×Bκj ) the mass
attached to the focal element Aγi ×Bκj . Approxima-
tion of upper expectation can be derived in a similar
way (i.e. replacing the inf by sup).

Although solving the above equations is not easy, we
can hope to find efficient solutions, provided we can
easily evaluate inf h(x, y) on elements of the Carte-
sian product (we have seen that it is the case here) .
Also, this method can be seen as an extension of some
existing methods (see [13, 8]) to functions h(x) more
general than indicator functions of events. Hence, we
could extend some previous results concerning indi-
cators functions to integrate some information about
dependencies [1]. Another interesting thing to point
out is that approximating the result in the case of
unknown interaction naturally leads to a linear pro-
gramming problem.

Methods given for unknown interaction and random
set independence are applicable to all random sets
(and only to random sets, which is a limitation com-
pared to general linear programming), and consider-
ing special cases such as p-boxes or possibility dis-
tributions often allow the derivation of more efficient
algorithms for solving the problems.

5 Function with local

maxima/minima - univariate case

Now we consider a general form of the function h,
i.e., the function h (x) has alternate local maximum
at point ai and minimum at point bi−1, i = 1, 2, ...,
such that

b0 < a1 < b1 < a2 < b2 < ... (23)

Proposition 3. If local maxima (ai) and minima (bi)
of the function h satisfy condition (23), then the opti-
mal distribution F for computing the lower uncondi-
tional expectation E(h) has (vertical) jumps at points
bi, i = 1, .... of the size

min
¡
F (bi) , αi+1

¢
− max (F (bi) , αi) .

Between (vertical) jumps with numbers i − 1 and i,
the optimal probability distribution function F is of



the form:

F (x) =






F (x) , x < a′

αi, a′ ≤ x ≤ a′′

F (x) , a′′ < x
,

where αi is the root of the equation

h
³
max

³
F

−1
(αi) , bi−1

´´
= h

¡
min

¡
F−1 (αi) , bi

¢¢

in interval
[
F (ai) , F (ai)

]
,

a′ = max
³
F

−1
(αi) , bi−1

´
, a′′ = min

¡
F−1 (αi) , bi

¢
.

The upper expectation E(h) can be found from the con-
dition E(h) = −E(−h).

Proof using linear programming (brief sketch).
The first proof is based on the investigation of the
following local primal and dual optimization prob-
lems for computing the lower expectation of h in
finite interval [b0, b1] where h has one maximum at
point a1:

Primal problem:

v =
∫ b1

b0
h (x) f (x)dx → min subject to

f (x) ≥ 0, F0 ≥ 0, F1 ≥ 0,
−

∫ x

b0
f (t) dt − F0 ≥ −F (x) ,

∫ x

b0
f (t) dt + F0 ≥ F (x) ,

−F0 ≥ −F (b0) ,F0 ≥ F (b0) ,
−F1 ≥ −F (b1) ,F1 ≥ F (b1) ,
∫ b1

b0
f (t) dt + F0 − F1 = 0.

Dual problem:

w = −c0F (b0) + d0F (b0) − c1F (b1) + d1F (b1)

+
∫ b1

b0

¡
−F (x) c (x) + F (x) d (x)

¢
dx → max

subject to

e +
∫ b1

x
(−c (t) + d (t)) dt ≤h (x) ,

e − c0 + d0 +
∫ b1

b0
(−c (t) + d (t)) dt ≤0,

−e − c1 + d1 ≤ 0,
c (x) ≥ 0,c0 ≥ 0,c1 ≥ 0,
d (x) ≥ 0,d0 ≥ 0,d1 ≥ 0,e ∈ R

All inequalities in the above primal and dual prob-
lems are valid only for x ∈ [b0, b1]. Results similar
to those of proposition 1 can then be derived, and
it is interesting to note that b0, b1 play similar roles
to those of α,β in the conditional case. Finding the
optimal distribution between each bo, b1 leads to four
cases, depending on the situation. Figures 3.A-D il-
lustrate these situations. The optimal F for which
the lower expectation is reached is then a succession
of such subcases, with a vertical jump between each of
them (in figures 3.A-D, α, b0 and b1 are respectively
equivalent to αi, bi and bi+1 of proposition 3) .

Subcase 3.A Subcase 3.B

Subcase 3.C Subcase 3.D

Figure 3: Subcases of piecewise optimal F

Proof using random sets (brief sketch). For
convenience, we will consider that h begins with a
local minimum and ends with a local maxima an.
Formulas when h begins/ends with a local maximum
(minimum) are similar. Lower/upper expectations
can be computed as follows:

E(h) =

F (bn)∫

0

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗
γ))dγ +

1∫

F (bn)

h(a∗γ)dγ,

E(h) =

F (a1)∫

0

h(a∗
γ)dγ +

F (an)∫

F (a1)

max
ai∈Aγ

(h(a∗γ), h(ai), h(a∗
γ))dγ.

Let us explain a bit the equation for the lower ex-
pectation (details for upper one are similar). The
most interesting part is the first integral. Let B =
[bi, . . . , bj ] (i ≤ j) be the set of local minima in-
cluded in any particular set Aγ (B can be empty).
bi−1 and bj+1 are the closest local minima outside Aγ .
Let us consider the situation for which the lowest local
minima h(bk) s.t. bk ∈ B (an empty B is a degener-
ated case of this one) is higher than h(bi−1),h(bj+1).
As γ increases and as set Aγ evolves, various situa-
tions can happen. Either the infinimum shifts from
h(a∗γ) to h(bk) at some point (this is subcase 3.C)
or it shifts from h(bk) to h(a∗

γ) (subcase 3.D), or it
shifts from h(a∗γ) to h(a∗

γ) if h(bk) is too high (sub-
case 3.B). Subcase 3.A corresponds to the case of a
local minimum bi always dominating two other local
minima (equivalent to b0,b1) in any set Aγ . The jumps
in proposition 3 correspond to the situations where
the infinimum of h(x) has value h(bk), either until
h(bk) = h(a∗

γ) or until bk is on the border of Aγ as
γ increases. In the first case, it corresponds to an
"horizontal" jump and to one of the root α in propo-
sition 3, while in the latter case, the vertical jump



collapses with the upper cumulative distribution.

Similarly to figure 2, the optimal F will be a suc-
cession of vertical and horizontal jumps, sometimes
following either F or F after a vertical jump has "col-
lapsed" with F or an horizontal jump with F . The
proof using linear programming concentrates on "hor-
izontal" jumps, while the proof using continuous ran-
dom set emphasize vertical jumps. Again, each view
suggests a different way to approximate the result.

An appealing way of formulating lower expectation is
the following: let bj i = 1, . . . ,m be the local minima
where we have the "vertical" jumps and γj∗ , γj∗ the
associated levels on the set [0, 1]. Then we have

E(h)=
m
P

j=1

(

γj∗
R

γ(j−1)∗

inf
x∈Aγ

(h(a∗γ),h(a∗γ))dγ+(γ(j+1)∗−γj∗ )h(bj)).

(24)

6 Conclusions

We have considered the problem of computing lower
and upper expectations on p-boxes and particular
functions under two different approaches: by using
linear programming and by using the fact that p-
boxes are special cases of random sets. Although the
two approaches try to solve identical problems, their
differences suggest different ways to approximate the
solutions of those problems. Moreover, some partic-
ular problems are easier to state (solve) in one ap-
proach than in the other (for example, the solutions
explored in section 4). But more important than their
differences is the complementarity of both approaches.
Indeed, one approach can shed light on some prob-
lems shaded by the other approach (e.g. the α level
of proposition 1). Another advantage of combining
both approaches is the ease with which some prob-
lems are solved and the elegant formulation resulting
from this combination (like in the conditional case).
Let us nevertheless note that the constraint program-
ming approach can apply to imprecise probabilities
in general, while the random set approach is indeed
limited to random sets.

Further works should concentrate on two directions:
exploring further some ideas that were stated in the
multivariate case (as well as deriving similar results
for independence types not considered here), and ex-
tending the presents results to the general case of a
function having many local extrema.
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Abstract

Regression is the central concept in applied statistics
for analyzing multivariate, heterogenous data: The
influence of a group of variables on one other vari-
able is quantified by the regression parameter β. In
this paper, we extend standard Bayesian inference on
β in linear regression models by considering impre-
cise conjugated priors. Inspired by a variation and an
extension of a method for inference in i.i.d. exponen-
tial families presented at isipta’05 by Quaeghebeur
and de Cooman, we develop a general framework for
handling linear regression models including analysis
of variance models, and discuss obstacles in direct
implementation of the method. Then properties of
the interval-valued point estimates for a two-regressor
model are derived and illustrated with simulated data.
As a practical example we take a small data set from
the airgene study and consider the influence of age
and body mass index on the concentration of an in-
flammation marker.

Keywords. airgene study, analysis of variance,
exponential family, (imprecise) conjugate priors, im-
precise probability models, interval probability, prior-
data conflict, regression, robust Bayesian inference

1 Introduction and Sketch of the

Argument

From engineering science over econometrics to sociol-
ogy, from psychology over biometrics to medicine, one
of the omnipresent questions is how certain variables
(called covariates/confounders, regressors, stimulus or
independent variables, here denoted by x) influence a
certain outcome (called response or dependent vari-
able z). The answer is obtained from regression mod-
els, and so regression modelling is the central concept
in applied statistics.

The most common and simple case, dating back al-
ready to Gauß, is linear regression (see Section 3.1

for more details on the model), where, possibly after
some transformations, for every unit i, taken from a
sample of size k, the dependent variable zi is assumed
to be of metric scale and to be linearly related to p
independent variables xi1, xi2 . . . , xip:

zi = β1xi1 + β2xi2 + . . .+ βpxip + εi , (1)

where εi is a stochastic error term subsuming the
residual variation beyond the linear relationship be-
tween the variables.

The so-called regression coefficients βj , j = 1 . . . , p
measure the extent to which the dependent variable
is expected to change if the value of the j-th regressor
is enlarged by one unit and all other regressors re-
main unchanged. Often xi1 = 1 for all i and then β1

is called intercept, describing some baseline level. The
special case where all regressors are categorical (and
coded via (several) 0/1 variables) is known as anova

(analysis of variance). The coefficients βj can, for
example, be estimated by the classical least squares
method, or, relying on the Bayesian paradigm, by as-
signing a prior on the βj ’s and updating it in the
light of the data. This update step is especially ele-
gant and simple to perform in situations we will call
luck-models (described in Section 2.1). In our situ-
ation there are several possibilities to construct such
a luck-model. We will rely on that multivariate nor-
mal as the prior for βj , j = 1 . . . , p, which has become
the standard for regression analysis (see, e.g., [13]).

Although imprecise probabilities and related concepts
[21, 26, 18] have proven to be quite powerful and con-
vincing in many areas of application, regression analy-
sis has only lived in the shadows there:1 population
heterogeneity, i.e. individual variation related to dif-
ferent covariate values, has mainly been incorporated
by means of classification models [30, 1]; generalized
inference (in particular along the lines of Walley’s gen-
eralized Bayes’s rule [21]) and decision theory (see the

1Very rare exceptions can be found in the robust Bayesian
context, including: [6, 12]



survey in [20]) have almost exclusively confined them-
selves to the case of homogenous populations (i.i.d.
case) or two-sample models (like [22, Section 5] and
[8]).

Sound regression models would make imprecise prob-
abilities quite attractive for applied scientists. As a
step towards this ambitious aim we show that the ap-
proach of Quaeghebeur and de Cooman [16], who de-
veloped a concept of imprecise conjugated priors that
nicely generalizes the widely applied imprecise Dirich-
let model (IDM) [22, 2, 3], can be extended in an ap-
propriate way.2 Indeed, at least two different ways
are successful. We briefly comment on the first one,
which directly adopts to regression analysis Quaeghe-
beur and de Cooman’s [16] original way to proceed,
and investigate in more detail the second one, which is
in straight line with the standard model for regression
analysis (cf., e.g., [13].) For that purpose we interpret
[16]’s approach, beyond its direct application in their
work, as a general method for powerfully introduc-
ing imprecision into a huge class of Bayesian models,
which we will call, for sake of brevity, luck-models in
this paper, and demonstrate that the standard model
for Bayesian regression analysis indeed fits into this
framework.

In more detail, the paper is organized as fol-
lows: In Section 2 we collect some basic ingredients
from Bayesian analysis, identify the special case of
Bayesian analysis (luck-models) that underlies our
basic argument, and then turn to the method for in-
troducing imprecision into conjugate priors [16]. Sec-
tion 3.1 firstly recalls classical3 Bayesian regression
analysis and puts it into the framework of luck-
models. After having utilized [16] as a powerful
method to extend luck-models to imprecise proba-
bilities, we arrive at a general framework for regres-
sion analysis under sets of conjugate priors. We then
focus consideration on a special case with two regres-
sors, where some complex constraints underlying the
general situation can be made easily tractable. The
results are illustrated in Section 4 by simulated data
and in Section 5 by a small data set from the air-

gene study [15]. We conclude with some remarks
on modifications and extensions, including the possi-
bility to incorporate modelling of prior-data conflict,
which was explicitly named by Walley as one of the
main arguments for imprecise probabilities [21, p. 6],
but which cannot be captured by the original method
along the lines of [16].

2A different approach to generalize regression analysis has
been proposed quite recently [28, Chapter 13] in the framework
of the symmetric theory based on logical probability ([28], see
also [27]).

3We use the term ‘classical’ for all concepts relying on precise
probabilities / linear previsions.

2 Bayes Inference and LUCK-models

2.1 Classical Bayesian Inference and

LUCK-models

As a preparation, some basic notions from the classi-
cal Bayesian approach will be recalled: Central is the
assumption that the knowledge on a (possibly mul-
tivariate) parameter ϑ can be perfectly expressed by
a single precise probability distribution on ϑ. So, in-
ference from a (possibly multidimensional) sample w,
the distribution of which is described by a density or
probability function f(w |ϑ) (called likelihood in this
context), consists in updating the so-called prior p(ϑ)
to the so-called posterior p(ϑ |w) via Bayes’s rule

p(ϑ |w) ∝ f(w |ϑ) · p(ϑ) . (2)

For a Bayesian, the prior describes the knowledge be-
fore having seen the sample, and the posterior sub-
sumes the complete knowledge on ϑ after having seen
the sample, and therefore it underlies all inferences
drawn from the data.

For the intended application presented later on, it is
quite convenient to distinguish certain standard situa-
tions (called models with ‘Linearly Updated Conjugate
prior Knowledge’ (luck) here) of Bayesian updating
with classical probabilities, where prior and posterior
fit nicely together in the sense that

i) they belong to the same class of parametric dis-
tributions, a case where they are called conjugate,
and, in addition,

ii) the updating of one parameter (y(0) below) of the
prior is linear.4

More precisely, we introduce the following definition:

Definition 1 Consider classical Bayesian inference
on a parameter ϑ based on a sample w as described
in (2), and let the prior p(ϑ) be characterized by the
(vectorial) parameter ϑ(0). The pair

(

p(ϑ), p(ϑ |w)
)

is
said to constitute a luck-model of size q in the nat-
ural parameter ψ with prior parameters n(0) ∈ IR+

and y(0) and sample statistic τ(w), iff there exist
q ∈ IN as well as transformations of ϑ into ψ and
b(ψ) and of ϑ(0) into n(0) and y(0), such that p(ϑ)
and p(ϑ |w) can be rewritten in the following way:5

p(ϑ) ∝ exp
{

n(0)
[

〈ψ, y(0)〉 − b(ψ)
]}

(3)

and

p(ϑ |w) ∝ exp
{

n(1)
[

〈ψ, y(1)〉 − b(ψ)
]}

(4)

with

n(1) = n(0) + q and y(1) =
n(0)y(0) + τ(w)

n(0) + q
. (5)

4The second parameter n(0) possesses a vivid interpretation
as “prior strength”, which will become clearer in Section 2.2.

5
〈a, b〉 denotes the scalar product of a and b.



2.2 Imprecise Priors for Inference in

LUCK-models

Several powerful approaches have been proposed to
overcome the “dogma of ideal precision” (Walley) un-
derlying classical Bayesian inference (cf., in particu-
lar, [14, 7, 5, 16]; see also Section 6). We rely in the
following on the work of Quaeghebeur and de Cooman
[16], who consider, by utilizing a general result (see,
e.g., [4, Proposition 5.4]), certain luck-models for
Bayesian inference based on independently and iden-
tically distributed (i.i.d.) observations from regular,
linear canonical exponential families [4, p. 202 and
p. 272f]. The central idea of [16] is that the seemingly
strange parameterization in terms of y(0) and n(0) in
(3) and (4) is perfectly suitable to be generalized to
credal sets of priors. The crucial point is that these
parameters are updated linearly, thus allowing for an
easily tractable imprecise calculus: When sets of pri-
ors are defined via sets of parameters, and these sets
of parameters are defined by lower and upper bounds,
the lower and upper bounds of the sets of posterior
parameters can be obtained directly from (5). So, just
as in the popular IDM, which is contained as the spe-
cial case of a multinomial sampling model with con-
jugated Dirichlet priors, minimization and maximiza-
tion problems on the set of posteriors can be reduced
to minimization and maximization problems on the
set of priors in the case when the parameter y(1) (or
a linear function of it) is the quantity of interest.

It shall be noted explicitly that this line of argumen-
tation simply uses the linearity of the updating in
the parameters, not the concrete derivation of the
conjugate prior. Consequently, Quaeghebeur and de
Cooman’s technique to construct imprecise conjugate
priors can be applied to any luck-model.

In more detail, the following technique will be applied:
Given the situation in Definition 1, let y(0) vary in
some set Y(0) ⊂ Y, where the parameter space Y is
taken as the convex hull (without the boundary) of
the range of τ(wi), and take as the imprecise prior
the credal set consisting of all convex mixtures of all
p(ϑ) from (3) created by varying y(0) in Y(0). After
having evaluated the sample w, the posterior credal
set arising from applying Bayes’s rule element by el-
ement has to be determined. For its calculation it is
sufficient to consider the extreme points, and so it is
obtained as the set of all convex mixtures of posteri-
ors p(ϑ |w) arising from (4) by varying y(1) in Y(1),
where

Y(1) =

{

n(0)y(0) + τ(w)

n(0) + n

∣

∣

∣

∣

y(0) ∈ Y(0)

}

⊂ Y . (6)

Y(1) can actually be seen as a shifted and rescaled
version of Y(0):

Y(1) =
n(0)

n(0)+ n
· Y(0)+

n

n(0)+ n
·

1

n

n
∑

i=1

τ(wi) , (7)

which immediately suggests a vivid interpretation of
n(0) as “prior strength” or as “pseudocounts”, as it
plays the same role for the prior as n for the sample.
So, n(0) can be interpreted as the size of an imaginary
sample that corresponds to the trust on the prior in-
formation in the same way as the sample size of a real
sample corresponds to the trust in conclusions based
on that sample.

For posterior inference, lower and upper posterior ex-
pectations are derived as the infimum and the supre-
mum over all classical expectations with y(1) varying
in Y(1). The resulting relations between n(0), prior
and posterior bounds are in essence the same as in
the IDM:6 In particular, for n(0) = n, the width of
the posterior expectation interval is half the width of
the prior interval.

The choice of Y(0) should reflect the prior informa-
tion on the parameters. When there is very little or
no information at all available, Y(0) should be chosen
as large as possible, that is, as the set of all possi-
ble parameter values, Y(0) = Y. However, in most
cases this would lead to the posterior set Y(1) being
vacuous as well, whatever the number of observations

used for updating; for any y
(0)
j = ∞, it holds that

y
(1)
j = ∞ as well. To avoid this, Y(0) must be bounded

by (element-wise) finite lower and upper boundaries.7

This need to bound Y(0) is not perceived as a severe
restriction in practical application; typically, as in our
example in Section 5, the very rough magnitude of
reasonable parameter values is known, and there ex-
ist some trivial bounds.

3 Towards Imprecise Normal

Regression Models

3.1 The Linear Regression Model, and its

Classical Bayesian Treatment

In handling the linear regression model it is helpful to
arrange the components in column vectors, denoted
without index, i.e., z = (z1, . . . , zk)T, and to collect all
regressors column by column in the so-called design
matrix X. Equation (1) then reads as

z = Xβ + ε , X ∈ IRk×p, β ∈ IRp, z ∈ IRk, ε ∈ IRk ;

ε is assumed to have expected value 0 and covariance
matrix σ2I, i.e. V(εi) = σ2, the variance of εi does

6n(0) corresponds to the parameter s in the IDM.
7For the IDM, this is not necessary, as the parameter space

Y itself is already bounded, being the unit simplex.



not vary among the units (homoscedasticity) and all
units are uncorrelated.

There are several methods to construct estimators β̂
for the regression parameter β. With the least squares
method, β̂ is chosen to minimize the squared differ-
ence between the observed response values z and the
values estimated by Xβ̂, yielding the well-known least
squares (LS) estimator

β̂LS = (XTX)−1XTz . (8)

Other estimation techniques additionally assume that
the error term ε is normally distributed. Then, as the
design matrix X is considered to be non-stochastic,8

also z is normally distributed,

z ∼ Nk(Xβ, σ2I) . (9)

This point of view is very helpful for several types of
generalizations.9 Reinterpreting (9) as a likelihood on
β and σ2 and applying the maximum likelihood (ML)
principle again leads to the estimator from (8). In
the Bayesian context appropriate priors related to the
parameters and the likelihood (9) have to be found.
Several choices for the prior seem attractive,10 even
different luck-models can be produced: In the light
of the intended generalization below one natural pos-
sibility would be to follow the path of Quaeghebeur
and de Cooman closely, by constructing a conjugate
prior along the general construction method for luck-
models (see, e.g., [4, Proposition 5.4]), also mentioned
at the beginning of Section 2.2. For the case of known
(or in advance estimated) σ2 considered throughout
the paper, one obtains by this procedure

p(β) ∝ exp
{

n(0)
[

〈β, y(0)〉 − b(β)
]}

,

where b(β) = 1
2σ2

∑k

i=1

(

∑p

j=1 xijβj

)2

. This prior

can be shown to be a normal distribution on β, with
its parameters being some transformations of n(0) and
y(0) depending on X.11 It was maybe this strange
dependency of the prior on the covariates X that re-
sulted in this prior rarely being used for estimating
regression parameters in the Bayesian framework.

8If X is stochastic, then it is common, and legitimate, prac-
tice (cf., e.g., [9]) to perform the analysis conditional on X,
hence (9) is replaced by z | X ∼ Nk(Xβ, σ2

I).
9It makes also clear how the heterogeneity in the data is

modelled: Each response zi is assumed to be normally distrib-
uted, but the corresponding mean value depends on the individ-
ual characteristics (regressors) xi1, . . . , xip and the effect size
(expressed by β).

10So-called ‘objective Bayesian estimation’ of β, using the
‘non-informative’ prior p(β) ∝ const. leads to the same results
as LS and ML when the expected or the maximum value of the
posterior is used as the estimate. Therefore, when the interval-
valued estimations of β proposed in this work are compared
with the LS estimate, they are implicity compared to the ML
and the objective Bayesian estimates as well.

11See [25] for more details on this model.

Instead, the commonly used approach specifies

β ∼ Np

(

β(0), σ2Σ(0)
)

(10)

as the conjugate prior.12 Advocated, e.g., by [13], it
has become the standard, why we call the model based
on this prior normal regression model throughout the
paper. Applying Bayes’s rule (2) to (10) yields

β | z ∼ Np

(

β(1), σ2Σ(1)
)

, (11)

where the updated parameters β(1) and Σ(1) are ob-
tained as

β(1) =
(

XTX + Λ(0)
)−1(

XTz + Λ(0)β(0)
)

(12)

Σ(1) =
(

XTX + Λ(0)
)−1

, (13)

Λ(0) = Σ(0)−1
being the so-called precision matrix.13

3.2 The Normal Regression Model as a

LUCK-model

Now the argument that the extension proposed in
[16] is neither limited to the i.i.d. case of homogenous
populations nor to the special construction of luck-
models considered there becomes fruitful: The stan-
dard Bayesian treatment of regression models based
on the prior (10) can be shown to fit into the frame-
work of luck-models, a fact that luckily immedi-
ately enables an appropriate generalization to impre-
cise models.

Theorem 2 Consider the normal regression model
described by the prior p(β) from (10) with prior para-
meters β(0) and Σ(0), and the posterior p(β | z) from
(11) with (12) and (13).

Fixing a value n(0),
(

p(β), p(β | z)
)

constitutes a
luck-model of size 1 with prior parameters

y(0) =
1

n(0)

(

Λ(0)

Λ(0)β(0)

)

=:

(

y
(0)
a

y
(0)
b

)

(14)

and n(0) and sample statistic

τ(z) = τ(X, z) =

(

XTX

XTz

)

=:

(

τa(X, z)
τb(X, z)

)

. (15)

12Throughout the paper we denote prior parameters by the
superscript (0) and, if appropriate, corresponding parameters
of the posterior by (1). Here, the mean vector β(0)

∈ IRp and
the (positive definite) covariance matrix Σ

(0)
∈ IRp×p are the

prior parameters defining the concrete distribution on β.
13If, in addition, σ2 is considered unknown, too, the com-

monly used prior distribution conjugate to the likelihood in (9)
is the so-called normal-inverse gamma distribution (e.g., [13,
§9.4]). Unfortunately, this model will turn out to be not gen-
eralizable in the same way as it is done here for the normal
regression model (cf., [23, Appendix], and also briefly in [25]).
A first way out would be to estimate σ2 in advance, and then
to apply the normal regression model with the estimated value
of σ2, a strategy that we followed in our examples in Sections 4
and 5.



Proof: The proof is given in [24].

Knowing now the form of y(0), we can finally start
with the imprecise probability calculus: By varying
y(0) from (14) in a set Y(0) ⊂ Y, the set of priors is
generated. Since T , the range of the sample statis-
tic, is the product of the set of positive semidefinite
(p × p) matrices and arbitrary vectors of dimension
p, Y is taken as the convex hull of T without the

boundary, thus y
(0)
a having to be a positive definite

(p × p) matrix. On the one hand, Y(0) is chosen in
order to reflect prior knowledge on β; on the other
hand, this set must, as mentioned above at the end of
Section 2.2, be bounded in order to avoid the possi-
bility of vacuous posterior inference. In the case of a
multidimensional parameter space Y, [16] suggest to
relate the element-wise bounds to each other. Their
suggestion for the multivariate normal distribution is
adopted here, leading to the following constraints of
positive definiteness (p.d.):

1

n(0)
Λ(0) p.d., and (16)

1

n(0)

(

Λ(0) −
1

n(0)
Λ(0)β(0)β(0)TΛ(0)

)

p.d. (17)

If the normal regression model is to be applied as an
imprecise probability model, we have to proceed as
follows:

1. Prior knowledge on β must be expressed as a set
of values of β(0) and Λ(0).

2. This set must be “translated” into a set of values
of y(0) in a way such that the resulting set Y(0)

satisfies the constraints (16) and (17).

3. Then each y(0) in Y(0) is linearly updated by (5)
to y(1).

4. The obtained set Y(1) must be “retranslated”
into an interpretable set of values of β(1) and Λ(1).

The sets can be defined by lower and upper bounds
for each element, e.g., for β(0) by

β
(0)
j ∈

[

β(0)

j
, β

(0)

j

]

j = 1, . . . , p .

The bounds for the components β
(0)
j of β(0) can be

chosen independently of each other, as any vector of
reals forms an admissible regression parameter. For
Λ(0) the situation is more complex, because all the

element-wise bounds λ
(0)
ij and λ

(0)

ij have to be chosen
such that for any combination of values between the
bounds the resulting Λ(0) is positive definite. Choos-
ing bounds for the precision matrix Λ(0) instead of
bounds for Σ(0) facilitates the “translation” issues in
application to a great extent.14

14Defining the bounds for Λ
(0) is in fact not as complicated

as it might seem as the elements are interpretable in a quite

In the “translation” step the bounds on β(0) and Λ(0)

must be turned into bounds on y(0) that have to sat-

isfy conditions (16) and (17). For y
(0)
a , this is simple,

as multiplying by 1
n(0) does not change positive defi-

niteness. But deriving bounds on y
(0)
b is more difficult,

as it holds that

y(0)
bi

= min
β(0),Λ(0)

1

n(0)

p
∑

j=1

λ
(0)
ij β

(0)
j

y
(0)
bi = max

β(0),Λ(0)

1

n(0)

p
∑

j=1

λ
(0)
ij β

(0)
j .

The minima and maxima are to be taken over a joint
set of β(0) and Λ(0) that satisfies the constraint (17).

Note that for obtaining the bounds for a single y
(0)
bi

the bounds of all elements of β(0) and of the i-th row
on Λ(0) have to be taken into account on the one hand,
but on the other hand maximization and minimiza-
tion must be executed only on combinations of all
values between these bounds that are admissible ac-
cording to (17). The obstacle is that (16) and (17) are
nonlinear constraints (polynomial of degree p when
checking wether all eigenvalues are positive), so that
y(0) and y(0) can hardly be calculated analytically.
The satisfaction of the highly complex constraint (17)
can be taken into account when “translating” to Y(0)

or already when defining the sets for β(0) and Λ(0).

3.3 The Case of Two Regressors

In order to be able to give vividly interpretable ana-
lytical expressions, we now focus attention on the case
of two regressors. Here, (16) turns out to demand only

that, for any given λ
(0)
11 and λ

(0)
22 , λ

(0)
12 must be chosen

such that it leads to a correct non-deterministic cor-
relation ρ. Still, with the five parameters β

(0)
1 , β

(0)
2 ,

λ
(0)
11 , λ

(0)
12 , λ

(0)
22 in this model, (17) turns out be quite

complex, leading to an inequality in six parameters
(the above five plus n(0)) that does not seem to pro-
duce an easily interpretable condition on their choice.

Therefore a further simplification was made by as-

suming λ
(0)
11 = λ

(0)
22 =: a and λ

(0)
12 = 0. Then, (16) is

trivially satisfied and (17) requires only

a
(

β
(0)
1

2
+ β

(0)
2

2)

< n(0) . (18)

If the bounds for β
(0)
1 , β

(0)
2 and a are chosen such

that all possible combinations of values satisfy this

straightforward way (and maybe even closer to intuition than
the elements of Σ

(0)): According to [17] (who is referring
to [29, p. 142ff]), it holds that λii = [V(βi |βri)]

−1, where

βri is vector β without element i, and λij = −(λiiλjj)
1
2 ·

ρ(βi, βj |βr{i,j}), with the second factor being the correlation
of βi and βj conditioned on the linear effect of βr{i,j}.



constraint, minimization and maximization can be
performed for every parameter independently. Now,
most but not all parameters of the posterior can be
specified analytically, and the results to be sketched
here15 will turn out to be highly plausible:

We consider the following prior:

β ∼ N2

(

β(0),
σ2

a
I

)

,

with a ∈ A := [a, a] , a > 0 and

β(0) =

(

β
(0)
1

β
(0)
2

)

∈ B :=

(

B1 =
[

b1, b1
]

B2 =
[

b2, b2
]

)

.

In the description we jump directly to the “retrans-
lated” results. Denoting the elements of the updated

covariance matrix Σ(1) by σ
(1)
ij , i, j = 1, 2, we obtain

for any a ∈ A by abbreviating

D =
(

∑k

l=1 x
2
l1 + a

)(

∑k

l=1 x
2
l2 + a

)

−
(

∑k

l=1 xl1xl2

)2

:

σ
(1)
11 = D−1 ·

(

∑k

l=1 x
2
l2 + a

)

σ
(1)
22 = D−1 ·

(

∑k

l=1 x
2
l1 + a

)

σ
(1)
12 = D−1 ·

(

−
∑k

l=1 xl1xl2

)

.

Their basic properties are summarized in

Remark 3

i) As ∂
∂a
σ

(1)
11 and ∂

∂a
σ

(1)
22 are always negative, the

higher the prior precision a, the lower the poste-
rior variance of β1 and β2. The trend of the co-

variance σ
(1)
12 depends on the sign of

∑k

l=1 xl1xl2.

ii) lima→0 σ
2Σ(1) = σ2(XTX)−1 = V(β̂LS). There-

fore, for a > 0 and monotonicity, it holds that
the posterior variance of the regression parame-
ters in the imprecise normal regression model is
always smaller than the one of the LS estimator.

iii) lima→∞ σ2Σ(1) = 0: An infinitely high prior pre-
cision causes naturally an infinitely small poste-
rior variance.

Most of the results on β(1) are reported in terms

of β
(1)
1 only; by noting the symmetry underlying β1

and β2, analogous results for β
(1)
2 are immediately

achieved mutatis mutandis. We obtain

β
(1)
1 =

1

D

{(

k
∑

l=1

x2
l2 + a

)[

a · b1 +

k
∑

l=1

xl1zl

]

−

(

k
∑

l=1

xl1xl2

)[

a · b2 +
k
∑

l=1

xl2zl

]}

.

15See [23, Section 4.3] for a detailed derivation.

As these expressions are linear in b1 and b2 and op-
timizations in B can be taken independently of a, it
holds that

β
(1)
1 →max for b1→b1 and

{

b2→b2
∑k

l=1 xl1xl2 < 0

b2→b2
∑k

l=1 xl1xl2 > 0

β
(1)
1 →min for b1→b1 and

{

b2→b2
∑k

l=1 xl1xl2 < 0

b2→b2
∑k

l=1 xl1xl2 > 0
.

Unfortunately, calculating ∂
∂a
β

(1)
1 yields neither

monotonicity nor an easily interpretable condition so
that the bounds for β(1) can not be given analyti-
cally. But still asymptotic results can be obtained,
which are summarized in

Remark 4

i) For any bj ∈Bj , j=1, 2 : lima→∞ β(1) = (b1, b2)
T,

and so, for very high values of a implying a very
high prior precision, each b ∈ B is updated to a
value very near to itself; very high trust in the
given prior values in B means sticking on the
prior values and results in learning from the sam-
ple only to a very small extent.

ii) On the other hand, lima→0 β
(1) = β̂LS: Very low

trust in the prior values in B results in relying
almost only on the information given by the sam-
ple, and so, any given b ∈ B will be updated to a
value close to the least squares estimate β̂LS.

On a first view, it is disturbing that none of the above
formulae for deriving posterior parameters depends
on n(0), the second prior parameter. The reason for
this is that in proving Theorem 2, the parameter n(0)

had to be introduced ‘artificially’ to match Relations
(3) to (5) for the luck-model. When ‘retranslating’
y(1) into β(1) and Σ(1), the parameter n(1) is elimi-
nated immediately, and, as a consequence, the depen-
dency on n(0) seems to vanish. In fact, the posterior
bounds do actually depend on n(0) via Equation (18).
Through this restriction on the prior bounds, the
range of posterior bounds is constrained. When using
the imprecise normal regression model, the bounds for
B are quite easy to derive; a possible strategy is then
to set a value for n(0) according to the interpretation
as pseudocounts or sample size equivalent, and then
to determine a from (18).

4 Results Based on Simulated Data

To illustrate the performance of the two-parameter
model developed in Section 3.3, three data sets were
simulated, each with 20 observations, but with a dif-
ferent arrangement of parameters. For data set 1,
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Figure 1: Exemplary results for two-regressor models based on three simulated data sets with 20 observations
each.

realizations x1 and x2 of two independent standard
normal variables were generated as regressors; the er-
ror ε was simulated with variance σ2 = 0.5. Then
the response z was calculated by choosing β1 = 1.5,
β2 = 1. Data set 2 was generated analogously but
with β1 = 0.5, β2 = 0.1 and σ2 = 3. In data
set 3, multi-collinearity was modeled by simulating x1

and x2 by a two-dimensional normal with correlation
ρ = 0.9, taking β1 = β2 = 0.85 and σ2 = 1 for calcu-
lating z. The regressors were standardized and z was
centered with the observed moments in order to make
the estimation of an additional intercept unnecessary.
Exemplary results are shown in Figure 1, where the
graphs from the left to the right show results for data
set 1, 2 and 3, respectively.

The upper graphs show the estimation of β1 for each
data set. In each of these graphs, the thick short-
dashed line represents the actual value of β1, the thin-
ner dashed line the LS estimate, and dot-dashed lines
indicate the bounds of the 0.95% confidence interval
for the LS estimate. The ‘horizontal’ solid lines repre-

sent the estimated lower and upper bound for β
(1)
1 as

a function of a, and the vertical lines mark the chosen
values of a and a. The lower graphs compare the clas-
sical ellipsoid confidence region (dash-dotted line) for
the LS estimate of β1 and β2 (indicated by the small

circle) with the interval-valued estimate (thick short-
dashed line) and a 0.95-credibility region for it (thick
solid line). The actual value of (β1, β2) is indicated
by the big cross.

For the “large β, small σ2” data set 1, relatively high
values of a were chosen ‘data-guided’ by taking the
estimated variance of the LS estimator to calculate a
central value of A. Because standardized regression
parameters are to be estimated, their absolute value
is interpretable, and the choice of B1 = B2 = [−2 ; 2]
seems reasonable, as higher values are very rare in ap-
plication. Note that the course of the ‘horizontal’ solid
lines illustrates clearly the statement in Remark 4:
The prior assignment results in a quite broad poste-

rior interval for β
(1)
1 (lowest and highest intersection

of vertical with ‘horizontal’ solid lines), as the induced
value of n(0) = 210 is quite high with respect to the
sample size of 20. Consequently, the interval-valued
estimate displayed in the lower graph covers a wide
area compared to the frequentist confidence region.
So does the 0.95-credibility region, which was approx-
imated by the union of 0.95-credibility regions for all
combinations of β1 and β2 in the interval-valued es-
timate. Because the maximum posterior variance is
lower than the variance for the LS estimate (as men-
tioned in Remark 3), the distance between the bounds
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interval-valued regression parameter estimates.

of the interval-valued estimate and its credibility re-
gion is smaller than the distance between the LS es-
timate and its confidence region.

In the “small β, large σ2” situation of data set 2,
a was chosen such that n(0) = 20, implying that the
influence of prior and data information are evenly bal-
anced. a was chosen ad hoc as 0.5 · a to illustrate the
effect of values of a > 0 on the variance of β(1). (Here,
the choice of a has no influence on the interval-valued
estimates for β(1).) Now, as smaller values of a result
in shorter intervals for β(1) (which can be seen clearly
from each of the top graphs), the resulting interval-
valued estimate for β1 is less wide, being now shorter
than the confidence interval that is quite wide due to
the high value of σ2. This can be seen also in the lower
graph, where the confidence region and the credibility
region differ to a much lesser extent than in the lower
left graph.

For the analysis of data set 3 with a “moderate β1

and β2, moderate σ2” arrangement, A was chosen by
using values for n(0) that are commonly suggested for
s in the IDM to represent prior ignorance. So a was
derived from n(0) = 1, and a from n(0) = 2. To-
gether with, as a precaution, even wider prior inter-
vals B1 = B2 = [−3 ; 3], this still yields a very short
posterior interval for β1, as can be seen in the top
right graph. Note the exceedingly wide confidence
interval for the LS estimate, as this shows the trou-
blesome property of the LS estimate in the case of
multi-collinearity: the high resulting variance of esti-
mates can, in many cases, even cause the ‘observed’
estimates having the wrong sign. In the lower right
graph, both the confidence as well as the credibility re-
gion show the effect of multi-collinearity through their
diagonal shape: estimates for β1 and β2 are negatively
correlated because both x1 and x2 contain similar in-
formation. Still, the interval-valued estimate covers a

quite small area around the LS estimate, illustrating
again the results achieved for the limiting case a→ 0.

In Figure 2, asymptotic behavior of the interval-
valued estimation for β1 is illustrated using the sit-
uation of data set 1 and choosing n(0) = 100. With
increasing sample size k = dim(z), the range of the in-
terval, marked as a gray colored vertical line for each
value of k, is becoming shorter and shorter, tightening
around the LS estimate, represented by the thin solid
line, which approaches the actual value of β1, marked
by the thick short-dashed horizontal line. The dot-
dashed lines indicate again the bounds of the 0.95%
confidence interval for the LS estimate.

5 The AIRGENE Study

In addition, the model was applied to a data set that is
a part of the data collected for the airgene study [15],
an EU financed panel study which was conducted to
assess the association between air pollutants and in-
flammation markers in the high-risk group of myocar-
dial infarction survivors. As epidemiological studies
show that inflammation markers are associated with
the BMI (Body-Mass-Index) and the age of subjects
[19], their influence on inflammation marker levels
must be taken into account when estimating the ef-
fect of air pollutants. To this end, estimations for the
parameters of these interfering factors (confounders)
are derived in a separate regression model and then
are used – in the main analysis not to be presented
here – to adjust the main model that estimates the
influence of air pollutant variables.

Here, the 200 cases collected by KORA [11] in Augs-
burg, which was one of the six study centers, are an-
alyzed. The reduced data set consists of the variables
bmi and age as regressors and log(fib) as the re-
sponse variable, being the log of the concentration
of the inflammation marker fibrinogen, averaged over
the several blood samples collected for each subject
during the study period.

Just as for the simulated data sets, the response was
centered and the regressors standardized to make an
estimation of an intercept unnecessary. Prior bounds
for βbmi and βage were derived each in a straightfor-
ward way by considering the lowest and highest pos-
sible values (e.g. for age, these were, according to
the inclusion criterion of the study, 35 and 80 re-
spectively) that were transformed on the standard-
ized scale and then linked to the range of the cen-
tered response.When choosing A in the same way as
for data set 3 to model weak prior knowledge, the
retransformed interval-valued estimates can be com-
bined to the following regression equation:
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Figure 3: Exemplary results for the airgene data.

log(fib)i = agei · [0.00558, 0.00915]

+ bmii · [0.00985, 0.01545]

+ [0.180, 0.562] + εi

The fact that the 0.95-credibility region displayed in
Figure 3 does not cover the origin is a strong hint
that, also when considering complex uncertainty in
the prior, age and bmi have a noteworthy effect on
the fibrinogen level. So, the established evidence on
this association can be confirmed and set on a more
stable base with respect to the model assumptions.

6 Concluding Remarks

We have suggested a first approach to linear regres-
sion with imprecise conjugate priors. Of course, the
approach needs further investigation, including a com-
parison to modifications and alternative ways to pro-
ceed. This applies in particular to the approach
briefly described at the beginning of Section 3.1 where
an (imprecise) luck-model is constructed directly
along the lines of [16].

Further research should also clarify whether other
powerful models generalizing classical Bayesian infer-
ence in the i.i.d. case (like [14, 7, 5]) can also be ex-
tended to linear regression models by similar argu-
ments. The results should also be compared with the
approach currently being developed by [28, Chapter
13], whose so-called symmetric theory based on logi-
cal probabilities ([28], see also [27]) allows the deriva-
tion of probability distributions on parameters with-
out prior modelling.

A possible drawback of the approach introduced by
[16], which consequently is shared by the models de-
veloped here, is that, in some sense, it does not en-
tirely utilize the expressive power of imprecise prob-
abilities: As n(0) is fixed (like s in the IDM), the

behavior of the model – outside the situation of prior
ignorance – is not optimal in the case of prior-data
conflict in the sense of [21, p. 6]. To see this, note that,
if in the situation of Section 2.2 y(0) varies between
y(0) and y(0), then the difference between the updated

bounds y(1) and y(1) is given by
n(0)(y(0)−y(0))

n(0)+n
. So

the imprecision decreases by the same amount for any
sample of size n, irrespectively whether or not there
is substantial discrepancy between prior assignments
and the sample. A natural attempt to find a way
out would be to vary n(0) in addition. This idea still
has to be explored, but the model developed in [21,
Ch. 5.4], where such effects are described for an IDM
with two categories, may give some hint.

From the applied point of view it is quite important
to extend the modelling to generalized linear models,
which in particular allow regression analysis for non-
metric responses. Here the adaption of auxiliary vari-
able models, considered by [10] in a simulation-based
classical Bayesian setting, seems to be very promising.
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Abstract

The Logical concept of probability, introduced to
ISIPTA 2005 in a tutorial ([15]), is based on the
theory of Interval probability. Since the main fea-
ture of the Logical concept is given by the evaluation
of arguments consisting of premises and conclusions,
it proves necessary to define exactly which kinds of
propositions can be employed hereby. If this is done,
the analysis allows the definition of independent argu-
ments by examination of the contents of premises and
conclusions. If Interval probability is attributed to ar-
guments according to the relevant axioms, a frequency
interpretation becomes feasible which decisively relies
on the autonomous concept of independence.

Keywords. Interval probability, evaluation of argu-
ments, concept of independence, frequency interpre-
tation, Symmetric theory of probability.

1 Introduction

The motivation to develop the Logical concept of
probability and the main features of this concept are
thoroughly described in [15]. While in this paper the
emphasis was laid on the merits of this concept and
of the Symmetric theory of probability which is based
on this concept, the present article concentrates on
the understanding of the elements which constitute
the Logical concept.

Since by the Logical concept probability exclusively
is attributed to arguments, the question must be an-
swered, which kind of arguments are suitable for such
an evaluation: It is easy to find counter-examples. In
Section 2 the concept of P-argument is introduced,
meant to cover all situations of interest in statis-
tical analysis and reasoning. This approach allows
the definition of mutually independent P-arguments,
based on the contents of the respective premises and
conclusions. Irrelevance of one proposition with re-
spect to another one and mutual independence of P-

arguments constitute the most important aspects of
this approach — prior to any kind of evaluating the
arguments.

The axioms governing the introduction of interval
probability via the establishment of W-fields must be
based on this conceptual foundation: Axioms L III
and L IV produce the result that mutual indepen-
dence has the effect of multiplicativity — but not vice
versa1 (Section 3).

A generalization of the classical Binomial law pro-
duces a Weak law of large numbers based on mutual
independence of arguments. Its result is described by
a proposed new expression: weak invergence (Section
4).

The frequency interpretation of the Logical concept
which arises out of these results (Section 5) is not
liable to objections of circular reasoning. It is seen
as the basis of understanding the statements of the
Logical concept and of the Symmetric theory of prob-
ability.

Section 6 contains a few historical remarks and a com-
parison of some different approaches to the combined
aspects of probability and independence. It also out-
lines the importance of these results with respect to
the Symmetric theory.

2 P-Arguments

Let A and B be propositions describing contingent
facts, which may be right or wrong. The propositions
A and B are therefore neither tautologies nor anti-
nomies. Only propositions of this kind will be con-
sidered in this article. Concerning the ordered pairs
(A, B) the question arises what kind of consequences
can be drawn from B concerning A.

1The paper of ISIPTA’05 does not cover the aspects de-
scribed in Section 2 of the present article. As a consequence
the axioms of W-fields in 2005 are partially different from that
in Section 3 of the present article.



Four categories of such pairs (A, B) may be distin-
guished. They are characterized by:

K(A, B) = +1,

K(A, B) = −1,

K(A, B) = 0,

K(A, B) = P.

Note that here +1, −1, 0, P are mere symbols and
don’t represent numbers!

Definition 1 K(A, B) = +1 is meant to describe
pairs (A, B), where A can be derived logically from
B. �

Definition 2 K(A, B) = −1 describes pairs (A, B)
where ¬A logically can be derived from B. �

Definition 3 K(A, B) = 0 distinguishes such pairs
(A, B), where absolutely no consequences about A can
be drawn from B, in particular that for all potential
premises B1 (where B ∧ B1 is not an antinomy)

K(A, B1) = K(A, B ∧ B1)

holds and for all potential conclusions A1 (provided
that A ∨ A1 is not a tautology)

K(A1, B) = K(A ∨ A1, B)

holds: B is irrelevant with respect to A. �

Corollary 1 With respect to the meaning of “irrele-
vance” it can be concluded that the following implica-
tions hold:

K(A, B) = 0 ⇒ K(¬A, B) = 0;

K(A, B1) = 0, K(A, B2) = 0

⇒ K(A, B1 ∨ B2) = 0, K(A, B1 ∧ B2) = 0;

K(A1, B) = 0, K(A2, B) = 0

⇒ K(A1 ∨ A2, B) = 0, K(A1 ∧ A2, B) = 0. �

The attachment K(A, B) = 0 is determined by the
contents of A and of B, and its meaning is generally
unquestioned. It is, however, possible that persons
with different background disagree with respect to the
eventuality of consequences which the facts described
by the proposition B can have for the facts described
by the proposition A.

It may be expected that a parapsychologist or
a supporter of Chaos-theory refuse attachments
K(A, B) = 0, which are selfunderstanding for other
scientists. Concerning characteristic types of (A, B)

with religious background there will be an influence
of creed.

On the other hand distinction of pairs (A, B) with
K(A, B) = 0 constitutes fundamental prerequisites
in most scientific disciplines as far as empirical re-
search is concerned. Consequently these attachments
are inevitable tools of statistical modeling.

Historically the idea that the circumstances of one
game of chance must have no consequence whatever
for the following games, was prior and fundamental
to the idea of introducing probability in analyzing the
results of games of chance.

Definition 4 All ordered pairs (A, B) in considera-
tion which do not belong to the categories +1, −1 or
0, are attached to category P . A pair (A, B) belong-
ing to this category is named a partial argument or
P-argument (A||B). B is named the premise, A is
named the conclusion of the P-argument (A||B). �

It must be agreed that generally P-arguments are
the most important tools of learning and therefore
are the means of evidential reasoning. The class of
P-arguments is huge and extremely heterogeneous.

For clearness it must be pointed out that the category
of P-arguments contains pairs (A, B), which at first
sight could be expected to belong to category 0:

A pair of propositions (A, B) where B = R ∨ M and
K(A, R) = +1, K(A, M) = −1 does not qualify for
K(A, B) = 0 since it violates a criterion of this cate-
gory. This aspect may be demonstrated by

Example 1 Let

A = “It is freezing”,
R1 = “The temperature is −3◦C”,
M1 = “The temperature is +2◦C”

and B1 = R1 ∨ M1. Obviously K(A, B1) ∈ {0, P}.
Now let

R2 = “The temperature is −1◦C”,
M2 = “The temperature is between

0◦C and +3◦C”.

B2 = R2 ∨ M2 produces K(A, B2) ∈ {0, P}.

B1 ∧ B2 = (R1 ∨ M1) ∧ (R2 ∨ M2) =

M1 =“The temperature is +2◦C”.

Therefore: K(A, B1 ∧ B2) = −1. Comparison
with Definition 3 reveals that K(A, B1) = 0 as
well as K(A, B2) = 0 would be in contradiction
with the requirements of this definition. Accordingly
K(A, B1) = P and K(A, B2) = P must hold true
and: (A||B1) as well as (A||B2) are P-arguments. �



This example points at the possibility of pairs (A, B),
where B is not informative directly with respect to A,
but nevertheless (A, B) does not belong to category 0,
because B contains information which can be relevant
with respect to A, if combined with some complemen-
tary information.

On the other hand it reveals the existence of
P-arguments where the premises are not informative
with respect to the conclusions — as long as both of
them stand alone.

This possibility contrasts sharply to another type of
P-arguments describing reliable empirical knowledge
which may be classified as “practically sure”.

Altogether the kinds of treatment with P-arguments
are very different in different fields of application: in
daily life, in court, in science or in humanities. It
is, however, possible to define generally a relation be-
tween P-arguments which is of special importance for
establishing concepts to evaluate P-arguments.

Definition 5 The P-arguments (A1||B1) and
(A2||B2) are independent of each other, iff
K(A1, B2) = 0 and K(A2, B1) = 0. �

Mutual independence of P-arguments is distin-
guished, therefore, solely by the reciprocal irrelevance
of premises with respect to the conclusion of the other
P-argument. This definition is prior to all attempts to
introduce the concept of probability and in the con-
text it is seen as a prerequisite for establishing a suit-
able theory.

Generalizations of Definition 5 seemingly can be es-
tablished in two different ways.

Definition 6 Let (Ai||Bi), i = 1, ..., r, be
P-arguments. Iff

K(Ai, Bj) = 0, ∀ i, j ∈ {1, ..., r}, i 6= j,

holds, the P-arguments (A1||B1), ..., (Ar||Br) are
pairwise independent. �

Definition 7 Iff, under the assumptions of Defini-
tion 6,

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 = 0,

∀∅ $ I1, I2 $ {1, ..., r}, I1 ∩ I2 = ∅,

holds, the P-arguments (A1||B1), ..., (Ar||Br) are to-
tally independent from each other. �

Obviously P-arguments which are totally independent
from each other are pairwise independent, too. But
additionally the following Lemma holds:

Lemma 1 If (Ai||Bi), i = 1, ..., r, are pairwise in-
dependent P-arguments, then they are totally indepen-
dent from each other. �

The proof of this Lemma is based on Corollary 1 by
induction on r. Obviously Definition 6 and 7 coincide
for r = 2. It is now presupposed that the assertion of
Lemma 1 holds for r ≥ 2.

Therefore, if (Ai||Bi), i = 1, ..., r + 1, are taken as
pairwise independent, for every I0 ⊆ {1, ..., r + 1}
with |I0| ≤ r, the relation

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 = 0,

∀∅ $ I1, I2, I1 ∪ I2 ⊆ I0, I1 ∩ I2 = ∅,

must be valid.

Now let ∅ $ I1, I2 $ {1, ..., r + 1} and I1 ∩ I2 = ∅.
If there exists I0 ⊆ {1, ..., r + 1}, |I0| ≤ r, and
I1 ∪ I2 ⊆ I0, according to the assumption

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 = 0

must hold.

If, however, I1 ∪ I2 = {1, ..., r + 1}, no such I0 exists.
Now two cases have to be distinguished:

a) If |I1| < r, |I2| ≥ 2, let

I2 = I ′2 ∪ I ′′2 , ∅ $ I ′2, I ′′2 , I ′2 ∩ I ′′2 = ∅.

Therefore |I1 ∪ I ′2| ≤ r, |I1 ∪ I ′′2 | ≤ r.

Due to the assumption

K





∧

i∈I1

Ai,
∧

j∈I′

2

Bj



 = K





∧

i∈I1

Ai,
∧

j∈I′′

2

Bj



 = 0,

and Corollary 1 produces

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 =

= K





∧

i∈I1

Ai,
∧

j∈I′

2

Bj ∧
∧

j∈I′′

2

Bj



 = 0.

b) If |I1| = r, |I2| = 1, let

I1 = I ′1 ∪ I ′′1 , ∅ $ I ′1, I ′′1 , I ′1 ∩ I ′′1 = ∅.

|I ′1 ∪ I2| ≤ r, |I ′′1 ∪ I2| ≤ r,

K





∧

i∈I′

1

Ai,
∧

j∈I2

Bj



 = K





∧

i∈I′′

1

Ai,
∧

j∈I2

Bj



 = 0,



and due to Corollary 1:

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 =

= K





∧

i∈I′

1

Ai ∧
∧

i∈I′′

1

Ai,
∧

j∈I2

Bj



 = 0.

In both cases the conditions for total independence of
(Ai||Bi), i = 1, ..., r, are satisfied. �

Consequently in the following only the concept of r

mutual independent P-arguments has to be taken into
consideration.

This result characterizes the difference between the
concept of independence in the theory employed here
and in the Classical theory: Independence is a more
demanding relation in the theory of the Logical con-
cept.

3 W-Fields

The most advanced method of evaluating
P-arguments is that of attaching interval-probability.
It affords the selection of two sets of propositions:
AP , BP with AP ∩ BP = ∅, so that

K(A, B) ∈ {0, P}, ∀A ∈ AP , B ∈ BP .

AP as well as BP , in the second step, have to be
completed, if necessary, to generate sets A∗

P and B∗
P ,

which are closed under the logical operations ∨, ∧,
and \ (“logical difference”). Additional potential con-
clusions A and additional potential premises B may
produce additional P-arguments, but ordered pairs
(A, B) of category +1, −1 or 0 as well. It must be
secured that all assignments are in concordance with
the definitions of K(A, B).

According to the tradition and the actual practice
of probability theory conclusions as well as premises
should be described by sets. Therefore the elements
of A∗

P and B∗
P must be represented by sets in a way

guaranteeing that logical operations on A∗
P and on B∗

P

are transformed to the corresponding set operations
on the representing sets A and B with A ∩ B = ∅.

Obviously this representation is by no means uniquely
determined. It always must be borne in mind that the
tools of representation must not influence the decisive
probabilistic reasoning.

Then any assignment of interval-probability is pro-
duced by

P (A||B) = [L(A||B), U(A||B)], ∀A ∈ A, B ∈ B.

It may be understood as the result of evaluating
P-arguments completed by the following attachments:

L(A||B) = 1, U(A||B) = 1, if for the corresponding
propositions K(A, B) = 1 holds;

L(A||B) = 0, U(A||B) = 0, if K(A, B) = −1 holds;

L(A||B) = 0, U(A||B) = 1, if K(A, B) = 0 holds.

The probability of any P-argument (A||B) determines
the interval-limits L(A||B) and U(A||B) for the rep-
resenting sets A and B. The rules governing this as-
sessment are given in a three-level hierarchy:

1) Classical theory of probability:

Any function p(.) on a measure space (Ω; A)
which obeys Kolmogorov’s three axioms is called
a K-function.

2) Theory of interval probability (see [14]):

An F-(probability-)field F = (Ω; A; L(.)) is
given, iff the following three axioms hold2:

T IV: P (A) = [L(A); U(A)] ⊆ [0; 1], ∀A ∈ A.

T V: The set M of K-functions p(.) on (Ω; A)
with L(A) ≤ p(A) ≤ U(A), ∀A ∈ A, is not
empty.

T VI: infp(.)∈M p(A) = L(A),

supp(.)∈M p(A) = U(A), ∀A ∈ A.

3) Logical concept of probability:

Let (ΩA; A) and (ΩB ; B), ΩA ∩ ΩB = ∅, be
two measure spaces, where {x} ∈ A, ∀x ∈ ΩA,
{y} ∈ B, ∀ y ∈ ΩB .

A W-field W = (ΩA; A; ΩB ; B; L(.||.)) is given,
iff the following four axioms hold:

L I: To each B ∈ B+ := B \ {∅} an F-field
F(B) = (ΩA; A; L(.||B)) is attached.

L II: Let I 6= ∅ be an index set, B0 ∈ B+,
Bi ∈ B+, i ∈ I, and

B0 =
⋃

i∈I

Bi.

Then3:

F(B0) =
⋃

i∈I

F(Bi).

2According to Axioms T IV–T VI the function U(.) is con-
jugate to L(.): U(A) = 1 − L(¬A), ∀A ∈ A.

3The union F = ∪i∈IFi = (ΩA; A; L(.)) of F-fields Fi =
(ΩA; A; Li(.)), i ∈ I, is defined by L(.) := infi∈I Li(.). Hence
U(.) = sup

i∈I
Ui(.), and F is an F-field too. The employ-

ment of this procedure in assigning probability of arguments
characterizes the Logical concept in contrast to the Bayesian
approach.



L III: Let A ∈ A, B1 ∈ B+ irrelevant for A.
Then:

L(A||B1 ∩ B2) = L(A||B2), ∀B2 ∈ B+.

L IV: Let Ai ∈ A+, Bi ∈ B+, i = 1, 2, (A1||B1)
and (A2||B2) independent from each other.
Then:

L(A1 ∩ A2||B1 ∩ B2) =

= L(A1||B1 ∩ B2) · L(A2||B1 ∩ B2)

U(A1 ∩ A2||B1 ∩ B2) =

= U(A1||B1 ∩ B2) · U(A2||B1 ∩ B2).

The Logical concept of probability defined by Axioms
L I–L IV as a general principle employs probability as
a two-place-function: P (A||B) is to be interpreted as
probability of the argument with premise B and with
conclusion A and never must be mistaken as condi-
tional probability. According to this concept P (A)
and P (B) do not exist and therefore P (A|B) never
exists either. (On the other hand P ((A1|A2)||B) is
a valuable information in many situations.) Axiom
L II characterizes the distinction of the Logical con-
cept and any kind of Bayesian concept.

The fact that ΩA ∩ ΩB = ∅ and therefore A and B
always are disjoint, demonstrates the basic distinc-
tion between W-fields and Popper-spaces (cf. [12] and
[11]). This does not prevent the idea of combining
both aspects — but the success of such a program
cannot be foreseen.

On the other hand there is no relationship of the Log-
ical concept with approaches of Default reasoning (cf.
[7] and [10]) or of Plausibility measures and Possi-
bility measures. The Logical Concept does not ex-
tend the field of application beyond that of classical
probability: Its main goal is to improve the method-
ology of statistical reasoning by introducing duality
between appropriate W-fields and hereby allowing the
employment of probability to describe results of sta-
tistical inference. With respect to the intention there
is a relationship to approaches by R.A. Fisher ([5]),
D.A.S. Fraser ([6]), A. Dempster ([4]), A. Birnbaum
([2]), and I. Hacking ([8]), but there exist fundamental
differences in methodology4.

A survey of the resulting Symmetric theory of prob-
ability was given in the ISIPTA 05 paper, a short
survey of duality in statistical inference can be found
in a report for the 56th Session of ISI in Lisboa, 2007
([16]).

4A review of these approaches is given by T. Seidenfeld
([13]).

4 Independence and Multiplicativity

Axioms L I–L IV allow to establish a corpus of defi-
nitions and statements constituting the theory of the
Logical concept of probability. With one important
exception the theory of the classical concept can be
regarded as a special case of this theory. The dif-
ference between the two approaches with respect to
the concept of independence is characterized by the
results of this section.

Corollary 2 From Axiom L III and Corollary 1 it
follows that under the conditions for L III:

U(A||B1 ∩ B2) = U(A||B2), ∀B2 ∈ B+,

holds. �

From Axioms L III and L IV together with Corollary
2, it may be concluded:

Corollary 3 If (A1||B1) and (A2||B2) are mutually
independent,

L(A1 ∩ A2||B1 ∩ B2) = L(A1||B1) · L(A2||B2)

U(A1 ∩ A2||B1 ∩ B2) = U(A1||B1) · U(A2||B2)

hold. �

This result says that, according to the Logical Con-
cept, mutual independence of P-arguments produces
total multiplicativity of probabilities. However, on
the other hand, it is not possible in this theory to
infer mutual independence of P-arguments from mul-
tiplicativity of probabilities. This is a decisive dif-
ference to the objectivistic view of classical theory,
where independence of events is defined by means of
multiplicativity of probabilities. It should be empha-
sized that mutual independence of P-arguments can
only be understood as the fact that each premise is
irrelevant to the conclusion of the other P-argument.

Now let (Ai||Bi) with P (Ai||Bi) = [L; U ],
i = 1, 2, ..., be a potentially infinite series of mutu-
ally independent P-arguments and r ∈ IN.

Due to independence, the probability for the com-
bined P-argument ( ~A|| ~B) with ~A = A∗

1×...×A∗
r where

A∗
i ∈ {Ai, ¬Ai}, ~B = B1 × ... × Br is multiplicative:

P [r]( ~A|| ~B) =

[

r
∏

i=1

L(A∗
i ||Bi);

r
∏

i=1

U(A∗
i ||Bi)

]

.

Let I ⊆ {1, ..., r}, A∗
i = Ai, ∀ i ∈ I, A∗

i = ¬Ai,

∀ i /∈ I. Then I describes the conclusion ~A =: ~A(I)
uniquely. Because of

P [r](A∗
i ||Bi) = [L; U ], ∀ i ∈ I,

P [r](A∗
i ||Bi) = [1 − U ; 1 − L], ∀ i /∈ I,



one arrives at

P [r](I|| ~B) := P ( ~A(I)|| ~B)

=
[

L|I| ·(1 − U)r−|I|; U |I| ·(1 − L)r−|I|
]

.

Let ρ := |I|. In order to calculate the probability of
an argument with a conclusion of very few ¬Ai and
almost all Ai,

P [r](ρ ≥ ρ0|| ~B) =

=



 inf
L≤pi≤U

i∈{1, ..., r}

∑

|I|≥ρ0

∏

i∈I

pi

∏

i∈{1, ..., r}\I

(1 − pi);

sup
L≤pi≤U

i∈{1, ..., r}

∑

|I|≥ρ0

∏

i∈I

pi

∏

i∈{1, ..., r}\I

(1 − pi)





has to be calculated. Due to the monotonicity of the
function

p[r](ρ ≥ ρ0|| ~B) =
∑

|I|≥ρ0

∏

i∈I

pi

∏

i∈{1, ..., r}\I

(1 − pi)

in each of the pi ∈ [L; U ], i = 1, ..., r,

P [r](ρ ≥ ρ0|| ~B) =

=





∑

ρ≥ρ0

(

r

ρ

)

Lρ(1 − L)r−ρ;
∑

ρ≥ρ0

(

r

ρ

)

Uρ(1 − U)r−ρ





holds.

On the other hand:

P [r](ρ ≤ ρ0|| ~B) =

=





∑

ρ≤ρ0

(

r

ρ

)

Uρ(1 − U)r−ρ;
∑

ρ≤ρ0

(

r

ρ

)

Lρ(1 − L)r−ρ



 .

Therefore the probabilities of arguments with conclu-
sions of extremely many or extremely few factors Ai

can be calculated employing classical Binomial law
and Tschebysheff’s inequality:

Let

ρ0 = rU + rδ : U [r](ρ ≥ ρ0|| ~B) ≤
U(1 − U)

rδ2
,

let

ρ∗0 = rL − rδ : U [r](ρ ≤ ρ∗0||
~B) ≤

L(1 − L)

rδ2
.

As a consequence:

L[r]
(

L−δ <
ρ

r
< U+δ

)

≥1 −
L(1 − L) + U(1 − U)

rδ2

and

L[r](L − δ <
ρ

r
< U + δ) ≥ 1 − ε,

if r ≥
L(1 − L) + U(1 − U)

εδ2
.

(1)

This result can be interpreted by means of appropriate
concepts of converging sequences of W-fields:

Definition 8 Let W [r] = (ΩA; A; Ω
[r]
B ; B[r]; L[r](.||.)),

r ∈ IN, be a sequence of W-fields and Z ∈ A be a

non-empty conclusion. If for ~B
[r]
0 = B

[1]
0 × ... × B

[r]
0 ,

r ∈ IN, and for every Z∗ ∈ A with Z∗
% Z there

exists a function N(Z∗, ε) ∈ IN, so that

L[r](Z∗||B
[r]
0 ) ≥ 1 − ε, ∀ r ≥ N(Z∗, ε), (2)

then with respect to the arguments (Z|| ~B
[r]
0 ),

r ∈ IN, the sequence W [r] is named stochasti-

cally convergent to a sequence W
[r]

of W-fields,

W
[r]

= (ΩA; A; Ω
[r]
B ; B[r]; L

[r]
(.||.)), r ∈ IN, with

P
[r]

(Z||B
[r]
0 ) = [1; 1] =: [1]. �

According to Definition 8 the result (1) can be utilized
to formulate

Corollary 4 Let the sequence of P-arguments

(A
(i)
0 ||B

(i)
0 ), i ∈ IN, with P (i)(A

(i)
0 ||B

(i)
0 ) = [L; U ] be

mutually independent. For r ∈ IN let

~B
[r]
0 = B

(1)
0 × ... × B

(r)
0 ,

t =
ρ

r
, ρ ∈ {0, ..., r},

A
[r]
0 (t) :=

⋃

I⊆{0, ..., r}

|I|=r·t





⋂

i∈I

A
(i)
0 ∩

⋂

i∈{0, ..., r}\I

¬A
(i)
0



 .

Let W [r] = (Ω
[r]
A ; A[r]; Ω

[r]
B ; B[r]; L[r](.||.)), r ∈ IN,

be W-fields containing the probability of arguments

with premise ~B
[r]
0 and conclusions of the kind

A
[r]
0 (J) =

⋃

r·t∈J A
[r]
0 (t), J ⊆ {0, ..., r}, so that

Ω
[r]
A = {0, 1

r
, 2

r
, ..., 1},

A[r] = Pot(Ω
[r]
A ),

~B
[r]
0 ∈ B[r].

The sequence W [r], r ∈ IN, is then with respect to the

arguments (A
[r]
0 (t)|| ~B

[r]
0 ) stochastically convergent to

the sequence W
[r]

, r ∈ IN, of W-fields

W
[r]

= (Ω
[r]

A ; A
[r]

; Ω
[r]
B ; B[r]; L

[r]
(.||.))



with

Ω
[r]

A = [0; 1],

A
[r]

= Bor(Ω
[r]

A ),

L
[r]

(A|| ~B
[r]
0 ) =











[1], A ⊇ [L; U ]

[0], A ∩ [L; U ] = ∅

[0; 1], else. �

Corollary 4 is the obvious consequence of (1) if ap-
plied to a sequence of mutually independent argu-
ments with probability [L; U ].

Introducing abbreviations, the result (1) may be ex-
pressed by the statement

lim
r→∞

P [r](L ≤ tr ≤ U || ~B
[r]
0 ) = [1] (3)

and may be interpreted in a way similar to that con-
cerning convergence of a sequence of variables in clas-
sical statistics — if the decisive difference is seen, that
[L; U ] is an interval and normally not a single number.
From the facts given, it is not possible to describe the
result by more information than, what may be charac-
terized by “finally: L ≤ tr ≤ U”. Neither convergence
nor divergence of the sequence tr, r = 1, ..., can be
excluded as a possible conclusion. As an appropri-
ate new expression to denote results of this type the
sentence “The sequence tr inverges the set [L; U ]” is
proposed.

5 Frequency Interpretation

As a consequence of these results a frequency inter-
pretation of the Logical concept of probability is avail-
able.

If (A||B) is a P-argument with P (A||B) = [L; U ] in
a kind of thought experiment, then (A||B) may be
conceived as one out of a potentially infinite sequence
of mutually independent P-arguments (Ai||Bi) with
exactly the same probability assessment:

P (Ai||Bi) = [L; U ], i = 1, 2, ...

Then the P-argument (Â[r]||B̂[r]) is considered, where

B̂[r] :=

r
⋂

i=1

Bi

is the conjunction of all single premises and

Â[r] :=
⋃

I⊆{1, ..., r}

rL≤|I|≤rU





⋂

i∈I

Ai ∩
⋂

i∈{1, ..., r}\I

¬Ai





is the adjunction of all combined conclusions, for
which the proportion of Ai lies between L and U .

Due to (2) and (3)

lim
r→∞

P [r](Â[r]||B̂[r]) = [1]

holds.

If only r is large enough, the conclusion Â[r] can be
derived from the premise B̂[r] with practical surety.

Therefore the P-argument (A||B) with
P (A||B) = [L; U ] can be interpreted as if it was
one out of a huge set of mutual independent
P-arguments (Ai||Bi), for which the proportion of
successful arguments (Ai||Bi) — producing unsuc-
cessful arguments (¬Ai||Bi) — lies between L and
U , the proportion of unsuccessful arguments (Ai||Bi)
— and therefore successful arguments (¬Ai||Bi) —
lies between 1 − U and 1 − L.

The conceptual basis of this kind of procedure is given
by Cournot’s Lemma, which was formulated with ref-
erence to the objectivistic view on probability, and
can be transferred to the Logical concept in the fol-
lowing way:

Cournot’s Lemma: If L(A||B) = 1 − ε and ε is
extremely small, the P-argument (A||B) may be un-
derstood as if P (A||B) = [1]. �

The validity of this interpretation is founded on
the fact that in a set of mutually independent
P-arguments, for which only P (Ai||Bi) = [L; U ] is
known, obviously no subset can be identified, for
which an additional information about the proportion
of successful arguments (Ai||Bi) would be possible.

It must be pointed to the fact, that the value of
this frequency-interpretation of the Logical concept of
probability in the first line depends on the concept of
independent P-arguments: A set of mutual indepen-
dent P-arguments is defined by contents of premises
and conclusions. If additionally all of them are evalu-
ated by the same P (Ai||Bi) according to the axioms
of the Logical concept, and if the set is large enough,
inference about the proportion of successful ones in
the set is possible.

The availability of an unassailable frequency interpre-
tation of the Logical concept is of high importance
with respect to the Symmetric theory (see [15]): In
this theory probabilistic statements about arguments
are employed not only to describe statistical modeling
but also — by means of dual W-fields — for statistical
inference. The concept of imaging any evaluated ar-
gument as one out of a potentially infinite sequence of
mutually independent arguments with the same prob-
ability guarantees the uniformity in understanding the
assessments employed in modeling as well as in infer-
ence.



Finally it must be mentioned that it is possible to
improve the result of weak invergence: If a more gen-
eral concept of W-field is introduced, the concept of
strong invergence can be defined and it can be proven,
that tr inverges [L; U ] with probability [1] according
to this concept. However, this result does not influ-
ence the understanding of a frequency interpretation
of the Logical concept.

6 Conclusions and Prospect

When early in the 17th century the concept of prob-
ability arose from the study of games of chance, the
possibility of repeating any game was a fundamental
idea, comprising the concept of mutual independence
of the repetitions. Multiplicativity of probability un-
der this supposition was accepted as intuition result-
ing in the close relationship between frequency and
probability ([14], pp. 42 ff.).

When the theory of probability developed in the fol-
lowing centuries it was obvious that mutual indepen-
dence of events is a relation which cannot be defined
without employment of exogenous concepts.

It was A. N. Kolmogorov who produced a solution by
defining mutual independence via multiplicativity of
probabilities ([9], pp. 8–12 of the English version),
hereby accepting some border cases which are more
or less counter-intuitive.

Employment of imprecise probabilities, as it is prop-
agated by Peter Walley must rely on definitions as
they are given for precise probabilities. Owing to a
behaviouristic approach the concept of irrelevance is
near at hand ([3]). As long as probability is seen as
a one-place-function — attributed to events or state-
ments — this remains conditional irrelevance of one
event with respect to another one. Considerations of
this kind come near to a justification of multiplica-
tivity, but fail to explain independence without using
the concept of probability ([3]). An additional aspect
is provided by the question which type of conditional
interval probability is to be employed in such consid-
eration ([1]). Altogether: The difference between the
concept of independence as employed in the present
approach and other concepts of independence intro-
duced in methodology of imprecise probability is fun-
damental: Independence of P-arguments is defined by
the contents of propositions employed, while indepen-
dence of events with imprecise probability is defined
by relations of — total or conditional — probabilities.

This remains the situation of classical probability the-
ory according to the objectivistic view. By means of
the weak law of large numbers a frequency interpre-
tation of classical probability can be derived, based

on the concept of a sequence of mutual independent
events with the same probability.

Criticism of the objective view stresses that probabil-
ity being the conceptual basis defining independence
of events, it should not be interpreted by a character-
istic of a sequence of mutual independent events.

If probability is attributed to arguments — instead of
events — the situation is different, since independence
of two arguments can be identified with irrelevance of
both premises with respect to the conclusion of the
other argument.

The ISIPTA’05 paper ([15]) defines mutual indepen-
dence of arguments by means of the probability assess-
ment: It is in fact Axiom L III of the present paper
which is employed in [15] to distinguish mutual inde-
pendent arguments without denoting this procedure
explicitly. Simultaneously multiplicativity of proba-
bility for independent arguments is required: Thus
Axiom L III of the ’05-paper combines two different
aspects in one equation.

This procedure can be criticized not only because of
its complexity, but also with respect to the detail that
it encourages objections against a frequency interpre-
tation of probability employing a sequence of inde-
pendent arguments because of the role of probability
in defining independence.

The present paper relies on definitions of irrelevance
and independence through the contents of the propo-
sitions involved. Axiom L III contains the demand
that irrelevance always is reflected by the probability
assessment, and Axiom L IV insists on multiplicativ-
ity with respect to conclusions in case of mutual inde-
pendence — in analogy to multiplicativity in classical
probability.

Consequently the Logical concept of probability ac-
cording to Section 5 is characterized by a frequency
interpretation employing an autonomous concept of
independence — a feature not to be found elsewhere.

This result characterizes the Symmetric theory of
probability, which relies decisively on the Logical con-
cept. The establishment of duality between W-fields
generates a methodology of statistical inference em-
ploying the concept of probability in the same way as
in statistical modeling attached to P-arguments.

Any statement of probability arising from applied
Symmetric theory therefore is of the same quality and
should be understood by means of the frequency in-
terpretation: one out of a very large series of assess-
ments with the same [L; U ] concerning mutually inde-
pendent P-arguments. The proportion of “successful”
arguments in this series lies between L and U .



Present research into Symmetric theory aims at the
range of possible applications. Which types of prob-
lems in classical statistics can be solved by means of
the concept of duality?! A comprehensive report [17]
is in preparation.
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