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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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An important issue in risk analysis is the distinction between epistemic and aleatory uncertainties. In 

this paper, the use of distinct representation formats for aleatory and epistemic uncertainties is 

advocated, the latter being modelled by sets of possible values. Modern uncertainty theories based on 

convex sets of probabilities are known to be instrumental for hybrid representations where aleatory 

and epistemic components of uncertainty remain distinct. Simple uncertainty representation 

techniques based on fuzzy intervals and p-boxes are used in practice. This paper outlines a risk 

analysis methodology from elicitation of knowledge about parameters to decision. It proposes an 

elicitation methodology where the chosen representation format depends on the nature and the amount 

of available information. Uncertainty propagation methods then blend Monte-Carlo simulation and 

interval analysis techniques. Nevertheless, results provided by these techniques, often in terms of 

probability intervals, may be too complex to interpret for a decision-maker and we therefore propose 

to compute a unique indicator of the likelihood of risk, called confidence index. It explicitly accounts 

for the decision-maker’s attitude in the face of ambiguity. This step takes place at the end of the risk 

analysis process, when no further collection of evidence is possible that might reduce the ambiguity 

due to epistemic uncertainty. This last feature stands in contrast with the Bayesian methodology, 

where epistemic uncertainties on input parameters are modelled by single subjective probabilities at 

the beginning of the risk analysis process. 
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1. INTRODUCTION 

With the quest for sustainable development, the notion of risk is increasingly present in our 

collective psyche, as can be seen in public regulations regarding the management of water 

(e.g. OJEC 2000), soil (CEC 2006) or waste (OJEC 2008). Risk in such contexts can be 

defined as the combination of the likelihood of occurrence of an undesirable event and the 

severity of the damage that can be caused by the event (e.g., BSI 2007). In recent years, a 

clearer understanding of what can be expected from environmental risk assessments has 

emerged, with a shift from “risk-based” management (e.g., Vegter 2001) to “risk-informed” 

management (Burton et al. 2008; Pollard et al. 2002), whereby risk assessment is but one 

component of the decision-making process, to be combined with other criteria from a variety 

of fields, e.g., environmental, economic and social. Such a shift is primarily the result of a 

better awareness that decision-making in the environmental field is a multi-factor process and 

of the limitations of risk assessment due in particular to inherent uncertainties. 

In the last 10 years or so, the treatment of uncertainty in risk assessments has witnessed a 

shift of paradigm with the increasing awareness of the fundamental difference between 

stochastic and epistemic uncertainties (Hoffman and Hammonds 1994, Ferson 1996, Ferson 

and Ginzburg 1996, Guyonnet et al. 1999, Helton et al. 2004, Colyvan 2008). Stochastic (or 

aleatory) uncertainty arises from random variability related to natural processes such as the 

heterogeneity of population or the fluctuations of a quantity with time. Epistemic uncertainty 

arises from the incomplete/imprecise nature of available information. The pervasive confusion 

between these two types of uncertainties has been one of the most serious shortcomings in 

risk assessment.  

While stochastic uncertainty is adequately addressed using classical probability theory, 

several uncertainty theories have been developed in order to explicitly handle 

incomplete/imprecise information (see for instance the survey by Dubois and Prade 2009). 

Such developments in uncertainty theories provide new tools for faithfully representing the 

kind of poor information collected by practitioners in the environmental field. As a result, 

some risk analysts have felt the need to develop original computation schemes for jointly 

propagating information tainted with epistemic and stochastic uncertainties. Such joint 

propagation methods have been applied by a number of authors. For instance, Li et al. (2007) 

used an integrated fuzzy-stochastic approach in the assessment of the risk of groundwater 

contamination by hydrocarbons. Baraldi and Zio (2008) used a combined Monte Carlo and 

possibilistic (fuzzy) approach to propagate uncertainties in an event tree analysis of accident 
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sequences in a nuclear power plant in Taïwan. Li et al. (2008) used a fuzzy-stochastic 

modelling approach for estimating health risks from air pollution. Baccou et al. (2008) 

applied joint propagation methods for assessing the risk of radionuclide migration in the 

environment. Kentel and Aral (2005) compared 2D Monte Carlo and joint fuzzy and Monte 

Carlo propagation for calculating health risks, while Kentel (2006) applied such joint methods 

to groundwater resource management. Bellenfant et al. (2008) used another method (referred 

to as IRS in section 4 of this paper) to quantify risks of CO2 leakage following injection into 

deep geological deposits. 

Results of joint propagation methods, such as those developed by these authors, can 

typically be expressed by means of special “families” of probability distributions, as opposed 

to single distributions. They are delimited by an upper bound (a plausibility function in 

evidence theory) and a lower bound (a belief function) of the probability that risk might 

exceed or not a certain threshold. Compared to the result of a classical Monte Carlo analysis 

performed using subjective probability distributions for modelling incomplete/imprecise 

information, hybrid methods do not yield a unique estimate of the probability that risk should 

exceed or not a certain threshold. Although the very aim of these joint propagation methods is 

to promote consistency with available information and avoid assumptions of Bayesian 

methods (Dubois et al. 1996, Ben-Haim 2006), the use of probability intervals may become 

an impediment at the decision-making stage, since decision-makers may not feel comfortable 

with the notion of an imprecise probability of exceeding a threshold. In the Bayesian tradition, 

a single probability distribution is required in order to ensure a rational decision (Lindley 

1971). Such a probability distribution is supposed to reflect beliefs and is elicited as such 

from experts. On the contrary, the use of imprecise probabilities is supposed to reflect the 

actual objective information collected about a given risky process. Hence, from a Bayesian 

point of view, there is a gap between results provided by joint uncertainty propagation 

methods and the expected scientific judgment a risk analysis procedure should lead to (Aven 

2010).  

In this paper, we outline a complete risk-analysis methodology that maintains the 

difference between aleatory and epistemic uncertainties throughout the process, and propose a 

knowledge elicitation strategy to that effect. After proposing a unified outlook of modern 

uncertainty theories in Section 2, a general uncertainty elicitation methodology is outlined in 

section 3, whose main message is to adapt the choice of the representation tool to the richness 

of the available information. Basic joint uncertainty propagation techniques are then described 

in Section 4. In Section 5, we propose a subjective approach to circumvent the difficult issue 
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of deciding under incomplete information. The idea is to re-introduce the decision-maker’s 

subjectivity, in the style of Hurwicz criterion, by means of an optimism coefficient. This is 

done at the final decision-making stage, rather than at the uncertainty elicitation stage as is 

often the case with the Bayesian approach. Finally, an example of health risk calculation is 

presented in Section 6, as an illustration of the proposed decision methodology.  

2. THEORIES OF UNCERTAINTY TOLERATING 
INCOMPLETENESS 

There are basically three mathematical frameworks for the joint modelling of aleatory and 

epistemic uncertainty: convex probability sets, random sets and possibility theory (Dubois and 

Prade 2009). Dempster (1967) was among the first scholars to suggest articulating probability 

theory with a faithful representation of incomplete information, replacing a random variable 

by a multiple-valued mapping describing limited knowledge on the actual values it takes. 

Upper and lower probability bounds for events on the range of the random variable are then 

obtained. Shafer (1976) later interpreted these bounds as subjective plausibility and belief 

functions induced by incomplete unreliable evidence. The idea is to assign subjective 

probability weights to sets of possible values, instead of point values (as in classical 

probability functions). This random set formalism (Kendall 1974) thus allows a common 

framework for representing both types of uncertainty (epistemic and stochastic). In the so-

called possibility theory (Zadeh 1978, Dubois and Prade 1988) fuzzy set membership 

functions are used as primitive entities for representing incomplete information. Information 

items are then viewed as nested sets of possible values, which is particularly suitable for 

representing human-originated incomplete/imprecise information (Dubois 2006). It can be 

viewed as a computationally simple special case of the previous formalism, restricted to 

nested sets. Walley (1991) developed a more general imprecise probability theory whereby 

the issue of partial lack of probabilistic information is addressed by means of convex sets of 

probability functions. These convex sets can be used to represent incomplete information 

about a probabilistic model as in robust statistics (Huber 1981), or (this is Walley’s stance) as 

subjective uncertainty where lower expectations are interpreted as maximal buying prices for 

gambles. 
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2.1 Imprecise probability 
Basically, an objective probabilistic representation is incomplete if a family of probability 

functions P is used in place of a single distribution P, because the available information is not 

sufficient for selecting a single one in P. Under such imperfect knowledge it is only possible 

to compute optimal bounds on the probability of measurable events A ⊆ S:  

P*(A) = sup{P(A) P∈ P }, P*(A) = inf{P(A) P∈ P }      (1) 

The upper bound P*(A) can be used to measure the degree of plausibility of A, evaluating 

to what extent A is not impossible, i.e., there is no reason against the occurrence of A. The 

lower bound P*(A) can be used to measure the degree of certainty of A. This is similar to the 

standard probabilistic framework where the degree of belief in an event is equated to its 

frequency of occurrence if the latter is available (this is the Hacking principle). 

It is obvious that P*(A) = 1 - P*(Ac), where Ac is the opposite event of A. It expresses the 

idea that an event A is certain if and only if its opposite is impossible. Each event A is then 

assigned an interval [P*(A), P*(A)], which is all the larger as information is lacking. In the 

face of ignorance, the consistent representation consists of using the trivial bounds [0, 1]. 

Reasoning with such bounds is generally not equivalent to using the set P because in general 

the set of probability functions respecting the bounds {P, P ≥ P*} = {P, P ≤ P*} is convex and 

strictly contains P (the notation P ≥ P* is short for ∀A ⊆ S, P(A) ≥ P* (A)). 

Conversely, imprecise probabilistic information may take the form of lower probability 

bounds P-(Ai) of specific events {Ai, i = 1, …k}. The value P-(Ai) can be understood either as 

a lower bound of the frequency of occurrence of Ai, as known by an agent, or as the subjective 

belief of this agent about the occurrence of Ai. In the latter case, belief is measured as the 

greatest buying price of a lottery ticket that some decision-maker accepts to pay in order to 

win 1$ if Ai occurs (Walley 1991). In order to make sense, these bounds must be such that the 

set P = {P, P(Ai) ≥ P-(Ai), i = 1, …k } is not empty (which is the no sure loss condition of 

Walley 1991). They must be optimal in the sense that best lower bounds P*(Ai) (as obtained 

from P via Eq. 1) should coincide with assessments P-(Ai) for all i = 1, …k (there is no point 

in buying the lottery tickets more than P-(Ai)). More generally, a lower envelope function P- is 

said to be coherent (according to Walley) if: 

P*(A) = inf{P(A), P ≥ P-} = P-(A), ∀A ⊆ S      (2) 

Note that this model of subjective belief is similar to subjective probability, but it differs 

from it on a basic issue: in the classical theory, P*(A) is also the least selling price of the 
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lottery ticket pertaining to the occurrence of event A. Here this selling price is just requested 

to be not less than P*(A) and it coincides with P*(A) = 1 − P*(Ac). The interval [P*(A), P*(A)] 

represents the amount of ignorance of the agent, i.e. to what extent this agent is reluctant to 

engage into a fair betting process (or a full-fledged probabilistic belief assessment). Like 

subjective probabilities, values P-(Ai) can be elicited; unlike subjective probabilities, they 

tolerate some amount of ignorance to be expressed. 

2.2 Possibility theory and set-valued representations 
An extreme example of such a representation is when all that is known is that some 

parameter x taking value on the space S is only known to belong to a subset E of S. Note that 

the set E is made of mutually exclusive elements, since each realization of x is unique. E is 

said to be a disjunctive set and represents an epistemic state. Then, Boolean plausibility and 

certainty functions can be respectively defined by: 

Π(A) = 1 if A∩E≠∅, and 0 otherwise;       (3) 

N(A) = 1−Π(Ac) = 1 if E⊆A and 0 otherwise.      (4) 

Clearly N(A) = 1 if and only if x ∈ A is implied by the available information (hence its 

certainty) while Π(A) = 1 if and only if x ∈ A is consistent with the available information. The 

associated probability set contains all probability functions with support inside set E: P = {P, 

P(E) =1}. Note that the statement “x∈ E,” represents subjective information about x. In the 

Bayesian framework, a probability distribution on E should be assigned. Using a mere set 

indicates that the agent refuses to buy lottery tickets pertaining to events A not implied by E 

(he assigns P-(A) = 0 to those events).  

A refined situation is when some elements in E are considered to be more plausible than 

others for x and degrees of possibility π(r)∈[0, 1] can be assigned to r ∈ E, with condition 

that π(r) = 0 if r ∉E and π(r) = 1 for at least one value r ∈ E. Plausibility and certainty 

functions can be respectively defined by means of so-called possibility and necessity 

measures (Dubois and Prade 1988) generalizing the above Boolean functions: 

Π(A) = sup r∈ A π(r); N(A) = 1−Π(Ac) = inf r∉ A 1− π(r)    (5) 

Interestingly, necessity functions are coherent in the sense of Walley, so that Π and N 

define a family of probability measures P(π) = {P, P ≥ N} such that Π = P* and N = P*, 

where P*(A) = inf{P(A), P ≥ N} (Dubois and Prade 1992).  
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2.3. Random disjunctive sets 

It is also possible to assign reliability weights m(Ei) to statements of the form “x∈Ei”, 

whereby m(Ei) expresses the probability that the statement “x∈Ei” accurately represents the 

available information (Shafer 1976). It is a de dicto probability, not to be confused with the de 

re probability of the occurrence of event Ei. Assuming a number k of such statements each 

having probability m(Ei), this approach comes down to considering a probability distribution 

m over the family of subsets E of S, such that m(Ø) = 0, and ∑E⊆ S m(E) = 1. This is what is 

usually called a random set1. The weight m(E) is the amount of probability that could be 

assigned to elements in E, but is not by lack of information. This is the randomized version of 

the plain incomplete information case “x∈E” (where then, m(E) = 1). Total ignorance is then 

when m(S) = 1. So called belief and plausibility functions are defined as: 

Bel(A) = ∑E⊆ A m(E) ; Pl(A) = 1 – Bel(A)c = ∑E∩A≠ Ø m(E)    (6) 

They obviously generalize Boolean functions in (3) and (4). They also generalize necessity 

and possibility measures in (5). The latter are obtained in the case of consonance, when the set 

F = {E, m(E) > 0} of focal subsets is nested, i.e. ∀E, E’∈ F , E ⊆E’ or E’⊆E. Then P = Pl 

and N = Bel, and the possibility distribution π is such that π(r) = Pl({r}). A unique probability 

function P is retrieved if all focal sets are singletons; then the mass function m is a probability 

distribution and Bel = Pl = P. Belief functions are coherent lower envelopes that exactly 

encode the convex set of probability measures P(m) = {P, P ≥ Bel}. A typical (consonant) 

case of a belief function is an unreliable testimony of the form “x∈E” where there is some 

probability p that the information is irrelevant. It defines a mass function such that m(E) = 1 – 

p and m(S) = p (when the information is irrelevant, it is useless). It comes down to a piece of 

information of the form P(E) ≥ 1 – p, i.e. a confidence set. Note that the mass function m can 

have a frequentist flavor (m(E) is then the frequency of imprecise outcomes of the form E) or 

a subjective flavor (m(E) is then the assigned subjective probability that E is the correct 

information). 

                                                 
1 A random disjunctive set, in fact. There is a branch of random set theory (Kendall, 1974) where the set-valued realizations represent 

objective entities (e.g. a shape to be located in some area). In contrast, in this paper, set-valued realizations are epistemic constructs 

representing incomplete information. 
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3.  TOWARD FAITHFUL REPRESENTATIONS OF UNCERTAINTY 

Possibly one of the most important reasons why alternative methods are needed for 

representing uncertainties in environmental risk assessments is the quest for consistency with 

available information. When an investigator, faced with incomplete/imprecise information, 

decides to overlook this partial lack of knowledge and resorts to postulating a unique 

subjective probability distribution function (PDF), he/she is arguably misrepresenting the 

available information. Indeed, there is then no formal difference between known stochastic 

variability and incomplete information as soon as objective and subjective probability 

distributions are jointly propagated. 

 

3.1 Practical representations 

Whilst known variability can be captured by precise probability distributions, we propose 

to use intervals and representations that refine them for consistently representing partial 

ignorance. Figure 1 is a flowchart that proposes to choose specific mathematical 

representations of information pertaining to a model parameter, according to the actually 

available information regarding this parameter, thus offering an elicitation strategy. The 

following simple uncertainty representations based on intervals or their generalisation are 

used in the flowchart: 

- an interval [a, b], such that the value of the parameter x under concern is supposed to 

lie in it.  

- a fuzzy interval (Dubois and Prade 1988), defined by a possibility distribution π : R → 

[0, 1], that assigns to each value r of x a degree of possibility π(r) ∈ [0, 1]. It is a 

generalized interval insofar as ∀ λ ∈ (0, 1], the cut set Iλ = {x, π(x) ≥ λ} is a closed 

interval, and the core I1 is not empty.  

- a p-box defined by a pair of (cumulative) probability distribution functions (PDF) (F*, 

F*) where F* > F*. It characterizes a family Ppbox of probability functions with PDFs F 

such that F* ≥ F ≥ F* (Williamson and Downs 1990).  

All of these representations correspond to special kinds of random intervals in the style of 

Dempster-Shafer. Namely, a fuzzy interval can be viewed as a multiple-valued mapping from 

[0, 1], equipped with the Lebesgue measure, to intervals, assigning a focal set Iλ to each λ ∈ 

(0, 1]. A fuzzy interval can also be viewed as a probability family. More precisely, each set Iλ 

can be viewed as a confidence interval containing the value of x with confidence at least 1−λ. 

That is, the possibility distribution π encodes the probability family: 
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P(π) = {P, P(Iλ) ≥ 1−λ, ∀λ∈(0, 1] }.  

As said above, the possibility measure Π induced by π  on events A satisfies:  

Π(A) = sup r∈ A π(r) = sup {P(A) P ∈ P (π)}. 

Very common in probability are inequalities of the form P(Iλ) ≥ 1−λ,  ∀λ∈(0, 1].   For 

instance Chebyshev inequality reads P(X ∈ [xmean – x, xmean + x]) ≥ 1 – σ2/x2, for x ≥ σ, where 

xmean is the mean and σ a standard deviation. Intervals of the form [xmean – x, xmean +x] define a 

fuzzy interval with core [xmean – σ, xmean +σ] and infinite support. This possibility distribution 

encodes a family containing all probability distributions with mean xmean and standard 

deviation σ. Likewise the triangular fuzzy interval with support [a, b] and mode c encodes a 

family containing all probability distributions with such mode and support lying in [a, b] 

(Baudrit and Dubois 2006).  

Another popular example of a set-valued probabilistic representation is a probability box 

(Ferson et al. 2003). A p-box is also a random interval, replacing the above intervals Iλ by 

other intervals of the form [F*-1(λ), F*
-1(λ)]  playing the role of focal sets (Kriegler and Held 

2005, Destercke et al. 2008). It is possible to extract a p-box from a fuzzy interval, letting 

F*(r)=Π(x ≤ r) and F*(r)=Ν(x ≤ r). However, this is a special p-box such that F* (r) = 1 and 

F*
 (r) = 0 for some value r ∈ R (namely take r such that π(r) =1). In other words, this p-box 

contains a Dirac function. However this p-box contains less information than π because the 

probability set P(π) is strictly included in the probability family Ppbox induced by this p-box 

(Baudrit and Dubois 2006).  

Similarly, a p-box can be extracted from a random interval inducing belief and plausibility 

functions, considering F*(r) = Pl(x ≤ r) and F*(r) = Bel(x ≤ r). Again, this p-box is less 

informative than the random interval it is built from, and it is equivalent to another belief 

function. Indeed a random interval {([ai, bi], mi), i = 1,…,n} is equivalent to a p-box (i.e. they 

yield the same probability bounds for all events) if and only if the ordering of the lower 

bounds of intervals [ai, bi] is the same as the ordering of the upper bounds: ai ≤ aj if and only 

if bi ≤ bj. For instance, a set of measurements {ri, i = 1, …,k} with fixed error e, corresponding 

to focal intervals [ri-e, ri+e] yields a belief function that coincides with a p-box. More general 

practical representation techniques are discussed and related to each other in Destercke et al. 

(2008). 
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3.2 An elicitation methodology 

The input point to the flowchart in Figure 1 considers whether or not the investigator 

wishes to represent a given risk model parameter by a deterministic quantity (i.e., not subject 

to variability). There may be several reasons for assuming a parameter should take on a fixed 

value. For example, the investigator may know that the value of the parameter is indeed a 

constant (e.g. the height of a chimney stack or the depth of a well); on the contrary he may 

know that he will never get information regarding the parameter’s variability (whether spatial 

or temporal); therefore he chooses to assume a constant value, albeit imprecisely known. 

Once the user of the flowchart has chosen whether he wishes to use a constant parameter 

value or not, he is guided through a series of questions that assist him in selecting an 

appropriate tool for representing the information available to him. 

If a representation by a constant parameter is selected, questions are asked in order to 

identify the degree of precision of this information regarding the parameter value. Questions 

go from the less to the more informed. First the user is asked whether he can identify an 

interval that contains the parameter value with certainty. If this is the only information that 

can be provided, then a simple interval [a, b] will be assigned to the parameter. If the user can 

express preferences within this interval, it can be refined into a trapezoidal or a triangular 

fuzzy set. In fact, an interval [a, b] and a plausible value r* therein (interpreted as the core of 

the fuzzy interval: π(r*) = 1) can be modelled as a triangular fuzzy interval. The 

corresponding probability set P(π) then contains, among other ones, all probability functions 

with unimodal density with support in [a, b] and mode r* (Baudrit and Dubois 2006). Instead 

of a plausible value, an interval thereof can be used as a core of a trapezoidal fuzzy interval. If 

the available information is not sufficient for defining a sensible interval containing some 

parameter, one may resort to considering a set of representative scenarios where assumptions 

can be stated, each leading to a sensible interval. 

If the user decides to consider the parameter as a random variable, he is asked whether 

statistical data are available regarding the parameter and, if so, whether there are a sufficient 

number of precise measurements. At this stage a distinction must be made according to 

whether the variability is spatial or temporal. In the case of spatial variability and if sufficient 

data are available, geostatistics models (e.g. Chilès and Delfiner 1999) can be used to 

represent the spatial variability and provide reliable estimators of the parameter. In the case of 

temporal variability and of sufficient available data, a unique probability distribution will be 

the appropriate representation tool. If there is a large number of imprecise data, a random set 
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can be used. But if only a little amount of data is available, and one must basically rely on 

expert knowledge, then the investigator is asked whether he can provide the support of the 

distribution describing the parameter’s variability. Should this be the case, if the user knows 

what type of distribution is suitable and can provide, based on expert knowledge, intervals for 

the parameters of the distribution (e.g. average and standard deviation), then a parametric 

probability family (represented as a p-box) can be used. Note however that the use of a p-box 

may represent a certain loss of information as the latter represents a non-parametric family of 

PDFs even if bounded by parametric ones (see Baudrit et al. 2008 for a discussion and a 

proposal for handling such imprecise parametric models). If knowledge on the distributions is 

not available, the flowchart resorts to the fuzzy interval-type representations mentioned 

previously, now supposed to represent a family of objective probabilities. In the case of 

imprecise geostatistical data, specific techniques can be used, for instance, the pioneering 

fuzzy interval approach of Bardossy et al. (1988) (see Loquin and Dubois 2010, for a survey) 

The list of tools in the flowchart, which is by no means exhaustive, is drawn from the 

uncertainty theories cited in the previous section and attempts to cover the variety of “degrees 

of precision” typically encountered in the field of environmental risks. While inherently 

incomplete, the main benefit of the proposed flowchart is to bring the user to realize that there 

is no one-all-fit-all method for representing uncertainty. All depends on the nature of the 

available information. Once appropriate representations have been selected for all uncertain 

risk model parameters, the information can be propagated using the techniques recalled in the 

next section, the choice of which depends not only on the information representation tools, 

but also on possible dependencies between model parameters.  

 

4. UNCERTAINTY PROPAGATION  

Already in the 1980’s Kaufmann and Gupta (1985) had proposed so-called “hybrid 

numbers” which simultaneously express imprecision and randomness. Later on, Cooper et al. 

(1996) used this framework to combine stochastic and subjective sources of data uncertainty 

in the estimation of risk. More recently, Guyonnet et al. (2003) use probability distributions 

for representing variability in model inputs, and fuzzy intervals when only partial information 

is available on other inputs. They proposed a propagation method, also termed “hybrid”, 

combining Monte Carlo sampling of probability distributions with fuzzy interval analysis 

(Dubois et al. 2000), thus generating a random fuzzy interval as the system output. Baudrit et 

al. (2005) identified a consistent approach for summarizing the results of this method, in the 
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form of a probability box (closely related to Dempster upper and lower probabilities, and 

belief functions of Shafer). Baudrit et al. (2006, 2007) proposed an alternative uncertainty 

propagation method, called the independent random set (IRS) method, where the random 

sampling procedure is applied not only to the probability distributions, but also to the fuzzy 

intervals. Couso et al. (2000) showed that this method is a conservative counterpart to the 

calculation with random quantities under stochastic independence (classical Monte Carlo 

method). Baudrit et al. (2007) showed that the IRS method yields very similar results to those 

of the hybrid method, differences being due to different hypotheses with respect to model 

parameter dependencies (Baudrit et al. 2006). Other authors directly model incomplete 

information by probability boxes and provide suitable uncertainty propagation methods 

(Williamson and Downs 1990; Regan et al. 2004).  

We recall two propagation methods, one of which will be illustrated in section 5. They are 

well suited for situations involving both epistemic and stochastic uncertainty. The first 

method (Guyonnet et al. 2003) combines the random sampling of probability distribution 

functions (PDFs) with interval analysis on the cut sets of fuzzy intervals. We consider a 

generic risk model that is a function of a certain number of parameters x1,…xn, y1, …ym: 

z = f(x1,…xn, y1, …ym),        (7) 

where z is risk model output; x1,…xn are n independent model parameters represented by 

probability distribution functions (PDFs) F1, …, Fn; y1, …ym are m model parameters 

represented by fuzzy intervals with possibility distributions π1, …, πm.  

4.1 A fuzzy Monte-Carlo method 

The so-called “hybrid” procedure of Guyonnet et al. (2003) is as follows: 

 

1. Generate n random numbers (χ1, …, χn) in [0, 1]n from a uniform distribution and 

sample the n PDF’s to obtain a realization of the n random variables: r1, … rn, where ri 

= F−1(χi). 

2. Select a possibility value λ in [0, 1] and build cut-sets of π1, …, πm at level λ yielding 

intervals Ijλ = {r, πj(r) ≥λ }. 

3. Interval calculation: calculate the Inf (least) and Sup (greatest) values of interval Z = 

f(r1, …, rn, I1λ, ..., Imλ), scanning all values located within the cut sets of each fuzzy 

set. 
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4. Consider these Inf and Sup values to be the lower and upper limits of the cut set 

containing the output z at possibility level λ. 

5. Return to step 2 and repeat steps 3 and 4 for another value of λ. The fuzzy result 

describing z is obtained from the Inf and Sup values of Z for each cut set. 

6. Return to step 1 to generate a new realization of the random variables.  

 

Note that step 3 may need a stochastic search method if the function f is not monotonic and 

its extrema are ill-known. Computations can be arranged so as to avoid redoing them for each 

λ-cut (for instance using the transformation method of Hanss 2004).  

A family of ω possibility distributions (a random fuzzy set) is thus obtained that describe 

the output value z (ω being the number of realizations of the random variables). This random 

fuzzy set can be interpreted as a standard random interval as proposed by Baudrit et al. 

(2005), namely separately collecting all intervals of the form f(r1, …, rn, I1λ, ..., Imλ) for all 

samples (χ1, …, χn, λ). 

4.2 The independent random set approach 
An alternative propagation method is based on independent random sets (called IRS; 

Baudrit et al. 2006). It exploits the fact that the theory of evidence (Shafer 1976) encompasses 

both possibility and probability theory. It is based on an extension of the Monte-Carlo scheme 

whereby sampling is performed likewise on random variables, on possibility distributions π1, 

…, πm (and p-boxes, if any input parameter representation takes such a form) associated to 

each imprecise parameter. The procedure is as follows:  

 

1. Generate n+m random numbers (χ1, …, χn+m) in [0, 1]n+m from a uniform distribution 

on [0, 1]. 

2. Sample the n PDF’s to obtain a realization of the n random variables: r1, … rn,  

3. Sample the m fuzzy intervals π1, …, πm (or p-boxes) each at a different level χn+i to 

obtain m intervals: I1, ..., Im, where Ii = {r, πi(r) ≥χn+i }. 

4. Calculate the Inf (least) and Sup (greatest) values of z = f(p1, …, pn, I1, ..., Im), using 

interval analysis, considering all values located within the intervals I1, ..., Im. 

5. Return to step 1 to generate a new realization of the random variables and the fuzzy 

sets (or p-boxes). Repeat ω times. 
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Again, a random interval is obtained. The difference between the “hybrid” and IRS 

schemes lies in the assumptions with respect to independence between model parameters. In 

the “hybrid” scheme, stochastic independence between the probabilistic variables is often 

assumed, although non-linear monotone dependency between the random variables can be 

accounted for by means of rank correlation methods (Connover and Iman 1982). Stochastic 

independence between the group of probabilistic variables and the group of possibilistic 

quantities is also assumed. But the fuzzy interval analysis in the “hybrid” scheme assumes 

that the sources supplying information related to imprecise parameters are totally dependent, 

while no link between the parameters themselves is assumed. In contrast with the second IRS 

Monte-Carlo scheme, the “hybrid” method comes down to restricting the samples (χ1, …, 

χn+m) to those of the form (χ1, …, χn, λ …,λ). On the other hand, the IRS method assumes 

independence between all information sources.  

4.3 Presentation of the results 
The output random interval is then summarized in the form of a pair of upper and lower 

cumulative probability distributions, i.e. a p-box (Baudrit et al. 2005), considering F*(θ)=Pl(x 

≤ θ) and F*(θ)=Bel(x ≤ θ), as per the theory of evidence recalled above. It evaluates the 

probability of the proposal x ≤ θ,  i.e., “the calculated risk lies below a specified target level 

θ”. The probability that this proposal is true is comprised between the degree of plausibility 

(an upper bound on probability) and the degree of belief (a lower bound on probability). 

Therefore, the lower bound Bel(x ≤ θ) gathers the imprecise evidence that asserts x ≤ θ while 

the upper bound Pl(x ≤ θ) gathers the imprecise evidence that does not contradict x ≤ θ. The 

interval [Bel(x ≤ θ), Pl(x ≤ θ)] contains all potential probability values compatible with the 

mass function m obtained from the propagation step.  

The significant advantage of standard probabilistic methods using the Monte Carlo method 

with arbitrarily selected PDFs despite incomplete/imprecise information is that a single value 

for the probability of exceeding the critical threshold θ  is obtained. This will appear more 

appealing to decision-makers dealing with environmental risks than imprecise probabilities of 

exceeding such a threshold. In fact, Bayesian scholars deny the potential of approaches like 

the above one to provide useful support for obtaining a scientific judgment about the 

unknown quantities under concern, considering that the explicit handling of ignorance on top 

of available statistical probabilities only leads to an objective description of these unknown 

quantities (Aven 2010). However it can be argued that the probability bounds at work in these 
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representations are subjective, whether or not an objective probability rules the behaviour of 

the unknown quantities: from one source or expert to another, the probability bounds will be 

different without necessarily being conflicting (Dubois 2010). 

In order to increase the acceptance of methods that account for epistemic uncertainties in 

the field of environmental or health risks, it is proposed to introduce an additional reasoning 

step in order to provide a result that is more amenable to potential users. 

 

5. A HURWICZ STYLE APPROACH TO DECISION UNDER 
PARTIAL IGNORANCE  

The classical approach to decision under uncertainty is due to Savage (1954). Decision 

under epistemic uncertainty is there opposed to “decision under risk”, where the latter 

presupposes the knowledge of precise objective probabilities of occurrence of states of nature, 

a situation that is not met in our setting. Even when such probabilities are ill-known, Savage 

has suggested that, provided some postulates of rational decision are accepted, a decision-

maker should make decisions as if he had a unique subjective probability distribution in mind 

when ranking potential decisions, the ranking being done according to the expected utility 

criterion. This view has been challenged to a large extent for at least two reasons: first the 

expected utility criterion neglects the attractiveness of sure gains against lotteries which may 

have higher expectations but where greater losses are possible as well. Second, in the face of 

partial ignorance decision makers may fail to use the same subjective probability in 

successive choices when comparing decisions in a pairwise manner (Ellsberg paradox; 

Ellsberg 1961).  

5.1 Decision Under Partial Ignorance 
Under epistemic uncertainty, the result of the risk analysis, as we described it, consists in a 

random set, typically having the form of a probability box, i.e., a pair of PDFs (F*, F*) where 

F* > F*. As pointed out above, it corresponds to a uniform mass density assigned to subsets of 

the form: 

Aλ = [F*-1(λ), F*
-1(λ)] where F–1(λ) = inf{x, F(x) ≥ λ}    (8) 

In the case of discrete PDFs, as typically obtained from our algorithms, it comes down to a 

finite set of n intervals [ai, bi] each being assigned a probability weight mi, which represents 

the proportion of results of the form [ai, bi], obtained by the joint Monte-Carlo/interval 

analysis method. Comparing decisions when the uncertainty is described by a random set is 
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problematic because expected utilities will take the form of intervals, and intervals are not 

totally ordered. Likewise, probabilities of relevant events will be only known via a probability 

interval.  

A number of decision criteria have been proposed in the literature, both in economics (see 

Chateauneuf and Cohen 2009 for a survey) and in connection with Walley's imprecise 

probability theory, following pioneering works by Isaac Levi (see Troffaes 2007). There are 

basically three schools of thought: 

- Comparing set-valued utility estimations under more or less strict conditions. These 

decision rules, such as Levi’s E-admissibility usually do not result in a total ordering of 

decisions, and some scholars may consider that the problem is not fully solved then. 

Nevertheless they provide rationality constraints on the final decision. 

- Comparing point-valued estimations after selection of a « reasonable » utility value 

within the computed bounds. For instance the generalisation of the (pessimistic) 

maximin criterion of Wald proposed by Gilboa and Schmeidler (1989).  

- Selecting a probability measure in the set of imprecise priors and ranking decisions 

following the corresponding expected utility. This is the approach proposed by Smets 

(2005) with his so-called pignistic probability.  

The two latter approaches lead to clear-cut best decisions but the responsibility of the choice 

of the point-valued risk measure then relies on the decision-maker. In the second approach, 

the choice of the equivalent subjective probability depends on the pair of decisions to be 

compared, while in the third approach, the subjective probability function is chosen once and 

for all.  

5.2 The confidence index 
In our setting, deciding if the output of the system under study lies beyond a critical 

threshold θ may be difficult: we have to compare the ill-known expected value: 

EV = [∑i = 1, …, n mi ai , ∑i = 1, …, n mi bi]       (9) 

to the threshold θ, or to compute an imprecise probability of violating it: 

 IP = [1 − F*(θ) , 1 − F*(θ)].         (10) 

Such an interval may baffle a decision-maker, if too wide. An important characteristic of 

the field of environmental and health risks is that public perception is one of “aversion to 

risk”. Obviously, in such a context, it would not be acceptable to use the optimistic bound 1 − 

F*(θ) on probability as the sole indicator of the acceptability of risk. Note that the optimistic 

bound will be the Bel indicator, if the event B whose likelihood is to be judged is that a risk 
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threshold θ is exceeded (“x > θ”), and Pl (Pl(Bc) = 1 – Bel(B)), if the event is Bc, i.e, that risk 

lies below the threshold θ. One might then consider that the pessimistic bound on probability 

should be used as the unique indicator of acceptability. This approach, while being 

conservative, presents the important disadvantage of ignoring all the information leading to 

less pessimistic estimates of risk. 

Insofar as a decision has to be selected, the lesson of Savage theory is that a probability 

function P ∈ P must be selected so as to account for the final ranking of decisions. In the case 

when expected utility is the ranking criterion, it enables the selection of a unique probability 

value p ∈ IP of violating the critical threshold θ, or a single expected value within the interval 

EV. These probability and expected value blend the objective available information (inducing 

the interval IP) and the attitude of the decision-maker in front of partial ignorance.  

There are three approaches for selecting a single probability function in a family thereof:  

1. Applying the Laplace principle of insufficient reason to each focal set [ai, bi], thus 

changing it into a uniformly distributed PDF Fi on [ai, bi], and using the distribution 

function F1 = ∑i = 1, …, n miFi, to compute an expected value EV1 and a violation 

probability p1 = 1 − F1(θ) . 

2. Replacing each focal set [ai, bi] with a value f(ai, bi) ∈ [ai, bi], where f is increasing in 

both places; then using the distribution function F2 induced by the probability 

assignment {( f(ai, bi), mi), i = 1, …, n}. This PDF F2 has pseudo-inverse F2
–1(λ) = 

inf{x, F2(x) ≥ λ} = f(ai, bi), ∀λ∈[0, 1], where Aλ =[ai, bi] . Then the expected value 

EV2 takes the form of EV2 = ∑i = 1, …, n mi f(ai, bi). 

3. Directly selecting a PDF F3 such that F3(x) = g(F*(x), F*(x)) ∈ [F*(x), F*(x)]. 

The first method was proposed by Smets (2005) under the name “pignistic transformation” 

and axiomatically justified. It is identical to the so-called Shapley value used in cooperative 

game theory as a fairness principle for sharing benefits across members of coalitions. Beyond 

its formal appeal, its drawback in our context is that it leaves no room to a decision-maker for 

expressing his attitude in front of risk. The pignistic transformation just explains how an 

individual is likely to bet in the face of ignorance if he is forced to bet: namely using a two-

stepped procedure: 

- Bet on [ai, bi] with subjective probability mi; 

- then bet uniformly on some value within [ai, bi], as there is no reason to favor one 

value against another.  
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The second method was advocated by Jaffray (1988, 1994). Its aim is to try and preserve 

the linearity of the expected utility. The idea is to assign a preference relation on belief 

functions on states of nature in place of a set of probability distributions (lotteries), and apply 

the axioms of decision under risk to a functional that, to any belief function Bel, assigns a 

precise expected value EVBel, still obeying the famous independence and continuity axioms of 

decision theory (after Herstein and Milnor 1953), which ensure the linearity of the expected 

utility, i.e.: 

EVaBel+(1-a)Bel ’= aEVBel + (1-a)EVBel’       (11) 

In fact this approach is the same as the traditional Von Neumann and Morgenstern (1947) 

approach to decision under risk, where epistemic uncertainty is accounted for by replacing the 

set of states of nature by the set of epistemic states of the decision maker, each possible 

epistemic state being modeled by a set of states of nature, one of which is the right one. 

Jaffray considers a belief function as an objective probability over epistemic states. The 

quantity f([ai, bi]) is then like the equivalent (subjectively perceived) risk level of the 

epistemic state [ai, bi]. 

Moreover he adds a further dominance axiom enforcing the monotonic increasingness of f 

(hence EVBel) with respect to the following partial ordering between intervals (viewed as 

random sets with mass assignment 1):  

Dominance axiom: [ai, bi] ≥ [aj, bj] if and only if ai ≥ aj and bi ≥ bj. 

Then he proves that f([ai, bi]) is of the form f(ai, bi) and EVBel is of the form of criterion 

EV2= ∑i = 1, …, n mi f(ai, bi) above, that is, the precise expectation only depends on the value of 

the end-points of focal intervals. Interestingly, the pignistic transformation is also linear with 

respect to the convex combination of belief functions. The difference is that the choice of a 

value f(ai, bi) to which weight mi is assigned (in method 2) is replaced by a uniformly 

distributed probability in Smets’ method. To make the latter more flexible, one could as well 

use any probability measure on [ai, bi], that reflects the attitude of the decision-maker when 

the latter only knows that the real value of the parameter (e.g. pollution index) lies between ai 

and bi (in agreement with the Bayesian approach).  

The third method is more in line with so-called credibility theory developed by Liu (2007) 

who reconstructs a PDF from a pair of possibility and necessity measures (Π, Ν) as:  

F(x) = (Π(x≤r) +  Ν( x≤r) )/2.         (12) 

Our third proposal for computing F3 generalizes this procedure to belief-plausibility 

function pairs.  
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In order to practically account for the decision-maker attitude, it is usual to introduce an 

optimism index αi such that if the value of the (say) pollution index is only known to belong 

to [ai, bi], the value considered as reasonably optimistic by the decision-maker is the average: 

 f(ai, bi) = αi ai +(1 –αi) bi        (13) 

This approach, which is based on earlier work by Hurwicz (1951), thus proposes to compute a 

single indicator as a weighted average of focal element bounds. It achieves a trade-off 

between optimistic and pessimistic estimates. In the decision theory tradition f(ai, bi) is 

viewed as the certainty-equivalent of an uncertain situation whose output is ai with probability 

αi and bi with probability 1 − αi. Under this view, the original random set is replaced by a 

standard probability measure P2 obtained by assigning each probability weight mi to risk 

model output values αi ai +(1 –αi) bi, i = 1, …, n.  

In the third method, each interval [ai, bi] would be replaced by the probability function P3
i 

yielding ai with probability αi and bi with probability 1 − αi. Its PDF can be expressed as:  

Fi(r) = αiΠ i(x ≤ r) + (1−α i)Ν i( x ≤ r),      (14) 

where Boolean possibility and necessity measures Πi and Νi derive from the interval [ai, bi], 

following Eqns. (3) and (4). The probability measure P3 thus obtained from the whole random 

set can be defined as follows: P3= ∑i = 1, …, n mi P3
i .   

In practice, a single value α will be used to represent the decision-maker’s attitude towards 

uncertainty. Then, for methods 2 and 3 we respectively get: 

F2
-1(λ) = α F*-1(λ) +(1 –α) F*

-1(λ), ∀λ∈(0, 1]     (15) 

F3(x) = α F*(x) +(1 –α) F*(x)        (16) 

i.e. F2 is obtained by taking the weighted average of upper and lower bounds of each cut of 

the p-box, while F3 is obtained by the weighted average of the upper and lower fractiles. Note 

that the two PDFs significantly differ, but they have the same expected value:  

EV2 = EV3= α∑i = 1, …, n mi ai + (1 - α) ∑i = 1, …, n mi bi     (17) 

However their variance is very different. In particular F3 has a larger variance than the 

ones of the upper and lower distributions, while F2 has a variance that is a trade-off between 

them. For instance if the probability box is an interval, the second approach suggests that 

randomness may be absent and F2 proposes a substitute deterministic value. On the contrary 

the PDF F3 has variance α(1−α)(a−b)2. This feature makes the choice of the second (Jaffray) 

method preferable to the third one as F2 has a shape more in conformity to the available 

information. We refer to this PDF as a “Confidence Index” in the sequel. The same expected 

value is also obtained when α = 1/2 with the pignistic transform F1): 
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It must be fully recognized that the choice of weight α is subjective. However, this 

subjectivity is only introduced at the decision-making step in the form of a single PDF used as 

a sensible reference displayed along with the pessimistic and optimistic outputs. This is very 

different from displaying a single distribution obtained by propagating single distributions 

introduced at the beginning of the risk analysis step. According to the Bayesian usage, PDFs 

allegedly representing the state of knowledge of experts must be selected for any parameter, 

even in the presence of incomplete/imprecise information. The Bayesian credo makes sense at 

the decision level, according to the declared intention of its founder (Savage), and the 

approach proposed here does not really contradict this view. It only postulates that in the end 

the decision is made according to expected utility of some probability function. What appears 

debatable is to claim that one must introduce a unique subjective probability function, each 

and every time incomplete information of some kind is met, while no decision is at stake (e.g. 

when just collecting information). Nothing in the Bayesian doctrine prescribes such an 

extreme view.  

Our basic assumption is that the selection of this probability function by an expert makes 

more sense at the very end of the risk analysis chain because available information should be 

faithfully propagated up until that point. If this information is considered to be insufficient by 

the expert, he may decide to collect more. If the information is incomplete but no data 

collection is possible, then a scientific judgment must take place anyway, and our confidence 

index can contribute to it. The potential advantages of the proposed approach are illustrated in 

the next section. 

 

6. ILLUSTRATION AND DISCUSSION 

The primary objective of this application is to illustrate the use of the “Confidence Index” 

defined previously. The choice of the term “Confidence Index” is borrowed from the field of 

meteorology (WMO 2008). The meteorological community has extensive experience with 

respect to predicting natural events and also of communicating on these predictions with the 

general public. It is therefore significant that meteorologists should have adopted the term 

“Confidence Index” to communicate on the uncertainty relative to their predictions, as the 

term holds value both from a scientific and sociological viewpoint: scientific because it avoids 

referring to any particular uncertainty paradigm (probabilistic, possibilistic, etc.); sociological 

because the notion of “confidence” has positive connotations. This same term is gaining 
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acceptance in other fields, for example traffic forecasting (Danech-Pajouh and Sauvadet 

2003). 

The illustration relies on a generic health risk calculation for the case of individual 

exposure to a chlorinated organic solvent (1,1,2-Trichloroethane) via the consumption of 

contaminated drinking water. Toxicologists consider that 1,1,2-tricholorethane is a “no-

threshold”, potentially carcinogenic substance: exposure generates a risk whatever the level of 

exposure (e.g. EPA 1987). The chronic carcinogenic toxicological reference value for this 

substance is a unit excess risk (UER), namely, a probability (or expected value) of excess 

cancer per unit daily dose, determined based on dose-response relationships (an oral slope 

factor; EPA 1987). For an exposed individual, we calculate an individual excess risk (IER) as 

the product of the absorbed dose and the unit excess risk. The calculated excess risk can then 

be compared to a threshold of tolerable individual excess risk defined by the health authority. 

Individual excess risk and absorbed dose are calculated from (EPA 1989):  

UERDIER ⋅=   and: 
ATBW

EDEFCID
⋅

⋅⋅⋅
=      (18) 

where: D = absorbed dose (mg pollutant absorbed per Kg body weight and per day), I = 

quantity of water ingested per day (L/d), C = concentration of 1,1,2-trichloroethane in 

drinking water (mg/L), EF = exposure frequency (d/yr), ED = exposure duration (yr), BW = 

body weight (Kg), AT = averaging time (d), UER = Unit Excess Risk (expected excess cancer 

per unit dose; (mg/Kg-d)-1), IER = Individual Excess Risk (expected excess cancer resulting 

from dose D). 

The representation of the problem parameters requires two modes of representation 

described previously: probability and possibility distributions. It is assumed that there are 

sufficient drinking water concentration measurements (Ci) to allow the identification of a 

statistically representative probability density function for this unknown quantity. 

Concentration in drinking water is described by a triangular probability density function of 

mode 10 μg/l and lower and upper values 5 and 20 μg/l respectively. It is also assumed that 

statistical data regarding population residence times are available such that the exposure 

duration (DE) can also be represented by a unique probability distribution: a triangular 

probability density function of mode 30 years and lower and upper limits 10 and 50 years 

respectively. Body weight and averaging time are taken as constants (respectively 70 kg and 

70 years) in order to provide a generic character to the exposed individual but also to be 

consistent with the toxicological reference value (UER) defined for a lifelong exposure (taken 

as 70 years). All other parameters (rate of ingestion, exposure frequency, unit excess risk) are 
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represented by triangular possibility distributions presented in Table 1, due to assumed 

epistemic uncertainties reflecting a lack of information. For the oral slope factor, the core is 

taken from EPA (1987), while the lower and the upper bounds were proposed by experts. 

Note that in practice, examination of the experimental data that led to the EPA 

recommendation may help identify more suitable values. 

The individual excess risk threshold, defined by the Health Authority, is taken as 10-5: it is 

an expected number of excess cancers for an exposed individual. This threshold can also be 

thought of as implying that the Health Authority accepts that in a population of 105 identical 

individuals receiving precisely the same dose, one individual (expected value) would develop 

a cancer related to the exposure. We are interested in the probability of exceeding (or, 

conversely, remaining below) this threshold. For the hybrid calculation, fuzzy intervals were 

discretized into 10 cut-sets, probability distributions into 50 classes, and 100 iterations were 

used for the Monte Carlo random sampling. The results of the calculation are presented in Fig. 

2. The distance between the Pl and Bel functions is a consequence of the incompleteness of 

information relative to the three parameters in Table 1. Also shown in Fig. 2 for comparison 

purposes, is the result of a Monte Carlo calculation performed assuming probability density 

functions for all model parameters, with total stochastic independence. Probability density 

functions for the three ill-informed parameters have the same shapes as the fuzzy intervals in 

Table 1.  

With respect to the acceptability of the calculated risk, in the case of the Monte Carlo 

calculation the answer is quite straightforward. The probability of lying below the threshold 

defined by the health authority is 95%, implying that there is only a 5% chance of exceeding 

the threshold. Such a level of risk might seem acceptable but it is reminded that the result of 

this calculation is biased by the fact that unique PDFs were selected in presence of incomplete 

information. In the case of the hybrid calculation, results suggest that the probability of lying 

below the threshold is comprised between 62% (lower bound; Bel) and 100% (upper bound; 

Pl). In this case, there are two possible courses of action. One option could be to decide that 

the distance between the upper and lower probability bounds is too great, and therefore, the 

epistemic uncertainty regarding certain parameters should be reduced by performing 

additional measurements. But in many situations it will not be possible, for reasons of budget 

and time constraints, to follow this line. It is therefore proposed to compute the “Confidence 

Index” defined in the previous section, as shown in Fig. 3 where a weight α = 1/3 was used, 

implying that more weight (2/3) is given to the pessimistic probability bound, than to the 

optimistic bound (1/3). In a context of aversion to risk, it would seem normal to privilege the 
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pessimistic limit, but without completely obliterating the optimistic one. Comparison with the 

risk threshold of 10-5 suggests that the calculated risk is below the threshold with a 

Confidence Index of 80%. The decision-maker must then decide whether or not this level of 

confidence is sufficient to accept the risk. 

It may be of interest in practice to compare the results obtained by the standard Bayesian 

approach and the results obtained by our approach, in order to see if the subjective probability 

assessments on input parameters lead to an optimistic or a pessimistic view of the actual risk. 

It may also bring some insight for a better choice of the optimism index. However such a 

comparison may be delusive as the subjective input distributions are exploited as if they 

expressed variability (by the Monte-Carlo simulation), and the output variance will be all the 

smaller as many ill-informed input parameters will be handled in this way. So, while the 

choice of probabilistic substitute to partial knowledge may look easier to perform on input 

parameters (for which expertise exists) than on the risk model output itself, the reduction of 

uncertainty due to the probabilistic simulation technique will be more significant than if the 

ill-informed parameters are modelled by set-like entities propagated in the interval analysis 

style and a confidence index is derived from the output p-box (this is patent comparing the 

pure Monte-Carlo result on Figure 2 and the confidence index on Figure 3). 

7. CONCLUSION 

The way information regarding risk model parameters is represented in risk assessments 

should be consistent with the nature of this information. In particular the confusion between 

stochastic and epistemic uncertainty should be avoided so that the results of risk assessments 

adequately reflect available information. In this paper we first review methods for 

representing and propagating uncertain information in risk assessments and then propose a 

flowchart as an aid in the choice of tools for representing uncertain information. This 

flowchart highlights the idea that the important question at the data collection step is “what do 

I know?” rather than “what probability should I assign?” and also that no single information 

representation tool can be applied to all types of information. 

This paper also focuses on a potential shortcoming of existing joint propagation methods in 

a context of decision-making, i.e. that they yield imprecise levels of probability that a (risky) 

proposition is true or not. Several approaches for circumventing this shortcoming are 

presented and one approach is selected, based on Jaffray’s generalization of Hurwicz criterion 

to belief functions. It selects a subjective probability measure (dubbed “Confidence Index”, a 

name borrowed from common practice in meteorology). This probability measure, reflecting 
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the decision-maker’s attitude with respect to ambiguity and risk, is applied to an illustrative 

example. The proposed approach introduces the decision-maker subjectivity at the final 

decision-making stage, which is more easily justified than when modeling input information. 

Indeed our method does not mask epistemic uncertainty, while a full-fledged Bayesian 

approach to modeling all input parameters runs the risk of confusing epistemic uncertainty 

with stochastic variability, both being entangled in the unique distribution obtained by the 

propagation step. Our proposal is to represent epistemic uncertainty and stochastic variability 

by distinct tools, preserving this distinction after the propagation step, while offering the 

decision-maker a practical way to express a level of aversion to risk, thus converging to a 

more easily interpretable (subjective) risk probability. It is felt that the risk assessor should 

attempt to forward the available information to the decision-maker as faithfully as possible, so 

that the range of possible outcomes be known. If this range is judged too wide, then action 

might be taken in order to reduce uncertainties in model input parameters (e.g. via 

measurement). Such an analysis can never be carried out from a Monte Carlo simulation 

performed using postulated PDFs on input parameters, as there is no way of distinguishing, in 

the variance of computed output, the actual variability resulting from true stochastic 

randomness from apparent variability due to subjective probability judgments.  
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Table 1. Parameter values used for the illustration 

Parameter Unit Mode of 

representation 

Lower 

limit 

Mode or 

core 

Upper limit 

Concentration in water μg/L Probability 5 10 20 

Ingestion L/d Fuzzy interval 1 1.5 2.5 

Exposure frequency d/year Fuzzy interval 200 250 350 

Exposure duration Years Probability 10 30 50 

Oral slope factor (mg/Kg/d)-1 Fuzzy interval 2 x 10-2 5.7 x 10-2  10-1 
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Fig. 1. Flowchart relating information nature to mode of information representation 
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Fig. 2. Result of the application risk calculation 
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Fig. 3. Illustration of the confidence index for a value α = 1/3 
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