8,024 research outputs found

    Integrated Batching and Lot Streaming with Variable Sublots and Sequence-Dependent Setups in a Two-Stage Hybrid Flow Shop

    Get PDF
    Consider a paint manufacturing firm whose customers typically place orders for two or more products simultaneously: liquid primer, top coat paint, and/or undercoat paint. Each product belongs to an associated product family that can be batched together during the manufacturing process. Meanwhile, each product can be split into several sublots so that overlapping production is possible in a two-stage hybrid flow shop. Various numbers of identical capacitated machines operate in parallel at each stage. We present a mixed-integer programming (MIP) to analyze this novel integrated batching and lot streaming problem with variable sublots, incompatible job families, and sequence-dependent setup times. The model determines the number of sublots for each product, the size of each sublot, and the production sequencing for each sublot such that the sum of weighted completion time is minimized. Several numerical example problems are presented to validate the proposed formulation and to compare results with similar problems in the literature. Furthermore, an experimental design based on real industrial data is used to evaluate the performance of proposed model. Results indicate that the computational cost of solving the model is high

    Lot Streaming in Different Types of Production Processes: A PRISMA Systematic Review

    Get PDF
    At present, any industry that wanted to be considered a vanguard must be willing to improve itself, developing innovative techniques to generate a competitive advantage against its direct competitors. Hence, many methods are employed to optimize production processes, such as Lot Streaming, which consists of partitioning the productive lots into overlapping small batches to reduce the overall operating times known as Makespan, reducing the delivery time to the final customer. This work proposes carrying out a systematic review following the PRISMA methodology to the existing literature in indexed databases that demonstrates the application of Lot Streaming in the different production systems, giving the scientific community a strong consultation tool, useful to validate the different important elements in the definition of the Makespan reduction objectives and their applicability in the industry. Two hundred papers were identified on the subject of this study. After applying a group of eligibility criteria, 63 articles were analyzed, concluding that Lot Streaming can be applied in different types of industrial processes, always keeping the main objective of reducing Makespan, becoming an excellent improvement tool, thanks to the use of different optimization algorithms, attached to the reality of each industry.This work was supported by the Universidad Tecnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019, and SENESCYT by grants “Convocatoria Abierta 2011” and “Convocatoria Abierta 2013”

    An estimation of distribution algorithm for lot-streaming flow shop problems with setup times

    Full text link
    Lot-streaming flow shops have important applications in different industries including textile, plastic, chemical, semiconductor and many others. This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling and noidling production cases. The objective is to minimize the maximum completion time or makespan. To solve this important practical problem, a novel estimation of distribution algorithm (EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient initialization scheme based on the NEH heuristic is presented to construct an initial population with a certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the algorithm search towards good solutions by taking into account both job permutation and similar blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a speed-up method is presented to reduce the computational effort needed for the local search technique and the NEH-based heuristics. A comparative evaluation is carried out with the best performing algorithms from the literature. The results show that the proposed EDA is very effective in comparison after comprehensive computational and statistical analyses.This research is partially supported by the National Science Foundation of China (60874075, 70871065), and Science Foundation of Shandong Province in China under Grant BS2010DX005, and Postdoctoral Science Foundation of China under Grant 20100480897. Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI and by the IMPIVA-Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175.Pan, Q.; Ruiz García, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega. 40(2):166-180. https://doi.org/10.1016/j.omega.2011.05.002S16618040

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    Integral Approaches to Integrated Scheduling

    Get PDF
    corecore