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Abstract

Many activities in industry and services require the scheduling of tasks that can be concur-
rently executed, the most clear example being perhaps the assembly of products carried out in
manufacturing. Although numerous scientific contributions have been produced on this area over
the last decades, the wide extension of the problems covered and the lack of a unified approach
have lead to a situation where the state of the art in the field is unclear, which in turn hinders
new research and makes translating the scientific knowledge into practice difficult.

In this paper we propose a unified notation for assembly scheduling models that encompass
all concurrent-type scheduling problems. Using this notation, the existing contributions are
reviewed and classified into a single framework, so a comprehensive, unified picture of the field
is obtained. In addition, a number of conclusions regarding the state of the art in the topic are
presented, as well as some opportunities for future research.
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1 Introduction

In industry and services it is rather a common situation where one activity can start only if a set of previous

tasks (sometimes carried out by different resources) have been completed. These tasks may be jointly sched-

uled in the different resources of the company in order to achieve the desired goals, as individual schedules in

these resources would not ensure the necessary synchronisation to efficiently complete the tasks. Arguably

the most visible example of this type of problem occurs in the assembly of parts in the manufacturing in-

dustry, henceforth the problem is known as the Assembly Scheduling Problem or ASP. Recently, in most

industrial sectors, the strategy has changed from the paradigm of mass production to the manufacture of

complex products using postponement strategies that usually entail the assembly of customised features,

mainly due to the increasing competition among companies, and the increase of customer power. As a result,

most companies nowadays focus on manufacturing only the specific parts of their productive processes in

which they excel, and on outsourcing/purchasing those components/operations that do not constitute their

core-competences. This leads to an increasing prevalence of assembly operations and, as a consequence, the

ASP is being considered a very relevant problem by academics and practitioners. Not surprisingly, a huge

number of contributions in the area have been produced in the last decades –as our review, with more than

200 papers, can attest–. However, to the best of our knowledge, almost no attempt to review or classify these

works has been carried out: we recall only the work by Khodke and Bhongade (2013) where contributions

regarding real-time operation of assembly systems are discussed, although it covers a rather limited part of

the references discussed here–, and the topic has suffered from this lack of unified approach: Since a uni-

fied classification or notation for the different problems does not exist, the same models are given different

names in different papers, and the case is not uncommon where some works neglect/ignore the existence

of related results that could be applicable/compared. As a result, the-state-of-the-art of some problems

and sub-problems remains unclear, which hinders the advance of research results and their applications in

practice.

In this paper, we aim to tackle these issues by proposing a unified notation for assembly scheduling

problems. Using this notation, we review and classify the existing contributions in the area. The goal is to

provide a global perspective of the field so the main results can be identified. Furthermore, we also discuss

some open problems and possible research avenues.

The remainder of the paper is structured as follows: In Section 2 we discuss the background and the

research methodology adopted. The formal statement of the problem and the proposed notation are presented

in Section 3. In Section 4 we discuss the contributions when the operations take place in dedicated machines.

In Section 5 we review the research where flexible machines are employed. The contributions dealing with

assembly in several (distributed) factories are reviewed in Section 6, while general layout models are discussed
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in Section 7. Finally, in Section 8 the main conclusions and future research avenues are presented.

2 Background and Research Methodology

Many products are composed of assemblies and sub-assemblies. Commonly cited examples in the ASP

literature include fire engine production (Lee et al., 1993), assembly flow shop in the computer industry

(Potts et al., 1995), assembly of the body and chassis in the car industry (Fattahi et al., 2013b), circuit board

production (Cheng and Wang, 1999), or plastic industry (Allahverdi and Aydilek, 2015), among others.

Examples can also be found in services/IT, including distributed database systems (Allahverdi and Al-Anzi,

2006b, 2012), or multi-page invoice printing systems (Zhang et al., 2010).

The structure of a product can be depicted using an acyclic direct graph or digraph (Kusiak, 1989) where

the nodes represent operations and the arcs the precedence relations between the operations (He and Kusiak,

1998). In this manner, the digraph describes the sequence of operations required to complete a product.

In this regard, the classification by Kusiak (1989) distinguishes between simple and complex products, the

first one being a product that has at most one assembly operation in each level of assembly. However, note

that this operation-oriented description of the manufacturing of a job is, in general, different to the resource-

oriented description, since the sequence of operations required for a product may be either performed each

one by dedicated resources (i.e. machines), or by flexible resources that may carry out several operations.

Since scheduling deals with the allocation of operations to resources across time (see e.g. Framinan

et al., 2014), the description of the set of resources that can carry out the different operations –i.e. the

machine environment– is a critical data that usually determines the difficulty of the scheduling decisions.

In this regard, the classical notation for scheduling problems (Graham et al., 1979) focuses on the machine

environment rather than solely on the sequence of operations, and this view will also be adopted in this paper

for the proposed notation. In the case of assembly operations, such a view naturally leads to a distinction

among scheduling using flexible machines (i.e. machines that can carry out several operations on the jobs)

and dedicated machines (i.e. machines that can only carry out one and only one type of operation on the

job). This distinction will be employed in this review to classify the contributions.

Although we retain the term assembly, the review focuses on scheduling problems where some operations

may be performed concurrently (i.e. the existence of a set of operations that can be carried out in parallel to

be completed before the starting of another operation), which does not necessarily mean a physical assembly.

In this regard, papers related to the so-called order scheduling problem are included as a special case of

concurrency of operations. In the standard order scheduling problem, a set of orders composed of jobs have

to be scheduled in different (usually dedicated) machines in order to minimise some order-related objective.

Clearly, these jobs can be modelled as operations that should be completed so the order (a job, in the ASP
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terminology) is finished. As a consequence, this type of problems can be regarded as assembly problems

where the assembly operation has zero processing times, a connection already remarked by Kyparisis and

Koulamas (2002). Furthermore, by focusing on the concurrency of operations, the literature on the so-called

distributed assembly flowshop scheduling problem can also be integrated, and some insights derived from this

connection are discussed in the conclusions.

This focus on scheduling with concurrent operations makes the wide range of literature on assembly lines

to be out of the scope, as the specific concurrency problem is not dealt with in these papers. Analogously,

papers devoted to planning assembly operations (which do not explicitly consider the detailed capacity of the

resources) are not included in the review. Finally, we focus the review on papers assuming a deterministic set-

ting. Although a number of papers address the stochastic counterpart, such distinction is customary in most

scheduling research, and trying to integrate stochastic assembly scheduling would produce an exceedingly

large review.

3 Problem Statement and Proposed Notation

The problem can be formalised as follows: Each job j (j = 1, . . . , n) consists of a chain of operations

along s stages ({O1
1,j , . . . , O

1
r1,j}, {O2

1,j , . . . , O
2
r2,j}, . . . , {Os

1,j , . . . , O
s
rs,j}); operation Ok

r,j is the rth concurrent

operation that should be performed on job j at stage k (rk indicates the number of operations to be carried

out at stage k). If there is only one operation at stage k, then the operation sub-index can be dropped, i.e.

Ok
j indicates the (only) operation to be performed at stage k on job j, that is Ok

j = Ok
1,j .

Each operation Ok
r,j may have technological constraints that impede the starting of the operation unless

a set of operations in the previous stages –denoted by A(Ok
r,j)– have been completed. Each operation can

be classified either as concurrent or merge type (the latter type indicated by an overline) depending on the

cardinality of the set A(Ok
r,j). If |A(Ok

r,j)| ≤ 1, then Ok
r,j is of concurrent type. If |A(Ok

r,j)| > 1, then Ok
r,j is

of merge type. The scheduling problem is then completely defined by giving, for each machine i, its processing

times for each operation pi(Ok
r,j). For simplicity, if there is only one machine at stage k, the processing times

are denoted by p(Ok
r,j). Although not strictly required, we will assume that each machine belongs only to

one stage.

Some attempts have been made by several researchers to introduce a notation for these types of scheduling

problems (most times just covering a subset of assembly scheduling problems), all of them based on the

standard 3-field notation by Graham et al. (1979). Although all these proposals have some merits, they are

oriented towards specific problem types and do not cover all the extension of ASP. We therefore propose

the following notation: If we consider a single-assembly case –i.e. only one operation of merge type–, these

layouts can be noted as
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α1 → α2|β|γ

where α1 is the machine environment prior to the concurrent operation. In this environment, all oper-

ations preceding the concurrent operation are performed. α2 is the machine environment of the concurrent

and subsequent operations. In this environment, assembly and subsequent operations take place. Note that,

although in most models the first stage of the α2 layout is the assembly stage, it does not always have to be

the case, being an example the papers where the components of a product are grouped together to be firstly

transported (first stage of α2) and secondly assembled in further stages (successive stages of α2). However,

since the collective transportation of the components of the products requires that all of them have been

completed, the entity to be processed in α2 is the job (with all its operations).

The following values for α1 can be identified in the literature:

• 1: Single machine: In this case, the single machine is a flexible machine capable of carrying out all

operations of the job to be later assembled. In some papers, such assembly layout with a flexible

machine is denoted as agile manufacturing system.

• Pm/Qm/Rm: m parallel machines can carry out each one of the operations of the job. Pm assumes

identical machines, whereas Qm assumes related machines. Finally, the unrelated parallel machine case

is denoted by Rm. Since the machines are flexible, the number of different operations is not limited to

the number of machines.

• DPm: m dedicated parallel machines carry out a specific operation of the job. Dedicated in this

context means that each machine can carry out one and only one specific type of operation. Therefore,

a job consists of, at maximum, m operations before being assembled.

• Fm: A flowshop consisting of m (flexible) machines can carry out each one of the operations of the job

before its assembly. More specifically, all operations prior to the assembly take place in a m-machine

flowshop.

• DFm: f dedicated m-machine flowshops carry out each one of the operations of the job. In other

words, each set of operations prior to the assembly takes place in one specific flowshop layout. Since

each flowshop is dedicated to one specific type of operation, the product is composed of, at maximum,

f components to be assembled.

• PFm: f flexible m-machine flowshops in parallel are able to carry out each one of the operations prior

to the assembly of the job. More specifically, the machine environment is composed of f (possibly

different) m-machine flowshops, each one capable to carry out all operations of the jobs to be assembled.

Therefore, in this case the number of components of the product is not limited to f .
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(a) DPm→ 0 layout (b) DPm→ 1 layout (c) DPm→ Pm layout

(d) DPm→ Fm layout (e) DPm→ HFm layout (f) DFm→ 1 layout

Figure 1: Several layouts for the case with dedicated machines prior to the assembly operations.

• HFm: The operations prior to the assembly of the jobs take place in a flexible m-stage hybrid flowshop

before the assembly. More specifically, all components of the products can be manufactured in the

hybrid flowshop.

Clearly, the previous values of the α1 parameter can also be identified for α2. In addition, α2 = 0 means

that the processing times of the assembly operation are zero. This may serve to model the order scheduling

problem (see Section 4.1). In this problem, a number of orders –each one composed of up to m different

products– have to be scheduled in m machines, where each machine can manufacture only an specific product.

Clearly, the order is only completed when all products forming the order have been completed, henceforth

it can be seen as an assembly operation with zero-assembly times. Figures 1 and 2 show some samples of

the typical layouts, while instance problems for the main layouts and Gantt charts of a sample schedule are

provided in the additional on-line material.

Regarding the different constraints that may appear in the β field, we adopt the standard notation trying

to make it as clear as possible. Henceforth, the constraints should be interpreted as they apply to some

jobs/stages/machines of the process, but not necessarily in all stages/machines. For instance, recrc in the

1→ 1|recrc|Cmax problem indicates that some jobs –but not all– visit at least one machine –but not all– more

than once. Finally, regarding the γ field, the standard notation is adopted, using the extension by T’Kindt

and Billaut (2006) for the multicriteria case. A full description of the three fields is given as additional on-line

material.
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(a) 1→ 1 layout (b) 1→ Pm layout (c) Pm→ 1 layout

(d) Fm→ 1 layout (e) PFm→ 1 layout (f) HFm→ A(1) layout

Figure 2: Several layouts for the flexible machine case

Note that the proposed notation can also model multi-assembly layouts by nesting concurrency arrows in

parenthesis: In this manner, the complex layout in Figure 3 can be noted as (((DPm→ 1, Fm)→ Pm), 1)→

Fm|β|γ. Although we seldom make use of this extended notation in this paper, we believe that this ability

to be extended to complex layouts is another interesting feature of the proposed notation. Finally, note that

some of the simple layouts described before, such as DPm or DFm, could be denoted also as (1, . . . , 1)→ α2,

or as (Fm, . . . , Fm)→ α2, respectively. However, we believe that DPm and DFm provide a more compact

notation and will be used henceforth.

Equipped with this notation, we will review the existing contributions in the following sections. Since

most of them focus on single-assembly layouts, and given the fact that assembly problems are quite different

conceptually depending on whether the operations prior to assembly take place in dedicated machines, or

not, Section 4 is devoted to single-assembly scheduling problems with dedicated machines in the α1 field.

Section 5 is devoted to scheduling problems with flexible machines in the α1 field. Section 6 is devoted to

distributed assembly problems, and Section 7 discusses general assembly models.

To facilitate the study of the different contributions, Tables 1 to 6 are provided as summaries of the

different layouts, noting the main focus of the references. The abbreviations used in these tables are:
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Figure 3: A complex assembly shop layout

CA Analysis of the Complexity of the Problem

DR Dominance Rules

LB Development of Lower Bounds for the problem

PP Problem Properties (other than dominance rules/lower bounds)

DP Dynamic Programming

BB Development of a Branch & Bound procedure

PA Proposal of Polynomial-Time Algorithms

IP Development of an Integer Programming (Not Linear) model

MILP Development of a MILP model

QM Development of a quadratic model

CH Proposal of Constructive Heuristics

MH Proposal of Meta-Heuristics

4 Assembly scheduling with dedicated machine

Although different dedicated layouts can be employed to carry out the operations prior to the assembly of

the jobs, we are only aware of contributions dealing with dedicated machines in parallel, i.e. the DPm→ α2

layout. In this setting, r1 the number of concurrent operations in the first stage is assumed to be m. The

following subsections discuss the related contributions.

4.1 Order scheduling: DPm→ 0 layout

The main contributions regarding this layout –depicted in Figure 1a– are summarised in Table 1. Depending

on the objective, the problems have different complexity (see Leung et al., 2005a for a review of the complexity
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Problem∗ Reference Analysis Exact Approximate
DPm→ 0||Cmax Wagneur and Sriskandarajah (1993) CA

Leung et al. (2006b) CA CH
DPm→ 0||

∑
Cj Wagneur and Sriskandarajah (1993) CA

Roemer and Ahmadi (1997) CA
Roemer (2006) CA
Leung et al. (2005b) PP CH
Framinan and Perez-Gonzalez (2017b) CH, MH

DP2→ 0||
∑

wjCj Sung and Yoon (1998) CA CH
DPm→ 0||

∑
wjCj Wang and Cheng (2003) CH

Ahmadi et al. (2005) CA, LB CH
Garg et al. (2007) CA CH
Wang and Cheng (2007) CH
Leung et al. (2007a) CH
Leung et al. (2008b) PP CH
Wang et al. (2013) QM
Shi et al. (2017) QM

DPm→ 0|rj |
∑

wjCj Garg et al. (2007) CA CH
DPm→ 0||Lmax Wagneur and Sriskandarajah (1993) CA
DPm→ 0||

∑
Tj Wagneur and Sriskandarajah (1993) CA

Lee (2013) PP BB CH
Framinan and Perez-Gonzalez (2018) CH, MH

DPm→ 0|learning − eff.|
∑

Tj Xu et al. (2016) DR BB MH
DPm→ 0||

∑
Uj Wagneur and Sriskandarajah (1993) CA

Leung et al. (2006b) PP BB CH
Lin and Kononov (2007) CA CH

DPm→ 0||
∑

wjUj Lin and Kononov (2007) CA CH
DPm→ 0||ε(

∑
CA

j ,
∑

CB
j ) Lin et al. (2017) DR BB MH

DP2→ 0||Cost function Li and Ou (2007) CH
DP2→ 0||Cost function Li and Vairaktarakis (2007) CH
DPm→ 0||F (f1(C1), . . . , F (fn(Cn)) Cai and Zhou (2004) PP DP

Table 1: Summary of contributions in Section 4.1 (∗Notation is described in the additional on-line material)

of some of the problems). For makespan minimisation without additional constraints, the problem has been

shown to be polynomial by Wagneur and Sriskandarajah (1993), being the makespan value independent of

the schedule. The total completion time objective has received a lot of attention: The problem has been

first addressed by Wagneur and Sriskandarajah (1993), who showed it to be NP-hard, although their proof

contained a flaw and its complexity was not confirmed until Roemer and Ahmadi (1997). Other contributions

regarding the complexity of the problem for the weighted case are Ahmadi et al. (2005) and Roemer (2006).

Also for the weighted case, the NP-hardness of the specific case of m = 2 was independently established by

Sung and Yoon (1998).

Regarding exact procedures, Wang et al. (2013) and Shi et al. (2017) propose a quadratic formulation

of the weighted case. With respect to approximate procedures, different constructive heuristics have been

proposed by Leung et al. (2005b) and by Framinan and Perez-Gonzalez (2017b), the latter being the best

procedure with regard to approximate methods. Approximate solutions for the weighted version of the

problem are given by Wang and Cheng (2003); Ahmadi et al. (2005); Garg et al. (2007); Leung et al. (2007a);

Wang and Cheng (2007) and Leung et al. (2008b), although only the paper by Ahmadi et al. (2005) addresses

a computational experience to test the performance of the proposed heuristics, which are not compared with

other available heuristics. The rest of the papers are devoted to establishing the worst-case performance of
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the heuristics. The works by Leung et al. (2007a, 2008b) present a computational experience of the heuristics

proposed, but in the testbed it is assumed that all weights are the same and the heuristics are not compared

with existing ones. For the specific two machines/components case and weighted jobs, Sung and Yoon (1998)

propose some constructive heuristics. Finally, Lin et al. (2017) address the version with interfering jobs,

where one set of jobs has to minimise the completion time, and the completion time of the other set of jobs

cannot exceed a given value (see e.g. Perez-Gonzalez and Framinan, 2014 for a review on scheduling problems

with interfering jobs). One B & B with several dominance rules is presented, and some metaheuristics are

proposed.

Regarding due-date related objectives, Wagneur and Sriskandarajah (1993) and Leung et al. (2006b)

show that the EDD rule is optimal for the maximum lateness. The problem with total tardiness is shown

to be unary NP-hard by Wagneur and Sriskandarajah (1993), and Lee (2013) presents a B & B procedure

and several constructive heuristics for the problem. For this problem, Framinan and Perez-Gonzalez (2018)

propose both a fast constructive heuristic and a high-performing matheuristic. Xu et al. (2016) address

the problem with position-based learning effect, proposing dominance rules, a B & B procedure, and two

metaheuristics. The objective of minimisation of the number of late jobs is shown to be binary NP-hard

by Wagneur and Sriskandarajah (1993). In fact, Lin and Kononov (2007) show that even the special case

with common due dates is also NP-hard. These authors propose an LP-based approximate algorithm for the

weighted and unweighted cases, and a constructive heuristic for the common due date case for the
∑
Uj and∑

wjUj problems. An exact algorithm for the problem is also proposed by Leung et al. (2006b) together with

a heuristic and a greedy algorithm for the
∑
Uj problem with common due dates, although their contributions

are not compared with those by Lin and Kononov (2007).

Regarding general cost functions, Li and Ou (2007) and Li and Vairaktarakis (2007) address the DP2→ 0

layout with a cost function, for which the authors develop some polynomial time heuristics. Cai and Zhou

(2004) study the problem for max-type and sum-type non-decreasing functions of the completion times of

the jobs in the context of teamworks. They present some problem properties and a dynamic programming

procedure, although this reference is disconnected from the main stream of order scheduling and it partially

overlaps with existing works.

4.2 Single machine in the assembly stage: DPm→ 1 layout

This problem –depicted in Figure 1b– has been studied for the case where there are two dedicated parallel

machines in the α1 field, as well as for the general m dedicated machines case. A summary of the contributions

is shown in Table 2. Note that, since this layout can be seen as a generalisation of the classical 2-machine

flowshop, its complexity could be discussed only for the makespan objective, as the rest of usual objectives
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Problem∗ Reference Analysis Exact Approximate
DP2→ 1||Cmax Lee et al. (1993) CA BB CH

Haouari and Daouas (1999) PP, LB BB CH
Karuno and Nagamochi (2002) LB, PP CH
Sun et al. (2003) CH

DPm→ 1||Cmax Potts et al. (1995) CA CH
Hariri and Potts (1997) DR, LB BB

DP2→ 1|rj |Cmax Sung and Juhn (2009) CA, PP, DR BB CH
DPm→ 1|rj |Cmax Komaki and Kayvanfar (2015) LB CH, MH
DP2→ 1|BS|Cmax Lin et al. (2006) CA, PP, LB CH
DPm→ 1|STsi|Cmax Allahverdi and Al-Anzi (2006a) DR CH, MH
DPm→ 1|ai, ptmn− nr|Cmax Hadda et al. (2007) PP CH
DPm→ 1|ai, pmtn− semi|Cmax Hadda et al. (2014) PP CH
DPm→ 1|no− wait|Cmax Mozdgir et al. (2013b) MH
DPm→ 1|p− batch, STsi|Cmax Kovalyov et al. (2004) CA CH
DPm→ 1|s− batch, STsi|Cmax Kovalyov et al. (2004) CA CH
DP3→ 1|learning − effect|

∑
Cj Wu et al. (2018) PP BB MH

DPm→ 1||
∑

Cj Al-Anzi and Allahverdi (2006) CH, MH
Blocher and Chhajed (2008) PP, LB CH
Allahverdi and Al-Anzi (2012) MH
Framinan and Perez-Gonzalez (2017a) CH, MH

DPm→ 1|STsi|
∑

Cj Allahverdi and Al-Anzi (2008c) DR MH
Allahverdi and Al-Anzi (2009) MH

DPm→ 1||
∑

wjCj Tozkapan et al. (2003) DR, LB BB
DPm→ 1||Lmax Allahverdi and Al-Anzi (2006b) MH
DPm→ 1|STsi|Lmax Al-Anzi and Allahverdi (2007a) DR MH

Al-Anzi and Allahverdi (2007b) DR MH
DP2→ 1||

∑
Tj Allahverdi and Aydilek (2015) MH

Lee and Bang (2016) DR, MILP BB CH
DPm→ 1|STsi|

∑
Tj Allahverdi et al. (2016b) DR MH

DPm→ 1|STsi|Tmax Aydilek et al. (2017) DR MH
DPm→ 1||

∑
Uj Allahverdi et al. (2016a) CH, MH

DPm→ 1||Fl(Cmax,
∑

Cj) Allahverdi and Al-Anzi (2008a) MH
Torabzadeh and Zandieh (2010) MH
Shokrollahpour et al. (2011) MH
Seidgar et al. (2014) MILP MH

DPm→ 1|STsi|Fl(Cmax,
∑

Cj) Tian et al. (2013) MH
DPm→ 1||Fl(Cmax,

∑
Uj) Navaei et al. (2010) MH

DPm→ 1||Fl(Cmax, Lmax) Al-Anzi and Allahverdi (2009) MH
DPm→ 1|STsd|Fl(Cmax, Tmax) Maboudian and Shafaei (2009) LB IP
DPm→ 1||Fl(Cmax, Lmax, Emax) Yan et al. (2014) DR MH
DPm→ 1||Fl(maintenance, breakdowns) Seidgar et al. (2016) MILP MH

Table 2: Summary of contributions in Sections 4.2.(∗Notation is described in the additional on-line material).

are NP-hard for the 2-machine flowshop.

Regarding the case of two machines, the DP2 → 1||Cmax problem has been shown to be strongly NP-

hard by Lee et al. (1993), although it is polynomially solvable if, for each job, its processing time on one

of the dedicated machines is high or equal than on the other machine. These authors develop a B & B

procedure for the problem, together with some heuristics. Another approximate algorithm with a tighter

worst case is given by Karuno and Nagamochi (2002). Some constructive, real-time heuristics are proposed

for the problem by Sun et al. (2003). An extremely efficient B & B algorithm is given by Haouari and Daouas

(1999). The authors show that instances with n ≤ 200 could be solved in few seconds, so it can be stated

that this problem is optimally solvable for a large number of jobs, while there are extremely good and fast

approximate algorithms if very large instances are considered.

Some extensions of the DP2 → 1||Cmax problem have been also addressed: Sung and Juhn (2009)
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consider that one of the components is purchased, therefore it is only available after a given time. The

authors prove that this problem is NP-hard and show that only permutation schedules have to be considered.

They also propose a B & B procedure and three heuristic algorithms for the problem. Note that this problem

can be seen as a particular case of the DP2 → 1|rj |Cmax assuming that the release date of the component

that is not purchased is zero for all products, and that the processing time of the purchased component is

zero for all products, a problem addressed by Komaki and Kayvanfar (2015) for m machines that is discussed

below. The same problem, assuming that the assembly machine processes batches of specific jobs, and that a

(non-sequence dependent) setup is required every time a batch is formed, is addressed by Lin et al. (2006), i.e.

the DP2→ 1|BS|Cmax problem. The authors prove that this problem is strongly NP-hard also in the special

case where the processing times of the assembly machine are the same for all jobs. The authors also detect

some few polynomially solvable cases, and provide heuristics for the problem. Lee and Bang (2016) propose

a branch and bound procedure and a constructive heuristic for the DP2 → 1||
∑
Tj problem. Finally, the

three-machine case with total flowtime objective and learning effect has been addressed by Wu et al. (2018),

who present a B & B procedure and a metaheuristic.

For the general m-machine case, this problem has been addressed by many authors, for different objectives

and with some extensions. Regarding the makespan, Potts et al. (1995) are the first to address the problem.

Independently from Lee et al. (1993), they show it is strongly NP-hard, and develop a heuristic providing a

worst case of 2− 1/m (note that this reduces to that by Lee et al., 1993 if m = 2). Hariri and Potts (1997)

propose a B & B algorithm able to provide optimal solutions in few seconds for more than 5,000 jobs and 10

machines. Given these results, it can be concluded that, for most realistic-size instances, this problem can

be solved. In addition, the heuristics by Sun et al. (2003) –originally proposed for m = 2– are extended for

the general case with excellent results.

The problem with makespan and setup times is addressed using constructive heuristics and metaheuristics

by Allahverdi and Al-Anzi (2006a). Hadda et al. (2007) and Hadda et al. (2014) address the DPm →

1|ai, pmtn − semi|Cmax and DPm → 1|ai, pmtn − nr|Cmax problems, proposing some heuristic algorithms

and giving their worst cases. The DPm→ 1|rj |Cmax problem is addressed by Komaki and Kayvanfar (2015)

by means of constructive heuristics based on dispatching rules and metaheuristics. Three metaheuristics are

also proposed by Mozdgir et al. (2013b) for the DPm → 1|no − wait|Cmax problem. Finally, the problem

with makespan objective and batches is addressed by Kovalyov et al. (2004). The authors assume that the

manufacturing operations on machine i are carried out in batches of maximum size βi, and that assembly is

performed in batches of maximum size βA. In this setting, they explore the p − batch and s − batch cases,

the latter also with setups.

The DPm → 1||
∑
wjCj problem is addressed by Tozkapan et al. (2003) for the first time. The au-

thors show that the optimal solutions are non-delay, permutation schedules (this result is later presented
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independently by Blocher and Chhajed, 2008 for the un-weighted case). They propose a B & B algorithm

and constructive heuristics. The rest of the existing contributions for this problem have focused on the

un-weighted case: the heuristics by Tozkapan et al. (2003) are outperformed by those in Al-Anzi and Al-

lahverdi (2006), who also propose several metaheuristics. These metaheuristics are further improved by a

new set of metaheuristics by Allahverdi and Al-Anzi (2012). The best-so-far approximate heuristics for the

un-weighted case are given by Framinan and Perez-Gonzalez (2017a). As mentioned before, an earlier con-

tribution is Blocher and Chhajed (2008), who independently derive properties for some special cases of the

DPm → 1||
∑
Cj problem and propose constructive heuristics, most of them similar/equivalent to those

proposed in the previous references. Finally, when setup times have to be taken into account, Allahverdi and

Al-Anzi (2008c, 2009) present several metaheuristics for the DPm→ 1|STsi|
∑
Cj problem.

Regarding due-date objectives, the DPm → 1||Lmax problem is addressed by Allahverdi and Al-Anzi

(2006b) using metaheuristics. This objective with sequence-independent setups is studied in Al-Anzi and

Allahverdi (2007b,a), also using metaheuristics. The DPm → 1||
∑
Tj problem has been addressed by

Allahverdi and Aydilek (2015), and Lee and Bang (2016). The first reference propose some metaheuristics,

while the latter proposes a MILP and a B & B procedure. The case where there are sequence-independent

setups is studied by Allahverdi et al. (2016b), who propose several metaheuristics. The objective of maximum

tardiness with sequence-independent setups is addressed by Aydilek et al. (2017), who study some problem

properties and propose a metaheuristic. Finally, Allahverdi et al. (2016a) address the DPm → 1||
∑
Uj

problem also by means of metaheuristics.

In addition to the single criterion problems, there are several contributions focusing on a combination of

criteria for the DPm→ 1 layout, including:

• The DPm → 1||Fl(Cmax,
∑
Cj) problem has been addressed by several researchers: Allahverdi and

Al-Anzi (2008a), Torabzadeh and Zandieh (2010), Shokrollahpour et al. (2011),Tian et al. (2013) –

in this case considering setup times–, and Seidgar et al. (2014). All these papers propose different

metaheuristics and only partial comparisons exist among them, so the state-of-the-art remains unclear

due to the lack of a comprehensive computational evaluation.

• Navaei et al. (2010) propose two metaheuristics for the makespan and the number of tardy jobs, i.e.

the DPm→ 1||Fl(Cmax,
∑
Uj) problem.

• Allahverdi and Al-Anzi (2008b) and Al-Anzi and Allahverdi (2009) develop different metaheuristics for

the DPm→ 1||Fl(Cmax, Lmax) problem.

• Maboudian and Shafaei (2009) study the DPm → 1|STsd|Fl(Cmax, Tmax) problem, proposing a non-

linear mathematical model and a lower bound.
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• Yan et al. (2014) propose a metaheuristic for a linear combination of makespan, maximum earliness

and maximum tardiness, i.e. the DPm→ 1||Fl(Cmax, Emax, Tmax) problem.

• Seidgar et al. (2016) address the problem with preventive maintenance and objectives related to

makespan and system unavailability. A MILP model and several metaheuristics are proposed.

Finally, note that, although the problem in the DPm → 1 setting usually considered in the literature

consists of finding a sequence for the jobs, Hwang and Lin (2012) address the problem of obtaining an optimal

batching decision given a fixed sequence of jobs for a number of regular metrics.

Problem∗ Reference Analysis Exact Approx.
DP m→ Rm||Cmax Navaei et al. (2013) MILP MH
DP m→ P m|STsd|Cmax Zhang et al. (2010) MILP MH
DP m→ P 2||

∑
Cj Sung and Kim (2008) PP BB

DP m→ P 2||
∑

Cj Al-Anzi and Allahverdi (2012) MH
Allahverdi and Al-Anzi (2012) MH
Al-Anzi and Allahverdi (2013) MH

DP m→ P m|BSij , work − shift− lot|
∑

wj Cj Nejati et al. (2016) IP MH
DP m→ Rm|STsd|Fl(HC, DC) Navaei et al. (2014) MILP MH
DP m→ Rm||Fl(Cmax,

∑
Cj ) Mozdgir et al. (2013a) MILP MH

DP m→ F 2||Cmax Koulamas and Kyparisis (2001) PP CH
DP m→ F 2||Cmax Komaki et al. (2017) PP MH
DRm→ F 2|STsd|

∑
Cj Andres and Hatami (2011) MILP

DP m→ F 2|STsd|Fl(
∑

Cj , Tmax) Hatami et al. (2010) LB MILP MH
DP m→ F 2|ai, pmtn− semi|Fl(

∑
wj Cj ,

∑
wj Tj ,

∑
wj Ej ) Shoaardebili and Fattahi (2015) MILP MH

DP m→ F 2|STsd|](
∑

Cj ,
∑

Tj ) Cunha Campos and Claudio Arroyo (2014) MH
DP m→ F 2|](Cmax, Fl(

∑
wj Tj ,

∑
Ej )) Tajbakhsh et al. (2014) MILP MH

DP m→ F 2|STsd, blocking|Fl(Cmax,
∑

wj Cj ) Maleki-Darounkolaei et al. (2012) MILP MH
Maleki-Daronkolaei and Seyedi (2013) MH

DP m→ F 2|p− batch|Fl(AT, DC) Wang et al. (2016) CH, MH
DP m→ HF 2(1, DP m)||

∑
Cj Xiong et al. (2015) LB MILP CH, MH

Table 3: Summary of contributions in Sections 4.3 and 4.4 (dedicated machines with more than a single machine at
assembly stage). (∗Notation is described in the additional on-line material).

4.3 Parallel machines in the assembly stage: DPm→ Pm/Rm/Qm layouts

This case –depicted in Figure 1c– has been addressed for different objectives. The DPm → Rm||Cmax

problem has been modelled as an MILP by Navaei et al. (2013), who also propose a metaheuristic. The

DPm → Pm|STsd|Cmax problem is addressed by Zhang et al. (2010). These authors propose an MILP

model and a decomposition approach, together with a genetic algorithm.

Regarding total completion time, Sung and Kim (2008) analyse the properties of the problem and propose

a B & B procedure. Al-Anzi and Allahverdi (2012); Allahverdi and Al-Anzi (2012) and Al-Anzi and Allahverdi

(2013) address the 2-machine and the general m-assembly machine problem using metaheuristics. The case

of the total weighted completion time has been addressed when lot streaming and a work shift constraint

is allowed by Nejati et al. (2016). A mathematical programming formulation of the problem is given and a

metaheuristic is proposed to approximately solve it.

Navaei et al. (2014) address the DPm → Rm|STsd|Fl(DC,HC) problem, where DC and HC are

the delay and holding costs, respectively. An MILP model is presented, and several metaheuristics are
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proposed. Finally, Mozdgir et al. (2013a) propose an MILP model and some metaheuristics for the

DPm→ Rm|STsd|Fl(Cmax,
∑
Cj) problem.

4.4 Flowshop-type in the assembly stage: DPm→ Fm and DPm→ HFm layouts

The problems with a flowshop in the assembly stage –depicted in Figure 1d– have been addressed by a

number of authors. Among these types of problems, the most studied is that where the flowshops consist

of two stages, with the first one corresponding to a transportation stage and the second one the assembly

of the components. Note that, in order to perform the transportation of all components of the product,

the concurrency of operations is required. This DPm → F2 setting is denoted in some literature as the

three-stage assembly flowshop scheduling problem (see e.g. Koulamas and Kyparisis, 2001). Clearly, this

problem is a generalisation of the 3-machine flowshop, and it is therefore NP-hard for all well-known criteria.

A limited number of objectives have been studied. For makespan, the problem is first addressed by Koulamas

and Kyparisis (2001), who propose several constructive heuristics, giving their worst cases. A metaheuristic

for this problem is proposed by Komaki et al. (2017). Regarding the total completion time, an MILP model

for the DPm→ F2|STsd|
∑
Cj problem is proposed by Andres and Hatami (2011).

Several multi-objective problems have been addressed in this layout, including:

• The problem DPm → F2|STsd|Fl(
∑
Cj , Tmax) is addressed by Hatami et al. (2010) by means of a

mathematical model and metaheuristics.

• The problem DPm→ F2|ai, pmtn−semi|Fl(
∑
Cj ,

∑
Tj ,

∑
Ej) is tackled by Shoaardebili and Fattahi

(2015), who present multi-objective metaheuristics.

• The problem DPm → F2|STsd|#(
∑
Cj ,

∑
Tj) is addressed by Cunha Campos and Claudio Arroyo

(2014), who propose a multi-objective metaheuristic (genetic algorithm).

• The problem DPm → F2||#(Cmax, Fl(
∑
wjEj ,

∑
wjTj)) is addressed by Tajbakhsh et al. (2014).

The authors present a mathematical model and two metaheuristics.

• Maleki-Daronkolaei and Seyedi (2013); Maleki-Darounkolaei et al. (2012) study the DPm →

F2|blocking, STsd|Fl(Cmax,
∑
wjCj) problem, proposing several metaheuristics.

• Wang et al. (2016) propose some metaheuristics for the DPm → F2|p − batch|Fl(AT,DC) problem,

where AT is a function of the arrival times to the customers, and DC the delay costs.

Regarding the problems with hybrid flowshop in the assembly stage, this layout –depicted in Figure 1e–

can be seen as a generalisation of the DPm → Fm layout. It can also be employed to model a particular

manufacturing stage denoted as product differentiation which is related to specific operations carried out
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after the assembly of the product. The literature on the so-called Differentiation Scheduling Problem (DSP)

is relatively abundant, although this problem is usually treated in isolation of the previous assembly problem

and, to the best of our knowledge, the only reference addressing scheduling problems in this layout is Xiong

et al. (2015), who propose an MILP model as well as some constructive heuristics and metaheuristics.

5 Assembly scheduling with flexible machines

In this section we review the problems involving machines capable of performing multiple operations. De-

pending on the layout, a solution would be given by solving an integrated assignment and scheduling problem.

As in Section 4, in the next subsections we discuss a number of cases depending on the layout for the opera-

tions prior to the assembly. Furthermore, we present some results not provided in the literature in order to

contribute to the classification of these types of problems.

5.1 Single machine prior to assembly: 1→ α2 layout

When a single machine is used for operations prior to the assembly, the possibility of performing these oper-

ations in a concurrent manner is not available, so they all have to be sequenced on this machine. Depending

on the number of machines used for assembly in the second stage, some results can be stated regarding the

properties of different scheduling problems. Therefore, we first present the general results.

Theorem 5.1. In a 1 → 1 layout, for a given sequence of jobs Π := (π1, . . . , πn) in the second (assembly)

stage, the best value of any regular objective function f(Cj) is obtained if all operations in the first stage of

each job in Π are carried out consecutively.

Proof. Without loss of generality, we assume the following sequence of jobs on the second machine:

(1, 2, . . . , j, . . . , n). Let us assume that on the first machine, not all rj operations of job j are carried out one

after another, but the l-th operation of job j+1 is carried out after the k−1-th operation of job j and before

the k-th operation of job j, i.e. the sequence of operations on the first machine is . . . , O1
k−1,j , O

1
l,j+1, O

1
k,j , . . ..

We prove the theorem by contradiction, showing that it is not possible to obtain lower values of the comple-

tion times of j and j + 1 than those obtained if all operations of j are carried out one after another (i.e. in

a batch).

Let S1 be the starting time of the first operation of j in the first stage. Then Cj,1 the completion time

of all operations of job j on the first machine is:

Cj,1 = S1 +
∑
u<k

p(O1
uj) + p(O1

l,j+1) +
∑
u≥k

p(O1
uj) = S1 +

rj∑
u=1

p(O1
uj) + p(O1

l,j+1)
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And Cj+1,1 the completion time of all operations of job j + 1 on the first machine:

Cj+1,1 = Cj,1 +
∑
u6=l

p(O1
u,j+1) = S1 +

rj∑
u=1

p(O1
uj) +

rj+1∑
u=1

p(O1
u,j+1)

Regarding the second machine:

Cj = Cj,2 = max{S1 + p(Ō2
j−1);Cj,1}+ p(Ō2

j ) = S1 + max{p(Ō2
j−1);

rj∑
u=1

p(O1
uj) + p(O1

l,j+1)}+ p(Ō2
j )

And, for job j + 1:

Cj+1 = Cj+1,2 = max{Cj ;Cj+1,1}+ p(Ō2
j+1)

In contrast, if all operations of job j are carried out in a batch and are immediately followed by the

operations of job j + 1, then on the first machine we have:

C∗j,1 = S1 +
rj∑

u=1
p(O1

uj)

and

C∗j+1,1 = C∗j,1 +
rj+1∑
u=1

p(O1
u,j+1) = S1 +

rj∑
u=1

p(O1
uj) +

rj+1∑
u=1

p(O1
u,j+1) = Cj+1,1

The completion times on the second machine would be:

C∗j = C∗j,2 = max{S1 + p(Ō2
j−1);C∗j,1}+ p(Ō2

j ) = S1 + max{p(Ō2
j−1);

rj∑
u=1

p(O1
uj)}+ p(Ō2

j )

and

C∗j+1 = C∗j+1,2 = max{C∗j ;C∗j+1,1}+ p(Ō2
j+1) = max{C∗j ;Cj+1,1}+ p(Ō2

j+1)

As it can be seen, C∗j ≤ Cj (indeed C∗j < Cj unless operation l of job j + 1 in the first stage takes zero

time units to complete, i.e. p(O1
l,j+1) = 0), and, as a consequence, C∗j+1 ≤ Cj+1. In addition, the completion

times of the rest of the jobs do not change, therefore any regular objective function would yield a lower value

for C∗ than for C. This proves that there is no advantage in considering not to carry out all operations of

the same job in a batch at the first stage.
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From Theorem 5.1, two corollaries follow:

Corollary 5.1.1. For any regular objective f(Cj), the 1 → 1||f(Cj) problem is equivalent to the F2||f(Cj)

problem, where pjk the processing times of job j on k machine of the latter problem are given by:

pj1 =
rj∑

u=1
p(O1

uj)

and

pj2 = p(O2
1j)

Proof. Trivial from Theorem 5.1.

Corollary 5.1.2. For any regular objective f(Cj), the 1 → 0||f(Cj) problem is equivalent to the 1||f(Cj)

problem, where pj the processing times of each job in the latter problem are given by:

pj =
rj∑

u=1
p(O1

uj)

Proof. Trivial from Theorem 5.1.

The corollaries also serve to establish the connection between the flexible and dedicated machines assembly

settings, as it can be seen in Figure 4. We are not aware of contributions explicitly addressing the results

in the theorem and corollaries. However, some specific cases have been mentioned regarding Corollary 5.1.1:

Cheng and Wang (1999) state that, for the makespan objective and the assembly scheduling problem with

two components for each job, the problem can be solved by Johnson’s algorithm if there is no commonality of

the components. Also Property 2 in Liao et al. (2015) states that the 1→ 1|BSj |Cmax problem is equivalent

to F2||Cmax if setup times are zero.

Due to the high number of works analysing the 1 → α2 setting, the existing contributions have been

divided depending on the layout of the assembly stages. These are discussed in the next sections and are

summarised in Table 4.

5.1.1 No assembly stage: 1→ 0 layout

As it can be seen from Figure 4, many standard settings in the 1 → 0 layout are polynomially solvable as

it is equivalent to the single machine case if a regular objective is considered and no additional constraints

are assumed. Therefore, existing contributions focus on problems with specific constraints, most of them

related to the existence of the requirement of batch-processing certain types of components, which excludes

the possibility of carrying out all operations of a job consecutively and therefore Theorem 5.1 may not be

applicable.
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Figure 4: Complexity depending on the layout (non-assembly layouts in grey boxes).

To the best of our knowledge, the first reference on this layout is Liao and Chuang (1996), who consider

the problem with setup times and an ε-constrained approach where the objectives are the minimisation of the

set-up times subject to a maximum number of tardy jobs, or a maximum tardiness. A number of problem

properties and B & B algorithms are presented.

A specific case of this layout is addressed by Gerodimos et al. (2000): In their problem, each job is

composed of two components (standard and customised), with the standard component being processed in

batches. There are setup times for changing from a standard component to a customised one, and between

customised components of different products. Furthermore, there is a batch availability constraint. The

authors show this setting to be NP-hard for the number of late jobs, a problem for which they develop

dynamic programming procedures. A version with more than two components is presented in Gerodimos

et al. (1999), where the complexity of the problem for maximum lateness and for the weighted sum of tardy

jobs are established. Additionally, in the case where the operations of jobs belonging to the same family have

to be sequenced together –a constraint that the authors label as group technology– is studied.

Another specific problem within this layout is presented in Shi et al. (2018), where orders composed

of several products belonging to different product families have to be processed in batches and there are

incompatible job families, i.e. products from different families cannot be in the same batch. The problem

is shown to be solvable for the makespan case, whereas for the weighted total completion time the authors
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Problem∗ Reference Analysis Exact Approximate
1→ 0|BSsd|ε(TS, Tmax) Liao and Chuang (1996) PP BB
1→ 0|BSsd|ε(TS,

∑
Uj) Liao and Chuang (1996) PP BB

1→ 0|BS, ba, nc = 2|Lmax Gerodimos et al. (2000) PP DP
1→ 0|BS, ba, nc = 2|

∑
Uj Gerodimos et al. (2000) PP,CA DP

1→ 0|BS|Lmax Gerodimos et al. (1999) PP, CA
1→ 0|BS|

∑
wjUj Gerodimos et al. (1999) PP, CA DP

1→ 0|BS|
∑

Cj Ng et al. (2002) CA
Erel and Ghosh (2007) CA DP

1→ 0|BS, group− technology|
∑

Cj Gerodimos et al. (1999) PP, CA DP
Ng et al. (2002) CA
Hazir et al. (2008) MILP MH

1→ 0|BS|GP (Cmax, TCC) Gupta et al. (1997) PP, CA PA
1→ 0|BS|GP (TCC,Cmax) Gupta et al. (1997) PP, CA PA
1→ 0|p− batch, incompt|Cmax Shi et al. (2018) PP PA
1→ 0|p− batch, incompt|

∑
wjCj Shi et al. (2018) PP CH

1→ 1|n = 1, recrc− sas|Cmax Kusiak (1989) PP, CA
1→ 1|n = 1, recrc− sas, product− batch|Cmax Kusiak (1989) CH
1→ 1|recrc− sas|Cmax Kusiak (1989) PP, CA
1→ 1|recrc− sas, product− batch|Cmax Kusiak (1989) CH
1→ 1|BS, ba, nc = 2|Cmax Cheng and Wang (1999) PP, CA DP (special cases)

Lin and Cheng (2002) CA
1→ 1|BS, nc = 2|Cmax Cheng and Wang (1999) PP, CA DP (special cases)

Lin and Cheng (2002) CA
1→ 1|deteriorating,BS|Cmax Jung and Kim (2016) MILP
1→ 1|pm, deteriorating,BS|Cmax Jung and Kim (2016) MILP
1→ 1|BS|Cmax Liao et al. (2015) MILP CH
1→ 1|BS|Cmax Jung et al. (2017) MILP MH
1→ 1|BScomponent, product− batch|

∑
Cj Yokoyama (2004) PP CH

1→ Pm|n = 1, recrc− sas|Cmax He and Babayan (2002) CA MILP
1→ Pm|complex|Cmax He and Babayan (2002) MILP CH

Gaafar and Masoud (2005) MH
Liao and Liao (2008) BB MH
Gaafar et al. (2008) MH
Teymourian et al. (2016) MH

Table 4: Summary of contributions in Section 5.1 (single machine processing).(∗Notation is described in the additional
on-line material).

propose a constructive heuristic.

The NP-hardness of the problem with total completion time assuming setup times among families of

products is established by Ng et al. (2002) and Erel and Ghosh (2007) independently. The latter authors

also propose a dynamic programming algorithm. Finally, Hazir et al. (2008) propose an MILP and several

metaheuristics for this problem.

The problems 1 → 0|BSj |GP (Cmax, TCC) and 1 → 0|BSj |GP (TCC,Cmax) where TCC denotes the

total carrying costs are addressed by Gupta et al. (1997), who study their complexity, derive some properties

and propose some constructive heuristics.

A specific case of this problem that will not be treated here is given by the so-called multiple orders per

job scheduling problem (see e.g. Laub et al., 2007). This problem arises in the semiconductor manufacturing

and TFT-LCD industries, where a number of orders –possibly belonging to different customers– should be

grouped together in special transfer facilities (FOUPs) to be processed as a batch (either p-batch or s-batch).

Therefore, the problems of simultaneously grouping the orders into FOUPs and scheduling them have to be
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addressed. Although this problem is a particular case of the order scheduling problem, in view of its very

specific features, it is not addressed here and the reader is referred to e.g Mason and Chen (2010) for a recent

paper on the topic.

5.1.2 Single machine for assembly: 1→ 1 layout

All except one of the references involve the makespan as objective (see Table 4). To the best of our knowledge,

the first reference on this layout is Kusiak (1989), who addresses the problems of scheduling a single product,

and several products with or without batches. The jobs may require several steps of manufacturing and

assembly, which can be modelled with recirculation constraints, i.e.: the 1 → 1|recrc − sas|Cmax or 1 →

1|recrc− sas, product− batch|Cmax problems. For the problem without batches, Kusiak (1989) develops an

optimal algorithm. In the light of Theorem 5.1, this algorithm is an extension for the recirculation case of

the well-known Johnson’s algorithm for the F2||Cmax problem, although we are not aware that this aspect is

mentioned by the author. For the problems with batches, the author proposes some constructive heuristics.

Cheng and Wang (1999) address the scheduling of jobs consisting of two components, a unique component

for each product and a common component for all products, the latter being produced in batches with a

setup time. The authors show that the problem is NP-hard, and identify properties to reduce the search

space, as well as specific cases of the problem that are polynomially solvable. Lin and Cheng (2002) develop

further results on the complexity of these problems and prove that they are strongly NP-hard.

Jung and Kim (2016) propose MILP models and constructive heuristics for the problems with makespan

objective with/without preventive maintenance activities, batch setups and deterioration rates.

Liao et al. (2015) propose an MILP model and some properties for the problem based on Jonhson’s

algorithm for the 1 → 1|BS|Cmax problem, also addressed by Jung et al. (2017) when the number of

components of the jobs is dynamic, constant setup times, and product batches. An MILP model and a

genetic algorithm are proposed.

Finally, Yokoyama (2004) addresses the problem with completion time as objective in the case of setups

in the manufacturing machine, i.e. the 1 → 1|BScomponent, product − batch|
∑
Cj problem. This author

analyses some properties of the problem and proposes a constructive heuristic.

5.1.3 Parallel machines for assembly: 1→ Pm layout

Note that, for this layout, it is not possible to establish that carrying out all operations of a job consecutively

in the first machine will produce better schedules for a regular objective function. We are only aware of

papers studying the makespan objective in this layout (see Table 4). This problem is NP-hard (see Figure 4

and note that Pm||Cmax is already NP-hard). He and Babayan (2002) are the first to analyse the problem
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of single and n-job scheduling with and without multiple assembly operations (which involves recirculation

and precedence constraints). They show that the single-job problem with simple assembly is polynomially

solvable, and show some equivalences among the other problems, proposing an MILP model, a lower bound,

and some constructive heuristics.

Some metaheuristics for this problem are proposed by Gaafar and Masoud (2005), which are outperformed

by Liao and Liao (2008). These authors also propose a B & B algorithm for the problem. Independently,

Gaafar et al. (2008) and Teymourian et al. (2016) propose additional metaheuristics. It is relevant to mention

that only partial comparisons among these metaheuristics have been carried out, so the state-of-the-art

regarding approximate methods for the problem is unclear.

5.2 Parallel machines prior to assembly: Pm/Rm/Qm→ α2 layout

In view of the existing contributions (summarised in Table 5), we discuss the cases where there is no processing

at the assembly stage in Section 5.2.1 , whereas the rest of the cases are discussed in Section 5.2.2.

Problem∗ Reference Analysis Exact Approximate
P2→ 0||

∑
Cj Yang (2005) CA

Yang and Posner (2005) PP CH
Pm→ 0|p− batch, incompt|Cmax Shi et al. (2018) PP CH
Pm→ 0||

∑
Cj Blocher and Chhajed (1996) PP, CA MILP CH

Yang (2005) CA
Yang and Posner (2005) PP CH

Pm→ 0|pj = 1|
∑

Cj Blocher and Chhajed (1996) CA
Yang (2005) CA

Pm→ 0|pj = 1|Lmax Yang (2005) CA
Pm→ 0|pj = 1|

∑
wjCj Yang (2005) CA

Pm→ 0||
∑

wjCj Leung et al. (2006a) CH
Leung et al. (2008b) CH

Pm→ 0|prmpt|
∑

wjCj Leung et al. (2008a) CA CH
Pm→ 0|p− batch, incompt|

∑
wjCj Shi et al. (2018) MILP MH

Pm→ 0||Lmax Su et al. (2013) CH
Rm→ 0|split|

∑
Cj Xu et al. (2015) PP MILP CH

Qm→ 0||
∑

wjCj Leung et al. (2007b) CH
Qm→ 0|pmtn|

∑
wjCj Leung et al. (2007b) CH

Rm→ 0|dj = d|
∑

Uj Ng et al. (2003) CA
Rm→ 0|dj = d|

∑
wjUj Ng et al. (2003) CA CH

Pm→ 1|recrc|Cmax He et al. (2001) MILP
Pm→ 1|recrc− complex|Cmax MILP CH
Rm→ 1|BSsd|Cmax Kheirandish et al. (2015) MILP MH
Qm→ 1||Cmax Koulamas and Kyparisis (2007) PP CH
Pm→ Pm||Fl(JIT,mean longest waiting duration) Chen et al. (2015) MILP MH
Rm→ DF2|STsd|Fl(

∑
wjE

2
j ,

∑
wjT

2
j ,

∑
Uj , Cmax) Dalfard et al. (2011) MILP MH

Table 5: Summary of contributions in Section 5.2 (parallel flexible machines). (∗Notation is described in the additional
on-line material).

5.2.1 Flexible Order scheduling: Pm/Rm/Qm→ 0 layout

The complexity of a number of problems in the Pm→ 0 layout is established by Yang (2005), some of them

with specific constraints (see Table 5). His results prove that most of the problems are NP-hard even for
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2 machines and unit processing times, with the exception of the maximum lateness and sum of completion

times for unit processing times.

The first reference for the problem with total completion time objective is by Blocher and Chhajed

(1996), who present some properties of the problem (such as an optimal procedure for the pj = 1 case), an

MILP model, and propose constructive heuristics. Yang and Posner (2005) present some heuristics for the

Pm→ 0||
∑

j Cj problem, together with their worst case bounds. Xu et al. (2015) address the Rm→ 0||
∑
Cj

problem where each component can be split arbitrarily into continuous sublots. Several problem properties

and heuristics with their worst case bounds are presented. Leung et al. (2007b) address the Qm→ 0||
∑
wjCj

with and without preemption, proposing some heuristics and giving their worst case. Leung et al. (2006a,

2008b) propose several heuristics for the Pm → 0||
∑

j wjCj . Leung et al. (2008a) study the same problem

where preemption is allowed. The complexity of the problem is analysed, and some heuristics are presented.

For the specific problem of parallel batch machines with incompatible product families, Shi et al. (2018)

study the objectives of makespan and weighted total completion time minimisation. A constructive heuris-

tic based on some problem properties is proposed for the first objective, whereas a MILP model and a

metaheuristic are presented for the second.

Regarding due-date related objectives, Su et al. (2013) address the problem for the maximum lateness,

presenting a set of constructive heuristics together with their worst case lower bounds. Ng et al. (2003)

address the Pm → 0||
∑
wjUj problem when dj = d and pij ∈ {0, 1}. They show that the problem is

NP-hard even when wj = 1. They propose an approximate algorithm with its worst case lower bound.

5.2.2 One or more machines for assembly: Pm/Rm/Qm→ α2 layout (α2 6= 0)

The contributions on this layout are rather scarce as compared with other problem types (see summary

in Table 5). Regarding the case with a single machine for assembly, the Pm → 1|recrc|Cmax problem

has been first addressed by He et al. (2001), who analyse the cases of single and multiple job product

with simple/complex assembly. They propose MILP models, some equivalence properties, and constructive

heuristics. Without recirculation, Kheirandish et al. (2015) address the Rm→ 1|BSsd, product− batch|Cmax

problem, for which the authors formulate an MILP model and a metaheuristic. Finally, an asymptotically

optimal heuristic for the Qm→ 1||Cmax problem is given by Koulamas and Kyparisis (2007).

With respect to the case where the assembly takes place in parallel machines, Chen et al. (2015) propose

an MILP model and a metaheuristic for the case where orders are composed of several jobs (which in turn

are composed of several components), with the bi-objective of the weighted mean tardiness and earliness,

and the mean longest waiting time of the order.

Dalfard et al. (2011) address the Rm→ DF2|STsd|Fl(
∑
wjT

2
j ,

∑
wjE

2
j , Cmax,

∑
Uj) problem. An MILP
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model and metaheuristics are proposed for the problem.

5.3 Flowshop-type prior to assembly: Fm/PFm/HFm→ α2 layout

Problem∗ Reference Analysis Exact Approximate
F2→ 1||

∑
wjCj Yokoyama and Santos (2005) PP BB

F2→ 1|prmu|
∑

wjCj Yokoyama and Santos (2005) PP BB
Fm→ 1|recrc− complex, prmu, ba|

∑
wjCj Yokoyama (2001) BB

Fm→ 1|prmu,product-batch, BSij |
∑

Cj Yokoyama (2008) PP, LB BB CH
PFm→ 1|prmu|Cmax Hatami et al. (2013) MILP MH

Hatami et al. (2014b) CH
Li et al. (2015) MH

PFm→ 1|prmu, STsd|Cmax Hatami et al. (2014a) CH
Hatami et al. (2015b) CH, MH

HF2, Pm, Pm→ 1||Cmax Fattahi et al. (2013b) PP MILP CH
Shan et al. (2014) MILP
Komaki et al. (2016) PP MILP CH, MH

HF2, 1, Pm→ Pm|BSij , product− batch|Cmax Fattahi et al. (2013a) PP MH
HF2, Pm, Pm→ 1|BSij |Cmax Fattahi et al. (2014) BB MH
HF2, Qm, 1→ DP2|STsd, product− batch|Cmax Nikzad et al. (2015) MILP MH
HFm,Pm1 . . . PmS → PmA|recrc− complex|Cmax Mahdavi et al. (2011) MILP CH, MH

Table 6: Summary of contributions in Section 5.3 (flowshop-type layout prior to assembly). (∗Notation is described
in the additional on-line material).

This layout corresponds to Figure 2d in the case of a flowshop, to Figure 2e in the case of a parallel

flowshop, and to Figure 2f in the case of a hybrid flowshop. These types of problems are NP-complete for

any objective even for the F2→ 1 layout, as the latter can be seen as a generalisation of the three-machine

flowshop (see Figure 4). In Table 6 we summarise the main contributions.

Regarding the flowshop layout in the α1 field, to the best of our knowledge, the problem has been

addressed only by Yokoyama (2001), Yokoyama and Santos (2005) and Yokoyama (2008). In Yokoyama and

Santos (2005), the authors propose a B & B procedure for the F2→ 1||
∑
wjCj problem with and without

the permutation constraint. Yokoyama (2008) addresses the Fm → 1|prmu, product − batch,BSij |
∑
Cj

problem, deriving some approximate procedures and lower bounds. Finally, Yokoyama (2001) addresses a

specific case of Fm→ 1|recrc− complex, prmu, ba|
∑
wjCj using a B & B procedure.

Regarding the case of the parallel flowshop in the α1 field, perhaps the best-known case is the PFm→ 1

layout, which is also called distributed assembly scheduling problem. The problem has been addressed just for

the makespan objective, Hatami et al. (2013) and Hatami et al. (2014b) being the first works describing the

problem and proposing an MILP and a metaheuristic, and constructive heuristics respectively. Li et al. (2015)

address the same problem and propose a genetic algorithm that compares favourably to the constructive

heuristics by Hatami et al. (2014b). Finally, constructive heuristics and metaheuristics for the PFm →

1|prmu, STsd|Cmax are proposed in Hatami et al. (2014a) and in Hatami et al. (2015b) respectively.

Finally, regarding the hybrid flowshop, to the best of our knowledge, it has been addressed first by

Fattahi et al. (2013b), who tackle the HF2, Pm1, . . . , PmS → 1||Cmax problem. These authors propose an
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MILP model and constructive heuristics. However, the MILP model contains a mistake which is fixed by

Shan et al. (2014). The heuristics proposed by Fattahi et al. (2013b) are outperformed by a metaheuristic

proposed by Komaki et al. (2016), who also propose some constructive heuristics for the problem. Two

extensions of the previous problem are presented by Fattahi et al. (2013a) and Fattahi et al. (2014). The first

reference proposes metaheuristics for the case with machine dependent setups and product-batch restrictions,

whereas in the second reference a branch and bound and a metaheuristic are proposed for the problem with

machine dependent setups. The HF2, Qm, 1 → DP2|STsd, product − batch|Cmax problem is studied by

Nikzad et al. (2015), who propose an MILP model and several metaheuristics. Finally, a multi-level assembly

case is addressed by Mahdavi et al. (2011), where the authors process the components of a product in a

hybrid flowshop followed by several stages of subassemblies and assemblies with the objective of makespan

minimisation. This problem can be regarded as HFm → 1|recrc|Cmax to model the recirculation required

in the assembly stage. The problem is modelled using an MILP, and some heuristics and metaheuristics are

proposed.

6 Distributed assembly scheduling

In this section we review the contributions related to scheduling jobs using different assembly layouts. Note

that here distributed has a different meaning than in the so-called distributed assembly flowshop layout, as

in the latter case the assembly operation is not distributed at all.

Therefore, in this problem there are several identical f factories, each one consisting of an assembly

layout, so the problem is to schedule all jobs in these settings, which includes the assignment of jobs to the

factories and the scheduling of these jobs within the factories. Using the notation proposed in Section 3, the

layout of this type of problem can be denoted as (α1 → α2)→ 0, where the term within parentheses indicates

the layout of each identical factory.

To the best of our knowledge, the only type of problem addressed is to schedule jobs over distributed

factories consisting of dedicated parallel machines and a single assembly stage. More specifically, the (DPm→

1)→ 0 layout has been addressed for the following objectives:

• Makespan: This objective was first addressed by Deng et al. (2016), proposing an MILP model for the

problem and a metaheuristic (Memetic algorithm).

• Total Completion Time. This problem is addressed by Xiong et al. (2014), who present several meta-

heuristics for the problem with setups, i.e. the (DPm→ 1)→ 0|BSj |
∑
Cj problem.

• Biobjective: Xiong and Xing (2014) address the (DPm → 1) → 0|BSj |Fl(Cmax,
∑
Cj) problem,

proposing a genetic algorithm and a variable local search. However, these algorithms are not compared
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with those of the corresponding single-criteria cases.

Regarding the case with unrelated machines in each factory, Hatami et al. (2015a) and Hatami et al. (2016)

propose a MILP model for the problem with elegibility constraints, i.e. for the (DRm → 1) → 0|Mj |Cmax

problem.

7 General layout (job-shop) assembly models

In this section, we deal with the contributions that solve a general (job-shop) problem, in many cases with

multiple assemblies and sub-assemblies. To the best of our knowledge, the first of these contributions is

Agrawal et al. (1996), who propose an MILP model and some heuristics. This model is enhanced by Roach

and Nagi (1996) in order to consider ordering constraints. The model considered by these authors assumes a

single product, although ordered with different quantities and due dates. For this problem, a hybrid simulated

annealing-genetic algorithm is proposed by Roach and Nagi (1996)

Cummings Mckoy and Egbelu (1998) propose another general MILP model for a job shop with different

products (each one with a different structure of assembly/sub-assemblies operations) and setups, with the

objective of makespan minimisation. The variables of the model contain 7 sub indices, which serve as an

indicator of the complexity of the model. A heuristic approach to find approximate solutions is also given.

A specific model including availability, resources, and assembly area constraints is presented in Kolisch

and Hess (2000) with the objective of minimisation of the weighted tardiness of the orders. A genetic

algorithm for the generic assembly problem is presented by Pongcharoen et al. (2002), taking into account

penalties for earliness and for tardiness. Also Du et al. (2016) propose a metaheuristic for a general-layout

assembly problem, although only a sample instance is solved.

Kyparisis and Koulamas (2002) address a general problem consisting of r-serial stages, with stage k

containing mk machines in charge of carrying out the operations of the jobs. At stage k, a given operation i

can take place in a subset of lki machines. The job cannot pass on to the following stage until all operations in

the previous stage have been completed. It can be seen that this model encompasses several models presented

in this paper, although it cannot accommodate for instance the PFm→ 1 layout, or the distributed layout.

The authors address the problem for the makespan objective and propose a general constructive heuristic for

the problem.

In Bhongade and Khodke (2012) two constructive heuristics for the problem with flexible machines and

makespan as objective are presented. Two versions of genetic algorithms are proposed by Wang et al. (2011)

for the general assembly problem with makespan objective.

Finally, it is worth mentioning that a number of papers have addressed the problem of lot streaming in
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the general flowshop setting, including Chan et al. (2008b), Chan et al. (2008a), and Wong et al. (2009).

Furthermore, Liu (2009) shows that lot streaming techniques are also beneficial in the Jm→ 0 layout.

8 Conclusions and future research lines

In this paper, we have reviewed a large number of papers in order to provide a comprehensive overview on

scheduling with assembly operations. A number of conclusions and directions for future research can be

derived:

• Regarding the assembly scheduling problems with dedicated machines:

– The DPm→ 1 seems to be a well-studied layout for different objectives and constraints. Never-

theless, since this is a key layout, in order to tackle more complex settings, some results would

need to be reinforced along the following directions:

∗ The DP2 → 1|rj |Cmax and the DPm → 1|rj |Cmax problems have been independently

studied by Sung and Juhn (2009) and Komaki and Kayvanfar (2015) respectively and the

methods proposed have not been contrasted.

∗ Although there are several metaheuristics available for the DPm→ 1||Fl(Cmax,
∑
Cj) prob-

lem (see Section 4.2), most of them have not been compared among each other, therefore

the state-of-the-art remains unclear. Furthermore, it would be of interest if these heuristics

are competitive for the single objective cases (i.e. considering only makespan or completion

time as objectives).

∗ When addressing the multicriteria problem, the predominant approach adopted has been to

weight the objective functions, and we are only aware of one paper discussing ε-constrained

or Pareto-set approaches for rather specific constraints (Seidgar et al., 2016).

– Although the DPm → 1 layout has been widely studied with respect to a number of differ-

ent objectives, the numerous algorithms available have not been extended to the DPm → Pm

counterpart.

– The DPm→ α2 layout can be regarded as a modelling simplification of more complex, dedicated

layouts where the operations prior to the assembly are carried out. We have witnessed that a

frequent layout would consist of dedicated flowshops that process the components of the product

to be later assembled, i.e. the DPFm→ α2 layout. However, we are not aware of papers dealing

with these scheduling problems.

27



– Several works on the DPm → Rm/Qm/Pm layouts involve the development of MILP mod-

els. However, to the best of our knowledge, there are no computational results regarding their

(relative) efficiency.

– There are a number of contributions for the multi-criteria assembly scheduling problem in the

DPm → Fm layout, most of them consisting of metaheuristics for the multicriteria weighted

approach. It would be interesting to 1) establish whether some of these metaheuristics perform

efficiently for other multi-criteria problems in this layout, and 2) assess their performance for the

extreme (i.e. single-criteria) case.

• Regarding the assembly scheduling with flexible machines:

– Although there are some contributions on the 1 → 1 layout, its connection with the 2-machine

flowshop scheduling problem has not been explicitly stated up to Section 5.1.

– The connection among order scheduling problems and flexible order scheduling has not been

thoroughly explored. Clearly, the former can be modelled as a special case of the latter, therefore

it would be interesting to compare the structure of the solutions and procedures.

– For the 1→ Pm layout, only the makespan objective has been considered. Furthermore, for this

case, the state of the art of the solution procedures for the problem is unclear.

– In general, contributions for some layouts within the flexible machine case are scarce, some

examples being the Fm→ α2 and PFm→ α2 layouts.

• Regarding the distributed assembly scheduling it has to be mentioned that most of the approximate

methods employed in the distributed setting do not make use of the results available for the corre-

sponding single factory problem.

• Finally, with respect to the general assembly problems, it would be of interest to compare the relative

efficiency of the different MILP models proposed.

As a final comment, the picture emerging from the review carried out in this paper pictures a field with

many contributions in the last decades and some well-studied problems, but also with numerous topics worth

further research. We hope that the classification and review carried out would serve to foster future work in

this relevant area for manufacturing operations.
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