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ABSTRACT 

 

 

Consider a paint manufacturing firm whose customers typically place orders for 

two or more products simultaneously: liquid primer, top coat paint, and/or undercoat 

paint. Each product belongs to an associated product family that can be batched together 

during the manufacturing process. Meanwhile, each product can be split into several 

sublots so that overlapping production is possible in a two-stage hybrid flow shop. 

Various numbers of identical capacitated machines operate in parallel at each stage. We 

present a mixed-integer programming (MIP) to analyze this novel integrated batching and 

lot streaming problem with variable sublots, incompatible job families, and sequence-

dependent setup times. The model determines the number of sublots for each product, the 

size of each sublot, and the production sequencing for each sublot such that the sum of 

weighted completion time is minimized. Several numerical example problems are 

presented to validate the proposed formulation and to compare results with similar 

problems in the literature. Furthermore, an experimental design based on real industrial 

data is used to evaluate the performance of proposed model. Results indicate that the 

computational cost of solving the model is high. 
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CHAPTER ONE 

INTRODUCTION AND RESEARCH MOTIVATION 

1.1 Introduction 

As manufacturing enterprises continue to endure market pressures, reducing costs 

and improving customer satisfaction remain key factors for successful businesses. 

Effective supply chain scheduling is one methodology companies have turned to for 

increasing their manufacturing productivity. A supply chain system is composed of 

procurement, production, and distribution processes. Raw materials are purchased from 

suppliers, and then goods are produced at one or more manufacturing plants, distributed 

to distribution centers or warehouses for storage, and finally delivered to customers or 

retailers. 

Scheduling is a crucial decision-making process in any system that is performed 

at a variety of temporal levels. Medium-term supply chain scheduling (planning) 

considers allocating jobs to sequencing and timeframe decisions for completing customer 

orders to minimize cost-related objectives, while short-term supply chain scheduling 

considers allocation decisions to a specific resource (e.g., machine or people) over a 

shorter time horizon (e.g., a shift or days).  

Batching and lot streaming are two concepts and methods dealing with problems 

involving treatment of lots in scheduling theory (Burtseva et al., 2012). Batching is 

usually used to help reduce setup time and costs in real world industry settings. The 

primary advantage of lot streaming lies in its reduction of makespan (Sarin and 

Jaiprakash, 2007). 
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A product family can be defined as products that have the same properties or 

manufacturing attributes—such as shape, size, or color—or that require the same raw 

materials. If some products at a manufacturing plant belong to the same product family, 

they can be sorted out to form a batch. The products within a batch are processed on the 

same machine simultaneously. Usually, there is no setup between each product within a 

batch thus saving setup time and cost. Batch scheduling focuses on finding capacity-

feasible schedules that optimize given objective function(s) while meeting all required 

constraints (Cakici et al., 2013). Batch scheduling research typically assumes that batches 

cannot be split during the manufacturing process (Kopanos et al., 2011; Tai et al., 2011; 

Amorim et al., 2011; Mason et al., 2010; Fumero et al., 2014).  

If a batch is allowed to be split into several sublots, the problem is usually called 

lot streaming, which was first introduced by Reiter (1966). Lot streaming problem 

focuses more on when and how to split a batch since the batching decision is already 

made. In a flow shop or job shop, lot streaming allows sublots to be processed in 

overlapping fashion on successive stages or machines in order to optimize some 

performance criteria. Besides reducing makespan, other advantages of applying lot 

streaming include reductions in cycle time, average work-in-process inventory, required 

storage space, and material handling equipment requirements (Cheng et al., 2013). While 

lot streaming problems focus on improving performance by dividing product lots into 

several sublots, three key decisions must be made: 1) the number of sublots to create, 2) 

the size of each sublot, and 3) the processing sequence of the sublots. 
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Feldmann and Biskup (2008) categorize lot streaming problems according to 

machine configuration, product type, sublot type, and other criteria. Equal sublots refer to 

the case wherein the size of all sublots is fixed and equal for all products. Problems with 

consistent sublots allow for each product to have its own, potentially unique, sublot size 

that remains constant for all stages/processes. Finally, variable sublots cases contain no 

restrictions on sublot sizes across machines. Consider the example case in Figure 1.1 

containing a batch of 84 items to be processed on three machines. The processing time 

for machines 1, 2, and 3 are 2, 1, and 3 minutes per unit, respectively.  In Figure 1.1a, the 

job is split into two equal sublots of 42 items each, resulting in a makespan of 378 

minutes. Next, consistent sublots of 36 and 48 items are shown in Figure 1.1b—the 

resulting makespan is reduced to 360 minutes. Finally, the variable sublot case in Figure 

1.1c depicts 56 of 84 items being processed and transferred as the first sublot on machine 

1, with the remaining 28 items comprising the second sublot. Alternately, the first 21 

items are sent as the first sublot on machine 2 to machine 3 once they are completed. The 

remaining 63 items then are processed and transferred as the second sublot to machine 3, 

resulting in a makespan of 385 minutes. 
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Figure 1.1 An example of sublot type: (a) Equal Sublots (b) Consistent Sublots (c) 

Variable Sublots (Trietsch and Baker, 1993; Morakotkarn, 1995) 

1.2 Research Motivation 

The practical motivation of this proposed research is the author’s work experience 

at a coating company. Customers place orders for one of two available product groups 

according to their requirements, such as painting cargo containers, painting ship hulls, or 

painting other large structures. One product group consists of primer and top coat paint; 

the other is composed of primer, top coat paint, and undercoat paint. A product in any 

order (i.e., primer, top coat paint, or undercoat paint) can be divided in to hundreds of 

subcategories according to its formulation and color (e.g., gray epoxy zinc-rich primer, 
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red epoxy micaceous iron oxide undercoat paint, and blue acrylic top coat paint). Each 

subcategory is associated with an incompatible product family such that two products 

cannot be processed in the same batch if they belong to different product families. 

Sequence-dependent setup times are unavoidable when production switches from one 

product family to another product family (Schultmann et al. 2006). 

Figure 1.2 overviews the basic production steps required to manufacture each 

coating system component. Raw materials such as resin, pigment, and solvent are pre-

mixed in a container, and then are milled into fine particles. In order to produce each 

specific customer-requested item, additional materials such as resins, hardeners, 

additives, and/or solvents are added to the milled “base” mixture and blended to produce 

the required viscosity, fineness, brightness, and color properties. The blended final 

product is then packed into barrels. The manufacturing environment resembles a two-

stage hybrid flow shop. A hybrid flow shop in this study refers to a flow shop with 

multiple stages where, in at least one stage, multiple identical machines are operated in 

parallel (Kurz and Askin, 2004). Each batch needs to be processed by only one machine 

at each stage. Six identical containers with a specific capacity operate in parallel at stage 

1; pre-mixing and milling processes are completed in the same stage 1 container. There 

are 18 capacitated vessels working in parallel in stage 2’s blending operations. After 

blending, the completed coating system component (paint) will be packed into barrels—

we assume unlimited packing resources are available. 



 6 
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Figure 1.2 Paint Production Process 

 

If the demand for each product is so large that it exceeds machine capacity, then 

each product has to be divided into several sublots to be processed. Each sublot is 

considered as a batch. If one sublot size is smaller than machine capacity, sublots of other 

products (belong to the same product family) can be manufactured in this batch to 

achieve the machine capacity. Therefore, batch scheduling and lot streaming decisions 

have to be made simultaneously in one model. However, few studies consider the 

integration of them in one model. 

 

1.3 Research Contribution 

In the past 30 years, batch scheduling and lot streaming are well studied in 

isolation. In batch scheduling problems, researchers focus on how to group products to 
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form a batch and how to sequence them on machines. A batch cannot be split during the 

manufacturing process. In lot streaming problems, batches are already given so the 

batching process is not considered. The efforts are only made to when and how to split 

batches. This study introduces a mathematical model that incorporates batching and lot 

streaming to determine the sublot sizes and sequences for multiple products in a two-

stage hybrid flow shop environment to minimize the sum of total weighted completion 

times for product sublots while satisfying customer demand. 

1.4 Thesis Overview 

The reminder of the thesis is organized as follows. Chapter 2 is a literature review 

on batch scheduling and lot streaming. The proposed research problem is described in 

Chapter 3. Chapter 4 presents a detailed mathematical model to formulate the problem 

objective function and constrains. A series of numerical cases and tests were 

implemented and discussed in Chapter 5. The conclusion and future plan is given in 

Chapter 6. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Batch Scheduling 

Batch scheduling integrates scheduling and batching decisions. Batching occurs 

when jobs share the same setup on a machine (family scheduling) or when a machine can 

process several jobs simultaneously (batching machine). Potts and Kovalyov (2000) 

provide a review of batch scheduling on the above two types of models. Erramilli and 

Mason (2006) investigate the multiple orders per job batch scheduling problem with 

compatible job families wherein jobs that belong to any family may be grouped to form a 

production batch. A mixed-integer programming (MIP) formulation is presented to 

minimize the total weighted tardiness in a single machine environment. In order to find 

near-optimal solutions in a reasonable amount of computation time, a simulated 

annealing-based heuristic is presented. Erramilli and Mason (2008) consider the same 

problem with incompatible job families in which only jobs from the same family can be 

batched together. Cakici et al. (2013) consider batch scheduling with dynamic job 

arrivals and incompatible job families in a parallel machine environment. Both a 

mathematical model and a heuristic algorithm are proposed to minimize the total 

weighted completion time. 

Lin and Liao (2013) study a scheduling problem in a two-stage assembly shop to 

minimize weighted sum of makespan, total completion time, and total tardiness. The 

proposed model combines a job dividing strategy and batch processing in which jobs are 

divided into several sub-jobs and processed separately, but simultaneously by workers in 
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stage 1. Three heuristics are developed for solving medium- and large-sized instances. 

Huang and Lin (2013) study batch scheduling in a differential flow shop where the stage 

1 machines process jobs in batches to minimize makespan. A dynamic programming 

algorithm is developed to solve a special case that in turn derives a lower bound for 

general cases. Fu et al. (2012) consider a differential flow shop scheduling problem with 

limited buffers and incompatible job families to minimize mean completion time. 

Behnamian et al. (2012) examine a three-machine flow shop where a stage 2 batch-

processing machine is located between two discrete machines in stages 1 and 3. Both a 

MIP model and a heuristic algorithm are proposed to minimize makespan. Batch 

scheduling with sequence-independent setup times and with sequence-dependent setup 

times are studied by Pranzo (2004) and Logendran et al. (2006). 

 

2.2 Lot Streaming 

Cheng et al. (2013) review lot streaming problems for two categories: time-based 

objective functions and cost-based objective functions. Machine environments such as 

flow shops, parallel machines, hybrid flow shops, job shops, open shops, and two-stage 

assembly systems are discussed. An earlier review can be found in Chang and Chiu 

(2005). Trietsch and Baker (1993) provide basic models and algorithms for the lot 

streaming problem and present complexity classifications for some lot streaming 

problems.  
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2.2.1 Equal Sublots 

Yalaoui and Chu (2006) develop a branch-and-bound algorithm to minimize total 

completion time in a parallel machine environment with lot streaming. Tseng and Liao 

(2008) propose a discrete particle swarm approach to find good solutions for n job, m 

machine lot streaming flow shops that minimize total weighted earliness and tardiness. 

Pan and Ruiz (2012) consider the same problem with sequence-dependent setup times to 

minimize makespan. Kalir and Sarin (2001) study the lot streaming problem of 

sequencing a set of batches in a flow shop to minimize makespan. A heuristic is proposed 

to minimize bottleneck. 

2.2.2 Consistent Sublots 

Mortezaei and Zulkifli (2014) propose a MIP for multi-product lot sizing and lot 

streaming in a flow shop. The objective is to minimize production costs, holding costs, 

and makespan costs. Interestingly, two cases are considered: all machines are available 

and all machines need preventive maintenance. Gasquet et al. (2012) present a MIP 

model for the m stage flow shop lot streaming problem with sequence dependent setup 

times to minimize makespan. Zhang et al. (2005) study multi-job lot streaming in a two-

stage hybrid flow shop with m identical machines at stage 1 and a single machine at the 

second stage. A MIP formulation is used to calculate a lower bound and then two 

heuristic methods are proposed to solve this problem to minimize mean completion time. 

Feldmann and Biskup (2008) study lot streaming with multiple products in a 

multi-stage permutation flow shop. Sublots with and without intermingling are 
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investigated. Increasing either the number of sublots or the number of stages reduces 

makespan when lot streaming is applied in multi-stage setting. Furthermore, 

intermingling is beneficial to the lot streaming as compared with non-intermingling. 

Defersha and Chen (2012a) consider lot streaming in a hybrid flexible flow shop 

with sequence-dependent setup times, release time for machines, and machine eligibility 

constraints. A MIP formulation is presented to minimize the makespan. To deal with 

model tractability issues, a parallel genetic algorithm is proposed. Martin (2009) develops 

a hybrid genetic approach for a m machine flow shop with lot streaming of multiple 

products using consistent sublots and intermingling; a similar study with variable sublots 

is conducted by the same authors (Defersha and Chen, 2010). 

Ghasemi (2008) investigates lot streaming multiple products with consistent 

sublots in hybrid flow shops. However, the parallel machines in each stage are non-

identical. Both attached and sequence-independent setups are considered in a MIP model 

to minimize the makespan. The author modifies the proposed model to accommodate lot 

streaming with variable sublots of a single product in a multiple stage hybrid flow shop. 

In contrast to our study, this paper does not consider batching multiple products or 

sequence-dependent setups. 

 

2.2.3 Variable Sublots 

The vast majority of the available lot streaming literature analyzes variable sublot 

problems using heuristic algorithms. Pan et al. (2011) develop a discrete artificial bee 

colony algorithm for the lot streaming flow shop scheduling problem to minimize total 
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weighted earliness and tardiness. Additional research efforts include those of Sen and 

Benli (1998) and Liu (2003), as well as Goyal and Szendrovits (1986). 

 Biskup and Feldmann (2006) present the first MIP model for lot streaming with 

variable sublots and sublot availability constraints. The authors also demonstrate that the 

use of variable sublots can lead to large improvements in makespan. Defersha and Chen 

(2010) extend this model to the multiple product case and develop a hybrid genetic 

algorithm to improve computational efficiency. Chiu et al. (2004) investigate a lot 

streaming problem with a limited number of capacitated transporters in a multi-stage 

batch production system. Both attached and detached setups are considered while 

minimizing makespan and transportation cost. A mathematical model and two heuristic 

methods are proposed. Defersha and Chen (2012b) study the lot streaming problem in a 

job shop with routing flexibility, sequence-dependent setups, machine release dates, and 

lag time constraints. An island-model parallel genetic algorithm is presented. 
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CHAPTER THREE 

PROBLEM STATEMENT 

 

Although batch scheduling and lot streaming have been well studied in isolation, 

the problem of integrating batching and lot streaming has not been addressed in the 

literature. Consider a two-stage hybrid flow shop: m1 identical parallel, capacitated 

machines operate in stage 1, while m2 (m2 ≥ m1) identical parallel, capacitated machines 

comprise stage 2. A set of customer orders of varying weights (priorities) is released at 

the beginning of the time horizon of interest. All products within a customer order have 

the same weight (priority). Each product can be divided into several sublots that may 

vary in size. Two or more sublots, which are possibly from different products, can be 

processed simultaneously on the same machine as a batch if 1) they belong to the same 

product family and 2) their total size does not exceed the machine capacity. A sequence-

dependent setup time is required for changeovers at each machine. We seek to determine 

the number of sublots for each product, the size of each sublot, and the corresponding 

sequences for each sublot such that the sum of total weighted completion times for 

product sublots is minimized.  

The proposed problem can be considered as an integration of two problems: the 

multiple orders per job batch scheduling problem with incompatible jobs and sequence-

dependent setups in a two-stage hybrid flow shop, and lot streaming problem with 

variable sublots and sublot availability in a two-stage hybrid flow shop. Based on 

classification scheme of lot streaming provided by Cheng (2013), this problem can be 

denoted as 𝐹𝑚1 + 𝑚2/𝑛/𝑉/𝐶𝑉/𝑆(𝑎)/∑𝑤𝐶. Alternately, using the scheduling notation 
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scheme of Graham et al. (1979), this problem can be denoted as 𝐻𝐹2|lot, incompatible, 𝑝 

− batch, split, 𝑠𝑖𝑗|∑𝑤𝐶. 

Gupta (1988) prove that two-stage hybrid flow shop problem is NP-complete in 

case of max (M
(1)

, M
(2)

) > 1. Biskup and Feldmann (2006) argue that the multi-stage, 

variable sublots, sublot availability (MVS) lot streaming problem is probably NP-hard, 

although the complexity status is still open. In our proposed problem, we relax three 

assumptions considered in their study: 1) there is only one machine operating at each 

stage, 2) sublots are not allowed to be batched, and 3) setup times are ignored. After 

relaxing these assumptions, the MVS lot streaming problem reduces to our problem. It 

follows that given these two statements, in combination with the existence of sequence-

dependent setups, cause our problem under study to be NP-hard. 

Figure 3.1 shows an example instance of the research problem under study as 

motivated by paint production. Order 1 contains customer demand for two products (i.e., 

a primer and a top coat), while order 2 consists of three products including primer, 

undercoat paint, and a top coat. The five products in the two orders belong to four 

product families. The top coat requirements in order 1 and order 2 belong to the same 

product family, so they can be processed simultaneously. The proposed model will 

evaluate this decision such that they could be batched together on stage 1’s second 

machine, for example. Both top coats in order 1 (T1) and order 2 (T2) are split into two 

sublots at stage 1. 
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Figure 3.1 Example of Proposed Problem 
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CHAPTER FOUR 

MATHEMATICAL MODEL 

4.1 MIP Formulation 

We formulate the integrated batching and lot streaming problem in a two-stage 

flow shop as a MIP. We model two inherent goals of the problem in a monolithic model: 

determining the size of individual sublots and sequencing the sublots. The notation used 

in the mathematical model is defined as follows: 

Sets 

P Set of products; indexed by p = 1, 2, …, |P| 

S Set of flow shop stages; indexed by s =1, 2 

Ws Set of machines in stage s; indexed by k, m = 1, 2, …, |Ws| 

B Set of batch positions; indexed by j, b = 0, 1, 2, …, |B|  

N  Set of sublots; indexed by α = 1, 2, …, |N|  

F  Set of product families; indexed by f, g = 0, 1, 2, …, |F|  

Initially, a maximum number of sublots |N| is given to any product p by a decision 

maker. Not all these sublots are necessary to be used. |B| is the maximum number of 

batches that any machine can process. Batch position 0 is a dummy batch position that 

only dummy product family 0 can be assigned to it. 

Parameters 

Ks Capacity of each identical machine in stage s 

Dp Demand for product p 

M1, M2, M3  Large positive numbers 
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tfs Processing time of product family f in stage s 

wp Weight of product p 

pf =1 if product p belongs to product family f, 0 otherwise 

fg Setup time between product family f and g 

Variables 

p smbn  Size of the α
th

 sublot of product p in the b
th

 batch position on

machine m in stage s 

Afsmb Starting time of the b
th

 batch position (belongs to product family f)

on machine m in stage s 

δfsmb Completion time of the b
th

 batch position (belongs to product

family f)  on machine m in stage s 

Cpαsmb Completion time of the α
th

 sublot of product p assigned to the b
th

batch position on machine m in stage s 

upα Binary variable equals to 1 if sublot α of product p is produced 

p smbx  Binary variable equals to 1 if the α
th

 sublot of product p is assigned

to the b
th

 batch position on machine m in stage s, 0 otherwise

fsmby Binary variable equals to 1 if the b
th

 batch position (processes

product family f) on machine m in stage s is used, 0 otherwise  

zpαkjmb Binary variable equals to 1 if the α
th

 sublot of product p is

successively assigned to the j
th

 batch position on machine k in
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stage 1 and the b
th

 batch position on machine m in stage 2, 0

otherwise 

, 1

sm

fbg b  Binary variable equals to 1 if product family g in the (b+1)
th

 batch

position is processed immediately after product family f in the b
th

batch position on machine m stage s, 0 otherwise

Using the above notation, the objective function and constraints of the proposed 

MIP model for integrated batching and lot streaming with variable sublots in a two-stage 

hybrid flow shop is as follows: 

Minimize: 

2

2

m

p p mb

p P N m W b B

Z w C 
   

   (1) 

Subject to: 

1 , , , , ,p smb p smb sn M x p P N s S m W b B             (2) 

0.001 , , ,p smb fsmb s

p P N f F

n y s S m W b B
  

       
(3) 

, , ,p smb s fsmb s

p P N f F

n K y s S m W b B
  

       
(4) 

1

1 ,p mb p

N m W b B

n D p P
  

   
(5) 

0 0 1, ,sm sy s S m W     (6) 

0 0 1 0, ,sm gsm s

g F

y y s S m W


     
(7) 

, 1 0, , , \{| |}fsmb gsm b s

f F g F

y y s S m W b B B

 

        
(8)
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0, , , , , ,pf p smb fsmb sx y p P N f F s S m W

b B

            

  (9) 

, 1 , 1 1, {0}, , , ,

( {0}) \{| |}

sm

fsmb gsm b fbg b sy y f F g F s S m W

b B B

            

   (10) 

1 2 1 21, , , , ,

,

p kj p mb p kjmbx x z p P N k W m W

j b B

             

  (11) 

1

1 , ,p kj p

k W j B

x u p P N  
 

    
(12) 

2 1

2 1 2 (1 ), ,p mb p kj p

m W b B k W j B

x x M u p P N   
   

       
(13) 

2 1

2 1 2 , ,p mb p kj p

m W b B k W j B

x x M u p P N   
   

      
(14) 

2 2 2

1 2 2

1

1( ), ,

, ,

p kj p mb p kjmb p mb

m W b B m W b B m W b B

n n M z x p P

N k W j B

   



     

    

     

  

(15) 

2

1 2 1, , , ,p kj p mb

m W b B

n n p P N k W j B  
 

        
(16) 

2

1 1 1, , , ,p kj p kjmb

m W b B

n M z p P N k W j B  
 

        
(17) 

3( 1), , , , ,p smb fsmb p smb sC M x p P s S f F m W

b B

           

  (18) 

3( 1), {0}, , ,

{0}

fsmb fsmb fs fsmb sA t M y f F s S m W

b B

           

   (19) 

, 1 , 1 3 , 1(1 ), {0}, ,

, , ( {0}) \{| |}

sm sm

gsm b fsmb fbg b fg fbg b

s

A M f F g F

s S m W b B B

             

       (20)
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2 2

2 , 1 1kj , 1 3 , 1

1 2

(2 ), ,

, , , {0}, , ,

( {0}) \{| |}

m m

g m b p fbg b fg fbg b p kjmbA C M z p P

N k W m W f F g F j B

b B B

   



        

            

   (21) 

, 1, , , , {0,1}, , ,

, {0}, , , , , {0}

sm

p smb fsmb pkjmb p fbg b

s

x y z u p P N

f g F s S k m W j b B

        

          (22) 

, , , 0, , , {0},

, ,

p smb fsmb fsmb p smb

s

n A C p P N f F

s S m W b B

         

      (23) 

The objective function (1) seeks to minimize the sum of total weighted 

completion times for product sublots. Constraint set (2) ensures that a batch position can 

only start to produce a sublot after the sublot is assigned to that same batch position (i.e., 

the production size of any batch position is equal to 0 if the batch position is not used). In 

addition, batched quantities must be larger than 0 (3) and smaller than machine capacity 

in any stage (4). Constraint set (5) ensures that all customer demands are assigned to the 

first stage. Constraint set (6) forces that dummy product family 0 only can be assigned to 

dummy batch position 0 in any stage. Constraint sets (7) and (8) are valid inequalities that 

forces batch positions to be used in sequence.  

Next, constraint set (9) ensures that any product sublot with product family f 

cannot be assigned to a batch position if the product family is not assigned to the same 

batch position. Constraint set (10) assigns product family sequences between two 

sequential batch positions. Constraint set (11) is used for assigning values to zpαkjmb. 

Constraint set (12) indicates which sublots of product p are produced in stage 1. 

Constraint sets (13) and (14) ensure that if a sublot is produced in stage 1 then it must be 

assigned to a batch position on some machine in stage 2. Constraint sets (15)-(17) 
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collectively require that the size of a sublot of product p that is processed in stage 1 and 

stage 2 should be consistent (i.e., the size of a sublot of product p processed in stage 2 

should be equal to the size of a sublot of product p processed in stage 1). However, two 

sublots of a product can be processed in one batch position so that the actual sublot size 

of product p on machine m at stage s is determined by p smb

N

n 


 . Furthermore, constraint

sets (15)-(17) guarantee that products produced in stage 2 also satisfy customer demand. 

Constraint set (18) restricts the completion time of product sublot α processed by 

the b
th

 batch position on machine m in stage s to be equal to the completion time of the

batch position which is used for manufacturing product family f. Constraint set (19) 

requires that the completion time of a batch position on any machine at stage s is equal to 

its starting time plus the associated product family’s processing time at stage s. Constraint 

sets (20) and (21) ensure the setup for a sublot on a machine cannot be started until the 

sublot arrives at that machine. Constraint set (20) ensures that the overlapping of 

processing sublots on the same machine is prevented. Sublots processed in batch position 

b+1 on machine m in stage s are allowed to start only after sublots assigned to batch 

position b on machine m in stage s have been completed. Constraint set (21) prevents 

overlapping sublots in consecutive stages.  Sublots can only start to be manufactured in 

stage 2 after their completion in stage 1. Finally, constraint sets (22) and (23) are 

integrality and non-negativity constraints, respectively. 
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4.2 Establishing Values for Big M Parameters 

Three positive large numbers are used in the disjunctive scheduling constraints: 

M1, M2, and M3. Appropriately establishing “tight” values for these parameters can help 

to improve model tractability. The value of M1 (shown in equations (24) - (26)) is limited 

by constraint sets (2), (15), and (17). Equation (24) determines the value of M1 that is 

greater or equal to the sublot size. The maximum sublot size is bounded by min (dp, Ks). 

Therefore, the value of M1 is min (dp, Ks). 

1

p smb

p smb

n
M

x





 (24) 

2

2 2

1 2

1

2

p mb p mb

m W b B

p mb p kjmb

m W b B m W b B

n n

M
x z

 

 

 

   








 
(25) 

2

1

1

p kj

p kjmb

m W b B

n
M

z




 


 (26) 

Next, parameter M2 is used in sublots assignment constraint sets (13) and (14) 

which are binding for pu   is equal to 1. Then when is equal to 1, the value of M2 can 

be written as:

2 1

2 2 1 .p mb p kj

m W b B k W j B

M x x 
   

   (27) 

Furthermore, equation (27) can be relaxed as: 

2

2 2 .p mb

m W b B

M x 
 

  (28) 

pu 
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The term 
2

2p mb

m W b B

x 
 

 is the summation of all the batches on all machines at stage 2.

Therefore, the value of M2 is greater or equal than |W2| |B|.

Finally, as it can be transformed from time related constraint sets (18) - (19), M3

can be expressed as equations (29) - (32). To ensure M3 is effective, it should be greater 

or equal than the upper bound of makespan 2f mb (or 2p mbC  ). 

3
1

fsmb p smb

p smb

C
M

x





 



(29) 

3
1 y

fsmb fs fsmb
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A t
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(30) 
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CHAPTER FIVE 

NUMERICAL EXPERIMENTS 

5.1 Model Validation 

In the first example, we consider an instance taken from Biskup and Feldmann 

(2006): a lot streaming problem with variable sublots and no setups in a flow shop. A 

single product with a demand of 30 units is to be scheduled by five machines in a flow 

shop. The product is forced to be split into three sublots. To obtain an appropriate 

solution, some constraints and variables in our model need to be varied to accommodate 

the objective function and some problem assumptions. Since the objective is to minimize 

the makespan, a new variable Cmax is introduced for makespan. The processing time of a 

product in the instance is defined as the processing time per unit of product on machine 

m. Therefore, parameter tfs in our model is changed to ts.

In the modified model, stage S is a set of machines in a flow shop such that index 

s = 1, 2, …, |S|. Machine index m and product family index f are removed from the 

variables in all the constraints. For example, ysb is a binary variable equal to 1 if the b
th

batch position (processes product family f) on machine s is used, 0 otherwise. The 

dummy batch 0 is unnecessary for the new model so that now, the batch position index 

starts at 1. The machine capacity is set to a large positive number in order to remove its 

effect as the reference instance is uncapacitated. 
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The objective function in constraint set (1) is changed to minimize the makespan: 

Z = Cmax (33) 

Constraint sets (2) - (5) hold for the instance. Constraint set (6) for assigning the dummy 

family 0 to dummy batch 0 is removed. Constraint set (7) is discarded and constraint set 

(8) is kept in constraint sets (7) and (8) to require batch positions to be used in sequence:

, 1 0, , \{| |}sb s by y s S b B B      . (34) 

Further, constraint sets (9) and (10) are removed. Since binary variable zpαsj,s+1,b indicates 

a sublot inheritance relationship between batches in all successive stages, constraint sets 

(11) is modified as follows:

j , 1, , 1, 1, , , \{| |}, ,p s p s b p sj s bx x z p P N s S S j b B               (35)

Constraint set (12) holds for indicating which sublots of product p are produced on 

machine 1. Constraint sets (13) to (14) are modified to ensure that if a sublot is produced 

on machine s then it must be assigned to a batch position on successive machine s+1: 

, 1, 2 (1 ), , , \{| |}p s j p sb p

j B b B

x x M u p P N s S S   

 

          (36) 

, 1, 2 , , , \{| |}p s j p sb p

j B b B

x x M u p P N s S S   

 

         (37) 

Constraint sets (15) to (17) need to be extended to guarantee that products produced at

each stage satisfy customer demands: 

kj , 1, 1 , 1,2 , 1,( ), , , \{| |},

,

p s p s b p sj s b p s b

b B b B b B

n M p P N s S S

j b B

n z x
      

  

       

 

  
(38) 

, 1, \{| |},, , , ,p sj p s b

b B

n n s S Sp P N j b B  



        (39)
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1 , 1, , , , \{| |}, ,p sj p sj s b

b B

n M z p P N s S S j b B  



         (40) 

Constraint sets (18) hold for representing the non-linear equation Cpαsb = δsb(xpαsb) such 

that the completion time of a product sublot α processed by the b
th

 batch position on

machine s equals the completion time of that batch position. Constraint sets (19) 

substitute for: 

(y 1), , , , {0}sb sb s p sb sb m

p P N

A t n M p P N s S b B


 
 

             (41)

The completion time of a batch position on any machine s is equal to its starting time plus 

the processing time of all sublots in that batch. The processing time is directly 

proportional to batch size. Therefore, constraint set (20) and (21) are simplified as 

follows: 

, 1, , \{1}sb s bA s S b B      (42) 

, , 1, j 3 , 1, , ,(1 ), , , \{1}, ,s b p s p s j s bA C M z p P N s S j b B              (43) 

To prevent overlapping sublots in successive batch positions on consecutive machines, 

batch position b on machine s should be started after completion of the preceding batch 

position b-1 on the same machine s as well as after the completion of batch position j, 

which is used for processing the same sublot on the preceding machine s-1. Finally, new 

constraint set (44) is added to define the makespan as the completion time of the last 

batch on the last machine: 

max | | , , , ,p s bC C p P N s S b B      (44) 
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The model is coded in AMPL and solved using Gurobi 6.0 on a Core i7, 3.40 GHz CPU 

with 8 GB of RAM. The optimal objective value (269.8 minutes) of this sample instance 

is successfully found by our modified model. 

5.2 Model Demonstration 

The proposed MIP model is analyzed under various problem settings based on 

representative case study input data. In all three example problems that follow, there are 

three orders wherein each order contains one product. The maximum number of sublots 

|N| and the maximum number of batch positions |B| in all examples are 3 and 4, 

respectively. The data for machine configuration and product information are specified in 

Table 5.1. Table 5.2 shows the processing time for all stages, while sequence-dependent 

setup times for all examples are given in Table 5.3. 

Table 5.1 Data for Example Problems 

Example (Stage, No. of Machines, Capacity) (Product, Product Family, Demand, Weight) 

2 (1, 1, 4) (1, 1, 2, 1) 

(2, 2, 2) (2, 2, 3, 2) 

(3, 1, 5, 3) 

3 (1, 2, 4) (1, 1, 2, 1) 

(2, 2, 2) (2, 2, 3, 2) 

(3, 1, 5, 3) 

Table 5.2 Processing Times for Example Problems 

Product Family Processing Time in Stage 1 Processing Time in Stage 2 

1 2 1 

2 2 1 

3 2 1 
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Table 5.3 Setup Times for Each Product Family 

Product Family 

Product Family F1 F2 

F1 0 3 

F2 1 0 

Example 2, which consists two problems, is designed to show the effect of 

applying lot streaming with batching. Example 2(a) allows batching and lot streaming 

simultaneously, while only lot streaming is considered in Example 2(b).  The parameter 

settings in the two problems are the same. The resulting Gantt charts produced by the 

MIP model for Example 2(a) and (b) are shown in Figure 5.1. An analysis of Example 

2(a) reveals that the sum of total weighted completion times for all products is 84 (Figure 

5.1(a)). Product 3 (product 2) is split into 2 (1) sublots in stage 1, and 3 (2) sublots in 

stage 2. Since products 1 and 3 belong to the same product family, one sublot of product 

1 and one sublot of product 3 are processed in the same batch position (2
th

) on stage 1’s

single machine simultaneously. Sublot sizes vary across the two stages, given the 

relationship between product 3’s demand of 5 and the capacity per machine in each stage. 

The objective value of Example 2(b) is 87. It is clear that scheduling using integrated 

batching and lot streaming is better than only using lot streaming alone.  
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Figure 5.1 Optimal Solution of Example 2 

(a) Integrated Batching with Lot Streaming (b) Lot Streaming



30 

In another example instance, the machine configuration is changed from the 

previous examples: there are two machines at each flow shop stage. The optimal solution 

depicted in Figure 5.2 confirms that a sublot of product 3 and a sublot of product 1 are 

manufactured in the 2
nd

 batch position on machine 1 in stage 1, as expected, thereby

again validating the model’s functionality for a two-stage hybrid flow shop with multiple 

machines at each stage. As an additional machine is added at stage 1, the sum of total 

weighted completion times of Example 4 is 56, 28 units shorter than the corresponding 

result in Example 1. 

(Stage, Machine)

4
2

1

3

2 2 1 2

2 1

(1, 1)

(2, 1)

(2, 2)

0 2 4 6 8 10

Product 2 22

1 2 3 Sublot size

Setup

 Figure 5.2 Optimal Solution of Example 3 
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5.3 Experimental Study 

In order to evaluate the performance of the proposed MIP model, 60 experimental 

problem instances are analyzed using the experimental design in Table 5.4. The machine 

environment setting for all 60 instances is a two-stage flow shop: one capacitated 

machine operated at stage 1 having a capacity of 7.2 units; three identical parallel vessels 

each with capacity of 4 comprise stage 2. A product is allowed to be split into at most 

eight sublots. The maximum value for the number of batches is set to 15. 

The weights (priorities) of the products are the same if they are from the same 

order: random integers between 1 and 3 (i.e., wp ~ DU [1, 3]). Table 5.5 provides the 

number of orders and the number of products in each order for all 60 instances. In 

instances 1 – 20, one order is considered in each instance, and in instances 21 – 60, two 

orders were analyzed in each instance. As shown in Table 5.5, two or three products are 

studied in each order. Each order is for painting cargo containers, ship hulls, or industrial 

structures with probability 0.05, 0.25, and 0.7, respectively. The demand for primer in 

cargo container orders is randomly generated using the uniform distribution U [12, 25]. 

Similarly, demand for primer in a ship hull order and an industrial structure order are 

created according to uniform distribution U [12, 45] and DU [7, 35], respectively. The 

demands for top coat paint and undercoat paint are 50% of and 20% of the corresponding 

primer quantity in the order, respectively. We assume that primer, top coat paint, and 

undercoat paint belong to three different, incompatible job families. The processing time 

of each product family at each stage (Table 5.6) and the setup time between each product 

family (Table 5.7) are fixed in all 60 instances.  
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Table 5.4 Experimental Design for Model Evaluation 

Parameter Value  Description 

Order Type Cargo container with probability of 0.05 

Ship hull with probability of 0.25 

Industrial structure with probability of 0.7 

Weight (Priority) DU [1, 2] 

Primer Demand  Cargo container: U [12, 25] 

Ship hull: U [12, 45] 

Industrial structure: U [7, 35] 

Table 5.5 Number of Orders and Number of Products in each Order 

Instances Number of Orders Number of Products in Each Order 

1-10 1 2 

11-20 1 3 

21-30 2 (Order 1, 2), (Order 2, 2) 

31-40 2 (Order 1, 2), (Order 2, 3) 

41-50 2 (Order 1, 3), (Order 2, 2) 

51-60 2 (Order 1, 3), (Order 2, 3) 

Table 5.6 Processing Times for Product Families 

Product Family Processing Time in Stage 1 Processing Time in Stage 2 

1 2.14 3.36 

2 2.73 1.52 

3 1.67 2.44 
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Table 5.7 Setup Times for Product Families 

Product Family 

Product Family F1 F2 F3 

F1 0 0.5 0.7 

F2 0.3 0 1 

F3 0.8 0.8 0 

The problem instances are coded in AMPL and solved in Gurobi 6.0 on a Core i7 

3.40 GHz CPU with 8 GB of memory. Each problem is allowed to run for a maximum of 

7,200 seconds of CPU time (two hours). All 60 problems were stopped due to the time 

limit being reached before finding an optimal solution. Table 5.8 summarizes the 

information from the Gurobi solutions. As the experiment results revealed, the optimality 

gap increases as the number of products increases. The average optimality gap of 

instances 1 – 10 is 87.2% wherein when two products are considered in each order. 

Unfortunately, if more than three total products are involved (instances 21 – 60), the 

optimality gap never reduces below 100%, even after a fairly lengthy amount of 

computation time. 

This high computation cost is additional evidence that our problem’s complexity 

is most probably NP hard. The problems in the experimental study are small in 

comparison to actual problems address in practice. This resulting computational 

performance suggests the need (as expected) for the development of efficient heuristics to 

analyze both this experimental study set and large, more practical-sized industrial 

problems. 
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Table 5.8 Optimality Gaps for 60 Instances 

Problem Optimality 

Gap (%) 

Problem Optimality 

Gap (%) 

Problem Optimality 

Gap (%) 

1 92.8 21 100 41 100 

2 92.9 22 100 42 100 

3 92.4 23 100 43 100 

4 87.6 24 100 44 100 

5 84.5 25 100 45 100 

6 77.6 26 100 46 100 

7 85.1 27 100 47 100 

8 91.6 28 100 48 100 

9 84.7 29 100 49 100 

10 82.8 30 100 50 100 

11 100 31 100 51 100 

12 100 32 100 52 100 

13 100 33 100 53 100 

14 100 34 100 54 100 

15 100 35 100 55 100 

16 100 36 100 56 100 

17 100 37 100 57 100 

18 100 38 100 58 100 

19 100 39 100 59 100 

20 100 40 100 60 100 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE RESEARCH 

Both batching and lot streaming are well studied in the past 20 years of literature. 

However, few studies investigate integrated batching and lot streaming simultaneously. 

This research investigates the integrated batching and lot streaming problem with 

variable sublots, incompatible job families, and sequence-dependent setup in a two-stage 

hybrid flow shop. This research is motivated by the author’s work experience at a coating 

company in China. A MIP model is presented for this problem wherein the number of 

sublots for each product, the size of each sublot, and the production sequence for each 

sublot are determined simultaneously to minimize the sum of total weighted completion 

times. 

Three example problems are tested to validate the proposed model. One set of 

examples illustrate that applying integrated batching and lot streaming can lead to 

improvements in the sum of total weighted completion times for product sublots as 

compared to considering lot streaming alone. The model is implemented in a two-stage 

hybrid flow shop with multiple machines at each stage. In addition, the experimental test 

results show that the optimality gap changes in the same direction as the number of the 

products varies. Besides, when considering more than three products, the optimality gap 

reaches up to 100%. However, the computation cost for solving this optimization model 

is too high for practical implementation.   

The high computation cost may be explained as the proposed problem is most 

probably an NP-hard problem. Hence, the proof of our problem’s complexity is an 
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interesting topic for further study. Furthermore, as the MIP model takes a large amount of 

computation time, the development of heuristic approaches for solving large-size 

problems is a necessary extension to this work. In addition, the model could be extended 

to deal with the same problem in a multi-stage hybrid flow shop in the future. For a future 

journal article submission of this research, some of these research extensions clearly must 

be undertaken. 
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