32,090 research outputs found

    String Matching: Communication, Circuits, and Learning

    Get PDF
    String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem

    State-Dependent Computation Using Coupled Recurrent Networks

    Get PDF
    Although conditional branching between possible behavioral states is a hallmark of intelligent behavior, very little is known about the neuronal mechanisms that support this processing. In a step toward solving this problem, we demonstrate by theoretical analysis and simulation how networks of richly interconnected neurons, such as those observed in the superficial layers of the neocortex, can embed reliable, robust finite state machines. We show how a multistable neuronal network containing a number of states can be created very simply by coupling two recurrent networks whose synaptic weights have been configured for soft winner-take-all (sWTA) performance. These two sWTAs have simple, homogeneous, locally recurrent connectivity except for a small fraction of recurrent cross-connections between them, which are used to embed the required states. This coupling between the maps allows the network to continue to express the current state even after the input that elicited that state iswithdrawn. In addition, a small number of transition neurons implement the necessary input-driven transitions between the embedded states. We provide simple rules to systematically design and construct neuronal state machines of this kind. The significance of our finding is that it offers a method whereby the cortex could construct networks supporting a broad range of sophisticated processing by applying only small specializations to the same generic neuronal circuit

    AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems

    Get PDF
    A 5-layer neuromorphic vision processor whose components communicate spike events asychronously using the address-eventrepresentation (AER) is demonstrated. The system includes a retina chip, two convolution chips, a 2D winner-take-all chip, a delay line chip, a learning classifier chip, and a set of PCBs for computer interfacing and address space remappings. The components use a mixture of analog and digital computation and will learn to classify trajectories of a moving object. A complete experimental setup and measurements results are shown.UniĂłn Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y TecnologĂ­a TIC-2003-08164-C0

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Linking Visual Cortical Development to Visual Perception

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657
    • …
    corecore