3,889 research outputs found

    Design and evaluation of acceleration strategies for speeding up the development of dialog applications

    Get PDF
    In this paper, we describe a complete development platform that features different innovative acceleration strategies, not included in any other current platform, that simplify and speed up the definition of the different elements required to design a spoken dialog service. The proposed accelerations are mainly based on using the information from the backend database schema and contents, as well as cumulative information produced throughout the different steps in the design. Thanks to these accelerations, the interaction between the designer and the platform is improved, and in most cases the design is reduced to simple confirmations of the “proposals” that the platform dynamically provides at each step. In addition, the platform provides several other accelerations such as configurable templates that can be used to define the different tasks in the service or the dialogs to obtain or show information to the user, automatic proposals for the best way to request slot contents from the user (i.e. using mixed-initiative forms or directed forms), an assistant that offers the set of more probable actions required to complete the definition of the different tasks in the application, or another assistant for solving specific modality details such as confirmations of user answers or how to present them the lists of retrieved results after querying the backend database. Additionally, the platform also allows the creation of speech grammars and prompts, database access functions, and the possibility of using mixed initiative and over-answering dialogs. In the paper we also describe in detail each assistant in the platform, emphasizing the different kind of methodologies followed to facilitate the design process at each one. Finally, we describe the results obtained in both a subjective and an objective evaluation with different designers that confirm the viability, usefulness, and functionality of the proposed accelerations. Thanks to the accelerations, the design time is reduced in more than 56% and the number of keystrokes by 84%

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    Ubiquitous Integration and Temporal Synchronisation (UbilTS) framework : a solution for building complex multimodal data capture and interactive systems

    Get PDF
    Contemporary Data Capture and Interactive Systems (DCIS) systems are tied in with various technical complexities such as multimodal data types, diverse hardware and software components, time synchronisation issues and distributed deployment configurations. Building these systems is inherently difficult and requires addressing of these complexities before the intended and purposeful functionalities can be attained. The technical issues are often common and similar among diverse applications. This thesis presents the Ubiquitous Integration and Temporal Synchronisation (UbiITS) framework, a generic solution to address the technical complexities in building DCISs. The proposed solution is an abstract software framework that can be extended and customised to any application requirements. UbiITS includes all fundamental software components, techniques, system level layer abstractions and reference architecture as a collection to enable the systematic construction of complex DCISs. This work details four case studies to showcase the versatility and extensibility of UbiITS framework’s functionalities and demonstrate how it was employed to successfully solve a range of technical requirements. In each case UbiITS operated as the core element of each application. Additionally, these case studies are novel systems by themselves in each of their domains. Longstanding technical issues such as flexibly integrating and interoperating multimodal tools, precise time synchronisation, etc., were resolved in each application by employing UbiITS. The framework enabled establishing a functional system infrastructure in these cases, essentially opening up new lines of research in each discipline where these research approaches would not have been possible without the infrastructure provided by the framework. The thesis further presents a sample implementation of the framework on a device firmware exhibiting its capability to be directly implemented on a hardware platform. Summary metrics are also produced to establish the complexity, reusability, extendibility, implementation and maintainability characteristics of the framework.Engineering and Physical Sciences Research Council (EPSRC) grants - EP/F02553X/1, 114433 and 11394

    Adaptive model-driven user interface development systems

    Get PDF
    Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement

    Proceedings of the 2nd EICS Workshop on Engineering Interactive Computer Systems with SCXML

    Get PDF

    Engineering Adaptive Model-Driven User Interfaces

    No full text
    Software applications that are very large-scale, can encompass hundreds of complex user interfaces (UIs). Such applications are commonly sold as feature-bloated off-the-shelf products to be used by people with variable needs in the required features and layout preferences. Although many UI adaptation approaches were proposed, several gaps and limitations including: extensibility and integration in legacy systems, still need to be addressed in the state-of-the-art adaptive UI development systems. This paper presents Role-Based UI Simplification (RBUIS) as a mechanism for increasing usability through adaptive behaviour by providing end-users with a minimal feature-set and an optimal layout, based on the context-of- use. RBUIS uses an interpreted runtime model-driven approach based on the Cedar Architecture, and is supported by the integrated development environment (IDE), Cedar Studio. RBUIS was evaluated by integrating it into OFBiz, an open-source ERP system. The integration method was assessed and measured by establishing and applying technical metrics. Afterwards, a usability study was carried out to evaluate whether UIs simplified with RBUIS show an improvement over their initial counterparts. This study leveraged questionnaires, checking task completion times and output quality, and eye-tracking. The results showed that UIs simplified with RBUIS significantly improve end-user efficiency, effectiveness, and perceived usability
    corecore