
Proceedings of the 2nd EICS Workshop
on Engineering Interactive Computer
Systems with SCXML
Dirk Schnelle-Walka, Stefan Radomski, Jim Barnett, Max Mühlhäuser (eds.)

Fachbereich Informatik
Telekooperation

Prof. Dr. Max Mühlhäuser

1

Table of Contents

Preface 3
SCXML: Current Status and Future Prospects
Jim Barnett

4

Requirements and Challenges of In-Vehicle Spoken Dialog
Systems Specification from an Industrial Viewpoint
Patricia Braunger, Hansjörg Hofmann, Steffen Werner and Benoit Larochelle

6

Multimodal Dialogmanagement in a Smart Home Context
with SCXML
Dirk Schnelle-Walka, Stephan Radeck-Arneth and Jürgen Striebinger

10

State Machines as a Service
Jacob Beard

17

Energized State Charts with PauWare
Franck Barbier, Olivier Le Goaer and eric Cariou

22

Extending SCXML by a Feature for Creating Dynamic State
Instances
Peter Forbrig, Anke Dittmar and Mathias Kühn

26

Formal Verification of Selected Game-Logic Specifications
Stefan Radomski and Tim Neubacher

30

2

PREFACE
The W3C MMI Working Group suggests the use of
SCXML [1] to express the dialog control of multimodal ap-
plications. The overall approach has already been shown to
be suitable i.e. to decouple the control flow and presentation
layer in multimodal dialog systems [6]. It has been used in
several applications to express dialog states [2], control hand-
held gaming consoles [3] or to easily incorporate informa-
tion [5] from external systems.

With the first implementations of the suite of recommenda-
tions beginning to mature, more deployments in industry are
starting to appear, e.g. for in-car infotainment systems, home
automation and general dialog control. This gave rise to a
new set of problems with regard to the operationalization and
unveiled short-comings and new requirements we hope to dis-
cuss.

Despite these rather practical issues, there are still very inter-
esting research questions revolving SCXML and related rec-
ommendations. The strong focus on state-charts could enable
many formal approaches inapplicable to other dialog man-
agement techniques. Automated dynamic and static testing
of dialogs expressed in SCXML or even model checking [4].

The workshop provided a forum to discuss submissions de-
tailing the use of SCXML, in particular, multi-modal dia-
log systems adhering to the concepts outlined by the various
W3C standards in general and related approaches of declara-
tive dialog modeling to engineer interactive systems.

Our goal was to attract a wide range of submissions related
to the declarative modeling of interactive multi-modal dialog
systems to leverage the discussion and thus to advance the
research of modeling interactive multi-modal dialog systems.

These proceedings contain the keynote from Jim Barnett and
six submissions around the different aspects of engineering
interactive systems with SCXML.

Format
The workshop was conducted as a two-tiered event: i In the
first part the scientific contributions with regard to application
and extensions of SCXML were presented, while ii the sec-
ond part was in the format of an open-panel discussion, where
suggestions that arose during the first part were detailed and
elaborated.

ORGANIZERS AND PROGRAM COMMITTEE
The organizers are early adaptors of SCXML as well as lead-
ing experts from the SCXML working group.

Dirk Schnelle-Walka leads the “Talk&Touch” group at the
Telecooperation Lab at TU Darmstadt. His main research in-
terest is on multimodal interaction in smart spaces.
Stefan Radomski is a PhD candidate at the Telecooperation
Lab at TU Darmstadt. His main research interest is about
multimodal dialog management in pervasive environments.
Jim Barnett is a software architect at Genesys, a contact cen-
ter software company. He is the editor of the SCXML speci-
fication.

Max Mühlhäuser is full professor and heads the Telecooper-
ation Lab at TU Darmstadt. He has over 300 publications on
UbiComp, HCI, IUI, e-learning and multimedia.

The list of program committee members is as follows:

• Rahul Akolkar (IBM Research, USA)
• Kazuyuki Ashimura (W3C, Japan)
• Stephan Borgert (TU Darmstadt, Germany)
• Deborah Dahl (Conversational Technologies, USA)
• David Junger (University of Gothenburg, Sweden)
• Stephan Radeck-Arneth (TU Darmstadt, Germany)
• David Suendermann-Oeft (DHBW Stuttgart, Germany)
• Raj Tumuluri (Openstream, USA)

ACKNOWLEDGEMENTS
The 2nd EICS Workshop on Engineering Interactive Sys-
tems with SCXML was an interesting experience where
participants with all their different backgrounds had lively
discussions about their applications and research regarding
SCXML. If you contributed to it in any way, we are grateful
for your involvement. We wish that these proceedings are a
valuable source of information in your efforts. We hope that
you will enjoy reading the following pages. We would like to
thank the organizers and the program committee for all their
work.

REFERENCES
1. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett,

D. C., Carter, J., McGlashan, S., Lager, T., Helbing, M.,
Hosn, R., Raman, T., Reifenrath, K., Rosenthal, N., and
Roxendal, J. State chart XML (SCXML): State machine
notation for control abstraction. W3C working draft,
W3C, May 2014.
http://www.w3.org/TR/2014/WD-scxml-20140529/.

2. Brusk, J., Lager, T., Hjalmarsson, A., and Wik, P. DEAL:
dialogue management in SCXML for believable game
characters. In Proceedings of the 2007 conference on
Future Play, ACM (2007), 137–144.

3. Kistner, G., and Nuernberger, C. Developing User
Interfaces using SCXML Statecharts. In Workshop on
Engineering Interactive Systems with SCXML (July
2014).

4. Radomski, S., Neubacher, T., and Schnelle-Walka, D.
From Harel To Kripke: A Provable Datamodel for
SCXML. In Workshop on Engineering Interactive
Systems with SCXML (July 2013).

5. Sigüenza Izquierdo, Á., Blanco Murillo, J. L.,
Bernat Vercher, J., and Hernández Gómez, L. A. Using
scxml to integrate semantic sensor information into
context-aware user interfaces. In International Workshop
on Semantic Sensor Web, In conjunction with IC3K 2010,
Telecomunicacion (2011).

6. Wilcock, G. SCXML and voice interfaces. In 3rd Baltic
Conference on Human Language Technologies, Kaunas,
Lithuania (2007).

3

SCXML: Current Status and Future Prospects

Jim Barnett
Genesys

jim.barnett@genesyslab.com

INVITED TALK
We have completed all the technical work necessary for
SCXML to become a recommendation. Only bureaucratic
steps remain, and they are in the hands of W3C staff. We
received 4 implementation reports with at least two for all
mandatory features, as well as the ECMAScript data model
and the HTTP Event I/O Processors. We did not receive the
necessary two implementation reports for either the DOM
Event I/O Processor or the XPath data model. We have there-
fore removed them from the specification and published them
as separate Working Group Notes, in case anyone is interested
in picking up work on them.

Once the SCXML is published as a W3C Recommendation,
the Voice Browser Group will close since SCXML is the last
item it is working on. It is likely that the Multimodal Working
Group will inherit SCXML and other Voice Browser Group
specifications, so future work on them could take place in
that group. It would also be possible to form a Community
Group. Such groups are loosely structured and produce Re-
ports rather than standards-track documents, but they allow
people to work quickly with a minimum of bureaucracy. They
would be particularly well suited to work that is peripheral to
the core standard, for example defining the IDL for the inter-
preter to serve as an interface to GUI tools. If three or four
implementations were interested in collaborating on such an
IDL, it could be produced quickly in a Community Group.

We can also consider extensions to the SCXML standard it-
self. There was very little interest in the XPath data model
when it was dropped from the specification, so it is not
a candidate for future work. It is disappointing that the
SCXML Recommendation lacks two data models since the
Voice Browser Group went to great lengths to define the lan-
guage to abstract away the details of the data model. One can
ask whether this abstraction was successful since the stan-
dard contains only a single data model. However in practice
implementations are not having difficulty defining their own
data models, so I think it is safe to say that SCXML has been
shown to have a pluggable data model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish,to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Copyright is held by the au-
thor/owner(s).
EICS’15 Workshop, Engineering Interactive Systems with SCXML, June 23,
2015, Duisburg, Germany

There was interest in the DOM Event I/O Processor, though
unfortunately none of it came from browser vendors. The
current definition of this processor is purely theoretical, in the
sense that it was produced before anyone had an implemen-
tation, so it may well need significant modification before it
can be truly useful. Such an effort might also be suitable for
a community group.

Other possibilities for future work include making the pre-
emption algorithm pluggable. The Voice Browser Group con-
sidered this option, but decided to make the execution of
SCXML markup as deterministic as possible. One question
is whether a pluggable preemption algorithm would be of any
more than academic interest. This is an area where individ-
ual implementations could experiment and produce useful re-
sults. It would be interesting to know if application develop-
ers would make use of a pluggable algorithm, or whether they
would stick with the default. Another area for experimenta-
tion would be the parallel execution of executable content.
The sequential, lock-step manner in which executable con-
tent is processed simplifies the definition and implementation
of SCXML, but the processing of executable content could be
parallelized without changing the semantics of the rest of the
language. An externally modifiable data model would also
be useful, as well as compatible with Harels original state
machine semantics. Leaving aside the system variables, an
SCXML data model can only be modified by executable con-
tent, and the executable content can only be executed as the
result of the state machine starting up or taking a transition.
Thus a SCXML state machine cannot have a data element
representing the continuously changing value of an external
sensor for example a thermometer. More precisely, an ap-
plication author cannot write a transition with a condition
like cond="temp>70" and expect the transition to be taken
whenever the temperature goes above 70. Instead, the devel-
oper would have to ensure that the sensor injected an external
event each time the temperature changed, and then modify
his application to check for that event and the new tempera-
ture value. This is feasible, but hardly elegant. It therefore
might make sense to define an implicit data changed event
that platforms could generate whenever the data model was
modified. This implicit event would not be seen by mark-up,
but would trigger re-evaluation of all enabled eventless transi-
tions. A number of questions would need to be addressed be-
fore such implicit events could be incorporated into SCXML,
most specifically how they would be interleaved with existing
internal and external events.

It is interesting to consider the relationship between state ma-
chines and planning systems. Any given plan looks a lot like

14

a state machine, with the goals representing states and the ac-
tions being transitions. For example, given a complex state
machine representing a reactive system, it would be possible
to use a planner as a help system. If the user is in state S1 and
wants to get to state S2, the system could present him with a
plan on how to get from S1 to S2. For this to be possible, the
state machine must be statically analyzable, meaning that for
any pair of states Sx and Sy , it is possible to determine if there
is any sequence of events that will move the state machine

from Sx to Sy . This implies restrictions on the data model
and particularly on conditions on transitions. Static analyz-
ability will also put restrictions on dynamic state schemes, in
which states are added or removed from the state machine at
runtime. (Such schemes are not part of the SCXML standard,
but have been discussed at this workshop both this year and
last.) It would be interesting to know which dynamic state
schemes preserve static analyzability.

25

Requirements and Challenges of In-Vehicle Spoken Dialog
Systems Specification from an Industrial Viewpoint

Patricia Braunger, Hansjörg Hofmann, Steffen Werner, Benoit Larochelle

Daimler AG
{patricia.braunger, hansjoerg.hofmann, steffen.werner, benoit.larochelle}@daimler.com

ABSTRACT

The development process of in-vehicle spoken dialog

systems (SDS) is characterized by intensive cooperation of

different parties. Voice user interface designers specify the

system requirements which are then implemented by

integration experts. Therefore adequate specification

formats are an important factor for the development

process. Because the complexity of SDS quickly increases,

new formats are of interest. Specification formats strongly

influence the possibilities of specification and the quality of

the final product and should be therefore based on the

requirements and challenges. The aim of the paper is to

outline the requirements of the modelling in-vehicle SDS

and to explore the challenges that follow, such as specifying

natural language input.

Author Keywords

Specification, Spoken Dialog System, Industry, Natural

Language Input

ACM Classification Keywords

D.2.m Miscellaneous

INTRODUCTION

Nowadays, cars without modern and extensive infotainment

systems are hardly imaginable. Voice control becomes

more and more an important role in cars as ensuring safety

by allowing the driver to keep his hands on the wheel and

his eyes on the road. Since spoken dialog systems (SDS)

consist of voice user interaction and of graphical user

interaction, they are considered as multimodal systems. Due

to an expanding scope of infotainment functions the number

of voice control features is constantly increasing and from

the multiple interfaces result complex systems. Because the

core competencies of automobile manufacturers lie in the

developing of vehicles and user experience (UX)

development, software is often implemented by suppliers

[5]. They define their requirements in a functional

specification which is the basis for integration experts to

implement the software. Thereby the main task of the

specification is to describe the dialogs which are

determined by customer demands and market requirements.

At predefined intervals, the automobile manufacturer

receives software versions from the supplier. The client

receives the software as a “black box”. This is why the

manufacturer verifies the received software versions on the

basis of the specification. The manufacturer informs the

supplier about faulty system behavior or conceptual

changes. These iterations are repeated until the end of the

development process. The development follows the

established V-model [8]. Figure 1 shows the development

process and the interaction of the client and the supplier in

the V-model.

It follows that the quality of the product is directly

connected with the quality of the specification. Thus, the

selection of an adequate specification format is of great

significance for an effective development process.

Specification can be used in different ways in the

development process. It is common in automobile industry

to use specification for a formal description of the system.

Moreover, a formal description of dialogs can be used to

automatically generate test cases and to simulate the

dialogs. Therefore, a machine-readable format could be of

interest [3]. Two formats are common for a formal

description of dialogs: finite-state-based approaches and

flow charts. Flow charts describe the system performance

by a sequence of single activities. Finite-state-based

approaches describe the system performance as system

states affected by events and conditions [9].

With an increasing know-how in the field of dialog systems

and progressive technology development, new challenges

for specification are arising. While today command based

systems are common, a more natural mood of

communication is aspired. That is, the system should be

able to interpret any spoken user utterances. Specifying

natural language input is a critical issue because a limited

amount of grammatically well-structured utterances

becomes an unlimited amount.

System

Specification

User

Requirements

System Testing

Acceptance

Testing

Component

Design

System Design
Integration

Testing

Component

Testing

Coding

Component

Design

System Design
Integration

Testing

Component

Testing

Coding

Client

Supplier

Figure 1: Interaction between system supplier and client [8]

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Copyright is held by the author /owner(s).

EICS’15Workshop, Engineering Interactive Systems with SCXML, June

23, 2015, Duisburg, Germany

6

From this perspective, the present specification formats

quickly show limitations while new formats like SCXML

[1] are taken into consideration. This paper focuses on

requirements and the corresponding challenges of

specification from a certain industrial viewpoint. Figure 2

gives an overview of specification aspects which are

considered when choosing or assessing specification

formats. The outlined requirements and open issues refer to

formal description of dialogs.

The paper at hand is structured as follows. The next section

presents an overview of specification requirements that

follow from the development process and the requirements

related to in-vehicle SDS. Then, we focus on current and

future challenges of SDS specification and provide an

outlook for future development. The last section

summarizes the stated points.

REQUIREMENTS OF SPECIFYING IN-VEHICLE SPOKEN
DIALOG SYSTEMS

To guarantee a high quality, the specification must meet

several requirements that are mentioned in this section.

New specification formats must fulfill these requirements.

Software errors often result from a wrong interpretation of

informal or vague information [6]. A complete and

consistent description of the implemented system is

indispensable, because different parties are involved in the

development of in-vehicle software. Such a description

clarifies the goals and all the expectations of the system to

be developed [4]. To ensure a complete, consistent and

unambiguous specification, a formal specification is needed

[6, 4]. Because spoken dialog systems are multimodal, a

formal dialog description must include user actions like

haptic activation or voice entries and system reactions like

speech output, text output and other system activities.

In addition, a specification of in-vehicle SDS must allow

testability of the complete dialogs to verify the software.

The combination of manual testing and automated testing is

a common testing practice. Manual testing is still necessary,

not at least to evaluate usability. As the visual presentation

of dialogs facilitates the analysis and editing of dialogs,

commonly graphic notations are used for the formal

specification of dialogs [10, 8]. Flow charts or finite-state-

machines (e.g. according to the UML notation) are suitable

[5, 8]. These possibilities allow a complete specification of

all imaginable dialog states and testability of dialogs. It is

important for manual testing that the formal description be

readable also by non-IT-experts. Even though the

complexity of the dialogs increases, the specifications must

remain comprehensible. To ensure readability, a modular

approach is pursued. That is, dialogs are subdivided into

modules that are called in specified sequences [8].

Besides format requirements dialog requirements also

influence the specification. In general, commercially used

dialog systems require that no undesired finite states and no

loops exist. Hence, a robust dialog is especially important

for in-vehicle SDS to enable the driver to focus on the road

traffic [5].

Suitable

Specification

Format

Requirements

Testability

No Overlapping

Formal Completeness

Unambiguousness

Appropriate Level of Detail

Traceability

Deployment

Formal Description

Simulation

Manual Testing

Automated Testing

Challenges

Market-Specific Variants

Application Interfaces

Translations

Model Dependent
Variables

Graphical User Interface

Natural Language Input

Influences

Figure 2: Aspects of in-vehicle SDS specification that influence

the selection of a suitable specification format

Also, a longer dialog has to be initiated in the case of

incomplete user input or unrecognized user input. From

these requirements follow that all possible dialog states and

transitions must be completely specified [5]. A robust

dialog should also avoid overlapping of different voice

entries. In case of overlaps the user would be directed to a

wrong dialog. Hence, a grammar must include all possible

user utterances.

CHALLENGES REGARDING IN-VEHICLE SPOKEN
DIALOG SYSTEMS SPECIFICATION

Current Challenges

The formal description of dialogs and the requirements of

specification in the context of developing in-vehicle

systems faces several challenges.

The design of SDS has to fulfill market-specific

requirements, because dialogs may differ depending on the

target market or country. For example, entering an address

in China differs from doing it in Europe. Due to these

variations, different dialog variants must be specified. The

differences often refer to particular sequences within one

dialog, such as the order of the elements when entering an

address. Besides different dialog flows, markets can vary in

the nomenclature within dialogs. For example, Japan is

subdivided into provinces while the US consists of states.

These regional distinctions have to be considered in dialog

flows. Moreover, certain functions are available only in

specific countries, e.g. Sirius Satellite Radio in the US. In

addition to markets and country variations, different car

model series with different functions and technologies have

to be taken into consideration.

Furthermore the specification has to challenge many

different user utterances. Thus, the occurrence of

overlapping commands becomes more probable with the

increase in controllable features. The same problem must be

resolved in all supported languages. Because of a

worldwide distribution, numerous languages and therefore

many translations have to be managed which are included

7

in the specification document. Translations often result in

overlapping commands because of wrong interpretation or

similar wording.

Besides voice input and output, a formal description of

dialogs must consider haptic user actions and graphical

output. It is important to formally define the interaction

transitions between the graphical user interface and the

voice user interface.

The definition of interfaces to other functional applications

such as navigation, phone, tuner or player is also

challenging. A formal specification must include a formal

(machine-readable) definition of interface calls as the

experts have to integrate different application modules.

Due to the illustrated challenges, it is quite difficult to

fulfill the requirements of specification because a complete

and unambiguous specification often results in

unreadability and formal incompleteness.

The technical progress in recent years has changed user

expectations of SDS. At the beginning only single-word-

commands were possible. Then, “Command & Control”

enabled the user to speak short phrases. Following

improvements in automatic speech recognition recent

systems are able to recognize natural language input in

restricted domains (see Apple’s Siri1
) [12]. Thus, a more

natural human machine interaction is demanded by users.

With the claim to a natural mode of communication new

challenges arise for the specification formats.

New Challenge Natural Language Input

Specification of SDS has to fulfill several requirements and

faces several challenges. Figure 3 shows the current

difficulty. Up to now, the requirements and challenges are

more or less balanced. That is, current specification is still

appropriate. The development of a more natural human

machine interaction leads to significant leaks of current

specification.

The term natural language input refers to the properties of

human speech. The most important properties of natural

language compared to commands are listed in the following

[11, 2]:

 Flexible sentence constructions, e.g. flexible

constituent order, different sentence types

 Variable wording

 Anaphora

 Lack of precision

 Colloquial language (contextual knowledge

needed)

 Ambiguity

In addition, more naturalness of SDS requires a

consideration of spoken language properties. Spoken

1
 http://www.apple.com/ios/siri/

language differs from written language and grammatically

well-structured utterances in spontaneity. Spontaneous

speech production is characterized by interruptions,

hesitation phenomena and grammatically incorrect

sentences [11]. These characteristics must be considered

when developing SDS to make natural language input

possible. Natural language input results in a not limited

amount of possible user utterances. As mentioned above,

specifying all possible user utterances is common practice

for in-vehicle spoken dialog systems. While users demand a

larger variety of possible utterances, grammars increase

significantly in complexity. This leads to an unreadable and

untraceable specification. Therefore, the current

specification is no more appropriate. Natural language input

breaks the equilibrium of current specification as Figure 3

shows.

The properties of natural language raise the question of how

to specify all possible user input utterances and the

corresponding system reaction. One possibility of

specifying natural language input is to extract the meaning

of imaginable utterances. In doing so, attributes and

corresponding values could be given instead of utterances

[7]. It should be kept in mind that software tests are

necessary. Usually, when evaluating the speech input

capabilities of a SDS, people assess the recognition

performance on an utterance [7]. It is common to assess the

result of the automatic speech recognition module (ASR).

Specifying semantically by attribute-value-pairs means no

verbalized user utterances. This raises the question, how to

test the functionality of the system without knowing the

capability. The procedure of specifying semantically seems

not appropriate for testing the software in the normal

manner. When specifying semantically, the language

understanding (LU) performance becomes more important

because the LU module extracts the meaning of the

recognized utterance. The LU performance is often assessed

on the basis of attribute-value-pairs [7]. Specification of

natural language input requires therefore a change in

measurement. In any case, it is unclear how to generate

automatically test cases on the basis of attribute-value-pairs

and how to test the LU performance. Collecting data from

crowdsourcing or smaller studies might be one possibility

identifying possible user utterances.

In the course of further research we will focus on process

steps of developing more natural spoken dialog systems.

We will concentrate especially on the problems of

specifying and testing natural language input. A possible

solution might be a semantical specification. We will assess

specification formats in regard to specification of natural

language input and the possibility of automatically

generating test cases. In addition, further research will

investigate test procedures such as collecting data from

crowdsourcing or smaller studies. We will also consider

other development process methods such as SCRUM and

specifying user stories.

8

Requirements

• Formal Completeness

• Unambiguousness

• Appropriate Level of Detail

• Readability by Non-IT-Experts
• Traceability

• Testability

• No Overlapping

Current Challenges

• Model Dependent Variables

• Market-Specific Variants

• Translations

• Graphical User Interface

• Application Interfaces

Figure 3: Indifferent equilibrium of requirements and challenges.

SUMMARY

A formal specification clarifies goals and expectations and

prevents wrong interpretations. Complete, consistent and

unambiguous specifications are necessary because several

parties are involved in developing in-vehicle SDS. Because

of new challenges that are associated with natural language

input, current specification formats show limitations.

Therefore, the requirements and challenges mentioned in

the paper require the use of new specification formats. A

formal completeness, unambiguousness, an appropriate

level of detail, readability by non-IT-experts, no

overlapping and traceability of complex dialogs are the

given requirements. Some of these requirements cause

challenges for current specification. To provide a complete

specification, market demands, model dependent variables

and translations should be taken into account. A great

number of functions operated by voice, the graphical user

interface and the definition of application interfaces were

also mentioned as a challenge. Readability often suffers

when one prepares a complete, detailed and unambiguous

specification. On the one side, a full description of dialogs

is required. On the other side, the described properties of

natural language result in a very extensive grammar and an

unreadable specification. Hence, specifying natural

communication raises several challenges. Specifying all

possible utterances or even finding them out, pose a

problem to current specification formats and processes. The

specification format should also assist with the testing of

this complex system.

REFERENCES

1. Barnett, J., Akolkar, R., Auburn, R., Bodell, M.,

Burnett, D. C., Carter, J., McGlashan, S., Lager, T.,

Helbing, M., Hosn, R., Raman, T., Reifenrath, K.,

Rosenthal, N., and Roxendal, J., State Chart XML

(SCXML): State machine notation for control

abstraction. W3C Working Draft (2013).

2. Berg, M., Natürlichsprachlichkeit in Dialogsystemen.

Informatik-Spektrum, 36, 4 (2012), 371–381.

3. Bock, C., Einsatz formaler Spezifikationen im

Entwicklungsprozess von Mensch-Maschine-

Schnittstellen. Technische Universität Kaiserslautern

(2007).

4. Brost, M., Automatisierte Testfallerzeugung auf

Grundlage einer zustandsbasierten

Funktionsbeschreibung für Kraftfahrzeugsteuergeräte.

expert verlag (2009).

5. Hamerich, S., Sprachbedienung im Automobil -

Teilautomatisierte Entwicklung benutzerfreundlicher

Dialogsysteme. Springer (2009).

6. Haubelt, C., Teich, J., Digitale Hardware/Software-

Systeme. Spezifikation und Verifikation. Springer

(2010).

7. Hofmann, H., Intuitive Speech Interface Technology for

Information Exchange Tasks. PhD thesis, Universität

Ulm (2014).

8. Lütze, L., Modellbasierter Testprozess der akustischen

Mensch-Maschine-Schnittstelle eines

Infotainmentsystems im Kraftfahrzeug. PhD thesis,

Universität Stuttgart (2013).

9. Lütze, L., Werner, S. Qualitätssicherung im

Linguatronic Entwicklungsprozess – Modellbasiertes

Testen auf Basis formaler Beschreibung von

Sprachdialogsystemen. Elektronische

Sprachsignalverarbeitung (ESSV), Tagungsband,

TUDpress (2012), 196-203.

10. Rumpe, B., Modellierung mit UML: Sprache, Konzepte

und Methodik. Springer (2011).

11. Schwitalla, J., Gesprochenes Deutsch. Erich Schmidt

Verlag (2006).

12. Werner, S., Sprachdialogsysteme im Automobil – von

der Theorie in die Serienproduktion. Systemtheorie,

Signalverarbeitung, Sprachtechnologie, TUDpress

(2013)

9

Multimodal Dialogmanagement in a Smart Home Context
with SCXML

Dirk Schnelle-Walka
S1NN Gmbh & Co KG

Germany
dirk.schnelle-walka@s1nn.de

Stephan Radeck-Arneth
TU Darmstadt

Germany
stephan.radeck-arneth@cs.tu-

darmstadt.de

Jürgen Striebinger
Cibek GmbH

Germany
juergen.striebinger@cibek.de

ABSTRACT
The W3C MMI architecture is a recommendation for a com-
mon conceptualization for multimodal interaction focusing
on the components involved and the messages passed be-
tween them. However, the standard does not cover integration
of multimodal fusion and fission as addressed in the multi-
tude of prototypical implementations, frameworks and appli-
cations prior to this standard. In this paper we describe an
integration of current multimodal fusion and fission into this
standard with an SCXML dialog manager in the context of
smart homes.

Author Keywords
multimodal architecture; dialog management; SCXML;
MMI, EMMA, smart homes

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Our homes are becoming smarter. Controlling devices in
these smart homes by multiple modalities is already a real-
ity. A typical architecture of such a smart home is shown in
figure 1.

Figure 1. Typical architecture of a Smart Home

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’15, June 23–25, 2015, Duisburg, Germany.

Multimodal input into these system should follow the con-
cepts shown in figure 2.

Figure 2. High-level multimodal architecture, adapted from [5]

Researchers as well as industry developed a plethora of devi-
ations thereof for decades [5]. This makes it harder to reuse
established knowledge and best-practices. With the advent of
the W3C Multimodal Architecture and Interfaces recommen-
dation [3] a promising candidate to standardize multimodal
systems is available. A first analysis of the nuts and bolts
is provided by [20]. However, the actual approach on how
input coming from multiple sources is fused into a coherent
meaning (multimodal fusion [12]) as well as state-of-the-art
concepts on how to deliver information using more than a sin-
gle available modality (multimodal fission [12]) is vaguely
specified in the respective standards. Some first thoughts are
described by Schnelle-Walka et al.in [21] and Ruf et al. [19].
This paper builds on [19]. While the latter deals on the as-
pects of implementing multimodal fusion and fission within
the W3C architecture, this paper focuses on dialog manage-
ment in the same setting. The W3C suggests the use of
SCXML [2] as the dialog manager which has been proven
to be suitable to decouple the control flow and presentation
layer in dialog management [25]. It has been used in several
applications to express dialog states [4] or to easily incorpo-
rate external information [22].

RELATED WORK
A similar multimodal architecture was proposed by Fernan-
dez et al. in [9] for the smart home. They combined the
model-view-presenter pattern (MVP) with a service oriented
paradigm. MVP is derived from the Model-view-controller
pattern (MVC) and synchronizes different views with a pre-
senter component. The fusion and fission functionality are

10

integrated in the presenter. The communication between pre-
senter and modalities is realized via an event communication
channel within the OSGi infrastructure. The user preferences,
available entities and execution context are integrated in a
multimodal interface instance. The prototype supports visual,
haptic, gesture and voice. The platform uses OSGi service
and is implemented as an OSGi service factory. In compari-
son to our work, the components of the resulting architecture
are coupled and some components are not open-source.

In [6] Cohen et al. describe Sketch-Thru-Plan (STP) as an-
other, but more recent closed-source multimodal system. It
combines gesture, handwriting, touch and speech. For robust
command & control speech recognition, a grammar based
speech recognition was selected. STP enables collaborative
planning between several users through the multimodal inter-
face. For speech recognition the Microsoft Speech Engine
(SAPI) of Windows 7/8 is used. Push-to-talk (PTT) is cor-
related with the interaction of the screen by touch events to
reduce the effects of conversational speech. Cohen et al. con-
sider statistical language models (SLM) for future extensions,
but the authors consider grammar-based recognition to be suf-
ficient, since the users are trained to use a specific vocabulary.
However, STP is not designed for reusability.

Another WWHT-based [18] multimodal fission contribution
were introduced by Costa et al. [7]. The developed GUIDE
system supports elderly users to communicate through em-
ploying appropriate modalities. The system uses video, au-
dio and haptic interfaces and is integrated with the television.
The multimodal fission selects the interface best suited for
the communication for several users individually. However
the system focus on multimodal fission. The integration in a
multimodal architecture including fusion is out of scope for
the work described in this paper.

As an alternate approach to WWHT, Pitsikalis et al. [14]
trained Hidden Markov Models for multimodal fission.
HMMs also proofed to be useful when fusing input from mul-
tiple modalities. Potamianos et al. [15] rely on HMM for au-
diovisual ASR, i.e. multimodal fusion. We consider HMMs
for a later stage of the project. In order to actually train the
models sufficient data is required which may be obtained by
the rule based approach described later on.

MULTIMODAL ARCHITECTURE WITH THE W3C
The recommended architecture by the W3C decomposes a
multimodal application into an interconnected structure of
interaction managers (IM) for dialog control and modality
components (MC) for in- and output. An implementation is
formulated as a set of control documents reflected e.g. in
SCXML for the interaction managers and a set of presentation
documents with modality-specific markup for the modality
components [21]. A topmost root controller document articu-
lates the global dialog and instantiates modality components
as required. Each modality component can, in turn, again
be an interaction manager, managing more fine granular con-
cerns of dialog control, such as error correction or even sensor
fusion/fission.

Multimodal Fusion

In multimodal systems users are capable to express their di-
alog move by more than a unique modality. Multimodal fu-
sion synthesizes the input arriving from the varying modal-
ities into a unified semantic interpretation that declares the
user’s interaction intent [1]. Multimodal fusion mainly serves
two purposes (i) provide an abstraction that enables usage of
the provided information regardless of the used modality and
(ii) derive a meaning thereof. Hence, the fusion engine needs
an application independent representation of the current ap-
plication context to infer meaning [8] which is available with
EMMA1. Following the MMI W3C architectural pattern, the
MCs send their input as EMMA events to the upper IM for
further refinement.

For the fusion engine, Bui [5] infers in his survey paper a
high-level view onto multi-level fusion as shown in Figure 3.
According to Bui, this type of fusion consists of two main lev-

Figure 3. Multi-Level fusion, adapted from [5]

els of fusion: (i) feature-level fusion and (ii) semantic-level
fusion. In the feature-level fusion the features as an output
of the modality component are transformed into a modality-
independent format. The subsequent semantic fusion decides,
in a frame-based fusion manner [24], if the provided informa-
tion is already sufficient to execute an action. In case it is in-
sufficient, it is stored for later integration. The last integration
step fuses the received semantic information into a coherent
meaning. If required information is not received within a pre-
defined time span, the available information is also forwarded
to the upper IM, e.g. to initiate actions to ask explicitly for
the missing piece.

Multimodal Fission
Multimodal systems provide for the consolidated or alterna-
tive application of separate input modalities and to choose
output modalities most suitable for a given context. Along-
side the benefits nominated by Oviatt and Cohen [13], partic-
ularly that the system increases stability and is fewer prone to
errors, a suitable selection and combining of output modal-
ities has the opportunity to facilitate or allow communica-
tion. One concept for fusion was established as WWHT by
Rousseau et al. [17] (see Figure 4). (i) What is the infor-
mation to render, (ii) Which modalities should we utilize to
present this information, (iii) How to roll out the information
applying these modalities and (iv) and Then, how to manage
the progress of the deriving presentation [18]. These ques-
tions also shape the processing stages during fission and are
described in [21] as follows:

1http://www.w3.org/TR/EMMA/

11

Figure 4. Multi-Level Fission with WWHT, derived from [17]

In the What level, a message is split into basic information
unit.

The Which level offers for the choice of suitable modalities
founded on rules and the affordances of the unique modali-
ties.

In the How level, the output is actually rendered. This is
achieved by the specified MCs.

Dialogmanagement with SCXML
Throughout the W3C MMI architecture recommendation,
SCXML is stated as the preferred option for controller docu-
ments. At its origin, SCXML is a specification of finite state
machine with parallel and nested states, as defined by Harel
et al [11]. An SCXML implementation can, e.g., initiate ac-
tions when states are entered or transitions are taken. These
actions include updating an internal data model or submitting
events to other components. Transitions can be guarded by
conditions, their evaluation is elicited via internal or external
events.

In essence, SCXML is able to design dialog behavior even in
the uppermost IM as the current application or nested in MCs
e.g. for form filling or local error correction.

IMPLEMENTATION
In this section, we describe our implementation and some
short-comings as a proof-of concept of the theoretical ap-
proaches mentioned above. We rely on OSGi as it used in the
smart home controller by Cibek2. OSGi has proven to provide
sufficient flexibility to address the different settings in actual
deployments of smart homes. Multimodal fusion and fission
are already described in [19] but are translated into English.

Multimodal Fusion
The nature of the WWHT approach to multimodal fusion is
rule-based. A suitable framework for such rule-based systems
is JBoss Drools3. It can be triggered by an OSGi bundle with
an HTTP server to receive incoming MMI POST requests.
The OSGi bundle injects the request into the knowledge base.
Usually these MMI events will feature EMMA content that
are extracted and injected as objects into the knowledge base.
In the following, the request can be processed within the mul-
timodal fusion via specialized rules. We used a separate file
2http://www.cibek.de
3http://www.drools.org/

per modality to keep an overview. Consecutive processing in-
cludes further refinement of the received object and execution
of Java code. At this stage of development we offered support
for touch, speech, gesture and sensor input.

We had serious problems to carefully design the rules in or-
der to avoid endless loops. Special care has to be taken to
remove objects from the knowledge base when they are no
longer needed.

Multimodal Fission
After an action has been executed an additional output may
be requested or the application has to query for additional
information. Note that an action is already one type of output
so that an output is not needed in all cases.

We considered the modalities: text based output on a TV
screen or a wall-mounted monitor, text-to-speech and avatar.
Following the concept of WWHT the election in the Which
stage first considered all available modalities. Based on the
user’s abilities, e.g. visual or aural impairment which are not
uncommon in AAL settings, all modality-medium pairs with
the corresponding inaccessible medium were removed. Then,
all pairs that did not match the current context, were filtered.
For instance, a sensor notified that the user started the inter-
action at a wall-mounted display and moved to the TV set. In
this case, all subsequent output would be displayed using the
TV screen.

In order to render the output in the How stage, correspond-
ing MMI messages carry modality-specific markup, e.g.
VoiceXML [?] for spoken interaction or BML [23] for the
Avatar, in the data element.

Dialogmanagement with SCXML
Following the suggestion of the W3C MMI architectural
pattern, the topmost interaction manager deals with high level
tasks while fine-granular concerns of dialog control are han-
dled by modality components acting as interaction managers.
We employed uSCXML4 as the SCXML interpreter. For a
smart home control scenario the main task of the interpreter
is on adapting to the current context, represented as states
in an SCXML document (see figure 5). These states feature

Figure 5. State-based context changer

4http://github.com/tklab-tud/uscxml

12

information relevant for the current situation. For example,
consider grammars for a speech recognizer. Usually, speech
input is recognized with higher accuracy if grammars are
used [16, 10]. Incoming data from the fusion engine may
cause a context switch, thus updating the application with
new contextual information. The following SCXML snippet
listing 1 shows how grammar can be injected into a speech
recognizer using the <send> tag when the state is entered.

Listing 1. SCXML snippet
1 <scxml version=”1.0”>
2 <state id=”State A”>
3 <onentry>
4 <send type=”application”>
5 <content>
6 <output>[...]</output>
7 <grammar>
8 <rule>[...]</rule>
9 <rule>[...]</rule>

10 </grammar>
11 [...]
12 </content>
13 </send>
14 </onentry>
15 <transition event=”event.B” target=”State B”/>
16 </state>
17

18 <state id=”state B”>
19 [...]
20 </state>
21

22 [...]
23 </scxml>

The voice modality is handled by VoiceXML. Here we em-
ployed JVoiceXML [20] since it already features MMI com-
munication capabilities. VoiceXML is a dialog manager on
its own. For the topmost interaction SCXML-based interac-
tion manager VoiceXML serves as a modality component that
is capable of handling synthesized spoken output and speech
input. This is achieved by sending corresponding MMI events
to the voice browser with VoiceXML snippets in their data el-
ement. The grammars mentioned above are part of it. As a
dialog manager, the voice browser itself is another interac-
tion manager that independently handles the spoken dialog.
This includes error handling within the modality and is in
line with the principle of the Russian Doll as mentioned in
the W3C MMI standard. Local error management however
violates the concepts of multimodal error correction accord-
ing to the architecture described in the high-level multimodal
architecture (ref. to figure 2). Following the general idea that
is described here, error management should be another iter-
ation through the complete processing pipeline to allow for
error correction by other modalities. We solved this by issu-
ing MMI extension notifications to the multimodal fission in
case of detected error correction within VoiceXML as shown
in figure 6. This way, it is possible to exploit VoiceXML’s

Figure 6. Use of multiple interaction managers

built-in capabilities to handle errors while being able, e.g., to
show a puzzled avatar on a screen.

WALKTHROUGH
The following exemplifies the usage of the system. Imag-
ine the following a scenario. In the morning, Alex enters the
kitchen for the first time. The wall-mounted monitor shows
how an avatar enters the scene to greet him: “Good Morn-
ing Alex. How may I help you?” As it is still dark inside
the kitchen, Alex asks top open the shutter. While they are
opening, the Avatar asks: “OK. Anything else I can help you
with?”

This is reflected by our system as follows: Alex enters the
kitchen and is recognized by a motion sensor. We employed
an OPUS greenNet motion sensor for this purpose. This is
fed into the fusion engine as an MMI new context request
to initialize the dialog. The data attribute contains the loca-
tion kitchen encoded in an EMMA document. A drools rule
extracts the location data and updates the knowledge source.
Additionally, it issues a start request to the upper IM, the con-
text changer. The context changer is defined in a separate
OSGi bundle with its own SCXML document default.scxml
(see Listing 2).

Listing 2. Excerpt from default.scxml with information for the context
changer

1 <state id=”default−state”>
2 <onentry>
3 <send type=”drools”>
4 <content>
5 <type>VXML</type>
6 <currentState>default−state</currentState>
7 ...
8 <transitions>
9 <contextChanges>

10 <contextChange>cooking</contextChange>
11 <contextChange>select−recipe</contextChange>
12 <contextChange>morning</contextChange>
13 ...
14 </contextChanges>
15 ...
16 </transitions>
17 </content>
18 </send>
19 </onentry>
20 <transition event=”event.cooking”
21 target=”cooking” />
22 <transition event=”event.select−recipe”

13

23 target=”cooking” />
24 <transition event=”event.morning”
25 target=”morning” />
26 ...
27 </state>

We employed a special sort of IO processors that are used
within the OSGi system. The context changer loads the cor-
responding morning.scxml file into uSCXML for further pro-
cessing. First, the SCXML is validated to ensure that all tran-
sitions are valid. In addition it guarantees that interpretation
of the SCXML document is only executed if all employed IO
processors are available. This needs to be done to account for
the modular nature of OSGi and to ensure that it can commu-
nicate with the environment.

The dedicated morning process then issues a start request to
the multimodal fission bundle to let the avatar appear on the
display and greet the user. The multimodal fission knows
about the available modalities, avatar and speech output and
sends a corresponding BML document to the avatar and a
VoiceXML document to JVoiceXML. Knowledge about the
available modalities and user preferences is configured as
rules in a similar fashion as the multimodal fusion. The avatar
is configured as a TTS engine in JVoiceXML which enables
parallel use of this modality from within VoiceXML and by
the multimodal fission engine.

The avatar movements of lower granularity follow a state-
based approach to control the movements at a higher level in
the context changer. This includes, appearance on the screen,
leaving and some more high-level activities like putting on a
cooking hat to adapt to the current context. Controlling the
avatar at a lower level, like looking puzzled if a user input
could not be matched or TTS output is triggered by dedicated
SCXML scripts per dialog. Additionally, the avatar is used
as output from JVoiceXML, requiring synchronization of lip
movements and TTS output. We rely on the capabilities of
the avatar’s BML interpreter to merge this into smooth move-
ments.

As a result the avatar appears on the display (controlled by
uSCXML) and greets the user “Good morning.” (controlled
by JVoiceXML) as shown in figure 7. The grammars con-

Figure 7. The avatar appears on the screen and greets the user

tained in the SCXML, as shown in listing 1, to continue the

dialog are sent to JVoiceXML in the same start request. The
VoiceXML document contains a single field with a prompt
“How may I help you” and expects input for the received
grammars. A dialog turn has one JVoiceXML session at max-
imum. Additional turns require processing by the complete
chain from fusion to fission. Alternatively, it may be canceled
by a cancel request if voice input is no longer required.

Once the user utters “Open the shutters” the command field
gets filled. The dialog terminates and sends out a done notifi-
cation containing the semantic interpretation as is is obtained
from the grammar encoded as EMMA in the data tag. Here,
we violate the concepts of MMI and do not send it to the
invoking IM but to the multimodal fusion engine for further
processing. This way, it is possible to keep the multimodal
processing chain. Again the fusion engine fuses this com-
mand with the location information that is in the knowledge
base and forwards the result to the dialog manager to actu-
ally execute the command. In this case, the SCXML triggers
another OSGi bundle to send a corresponding command over
KNX to the shutter (see figure 1). In addition, the avatar looks
up and states “OK” following the same pipeline as described
above.

SUMMARY AND CONCLUSION
In this paper we described a multimodal system to control
smart homes employing open source software components.
Some of the concepts have been described in previous publi-
cations which we now integrated into a fully functional proto-
type. It follows the W3C MMI architectural recommendation
and integrates proven theoretical concepts of multimodal fu-
sion and fission. SCXML turned out to be a good candidate
for the topmost interaction manager. However, we had to vi-
olate the principle of a tree structure as suggested in the W3C
MMI standard to enable multimodal error correction. Our fi-
nal architecture is shown in Figure 8.

Figure 8. Implemented architecture

It is our hope that the results presented here stimulate the
discussion around the W3C MMI standard to integrate mul-
timodal fusion and fission as well as the interplay between
multiple dialog managers within an architecture following the
standard.

Currently, we are about to prepare a user study to evaluate the
interaction in an ongoing project.

Acknowledgments

14

This work was partly supported by the Bundesministerium
für Bildung und Forschung (BMBF), Germany under the pro-
gramme “KMU-innovativ: Mensch-Technik-Interaktion für
den demografischen Wandel”.

REFERENCES
1. Atrey, P. K., Hossain, M. A., Saddik, A. E., and

Kankanhalli, M. S. Multimodal fusion for multimedia
analysis: a survey. Multimedia systems 16, 6 (2010),
345–379.

2. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett,
D. C., Carter, J., McGlashan, S., Lager, T., Helbing, M.,
Hosn, R., Raman, T., Reifenrath, K., Rosenthal, N., and
Roxendal, J. State chart XML (SCXML): State machine
notation for control abstraction. W3C working draft,
W3C, May 2014.
http://www.w3.org/TR/2014/WD-scxml-20140529/.

3. Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B.,
Raggett, D., Raman, T., Rodriguez, B. H., Selvari, M.,
Tumuluri, R., Wahbe, A., Wiechno, P., and Yudkowsky,
M. Multimodal Architecture and Interfaces. W3C
recommendation, W3C, Oct. 2012.
http://www.w3.org/TR/mmi-arch/.

4. Brusk, J., Lager, T., Hjalmarsson, A., and Wik, P.
DEAL: dialogue management in SCXML for believable
game characters. In Proceedings of the 2007 conference
on Future Play, ACM (2007), 137–144.

5. Bui, T. Multimodal Dialogue Management - State of the
art. Tech. Rep. TR-CTI, Enschede, Jan. 2006.

6. Cohen, P. R., Kaiser, E. C., Buchanan, M. C., Lind, S.,
Corrigan, M. J., and Wesson, R. M. Sketch-Thru-Plan:
A Multimodal Interface for Command and Control. In
Communications of the ACM, vol. 58 (Apr. 2015),
56–65.

7. Costa, D., and Duarte, C. Adapting Multimodal Fission
to Users Abilities. In Universal Access in
Human-Computer Interaction. Design for All and
eInclusion, 6th International Conference, UAHCI,
Springer (2011).

8. Dourlens, S., Ramdane-Cherif, A., and Monacelli, E.
Multi levels semantic architecture for multimodal
interaction. Applied Intelligence (2013), 1–14.

9. Fernandez, M., Pelaez, V., Lopez, G., Carus, J., and
Lobato, V. Multimodal Interfaces for the Smart Home:
Findings in the Process from Architectural Design to
User Evaluation. Ubiquitous Computing and Ambient
Intelligence (2012), 173–180.

10. Gorrell, G., Lewin, I., and Rayner, M. Adding intelligent
help to mixed-initiative spoken dialogue systems. In
ACL-02 Companion Volume to the Proceedings of the
Conference (2002).

11. Harel, D., and Politi, M. Modeling Reactive Systems
with Statecharts: The Statemate Approach.
McGraw-Hill, Inc., Aug. 1998.

12. Landragin, F. Physical, semantic and pragmatic levels
for multimodal fusion and fission. In Proceedings of the
Seventh International Workshop on Computational
Semantics (IWCS-7) (2007), 346–350.

13. Oviatt, S. L., and Cohen, P. R. Multimodal Interfaces
That Process What Comes Naturally. Communications
of the ACM 43, 3 (2000), 45–53.

14. Pitsikalis, V., Katsamanis, A., and Papandreou, G.
Adaptive multimodal fusion by uncertainty
compensation. In IEEE Transactions on Audio, Speech,
and Language Processing (2009).

15. Potamianos, G., Huang, J., and Marcheret, E. e. a.
Far-field multimodal speech processing and
conversational interaction in smart spaces. 2008
Hands-free Speech Communication and Microphone
Arrays, Proceedings (2008), 119–123.

16. Rayner, E., Bouillon, P., Chatzichrisafis, N., Hockey,
B. A., Santaholma, M. E., Starlander, M., Isahara, H.,
Kanzaki, K., and Nakao, Y. A methodology for
comparing grammar-based and robust approaches to
speech understanding. Proceedings of
Eurospeech-Interspeech, 9th European Conference on
Speech Communication and Technology (2005),
1103–1107.

17. Rousseau, C., Bellik, Y., and Vernier, F. WWHT: Un
modèle conceptuel pour la présentation multimodale
d’information. In Proceedings of the 17th international
conference on Francophone sur l’Interaction
Homme-Machine, ACM (2005), 59–66.

18. Rousseau, C., Bellik, Y., Vernier, F., and Bazalgette, D.
A Framework for the Intelligent Multimodal
Presentation of Information. Signal Processing 86, 12
(2006), 3696–3713.

19. Ruf, C., Striebinger, J., and Schnelle-Walka, D. Sprach-
und Gestensteuerung fr das Smart Home.
JavaSPEKTRUM (Mar. 2015).

20. Schnelle-Walka, D., Radomski, S., and Mühlhäuser, M.
JVoiceXML as a Modality Component in the W3C
Multimodal Architecture. Journal on Multimodal User
Interfaces (Apr. 2013).

21. Schnelle-Walka, D., Radomski, S., and Mühlhäuser, M.
Multimodal Fusion and Fission within W3C Standards
for Nonverbal Communication with Blind Persons. In
Computers Helping People with Special Needs, 14th
International Conference on Computers Helping People
with Special Needs, Springer (July 2014), 209–213.

22. Sigüenza Izquierdo, Á., Blanco Murillo, J. L.,
Bernat Vercher, J., and Hernández Gómez, L. A. Using
SCXML to integrate semantic sensor information into
context-aware user interfaces. In International Workshop
on Semantic Sensor Web, In conjunction with IC3K
2010, Telecomunicacion (2011).

15

23. van Welbergen et al., H. BML 1.0 Standard. Standard,
SAIBA, Apr. 2014.
http://www.mindmakers.org/projects/bml-1-
0/wiki#BML-10-Standard.

24. Vo, M. T., and Wood, C. Building an application
framework for speech and pen input integration in

multimodal learning interfaces. In Proceedings of the
IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (1996).

25. Wilcock, G. SCXML and voice interfaces. In 3rd Baltic
Conference on Human Language Technologies, Kaunas,
Lithuania (2007).

16

State Machines as a Service
An SCXML Microservices Platform for the Internet of Things

Jacob Beard
Jacobean Research and Development

1732 1st Ave #25343
New York, NY 10128

jake@jacobeanrnd.com

ABSTRACT
The Internet of Things (IoT) describes a range of
Internet-connected devices. In a typical IoT applica-
tion, a fleet of IoT devices generates sensor data which
is analyzed in real time to derive actionable intelligence;
and IoT actuators are controlled in response to this in-
telligence. W3C SCXML can be used effectively as a
domain-specific language to analyze IoT sensor data and
control IoT actuators.

IoT has unique scaling requirements, and a solution is re-
quired to operationalize SCXML to support large-scale
IoT deployments consisting of potentially millions of de-
vices. State Machines as a Service (SMaaS) is a new
category of Platform as a Service (PaaS) technology for
simulating persistent state machines in a secure, dis-
tributed cloud computing environment. This platform
enables SCXML to be operationalized in the cloud to
control IoT networks of arbitrary size and complexity.

Author Keywords
SCXML; IoT; PaaS; LXC; Docker; Microservices

INTRODUCTION
Statecharts, a visual modelling language for describ-
ing timed, event-driven, stateful systems [6], has been
used in applications including telecommunications [3],
robotics [9], manufacturing [5], automotive systems [12],
and user interfaces [7].

Statecharts is supported by industry standards, such as
SCXML, a draft specification published by the W3C
[2]. There exist a number of open source implementa-
tions of SCXML, including the SCXML Interpretation
and Optimization eNgine (SCION), an implementation
of SCXML in JavaScript [4]. SCION is used in pro-
duction in enterprises for purposes including modeling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

complex user interface behaviour in financial web appli-
cations; managing navigation in multi-modal telephony
applications; and controlling hardware in scientific in-
struments.

The Internet of Things
The Internet of Things (IoT) describes a new category of
Internet-connected devices. These devices communicate
via a range of wireless network protocols including WiFi,
ZigBee, Z-Wave, and 6LoWPAN.

An example of a consumer IoT device is the Belkin
WeMo Light Switch. This IoT light switch connects to a
user’s WiFi network, and can be controlled via a UPnP
and SOAP application protocol.

SCXML for the Internet of Things
SCXML can interface with various IoT network proto-
cols in order to parse sensor data and control devices
actuators [11].

For example, a simple Statechart diagram can be seen
in Figure 1. This Statechart models the behaviour of
the WeMo light switch. It has three states: “on”,
“off”, and “error”, with transitions between the states on
device events “device.turnOn”, “device.turnOff”, “de-
vice.error” and “device.reset”. These events are emitted
by the WeMo device via its UPnP SOAP API.

OK

error
onoff

device.error
device.turnOff device.turnOn

device.reset

Figure 1. Light Switch Statechart

The corresponding SCXML for this Statechart diagram
can be see in Figure 2. This SCXML may be run inside
an SCXML execution environment.

STATE MACHINES AS A SERVICE
State Machines as a Service (SMaaS) is a new category of
Platform as a Service (PaaS). PaaS provides services to
deploy and run applications on cloud computing infras-
tructure without the need to manage the underlying in-
frastructure. SMaaS is a specialized PaaS that allows de-
velopers to deploy and run SCXML applications. SMaaS
implements a custom API based on HTTP and REST

17

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<scxml

xmlns=” h t tp : //www. w3 . org /2005/07/ scxml”
name=” l i g h t−switch ”
datamodel=” ecmascr ipt ”
version=” 1 .0 ”>

<s t a t e id=”OK”>
<s t a t e id=”on”>

<t r a n s i t i o n t a r g e t=” o f f ”
event=” dev i ce . turnOff ”/>

</ s t a t e>
<s t a t e id=” o f f ”>

<t r a n s i t i o n t a r g e t=”on”
event=” dev i ce . turnOn”/>

</ s t a t e>
<t r a n s i t i o n t a r g e t=” e r r o r ”

event=” dev i ce . e r r o r ”/>
</ s t a t e>
<s t a t e id=” e r r o r ”>

<t r a n s i t i o n t a r g e t=”OK”
event=” dev i ce . r e s e t ”/>

</ s t a t e>
</ scxml>

Figure 2. Light Switch SCXML

that allows developers to save an SCXML document to
the SMaaS server; create state machine instances from
the saved SCXML; and then send events to the instance.
The instance will process sent events according to logic
defined in the saved SCXML definition and the “Algo-
rithm for SCXML Interpretation”, which is described in
the SCXML specification [2].

A SMaaS server can be run on distributed cloud com-
puting infrastructure, such as Amazon EC2; or pushed
to the “edge of the cloud”, which is to say, run a hub on
the user’s local area network.

State Machines Instances as Microservices
In “Building Microservices”, Sam Newman defines mi-
croservices as “small, autonomous services that work to-
gether.” [10] He continues:

..the core concept of the service as a state machine
is powerful. We’ve spoken before (probably ad nau-
seum by this point) about our services being fash-
ioned around bounded contexts. Our customer mi-
croservice owns all logic associated with behavior in
this context.

When a consumer wants to change a customer, it
sends an appropriate request to the customer ser-
vice. The customer service, based on its logic, gets
to decide if it accepts that request or not. Our cus-
tomer service controls all lifecycle events associated
with the customer itself...

Having the lifecycle of key domain concepts explic-
itly modeled like this is pretty powerful. Not only
do we have one place to deal with collisions of state

(e.g., someone trying to update a customer that has
already been removed), but we also have a place to
attach behavior based on those state changes. (Em-
phasis added)

In SMaaS, each state machine instance is a separate mi-
croservice: it defines a bounded context, and owns all
logic associated with behavior in this context. That
context is mapped to a unique URL endpoint for the
instance. When a state machine instance receives an
event, it decides how to process that event according
to logic defined in the SCXML definition. SMaaS uses
SCXML as a modeling language to explicitly model the
IoT domain concepts used to process events.

Each IoT device can be associated with a single state
machine instance. In this way, each device is associated
with a single microservice which encapsulates that de-
vice’s state and models its reactive behavior.

Light Switch Microservice
Consider the example SCXML in Figure 2. An in-
stance of this SCXML would be created on the SMaaS
server for a particular WeMo device instance. This
instance would be exposed via a URL endpoint, e.g.
http://home.local/api/v1/light-switch.scxml/living-room,
where “home.local” is the SMaaS server host, “light-
switch.scxml” is the saved SCXML document from
Figure 2, and “living-room” is the name of the state
machine instance on the SMaaS server. A separate
program would be run as a “connector” to listen to
WeMo light switch events via the UPnP API and send
SCXML events to the state machine instance via the
SMaaS REST API.

This can be emulated using the cURL command-line
utility. For example, to emulate an event in which the
WeMo device is turned on, one would invoke curl using,
e.g.

curl -XPOST
-Hcontent-type:application/json
-d {‘‘name’’:‘‘device.turnOn’’}
http://home.local/api/v1/light-switch.scxml/living-room

This would send an HTTP POST request to URL
http://home.local/api/v1/light-switch.scxml/living-room

with JSON payload {‘‘name’’:‘‘device.turnOn’’},
which would dispatch an event named “device.turnOn”
on the state machine instance.

Later, the device state could be queried using an HTTP
GET to the the state machine instance’s URL.

curl -XGET
http://home.local/api/v1/light-switch.scxml/living-room

The response to this request would be the device “snap-
shot”, serialized as JSON. The snapshot includes all the
information required to reconstitute the state of the in-
stance.

18

In this approach, the state machine instance “living-
room” runs as a microservice, as it completely encapsu-
lates its state and behaviour. It can only be controlled
through a message-passing interface via its URL end-
point.

In SMaaS, the SCXML <send> tag is implemented in a
similar fashion, such that an event encoded as JSON is
sent via HTTP request to the URL of the target SCXML
instance.

The full SMaaS REST API is defined using Swagger[1],
a declarative markup for describing REST APIs. The
SMaaS API Swagger definition can be found at:

https://github.com/JacobeanRnD/
SMaaS-swagger-spec

Linux containers

OK

error
onoff

device.error
device.turnOff device.turnOn

device.reset

Figure 3. Light Switch Statechart running inside a Linux
container

Linux containers (LXC) are an operating-system-level
virtualization environment for running multiple isolated
Linux systems (containers) on a single Linux control
host.

The Docker open source software project provides an ad-
ditional layer of abstraction on top of Linux containers.
Docker is often used to implement applications based on
a microservice architecture.

Linux containers can be used to run each state machine
instance in isolation. The advantages of this approach
are:

Speed
It is fast to create new containers. New state machine
instances can typically be started in under a second. Af-
ter the initial start time, the time required to process
subsequent events can typically be measured in millisec-
onds.

Security
Each container runs in isolation, and operating system
resources can be limited per container. Because SCXML
contains arbitrary, user-specified JavaScript, a secure ex-
ecution environment is required in order to prevent pos-
sible abuse by malicious users on a multi-tenant SMaaS
cluster.

Ecosystem
There exist a number of technologies to run Docker con-
tainers across a cluster of computing resources to enable

large-scale computing. These container technologies in-
clude Apache Mesos, CoreOS, and Joyent’s Triton prod-
uct. This reduces the effort required to create cloud com-
puting infrastructure for large-scale IoT deployments.

JACOBEAN SMAAS IMPLEMENTATION
Jacobean Research and Development has released a
number of free and open source software libraries:

• SCION, an implementation of SCXML in JavaScript.

• SCHVIZ, an automated visualization library that can
render a running SCXML instance as a hierarchical
graph diagram.

• SCXMLD, a Docker-based SMaaS server that can run
SCION state machine instances in Docker containers
across a cluster.

• SCXML-CLI, command-line tools for interacting with
the SCXMLD cloud service.

Taken together, these technologies provide a feature-rich
SMaaS implementation, and present unique advantages
for implementing robust cloud computing services for the
Internet of Things.

State Machine Snapshot
SCXMLD embeds SCION as an SCXML engine. SCION
implements “state machine snapshotting”, which is a
technique for serializing the running state of an instance
to JSON so that it can be saved to secondary storage.
A snapshot is a JSON array containing: the set of basic
states the state machine is in (“basic configuration”); the
serialized datamodel; a boolean describing whether the
state machine is in a final state; and the history states.

State machine snapshots have several advantages:

Economical
The snapshot can be saved to secondary storage, such
as a relational database or document store. Secondary
storage is cheaper than memory.

Crash Recovery
It is possible to restore an instance to a last known good
state from a serialized snapshot, should the container
crash. This is more robust than storing the instance
state purely in memory.

Queryable
The state machine snapshot can be saved to a native
JSON database such as MongoDB, CouchDB, Elastic-
Search or the PostgreSQL JSON datatype, so that it
can be queried efficiently. This facilitates “fleet manage-
ment” queries. For example, one could efficiently query
the database to retrieve light switch state machine in-
stances that are in an “error” state.

Visualization
SCXMLD includes SCHVIZ, a tool for automatically vi-
sualizing SCXML as a hierarchical graph diagram. The

19

diagram is a “live” visualization, meaning that it is sub-
scribed to state change events on the SCXMLD server,
such that the diagram updates automatically to high-
light the current state when the instance receives a new
event. This provides excellent visibility into the state of
a running system.

For example, consider the “living-room” light switch
state machine instance from earlier. The light switch in-
stance would start in state “off”. In this case, the “off”
state would be highlighted, as can be seen in Figure 4.
After sending the event “device.turnOn”, the state ma-
chine instance would transition to state “on”, in which
case the visualization would be automatically updated
such that state “on” would be highlighted. This can be
see in Figure 5.

OK

error
onoff

device.error
device.turnOff device.turnOn

device.reset

Figure 4. Running Instance Statechart Visualization

OK

error
onoff

device.error
device.turnOff device.turnOn

device.reset

Figure 5. After sending event “device.turnOn”

SCHVIZ can be invoked using the SCXML-CLI
command-line tools. For example, the command to vi-
sualize the light switch state machine instance would be:

scxml viz light-switch.scxml/living-room

This would open a window on the user’s desktop that
would render the visualization.

Automated visualization has a number of useful appli-
cations. First, it can be used in development to debug
a system interactively, by sending events and observing
the visual change in system state. Next, it can be used
in operations for monitoring the running state of a sys-
tem in production. Finally, it can be used to produce
technical documentation, and communicate business re-
quirements between non-technical domain experts and
developers.

Event Log
SCXMLD stores a log of every event that is processed,
and the resulting state machine instance state.

This can be used to provide a full audit of the state of
the system over time, which is useful for debugging. For
example, if a particular state machine instance enters an
error state, the Event Log would allow the developer to
step backwards through time to review the sequence of
events that led to that error state.

OTHER APPLICATIONS
SMaaS has applications to domains outside of the Inter-
net of Things. One example of this is automated algo-
rithmic trading.

An example of a trading algorithm implemented as a
state machine can be seen in Figure 6.

start

check_quantities

wait_for_spread

check_spread issue_orders endlimits.exceeded

no.opportunity

trade orders.completed

Figure 6. Trading Algorithm

Figure 6 is derived from an example listed in “Algorith-
mic Trading & DMA” by Barry Johnson [8]. Johnson
states that:

The Event Modeler provides a state-driven ap-
proach... The arrows show the progression from one
state to another: So after starting and checking the
quantities, the scenario effectively loops between the
“wait for spread” and “check spread” states. Only
when the spread is favourable will it shift to issue
orders.

Johnson states that the server software executing the
trading algorithm must be resilient, manageable and
scalable. As SCXMLD includes support for snapshot-
ting, event logging, and can be scaled across cloud in-
frastructure, it is well-suited to meet the requirements
of an algorithmic trading server.

In general, SMaaS can be applied to the scalable, reliable
execution of complex, event-driven systems. Other do-
mains where SMaaS could be applied include telephony
(for describing flows through interactive voice response
menu), web applications (for describing navigation be-
tween web pages), and business process modeling.

CONCLUSION
This paper introduced SMaaS, an SCXML microservices
platform built on Linux containers to control the Internet
of Things. An example IoT application was described in
which the SMaaS REST API was used to control an IoT
light switch and monitor the device’s state. Next, this
paper introduced SCXMLD, an open source implemen-
tation of SMaaS with novel features including snapshots,
logging, and automated visualization. Finally, other ap-
plications of SMaaS and SCXMLD were discussed, in-
cluding an application to algorithmic trading.

REFERENCES
1. Swagger: The world’s most popular framework for

apis.

2. Jim Barnett, Rahul Akolkar, RJ Auburn, Michael
Bodell, Daniel Burnett, Jerry Carter, Scott
McGlashan, Torbjörn Lager, Mark Helbing, Rafah
Hosn, T.V. Raman, Klaus Reifenrath, and No’am
Rosenthal. State Chart XML (SCXML): State
Machine Notation for Control Abstraction. W3C
Working Draft, 2010.

3. O.A. Basir and W.B. Miners. Multi-participant,
mixed-initiative voice interaction system, October 1
2009. US Patent App. 12/410,864.

20

4. Jacob Beard. Developing rich, web-based user
interfaces with the statecharts interpretation and
optimization engine. 2013.

5. Marcello Bonfe and Cesare Fantuzzi. Design and
verification of industrial logic controllers with UML
and statecharts. In Control Applications, 2003.
CCA 2003. Proceedings of 2003 IEEE Conference
on, volume 2, pages 1029–1034. IEEE, 2003.

6. D. Harel. Statecharts: A visual formalism for
complex systems. Science of computer
programming, 8(3):231274, 1987.

7. Ian Horrocks. Constructing the user interface with
statecharts. Addison-Wesley Longman Publishing
Co., Inc., 1999.

8. Barry Johnson. Algorithmic Trading & DMA: An
introduction to direct access trading strategies,
volume 200. 4Myeloma Press, 2010.

9. Silvia Mur Blanch. Statecharts modelling of a
robots behavior. Projecte fi de carrera, Escola
Tcnica Superior DEnginyera, 2008.

10. Sam Newman. Building Microservices. “O’Reilly
Media, Inc.”, 2015.

11. Alvaro Siguenza, David D Pardo, Jose Luis Blanco,
Jess Bernat, Mercedes Garijo, and Luis
A Hernandez. Bridging the semantic sensor web
and multimodal human-machine interaction using
SCXML. International Journal of Sensors Wireless
Communications and Control, 2(1):27–43, 2012.

12. Inc. The MathWorks. MATLAB and Simulink Help
Toyota Design for the Future - MathWorks User
Stories, 2011.

21

Energized State Charts with PauWare
Franck Barbier

Univ. of Pau, France
BP 1155

64013 Pau CEDEX
Franck.Barbier@FranckBarbier.

com

Olivier Le Goaer
Univ. of Pau, France

BP 1155
64013 Pau CEDEX

olivier.legoaer@univ-pau.fr

Eric Cariou
Univ. of Pau, France

BP 1155
64013 Pau CEDEX

Eric.Cariou@univ-pau.fr

ABSTRACT
Persuading software engineers to systematically use on a
large scale, a modeling language like SCXML greatly
depends upon suited tools. At the very end, only financial
concerns prevail: productivity increases due to modeling.
Otherwise, modeling stops. This paper comments on
PauWare, a Java technology that aims at ameliorating the
daily practice of State Chart modeling. Beyond design,
PauWare is based on models@runtime to continuously
benefit from models when applications are in production.

Author Keywords
Model-Driven Development; State Charts; Executability.

ACM Classification Keywords
D. Software; D.2 SOFTWARE ENGINEERING; D.2.2
Design Tools and Techniques.

General Terms
Design.

INTRODUCTION
Since the takeoff and development of Model-Driven
Development (MDD) in the spirit of the Unified Modeling
Language (UML), modeling take-up remains fairly low.
From experience in software industry, mental blocks
persist. Developers rather prefer coding than modeling.
Being graphical and/or textual, the situation is the same for
all kinds of models; accordingly, modeling techniques are
still often considered as supports for only producing
software documentation.

The reason is “abstraction”. Even though abstraction allows
sound design principles like “separation of concerns”,
“incrementality” or “early design error detection”, it is also
“far from the processor”. Latest software tuning is often
incompatible with “idealistic worlds” in models. Over time,
models and code diverge, leading developers to throw
models overboard as soon as possible.

As a modeling language, SCXML spreading may stumble
over these well-known “hurdles”. The quality of

surrounding well-integrated tools (editors, checkers,
simulators, code generators…) plays then a crucial role for
the success of a modeling language. For example, Eclipse
Modeling Framework (EMF) [1] has made UML
manageable in XML (declarative aspects) and Java
(imperative statements as model transformations). In
another style, Yakindu (statecharts.org) for State Charts
allows model simulation and code generation. Both tools
are actual proofs about moving models one step beyond:
models benefit from being executable (or “interpretable”).
Nonetheless, this idea is not new. In [2] or [3], the intention
to offer an executable UML or a definitive virtual machine
for the overall UML does not result in something tangible at
this time.

This paper presents the PauWare engine Java library
(PauWare.com) to design ordinary software applications
from executable State Charts. From the origin, this library
obeys to the execution semantics of UML (with safe
homemade corrections), which is, in our opinion, very close
to that of SCXML. Regarding theoretical concerns,
PauWare engine is a research prototype mainly used for
carrying out experiences in software adaptation [4].
Otherwise, the two key industrial realizations from
PauWare engine are the implementation of a service
mediator in the ReMiCS project (remics.eu) and a model
debugger in the BLU AGE® MDD tool suite (bluage.com).

This paper discusses long experience and practice in State
Chart modeling with concise consideration on associated
tools, industrial usages, feelings and feedbacks as well on
the high necessity of models with greater attractiveness and
power of conviction.

REVISITING MDD
Over years, despite a certain know-how engraved in
PauWare engine, it is still difficult to convince people to
switch from prehistoric coding practices to relevant
standards like SCXML. Open proven Computer-Aided
Software Engineering (CASE) tools are important to
guarantee progresses. In this context, code generation from
SCXML models to PauWare engine API continues to raise
a squaring-the-circle problem: the gaining of SCXML
models is above all an often sizeable modeling effort,
especially when requirements are numerous and complex,
leading to labyrinthine State Charts. In other words, CASE
tools cannot be substituted for human intelligence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’15 SCXML workshop, June 23, 2015, Duisburg, Germany.
Copyright 2015 ACM 978-1-4503-1015-4/12/05...$10.00.

22

State Chart execution with PauWare engine or direct
interpretation with tools like Commons SCXML
(commons.apache.org/scxml) supposes the prior nontrivial
design of complete and ready-to-use SCXML models.
Similar to code writing, modeling is error-prone with
limited possibilities of testing intermediate designs.

To address these issues, the key idea is to give more latitude
to software engineers in seamlessly navigating between
models and code. Namely, “hiding” modeling activities can
be a sound design principle. Concretely, once PauWare
engine API under control, software engineers can express
State Charts in Java with a very reduced set of
classes/interfaces that easily and straightforwardly manage
compound/leaf states, state machines and any kind of
structuring: state nesting, state exclusiveness, state
orthogonality, transitions, guards and actions. Other
constructs of PauWare engine API are linked functions
(“fires” and “run_to_completion” essentially).

In fact, there is no great distinction about dealing with
SCXML or PauWare engine. Code generation may produce
PauWare engine API code from SCXML source. SCXML
models may also be derived from PauWare engine API
code.

For example, here is a SCXML source sample extracted
from the reference Barbados Crisis Management System
case study (franckbarbier.com/PauWare/BCMS). States are
in blue while events are in red:
<state id="Route_for_fire_trucks_development"
initial="Route_for_fire_trucks_to_be_proposed">

<final id="End_of_route_for_fire_trucks_development"/>

<state id="Route_for_fire_trucks_approved"/>

<state id="Route_for_fire_trucks_to_be_proposed">

<transition event="route_for_fire_trucks"
target="Route_for_fire_trucks_fixed"/>

</state>

<state id="Route_for_fire_trucks_fixed">

<transition event="FSC_agrees_about_fire_truck_route"
cond="In(‘Route_for_police_vehicles_approved’)"
target="End_of_route_for_fire_trucks_development"/>

<transition event="FSC_agrees_about_fire_truck_route" cond="!
In(‘Route_for_police_vehicles_approved’)"
target="Route_for_fire_trucks_approved"/>

<transition event="FSC_disagrees_about_fire_truck_route"
target="Route_for_fire_trucks_to_be_proposed"/>

</state>

</state>

The corresponding PauWare engine code is as follows:
state_machine.fires(route_for_fire_trucks,
Route_for_fire_trucks_to_be_proposed, Route_for_fire_trucks_fixed);

state_machine.fires(FSC_disagrees_about_fire_truck_route,
Route_for_fire_trucks_fixed, Route_for_fire_trucks_to_be_proposed);

state_machine.fires(FSC_agrees_about_fire_truck_route,
Route_for_fire_trucks_fixed, End_of_route_for_fire_trucks_development,
this, "in_Route_for_police_vehicles_approved");

state_machine.fires(FSC_agrees_about_fire_truck_route,
Route_for_fire_trucks_fixed, Route_for_fire_trucks_approved, this,
"not_in_Route_for_police_vehicles_approved");

In this Java code, transitions are simply connected to source
and target states. Events are later processed as follows:
public void route_for_fire_trucks() throws Statechart_exception {

state_machine.run_to_completion(route_for_fire_trucks);

} // Etc. Other events here…

As for SCXML conditions:
public boolean in_Route_for_police_vehicles_approved() throws
Statechart_exception {

return
state_machine.in_state(Route_for_police_vehicles_approved.name());

}

Figure 1. PauWare view look & feel (extract from Barbados Crisis Management System).

Testing through simulation at design time in particular
relies on a third-party tool: PauWare view. PauWare view is

an addon for PauWare engine. PauWare view dynamically
generates one or more instances of State Charts in SVG

23

format by taking advantage of the PlantUML Java library
(plantuml.sourceforge.net). PauWare view displays and
simulates instances of State Charts in Web browsers in an
asynchronous way (Figure 1). Any PauWare engine
application communicates through Web sockets the
discretized status of some or all of its running state
machines. This logically results from the processing of
event occurrences in run-to-completion cycles. Since
applications have their own event processing frequency (for
instance, a highly interactive application may be “bombed”
by event occurrences), PauWare view acts as a buffer for
displaying these occurrences in a human readable manner
(refreshes are adjustable between 1 sec. and 5 sec.).

MODELS@RUNTIME
Even though PauWare view can be rightly viewed as a
model testing tool at design time, its main purpose is run-
time observation, even control in case of adaptation. The
animation of State Charts by means of PauWare view in
Web browsers is more than the simulation of models in the
sense that these models are abstract software artifacts. Here,
“abstract” precisely means that models mimic the grand
characteristics of the final software, but all low-level details
are not yet presented.

Instead, PauWare view is plugged in the application in
production with, often, end-users being the source of event
occurrences through GUIs. Running state machines may
possibly be embedded in devices with system-oriented
events (e.g., battery events in an Android application [5]) or
they can power Enterprise JavaBeans (EJBs) in large-scale
SOA applications.

Keeping or not PauWare view at run time is a question of
application administration in the spirit of the Java console.
The latter aims at tracing, even controlling, operating
applications. In all cases, cutting PauWare view off from
PauWare engine is no effort. Performance issues for
example may justify such a cutting even though PauWare
view may run on other machines thanks to Web sockets.

Models@runtime [6] is the major source of inspiration for
PauWare technology. No significant distinction is made
between coding and modeling. Modeling is just disciplined
coding to create higher intelligibility in the code by means
of persisting models. Consequence is higher software
quality, but nothing new under the sun: these are just
software engineering entrails, i.e., maintenability,
reusability and reliability naturally increase.

WEAKNESSES
• With the exception of Java, there is no devoted

mechanism in PauWare engine to write the bodies
of actions launched in reaction to events or as
entry/exit actions of states. The same applies for
guards that are embodied by Boolean Java
methods (see above). SCXML has a rich and
relevant language-neutral approach with
ECMAScript or, instead, by offering varied

supports for different programming languages.
Actions in PauWare engine stress data
transformations in avoiding any control flow,
which, in essence, is under the aegis of State
Charts.

• PlantUML has drawing restrictions in the sense
that it is not able to manage arrows (i.e.,
transitions) that cross, from inside or outside,
container states. PauWare engine does not have
this embarrassing limitation, which confines
PauWare view to specific forms of State Charts
only. As an illustration, Figure 2 shows a model,
which cannot be simulated at design time (and,
mechanically, controlled at run time).

Figure 2. State Chart with numerous factorized transitions

from/to superstates to/from substates.

The model in Figure 2 is simply and directly
expressible in SCXML apart from proprietary
UML constructs: “do/” UML notation for activities
and state invariants between brackets (both are
supported by PauWare engine). At run time,
PauWare engine seamlessly executes the model in
Figure 2, but, again, no behavior visualization is
possible through PauWare view.

This problem can be bypassed with alternative
PlantUML-compliant models having the same
business semantics, but such models tend to
accidentally become more complicated. Beyond,
such an approach is dubious because tools serve
modeling. It would simply be erroneous to
envisage anything else.

• PauWare prompts software engineers to become
model supporters with a kind of “extreme
modeling” style. Indeed, “Write little matter-
Compile-Test” is the rule in extreme
programming: in short, tests drive development.
However, such an approach is not unanimously
known as a proven productive software
development method when several stakeholders

24

are involved. A debatable question is the fact that
MDD is recognized (or not?) as disruptive with
respect to “ordinary” software development
practices. Breaking requirements and
specifications into modular pieces is normally
favored by modeling. State Charts have intrinsic
characteristics for being these pieces. This debate
is outside the scope of this paper, but it is
interesting to point out that State Chart expression
is systematically preceded by an upstream
significant modeling activity that is not readily
aligned with PauWare design style.

STRENGTHS
• Distribution through Web sockets allows the

remote run-time observation, even control (or self-
control in case of self-adaptation [4]) of PauWare
engine applications everywhere. Fruitful
experiences relate to the Java Embedded
technology. Running state machines are
embeddable as a System on Chip (SoC) using, for
instance, the Raspberry PI hardware. State Chart
behavior visualization then becomes extremely
informative for electronic/software engineers who
have experience in only having “physical”
perceptions of the SoC’s behavior in a given real-
word context. With reasonable effort, hardware-
oriented events can be “mounted” on models
animated in Web browsers.

• Without escape routes, crowded State Charts (due
to challenging requirements) are both natural and
difficult to read (to understand accordingly).
PauWare view efficiently addresses combinatory
issues. There is a kind of roundtrip engineering
between code and (visualized) State Charts that are
two distinguished viewpoints of the same thing.
Typically, the suppression of useless model
complexity often leads to code
compaction/rationalization. Practice shows that the
divergence between code and models in
“traditional” MDD does not occur here.

• As already mentioned, models@runtime constitute
an underlying appropriate support to keep control
on running applications. For example, “runtime
mutation” is recognized useful in [7] for
debugging State Charts. Usually, code arises from
specifications. Here, State Charts may derive from
Java code and vice-versa. There is no effective
upstream/downstream dependency between the
two. PauWare view for example is able to take
snapshots of (at rest or active) State Charts for
software documentation production: a kind of
“upside down software engineering”.

CONCLUSION
In our opinion, compared to UML, SCXML succeeded in
only keeping the true substance of the original Harel’s
Statecharts. In this paper, we defend the idea that a bi-layer
approach is wrong. We mean: the classical MDD cycle in
which code comes into being from models and code is,
later on, enhanced with implementation details (i.e.,
platform-specific information) that, in essence, do not
belong to models because of their abstract nature, is a
strong factor of MDD weakening and consequential
rejection. A renewed MDD is possible if and only if models
and code share a better articulation as offered by PauWare.

In this scope, the evolution of Commons SCXML is quite
sound with the principle of an “expression language
engine” in charge of parsing and evaluating imperative
statements (typically, action bodies between the <script>
and </script> tags). The possibility of using Groovy for
instance as this expression language allows the controlled
mixing of code and models as done in EMF, Commons
SCXML, PauWare and, probably, forthcoming modeling
environments.

ACKNOWLEDGMENTS
PauWare has been partly funded by the European
Commission. All authors gratefully acknowledge the grant
from the European Commission through the ReMiCS
project (remics.eu), contract number 257793, within the 7th
Framework Program.

REFERENCES
1. Steinberg, D., Budinsky, F., Paternostro M. and Merks,

E. EMF - Eclipse Modeling Framework, Second
Edition. Addison-Wesley, 2008.

2. Mellor, S. and Balcer, S. Executable UML – A
Foundation for Model-Driven Architecture. Addison-
Wesley, 2002.

3. Riehle, D., Fraleigh, S., Bucka-Lassen, D. and
Omorogbe, N. The Architecture of a UML Virtual
Machine. Proc. 2001 Conference on Object-Oriented
Programming Systems, Languages, and Applications,
ACM Press (2001), 327-341.

4. Barbier, F., Cariou, E., Le Goaer, O. and Pierre, S.
Software adaptation: classification and case study with
State Chart XML. IEEE Software, in press (2015).

5. Le Goaer, O., Barbier, F., Cariou, E. and Pierre, S.
Android Executable Modeling: Beyond Android
Programming. Proc. 2014 International Workshop on
Mobile Applications (2014).

6. Blair, G., Bencomo, N. and France, R.
Models@run.time. IEEE Computer 42, 10 (2009).

7. Junger, D. Transforming a State Chart at Runtime. Proc.
Engineering Interactive Systems with SCXML Workshop
(2014).

25

Extending SCXML by a Feature for Creating Dynamic State
Instances

Peter Forbrig, Anke Dittmar, Mathias Kühn
University of Rostock
Albert-Einstein-Str. 22

D-18051 Rostock, Germany
{peter.forbrig | anke.dittmar | mathias.kuehn}

@uni-rostock.de

ABSTRACT
Statecharts have been demonstrated as an appropriate way
for specifying the behavior of technical systems. In recent
time they have been applied for specifying the behavior of
navigation models of interactive systems. However, there is
certain behavior of interactive systems that is difficult to
specify with state charts. The creation of states that are
concurrent to existing instances is such an example.

The development of SCXML might be the chance to
introduce such a feature for navigation models based on
statecharts of GUIs. The paper discusses an approach for
extending statecharts and SCXML in this direction. It
allows specifying the dynamic behavior of several instances
of a certain window. Additionally, a specific
characterization of states as modal is suggested. For both
extensions examples are discussed that are intended to
convince the reader that the extensions to SCXML are
useful.

Author Keywords
Statechart, state machine, navigation model, graphical user
interface specification, SCXML, dynamic creation of
parallel hierarchical states, modal states.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Statecharts and more specifically SCXML have been using
quite successful for specifying the behavior of interactive
systems. Some papers focus on web-based dialog systems
(e.g. [8], [9]). Other papers discuss a more general approach
(e.g. [5], [7]).

However, to the best of our knowledge there was no

attempt to specify the behavior of several instances of the
same window, which is necessary in a lot of applications.

We would like to refer to the domain of mailing systems.
Users want sometimes to switch from one mail that is
written at the moment to another one that is written at the
same time. The same is true for reading mails. It is very
common that users open several mails at the same time in
different windows. Figure 1 provides the visual support for

Figure 1. The Email system with two instances of the same
window

Statecharts are able to specify such kind of behavior only
for a fixed number of instances by a complex state with
parallel sub-states. We will provide a proposal for an
extension of statecharts and SCXML that allows specifying
the described behavior in a good readable way.

The rest of the paper is structured in such a way that we
will introduce or extension by example. After that we will
discuss related work and finally there will be some
conclusions.

PROPOSED EXTENSION TO STATECHARTS AND
SCXML
The following section introduces an extension of statecharts
and SCXML that allows specifying the creation of different
instances of a complex state in a simple way. This feature is
necessary for specifying dialog models for systems that are
convenient and usable for users.

It is our idea to extend complex states by a feature that
allows the creation of new complex sub-states that run in

EICS 2015

26

parallel. For the creation process a new kind of transition is
introduced that connects a source state with a destination
state in such a way that a copy (new instance) of the
complex state is activated in parallel. Additionally, control
is given back to the source state. Initially there might be a
complex state with no parallel active sub-state. Figure 2
gives an impression of how this might look like for our
email example.

Figure 2. Statechart for creating instances of “Window Write
Mail”

Figure 2 presents a possible notation for creating instances
of a complex state and activating them. The dotted line
might not be necessary. However, it characterizes the
complex state as ready for accepting further parallel
running sub-states.

The transition in Figure 2 has the two different arrowheads
to express the semantics of creating a new instance of the
destination state but still activating the source state after
this action.

Assuming that “Main Window” is active and “New”
activates the transition the situation of Figure 3 would be
the result.

Figure 3. “Animated” statechart after creating a new instance of
“Window Write Mail”

After creating s new instance for “Window Write Mail” the
new window and the main window are active. Figure 3 tries
to present as snapshot of a visualization of the runtime
situation of the statechart specification. State “Window
Write Mail” will never become active. It is a kind of pseudo
state.

In the example of Figure 2 for states complex states are
assumed even that only simple states were drawn. This was
done for readability reasons only. However, one can
imagine that these states contain some sub-states.

Additionally, it is assumed that a parallel state instance
disappears after it is ended.

In this way the situation of Figure 3 can be followed by the
situation of Figure 4 and after closing window2 and
window3 again the situation of Figure 3 is reached. This
assumes of course that in “Window Write Mail” the final
state is reached with closing.

Figure 4. “Animated” statechart after creating three new instance
of “Window Write Mail”

The consequences of the suggested extension of statecharts
influence the interpreter/compiler of SCXML more than the
syntax of the language. For the language it might be enough
to introduce a new attribute for transitions. Let us call this
attribute new_instance.

For Figure 2 the SCXML representation of the transition
could look like.

<transition>
 event = “New”
 target = “Window Write Mail”
 new_instance
</transition>

As already mentioned the extension to SCXML is simple
but changes in supporting tools are more complicated.

Another suggestion of extending statecharts and SCXML is
a characterization of states as modal. This means that only
transitions of this state can be executed while it is active. In
case the state “Window Write Mail” was modal there would
be no chance to create a second instance of this state
because state “Main Window” (and all other states) would
be blocked.

Sometimes it makes sense to specify a dialog as modal to
force the user to finalize the related process. Sometimes
registration processes are specified as modal.

Modal dialogs are a common and quite old concept in HCI
[1]. It would be good to have support in SCXML for such
kind of modeling.

Main
Window

Window
Write Mail

Window1
Write Mail

New

Main
Window

Window
Write Mail

Window1
Write Mail

Window2
Write Mail

Window3
Write Mail

New

27

RELATED WORK
We have been working on model-based design of
interactive systems for several years. Our tool support has
been based on task models of the users. For the
specification of the navigation dialog the concept of
dialogue graphs was introduced.

Dialog graphs consist of a set of nodes, which are called
views and a set of transitions. There are 5 types of views:
single, multi, modal, complex, and end views. A single
view is an abstraction of a single sub-dialog of the user
interface that has to be described. A multi view serves to
specify a set of instances of a sub-dialog. A modal view
specifies a sub-dialog, which has to be finished in order to
continue other sub-dialogs of the system. Complex views
allow hierarchical descriptions of a user interface model.
Nodes can be specified in this way by graphs. End views
characterize the end of a dialog. Figure 5 presents the
graphical notation for all views of a dialog graph.

Figure 5. Types of views in dialog graphs

Single and complex views can be compared to complex
states in state charts. The end view is similar to the end
state. Multiple views were still missing in state charts but
can be realized as suggested in this paper.

Modal states do not exist in statecharts yet. However, it
might be a good idea to have this feature in SCXML as
well. Again a simple new attribute for states like modal
would be sufficient for the language. However, tools have
to ensure that no transitions can be activated in other states
until the modal state is deactivated.

A transition in dialog graphs is a directed relation between
an element of a view and a view. Transitions reflect
navigational aspects of user interfaces. It is distinguished
between sequential and concurrent transitions. A sequential
transition from view v1 to view v2 closes the sub-dialog
described by v1 and activates the sub-dialog, which
corresponds to v2. In contrast, v1 remains open while v2 is
activated if v1 and v2 are connected by a concurrent
transition.

Figure 6 presents the graphical notation for the different
types of transitions and Figure 7 provides an example of a
dialog graph with elements of related tasks.

Figure 6. Types of transitions

Figure 7. Dialog graph specification

The main window provides two options. One can read or
write an email. In case of writing a mail the corresponding
view opens and is active in parallel to the main window.
Certain tasks can be performed within the new view. In
case one activates the task add attachment a new view
becomes visible. It disappears after a file was added. The
view write m ail disappears after the mail was sent.
With this specification only one mail can be written at the
same time. However, several mails can be read
simultaneously.

Our experience in specifying such kind of models inspired
us to extend statecharts with features that seem to be
important for the specification of the behavior of user
interfaces.

Roxendahl [8] studies in detail the management of Web-
based dialogue systems using SCXML. He provides a lot of
examples but does not mention several instances of one
window. His examples do not contain such a feature.

First Web-based mailing system did not have this feature as
well. One can live without this feature but usability
increases a lot if it is implemented.

The approach of Kistner et al. [5] follow a more general
approach. They use SCXML for the general development of
user interfaces. They especially focus on the glue between
interface logic and presentation and driving the presentation
from states. They argue for interpreting SCXML during
runtime and report from successful applications with
customers.

Winckler et al. [9] discuss the usage SWC and SCXML for
the modeling of Web applications. They use the concept of
a dynamic state. However, this is not related to the problem
we mentioned. A dynamic state provides dynamic content
in their examples. We are sure that their approach can be

singlesingle multiple modal complexcomplex

end

sequential concurrent

28

combined with our extensions to SCXML and can benefit
from them.

Dynamic changes in statechart specifications are discussed
by Junger [4]. This paper does not directly refer to our
problems but provides a lot of ideas for dynamic changes of
specifications and discusses the consequences. Our
approach can be considered as a further manipulation of
statechart specifications during runtime. Such a runtime
manipulation can be considered as one way of
implementing it. This might be a workaround to implement
the problem solution as manipulation at runtime but do not
change the existing interpreter.

SUMMARY
Based on our experiences with model-based development
of interactive systems two possible extensions of statecharts
and SCXML were identified. We tried to argue for these
extensions by examples and by referring to the literature.

These suggested extensions are:

1. Introducing a specific transition in hierarchical
states that result while executed in a new instance
of an activated complex sub-state that runs in
parallel. When the sub-state is in its end state it is
eliminated.

2. States can be characterized as modal and in case
they are activated only their transitions can be
executed.

In this way dialogs can be specified by state charts in a way
that is common in the domain of HCI. Dialog graph
specifications as discussed in [9] and [10] could be replaced
by SCXML specifications. This would allow new
approaches for platform independent development of
interactive systems.

For the extensions certain notations were provided.
However, this notation is not important. If it can be
replaced by some other representations this would be fine
for us. If the discussions during the workshop provide an
improved result this would be great.

REFERENCES
1. Bonneau, P.: Edit control memory management;

making modal dialogs modeless. Windows/DOS Dev.
Journal 4, 7 (July 1993), 77-86.

2. Brusk, J., Lager, B., Hjalmarsson, A., and Wik, P.:
DEAL – Dialogue Management in SCXML for
Believable Game Characters In Proceedings of the
2007 conference on Future Play (Future Play '07).
ACM, New York, NY, USA, 137-144.

3. Harel, D.: Statecharts: A Visual Formalism for
Complex Systems. In Science of Computer
Programming 8, 3 (1987), 231-274.

4. Junger, D.: Transforming a State Chart at Runtime,
EICS 2014 Workshop on Engineering Interactive
Systems with SCXML,
http://scxmlworkshop.de/eics2014/.

5. Kistner, G., and Nuernberger, C.: Developing User
Interfaces using SCXML Statecharts. In Proceedings of
the 1st EICS Workshop on Engineering Interactive
Computer Systems with SCXML (2014), 5-11.

6. Kronlid, F., and Lager, T.: Implementing the
Information-State Update Approach to Dialogue
Management in a Slightly Extended SCXML. In
Proceedings of the 11th Workshop on the Semantics
and Pragmatics of Dialogue (2007), 99-106.

7. Lager, T.: Statecharts and SCXML for Dialogue
Management. In Proceedings of the 16th International
Conference on Text, Speech, and Dialogue (2013),
Springer Berlin Heidelberg, 35.

8. Roxendahl, J.: Managing Web Based Dialog Systems
Using StateChart XML, Thesis University of
Gothenburg, 2010.

9. Schlungbaum, E., and Elwert, T.: Automatic user
interface generation from declarative models, In
Proceedings CADUI 1996, June 5-9, Namur Belgium,
p. 3-18.

10. Schlungbaum, E., and Elwert, T.: Dialogue graphs: a
formal and visual specification technique for dialogue
modelling, In Proceedings of the 1996 BCS-FACS
conference on Formal Aspects of the Human Computer
Interface (FAC-FA'96), C. R. Roast and J. I. Siddiqi
(Eds.). British Computer Society, Swinton, UK, UK,
13-13.

11. Winckler, M., Charrere, C., and Barboni, E.: From
SWC to SCXML: using a statecharts-based markup
language to model navigation of Web applications.
EICS 2014 Workshop on Engineering Interactive
Systems with SCXML,
http://scxmlworkshop.de/eics2014/.

12. State Chart XML: http://www.w3.org/TR/scxml/

29

Formal Verification of Selected Game-Logic Specifications
Stefan Radomski

TU Darmstadt
Telecooperation Group

radomski@tk.informatik.tu-darmstadt.de

Tim Neubacher
TU Darmstadt

neubacher@cs.tu-darmstadt.de

ABSTRACT
Despite production budgets approaching the gross national
income of small countries, many AAA game titles are still
distributed with irritating, even game-breaking bugs in their
quest and dialog structures. This severely damages a publish-
ers reputation among its customers and entails considerable
costs in the form of patches and support. By modeling these
structures as state-charts, approaches for formal verification
become applicable. In this paper, we will model a selection
of bugs from a popular AAA title and present an approach to
formally validate some of their soundness properties.

Author Keywords
SCXML; Harel State-Chart; Formal Verification; Languages

ACM Classification Keywords
D.2.4. Software/Program Verification: Model checking

INTRODUCTION
When Fallout 3 was released in 2008 by Bethesda Game Stu-
dios, over 200 bugs of various severities were identified by
the community before the first patch was released one month
later 1. Some of the bugs were so severe that players had to re-
vert to earlier save-games in order to progress with no way of
knowing which of the previous decisions caused the problem
in the respective quest or dialog and losing all progress. This
problem is not exclusive to any publisher or developer but
can be experienced in a wide selection of game titles. Many
of the bugs are related to a game’s quest structure or dialog
behavior, e.g. a dialog partner required to progress a quest is
no longer available, a critical item was sold or misplaced or a
chance encounter leading to an undefined state and unfinish-
able quests.

In this paper we will model a selection of two bugs found
in quests and dialogs in Fallout 3 using state-charts via
SCXML and employ the formalisms of model-checking

1http://fallout.wikia.com/wiki/Fallout_3_bugs?
oldid=52621 (accessed April 22nd, 2015)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish,to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright is held by the author/owner(s).
EICS’15 Workshop, Engineering Interactive Systems with SCXML, June 23,
2015, Duisburg, Germany

via Spin/PROMELA [7] to formally proof certain sound-
ness properties. We will rely on a construction we de-
scribed earlier [4] to transform a huge subset of SCXML
onto PROMELA2 as an input language for the Spin model-
checker.

RELATED WORK
Various approaches for enhancing the video game develop-
ment process in general and the modeling of dialogs and
quests in particular have been introduced over the last years.

Related General Approaches
In [8] the authors present a taxonomy of possible failures in
a video game in order to help developers to identify various
bugs during the development. The resulting taxonomy, fo-
cusses on implementation failures, omitting incorrect game
specifications with regard to quests and dialogs. It can be
used by human testers to classify the feedback to the devel-
opers.

Approaches using design patterns during the game develop-
ment process have been introduced e.g. by [2] and [1]. While
those papers mainly aim for reducing the maintenance ef-
fort and improving the communication between the different
stake-holders during a game development process, the use of
design patterns may also prevent the emergence of failures
and increase the acceptance within the players community.

Also, mainly aiming for the improvement of collaboration
tasks between the different participants during a video game
development process, Moreno-Ger et al. have introduced a
documental approach in [10]. They suggest a domain-specific
markup language <e-Game> based on XML to create the
video game storyboard. The executable video game is au-
tomatically produced by processing the resulting storyboard.
As stated above, this structured development process may
also lead to less bugs in to-be-released video games.

Brusk et al. have introduced the idea of a dialogue manager
in State Chart XML (SCXML) in order to increase the be-
lievability of non-player characters (NPCs) in video games by
improving their ability to communicate in natural language.
Based i.a. on the idea of game patterns as stated in [2], the
authors have chosen trading as a good example for the use of
natural language in video games. Therefore they developed a
trading model in SCXML allowing multimodal conversations
as in human to human dialogs.

2http://spinroot.com/spin/Man/promela.html (accessed
April 22nd, 2015)

30

Other Formal Approaches
A runtime-based approach for verifying game properties dur-
ing the implementation process of a video game has been
introduced in [12]. Varvaressos et al. create XML events
aligned with the “game loop” via a XML template engine.
The result is validated against constraints formulated in LTL-
FO+, a first order extension to Linear Temporal Logic (LTL)
introduced in [5].

In [9] the authors introduced a model-checking approach for
adventure video games based on a domain-specific language
<e-Adventure>, an XML dialect. They developed a Verifica-
tion Model Generator transferring the specification given in
an <e-Adventure> document for “point & click” adventures
to a verification model used as an input for the NuSMV [3]
model-checker. This allows for the verification of such game
specifications via Computation Tree Logic (CTL) expres-
sions.

Shafiei and van Breugel show in [11] that bugs such as un-
caught exceptions can be found via the use of Java PathFinder
(JPF) [6], an explicit state software model-checker for
JavaTM byte code. The basic possibilities of JPF can be ex-
tended by the use of several extension. It is e.g. possible
to additionally verify properties defined in LTL. The authors
also addressed the state space explosion problem and prob-
lems resulting through native calls and how to handle them.

Despite missing insights into the detailed development pro-
cess of video games by the authors of this paper, it seems
like the actual modeling of game-logic, especially with re-
gards to dialogs and quests, is still a predominantly manual
process with little or no established conceptualizations, much
less formally verifiable. This is evidenced by the plethora of
bugs and glitches found even in the most ambitious game ti-
tles.

FORMAL VERIFICATION OF STATE-CHARTS
In earlier work, we already described an approach to flat-
ten SCXML state-charts into semantically equivalent state-
machines notated in slightly extended SCXML[4]. This
transformation is agnostic of the employed datamodel and re-
sults in an SCXML document wherein only a single state is
ever active. Together with a subsequent transformation onto
PROMELA programs, this allows for the application of the
Spin model-checker (see figure 1).

We will outline the approach here again, as the original pa-
per was missing the evaluation described below. For a more
detailed description of the actual transformation process, we
refer to our earlier paper[4].

The generality of the transformation onto SCXML state-
machines can be evaluated by considering the subset of the
232 tests from the SCXML implementation and report plan
(IRP)3 that still pass after the transformation. And, indeed,
they all pass if we introduce three slight adaptations to an
SCXML interpreter:

3http://www.w3.org/Voice/2013/scxml-irp/

SCXML
State Chart

SCXML
State Machine

Any
Datamodel

PROMELA Program
(Spin interpreter)

Verification via
Temporal Logic

Model
Checking

Executable Dialog
(SCXML interpreter)

PROMELA
Datamodel

Equivalent
Behaviour

PROMELA
Datamodel

SCXML
per Standard

Verifiable Subset
of SCXML

Expressiveness / Tests Passed

232

169

130

232
181

Figure 1. SCXML with the PROMELA datamodel allows (i) actual in-
terpretation at runtime and (ii) verification via linear temporal logic.

1. Accounting for flattened state-names in SCXML’s In
predicate.

2. Making components instantiated by <invoke> persistent
and introducing <uninvoke>.

3. Transforming <donedata> to <raise> and allowing
for embedded content as with <send>.

With these changes to SCXML, a completely automated and
semantically equivalent transformation from SCXML state-
charts onto SCXML state-machines is possible regardless of
the employed datamodel.

In the same paper we also introduced the PROMELA data-
model, allowing SCXML document authors to employ the
syntax and semantics of the PROMELA language as an em-
bedded scripting language. Here, the expressiveness can be
evaluated by instantiating the 181 datamodel-agnostic IRP
tests for the new datamodel and count the tests passed (51
of the IRP tests are specific to the xpath and ecmascript
datamodel already specified in the SCXML standard). Our
PROMELA datamodel will currently pass 169 tests with the
reasons for failing the remaining 12 tests given in table 1.

Cause #
String operations required 8
Declared vs. defined 1
Shallow copies in foreach 1
XML DOM node in variable 1

Table 1. Reasons for failing tests with the PROMELA datamodel.

Those two techniques allow us to create PROMELA pro-
grams as input files for the SPIN model-checker for just
about any SCXML document employing the PROMELA
datamodel. However, whereas flattened SCXML documents
with the PROMELA datamodel are interpreted by an (slightly
adapted) SCXML interpreter, PROMELA programs will be
interpreted by the SPIN interpreter and we have to make sure
that the respective semantics are preserved.

31

Cause #
Relies on errors raised by platform 27
String operations required 7
Assumes open HTTP socket 4
Inexpressible event structure 3
Assigning to system variables 3
Identity for compounds 2
Late data binding 1
Dynamic URL for nested machine 1
Syntax error evaluates to false 1
Shallow copies in foreach 1
XML DOM node in variable 1

Table 2. Reasons for failing formal verification for PROMELA pro-
grams transformed from SCXML tests with PROMELA datamodel.

This can, again, be evaluated via the IRP tests by taking the
169 tests expressible and passed with the PROMELA data-
model, transform them into actual PROMELA programs and
proof with an LTL expression that they will all eventually en-
ter the pass state:

ltl { eventually (s == PASS)}

This is still possible for 130 of the 181 datamodel agnostic
IRP tests with the reasons for failing the rest given in table 2.

The largest class of unverifiable tests are due to SCXML error
semantics at runtime. It is plainly unpractical to raise these
errors and the benefit is minimal as most of these situations
would never occur if an SCXML author would have been
more careful while writing the SCXML document. Other
tests are inexpressible due to missing language support in
PROMELA, e.g. there is no notion of strings and we emu-
late some of their semantics by enumerating string literals as
integers to support the identity relation. However, more elab-
orate relations such as contains or startsWith are very
difficult to model using only the integer arithmetics available
in PROMELA.

Nevertheless, if an author is somewhat careful with regard
to SCXML features employed (compare table 2) and choses
the PROMELA datamodel, we can expose a respective doc-
ument to the formalisms of model-checking via Linear Tem-
poral Logic (LTL) expressions available in Spin/PROMELA.

Expressiveness of Linear Temporal Logic
To get an idea about the expressiveness of LTL to verify tem-
poral properties / constraints of a state-chart, and to avoid a
formal introduction of the syntax and semantics of LTL, it is
helpful to have a look at some of the patterns and example
distributed with Spin4:

Let P, Q and R be any property of a SCXML state-chart at
runtime (i.e. the assignment of a variable, the current state
or whether an entity is currently invoked), the following are
valid LTL expressions:

• P is false between Q and R:
always ((Q and !R and eventually R) ->
(!P U R))

4from Examples/LTL/patterns.pml in the Spin distribution

• P occurs at most twice:
(!P W (P W (!P W (P W always !P))))

• P becomes true after Q until R:
always (Q and !R -> (!R U (P and !R)))

SELECTED GAME-LOGIC BUGS IN SCXML
The general approach of using state-charts or at least state-
transition systems to model game logic is well established,
e.g. in the form of the Unreal Engine’s “Blueprints for Visual
Scripting” 5 or the “Flow Graph Editor” of CryEngine6.

Despite the simplification for the design of game-logic via the
use of such systems during the development of video games,
the complexity of modern video games and the sheer amount
of in-game interactions still provide ample opportunities for
unforeseen failures, even quite basic ones. In order to moti-
vate how to avoid some of those bugs, we approximated two
examples, found in the first release of Fallout 3, in SCXML.
The datamodel employed in both cases is PROMELA to pro-
vide access to the declarations, expressions and a subset of
statements of the PROMELA language as employed by the
Spin model-checker.

Example 1: The Dead But Unforgotten Companion
In Fallout 3 the player can recruit NPC companions. While
some of the companions will accompany the player only for
the duration of a quest, some may follow the players char-
acter permanently until dismissed, helping the player e.g. in
combat.
One of the companions available is Charon, a ghoul body-
guard, who can be signed by the player through either ab-
solving a quest or paying for a contract. If Charon is under
contract with the player’s character and dies, the player can-
not dismiss him nor drop the contract, leaving the player per-
manently unable to acquire another companion. Clearly, this
game behavior was not intended by the developers.

To approximate the bug, something similar to the following
SCXML state-chart might be employed. Keep in mind, that
the purpose of this document is ultimately not only a basis for
formal verification but also to be interpreted by an SCXML
interpreter embedded in the game engine to actually define
the game-logic.

1 <scxml datamodel="promela">
2 <datamodel>
3 <data>
4 mtype = { NONE, CHARON, FAWKES, .. }
5 typedef companion_t {
6 byte health;
7 int name;
8 };
9 </data>

10 <data>
11 companion_t party[1];
12 </data>
13 <data>
14 party[0].name = NONE;

5https://docs.unrealengine.com/latest/INT/Engine/
Blueprints/index.html (accessed April 22nd, 2015)
6http://docs.cryengine.com/display/SDKDOC2/Flow+
Graph+Editor (accessed April 22nd, 2015)

32

15 party[0].health = 100;
16 </data>
17 </datamodel>
18 <parallel id="root">
19 <state id="party">
20 <transition event="companion.new.charon"
21 cond="party[0] == NONE">
22 <script>
23 party[0].name = CHARON;
24 party[0].health = 100;
25 </script>
26 </transition>
27 <transition event="companion.dismiss"
28 cond="party[0] != NONE">
29 <script>party[0].name = NONE;</script>
30 </transition>
31 <transition cond="party[0].health == 0">
32 <script>party[0].name = NONE;</script>
33 </transition>
34 </state>
35 <state id="health">
36 <!-- automatically drain health to trigger bug,
37 this would not exist in an actual game -->
38 <transition target="health"
39 cond="party[0].health > 0">
40 party[0].health = party[0].health - 1
41 </transition>
42 </state>
43 </parallel>
44 <scxml>

Example 2: Endless Discussion
In many video games, experience points (XP) are a measure-
ment of character progress and can be achieved in different
ways, depending on the specific game logic, e.g. through ab-
solving quests or using specific abilities of the players char-
acter.
In Fallout 3 one of the skills which can occasionally be used
in conversations with NPCs is Speech, the proficiency at per-
suading other characters in the game. Such a dialog option
can be seen as a challenge and a player, depending on the
current skill level of the players character, may succeed or
fail the challenge. By using this ability successfully during
an in-game conversation, the players character automatically
gains XP.
For example talking to the NPC Bittercup in Big Town enables
an additional dialogue option, based on the Speech skill, with
Pappy, another NPC. In the first release of Fallout 3, this di-
alogue option was always available, allowing the player to
gather an infinite amount of XP by repeatedly succeeding the
Speech challenge. As this has been fixed with one of the first
patches for the game, this behavior clearly also was not in-
tended. In most cases such XP increasing options should be
available only until the player succeeded once.

This can easily be expressed in SCXML via the following
snippet.

1 <scxml datamodel="promela">
2 <parallel id="main">
3 <state id="pappy.dialog">
4 <state id="pappy.dialog.initial">
5 <transition event="pappy.speech.pass"
6 target="pappy.speech.pass" />
7 </state>
8 <state id="pappy.dialog.speech.pass" />
9 </state>

10
11 </parallel>
12 </scxml>

The actual availability of the speech challenge would depend
on the state of the dialog with Bittercup, but this will have
to suffice as an example. Both examples are obviously very
simplified, the main point is to provide a convincing argument
that such game logic, indeed all game-logic, of certain games
can potentially be expressed in SCXML with the PROMELA
datamodel.

FORMAL VERIFICATION VIA LTL EXPRESSIONS
For the first example from above, we need to verify that a
dead companion is removed from the party. We can do this
via the following LTL expression:

1 always(
2 (party[0].health == 0)
3 -> eventually(party[0].name == NONE)
4)

This expression will cause the Spin interpreter to verify that
the first (and for Fallout 3 sole) companion in the party is
removed if his health drops to zero. It can be read as: “when-
ever the companions health is 0, all subsequent computation
path will eventually pass a state where the party is empty”.

In the second example, we need to proof that a given dialog
option can only be selected once as soon as the associated
challenge is passed. This can be achieved via the following
LTL expression:

1 always(
2 (_x.states[PAPPY_DIALOG_SPEECH_PASS])
3 -> always(! _x.states[PAPPY_DIALOG_INITIAL])
4)

In our transformation, the set of active states from the origi-
nal state-machine for a given configuration remain available
in the PROMELA structure x.states[STATE], allow-
ing LTL expressions regarding the original state names and
their sequences. The expression above would read as “when-
ever pappy.dialog.speech.pass was observed in the
state-charts configuration, it will never again assume the ini-
tial state of the dialog with Pappy”.

Both expressions can be verified by using Spin with the
PROMELA representation of the transformed state-charts
listed above and will indeed hold true.

CONCLUSION
In this paper we outlined an approach to formally verify prop-
erties of game-logic for computer games to detect and avoid
game-breaking bugs and glitches. By modeling these struc-
tures as state-charts with a formally provable datamodel in
SCXML and transforming them via state-machines onto in-
put files for a model-checker, we enabled the verification of
expression given in Linear Temporal Logic (LTL).

A major drawback of the approach is the fact that most prop-
erties to be proven formally only become obvious in hind-
sight, after being detected by the player community in the ini-
tial release. However, much of the game-logic within a given
genre is shared among titles, allowing to avoid at least the
most common pitfalls for similar structures in future games.
Given the glaring obviousness of some of the bugs, e.g. in
Fallout 3, this would still be a considerable benefit.

33

Another point of critique might be the rather simplified nature
of modeling these structures in the SCXML examples in this
paper. However, the approach was successfully employed for
state-charts wherein the intermediate state-machine represen-
tation had well over 10.000 states. If one were able to com-
partmentalize game-logic into distinct, mutually side-effect
free sub-logic, this approach could scale very well for the
game-logic of complete game titles.

One important point for future work could be the projection
onto other model-checkers providing other classes of tempo-
ral logic (e.g. CTL with the NuSMV model-checker).

Given the potential benefits of formally proofing game-logic
via temporal logic and the pervasiveness of related bugs even
in titles with huge production budgets, a closer investigation
of the approach seems very promising.

REFERENCES
1. Ampatzoglou, A., and Chatzigeorgiou, A. Evaluation of

object-oriented design patterns in game development.
Inf. Softw. Technol. 49, 5 (May 2007), 445–454.

2. Bjrk, S., Lundgren, S., and Holopainen, J. Game design
patterns. In in Level Up: Digital Games Research
Conference 2003 (2003), 4–6.

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F.,
Pistore, M., Roveri, M., Sebastiani, R., and Tacchella, A.
Nusmv 2: An opensource tool for symbolic model
checking. In Computer Aided Verification, Springer
(2002), 359–364.

4. for blind review, R. Removed for blind review. In
Removed for blind review (June 2014).

5. Hallé, S., and Villemaire, R. Runtime enforcement of
web service message contracts with data. IEEE T.
Services Computing 5, 2 (2012), 192–206.

6. Havelund, K., and Pressburger, T. Model checking java
programs using java pathfinder. International Journal on
Software Tools for Technology Transfer 2, 4 (2000),
366–381.

7. Holzmann, G. J. The model checker spin. IEEE
Transactions on software engineering 23, 5 (1997),
279–295.

8. Lewis, C., Whitehead, J., and Wardrip-Fruin, N. What
went wrong: A taxonomy of video game bugs. In
Proceedings of the Fifth International Conference on the
Foundations of Digital Games, FDG ’10, ACM (New
York, NY, USA, 2010), 108–115.

9. Moreno-Ger, P., Fuentes-Fernández, R.,
Sierra-Rodrı́guez, J. L., and Fernández-Manjón, B.
Model-checking for adventure videogames. Information
& Software Technology 51, 3 (2009), 564–580.

10. Moreno-Ger, P., Sierra, J. L., Martı́nez-Ortiz, I., and
Fernández-Manjón, B. A documental approach to
adventure game development. Sci. Comput. Program.
67, 1 (June 2007), 3–31.

11. Shafiei, N., and van Breugel, F. Towards model checking
of computer games with java pathfinder. In Proceedings
of the 3rd International Workshop on Games and
Software Engineering: Engineering Computer Games to
Enable Positive, Progressive Change, GAS ’13, IEEE
Press (Piscataway, NJ, USA, 2013), 15–21.

12. Varvaressos, S., Lavoie, K., Massé, A. B., Gaboury, S.,
and Hallé, S. Automated bug finding in video games: A
case study for runtime monitoring. In IEEE Seventh
International Conference on Software Testing,
Verification and Validation, ICST 2014, March 31
2014-April 4, 2014, Cleveland, Ohio, USA (2014),
143–152.

34

	Preface
	Format

	Organizers and Program Committee
	Acknowledgements
	REFERENCES

