410 research outputs found

    STOCHASTIC DELAY DIFFERENTIAL EQUATIONS WITH APPLICATIONS IN ECOLOGY AND EPIDEMICS

    Get PDF
    Mathematical modeling with delay differential equations (DDEs) is widely used for analysis and predictions in various areas of life sciences, such as population dynamics, epidemiology, immunology, physiology, and neural networks. The memory or time-delays, in these models, are related to the duration of certain hidden processes like the stages of the life cycle, the time between infection of a cell and the production of new viruses, the duration of the infectious period, the immune period, and so on. In ordinary differential equations (ODEs), the unknown state and its derivatives are evaluated at the same time instant. In DDEs, however, the evolution of the system at a certain time instant depends on the past history/memory. Introduction of such time-delays in a differential model significantly improves the dynamics of the model and enriches the complexity of the system. Moreover, natural phenomena counter an environmental noise and usually do not follow deterministic laws strictly but oscillate randomly about some average values, so that the population density never attains a fixed value with the advancement of time. Accordingly, stochastic delay differential equations (SDDEs) models play a prominent role in many application areas including biology, epidemiology and population dynamics, mostly because they can offer a more sophisticated insight through physical phenomena than their deterministic counterparts do. The SDDEs can be regarded as a generalization of stochastic differential equations (SDEs) and DDEs.This dissertation, consists of eight Chapters, is concerned with qualitative and quantitative features of deterministic and stochastic delay differential equations with applications in ecology and epidemics. The local and global stabilities of the steady states and Hopf bifurcations with respect of interesting parameters of such models are investigated. The impact of incorporating time-delays and random noise in such class of differential equations for different types of predator-prey systems and infectious diseases is studied. Numerical simulations, using suitable and reliable numerical schemes, are provided to show the effectiveness of the obtained theoretical results.Chapter 1 provides a brief overview about the topic and shows significance of the study. Chapter 2, is devoted to investigate the qualitative behaviours (through local and global stability of the steady states) of DDEs with predator-prey systems in case of hunting cooperation on predators. Chapter 3 deals with the dynamics of DDEs, of multiple time-delays, of two-prey one-predator system, where the growth of both preys populations subject to Allee effects, with a direct competition between the two-prey species having a common predator. A Lyapunov functional is deducted to investigate the global stability of positive interior equilibrium. Chapter 4, studies the dynamics of stochastic DDEs for predator-prey system with hunting cooperation in predators. Existence and uniqueness of global positive solution and stochastically ultimate boundedness are investigated. Some sufficient conditions for persistence and extinction, using Lyapunov functional, are obtained. Chapter 5 is devoted to investigate Stochastic DDEs of three-species predator prey system with cooperation among prey species. Sufficient conditions of existence and uniqueness of an ergodic stationary distribution of the positive solution to the model are established, by constructing a suitable Lyapunov functional. Chapter 6 deals with stochastic epidemic SIRC model with time-delay for spread of COVID-19 among population. The basic reproduction number ℛs0 for the stochastic model which is smaller than ℛ0 of the corresponding deterministic model is deduced. Sufficient conditions that guarantee the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov functional, and conditions for the extinction of the disease are obtained. In Chapter 7, some numerical schemes for SDDEs are discussed. Convergence and consistency of such schemes are investigated. Chapter 8 summaries the main finding and future directions of research. The main findings, theoretically and numerically, show that time-delays and random noise have a significant impact in the dynamics of ecological and biological systems. They also have an important role in ecological balance and environmental stability of living organisms. A small scale of white noise can promote the survival of population; While large noises can lead to extinction of the population, this would not happen in the deterministic systems without noises. Also, white noise plays an important part in controlling the spread of the disease; When the white noise is relatively large, the infectious diseases will become extinct; Re-infection and periodic outbreaks can also occur due to the time-delay in the transmission terms

    Stationary Distribution and Extinction of a Stochastic Viral Infection Model

    Get PDF
    We present a kind of stochastic viral infection model with or without a loss term in the free virus equation. We obtain critical condition to ensure the existence of the unique stationary distribution by constructing Lyapunov functions. We also obtain the sufficient conditions for the extinction of the virus by the comparison theorem of stochastic differential equation and law of large numbers. We give a unified method to systematically analyze such three-dimensional stochastic viral infection model. Furthermore, numerical simulations are carried out to examine the effect of white noises on model behavior. We investigate the fact that the small magnitudes of white noises can sustain the irregular recurrence of healthy target cells and virions, while the big ones may contribute to viral clearance

    Threshold Dynamics of a Stochastic S

    Get PDF
    A stochastic SIR model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced. Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control

    Stochastic modelling of cellular populations: Effects of latency and feedbackl

    Get PDF
    [cat]L'objectiu principal d'aquesta tesi doctoral és l'estudi de l'efecte de les fluctuacions en poblacions acoblades en sistemes biològics, on cèl·lules en estat latent juguen un paper important. Intentant trobar el significat biològic de la dinàmica dels sistemes. Els punts específics que volem abordar i la organització de la tesi estan explicats a continuació. En el Capítol 2, estudiem el comportament de les poblacions de cèl·lules amb estructura jeràrquica des del punt de vista de les propietats d'estabilitat, En particular: - 1. Divisió simètrica contra asimètrica en el compartiment de les cèl·lules mare. Estudiem la robustesa de les poblacions amb estructura jeràrquica, depenent de si les cèl·lules mare es divideixen simètricament, asimètricament o de les dues maneres. Estudiem com la divisió simètrica afecta a l'estabilitat de la població, ja que això té una gran importància en la progressió del càncer. - 2. La competició entre dues poblacions amb diferents tipus de divisió de les cèl·lules mare. Això és crucial per trobar estratègies òptimes que maximitzin la robustesa (supervivència a llarg termini, resistència a invasions i habilitat per invadir) de poblacions amb estructura jeràrquica. - 3. La influència de paràmetres com son la duplicació i el ritme de mort de cèl·lules mare, el temps de vida mitjà de les cèl·lules completament diferenciades, la longitud de les cadenes de diferenciació i les fluctuacions al compartiment de les cèl·lules mare en la robustesa i arquitectura òptima de les cascades de diferenciació. En el Capítol 3 presentem un model homogeni de combinació de HAART amb teràpies d'activació de les cèl·lules latents del VIH-1 a la sang. Estem interessats en: - 1. L'efecte del ritme d'activació de les cèl·lules latents en el temps mitjà de vida de la infecció. En particular analitzem si les teràpies basades en incrementar aquest ritme són capaces de suprimir la infecció en un temps raonable. - 2. La importància de l'eficiència de les teràpies antiretrovirals, incloent els casos límit en que l'eficàcia és del 100%, en la quantitat de càrrega viral. - 3. La formulació d'una teoria asimptòtica basada en l'aproximació semi-clàssica amb aproximacions quasi estacionàries per descriure la dinàmica del procés. La precisió d'aquest mètode asimptòtic és comparat amb simulacions multi-scale proposades pel Cao et al. En el Capítol 4, estenem el model proposat pel Rong i el Perelson a un model no homogeni de la dinàmica del VIH-1 en el corrent sanguini, considerant que les cèl·lules i els virus no estan distribuïts de manera uniforme en la sang. Els punts específics que volem estudiar són: - 1. El mecanisme que fa que apareguin els episodis de virèmia per sobre els límits de detecció, coneguts com viral blips. En particular volem investigar si són producte de fluctuacions estocàstiques degudes a la inhomogenietat o un altre mecanisme ha de ser considerat. - 2. Si l'aparició dels viral blips està afectada pels procediments duts a terme en el laboratori, com el temps d'espera entre les extraccions i les observacions. - 3. Si la probabilitat, l'amplitud i la freqüència dels viral blips es veu afectada pels diferents possibles tipus de producció viral, és a dir, continua vs burst. En el Capítol 5 presentem i discutim els resultats obtinguts, i comparem, quan és possible, amb altres models o amb resultats experimentals, i discutim el treball que deixem pel futur. Els detalls relatius a qüestions metodològiques, això com una introducció a la modelització estocàstica fent servir equacions mestres es donen en els apèndixs. Per a aquells que no estan familiaritzats amb els models basats en equacions mestres, l'autor recomana llegir primer l'apèndix A que proporciona la base matemàtica per entendre el capítol 2. Els Apèndixs B, C i D juntament amb l'Apèndix A donen la base matemàtica necessària per seguir el capítol 3 i el capítol 4

    From ODE to Open Markov Chains, via SDE: an application to models for infections in individuals and populations

    Get PDF
    UID/MAT/00297/2020We present a methodology to connect an ordinary dierential equation (ODE) model of interacting entities at the individual level, to an open Markov chain (OMC) model of a population of such individuals, via a stochastic diferential equation (SDE) intermediate model. The ODE model here presented is formulated as a dynamic change between two regimes; one regime is of mean reverting type and the other is of inverse logistic type. For the general purpose of defining an OMC model for a population of individuals, we associate an Ito processes, in the form of SDE to ODE system of equations, by means of the addition of Gaussian noise terms which may be thought to model non essential characteristics of the phenomena with small and undifferentiated influences. The next step consists on discretizing the SDE and using the discretized trajectories computed by simulation to define transitions of a finite valued Markov chain; for that, the state space of the Ito processes is partitioned according to some rule. For the example proposed for illustration, the state space of the ODE system referred – corresponding to a model of a viral infection – is partitioned into six infection classes determined by some of the critical points of the ODE system; we detail the evolution of some infected population in these infection classes.publishersversionpublishe

    Dynamical Models of Biology and Medicine

    Get PDF
    Mathematical and computational modeling approaches in biological and medical research are experiencing rapid growth globally. This Special Issue Book intends to scratch the surface of this exciting phenomenon. The subject areas covered involve general mathematical methods and their applications in biology and medicine, with an emphasis on work related to mathematical and computational modeling of the complex dynamics observed in biological and medical research. Fourteen rigorously reviewed papers were included in this Special Issue. These papers cover several timely topics relating to classical population biology, fundamental biology, and modern medicine. While the authors of these papers dealt with very different modeling questions, they were all motivated by specific applications in biology and medicine and employed innovative mathematical and computational methods to study the complex dynamics of their models. We hope that these papers detail case studies that will inspire many additional mathematical modeling efforts in biology and medicin

    Stochastic multi-scale models of competition within heterogeneous cellular populations: simulation methods and mean-field analysis

    Get PDF
    We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age. The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. We then formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size: cells consume oxygen which in turns fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. This allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy

    Estudio del efecto de la vacunación en modelos de epidemias con transmisión estocástica

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Estudios Estadísticos, leída el 15-12-2022Mathematical epidemic models are frequently used in biology for analyzing transmission dynamics of infectious diseases and assessing control measures to interrupt their expansion. In order to select and develop properly the above mathematical models, it is necessary to take into account the particularities of an epidemic process as type of disease, mode of transmission and population characteristics. In this thesis we focus on infectious diseases with stochastic transmission including vaccination as a control measure to stop the spread of the pathogen. To that end, we consider constant and moderate size populations where individuals are homogeneously mixed. We assume that characteristics related to the transmission/recovery of the infectious disease present a common probabilistic behavior for individuals in the population. To assure herd immunity protection, we consider that a percentage of the population is protected against the disease by a vaccine, prior to the start of the outbreak.The administered vaccine is imperfect in the sense that some individuals, who have been previously vaccinated, failed to increase antibody levels and, in consequence, they could be infected. Pathogenic transmission occurs by direct contact with infected individuals. As population is not isolated, disease spreads from direct contacts with infected individuals inside or outside the population...Los modelos matemáticos epidemiológicos se usan frecuentemente en biología para analizar las dinámicas de transmisión de enfermedades infecciosas y para evaluar medidas de control con el objetivo de frenar su expansión. Para poder seleccionar y desarrollar adecuadamente estos modelos es necesario tener en cuenta las particularidades propias del proceso epidémico tales como el tipo de enfermedad, modo de transmisión y características de la población. En esta tesis nos centramos en el estudio de enfermedades de tipo infeccioso con transmisión por contacto directo, que disponen de una vacuna como medida de contención en la propagación del patógeno. Para ello, consideramos poblaciones de tamaño moderado, que permanece constante a lo largo de un brote y asumiremos que los individuos no tienen preferencia a la hora de relacionarse y que las características referentes a la transmisión de la enfermedad se representan en términos de variables aleatorias, comunes para todos los individuos. La población no está aislada y la transmisión del patógeno se produce mediante contacto directo con cualquier persona infectada, tanto de dentro de la población como fuera de ella. Asumimos que, antes del inicio del brote epidémico, se ha administrado la vacuna a un porcentaje suficiente de individuos de la población, de forma que se asegure la inmunidad de rebaño. Consideramos que la vacuna administrada es imperfecta en el sentido que algunos individuos vacunados no logran desarrollar anticuerpos frente a la enfermedad y por lo tanto, podrían resultar infectados al contactar con individuos enfermos...Fac. de Estudios EstadísticosTRUEunpu

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), Covilhã, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)
    corecore