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Abstract

Mathematical modeling with delay differential equations (DDEs) is widely used
for analysis and predictions in various areas of life sciences, such as population dynam-
ics, epidemiology, immunology, physiology, and neural networks. The memory or time-
delays, in these models, are related to the duration of certain hidden processes like the
stages of the life cycle, the time between infection of a cell and the production of new
viruses, the duration of the infectious period, the immune period, and so on. In ordinary
differential equations (ODEs), the unknown state and its derivatives are evaluated at the
same time instant. In DDEs, however, the evolution of the system at a certain time instant
depends on the past history/memory. Introduction of such time-delays in a differential
model significantly improves the dynamics of the model and enriches the complexity of

the system.

Moreover, natural phenomena counter an environmental noise and usually do not
follow deterministic laws strictly but oscillate randomly about some average values, so
that the population density never attains a fixed value with the advancement of time.
Accordingly, stochastic delay differential equations (SDDEs) models play a prominent
role in many application areas including biology, epidemiology and population dynamics,
mostly because they can offer a more sophisticated insight through physical phenomena
than their deterministic counterparts do. The SDDEs can be regarded as a generalization
of stochastic differential equations (SDEs) and DDEs.

This dissertation, consists of eight Chapters, is concerned with qualitative and
quantitative features of deterministic and stochastic delay differential equations with ap-
plications in ecology and epidemics. The local and global stabilities of the steady states
and Hopf bifurcations with respect of interesting parameters of such models are investi-
gated. The impact of incorporating time-delays and random noise in such class of dif-
ferential equations for different types of predator-prey systems and infectious diseases
is studied. Numerical simulations, using suitable and reliable numerical schemes, are

provided to show the effectiveness of the obtained theoretical results.

Chapter 1 provides a brief overview about the topic and shows significance of the
study. Chapter 2, is devoted to investigate the qualitative behaviours (through local and
global stability of the steady states) of DDEs with predator-prey systems in case of hunt-
ing cooperation on predators. Chapter 3 deals with the dynamics of DDEs, of multiple
time-delays, of two-prey one-predator system, where the growth of both preys populations
subject to Allee effects, with a direct competition between the two-prey species having
a common predator. A Lyapunov functional is deducted to investigate the global stabil-
ity of positive interior equilibrium. Chapter 4, studies the dynamics of stochastic DDEs

for predator-prey system with hunting cooperation in predators. Existence and unique-
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ness of global positive solution and stochastically ultimate boundedness are investigated.
Some sufficient conditions for persistence and extinction, using Lyapunov functional, are
obtained. Chapter 5 is devoted to investigate Stochastic DDEs of three-species predator-
prey system with cooperation among prey species. Sufficient conditions of existence and
uniqueness of an ergodic stationary distribution of the positive solution to the model are
established, by constructing a suitable Lyapunov functional. Chapter 6 deals with stochas-
tic epidemic SIRC model with time-delay for spread of COVID-19 among population.
The basic reproduction number %) for the stochastic model which is smaller than % of
the corresponding deterministic model is deduced. Sufficient conditions that guarantee
the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov
functional, and conditions for the extinction of the disease are obtained. In Chapter 7,
some numerical schemes for SDDEs are discussed. Convergence and consistency of such
schemes are investigated. Chapter 8 summaries the main finding and future directions of

research.

The main findings, theoretically and numerically, show that time-delays and ran-
dom noise have a significant impact in the dynamics of ecological and biological systems.
They also have an important role in ecological balance and environmental stability of liv-
ing organisms. A small scale of white noise can promote the survival of population;
While large noises can lead to extinction of the population, this would not happen in the
deterministic systems without noises. Also, white noise plays an important part in con-
trolling the spread of the disease; When the white noise is relatively large, the infectious
diseases will become extinct; Re-infection and periodic outbreaks can also occur due to

the time-delay in the transmission terms.

Keywords: Allee effect, Bifurcation, Brownian motion, Epidemic models, Lyapunov
functionals, Predator-prey model, Sensitivity, SIRC, Stability, Stationary distribution,

Stochastic perturbations, Time-delays.
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Chapter 1: Delay Differential Equations with Population Problems

1.1 Introduction

In this chapter, some preliminaries about deterministic Delay Differential Equa-
tions (DDESs) and Stochastic Delay Differential Equations (SDDEs) are introduced. Sec-
tion 2 briefly discusses the existence and uniqueness of the solutions of DDEs. Section
3 provides some concepts about the stability of DDEs. Sections 4 and 5 provide some
background about the randomness, environmental noise and the existence of the solutions
of SDDEs. Section 6 provides some main concepts about the stability of SDDEs. The last

Section introduces the main objectives and significance of the study.

DDEs are a class of differential equations that have received a considerable at-
tention and been shown to model many real life problems, traditionally formulated by
systems of Ordinary Differential Equations (ODEs), more naturally and more accurately.
Such class of DDEs are widely used for analysis and predictions of systems with memory
such as population dynamics, epidemiology, immunology, physiology and neural net-
works [5, 20, 74, 107, 114]. In ODEs, the unknown function and its derivatives are
evaluated at the same time instant. However, in a DDE the evolution of the system at
a certain time instant, depends on the state of the system at an earlier time. The delay can
be related to the duration of certain hidden processes like the stages of the life cycle, the
time between infection of a cell and the production of new viruses, the duration of the

infectious period, the immune period, and so on; See [111, 112].

In ecological systems, the individuals of the prey and predator species usually
pass through various life stages during their entire life span and the involved morphology
differs from one stage to another. Construction of delay differential equation models is
a well known modelling strategy to take care of the stage specific activities which are
responsible for significant change in the dynamics of interacting populations. In various

existing literature, the biological processes like incubation, gestation, maturation, reaction



time, etc., are taken care of by introducing relevant time-delay parameters to the models
for predator-prey and other types of interacting populations. Incorporating time-lags (or
time-delays) in biological models makes the systems much more realistic, as it can desta-
bilize the equilibrium points and give rise to a stable limit cycle, causing oscillations to
grow, and enriching the dynamics of the model. Time-delays have been considered and
extremely studied by many authors in predator-prey models and biological systems; See

[15, 16, 117].

Most of the studies in ecology utilize deterministic models, which of course sup-
ported the researchers with useful results for protecting species. In reality, natural phe-
nomena counter an environmental noise and usually do not follow strictly deterministic
laws but oscillate randomly about some average values, so that the population density
never attains a fixed value with the advancement of time [43, 118]. Ecological systems
are often subject to environmental noise, which is important factor in ecosystems, to sup-

press a potential population explosion [120].

A key question in population biology is understanding the conditions under which
populations coexist or go extinct. Extinction is one of the most important terms in pop-
ulation dynamics. A species is said to be extinct when the last existing member dies.
Therefore, extinction becomes a certainty when there are no surviving individuals that
can reproduce and create a new generation. In ecology, extinction is often used infor-
mally to refer to local extinction, in which a species ceases to exist in the chosen area
of study, but may still exist elsewhere. There are a variety of causes that can contribute
directly or indirectly to the extinction of species or group of species, such as lack of food
and space or toxic pollution of the entire population habitat, competition for food to bet-
ter adapted competitors, predation, etc. [84]. Some examples in modelling population

dynamics can be referred to [64, 84, 92, 100, 148].

In fact, stochastic perturbation factors, such as precipitation, absolute humid-
ity, and temperature, have a significant impact on the infection force of all types of

virus diseases to humans. Taking this into consideration enables a lot of authors to in-



troduce randomness into deterministic model of biological systems to reveal the effect
of environmental variability, whether it is a random noise in the system of differential
equations or environmental fluctuations in parameters. Moreover, stochastic epidemic
models give an extra degree of realism in comparison with their deterministic models

[26, 79, 85, 134, 142, 143].

In the next Section, the existence and uniqueness of the solutions of DDEs are

discussed.

1.2 Existence and Uniqueness of Solutions for DDEs

Consider the Initial Value Problem (IVP) for the system of DDEs, with multiple
discrete time-delays, of the following form
dy (1)

7:f(tvy(t)7y<t_Tl)v'“ay(t_Tm))v t 2 to,
(1.1

yO)=9(1) <1,

where y(z) € R", f is a nonlinear smooth function, with respect to all of its arguments,
depending on delays 7; > 0, i = 1,...,m. Time-delay 7; could be a constant, or variable
in time 7;(¢) (i = 1,...,n) , or even state-dependent 7; = 7;(¢,y(¢)). If the right hand
side of (1.1) is a function of y’(¢), then it be called Neutral Delay Differential Equations
(NDDESs). The function ¢(¢) is defined in [v,7y], where v = min {min(t - ‘Cl')}. For

1<i<n Ut>1

simplicity, consider DDEs of the form

dy_(t) =1(t,y(¢),y(t —7(2))), t> 1o,
dr (1.2)

yO)=9@1) 1<1.

In general, initial discontinuity y'(z9)™ = £(19,y(t0), ¢ (fo — 7)) may differ from the value
¢’ (19)~; and its propagation from initial point 7y along the integration interval and gives
rise to subsequent discontinuity points where the solution is smoothed out more and more.

On the other hand, it is well-known that every step by step numerical method for the initial



value problem attains its own accuracy order provided that the solution is sufficiently

smooth at each step interval [t,,,1,41]; More details are discussed in Appendix A.

Now, some essential results for the DDEs (1.2) will be introduced (see [17, 39]).
Theorem 1.2.1. (Local existence) Consider the equation

WO _ b0 y(0)y— 1)) o<t <ty
7 (13)

y(t0) = yo-
Assume that the function £(t,u,v) is continuous with respect tot on A C [fo,t,) X R" x R"
and Lipschitz continuous with respect to u and v. Moreover, assume that the delay function
7(¢t) > 0 is continuous in [to, 1), T(tp) = 0 and, for some & >0, t —T(t) >ty in the interval
(to,t0 + &]. Then the Equation (1.3) has a unique solution in [ty,ty + 8) for some § > 0

and this solution continuously depends on the initial data.

To show the global existence theorem, under the same assumptions of Theorem
1.2.1, the solution can be carried on until a maximal solution defined in [fy,/), with fg <

[ <t

Theorem 1.2.2. (Global existence) Under the assumptions of Theorem 1.2.1, if the unique

maximal solution of (1.3) is bounded, then it exists on the entire interval [ty,t},).
Therefore, the following lemma is illustrated to define a bound for the solution.

Lemma 1.2.3. Under the assumptions of Theorem 1.2.1, assume that the function £(t,u,v)

satisfies the condition
€2, u,v)[| < M (1) + Mo () ([|ul| + [|v]])

in [to,1p) X R" x R", where M (t) and M;(t) are continuous positive functions on [ty,t).

Hence, the solution of (1.3) exists and is unique on the entire interval [ty,1p).



Driver [37] proved the above results with multiple delays. Particularly, the global
existence, uniqueness and continuous dependence on the initial data for the solution of
the linear DDEs

, r
y (1) =Aoy (t) + ) Ai(0)y(t = Ti(t)), =10

i=1

y(£) =¢(t), 1 <to,
for any continuous functions A;(¢), i = 0,...,r, and ¢(¢), and for any set of continuous
delays 7;(t) > 0.

Most DDEs don’t have analytic solutions, so it is generally essential to resort to
numerical methods (See Appendix A). For linear DDEs with constant delay, considering

solutions of exponential form; see [35]. Now, consider a scalar linear DDE of the form

d
=% = (=) + poy(), 120,
! (1.4)

y(t):(P(t)v IE[—T,O].

Let the solution y(¢) = CeM , where C is constant; then substituting it into Equation (1.4)

gives

CreM = ugCe* + i Cer=7), (1.5)
which can be simplify to

(A —po)e*™ — g =0, (1.6)

Equation (1.6) is the characteristic equation and the root A; of (1.6) gives a solution to
Equation (1.4) in the form of Ce*'. The following Theorem [18] illustrates the general

solution of (1.6).

Theorem 1.2.4. Assume that ¢(t) is €[ty — T,to], and let {A;} be a sequence zeros of



Equation (1.6) arranged in order of decreasing real parts (or of increasing imaginary

parts or absolute values). Then

y) = Y pilt)e™, t =1, (quasi-polynomial), (1.7
i=1

is the solution of Equation (1.4), where p;(t) is a polynomial of degree less than the
multiplicity of the root {A;}.
The above approach, is not a practical method for solving DDEs. However, it

provides useful information about solutions to DDEs. The following example affords the

basic theory for the simplest method for solving DDEs, which is the method of steps [17].
Example 1.2.1. Assume a special case of (1.4) when py = 0. Therefore, Equation (1.4)
becomes

d
—y:u]y(t—’[), t>0,
dt (1.8)

yit)=¢(@), tel-1,0].
Let uy = —1,7=1and ¢(¢) = 1 +1¢; In the interval [0,1], one obtains

1 tz
yi(t) :y(O)—/ sds=1— —,
0 2




similarly, in the interval [2,3], the solution is

wi =4 [ D)as

8 (t—2)* 1 5
= —
3 24 2 2

Now, one can check for discontinuity in the solutions. At¢ =0, ¢(0) =y;(0) = 1, but
¢’(0) = 1 # y|(0) = 0. Thus, there is a discontinuity at y'(0). Atz =1, y;(1) =y,(1) = 1,
yi(1) =y,5(1) = =1, but y, (1) = —1 # y,(1) = 0. Thus, there is a discontinuity at y”(1).
Similarly, at ¢ = 2, there is a discontinuity at y"”’(3).

Applying Laplace transformation [18] to (1.8) also provides some useful facts
about the solutions but do not mostly acquire explicit solutions. The Laplace transform
L(y) of y(¢) is denoted by Y (s), where ¥ (s) = / y(t)e dt.

0

By taking Laplace transform of y'(¢) = —y(¢ — 1), one obtains

/ Y (t)e dt :/ —y(t—1)e *dt
0 0

sY(s)—1= —/ooy(w)es(wﬂ)dw
-1

(e ] 0
= —e_s/ y(w)e dw — e_s/ y(w)e dw
0 -1

_ 0
=—e Y(s)— e_S/ (w+1)e ™dw
~1
_ 11 e o I+
7SY :1_ —=S[_ _— _ s Y — N N
(e W) = 1= =+ Gl =¥ =5

Thus, y(¢) can be found by the following inverse transform

s
2

e

t)=1L >
¥t) s+e s

Next, some stability criteria of DDEs are discussed.



1.3 Stability of Equilibria and Lyapunov Functions for DDEs

Definition 1.3.1. [12] The solution y(¢) of (1.2) is stable if, given € > 0, there exists
A = A(e) such that sup,cr, ¢ . () — ¢(#)| < Aand u(z) is also a solution of (1.2), then
0y(t) :=u(t) —y(¢) is uniformly bounded for ¢ > #o and sup,~,, |0y (¢)| < €. The solution
y(r) is asymptotically stable if it is stable and [0y (7)| — 0 as t — oo for all A sufficiently

small.

There are two standard approaches for stability theory [72, 73], the first is stability
in variation (first approximation), and the second is Lyapunov theory. First, stability in
variation approach are introduced, which is based on local linearization of the DDE [89].

Consider a system of DDEs with multiple constant delays

dy

” =1f(y(t),y(t —71),...,y(t — Tw)), (1.9)

where y(t) € R", f: R"(m+1) _ R is a nonlinear smooth function depending on delays
7, >0, i =1,...,m. An equilibrium, y*(¢) = y*, of (1.9) is a solution of the nonlinear
algebraic system f(y*,y*,...,y*), which is solved by Newton iteration starting from an
initial guess y*. The local asymptotic stability of y* is found out through the linearization
of (1.9) around y*, i.e. through the following variation equation

du L

— =Apu(s Au(r—1 1.10

dt 0 ( )+; i ( l)a ( )
such that A; stands for the partial derivatives of f with respect to the ith variable, i.e. A; :=
of

,1=0,1,...,m. The variational Equation (1.10) leads to the characteristic

Ay l(y y*,.¥)
equation,

det (A1~ Ao~ iA,-e_Mi) —0, (L11)
i=1



where I is the identity matrix and A € C. The local asymptotic stability of the equilibrium
y* is determined by the real parts of the characteristic roots A, therefore, the solution is
stable if R(A) is negative for all A and it is unstable with R(A) is positive. The number
of roots for Equation (1.11) could be countably infinite. However, the number of roots in

any right half-plane ®R(A) > n, n € R, is finite such that R(A;) - —ooas j — oo,

Generally, a bifurcation (or threshold point) occurs when a real characteristic root
passes through zero and a Hopf bifurcation occurs when a pair of complex conjugate char-
acteristic roots passes the imaginary axis; While a transcritical bifurcation occurs when
two branches of equilibrium solutions intersect. A periodic solution y*(¢) is a solution
that restates itself after a finite period 7 i.e., y*(t +T) = y*(¢) for all + > 0. The local
asymptotic stability of the periodic solution is determined by the time integration opera-
tor; which integrates the variational Equation (1.10) around y*(¢) from time 7 = 0 over the
period. This operator is also called the monodromy operator and its eigenvalues (which
are independent of the starting point ¢t = 0) are called Floquet Multipliers. Additionally,
if T > 7 then the oprator is compact. The periodic solution is stable if all multipliers
(except the trivial one) have modulus smaller than one and it is unstable if there exists a

multipliers with modulus larger than one [40].
Example 1.3.1. To study the qualitative behaviour of the linear DDE, recall Equation
(1.4)

dy

7 wiy(t — 1)+ poy(t), t>0. (1.12)

The aim is to investigate the stability around the equilibrium solution y = 0. Consider the
exponential solution y(t) = CeM, where C is constant and the eigenvalue A are solutions

of the characteristic equation

A — o — e *T =0, (1.13)
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which is a transcendental equation. Therefore, y = 0 is asymptotically stable if all eigen-
values of (1.13) have negative real parts. Let A = {y+ i{;. Substituting in the character-

istic Equation (1.13) then separating the real and the imaginary parts, one obtains

C()—‘u()—,LLle*COTCOSCﬂ::O, C1+,u1e’§°TsinC1r:0. (1.14)

Notice that when 7 = 0, the eigenvalue of the characteristic Equation (1.13) has a negative
real number if A = yy+ p; < 0. For fixed 7 > 0 the boundaries of the domains of the
(Ho, W) —plane are formed by the line ; = — iy and the parametric curve gy = §; cot{; 1,

= =& /sing;t where {; € R, for which {y = 0. Therefore, the stability condition is

Ho < ; see Figure 1.1, which shows the stability region

of (1.12) when 7 = 1. For complex-valued Lo, i1, the solution are stable if |u;| < —R(uy).

Restricting conditions on T such that R(A) changes from negative to positive. By
the continuity, if A changes from py+ p; to a certain value such that R(A) =y >0as 7
increases, there must be some threshold value of 7, say 7%, at which RA (%) = {o(7*) =
In this case the characteristic Equation (1.13) must have a pair of purely imaginary roots

+i¢;, { = ¢/ (7"). Therefore, having —pp — iy cos £t = 0, which implies

uo/m

21k
ﬂ kel
\VH — U5 \/le—li(%

Noting that §;" = \/le —ug > 0; Thus, when 7 = 7" = min 7, Equation (1.13) has a

Tk = (1.15)

pair of purely imaginary roots. When 0 < 7 < ¥, all roots of (1.13) have negative real
parts then the equilibrium y = 0 is asymptotically stable. if T > 7%, then y = 0 is unsta-

ble. Assume A(7) = §y(7) +i&;(7) the root of Equation (1.13) satisfying {y(7;) = 0 and
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Ci(w) ={;, k=0,1,2,.... In which the transversality condition as following

dR(A)
drt

_ 4%

*\2 .
= = >0 =0,1,2,....
P dt (Cl) ) J y Ly &y

T=T7*

2r

a stable solution for Equation (1.12) when 7 = 0.8 < 7*; Periodic solution where a Hopf

A Hopf bifurcation occurs at y = 0 with a period given by T" = Figure 1.2 shows

bifurcation occurs as T = 7" = 1.209; the solution of (1.12) becomes unstable when 7 =

1.28 > t*. Now, one may discuss the stability of (1.12) when pp = 0 i.e. pure DDE,

5 T T T T T T
Al ]
Al ]
il 1=, |
) ; " Stabilty Region
X
Al ]
ot (1/7,-1/7)-
N
J ]
5l ]
5 : 3 2 3 0 i

Figure 1.1: Stability region for scalar DDE y'(¢) = w1 y(t — T) + Uoy(z). Red line gives the real root
crossing [ = — o, while the blue line gives the imaginary root crossing; the dash line represents
the equation u; = Uy

Recall the Equation (1.8)

dy _ N (1.16)

Therefore the characteristic Equation of (1.16) is

A— e =0, (1.17)
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Figure 1.2: Numerical simulations for DDE y'(¢) = u;y(t — 7) 4+ toy(¢). With g; = —2 and oy =
—1, where the initial function ¢(¢) = 1+, when 7 = 0.8 the steady state y = 0 is stable; When

T = 1% = 1.209 a Hopf bifurcation occurs; The solution of (1.12) becomes unstable when 7 =
1.28 > 1*

First, suppose that A is real, for @; > 0 the equilibrium y = 0 is unstable; For y; < 0, one
canplotz=A and z = ule“, when 7 = 1; there are three cases; single intersection when
My = Ui = —e ! when A = —1, for u; € (1], 0] there are two real negative eigenvalues,
for g < p there are no real eigenvalues; See Figure 1.3. Assume that A = @y +iw; is

complex, in the same manner for studying the stability for linear case one may have,

/4 km
Tj = —.,j€Z, 1.18
207 Jra);k J (1.18)
noting that @; = —u; > 0; Thus, when 7 = 7’ = mint;, Equation (1.17) has a pair of

purely imaginary roots. When 0 < 7 < 7/, all roots of (1.17) have negative real parts then
the equilibrium y = 0 is asymptotically stable; if T > 7/, then y = 0 is unstable. Assume

A(T) = wo(t)+iw; (7) the root of Equation (1.17) satisfying my(7;) =0 and w;(7;) = oy,
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Figure 1.3: Number of real eigenvalues for the characteristic equation of DDE y'(r) = py(r — 7).
Single intersection when p; = pf = —e~! when A = —1, for u; € [u},0] there are two real negative
eigenvalues, for 4 < u; there are no real eigenvalues

Jj=0,1,2,.... The transversality condition
dR(A) day .
= = ()" >0 =0,1,2,....
art =1 dt =1 ( 1) ) J s by 4y

When 7 = 2—3)1*, a Hopf bifurcation occurs at y = 0.

Noting from Figure 1.2 that the large time delay can induce instability and cause
the solution to fluctuate when the time delay is larger than a critical value, the time delay
can induce a stable limit cycle generated through the Hopf bifurcation and larger time

delay can increase the amplitude of the oscillating orbits of the solution.

1.3.1 Lyapunov theory approach

Now, the author introduce the Lyapunov theory approach; by considering a more

general type for DDE (1.9) with one delay. Thus, a functional delay differential system is
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given by

y<t>:f<t7YI)7 IZIO,
y/(0)=y(t+86), —-1<6<0, (1.19)

f(z,0) =0, y,=9.

Let 6, : [—7,0] — R" be the set of continuous functions, where 7 > 0 is fixed. Suppose t €
Randy: [f—1,t] — R" is continuous. Define y, € 6, by y;(6) =y(r+0) for 6 € [—17,0],
where ¢ € %,, such that one may consider the existence and uniqueness of solutions,
without loss of generality, the solution y; = 0O is an equilibrium. In this approach, the
idea is to consider a classical positive definite Lyapunov function V (z,y(¢)), such that its
derivative with respect to time along the trajectories of System (1.19) is negative definite.

This concept is formalized in the following theorems.

Theorem 1.3.1. [72] Let uy, uy and u3 : Ry — R be nondecreasing functions such that
ui1(0) and uy(0) are strictly positive for all 0 > 0. Assume that the vector field £ of
(1.19) is bounded for bounded values of its arguments. If there exists a continuous and

differentiable function V : R x R" — R such that:
i) ur([[¢(0)[)) <V, ) <ux(l®]),
ii) V(t,0) < —u3(||¢(0)|) for all trajectories of (1.19) satisfying
V(t+6,0(1+0)) <V(,¢(), 6¢€[-7,0] (1.20)

then the solution y, = 0 is uniformly stable for (1.19).

Additionally, if u3(0) > 0 and there exists a strictly increasing function uy : R —

R such that u,(0) > 6 as long with i) and ii), verifying that

V(t+0,y(t+0)) <uy(V(t,y(t))), 6¢€l[-1,0], (1.21)
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such a function V is called Lyapunov-Razumikhin function and the solution y; = 0 is uni-
formly asymptotically stable for System (1.19). Commonly, the functions u4 are consid-
ered as us = .#"0 where ./ is a constant strictly greater than 1. The Lyapunov functions

in Razumikhin approach are of the form
V() =y Py(), (1.22)

where P is a symmetric positive definite matrix of dimension n. Thus Equation (1.22)

becomes

y (t+0)Py(t+0) < Ay Py(t), 6¢c|[-1,0]. (1.23)

Theorem 1.3.2. [72] Let uy, up and u3 : R, — R, be increasing functions such that
u1(0) and uy(0) are strictly positive for all 0 > 0 and u;(0) = up(0) = 0. Assume that
the vector field £ of (1.19) is bounded for bounded values of its arguments. If there exists
a continuous and differentiable function V : R x €[—1,0] — R such that i) and ii) of

. Vit t —Vit,y(t
Theorem 1.3.1 satisfied then V (t,¢) = lim sup (t+eyi+e) —ViEy()

£—0 )

. Such that,

the solution'y;, = 0 of (1.19) is uniformly stable. Moreover, if u3(6) > 0, then the solution
y: = 0 is uniformly asymptotically stable for (1.19).

Example 1.3.2. Consider the linear delay differential equation

y(t) = —wmy(t — 1) — toy(t), t>1t9,7>0, (1.24)

where py > 0 and u; are constants. To derive stability conditions for (1.24), one may

introduce a functional V : R x €'[—1,0] — R as follows
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To find V, utilizing Theorem 1.3.2, by simple computation, one obtains

V(9) = ~E20%(0) - 6 (0)9(~1) - D9*(~7). (1.25)

The right hand side of (1.25) is a quadratic form in (¢(0),¢(—7)). Thus, one may have
to find parametric restrictions in which this quadratic form is positive, such that ,ug > ,ulz
and positive definiteness if u3 > pu?; which implies region of stability as po > || and
asymptotic stability as o > ||

Next, some preliminaries for SDDEs, existence and uniqueness of the solutions

and stability criteria for SDDEs are introduced.

1.4 Stochastic Delay Differential Equations

A stochastic differential equation is a differential equation whose coefficients are
random numbers or random functions of the independent variables. Just as in normal
differential equations, the coefficients are supposed to be given, independently of the
solution that has to be found. Hence stochastic differential equations are the appropriate
tool for describing systems with external noise [67]. So far deterministic delay systems
have been assumed. However, there is an increasing evidence that better consistency with
some phenomena can be provided if the effects of random processes in the system are

taken into account [9].

Biological populations are strongly affected by the random variation in their en-
vironment. An important characteristic of environmental noise is its spectrum, which
describes the variance as a sum of sinusoidal waves of different frequencies. The spec-
trum of frequencies in noise is particularly important to dynamics and persistence of the
systems [130]. However, the Brownian motion with normally distributed errors is usually
and commonly used in the continuous differential models of dynamical systems. In this

dissertation white noise type is considered; In white noise, the variance is the same at all
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frequencies. Therefore, this is the most thoroughly studied and applied form of noise.
The reason for this is that it is a simple and easily articulated model for noise. From the
observation point of view, the random effect of Brownian motion is more visualized, with

normally distributed errors [91, 103].
Definition 1.4.1. [56] Let (Q,.o/,P) be a probability space with a filtration {7 },>o.
A one-demential (standard) Brownian motion is a real-valued continuous {.¢7 }-adapted

process {W; },>¢ satisfying the following properties
1. W(0) = 0 a.s. (with probability 1).

2. For 0 < s <t <T the random variable given by the increment W(r) — W (s) is
normally distributed with mean zero and variance 7 — s; equivalently, W (1) — W (s) ~
Vvt —sN(0,1), where N(0,1) denotes a normally distributed random variable with

zero mean and unit variance.

3. For0<s<t<u<v<T the increments W(t) — W (s) and W(v) — W (u) are inde-

pendent.
Indeed, the random perturbations which are present in the real world imply that
deterministic equations are often an idealization. To model the dynamics of biological de-
lay systems under random perturbations, stochastic delay differential equations (SDDEs)

are used:

dy(t) =f£(t,y(2),y(t — 7))dt + g(t,y(2),y(t — 7))dW (1), 1€]0,T],

-~ -~

a) (b) (1.26)

—

y(l):llj(t)v S [—T,O].

Here, y(t) = [y1(t),y2(t),...,y.(t)]", with fixed time delay, Where y(¢) is an .2%-measurable
% ([—,0],R")-valued random variable such that E||y||? < eo; (¥’([—7,0],R") means that

the Banach space of all continuous paths from [—7,0] — R” equipped with the supre-

mum norm ||N|| := supe[_; ) [N(s)[, where n € €). Term (a) is the drift term and
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the second term (b) is the diffusion term; let W(¢) be an m-dimensional Brownian mo-
tion given on the filtered probability space (,.o7,P) with a filtration (.« ) satisfying the
usual condition (it is right continuous i.e. %% = (),>; % and .« contains all P-null sets).
f:4([-7,0],R") x Rt - R" and g : €([—7,0],R") x RT — R™ ™ are assumed to be
continuous. Such that W(r) depends continuously on ¢ € [0,7]; more details and some

necessary results can be found in Chapter 4.

Example 1.4.1. Consider Hutchinson equation [61]

B0 _ i (1-20=9) a2

Here, r > 0 is the intrinsic growth rate and K > 0 is the carrying capacity of the population
and time-delay T was considered as hatching time. One could just add a small random
perturbation cdW, which usually referred to the noise term to Equation (1.27), which

becomes

y(t—1)
K

dy(t) = [ry(t) (1 — )} dt +odw. (1.28)

In the Equation (1.28) the noise term does not include the dependent variable y, and
hence the equation is referred to as a SDDE with additive noise. However, it may be more
natural to consider extension from Hutchinson equation by looking at the proportionate

population change dyy(—gt)) and adding the stochastic term to this quantity. This gives

=02 | (129)

Therefore, Equation (1.29) becomes

dy(t) _ [r(l _W; T))} di +Gaw. (1.30)
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Multiplying by y(¢) obtains the following SDDE with multiplicative noise

dy = {r(l —y(t; T))y(t)} dt + oy (1)dW. (1.31)

This implies the more natural procedure, therefore, equations with multiplicative noise
will be only considered in this thesis. Figure 1.4 shows the effect of environmental fluc-
tuations on a Hutchinson equation such that » = 0.15 and k = 1; Top Banners show sim-
ulation results for T = 5.6 and it indicates that the population attains its steady state value
1 regardless the external noise. Hence, it fluctuates within the interval [0.95,1.15] as
o2 =0.01 (top-left), and as the intensities of white noise increases to 02 = 0.05 it fluc-
tuates within [0.65,1.5] (top-right). When the magnitude of time delay is increased to a
threshold value 7 = 11 (periodic oscillations) and taking 62 = 0.01 the stochastic fluctu-
ations disappears (bottom-left), and as 6> = 0.05 one may observe abrupt oscillation in
population (bottom-right).

Remark 1.4.1. One of the important facts about the impact of the environmental noise is

that it can suppress a potential population explosion [92, 93]; See Figure 1.5.

To illustrate this phenomena, consider Equation (1.8) with multiplicative noise
dy = wy(t — t)dt + oy(t)dw. (1.32)

As ;> 0 the solution of (1.8) increases exponentially to infinity as t — oo. However,
Figure 1.5 shows the effect of environmental fluctuations on (1.8), with y; = 0.06 and

7=0.4, and 62 =0.16.
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Figure 1.4: Numerical simulations of deterministic Hutchinson DDE (1.27) and its corresponding
SDDE (1.31). When r =0.15 and k£ = 1. Top Banners show simulation results for T = 5.6 and it
indicates that the population attains its steady state value 1 regardless the external noise. Hence,
it fluctuates within the interval [0.95,1.15] as 62 = 0.01 (top-left), and as the intensities of white
noise increases to 62 = 0.05 it fluctuates within [0.65,1.5] (top-right). When the magnitude of
time delay is increased to a threshold value T = 11 (periodic oscillations) and taking 6> = 0.01 the
stochastic fluctuations disappears (bottom-left), and as 6> = 0.05 abrupt oscillation in population
is observed (bottom-right)

1.5 Existence and Uniqueness of the Solutions for SDDEs

Consider W (¢) be a 1-dimensional Wienner process, an autonomous scalar stochas-

tic delay differential equation of the form

dy(t) = f(y(2),y(t = 7))di +g(y(1),y(t = 7))dW (z), 1€10,T],

y(t) = W(”? re [_770]'

(1.33)

Equation (1.33) can be formulated as

) =3(0)+ [ F005):3(6— s+ [ g0(s).7(s— )W (o) (134
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Figure 1.5: The impact of environmental Brownian noise that suppresses explosions in popula-
tion dynamics. Described by dy = u1y(t — 7)dt + oy(t)dW and its corresponding deterministic
Equation (1.8).

for t € [0,7T] and with y(¢) = y(t), for r € [-7,0]. The second integral in (1.34) is a
stochastic integral in the Ito sense; If it is taken as Stratonovich integral the notation of the
form [§ g(s,y(s))odW(s)isused. Let f:RxR - R, g:RxR —Rand y: [-7,0] — R.

Now, one may introduce the following Theorem for Equation (1.33) [10, 23].

Theorem 1.5.1. Problem (1.33) has a unique strong solution, provided that the uniform
Lipschitz condition and a linear growth bound are satisfied for both f and g.

Example 1.5.1. Consider the stochastic delay differential equation

dy(t) = my(t —t)dt+0dW(t), t>0,
(1.35)

yit)=t+1, te[-7,0].

Assume ; = —1 and 7 = 1; conditions of Theorem 1.5.1 can be easily verified. Thus,

one may solve (1.35) by Ito’s formula, in the interval [0,1], so that

2

yi1(t) =y(0) —/Otsds-i—/ot odW(s) = 1—%+0‘W(I).
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In the interval [1,2], one obtains

t §— 2 t
yz(t):y(l)+GW(1)—|—/l(—1+( 21) +GW(S—1))CZS+/1 odW (s)

—1)3 t
:(t6) —l+§"%A,GW%&—Ud&+GW“ﬂ.

Similarly, in the interval [2,3], the solution is

1 t<(t—2)3

y3(t)=—=— g —t+§>ds+/126W(s—1)a’s+GW(2)

3 N
t s1—1 t 1
+// GW(s—l)dsds1+/ GW(s—l)ds+/ GdW (s)
2 J1
8 (r—

2)4
- — _ __ = _1 —1
3 5 —l— 5 2t+ GW s ds+/ / s dsds1

+/2t W (s—1)ds+oW(1).

Noting that [j 6dW (s) is a martingale. Hence, ]E( IK GdW(s)) = 0. To find the mean

function of y(¢), one can take the expectation of the solutions on their intervals as follows

2
-1, t€10,1];
_24 2
§_0M>+%_%,tep3y

Numerical methods for SDDEs are very under-studying and development. They
must usually be used carefully from methods either for deterministic DDEs, or for Stochas-
tic Ordinary Differential Equations (SODEs). Direct analysis of some methods for SD-

DEs has been considered in Chapter 7.
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1.6 Stability Criteria for SDDEs

There are at least three different types of stability for SDDEs [91]. Consider the

following scalar SDDE with W (¢) be a 1-dimensional Wienner process

dy(t) = f(t,y(t),y(t = 7))dt +g(t,y(1),y(t — 7))dW (1), 1€0,T],

(1.36)
y(t)=wl(), te[-,0]
Hence, Equation (1.36) can be formulated as
t t
Y0 =300+ [ £6.56).56=0)ds+ [ glsy(5)y(s—e)aW(s). (137

The main ideas of pth mean stability of the trivial solution of Equation (1.37) with respect
to perturbations in y(.) (for 1 < p < o) are discussed in the next definition, also with

mean square stability when p = 2.

Definition 1.6.1. [11] For some p > 0, the trivial solution of the SDDE (1.37) is called

e Locally stable in the pth mean, if for each € > 0, there exists a 6 > 0 such that

E([y(#;20, w)|7) < € whenever t > 1o and E(sup; ¢, 1] [W(1)]7) < &;

e [ocally asymptotically stable in the pth mean if it is stable in the pth mean and if
there exists a 6 > 0 such that whenever E(sup; ¢ ¢ )y (r)p) < 6 then E(|y(#;20, W) |7) —

0 fort — oo;

e Locally exponentially stable in the pth mean if it is stable in the pth mean and if
there exists a 6 > 0 such that whenever E(Sup;c;, — 7 s,]jy())») < O there exists some
finite constant C and a u* > 0 such that
E(Iy(1310, W)1?) < CE(supycpy—r.10) [WS)IP)exp(—u (i — 10)) (1o < 1 < o0). I & i

arbitrarily large then the stability, in the above, is in each case global rather than
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local.

e (Stability in probability) The trivial solution of the SDDE (1.37) is termed stochas-
tically stable in probability, if for each e € (0,1) and € > 0, there exists a § =

0(e,€) > 0 such that

P(ly(t;t0, )| <€ forall t>1)>1—e,

whenever t > 1o and sup,c (¢ [W(?)|” < & with probability 1.

Stability conditions for SDDEs can be also stated in terms of Lyapunov function-
als, similar to the theorems for DDEs. Now, the Lyapunov theory approach for SDDEs is
discussed; First, consider a more general type for (1.26) with one delay. Thus, an It6 type

SDDEs is given by

dy(r) = f(t,y,)dt +g(t,y)dW (t), 1> 1o,
y(6)=y(t+0), —1<6<0, (1.38)

f(t,0> = 0, ytO = ll/

Define y; € 6, by y:(0) =y(¢t+ 0) for 6 € [—1,0], where y € %,, such that the existence
and uniqueness of solutions is considered, without loss of generality, the solution y; = 0

is an equilibrium.
Theorem 1.6.1. [72] Suppose there is a continuous functional V : [ty,| X €[—1,0] — R
such that for any solution of (1.38), where y,(0) =y(t +0) as —1 < 0 <0, the following

inequalities hold; such that C; i = 1,2,3 are positive constants

V(t,yr) 2Cily(0)®
(1.39)

EV(1,y)) <C, sup Ely(r+6),
—1<60<0
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for arbitrary t > to, s > t,
s 2
B[V (s.y,) = V(t.3)] < ~Cs [ Ely(|ah. (1.40)
1t

Then the trivial solution of (1.38) is asymptotically mean-square stable.

Example 1.6.1. Consider a SDDE of the form
dy(t) = —py(r — T)dt + oy ()dW (1), 1> o, (1.41)

where U,y are positive constants. Sufficient conditions for asymptotic mean-square

stability of (1.41) are:

u2
O<mt<l, Hl(l—ulf)>72-

To prove this, consider the functional

V) = [v@ - [ wio)ae] vt [ as ["viow0. (1.42)

By It6 formula, one obtains

t

avin) =2[y(0) - [

—7

¥(0)d6)| (dy(r) - pry(e)ds + pry(e — T)d)

t

+ [0+t —ut [

y2(9)de]dt

=250~ [ (0)d0] (ry(0)aW 1) — puy(e)ar)

-1
t
+ [u%yz(tHuffyz(t)—uf / y2(9)d6]dt.

—7T
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Noting that,

t

2ubr(e) [ v(6)a6 < [e(0)+ [ (6)a].

—7T
Hence,

t

dV(yr) <24 [Y(f) — U /

-7

y(9)d9] Y(O)aW (1) = 2p1 (1 = t) — 3 ]y* (1)dr. (1.43)

Integration of both parts of (1.43) from s € [ty,¢] to 7, then taking the expectation yields

EV(y) =V ()] < _¢2y1(1_.“47>__H§LK”Ebﬂ(h>dh. (1.44)

From inequality (1.44), one gets

EV(y) <EV(y,). 121 (1.45)
Therefore,
t 2 oo 2
E[y(t)—ul/t ¥(0)d6]” <EV(y,). /t Ey?(s)ds < oo. (1.46)

Inequalities (1.46) and condition y; 7 < 1 implies mean-square stability, since

supEy*(r) <C; sup Ey?(0). (1.47)

>t —1<6<0

From inequalities (1.46) and since lim;_,.. Ey?(¢) = 0 this implies asymptotic mean square

stability.
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1.7 Main Objectives and Significance of the Research

The main objective of this research is to study the qualitative and quantitative

features of deterministic and stochastic DDEs with biological systems. The study includes

the following.

1.7.1

Develop a class of DDEs to study and analyze modelling ecological and epidemic

systems.
Investigate the impact and role of time-delays in the dynamics of the models.

Study the impact of Allee effect in modeling predator-prey systems and in the com-

plexity of the model.

Study the qualitative features of SDDEs and investigate the impact of environmental

fluctuations on the dynamical behaviour of the proposed models.

Provide and select the suitable numerical techniques for solving the resulting mod-

els of DDEs and SDDEs.

Research significance

Recently, there has been a worldwide movement aimed at enhancing the under-

standing of ecological stability. However, many significant problems are still unsolved.

Most of the studies in population dynamics models utilize deterministic models. However,

the natural growth of populations is always affected by stochastic perturbations which

should be taken into account in the process of mathematical modelling. It is observed that

small scale of white noise can promote the survival of population; while large noises can

lead to extinction of the population, this would not happen in the deterministic systems

without noises. Studying the existence of an ergodic stationary distribution is an interest-

ing problem, the key difficulty is how to construct a suitable stochastic Lyapunov function

and a bounded domain.

In addition, this research sheds some light on the influence of random noises that
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can suppress the explosion of the species, where the solutions of the undisturbed system is
unbounded. Furthermore, introduction of noise in the deterministic epidemic models can
modify the basic reproductive number giving rise to a new threshold quantity, in which

the disease dies out more rapidly along with intensity of white noise is large.

There are many models available in the literature representing the predator-prey
interactions. However, studying the impact of time delays and additive Allee effect in
multi-species models is still lacking. This is significant because establishing such a model
with theses properties exhibits rich dynamics behaviour such as bistability of equilibria
and Hopf bifurcation. Additionally, sensitivity analysis to evaluate the uncertainty of the
state variables to small changes in the Allee parameters and time delays are investigated.
Throughout the thesis, examples are contributed to demonstrate the results and are aug-

mented with Matlab numerical simulations.

This dissertation consists of 8 chapters. Chapter 2 introduces a predator-prey
model with time delay and hunting cooperation on predators. Cooperative hunting param-
eter is assumed with a Holling type II functional response with delay. The boundedness of
the system has been shown, and a local and global stability analysis of the interior equi-
librium have been implemented. The critical values of delays, where the Hopf bifurcation
occurs are obtained. Chapter 3 provides a system of DDEs of two-prey one-predator sys-
tem, where the growth of both preys populations subject to Allee effects, and there is a
direct competition between the two-prey species having a common predator. Sufficient
conditions for local stability of positive interior equilibrium and existence of Hopf bifur-
cations in terms of threshold parameters 7| and 7, are obtained. A Lyapunov functional
is deducted to investigate the global stability of positive interior equilibrium. Sensitivity
analysis to evaluate the uncertainty of the state variables to small changes in the Allee

parameters and time delays are also investigated.

Chapter 4 is devoted to investigate the dynamics of SDDEs for predator-prey sys-
tem with hunting cooperation in predators. Existence and uniqueness of global positive

solution and stochastically ultimate boundedness are investigated. Some sufficient condi-
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tions for persistence and extinction, using Lyapunov functional, are obtained.

Chapter 5 deals with stochastic DDEs of three-species predator-prey systems with
cooperation among prey species. The proposed model takes into consideration that the
intrinsic growth rate of preys and the death rate of predator are subject to environmental
noise. Sufficient conditions of existence and uniqueness of an ergodic stationary distribu-
tion of the positive solution to the model have been established, by constructing suitable
Lyapunov function. Sufficient criteria for extinction of the predator populations are also
obtained. These conditions are expressed in terms of the threshold parameter .7 which

rely strongly upon the Brownian motion.

Chapter 6 is devoted to a stochastic SIRC epidemic model for COVID-19 with
time-delay. For the stochastic analysis, existence and uniqueness of positive global solu-
tions are investigated. Some interesting sufficient conditions that guarantee the existence
of unique ergodic stationary distribution for the stochastic SIRC model are also derived
by using the stochastic Lyapunov function and Ito’s formula. The sufficient conditions

for the extinction of the disease are also obtained.

Chapter 7 is devoted to numerical solutions and suitable numerical schemes of

stochastic delay differential equations.

Chapter 8 summaries the main conclusions of the research and provides some

recommendations for future directions.

Next, DDEs of predator-prey system with hunting cooperation among predators

is discussed.
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Chapter 2: Delay Differential Equations of Predator-Prey
Interactions with Hunting Cooperation in Predators

2.1 Introduction

In this chapter, the dynamics of DDEs, with two different time-delays, for a
predator-prey system with hunting cooperation among predators is investigated. Section
2 introduces the model. Section 3 shows the existence of steady states and boundedness
of the solutions. Section 4 studies the qualitative behaviours of the model throughout
local stability of the steady states and Hopf bifurcation. The global stability, using Lya-
punov functional, is investigated in Section 5. Some numerical simulations are provided

in Section 6 and concluding remarks in Section 7.

Predator-Prey (PP) interaction is one of the most extensively studied issues in eco-
logical and mathematical literature; See [34, 47, 97]. The classic predator-prey models
are mostly variations of the Lotka—Volterra model, which was proposed by Lotka [88]
and Volterra [132] which are a system of first order, nonlinear differential equations that
describe the dynamics and interactions between two or more species of biological sys-
tems. Of course, the qualitative properties of a predator-prey system such as stability of
the steady states, bifurcations analysis and oscillation of the solutions usually depend on

the system parameters; See [74].

Incorporating time-delays has been considered by many authors in predator-prey
models and biological systems [15, 16, 20, 105, 114, 117]. Additionally, one important
component of predator-prey relationships is the functional response of predators to their
prey(s)’ densities. The response of predators to different prey densities depends on the
feeding behavior of individual predators. In [58], Holling discussed three different types
of functional responses: Holling type I (linear), type II, type III, etc. These responses
are used to model the phenomena of predation, which captures the usual properties, for

instance, positivity and increasing; See also [13, 45, 101, 128].
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2.2 Model Formulation

Hutchinson [61], first introduced the delay in a logistic differential equation. He
proposed a delay differential model for a single species of the form (Recall the equation)

as follows

dx(t t—7
);(t L (1 _H = )) . with x(8)=¢(8)>0,0 € [—,0],6(0) > 0.
Here, (r > 0) is the intrinsic growth rate and (K > 0) is the carrying capacity of the
population and time-delay T was considered as hatching time. @(0) is continuous on
0 € [—1,0]. (This equation is referred to as the Hutchinson’s equation or delayed logistic

equation).

Consider a simple general two dimensional delayed model of interaction between

a prey, x(¢), and a predator, y(¢), of the form

P 1 (x0-2). K) (0. 7 (x0)), o
D) s+ ) F (x(- ).

The function ¢ (x(t — 11), K) is the logistic per capita growth rate of prey, where K is the
environmental carrying capacity, and and % (y) is the per capita growth rate of predator.
Z (x(t)) and u.Z (x(t — 12)) are functional responses of predator for a particular prey and
U is the conversion efficiency (0 < p < 1). Time-delay 7| represents the gestation period
of the prey or reflects the impact of density dependent feedback mechanism [38]. Time-
delay 7, is incorporated in the functional response of predator equation to represent the
reaction time with the prey: In reality, the reproduction of predators is not immediate to
the consumption of prey, as there is some discrete time lag necessary for prey gestation

[105].

There exist various and extensive studies of the dynamics of the delayed PP model;

See, e.g., [19, 76, 87, 140]. In [76], the authors investigated the complex dynamics of a
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delayed PP system with cooperation among the prey species, they have considered time
delays in the growth components for each of the species. Many studies have explored the

effect of predator hunting cooperation on PP systems [3, 104, 144]. Berec [19] assumed
o(y)x

I+c(y)o(y)x
the consumption rate of prey by their predator and c is the handling time of the predator,

a Holling type II functional response of the form .% (x,y) = , where o is
both ¢ and c are not constant quantities. Alves et al. [3] considered consumption rate
depending on the predator density to implement predator cooperation for searching and

capturing the prey. Assuming that o > O be the cooperative "hunting’ parameter, with

l1+o
functional response of the form . (x,y) = w
I+c(14+ay)x

The suggested model takes the form

dX(I) — FX(I)(l _X(I_T1>) . [1 -I-Ocy(t)]x(t)y(t)

dt K 1+c(1+oy(2))x(r)’ 22)
dy(t) _ 1+ oy (e)]x(t — 2)y(1) '
o OO ) - )

where 0 > 0 is death rate of predator and a > 0 is an intra-specific competition rate for

predators. This system is subject to initial conditions

(2.3)
6 €[—7,0], t=max{7,%2}, ¢(0)>0,

¢ is continuous bounded functions in the interval [—7,0]. The description of the model

parameters is presented in Table 2.1.

Table 2.1: One biological meaning for the parameters of Model (2.2)

Parameters Description

Intrinsic growth rate

Environmental carrying capacity
Death rate for predator

Conversion efficiency

Cooperative hunting parameter
Handling time of the predator,
Predator intra-specific competition rate

Q0 QT XY
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2.3 Existence of Equilibrium Points

There are three types of equilibrium points for the deterministic System (2.2): (i)
Trivial equilibrium point &y = (0,0); (ii) Axial equilibrium point & = (K,0); And (iii)
Interior equilibrium point & = (x*,y*). Here,

. é+ay

T e ar] .

y* is a positive real root of the equation

ns5y° 4+ May* +1m39° + M2y + iy + 1m0 =0, (2.5)

where

ns = Kc*a®, My =2Kc*a*o+28aKc* — 2K uca,

N3 = Kc28% 4+ u?K +48aKc* oo+ Keta? — 2K ced — 4K pcac,

M =2K*8% 00+ 204K +28aKc? + rKnoca — 4opuKed — 2K lica
M = Kc?8% 4+ u?K + pra+ rpoed —2uK e — rKp’ o — rk ua,

Mo = rKp(cé — ).

Equation (2.5) must have at least one positive real root if 6 < p. Therefore, the existence
of the coexisting equilibrium &* assumes restrictions on the parameters so that
u—cod

co<u and y'< : (2.6)
ac

2.3.1 Boundedness of the solutions

One can check that the System (2.2) has a non-negative solution with a positive

initial condition given in (2.3). To show the boundedness of this solution, the following
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Lemma [4, 102] is introduced.

Lemma 2.3.1. [ffort > 0 and x(0) > 0 one may have x' < x(a — bx) where a >0, b > 0

then

i <
,h_{E, supx(z) <

SR

Theorem 2.3.2. The non-negative solution of the deterministic Model (2.2), (x(t),y(t)),

satisfies

K rto 5
}Lm supx(t) < Ke'™, limsupy(r) < ple

f—00 - a ’

for T, > 0 with uKe"™ > 6.

Proof. With the positive initial condition (x(0),y(0)), one can verify that the solution

(x(2),y(2)) of the System (2.2) is non-negative. From the first equation of System (2.2)

one may consider

dx(t
Z(t ) < (), 2.7
integrating both sides of (2.7) from ¢t — 7; to ¢ one obtains
x(t—11) > x(t)e ™. (2.8)

Using (2.8) and from the first Equation of (2.2), one gets

(2.9
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Following Lemma 2.3.1 one may have

: < r7y .
,152 supx(z) < Ke

i.e. for € > 0, there exist 71 > 0 such that x(z) < Ke'™ + ¢, for all + > T;. Similarly
following the same computation as done for the first equation of (2.2), one obtains from

the second equation of (2.2) the following

K™ +¢e)—6
lim supy(r) < MEEEHE =0 e (2.10)

t—roo a

y(t) < & +¢, forall r > T5, conclusion of this Lemma can be achieved by letting € — 0.

2.4 Local Stability and Hopf Bifurcation

It is hard to find a closed analytical solution for the above nonlinear DDE Model
(2.2), instated one can investigate their qualitative behavior by studying the stability of
the steady states and Hopf bifurcation. The bifurcation analysis gives a deeper analysis
about the model. It answers the query that "how does the behavior of the solutions change

as parameters change".

By linearizing the system around &* = (x*,y*), so that x(t) = x* + X(¢), y(t) =

y*+§(t), then one gets

I

f;t) = alf(t) +a2)7+a3)2(t — Tl),
~(ft) 2.11)
S = () +ask(t — ),

QL

where the coefficients are given by

c(1+ ay*)?y*x* (20y* 4+ ex* (1 + ay*)? + 1)x* rx*
ay = ap = — =——
F ey (14-c(1+oy)x)?
p(l+oy™)y*
(1+e(1+ay*)x*)*

k
as = —ay , ds=
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The characteristic equation of the linearization Model (2.11) is given by

- (a1 +aq)A +ajas + (azas — a37t)e_ml — a2a5e_M2 =0. (2.12)
K
Define a threshold parameter %d = ‘u—.
o0(1+cK)
Remark 2.4.1. The extinction equilibrium & is always a saddle point, and the boundary
K
ilibri int &7 is locall totically stabl 'fﬁdzu—<1.

equilibrium point &7 is locally asymptotically stable if .7, 501 1K)

To gain insight regarding interior equilibrium &*, different values of time-lags 7
and 7, are considered as follows: (i) 71 = 1% =0, (@i) 71 >0, 7o =0, (@ii) 71 =0, 7, > 0,
(iv)y11 >0,70 >0.

e Case (i): When 7 = 17, = 0, Equation (2.12) becomes

p - (a1 +az+as)A +ajas + azaqs — aras = 0. (2.13)

Thus all roots of (2.13) have negative real part if
(Hp) az+as < —ay, and ayas+azas > aras hold.

e Case (ii): When 7, = 0,7 > 0, Equation (2.12) becomes

- (a1 —I—a4)7L + (611614 - a2a5) + (a3a4 — a3l)e_lrl =0. (2.14)

Let A = i be root of (2.14), then it follows that

—? + (a1a4 — a2a5) = a3@WSINWT] — A304COS WT]
(2.15)

—(a1 +a4)a) = a3 Ccos WT| + azas Sin Ty,

which leads to

o*+c10*+c =0, (2.16)
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where ¢; = (a; +a4)? — 2(a1a4 — azas) — a% and ¢y = (aja4 — axas)? — (azay)?. Thus,

Equation (2.16) has at least one positive root @ if ¢, < 0, therefore, one may have

Y

2 2 .
. 1 farccos (—f +ajas — azas)azas + (a1 + as)az o; ] N 2jm
@1 (2.17)

(O] a%a)lz + (a3a4)2

j=0,1,2,....

Thus, &* remains stable for 7; < Ti, and unstable for 7; > T; such that T; = min{ﬁ? j}.

e Case (iii): For 1 = 0,7, > 0, in the same manner, one obtains

b, j=0,1,2,.... (2.18)

—0)22 +ajay +a3a4] N 2jm

T, j = —{arccos
Q) )

aras
Therefore, &* remains stable for 7, < ‘L'é, and unstable for 7, > Té such that ‘L'é = min{rz, j}
provided that (aja4 + azas)? < (asas)?.

e Case (iv): When 11,7, > 0, assuming that 7| is varying and 1, is fixed in its stable
interval 7, € [0,75). Assume that there exists a real number @ > 0 such that A = iw is a
root of the characteristic Equation (2.12), then separating real and imaginary parts, one

gets

—? +ajaq — arascos WT) = a3z Sin WT] — d3d4 COS DTy,

(2.19)
—(a) +a4) @+ azas sin OT; = a3@cos WT| + azas sin OT;.
Squaring and adding both sides, yields
ot + b1 0> +byo+ by =0, (2.20)

where,

b = a% + ai — a% +2arascos Ty, by = —2(a; +a4)azassin 01,

bz = (a1a4)2 — (aga4)2 + (a2a5)2 —2a1aa4a5cos OT.
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Equation (2.20) is a peculiar equation in a complicated form, it is not easy to presume
about the nature of the roots. Thus, by applying Descartes rule of signs one can say that

(2.20) has at least one positive root @y if
(Hz) (a1a4)2 + (a2a5)2 < (a3a4)2 +2a1axa4a5cos OT;.
In this case, one may have

a3z wo(— (a1 +a4) o + azassin Wy T,)
(azan)? + (a3a4)?
(13(14(—(1)3 +ajaq — aras cos (D()’L'z)

- +2jmy,
(a300)2 + (a3a3)? iny

1

T1,j = —{arccos
o

(2.21)

where j =0,1,2,.... Thus, & remains stable for 7 < 7, such that

7f = min{7 ;} as in (2.21).

To check the transversality condition of Hopf bifurcation, 7, is fixed in its stable
interval and differentiate equations (2.19) with respect to 7;. Then substitute 7| = 7; ¢ and

® = @), one may have

d(RA) d(o)
AZ( )’TIZTI.O) +A; (—) ‘fl:Tl,O) =A3
dart dT] (2 22)
d(RA) d(o) :
_Al (d—'t]) |’L’1:’L’170> +A2 (d—'rl> |’L’1:’L'1,()) - A47
where
Al = =200+ (—a3 — azas T 7()) Sin Wy Ty 0 + aas T sin Wy T, — a3 Ty oWy Cos Wy Ty o,

Ay = (a1 +a4) + (a3 +azas Ty ) cos My Ty 0 — a3 Wy Ty 0 Sin Wy Ty 0 — A2a5T2 COS Wy T2,

Az =a3 (Dg COS W 71,0 + azaqp sin W T1.,0, A4 = azaspcos WpT1,0 — a3(0§ sin W T1,0-
From (2.22), one gets

(d(m))| ) = AyA; — A Ay
dr; /'R0 A3 +A2
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Assume that
(Hg) ArA3 > AAy hOldS,

then a Hopf bifurcation occurs for 7| = 71 . Therefore, for Case (iv), one can arrive at

the following Theorem.

Theorem 2.4.1. Suppose that & exists for System (2.2) and (Hy) — (H3) hold, such that
7, € [0, T;), then there exists a positive threshold parameter T{ such that the interior
equilibrium & is locally asymptotically stable for T| < t{, and unstable T1 > t{. Fur-

thermore, System (2.2) undergoes a Hopf bifurcation at &* where T| = 7.

If 7 is fixed in its stable interval and 7, varies, one can arrive at the following

Remark.
Remark 2.4.2. If 7, € [0, Ti), there exists a threshold parameter 75 such that the interior
equilibrium & is locally asymptotically stable for 7, < 75, and unstable 7, > 7; where

7, =min{ ;} is given by

1 [a3a4cosa)311 — (D% —ajaq —azxn sinam:l} n 2j7'L'

Tp,j = ——arccos ,j=0,1,2,...
3

azdas

(2.23)

2.5 Global Stability of the Interior Equilibrium Point

Now, the global stability of the interior equilibrium &* is investigated, using Lya-

punov functional.
Theorem 2.5.1. Assume that ey = 1 +c(1+ ay*)x*, and e = 14+ c(1 + ay)x. If reje; <
c(14+ oy*)(1+ ay)(x*y — y*x), then System (2.2) is globally asymptotically stable at the

interior equilibrium point.
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Proof. Assume the Lyapunov function at &* = (x*,y") of the form

x(t) y()

Vi) =2(xl) 5" x5 2) 0 -y -y ), 2.24)

where ¥ and y, are positive constants. By taking the derivative of V with respect to time
t, one obtains

dv(t) x—x*dx y—y*dy

a X ar dt
_ o[ o (I+ayy
= )[r Kx<t @) 1—1—c(1—|—06y)x}

p(l+ay)x(t — ) }

b=y )[_S_ay+1+c(l+ay)x(t—‘cz)

] r o, (+ay )y (1+ay)y
<q(x—x )[r_?x(t_ﬁ)ﬂ el ay)x 1+C(1+“y)x]
. o, M+ ay)x(— 1) (1 +ay)x
+x2(y—y )[—a(y—y )+ I+l toyx(r—m) 1+c(1+06y*)X*]

Since e; = 14 c¢(1 + ay*)x*, and ep = 1+ ¢(1 + ay)x, one gets

dv (1) o w2 (I +oy")(1+ay)(y*x—x"y) (x —x7)
< _ _ M
% <ry(x—x) e (x—x")"+ s
1+o(y + -y )(x—x* .
(el +y) =y )_amy_y 2
e e
_ e +ay)b—y)x—xt) | px(l+oy)(y—y)x—x7)
eq eie
 Hppoexxt(y—y*)?
e|1en ’

Based on the assumption reje; < c(1 4 ay*)(1 + ay)(x*y — y*x) and since e, > 1, one
may have

dv(t) < —%(x—x*)zq_ [reres +c(1+ oy*) (1 + oy) (y* x — x*y) ] x1 (x — x*)
dt k e1e
14+ o(y*+ — v (x — x* .
Cn(+a(r+y) o =y)( )_amy_y ?
eien
~(- l) ppp(1+ay)(y—y )(x—x")  pppocxx(y—y*)?
“2 €2 erey
<0.

Hence, the proof is complete.
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Figure 2.1: Stable population distribution (left) for Model (2.2) when 17; = 7, = 0. Figure (right) is
a phase space that shows the existence of &* which is locally asymptotically stable; with a = 0.05,
«=12,¢=09,06=0.69,K=1
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Figure 2.2: Stable population distribution (left) for Model (2.2) when 71 = 0.156 < 7] and 7, =
0.09 < 7;. Hopf bifurcation periodic solution for 7j = 1.169 and 7, < 7; = 0.5 (right), with the
parametric values as mentioned in the text

2.6 Numerical Simulations

Some numerical simulations, leading to the approximation of the System (2.2),
are performed using the Matlab DDE23 Package [126]. The parameters are taken as
follows: a =0.05, a=16, ¢c=06, K=1, u=09, 6=049, r=1.Fig-
ure 2.1 shows a stable population distribution for (2.2), and &* = (0.55,0.31) is locally
asymptotically stable, when 7; = 7, = 0. Figure 2.2 depicts the stable population distribu-
tion for 71 = 0.156 and 7, = 0.09 (left). The stability behavior of the interior equilibrium

&* changed as 7| passes through critical values 7} = 0.69 and 7, < 75, where Hopf bifur-
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Figure 2.3: Bistability of the interior equilibrium &* and &7 for Model (2.2). When 7 = 0.24 < 7/
and 7 =0.13 < 73;such that 0.79 < 6 < 1.1. Witha=0.05, « =1.9,K=1;¢c=0.04, r =1 and
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Figure 2.4: Bifurcation diagram with respect to & for System (2.2). Figure (left) shows the bifur-
cation diagram of the threshold parameter o¢ = 0.1 which is obtained numerically by maximum
and minimum amplitude of prey x(¢). Figure (right) shows the bifurcation diagram of a with re-
spect to the predator y(z), when the other parameters are fixed as 7, = 1.7, 7, = 0.1, a = 0.005,
K=1,0=049,u=09,c=0.6andr=1

cation occurs (right).

Figure 2.3 shows bistability in the presence of interior equilibrium &* and the
boundary &7. This bistability is related to coexistence of prey and predator or to the
predator extinction depending on the variation of some parameters, such that 0.79 < § <
1.1. Figure 2.4 shows the bifurcation diagram with respect to the hunting cooperation

parameter «.
Remark 2.6.1. System (2.2) shows bistability between &* and &7, therefore, any direction

starting from the interior of ]R%r corresponds either to &* or &7 based on the variation of
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the parameter § € [0.79,1.1]; (See Figure 2.3).
Remark 2.6.2. For an incremental increase of hunting cooperation parameter ¢, System

(2.2) switches its stability from asymptotically stable to unstable limit cycle; ( Figure 2.4).

2.7 Concluding Remarks

In this chapter, an ecological model which describes the combined effect of time
delays and hunting cooperation in predators, on the dynamical behaviour of a predator-
prey model has been proposed and studied. The boundedness of System (2.2) has been
shown, and a local and global stability analysis of the interior equilibrium have been
implemented. Critical values of delays, where the Hopf bifurcation occurs have also been
obtained. Model (2.2) has at least one interior equilibrium under certain restrictions on
the parameters defined by (2.6). The condition for the Hopf bifurcation periodic solution,
by considering discrete time delay as a bifurcation parameter, is summarized in Theorem
2.4.1. Moreover, Remark 2.6.2 shows numerically that hunting cooperation acts as a
bifurcation parameter for the deterministic model. The main findings, theoretically and
numerically, indicate that time-delay and hunting cooperation can have a considerable
impact in the dynamics of predator-prey systems. The presence of time-delays in the

model improves the dynamics and enriches the complexity of the model.

In the next chapter, the author extends the analysis and propose a system of DDEs

for three-species predator-prey system with Allee effect.
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Chapter 3: Delay Differential Equations of Three-Species
Predator-Prey Interactions with Allee Effect

3.1 Introduction

This chapter extends the analysis and studies the impact of time-delays and Allee
effect on the dynamics of three-species predator-prey models. A two-prey one-predator
system is considered, where the growth of both preys populations subject to Allee ef-
fects, and there exists a direct competition between the two-prey species having a com-
mon predator (see Section 2). Two discrete time-delays 7;, 7, are incorporated into the
predator growth equation to represent the reaction time with each prey. Local stability
of the steady states, Hopf bifurcation, existence of bistability are studied in Section 3.
Global stability of the interior steady state is discussed in Section 4. Sensitivity analysis
to evaluate the uncertainty of the state variables to small changes in the Allee parameters
and time delays is also considered in Section 5. Numerical simulations and concluding

remarks are, respectively, given in Sections 6 and 7.

Allee effect and time-delays greatly increase the likelihood of local and global
extinction and can produce a rich variety of dynamic effects. It is a natural question
that how the introduction of Allee effect in the prey growth function changes the system
dynamics of predator-prey system. However, before introducing the final model, some
preliminaries about Allee effects in the predator-prey model are given briefly; See [27,

82].

3.1.1 Allee effect

Allee effect was firstly reported by the American ecologist Allee [2], when he
asked "what minimal numbers are necessary if a species is to maintain itself in nature?"
Allee, in [2], shows that the growth rate is not always positive for small densities, and it

may not be decreasing as in the logistic model either. In general, Allee effect mechanisms
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arise from cooperation or facilitation among individuals in the species [51].

A population is said to have an Allee effect if the growth rate per capita is initially
an increasing function for the low density. It can be classified into two types: strong and
weak. A strong Allee effect takes place the population density is less than the specified
threshold population considered, resulting in the species dying out. However, if the pop-
ulation density is greater than the threshold, the growth rate will remain positive [105];

While a weak Allee effect means that the per capita growth rate cannot go below zero and

remains positive.
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Figure 3.1: The left banner shows the per-capita growth rate %‘2—7 vs population N(r). With
logistic (black dashes), strong (blue curve) and weak (red curve) Allee effects. While the right
banner displays the population growth rate ‘% vs population N(z). For the strong Allee effect, the
y-intercept of the per capita growth rate is less than zero at zero density, while in weak Allee effect

the y-intercept cannot go below zero

Now, one may show how an Allee effect can be modelled, and how the per capita
growth rate is affected with a weak Allee effect or a strong Allee effect throughout the

simple examples:

dN N

—~ =rN?(1—= foraweak Allee effect,

dt K

dN N N

o =N (1 — E) <Z — 1) for a strong Allee effect.

1 dN
Figure 3.1 shows a per-capita growth rate Ndr of the population with strong and weak
Allee effect are represented. The straight line shows the logistic growth, and red curve dis-

plays a weak Allee effect; While the blue curve shows a strong Allee effect. The negative
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density dependence at low population sizes is described as a strong Allee effect, where

LdN

there exists a threshold population level A, such that for N <A, 5

< 0 (the species will
die out) and for N > A, IL\,%’ > 0, the growth will remain positive [105]. However, when
the growth rate remains positive at low population densities, it is considered as a weak

Allee effect.
Suppose that N(t) is the size of prey population and P(¢) be the size of the predator

population at time ¢, then the Lotka-Volterra model is given by the following equations:

dN(t)
dt

dP(t)
dt

=N(0)[B1— 1 —&1N(t)] —eN(1)P(2), =P()[=y+eN(1)], G.D
with N(0) > 0, P(0) > 0. Here, fB; is per capita maximum filtering rate and ¥ is the
death rate of the prey N(t); While the parameter g; denotes the strength of intra-specific
competition. The predator death rate and predation rate are respectively denoted by y and
e. In the above model, it is assumed that prey population is subjected to logistic growth

rate and the exponential type functional response.

For multi-species models, there are flexible ways to formulate the Allee effects.
For example, due to difficulties in finding mates when prey population density becomes
low, Allee effect takes place in prey species. Herein, an additive Allee effect of the form

b(N) =

N
Y in the prey growth function of Model (3.1) is proposed and incorporated,
1
which is considered as the probability of finding a mate, see [147], so that

NP = (0] - eN ()P0, .
dl;—gt) = P(t)[—y+eN(t)].

The parameter o is the strength of Allee effect, a; = 1 /R, where R is the average area

that can be searched by an individual [122]. One may notice that 5(0) = 0, b'(N) > 0 if

N € [0,0) i.e. Allee effect decreases as density increases, and Al’im b(N) = 1 means that
—»00

Allee effect disappears at high densities. Therefore, the term b(N) is considered as a weak

Allee effect function in a rectangular hyperbola form, known as Michaelis-Menten-like
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function.

3.2 Distribution of the Model with Allee Effect

Many studies have been done on multi-species predator-prey systems, including
local and global bifurcations and different types of chaos etc. (See e.g., [76, 123, 127,
129]. Sen et al. [123] discussed the Allee effect on two-preys’ growth function, where
the predator is generalized. They explained how the Allee effect can suppress the chaotic
dynamics and the route to chaos in prey growth by comparing it with a model without the
Allee effect. In [76], the authors studied dynamics of three species (two preys and one
predator) delayed predator-prey model with cooperation among the preys against preda-
tion. The growth rate for preys is thought to be logistic. Delays are taken just in the
growth components for each of the species. Takeuchi et al. [129] considered two-preys
with logistic growth rates and an exponential functional response, where the predator sur-
vives on two-prey populations. Their results showed that the apparent chaotic behavior is
a result of the periodic solution when one of the two-prey has greater competitive strength
compared to the other. Song er al. [127] explored the dynamic behaviors of a Holling
IT two-prey one-predator system by introducing constant periodic releases of predators
through periodically spraying a pesticide on the prey. They were then able to show that

the system remains permanent under certain conditions. Herein, the author generalize

Predator

i €dyz

1+cy

€exz

x
Y1 - axy V2y2
gix g2y
Byx? Bay?
a, +x az+y

Figure 3.2: Mathematical scheme of the three-species one-predator two-prey System (3.3).

Model (3.2) to multi-species predator-prey system (two-preys one-predator). The model
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consists of two teams of preys with densities x(z), y(¢), interacting with one team of preda-
tor with densities z(¢). Allee effects are also incorporated in the growth functions of the
two-prey populations, and there exists a direct competition between the two-prey species

having a common predator. The model takes the general form

dx(1) —=x(1) [L@) -N —glx(f)} — ox(1)y(t) — ex(t)z(r)

dt o +x(t
dy(t) Bay(2) oy(t)z(t)
DO 30) | L2~ o )| - Bty - 2 63)
dil—(tt) =— Bsz(t) +eex(t — 11)z(t — 11) + 83y1(:_;;gt)z_(tr2_) 2}

with initial conditions:

x(6) = 1(6) >0, y(6) = $2(6) >0, z(6) = ¢3(6) >0,
(3.4)

6 € [—7,0], T=max{7],Tn }.

Here, ¢;(0) (i = 1,2,3) are smooth initial functions. The description of the model pa-
rameters is presented in Table 3.1. It is reasonable to assume that the death (predation)
of preys is instantaneous when attacked by their predator but their contribution to the
growth of predator population must be delayed by some time-delay. Therefore, two dis-
crete time-delays 7| and 7, are incorporated in the reaction response functionals in the
predator growth to represent the reaction time. The interaction between first species of
prey and predator is assumed to be governed by Holling type I. While the interaction be-
tween the second species of prey and predator is assumed to be governed by Holling type
IT (cyrtoid functional) 8y(¢)z(z)/(1+ cy(t)), response indicates that it is a hard-to-capture
prey compared to the first species; See Figure 3.2. To investigate role of time-delay and
Allee effect on the dynamics of the system, the author first discusses the boundedness and
positivity of the solutions of the System (3.3) with the given positive initial conditions

(3.4).



49

Table 3.1: One biological meaning for the parameters of Model (3.3)

Parameters Description

oy, 0 Strength of Allee effect

B, B> Per capita maximum filtering rate of population

g1, 82 Strength of intra competition

", P Death rate for preys

o, B Coefficient of competition

e, 0 Decrease rate of x(t) and y(t) due to predation by z(t)

B3 Predator death rate

c Magnitude of interference between the second type of prey

€ An equal transformation rate of predator to preys x(¢) and y(7)

3.2.1 Non-negativity and boundedness of the solution

The non-negativity of the solutions indicates the existence of the population;

While the boundedness explains the natural control of growth due to the restriction of

resources. The author arrives at the following Lemma:

Lemma 3.2.1. Every solution of System (3.3) corresponding to initial conditions (3.4) is

defined on [0,0) remains non-negative for all t > 0, which satisfies,

i < i <
lim sup(x(¢) +y(1)) < &, lim supz(r) <N,

where k = min{f, B} and N > 0.

Proof. Model (3.3) can be represented in a matrix form

(3.5)

where U = (x,y,z)7 € R?, and

F(U) =

Fi(U) x(% — %1 — §1X) — OXy — exz
RU) | = y(o%yy—b—gzy) — Bxy— 1‘?@
F(U) I —[33Z+Sex(t—’cl)z(t—fl)+% |
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Let ]R?F = [0,00)3, since the right hand side of System (3.3) is locally Lipschitz on & :
Ri“ — R3, such that F;(U) |u,'(t):O7U€R§L >0, where u; = x, up =y and u3 = z. According
to [60], the solutions of (3.5) with initial conditions (3.4) exist uniquely on the interval

[0,&), where 0 < & < o, therefore all solutions exist on the first quadrant of the xyz-plane.

To prove the boundedness of solutions for System (3.3), first consider the case

when the predator is absent, so that

dx X
% = x( A — 1 —g1x) — axy = G (x,y)
t o +x (3.6)
dy Boy
- = - — — =G
% y(a2+y Y —82y) — Bxy = Ga(x,y),

with initial conditions x(0) > 0 and y(0) > 0, one can easily show that Gy (x,y) > 0 for
y=0and x < %, such that B; > 71 and G(x,y) >0 forx =0 and y < Bzg;z)/z’ where

B2 > 7». Adding the two equations of (3.6) yields

9 ery) = PE gy (P2

— 1 —gy) —xy(a
dt o +x on+y Y= gay) —w(a+p)

<x(B1—n—g1x) +y(B— 1 —g2y) (.7

< Bix+Boy < k(x+y),

where ¥ = min{f;, B,}. Integrating both sides of (3.7), one gets

(x(t) + (1)) < (x(0) +y(0))e™ ™.

Since (x(0)+y(0)) > 0, the solutions are bounded, which clearly shows that lim;_,., sup(x(¢) +

¥(t)) < k.

To extend the analysis to (3.3), consider 0 < ¢(0) + ¢2(6) + ¢3(0) < M, 6 €
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[—7,0]. Assume also that 77 (t) = ex(t — 1) + €8y(t — T2) + z and choose 0 < p < 3.
By considering the derivative of .77, for t > T + 7 for some fixed positive time 7', one
may have

drt

— TP < ex(t—m)(Br+p —x(t—))+e0y(t — ) (B2 p —y(t — 1)) + (P~ B3)z.

Since x and y are nonnegative and bounded by k.,

dst
7-|-p<%”§ (e+ed)k+(p—P3)z <M.

Due to the non-negativity of z and the parametric condition exists for p, the differential
inequality is bounded above, such that % <M —pJZ, ie. there exist N where 0 <
(t) < N for all t > T, which implies the boundedness of z, such that lim,_,. supz(z) <

N.
3.3 Local Stability and Hopf Bifurcation

In this section, the qualitative behaviour of System (3.3) by studying the local sta-
bility of positive equilibrium points and Hopf bifurcation analysis is investigated, which
provides a deeper insight into the model to address the behavioral change of solutions as
a response to changes in a particular parameter. Since time-lags 7; and 7, have a sig-
nificant impact in the complexity and dynamics of the model, one can consider them as

bifurcation parameters.

3.3.1 Existence of equilibrium points

System (3.3) has some boundary and interior equilibrium points. However, one
can only focus on the dynamic analysis of the boundary equilibrium where the first prey

population is absent, and the interior equilibrium points. In order to obtain the attainable
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equilibrium points for the System (3.3), the zero growth isoclines of the system are given

)
by x(LL — 71— g1x) — axy —exz =0, y(ogiyy — P —g2y) — Bxy— 175 =0and —fsz+
gexz + fi{; =0, in R} = {(x,y,z) € R®: x,y,z > 0}. Therefore, the equilibria are the

points of intersection of these zero growth isoclines regardless of the parameter values.

System (3.3) has the following equilibria in R3:
(i) Trivial equilibrium &, = (0,0,0);

(ii) The axial equilibrium, &7 = (x},0,0), for which the second prey and predator pop-
ulation are absent, where xj is the root of quadratic equation glx% +(n+ag —
Bi)x1+a1yn =0. Let g = (Jougi +vn )2, the existence of &} depends on the fol-
lowing conditions; If B; < ¢, then & dose not exist; If B; > g, then System (3.3)
has two equilibria; However, if B; = ¢, then System (3.3) has a unique equilibrium

point.
In the same manner, one can show the existence of & = (0,y,,0).

(iii) In the absence of second prey population, a boundary equilibrium point &3 = (x3,0,z3)

exists if y1 < 61 < &, such that

P13

, 3.8
(X]Se—l-ﬁg, (3-8)

_gl)a Q=

and x3 = % >0and z3 = %(XSGZ—YI) > 0.

(iv) A boundary equilibrium point &4 = (0,4, z4) exists, where the first prey population

is absent, for p» < ¢z < &, where

s B2B3(€6 — B3c) — g2Ba(aa (€6 — B3c) + B3)
3 (02(€8 — B3c) + B3) (€6 — PBsc)

3.9
G- B2(B3 —g200) and 59
(€8 — Pac) + B3’
_ B o a-litone-n (3.10)
M= e 0 4= 3 v4) (63— 12)- :
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(v) An interior equilibrium point &* = (x*,y*,z*) exists with ( a[? ‘j:; — 7 —gix*) —

* * edy*

1 edy* x 1 (B1(Bs(14cy*)—edy*) e8y*
Such that x* = a(ﬁ3 - 1+Zy*) >0, " = E( 1(l?i-cy*)E)Se—i-ﬁz)y +g1(ﬁ3 - ﬁ) -

i ocy*) > 0, where y* is the root(s) the following equation

G(y) = o1y* + 02y + 03y + 64y + 05 = 0. G.11)

The coefficients 0; ,i = 1,...,5 are defined by

B16%e — C5ﬁ1ﬁ2 wfdec— PPronc — e

Y
03 = e+ B ge o7egi +ch
+*Br+cg18Bs+cdn + o — Sa,
oy = 532—0621358 8B1B2+ 8P B + Brond? Y

ge e+ B

+c0B3g1 +copdy +cary, — P — Poc+ rgo — 8Pagi — OV + P2,

SpiBson  afa
e+ B €e

5 = — 0381 — 00y + ).

The nature of the roots for (3.11) is determined by noting the sign of its discriminant [44].
Therefore, a sufficient condition that guarantees that (3.11) has at least one positive root
P11 B 2[32[3

is 05 < 0, which leads t <
18 Oj whic easo£+ﬁ+}/

(3.3) can have at most four interior equilibria in the presence of the Allee effect. However,

+ 06 B3g1 + a2 8y;. Thus, System

in the absence of Allee effect the author arrives at the following Remark.
Remark 3.3.1. In the absence of the Allee effect (a; = o, = 0), the interior equilibria for
System (3.3) are reduced to at most three interior equilibria. Consequently, Allee effect

can generate or eradicate interior equilibria. It may stabilize or destabilize the system.
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3.3.2 Existence of bistability

The phenomenon of bistability has been recognized experimentally in some bio-
logical situations, but much more commonly in theoretical models, such as the dynamics
of animal populations [46]. The coexistence between two stable attractors can be de-
termined by increasing or decreasing the value of some control parameters. Therefore,
the system pursues one branch of equilibrium points when increasing a control parameter
until a threshold limit point is reached at which the system jumps to another branch of sta-
ble equilibrium points. Bistability occurs when the system can converge to two different
equilibrium points, depending on the variation of the initial conditions in the same para-
metric region; Or the system is able to evolve into either one of two equilibrium points by

increasing or decreasing the level of one of the system’s parameters.

The underlying Model (3.3) displays bistability of two interior equilibrium, which
is based on the variation of the coefficient of competition ; See Figure 3.8. Both equi-

libria are locally asymptotically stable.

3.3.3 Stability and bifurcation analysis of the equilibria &, and &*

The author focuses on studying local stability and bifurcation conditions for Sys-
tem (3.3), by analyzing the characteristic equations of the linearized system at & and &*.
The Jcobian matrix at & is given by:

Ci 0 0
Jéa‘l - © CEM: C AT ’
Dy Dye™"*2 Cs5+Dze™*"R2

where
(2 +y4) (2 +y4)
524 6y4
24— Ca=-— , Cs=—Ps,
82Y4— N2 (1 +cya)? 4 [ +ove 5 B3
€0 ed
Dy =gezy, Dy——2H  py— 0%

(I+ova)? 707 T+ow



The characteristic equation for System (3.3) at &4 can be written as:

C(A)+D(A)e™*% =0,

such that

CA) =23+ wA?+yid + v, D(A) = A%+ 014 + ¢,

where

v =—(C1+C3+Cs);  y1 =Ci1C3+GCs+CiCs; yp = —C1C5Cs,

0o =—D3; ¢ =CD3+C3D3—C4Dr; ¢ = C1C4Dy — C1C3D3.

When 1, = 0, Equation (3.12) becomes:

A3+ (Yo -+ 90)A% + (Wi + 91)A + ya + ¢ = 0.
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(3.12)

(3.13)

Based on Routh-Hurwitz Criteria, all roots of (3.13) are negative if Yo+ ¢o > 0, yo + ¢ >

0 and (Wo+ @0) (w1 + ¢1) > (W2 + ¢2). Thus, & is locally asymptotically stable when

T2=0.

If 7 # 0, assume A = i@, @ > 0, then (3.12) becomes:

—l,t/()a)2 +yn = (¢o(x)2 - ¢2) COSMT) — P OSIN DTy,

—0 + 910 = (¢ — Po@?) sin W Ty — ¢; ®cos VT,

squaring and adding both sides, one gets:

w6+qza)4+qla)2+q0:0,

(3.14)

(3.15)
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where

=Y 291 — 03, @1 = Vi —2¥oya +dods — 07, qo= Y3 —¢3.

The equilibrium point &4 is locally asymptotically stable, by Descartes rule of signs, if
Equation (3.15) has at least one positive root @, if 1[112 + o2 > 2y yn + ¢>12 and l//22 < ¢22.

From Equation (3.14), one obtains

| (W2 — Wo®?) (o @ — ) + o1y > — 91 &%,  2km
Ty = o arccos I (01— 0007 (&) ]+ (3.16)

A

where k = 0,1,2,.... By differentiating (3.12) with respect to 7, such that @ = ® and

T) = To . the transversality condition can be obtained in this form

di E\Ey—E>E
R = L (3.17)
2 ErEy

Here,

E = [y —30°)(y1®° — &") + 29 0[y2 & — w @),
by = (0" = yi0) + (¥20 — yo i),

Ey = 91 0* +2(000° — r0) oD,

Then a Hopf bifurcation occurs for & = min{ 7, 4}, if <ﬁ(%)’l > 0. Therefore, based on

the above analysis, the author arrives to the following result.

Theorem 3.3.1. The boundary equilibrium & remains stable for T, < 5, and unstable
for © > 1, where ©, = min{7, ; } defined by (3.16). Moreover, System (3.3) undergoes a
Hopf bifurcation at &, when T = 7).

Herein, some numerical results and simulations for System (3.3) are provided, by
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using DDE-BIFTOOL [40, 131] Matlab packages, and choosing suitable values of param-
eters. To investigate the stability of &, one can show how the real part of (3.12) changes
as T varies, and fix parameters gy = 1.106 and consider 7, as a bifurcation parameter and
varying it from 0.2 to 16 (See Figure 3.3). However, from this figure alone it is not clear
which real parts correspond to real roots respectively complex pairs of roots. In Figure
3.4 (left) taking 7, = 4.6, shows that the eigenvalues of (3.12) have negative real part, the
eigenvalues representing by circles seem to be similar to zero, but indeed, they are a pair
of pure imaginary eigenvalues with real part a little bit less than zero. However, Figure
3.4 (right) shows that there is a pair of pure imaginary eigenvalues where the occurrence

of Hopf bifurcation is possible at @ = £+2.4.

1.5

1l Largest real parts

Re()\)

“0 5 10 15
Time delay T,

Figure 3.3: Real parts of the approximated and corrected roots of the characteristic Equation
(3.12). Which shows variation of real part of the eigenvalues as the bifurcation parameter 7, is
varied at &;.

Now, the stability of the interior equilibrium &™* = (x*,y*,z*) is discussed in detail,

at which the Jcobian matrix is

F I2) F
Jer =1 F Fs Fs

116_)”-1 126_}”-2 F7—|—I3e_ml—l—l4e_m2
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Figure 3.4: The eigenvalues of the characteristic Equation (3.12) at &;. Left banner shows eigen-
values of the characteristic Equation (3.12) at & (approximated (+4) and corrected (o)), with the
same parameters as in Figure 3.3. According to the scaling, right banner illustrates that there is
a pair of pure imaginary eigenvalues which is consistent with the theoretical results that showed
(3.12) has a pair of pure imaginary eigenvalues where @ = +2.4

Here,

ﬁlx* o * * * * *
Fl=———(1+——)—2g1x —nn—y —ez <0, FHh=—-ax", F=—ex,
1 (a1+x*)( (a1+x*)) 81 n y 2 3

Boy* (0%} oz

Fy==By', F= o (l4 =) =2y —p—Pa* = s <0,

g @+ ) A (e

oy* 07" e0y*

Fo=——"—F=—p3, L =g, h=—" DL=gex*, L= .
6 T+cy” Po. I =ee T S R

The characteristic equation for the interior point &* = (x*,y*,z") is then given by

A(A)+BA)e T 4 C(A)e 7 =0. (3.18)

Here,

AA) = A3+ RIAZ+RA +R3, B(A) =NiA2+Nod +N3, C(A) = MiA? +MyA + M,

such that

Ri=—-F—-F—F, R=KF+EF+FF—-RBF, R3=FFF—FFsF,

Ny =, Ny=(Fi+F5)5—-Fl, N;=FRFL+FEFsh—FRFgd —FFsh,
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My =—1y, M,=(Fi\+F5)l4—Fsh, M3=FEFs+FiFsh, —F3Fh —FiFsly.

To gain insight regarding interior equilibrium &, the author discusses the stability of
interior steady states and Hopf bifurcation conditions of the threshold parameters 7; and
7> by considering the following different cases:

e Case 1: When 1; = 75 = 0, Equation (3.18) becomes

A3+ (Ry +Ni +M)A* + (Ry 4 Ny + M)A + (R3 + N3 + M3) = 0. (3.19)

Therefore, the interior equilibrium &* is locally asymptotically stable if

(H) Ri+Ni+M; >0, R3+N3+M3>0 & (R;+N;+M)(R+ N>+ M) >
R3 + N3 + M3 hold. Thus, based on Routh-Hurwitz Criteria, all the roots of (3.19) have
negative real parts.

e Case 2: For 71 =0, 7, > 0, then Equation (3.18) becomes

A3+ (Ri+NDA%+ (Ry+No)A + (Ry +N3) + (M{A? + My +M3)e™*™ = 0. (3.20)

For some values of (7, > 0), there exists a real number ® such that A = i® is a root of

(3.20), then one gets

—(Rl +M1)(D2+ (R3 +N3) = (M] 602 —M3)COSCO’L'2 —M>wsin 0T

(3.21)
—0’ + (RQ +N2)60 = (M3 — M, (1)2) Sinwt — MrWcosWT.
Squaring and adding both of the equations, yields
w6+a1a)4+a2w2—|—a3 =0, (3.22)

where

ap = (Rl +M1)2—2(R2 —|—N2) —Mlz,

ar = (Ry+N2)* —2(Ry + M) (R3 + N3) +2M M35 — M3,
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az = (R3 —|—N3)2 —M32.

By Descartes’ rule of signs, Equation (3.22) has at least one positive root @ if

(Hy) R}+2R M) >2(Ry+N2) & (R3+N3)? < M2 hold.

Eliminating sin @; 7 from (3.21), yields

1 R3+N3) — (R +N1)0?) (M 0% — M

Tz.j:—arccos[(( 2 Ny) = 1+2 21) D) 21 )
' (0] (Mg—lel) —(M2CO1)

Mz(R2+N2)a)12—M2wf} 2jm

(M3 — M, a)lz)z — (M2w1)2 ()]

(3.23)

)

where j = 0,1,2,.... By differentiating (3.20) with respect to 7, such that ® = ®; and

T) = Ty, the transversality condition can be obtained in this form

dA

_ AAy—AoA;
d’Cz N '

3.24
A, (3.24)

R(-—)~!

Here,

A1 =[(Ra+No) = 307)((R2 + No) of — 0] ) +2(Ry + Ni ) an [(Rs + N3 )y — (Ry +Ny) 7],
Ay = (0] — (Ry+N2)@7)* + (Rs + N3) w1 — (R + Np) o372,
Az = M22w12+2(M1a)13 —M30)1)M10)1,

Ay = (Myo?)? + (M30, — My 7).

Then a Hopf bifurcation occurs for 1, if EK(%)’I > 0; i.e. AjA4 > ArAsz. The authors

arrives at the following Theorem:
Theorem 3.3.2. Let (H,)-(H>) hold, where t) = 0, then there exists Ty > 0 such that &*
remains stable for T, < ’L';, and unstable for ©, > ’L’é, where ’L'; =min{1, ;} defined by

(3.23). Moreover, System (3.3) undergoes a Hopf bifurcation at &* when 1) = ‘L'é.

e Case 3: When 17, =0, 7] > 0, in the same manner of the pervious case, one can

arrive to the following Theorem
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Theorem 3.3.3. For System (3.3), with T, = 0, there exists a positive number T|, such
that the equilibrium point &* is locally asymptotically stable for T < ‘L’i, and unstable for
T > ’L';, where 7:; = min{ 7 j}. Furthermore, Hopf bifurcation occurs at T = T;.
((R3 +Ms3) — (R + M) @3) (N @5 — N3)

(Nl 0)22 —N3)2 + (Nza)z)z

MRy +Ma) 03 + Ny ooy |+ 2jm
(N0 —N3)2 + (Maan)?' o

1
T,j = o, arccos |
(3.25)

Y

where j =0,1,2,....
e Case 4: When 71 > 0 & 7, > 0, assuming that 77 is a variable parameter and 7, as fixed
on its stable interval. Let A = iw as a root of (3.18); Separating real and imaginary parts,

implies

—’ +Ryow+ (Ml »? —M3) Sin W Ty +M> @ cos W T
(3.26)
= (N3 — N, (02) sinwT] — N, cos 0Ty,

—R\®*+R3+ (M3 — M, a)z) COS WTr+M>rsin O T
(3.27)
= (N1w2 —N3)cos 0T — N @sin @7 .

Thus, by eliminating the trigonometric functions (sin @7; and cos @7;) from (3.26) and

(3.27), yields

(1)6—1-54(05+§3(04—|—§2(03+510)2+§0 =0, (3.28)

where

&y = —2M;sinwn, & =R, —l—Mlz — 2Ry —N12 —2M) cos 01y,
&= 2(M\Ry + M3) sinwt, — 2M3R| cos 01, &1 = —2M3R, sin0 1,

& = R} + M3 — N3 + (2M3R3 + R\ M) cos 0T.
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Equation (3.28) is a preternatural equation in a complicated form, it is quite difficult to
predict the nature of its roots. Thus, by applying Descartes’ rule of signs one can say that
(3.28) has at least one positive root ay if (H3) E4>0 since M;<0 & &)<0;

therefore, one obtains

AD—l—CB} 2jm

= — .:()12.... 329
Ty, a)oarccos[A2+C2 + (Do’] 1,2, ( )

Here,

A :leg—Ng, B= —(1)8—{—Rz(1)0—|—(M3 —Ml(x)g) Sin Wy Ty + cos Wy Tr,

C=Nwy, D= —Rl(l)g—i—R3 + (Mla)g —M3)COS(I)()’L'2 + M5 wy sin Wy T>.

To study the Hopf bifurcation analysis, by fixing 7, in its stable interval and differentiate

Equations (3.26) and (3.27) with respect to 7;. Then substitute 7 = 7; o and @ = @y, one

gets
d(RA d(o
Q2< —(drl ))|T1:T1‘0) +Q1 (Cg—fl)) |’L'1:TL0) = Q3 (3 30)
d(RA d '
_Ql ( (d—TI ))lnzﬁ,o) + QZ(d(—Ta:)) |71:TI,0) = Q47 where

0 = —3(08 + R+ (2N1 @y — N2y Ty o) sin @y Ty o + (N2 +N1’cla)§ — N37T1,0) COS Ty 0
+ (20oM| — My Ty ) sin wy Ty + (M T2 08 — M3ty +My) cos g T,

02 = —2R @y + (N1 @471 0 — N3T1.0 + N2) sin @y Ty 0 + (N2@o T — 2N) @) cos @y Ty
+ (M + M 03 1 — M3 sin g 5 + (Mo 00Ty — 2M @) cOs @y T,

Q3 = N> sin w1 o+ (N3@p — Ny @) cos 671 o,

Q4 = Nza)g cos Wty 0+ (N wg — N3ay) sin wy 7y 0.

From (3.30), one obtains

(d(i)il))|n:m) _ 0205~ Q1Q4‘

3.31
dt Q§+Q% (3.31)
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As 0,03 > Q1Q4, then Hopf bifurcation occurs for 7; = 7 o. Therefore, the author arrives

at the following Theorem:

Theorem 3.3.4. If &* exists, such that (H) and (H3) hold, with T € (0,7,), then there
exists a positive threshold parameter T|" such that the interior equilibrium & is locally
asymptotically stable for | < T, and unstable t| > T}, where T{ =min{7 ;} as in (3.29).
Additionally, System (3.3) undergoes Hopf bifurcation at & when T = 1}.

Remark 3.3.2. Similarly, for 7; € (0, ’ci), there exists a threshold parameter 7; such that
the interior equilibrium & is locally asymptotically stable for 7, < 75, and unstable 7, >
;. Also, Hopf bifurcation occurs for System (3.3) as 7, = 7;; Where 75 = min{1, ;} is
given by

1 A1D1 +C;B; 2jm
Ty,j = ——arccos [—————|
3 AT+ 3

, J=0,1,2,..., with (3.32)

Al =M10)§—M3, B = a)33—R2w3+(N3 —Nlco%)sina);;ﬁ — Now3 cos 3771,

Ci=Myws, D;=-—R (1)32 + R34 cos 37T + No w3 sin w37 .
The proofs are obtained in the same manner of the above analysis.

3.4 Global Stability of Interior Steady State &

In this Section, the global stability of System (3.3) around interior steady state

E* = (x*,y*,z") is studied.
Theorem 3.4.1. If Bioy < g1(oy +x%)(ot) +x) and Broa(1+cy*)(1+cy) + dez*(ar +
Yo +y) <ga(on+y*)(a+y)(1+cy*)(14cy), then System (3.3) is globally asymp-

totically stable at the interior equilibrium point &*.
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Proof. By suggesting the following Lyapunov function at &* = (x*,y*,z*) of the form

y(t)

x(?) +p2(y(t) —y* —y"In y—*) +p3(z(t) =7 —z'In =

V(t)=pi(x(t) —x" —x* lnx—

where p1, P2, p3 are nonnegative constants. Take derivative V with respect to time ¢, yield-

ing to
Vi) =0+ o0+ 20
:pl(x—x*)(oflj_cx—yl —gix— oy —ez)
+p2(y _y*)(ofiyy — 1 — gy —Px— y(lé—)fcy))
Fpale—2)(— poop HEIEE) | SRR,
<prle-a) (P B ) —ah—y) —ele-2)
a2 = Py B4 2
+p3(z— Z*)(eex(f - TIZ )zt —m) 8?1(:;2():8?;)1)2) — (gex* + lgfi; )
< —p1g1(x—x")? = paga(y—y")* = (Pra+pafp) (x —x*) (y — ")
+(eeps —epr) (v )2y xx) (P - P
el (L2 Py (2

< —p1gi(x—x*)> = paga(y — ") = (P10 + pa ) (x —x*) (y — ")
ay
oy +x*) (o +x))
—(z—2") cz' (y—y%) )
l+cy (I4+cy*)(1+4cy)

+(eep3 —epr)(x—x")(z—2") +ﬁlpl(x—X*)2((

% 2 *
+ Bop2(y—y )2((a2+y*)(a2+y))+5P2(y—y )(

« oy 1 cy
+88p3(y_y )(Z_Z )(1+Cy_ (1—|—cy*)(1—|—cy))
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Thus, based on the assumptions: B0y < g1(0q +x*)(a +x), Paoa(14+cy*)(1+cy) +
ocz* (0 +y*) (o +y) < g2(00+y*) (0 +y)(1+cy*)(1 +cy), €p3 < max{pi,p2}, one
can get

: p1o B
Vi) = (o (o +x

( opacz” P202 B2
(I+cey*)(1+cy)  (+y*)(a2+y

€6p3 — 62
1+cy

>—p1g1)(x—x*)2+( )=y )(z—2")

7 p282) (y —*)?

+(eeps —pre)(x—x")(z—2") = (Pra+p2f) (x —x") (y = ")

eép3cy . .
a (1+cy*)(]+cy) (Z_Z )(Y—y ) <0.

Hence the proof is complete.

3.5 Sensitivity Analysis

Sensitivity analysis of a particular model is the most important tool for investigat-
ing the quantitative (or qualitative) influence of perturbing the parameters on the model.
The objective of a sensitivity analysis is to determine systematically the effect of uncertain
parameters on system solutions and the effect of the noisy data on the accuracy to which
parameters may be determined [110]. Assume that System (3.3) is represented by a state
variable y(t,p) € R? (d = 3), for ¢ € [ty,1,] which is the unique non-negative solution of

the IVP

y(t,p) =f£(t,y(z,p),y(t — 71,p),y(t — 7,p);p), fo <t <tp, 53

Y(t7p):¢(t7p)7 t <t.

The right-hand side of Equation (3.33) depends on the constant vector of parameters p,
which includes the initial values and time-lags. f is considered precisely if p is speci-
fied and generally it is continuously differentiable with respect to the arguments in bio-
mathematical systems; While the initial functions ¢ (¢, p) are piecewise continuous with

possible jump discontinuities at a finite number of points [8].
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It is quite common for a model to exhibit high sensitivity to small variations in
some parameters; While showing robustness to variation in other parameters. There are
different ways to find the sensitivity functions of DDEs [110]. Nevertheless, the so called

"direct approach" is utilized to find sensitivity functions of Model (3.3).

By taking all the parameters appearing in Model (3.33) to be constants, then sen-
sitivity analysis, in this case, may just entail finding the partial derivatives of the solution
with respect to each parameter p;. One can denote by S(¢) the matrix S(¢;p) of the sensi-
tivity functions

8yi(t;p) i=12,...d

S(t) =S(t;p) == [—&pj ]j_lsz (3.34)

S

T
In Model (3.3), d = 3 and L = 20. Introducing the notation { } , the matrix of local

sensitivity functions takes the form

T
S(t,p)(t) = {aip} y(t,p) € RL. Its i column is (3.35)

Si(t.p) = [8yi(t,p) dyi(t,p)  Iilt.p)] (3.36)

dpr 7 dpx T dpe
Therefore, S;(7,p) is a vector whose components denote the sensitivity of the solution

yi(t,p) of the model to small variations in the parameters p;, j =1,2,...,L. Applying 3‘9—1)

to Equation (3.33) yields the variational equation
S'(t,p) = J(1)S(t,p) +J5, (1)S(t — 71,p) +Je, (1)S(t — 72, p) +B(r), >0, (3.37)

J(t) = %(t)f(t,y(t),w —11),¥(t —):p),

I, (1) )f(t,Y(t),y(t—’n),y(t—Tz);p),

T oy(t—1

Jo, (1) )f(t,Y(t),y(t—’n),Y(t—Tz);p),

T oy(t—

B() = a%f(r,y@,y(r )y —n):p).
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The sensitivity functions are directly obtained by solving the d x L sensitivity equations
(3.37) together with the original System (3.33). However, this is a challenging problem

when d and L are large, and when the model equations are stiff.

Now, consider Model (3.3), with the vector of parameters p=[a;, ,B1, B2.81,
22,71, 2.0, B.e, 0,B3.¢c.€, T1,T2, X0,v0,20]. The sensitivity functions with respect to the

parameters p; (i =1,2,...,20) are denoted by

J x(t), Sy, ()= ai)iy(t), S, (1) 1= iz(t). (3.38)

le,‘(t) = I

! Ip;

3.5.1 Sensitivity to severity of Allee effect

Here, the sensitivity of model solution of (3.3) is studied, with respect to the
parameters ¢; and ap (strength Allee effect). Hence, sensitivity functions due to small
perturbations in Allee parameter ¢; are given by system of DDEs

J Bix(z)

v (1) = Sxey (1) [m =N —2g1x(1) — oy (1) — ez(t)] — ASyq (1)x(1)

0 Sxa, (1) — x(1)

_eSzal(t)x(t)+l31x(t)( ((X1+X(Z))2 ),

Sy 1) = Sy (O 220 — = 20(0) = Ba(0)] 0B 1) .
DofaSn(0) gy SO0 | Sen (0 |
(o +y(1))? ’

(I+ey(r)*  T+ey()
S/Zal (t> = —ﬁ3sza1 (t> —|—£e[ X0 ( )Z(t Tl) +Sz061 (t — 1T )x(t - Tl)]

Syay (t = 12)z(t —T2) | Seey (t — T2)y(t — Tz)].

I T v Pa R g P

To estimate the sensitivity functions Sy, (¢), Sy, (t) and Sz, (¢), then one may have to

solve the system of sensitivity equations (3.39) together with the original System (3.3).

Similarly, the sensitivity functions due to small changes in Allee coefficient o,
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satisfy the system of DDEs

S;az (1) = Sxa, (t)[aﬁlj_cit() ) — 1 —2g1x(t) — oy(t) — ez(t)]

Bl ><(“15"“2((’>)) ) — Sy (1)x(1) — €S (12(1),
S (1) :sm(t)[of%(ygt)—w—zgzyu) ~ Bx(t)] — S ()5(1)

(3.40)
0Sya(t) — (1) Syap (1)2(t) | Szap (1)(2)
TRyl (chz—f—y(t))z 1= 6[(ly—|—cy(t))2 T+ oy(e)
S;az (t> = _ﬁ3S2062 (t) +8e[SxOC2 (t -7 )Z(t - Tl) +S2062 (t -7 )x<t - Tl)]

85[Sy062 (t—m)z(t—1) S —1)y(t— 1-2)]
(I+cy(t—))? l+cey(t—1)

After-that, one may solve (3.40) along with (3.3) to evaluate Sx,, (1), Sy, () and Sz, (¢);
See Figure 3.10.

3.5.2 Sensitivity to time-delays

The sensitivity functions due to small changes in the time-lag parameters 7; and
T, are obtained by solving the neutral delay differential equations (NDDEs)
/ Bix(r)
S (t) =8, ()| ———=—1N —2 t)—oy(t) —ez(t
0= Sen ([ o — M = 28x(0) — 0 (0) —ex(r)

+Bux) (5 ) ~ Sy (1) eSen (1),

S (1) = Sy (VP2 ay(6) = Ba(0)] 4 3(0) [ BSeey (1)

o+ (1)
aZﬁZSyT] (t) ] . 5[ S)’Tl (t) (t) SZT] (t)y(t)] (341)
(o2 +y(t))? (I+ey(®))>  1+ey()

S/zfl(f):_B3SzT1(t>+8€[ XTI( ) ( —Tl) ( Ztl(t_fl)
)l — )] 4 s R )

(14+cy(t—m))?
Ser (t — )yt — 1)
L+cy(t— 1)

.
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Noting that it is possible to obtain similar sensitivity equations with respect to the time

delay 7. One can estimate the relative sensitivity functions,

dy/y _ relative changein 'y

Jdp/p relative changein p’

which are useful to compare different parameters. The higher the relative sensitivity, the

more important the input parameter in the model.

100

A0

5 y K . F
) RN

Figure 3.5: The roots of the characteristic equation of System (3.3) with negative real parts at the
stable steady state &*. Real parts computed up to R(A) > —1 (left), R(A) > —5 (right). Parameter
values are given in the text

3.6 Numerical Simulations

Some numerical simulations of System (3.3) are carried out, using Matlab pack-
age DDE23 and DDE-BIFTOOL, to confirm the theoretical results. The author first in-

vestigates the behavior of model around & with parameter values:

o =0.9,0 =0.001,a, =0.001, =1.35,p = 1,1 = 1,
(3.42)

ﬁl:2,B2:2,ﬁ3:1,8:0.5,625,5:1.

In Figure 3.5, the roots of (3.18) were computed, by setting minimal real part to a more
negative value (the roots are computed up to R(A) > —%) (left), where T = max{7}, 7},

and recompute stability up to R(A) > —5 (right).
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Figure 3.6: Numerical simulations of System (3.3) around the steady state &*. Top Banners show
that £* is asymptotically stable when 7| = 3.54 < 7} and 1, € (0,7;); Below Banners display a
Hopf bifurcation when 7| = 7} = 4.34 and 7, < 7, = 5.34; the other parameter values are given
in (3.42).
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Figure 3.7: The Hopf bifurcation diagrams of 7; and 7, for System (3.3); which are obtained
numerically by maximum and minimum amplitude of z(r). The left banner displays the threshold
parameter T, = 4.34 with 7, < 7;; While right banner shows that the threshold parameter 75 = 5.54
with 71 < 7}

Figure 3.6 shows the numerical simulations of the delayed System (3.3) around

the steady state &™*. The interior steady state & is asymptotically stable when 7; < 7] and

7, € (0,75 ); The model undergoes a Hopf bifurcation when 71 = 7{ =4.34and 7, < 7§ =
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Figure 3.8: Bistability of two interior equilibria for the delayed System (3.3); with @ = 0.9 and
a = 0.5. Both equilibria are locally asymptotically stable, other parameter values are given in
(3.42)
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Figure 3.9: The sensitivity of the dynamics of the System (3.3) due to small changes in the severity
of Allee effect & and o,. The left banners show the numerical simulations with different values of
a1 (0.001 < o <£0.02) and fixed value of o; = 0.001; While right banners display the simulations
with different values of o (0.01 < op < 0.02) and fixed value of ¢y = 0.01. The phase portrait
gets stretched over time as ¢ reduced; While low values of & increases the oscillations over time.
The presence of Allee effect in the model enriches the dynamics of the system

5.34. Figure 3.7 displays the Hopf bifurcation diagrams of 7; and 7, which are obtained
numerically by maximum and minimum amplitude of z(¢) . The left banner displays the

threshold parameter 7] = 4.34 with 7, < 75; While right banner shows that the threshold

parameter 7; = 5.54 with 71 < 77
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Figure 3.10: Sensitivity functions of model solution of System (3.3) with respect to Allee param-
eters 0 and op. Top banners show the sensitivity functions for x(z), y(z) and z(r) with respect to
small changes in Allee parameter ot;. However, the bottom banners display the sensitivity with
respect to 0. They show that the model is very sensitive to the small perturbations of Allee pa-
rameters in early time intervals and the sensitivity decreases by time. The two parameters ; and
o, are significant in the model, and cause high impact in early stages of interactions
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Figure 3.11: Sensitivity functions of model solution of System (3.3) with respect to time delay 7;;
which show the sensitivity functions for x(¢), y(¢) and z(¢) with respect to small changes in 7;

Figure 3.8 displays a bistability of two interior equilibrium points, for the DDEs
Model (3.3), when parameter ¢ varies from a = 0.5 to a = 0.9. If the interior equilibria

exists, any trajectory starting from the interior of ]R%r converges to one of the interior

equilibria.

Figure 3.9 shows the sensitivity of the dynamics of the System (3.3) due to small
changes in the severity of Allee effect o and 0. The left banners show the numerical

simulations with different values of a; ( 0.001 < a; < 0.02) and fixed value of o =
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0.001; While right banners display the simulations with different values of oy (0.01 <
o < 0.02) and fixed value of oy = 0.01. The phase portrait gets stretched over time as
oy reduced; While low values of  increases the oscillations over time. The presence
of Allee effect in the model enriches the dynamics of the system; While Figure 3.10
exhibits the absolute values of sensitivity functions: [dx(¢)/da 2|, |dy(t)/do 2| and
|0z(t)/d 2| to evaluate the sensitivity of the state variables due to a small perturbations
in o; and o. The oscillation behaviour indicates that the species population is very
sensitive to small changes in the parameter. It is clear that &; and o are important in
the model and have a significant impact in the dynamics, specially in the early stages of
time. However, the sensitivity to these parameters decreases with time. Figure 3.11 shows
that the parameter 7; has a significant effect in the model at the first subintervals and this

sensitivity decreases by time.

3.7 Concluding Remarks

In this chapter, the author established two-prey one-predator model with time-
delays and a weak Allee effect in the preys’ growth functions, where there is a direct
competition between prey populations. Non-negativity and boundedness of the solutions
have been investigated. Some new sufficient conditions for local and global asymptotic
stability of interior steady states have been deduced. In addition, Hopf bifurcation with
respect to time-delays threshold parameters 7, and 7, have been studied. The model
undergoes a Hopf bifurcation when time-delays pass through its critical values. The sen-
sitivity of model solutions to small perturbations in the severity of Allee effect a; and
0, and time delays was investigated. The obtained results confirm that Allee effect has
a significant impact in the dynamics in the early stages of interaction. Introduction of
time-delay and Allee effects, in the model, improves the stability results, and enrich the
dynamics of the system, keep the populations densities in balance, and makes the model

closer to reality.

It is known that the previous deterministic DDEs models are sometimes stable

with a cyclic behaviors in the common period for the sizes of species populations. How-
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ever, in practice, stochastic variations will occur in the values of x and y, which may
produce a qualitatively different behavior. Thus, in next chapters, the author extends the
analysis and study impact of environmental noise, by using stochastic DDEs with biolog-

ical systems.
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Chapter 4: Stochastic DDEs of Predator-Prey System with Hunting
Cooperation in Predators

4.1 Introduction

Stochastic differential models provide an additional degree of realism compared
to their corresponding deterministic counterparts because of the randomness and stochas-
ticity of real life. This work extends the analysis and studies the dynamics of a stochastic
delay differential model for predator-prey system with hunting cooperation in predators;
Existence and uniqueness of global positive solution are discussed in Section 3. Stochas-
tically ultimate boundedness and almost surely asymptotic properties are investigated in
Sections 4 and 5. Some sufficient conditions for persistence and extinction, using Lya-
punov functional, are obtained in Section 6. Illustrative examples and numerical simu-
lations, using Milstein’s scheme, are carried out to validate the analytical findings; See

Section 7. The concluding remarks are given in Section 8.

Many studies have explored the effect of predator hunting cooperation on Predator-
Prey (PP) systems [3, 104, 144]. Deterministic models such as (2.2) may be inadequate
for capturing the exact variability in nature. Then, stochastic models are required for an
accurate approximation of the dynamics of such interactions. The random fluctuations
result in changing some degree of parameters in the deterministic environment. Many au-
thors have studied stochastic population models and revealed the effects of environmental
noises on the dynamics of population models (see [31, 32, 54, 141]). In [108], the authors
studied the effect of environmental fluctuations of a delayed Harrison-type PP model, they
analyzed the impact of the combination of delay and noise in the dynamical behavior of
the model. In [14], the authors studied the effect of environmental fluctuations on a com-
petitive model for two phytoplankton species where one species liberate toxic substances

by considering a discrete time delay parameter in the growth equations of both species.

Before starting the analysis, one can provide some necessary results which will
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be used in this and next chapters.

4.2 Preliminaries

The mathematical model for a random quantity is a "random variable". Herein,

the author recall some concepts from general probability theory. Consider

RY ={y=O1y2,..-,yn) €R":y; > 0,1 <i<n}.

Definition 4.2.1. [138] If Q is a given set, then a c—algebra &7 on Q is a family <7 of

subset Q with the following properties:
(i) 9 € ;
(ii) Ae o = A° € o7, where A° = Q\A is the complement of A in Q;

(iii) A1,Ay,--- € = A:=U" A € .

Thus, the pair (Q,.2/) is a measurable space. If € is a family of subsets of Q,
there is a smallest o-algebra o(€) on Q which contains €. Hence, 6(€) is the o-algebra
generated by €. Assume Q = R" and € is the family of all open sets in R”, then 8" = ¢(€)
is the Borel o-algebra and the elements of 8" are the Borel sets. A real valued-function

y:Q — Ris .o/-measurable if

{w:y(w)<c}ego/ forall ceR.

An R"-valued function y(®) = (y;(®),y2(®),...,y.(®))" is o/-measurable if y; is .7~
measurable for all i = 1,...,n. Additionally, a n X m-matrix-valued function y(®) =

(vij(w)) is &7-measurable if y;; is &/-measurable foralli=1,...,nand j=1,...,m.

A probability measure PP on a measurable space (Q,.<) is a function P : &/ —

[0, 1] such that:
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(a) P(¢) =0,P(Q) =1,
(b) if Ay, Ay, € o and {A;}:" | is disjoint, then ]P’(U‘l?":lAi) — Y P(4).
i=1

The triple (2, .27, P) is called a probability space [92]. If y is a real-valued random variable
and is integrable with respect to the probability measure P, the expectation of y with

respect to P is

E(y) = [ y(@)dP(0).

The variance of y is

Var(y) =E(y—E(y))>.

The pth moment of y is denoted as E|y|” (p > 0). A statement .’ about outcomes is said

to be true almost surely (a.s.), or with probability 1, if

A={0: () istrue} €« and P(A)=1.

4.2.1 Stochastic processes

Let (Q, .o/, P) be a probability space. A filtration is a family {.<% },>¢ of increasing
sub-o-algebras of &7 (i.e. & C o C of forall 0 <t < s < o). The filtration is said to
be right continuous if @ = Ny~ for all + > 0. Considering the probability space is
complete, the filtration is said to satisfy the usual conditions if it is right continuous and

</ contains all P-null sets. Additionally, one can define %%, = 6(U;>09%).

In general, a stochastic process is a family {y;};c; of R"-valued random vari-
ables with parameter set / which could be (R; = [0,c), an interval [a,b], the non-
negative integers or subsets of R"), and state space R". For a fixed ¢t € I, a random

variable Q > ® — y;(w) € R” is considered. Wheres for a fixed @ € Q, a function
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I>t— y (@) € R" is assumed, which is called a sample path of the process, also one
can denote y;(®) by y(7, @) and the stochastic process can be considered as a function of
two components (7, ®) from I x Q to R”; a stochastic process is often written as {y;}, y;
ory(r). {<%} is said to be adapted if for every 7, y; is .o-measurable; and it is said to be
measurable if the stochastic process considered as a function of two components (¢, ®)

from Ry x Q to R" is B(R ) x /-measurable.

Now, one may define a random variable 7 : Q — [0, ), which is called an {.o7% }-
stopping time if {® : 7(w) <t} € o7 forany r > 0. An R"-valued {.¢ }-adapted integrable
process {M; };>0 is a martingale with respect to {.o% } if E(M;|.e%) = M, a.s. for all 0 <
§ <t < oo. A stochastic process y = {y; };>0 is called square integrable if E|y;|> < oo for
every t > 0. If M = {M,},>0 is a real-valued square-integrable continuous martingale,
then there exists a unique continuous integrable adapted increasing process {(M,M;);}
(quadratic variation of M) such that {M? — (M, M),} is a continuous martingale vanishing
att = 0. A right continuous adapted process M = {M, };~ is a local martingale if there
exists a nondecreasing sequence {7 };>; of stopping times with 7y — oo a.s. such that

every {Mqy  — Mo }i>0 is a martingale.
Lemma 4.2.1. (Strong Law of Large Numbers) [81]. Let M = {M, };>¢ be a real valued

continuous local martingale vanishing att = 0. Then

. — oo . t —
}EEO<M,M>1 = as. = tlggo MM, 0 as.,
and also
MM M,
lim sup M. M) <o as.=lim— =0 a.s.

In Chapter 1 the properties of Brownian motions were discussed, now one can

introduce the stochastic integrals and It6 formula.
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4.2.2 1Ito formula

Consider the following indicator function

1 when ¢ € [t;,ti11];
I[Zivti-o—l](t) -
0 otherwise.

t
The stochastic integral / f(s)dW; with an m—dimensional Brownian motion {W;} for a
0
class of n x m-matrix-valued stochastic processes { f(¢)} is defined; Unfortunately, W (¢)
does not have a derivative and so one cannot write the integral as a Riemann integral

[103]. Let #; € [t;,ti11] then one can approximate f(¢) by ¥; f(¢]).| (t). Therefore,

titiy]

t
one can define / f(5)dW; as the limit Y £(t])[W;., — W] as n — oo,
0 i

Noting that one may consider ¢ = #; then the Ito integral have been defined. How-
ever, if 7 = ﬁ% this gives the Stratonovich integral. For example the stochastic integral

! 1
/ WdW by Ité approach is E(Wz(t) —t); While with the Stratonovich definition yields
0

1
EWZ(I). The Ito integral is a martingale and the Stratonovich provides the results ex-

pected from ordinary calculus; the difference between these two integrals comes from the
lack of smoothness of W (¢); which can be illustrated by Ité stochastic chain rule formula

[70, 103].
Definition 4.2.2. ([52]) The transition probability function IP(s,y,¢,.27) is said to be time-
homogeneous if the function P(s,y,7 +s,<7) is independent of s, where 0 < s <t,y € R"

and o7 € B, B denotes the o— algebra of Borel sets in R”.

Assume y(¢) is a regular time homogeneous Markov process in € ([—7,0]; R"},)

and satisfies the following stochastic delay differential equations (SDDEs)

dy(t) =f£(t,y(t),y(t —7))dt + i g-(t,y(t)dW,(t) for t>—-1,7>0 4.1)

r=1

with the initial value y(¢) = yo € ¢ (|—7,0]; R".). The diffusion matrix of the process y(¢)
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is defined as follows:

k
=Y (g 1))gl(t,y()) = (aij(y)).

r=1

Define a 6>! (€' ([—7,0];R™) x [~ 7,0); R, ) the family of all nonnegative functions V (t,y;)
such that it is continuously twice differentiable in y and once in ¢. The differentiable op-

erator .Z of (4.1) is defined by [91]

2

0
ii——. (4.2
y’ 7JZ’1 t y( ))] Jayiayj ( )

=5 Zfi(tvy(l)uy(t - T a
i=1
If £ acts on a functional V (t,y;) € €% (€ ([—7,0;R%) x [T,);R}.), then
1
LV (t,y0) = Vit y0) + Vo (6, ¥Rty (1), ¥ (e = 7)) + Stracelg” (1,y(0) Vay (1, y)8(5, (1)),

v v 2’V : A :
where V; = 5%, Vy = (8_y1’ i, 8yn) Vyy = (ay,-ayj)”xn' According to It6 formula, if y(¢) €

% ([—7,0]; R, ), then

dvV(t,y:) = LV (t,yr)dt + Vy(t,y.)g(t,y(t))dW (t).

4.3 SDDEs for Predator-Prey System

In this chapter, the author considers a stochastic version of a predator-prey Sys-
tem (2.2), where white noise is incorporated into the growth equations of both prey and

predator, so that

B x(t—11), [+ oy(t)]x(r)y(r)
dx(t) = [M(I)(l— K =) - 1+ c(1+ ay(r))x(z)

1) = [~ 8500~ a0+ 11BN Y 4y ouyc)ams ()

}dt + o1x(t)dW (1),
4.3)
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W (), Ws(t) are standard independent Wiener processes defined on a complete probability
space (Q,.o7, {4 };>0,P) with a filtration {.o/ },>( satisfying the usual conditions; and oy,
0, are the positive intensities of white noises. Assuming that k¥ € [—7,0], 7 = max{1}, 7, },
ie. (x0,y0) € €([—7,0],R%) with RZ = {(x,y) € R? : x > 0,y > 0}, if (x,y) € R?, its
norm is denoted by |(x,y)| = \/x2 + y2. The initial value of System (4.3) becomes

(x(x),¥()) = {(x(x),y(x)) : =7 < k <0} € €([~7,01:RY). (4.4)

Now, the existence and uniqueness of positive solutions is investigated.

4.3.1 Existence and uniqueness of positive solution

In order to prove that the model of SDDEs (4.3) has a unique global solution (i.e.
no explosion in a finite-time) for any given initial condition, the coefficients of the System

(4.3) are generally required to satisfy the linear growth condition and local Lipschitz

(I+oy)x

m 1S nonhnear,

condition [23, 92]. Although, the response function f(x,y) =
coefficients of (4.3) don not satisty the linear growth condition. Thus, to show that Model
(4.3) has a global positive solution, let firstly prove that the model has a positive local
solution by making the change of variables. Then, one can prove that this solution will

also not explode to infinity at any finite time, by using a suitable stochastic Lyapunov

functional.
Theorem 4.3.1. Let the coefficients of the System (4.3) be locally Lipschitz continuous,
then for any given initial data (4.4) there is a unique positive solution (x(t),y(t)) of System

(4.3) ont > —7, and the solution will remain in ]R%L with probability one.

Proof. Let n(t) =Inx(t), p(t) = Iny(t), one may have the system

() (1) 2
(T o on-m) _ (1+ae’V)e _Oi
dnft) <r K¢ 1+ c(1+ aer®)en® 2 )dt +o1dWi(1) ws)
et oteP)ent=7) e a0 o2 '
dp(t) = ( Tt (1§ aer®)eni—) S —ae 7>dt + 02dWs (1),
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for any initial values n(x) = Inx(x), p(x) =Iny(x), K € [—7,0]. It is easy to show that all
the coefficients of (4.5) satisfy the local Lipschitz condition, therefore, there is a unique
local solution (n(t), p(t)) on [—17,7,), where 7, is explosion time. By Ito’s formula, one
can see that x(r) = ¢"), y(r) = P("), therefore, there is a unique local positive solution of

(4.3) for any given initial value (xo,y0) € R?.

To show this solution is global, one may need to show 7, = o a.s. (almost
surely). Let Iy > 0 be sufficiently large so that (x(7),y(r)) = {(¢1(¢),92(¢)) : —7 <1 <
0} € €([—7,0);R%) all lie within the interval [%,lo]. Now for each integer [ > Iy, define
the stopping time 7; = inf{r € [-71,7,) : x(t) ¢ (%,l),y(t) ¢ (%,l)} let infg = oo. 7; is
increasing with / and let 7. = ll:n; 7;, then T, < 7, and by showing 7., = o a.s., now the
idea is to conclude that 7, = o a.s. If this assertion is erroneous, then there exists a pair

of constants 7 > 0 and € € (0, 1) such that P{7. < T} > €. Therefore, there is an integer

L = 1o
P{y, <T}>¢, forall [>1. (4.6)
Define a ¢-function V (x,y) : R, x R, — R, by
r 1417
V(x,y):(x—logx—l)—i—(y—logy—l)—i—E/ x(s—11)ds.
t

Clearly, this function is non-negative for all x,y > 0. Let [ > [y and T > 0 be arbitrary.

For 0 <t <1 AT, by Ito’s formula for V, one gets

(I+ay)y I+ 51 p(1+ay)x(r — 1)
l+c(l+oay)x L+c(l+oy)x(t— 1)

av = [(x=1)lr—x(t—7) -

2 2
- ;GZ X = a(t = 71) | di + 01 (x— D)aWi (1) + o2 (v — 1)dWa(1).

—d—ay|+



K-+1 o2+ o?
. xX+(0—r)+ 1 2

dv < [—ayz-l-(l-l-,u-l-a—S)y—f—r
+o1(x—1)dW(t) + oo (y— 1)dWr(1),
< ydt+ o1 (x— 1)dW(t) + o2 (y — 1)dWs(1),

where 7 is a positive number. Therefore

AT uAT TAT
/ v (x,y) < / ydi + &1 (x— 1)dW, (1)
T

INT —7T AT —7T AT —7T
T AT
4 / G2 (y— 1)dWs ().
T

INT —T

Taking expectation of both sides implies

EV(x(u AT),y(6 AT))] <V (x(0),5(0)) + 7T
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4.7)

(4.8)

Set Q; = {1, < T} for [ > I} and by the virtue of (4.6), one obtains P(Q;) > €. For every

n € Q;, x(1,Mn) and y(7;,n) equal either to [ or %, Consequently, V (x(7;,n),y(7,1)) is

no less than either / —log/—1 or % +log/ — 1. Therefore, one can get
. 1
V(X(Tl»n)d’(fl»n)) = mln{l —logl—1, 7 +logl — 1}

It follows from (4.8) that

V(x(0),(0)) + 77> Ella, (m)V (x(1).3())] > &l logl 1] A [ +log! ~ 1]

where 1q, is the indicator function of €;. Letting [ — oo leads to a contradiction that

0o >V (x(0),y(0)) + yT = co. Therefore, one gets T, = oo a.s.
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4.4 Stochastically Ultimate Boundedness

After discussion existence and uniqueness of positive solution of SDDEs (4.3),

one can show that the positive solution does not explode to infinity in a finite time.
Definition 4.4.1. [91] The solution of the SDDE Model (4.3) is said to be stochasti-
cally ultimately bounded if for any € € (0,1), there is a positive constant ¢ = @(¢),
such that for any initial value (4.4), the solution of Model (4.3) has the property that
lim; ;o sup P{|(x(1),y(2))| > @} <&.

The system is said to be stochastically ultimately bounded if the following Theo-

rem is satisfied.
Theorem 4.4.1. For any 6 € (0,1) and u6(uKe™ — 8) > a, there is a positive constant
N = N(6), which is independent of the initial value (4.4), such that the solution Model

(4.3) has the following properties

lim supE[| (x(z),y(1))|°] < N. (4.9)

t—o0

Then System (4.3) is stochastically ultimately bounded.

Proof. To prove (4.9), define

V(x,y) =xP —|—y9, (x,y) € ]R%L. (4.10)

Applying Ito’s formula, gives

P YL S U 50 B LTSI
LV (x,y) =6x"[r Kx(t 7)) l—l—c(1+ay)x]+29(9 1)x

)
—d0—ay|+ 729(9 — 1)y6,

d B+ oy)x(r — 1)

+6
Y e+ oy —m)
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2 0y? (1 + ay)x(t — )
e 08 r Lot oy _ Ol _g,0 ., HOY y 2
LV () < 027 r = xle =) = S-0(1 -0 + T

2

2
- %9(1 —0)y® — Bay® !
2

2
< r6x® — %9(1 o)t - %9(1 —9)?

Ke2 —§
+uo Bk — ) 2
uKe® — 6

= H(x,y) =V (x,y) —e®|x(r) > + 16( )lx(t = w)[?,  where,

2 2

H(x.y) = (r0+ 1x +3° = ZL(1 - 0)2° = Z20(1 - 0)y° +e™[x(1)? < No.

for (x,y) € R%. Note that H(x,y) is bounded in R%. Hence, one gets

1o (uke™—35)
a

.,E,”V(x,y) §N0—V(x,y)—e72\x(t)|2—|— ‘X(I—Tz)‘z.

Thus, one obtains

dV (x,y) = .2V (x,y)dt + 610x°dW, (1) + 6,0y°dW; (1)

1o (uKe™ —9)

< (No—V (x,y) — €™ x(t)|* + [x(r — )|

+610x%dWy (1) + 6200 dW; (1).

Again, using It6’s formula, one may have

d(e'V(x,y)) = €'V(x,y)dt +e'dV(x,y)

po(uKe™—6)
a

< €[Ny —e™|x(t) |2 + |x (¢ — Tz)|2]dt

+ etGl exedwl (l‘) + etheyedWQ(t).
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If ub(uKe™ — 8) > a, then

CEIV (5)] < V(:(0),(0)) + Nod ~E[ ||+ Ix(s) ]

UKe® — 48
a

— V(x(0),y(0)) + Noé' — ] /O e x(s) [2ds]

20K
LM

t
6 E[/ &*|x(s — 1) [2ds]
0

5/49

Bl lato) o)~ 2B [ elats— )P

2
<V(x(0),5(0)) + Nod + 0K [ ervopags) s,

— 12

which implies that tli)m supE[V (x(1),y(t))] < No. Therefore, one gets

lim supE[Jx(1),y(1)]%] < V2° lim supE[V (x(1),y(1))] < V29N, = N(B).  (4.11)

t—o0 t—o0

Since tILm supE[|x(2),y(r)|°] < N, then for any € > 0 let ¢ = N?/&2. By Chebyshev in-

E[(V1G(@),y(0))])]
Ve

equality, P{|(x(z),y(¢))| > @} < , one obtains tli_>m supP{|(x(¢),y(¥))| >

N
¢} < NG := &, which implies

Jim supP{|(x(1)y(1)| < 9} > 1 —e.

Thus, Model (4.3) is stochastically ultimately bounded.
4.5 Almost Surely Asymptotic Properties

When the model is subject to stochastic noises, it is valuable and interesting to
examine whether the stochastic model preserve some stability properties for the determin-

istic model. For simplicity, one can introduce the following notations.

Mi(t) =[5 5 G’ t dW( ), i=1,2. Such that M;(t) is a real-valued continuous

S

local martlngale Vamshmg at t = 0 and its quadratic form is given by
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=
—~
~
~—
=
—~
~
~—
~
N
Q
—~
=
—~
~
~—
—~
~
~—
=

2x(0) ()2 5 .
sy i=1,2.

e Let £ € (0,1) and § > 0, by the exponential martingale inequality [92], for each

n>1,

Clnn

P{ sup (M;(r) — p<n b

)
0<t<n 2

(Mi(t), Mi(1))) >

Since Z,"::ln_g is convergent, By using Borel-Cantelli Lemma, there is Q¢ C Q
with P(Qg) = 1 such that for p € Qg there exists an integer ng = no(p) and choosing
{ =2, one may have

2
M;i(t) < =(M;(t),M;(1)) + Elnn, forall 0<r<nAn>ny(p). (4.12)

o M

Theorem 4.5.1. For any given initial value (4.4), such that the solution of Model (4.3)

has the property that

where Dy = 1—|—5—|—a+

limsups'In|(x(r),y(t))| < D> a.s,

o0

257> Such that & = min{c1a1,02a2} and D = max{a,u}.

Proof. Define V(x(t),y(t)) = x(t) +y(¢), using It6’s formula it gives that

IV (x(t) y(£)) — InV (x(0), y(0)) = /’(( () ot %x(s_m
_ (1+ay)y )— )
1+c(14ay)x (s))2 s
! y (1+ay) (s— 1)
+/0 ((x<s)+}’(5))<1+C(1—|—(Xy)x(s—12) —0—ay)
03y?

——2>ds—|—M1(t)+M2(t).
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Substituting Inequality (4.12) into (4.13) one obtains

r (It ay)y

I+c(1+ Ocy)x)

p(l+ay)x(s— 1)
(1+c(1+ay) o) 0w @19

assume that aj,ay € (0,1) are positive constants. Thus,

, P (e Lo R DI
v(x(O),y(O))é/o(HaHu( ot 2 . (4.15)

4
+ —Inn,
€

where, 6 = min{0ja;,00a} forall 0 <t <n,n>ny(p) and p € Qy. From (4.15), one

gets
(1—2¢)
IV (x(t),y(1)) + U200 / (x(s),(s))|ds
) 5 (4.16)
6 4
§D1+/ (1+ocy+ux+6+a—Cy |(x(s;,y(s))| )ds+~ Inn,
0
such that D; = InV (x(0),y(0)) + fi)rzx(s)ds. Due to
521 (x(t 2 N2
I+ oy+px+ta—?2 o ;’y(tm S1+8+ato5 =D,

where D = max{«a, u}, therefore, if p € Qq,

1—28 4
IV (x(t), y(1)) + / (x(5),¥(s))Pds < Dy + Dot + - Inn,
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forall 0 <t <n,n>ny(p). Hence, forall p € Qq,ifn—1<t<n,n>no(p),as € -0
it gives that

limsup(t ' InV (x(¢),y(t)) —I—t_](l_j—g)az/[ |(x(s),y(s))*ds) <D, a.s,
0

t—3o0

using V (x(1),y(1)) > Lfi@m implies limsup(r ' In|(x(¢),y())|) < D> a.s.
t—soo

4.6 Persistence and Extinction of the Solution

Herein, sufficient conditions for persistence and extinction are provided, using

Lyapunov functionals.

4.6.1 Persistence

Under certain restrictions on the parameters values with small intensities of white
noise, the conditions under which persistence of the system SDDEs (4.3) occurs are in-

vestigated. Let first define persistence in the mean of a dynamical system.

Definition 4.6.1. The species y(¢) is said to be persistence (See [84].) in the mean if

t

o1
hmllg’ofo; A y(s)ds >0, a.s.

In order to show the persistence, the author go through the following Lemma.
Lemma 4.6.1. [63]. Let y(t) € €'[[0,00) x Q,(0,0)]. If there exist positive constants Ay, A

such that

Iny(t) > Ar — QLO/Oty(s)ds—kF(t) a.s.,
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forallt > 0, where F € €[[0,) x Q,R] and lim;_, @ =0a.s., then
1 A
lim inf — s)ds > — a.s.
y(s)ds 2 o

Define a threshold parameter .7 as follows.

s _ [.LK S 6_22
Ty = S(H—c) >0, where 6=0+ 5 4.17)

Theorem 4.6.2. Let (x(t),y(t)) be the solution the SDDEs (4.3) with initial conditions

(4.4). Assume that 2r > 612, then the System (4.3) will be persistence if ) > 1. So that

t

oo
hmtl_r>11:°; A y(s)ds >0, a.s.

Proof. Using of Ito’s formula to the first equation of System (4.3), yields

d(Inx(t) — % /, T = )ds) < ((r— %12) - %x(t))dt +o1dWy (1), (4.18)

Integrating of Inequality (4.18) from O to ¢ results in

Inx(t) — ftt;rfl x(s—11)ds B Inx(0) — f(t)ﬁ x(s—1y)ds <(r- 6712) B %(x( ) letll (1)
Thus,
K, ot
(x(1)) < 7(1’— 7) +n(t), where, (4.19)
ne) = § [Glﬂt/] (t) Inx(t)—¢ ftt;ﬂ' x(s—11)ds N Inx(0) — & f(;ﬁx(s —11)ds |
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it follows from Lemma 4.2.1 that

Wi (¢
lim—l()

f—oo f

=0 a.s.

Noting that

t+1, x(s—11)ds 7 x(s—11)ds li

. . O o1(r)dt
Therefore, lim;_,o. f[ ——— =0. Moreover, lim; fo = =lm; e T'f

0. Thus, one obtains
limy, =0 a.s. (4.20)
t—ro0

By It6’s formula, one gets

d(inx(r) — ~ /t T = 1)ds)

r r 2
- +<lc (+1 iygﬂyy()fi(t) — x(t) + x(t =) %] dt + G1dW (1)
> [r— %x(t) —2(14+o)y(t) — %12 dt + o1dW (1),

x(l‘—’L'])
K

- [r(l— )

so one may have

Inx(t) — £ [T x(s—71)ds  Inx(0)— £ [7 x(s — 71)ds

! 1
£ r
> (r— T 201+ @) — Lo + T,
Therefore,
2
o) 2 _ZK(1r+ “ <y(t)>+§(r_%)+%(t)- (4.21)



Let

t+1 —
_ px(s — )
V= lny(t)—i—/t [1 +cx(s— 1) s,

utilizing Ito formula, one obtains

IR e I U ()
V= rani—m) ¥ 2% Tran
()
l+cx(t— ) ldt +02dWa(t),

According to (4.23), one may have

px(r)
A ey

1
—6—ay— Eozz]dt + 0 dWi(t),

e Case (1) When x(z) < 1, then

av > ['llufi? —0—ay— %Gzz]dl‘—i— szWZ(t).
VYO B fatey) —ats() ~ 5+ 03] + Zwato).

Substituting (4.21) into (4.26), one obtains

B B 2
V(1) tV(O) > 1ic[ 2K(r1+06) <y(t)>+1<(1—%)+71(l)

—aly(r)) -5+ %Wz(t). Therefore,

2 ~
Iny(t) > [({ufc)(l _%) —5]t— [%4—0} (y(r))t
+ 1L+c71 (1)1 + 2 Wa(1) +1Iny(0) + /0 %

t+17 _
_/ pxt—m)
t 1+CX(t—T2)

ds
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(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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Iny(r) > A1 — /0 y(s)ds+ F (1), (4.29)
where
MK . of & 2uK(1+ o)
)L_(l—kc)( Zr) % A r(l+c¢) ’
T _ 1+1T» t—
F(t)= ILHYl(t)tJrasz(t)Hny(O)jL/o PP ’ixc(;(s fzgz)ds—/l PP ii(x(t —th)'z)ds

Since 2r > o} and .7 > 1, this implies that 2 > 0. This together with (4.20) and Lemma

4.6.1, one obtains

o r(l1+c¢) ,LLK(Zr—GIZ) <
> — .
llnglfo(y(t)) “2uK(l1+a)+ar(l+c) ( 2r(1+¢) 6) >0
e Case (2) When x(¢) > 1, from (4.24), one can get
av > [P 5~ ay— L62dr + cramn(1) (4.30)
“+c 272 ’
V(i) -V(O0) _ u 5, O (431
. > 1+C—a<y(t))—5—i—TW2(t). )

Since .7’ > 1, and following a similar proof to Case (1), one can obtain

lim inf (y(¢)) >

f—>oo

Q| =

(1ic—5)>0.

This completes the proof.

4.6.2 Extinction

Extinction is one of the most important term in population dynamics. A species
is said to be extinct if there is no existing member in the habitat. Although, under some
conditions, the solution to the original deterministic DDEs (2.2) may be persistent. How-

ever, the solution to the associated SDDEs will become extinct with probability one. This
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reveals the important fact that the environmental noise may make the population extinct.

Now, the conditions under which extinction of predator population occurs are established.
Definition 4.6.2. [92] The species y(¢) is said to go to extinction with probability one if
llggy(t) =0 a.s.

Theorem 4.6.3. Let a > uo. If I35 < 1, then the solution (x(t),y(t)) of Model (4.3), for

any given initial value (4.4), satisfies

lim sup
t—roo

w <0 as., (4.32)

which means tlim y(t) = 0 exponentially a.s. In other words, the predators die out with
—>00

probability one. In addition,

ot
tim (1)) = K(1- 90).
Proof. According to (4.23), one obtains
p(1+oy)x(t — 1) 1 5, ux(r)
< —S—ay——
w=l 1+ cx(t — 1) 0 —ay 202+1+cx(t)
__plimm) a3
1+cx(t—1'2)]dt+62dwz(t) (4.33)
px(r) 1,
<[——~-06—(a— -
< ey ~ 9~ (@ = Hop() = 503ld1 + 02dWas),
since (a > po), then
~ 14cex(r) 272

Thus, one may have two cases. Case I. When x(7) < 1, according to (4.34), one can get

U
1+¢

dv < | — 8]dt + 62dWs (1), (4.35)
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therefore, one gets

Vi)=V(O0) _ u & o
< — — . .
ST So. (4.36)
V(@) o B 5. (), where 4.37)
t 14+c¢

:Gtz J(t +lny(0)+l/fz Ux(s — 1) ds_l/t—i-fz wx(s — 1)
0 t

ds. (4.38
t t 1+ cx(t— 1) t 1 +cex(s— 1) . (4.38)

In view of the strong law of large numbers of Brownian motion, one can easily obtain that

lim x;(t) =0 a.s. Thus, it follows from (4.37) and since .7’ < 1

t—roo

—0<0. as. (4.39)

Case II. When x(7) > 1, by (4.34), one may have

dV<[l'1Uf£t)—5]dt+62dW2(t), then, (4.40)
C
V(i)=V(0) _ puKk pu 5, O
< — —5+= : :
; >14e H_CYl(f) 0+ tWZ(Z) (4.41)
1 K =
Therefore, ny(t) < H — 0+ x(t), where (4.42)
t 1+c¢
o Iny(0 1 2 ux(s—r 1 pitm x(s—1
2(0) = FWalt) + yz()+?/ 1ijx(s—21))ds_?/ lic(x(s—z‘g)ds
0 2 ! 20 (4.43)
u
l—i—c}q(l)'

In view of the strong law of large numbers of Brownian motion, one can easily obtain that

lim (1) =0 a.s. Therefore,

t—oo

Iny(t K
lim sup ny(t) < H

~5<0. as. 4.44
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Which implies that, y(¢) tends to zero exponentially with probability one,

limy(t) =0 a.s. (4.45)

{—roo

By taking the limit both sides of (4.19) and (4.21) at the same time, one can get

: o}
lim (x(r)) = K(1 -~

).

This completes the proof.

L 1
60 80 100 120
Time(t) Time(t)

Figure 4.1: Numerical simulations of System (4.3) which displays the persistence of the system,
when 7 > 1. Witha =0.12,a=0.08,c=0.3,r=1,u=0.9,6 =0.39,K =1, 0 = 6, =0.001
and 7)1 = T7p = 0.1. However, the right banner illustrates that the predator population dominates the
prey population as time goes when « is increased to o = 1.2

4.7 Numerical Simulations

In this Section, the author attempts to validate the mathematical results obtained
in the previous sections. Milstein’s scheme with a strong order of convergence one, dis-

cussed in [71] is utilized. The corresponding discretization system to SDDEs (4.3) is

X 1+« o2 1
X1 = X+ (1 = nKml )— 1 ch(l +y26)y):zn)xn] + 011+ %x”[(él’"(h) 2 =]
1+ ay,)x,— o2 1
Yt = yo b hya[ AT Oy 5 T (Ean (W) — )

L+ c(1+ ayn)Xn—m, 2
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L h f
0 20 40 60 80 60 0
Time(t) Time(t)

Figure 4.2: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2), when .7’ > 1. With 7y =7 =0.8 and 7, = 0.1 < 75, a = 0.08, 6 = 0.19,
a=16,c=0.6,K=1,u=0.9, r=1, while the intensities of Brownian motions are relatively
small o7 = 0.004 and o, = 0.0001. Top (left) displays a periodic solution of the deterministic
model for the prey population; while in the stochastic model a damped periodic solution is ob-
served. Top (right) shows a periodic solution of the deterministic model for predator population
with a damped periodic solution in the stochastic model. Bottom (left) is a phase space that shows
the existence of a limit cycle around &*. Bottom (right) is a numerical simulation that shows the
damped periodic oscillation around & in the stochastic model.

Here, &; nand 527,1 are mutually independent N(0, 1) random variables, m|,m; are integers
such that the time delays can be expressed in terms of the step-size as 7| = mh & 7, =

moh. Some numerical simulations of the stochastic Model (4.3) and its corresponding

deterministic Model (2.2) are provided.

Taking the parameter values @ =0.12,a=0.08,¢=0.3,r=1,u=0.9, 6 =0.39,

K =1, 0y =0, =0.001, and 7y = 7o = 0.1. Figure 4.1 shows persistence of System

(4.3) with initial values (0.4,0.8), such that ;' = = (ﬂl‘fc) — 1.78 > 1. If the hunting

cooperative parameter ¢ is increased as o = 1.2 keeping all other parameters the same,
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T [——="Stcnastc
= Delerminsiic
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Time(t) Time(t)

Figure 4.3: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2), when .7’ < 1. Witha=10.19,u =0.8, ¢ =0.1,c=0.8, K =1, 6 =0.59,
r=1, 01, =0.001, 0o =0.023 and 71 = 75 = 0.1. In the left banner the population of prey varies
around the deterministic steady state value. In the right banner predator population goes to extinct
at t = 70 for deterministic system; While extinction occurs at ¢ = 20 with stochastic model.

T [——="Stoasic I I I I I ——Sioasic
e DI MINSHIC e D terminstic

! ! ! L L L L L L
50 60 70 80 0 10 20 30 40 50 60 70

L L L
0 10 20 30 40
Time(t) Time(t)

Figure 4.4: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2), when .7’ < 1 with 71 = 7, = 0.1, 61 = 0.001 and 6, = 0.1. With a = 0.19,
u=0.6,6=0.1,c=0.3,K=1,5 =04, r = 1. In the left banner, the increasing of the inten-
sities of white noise promote the prey population densities. in the right banner the large scale of
white noises may lead to no surviving predator individuals that can reproduce and create a new
generation; While in the deterministic one the predator individuals are still survival.

one can observe that the predator dominates the prey population; See Figure 4.1 (right).

The population densities vary around the deterministic steady state values.

Figure 4.2 shows the impact of small white noise in dynamics of the system. The
Figure displays a periodic solution of the deterministic system when 7; = 7{ = 0.8 and
7 =01<1,a=00806=019 a=16c=006K=1,u=0.9,r=1. However,

with small noises 61 = 0.004 and 6, = 0.0001, where .7 = 2.96 > 1, one can observe
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Figure 4.5: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2) with time delay 7; > 7 = 2.1. An unstable solution for prey population
(left-top and bottom); while the large oscillation leads to the extinction of predator both in the
deterministic and stochastic models (right-top and bottom)

that the periodic solution is damped in both population densities. If the intensity of White

noises increases then the predator goes to extinct, as .7’ < 1.

Figure 4.3 shows that the population of prey varies around the deterministic steady
state value (left), and predator population goes to extinction at ¢ = 70 with determinis-
tic model; while with white noise at = 20 (right). In this simulation, the initial value
(x(0),y(0)) = (0.8,0.4) and parameter values a =0.19, u =0.8, « =0.1,c=0.8, K =1,

0=0.59,r=1, 0y =0.001, 0, =0.023, 7y = 7o = 0.01 are chosen. Then .7 =0.75 < 1.
Iny(t)

According to Theorem 4.6.3, the solution of (4.3) obeys lim sup — < 0a.s., thatis y(t)
t—voo
tends to zero exponentially with probability one. In the other hand, for the deterministic
uK
0(1+4cK)
equilibrium point & = (1,0), is a stable point.

Model (2.2), the condition of ﬁod = = 0.7 < 1 is satisfied, so the boundary
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Figure 4.4 shows that the environmental noise plays an important role in extinc-
tion of predator population. When the intensity of Brownian motion W,(¢) is increased to
0, =0.1,¢=0.3, u = 0.6 and 6 = 0.4 with other parameters as of Figure 4.3, the extinc-
tion occurs in predator population, when .7 = 0.92 < 1. This means y() of System (4.3)
will go to extinction with probability one. However, with the same parameters, the de-
terministic Model (2.2), has an interior stable equilibrium &* = (0.82,0.22). Therefore,
the population y(¢) becomes extinct exponentially with probability one when white noise

increases.

Figure 4.5 shows fluctuation in population densities of the prey and predator when
time delay 7; = 2.1 cases large oscillation for deterministic Model (2.2) as well as stochas-
tic Model (4.3). Let 61 = 6, = 0.001 (top) one can see that the stochastic fluctuation dis-
appears in both prey predator species and they behave as if there is no external noise. On
the other hand, let o7 = 0.004, 6, = 0.005 one can see (bottom) that with the increase of
noise intensities, the amplitude also slightly increased. Moreover, the predator population

go to extinct with large value of time delay.

Remark 4.7.1. Extinction of predator population is possibly occur when the intensity of
white noise is large, such that .7 < 1. This would not happen in the deterministic System
(2.2) without noises (See Figure 4.4). If the predators’ death rate is large, extinction of
the predators can also occur in the deterministic Model (2.2); While a small noise in the
stochastic model, the extinction of predator population occurs faster than the deterministic

model; (See Figure 4.3).

4.8 Concluding Remarks

In this chapter, the dynamics of SDDEs for predator-prey system with hunting
cooperation in predators was studied. Considering the environmental noise, the existence
and uniqueness of global positive solution and the stochastically ultimate boundedness
of the system were established. The effect of environmental noises on persistence and

possible extinction of prey and predator populations have been shown. The obtained ana-
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lytical results with supportive numerical simulations, have been verified using Milstein’s
scheme. Conditions under which persistence of the system occurs have been established,
when 903 > 1 have been deduced; While with 903 < 1, extinction of predator occurs. It
can also be observed that the extinction of the predator population occurs more rapidly for
the stochastic System (4.3) when the intensity of white noise increases, see Figures 4.3-
4.4. It has also been shown numerically that the predator population dominates the prey
population as cooperative hunting parameter increases (See Figure 4.1). The main find-
ings, theoretically and numerically, are all represented in terms of the system parameters
and the intensity of randomly fluctuating driving forces. This indicates that time-delay
and white noise have a considerable impact on the dynamics and presence of prey preda-

tor populations.

In the next chapter, the author extends the stochastic analysis to a three-species
model consisting of two-prey one-predator model with time-delays and cooperation among

prey species.
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Chapter 5: Stochastic DDEs of Three-Species Predator-Prey Systems
with Cooperation among Prey Species

5.1 Introduction

In this chapter, a stochastic delay differential model for three species (two preys,
one predator) predator-prey system with cooperation among prey species against predator
is proposed. Section 2 investigates the existence and uniqueness of global positive solu-
tion of the SDDEs model. Section 3 establishes sufficient conditions for the existence and
uniqueness of an ergodic stationary distribution of the positive solutions to the model.
Section 4 shows the extinction of the predator populations under certain parametric re-
strictions. Some numerical simulations and discussions are carried out, in Section 5, to

illustrate the theoretical results. Finally, concluding remarks are presented in Section 6.

A typical cooperative Lotka-Volterra system for two teams of preys with densities
x(t), y(t), interacting with one team of predator with densities z(t), can be written in the

following form

d);(tt) =x(t)[r1 (1 —x(2)) — o1z(¢) + By(t)z(2)]
D) ) a1~ 5(6)) — aoz(e) + Bile)z(0)] b
dil—(zt) =z(t)[—6 — oz +a1x(t) + azy(t)].

The coefficients &) and o are the rate of predation, and f is the rate of cooperation for
the preys x(¢) and y(¢), respectively. The preys are chosen such that they can support each
other’s existence and there is no competition among them, mutualism can be established
among the preys against predation. Table 5.1 displays the biological meaning of the model

parameters.

Incorporating time-lags in biological models makes the systems much more real-
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istic. Therefore, In [76], the authors studied the following system

dX(t) — rlx(t)(l — x(tk;lrl)) _ alX(t)Z(t) +ﬁx(t)y(t)z(t)
dZ—Z =ray(t)(1 - y(tk__zh)) — oy (1)z(t) + Bx(t)y(t)z(¢) (5.2)
d;—tt = —8z(1) — a2 +arx(t — 13)z(t) + ary(t — 13)z(t).

It is assumed that the rate of cooperation f is not as much as the rate of predation, ( i.e.
x < % and y < %); Which follows that System (5.2) has permanence and its positive
equilibrium is locally asymptotically stable for all 7|, 7> and 73, under certain parametric
restrictions. However, when the rate of cooperation is greater than the rate of predation
the number of species becomes unbounded. It is known that deterministic models, such

Table 5.1: One biological meaning for the parameters of Model (5.3)

Parameters Description

re, Intrinsic growth rate for x and y

ki, kp Carrying capacity for x and y

ap, O The rate of predation to decrease the preys growth rate

B The rate of cooperation for the preys x and y

o Predator death rate

o3 The rate of intra-species competition within the predators
ai, a An equal transformation rate of predator to preys x and y.

as (5.2), are stable with a cyclic behaviour in the common period for the sizes of species
populations. However, in practice, stochastic variations will occur in the values of x, y and
z, which may produce a qualitatively different behaviour. These variations may lead to
an extinction of the predator as a result of a possible extinction of the prey. Deterministic
models may be inadequate for capturing the exact variability in nature. Then, stochastic
models are required for an accurate approximation of the dynamics of such interactions.
The random fluctuations result in changing some degree of parameters in the determin-
istic environment. Moreover, the natural growth of populations is always affected by
environmental stochastic perturbations which is an inevitable aspect of dynamics of any
ecosystems, to suppress a potential population explosion [43, 113, 118, 120]. In Chapter 4
the dynamics of a stochastic delay differential model for predator-prey system with hunt-

ing cooperation in predators was studied [113]. Sufficient conditions for persistence and
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extinction of predator population have been investigated. Liu ef al. [86] studied the im-
pact of random noise in the dynamics of predator-prey model with herd behaviour. They
established sufficient conditions for the existence and uniqueness of an ergodic stationary
distribution of the positive solutions to the model. In [145], the authors studied the effect
of environmental fluctuations on a predator-prey model with stage structure for predator

population and ratio dependent functional response.

As a matter of fact, the random fluctuations result in changing some degree of
parameters in the deterministic environment [86, 145]. Motivation to what have been
mentioned above, it is interesting and important to study, in this chapter, the impact of
stochastic perturbations on the dynamics of three-species predator-prey Model (5.2). As-
suming that the intrinsic growth rate of preys and the death rate of predator are subject to

environmental noise. Suppose that rj, r, and — 9 are stochastically perturbed with

r —>I’1—|—61W1 r2—>1’2+62W2 -0 — —5+G3W3,

where 0'12, 622 and 0'32 abide the intensities of the white noise, W;, W», and W5 denote the
independent standard Brownian motions. Thus, the stochastic version of a predator-prey

Model (5.2) can be written in the form

x(t — ’Cl)
ki
y(it—1n)
ko

dx(t) = [rx(t)(1 — ) —oux(t)z(t) + Bx(2)y(t)z(t)]dt + o1x(¢)dWy (¢)

dx(t) = [ray(t)(1 - ) — ay(1)z(r) + Bx(t)y(1)z(r)]dt + o2y (1) dWia(r) (5-3)

dz(t) = [~ 82(t) — a32* + arx(t — 13)z(t) 4+ azy(t — 13)z(t)]dt + 632 (t)dW; (¢).

Here,

X<K) = (PI(K)v y(K) = ¢2(K)7 Z(K) = (])3(1('), K€ [_170]7 T= maX{ThTZ’T?a}v (54)

¢:(0) > 0 and ¢;(x), (i = 1,2,3), are nonnegative continuous initial functions on [—7,0].

Le. (x07y07Z0) = (¢la¢2a¢3)T < %([—T,O],Ri) with Ri— = {(x,y,z) eRY:x> 0,y >
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0,z > 0}, if (x,y,z) € R?, its norm is denoted by |(x,y,z)| = \/x2 +y2 +z2.

Studying the existence of an ergodic stationary distribution of the stochastic de-
lay differential equations (SDDESs) (5.3) for the three-species predator-prey system is an
interesting problem. In the current study, a suitable stochastic Lyapunov function and a

bounded domain of R = {x = (x1,x2,%3) € R®,x; > 0,i = 1,2,3} are established.

5.2 Existence and Uniqueness of Positive Solution

In order to prove that the SDDEs (5.3) has a unique global solution (i.e. no explo-
sion in a finite-time) for any given initial condition, the coefficients of the System (5.3)
are generally required to satisfy the linear growth condition and local Lipschitz condition

[23, 92].

Theorem 5.2.1. If the coefficients of System (5.3) are locally Lipschitz continuous, then
for any given initial condition (5.4) there is a unique positive solution (x(t),y(t),z(t))
of System (5.3) on t > —7, and the solution will remain in Ri with probability one, if

Bx < o, By < a.

Proof. Since all the coefficients of System (5.3) are Lipschitz continuous, therefore, there
is a unique local solution (x(¢),y(¢),z(¢)) on [—7,7.), where 7, is an explosion time. To
show this solution is global, one may need to show 7, = o a.s. (almost surely). Let
lp > 0 be sufficiently large so that (x(¢),y(¢),z(t)) = {(1(1),92(¢),93(z)) : —t <1 <0} €
% ([-7,0;R3) all lie within the interval [%,lo]. Now for each integer [ > [y, define
the stopping time 7; = inf{r € [—-7,7,) : x(t) ¢ (%,l),y(r) ¢ (%,l)}, let infg = oo. 7; is
increasing with / and let 7., = llgg 7;, then 7. < 7, and by showing 7., = o a.s., the aim

is to conclude that 7, = oo a.s. If this assertion is erroneous, then there exists a pair of

constants 7 > 0 and € € (0,1) such that P{7. < T} > €. Therefore, there is an integer
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[1 > Iy such that

P{y, <T}>e, forall [>1. (5.5)

Define a ¢2-function V (x,,z) : R3. — R by V(x,3,z) = Vi + V2 + V5. Where, V| = (x —
logx— 1)+t U x(t—11)ds, Vo = (y—logy—1) +2 "2y (t — 1y)ds and V3 = do(z—
logz— 1)+ % ["7%(a1x%(t — T3) + azy*(r — 13))ds, such that dy = ATRA - Clearly,

this function is non-negative for all x,y,z > 0. Let /[ > [y and T > O be arbitrary. For

0<t <1 AT,bylto’s formula for V, one gets

dV (x,y,z) = LV (x,y,2) +01(x— 1)dW,(t) + 02(y — 1)dWa(t) +doos(z— 1)dWs(1).

2
.
LV = rix— (e —11) Faz(By — ) i+ oz~ By + xt

K, K2 56
of
(r1+K1) it
2
LVy = ryy— 2yy(t — 1) +yz(Bx— az)—rz—i-oczz—ﬁzx—i——y-i——
K K 2
5.7
o5
(r2+K2)y—r2+7.
LV3 = —dybz— d006322 +dpa1x(t — 73)z+doazy(t — 13)z+ doz+ dp03z
doa doa doa
—doalx(t—‘L'3)—d0a2y(t—1'3)+ 0 1x2+ 02,2 2071 2(1‘—1’)
2 2 2
p g2 (5.8)
_Goaz o 093
— Vt-n)+—
doa doa dyc?
< (dooz —do)z+ (a1 +az — a3)doz” +doS + 021)62+ 022)’2 023
LV =LVi+LVo+ LVs
Ki+1 doay , K> +1 doay ,
< e
_d06 r r2+r1( K )X+ ) X r2( X )y+ 2 y
i 07  doog

(03
+d0(a3—5)z+do(a1+a2—a3)zz+7+ 5 >
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K +1 doa K+1 doa
LV < sup {rl( ! )x+ 0 lxz}-i- sup {rz( 2 v+ 0 2y2}
X€R+ Kl 2 y€R+ K2 2

+ sup {do(oc3 —0)z+do(ar +ax— OC3)Z2} +dyo
Z€R+

2 2 2
o —ry 22 08
r r2+2—|—2—i— 5 =K

where K is a positive constant. It follows that Z’V is bounded. Hence,
dV < Kdt + o (x — l)dWl (t) + 62()/ — 1)dW2(Z‘) + d()G3(Z — 1)dW3 (l‘) 5.9

Integrating (5.9) from 0 to 7; AT = min{7;, T} and then taking the expectation on both

sides, one may have
E[V (x(t AT), (5 AT),2(5 AT))] < E[V (x(0),5(0),2(0))] + KT. (5.10)

Let Q; = {1, < T}, for [ > [} and in view of (5.5), one obtains P(Q;) > €. Such that, for
every @ € €, there is at least one of x(7;, @) ,y(7;,®), or z(7;, ®) equaling either to [ or

% and then, one obtains

V(g AT) y(a AT), 2 AT)) > (I— 1 —Inl) A (% 1 —m%). 5.11)

According to (5.10), one gets

E[V(x(0),5(0),2(0)] +KT = E[lg, @)V (x(7, ®),5(7, ®),2(7, ®))] 512

1 1
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where 1¢, is the indicator function of Q;. Letting [ — oo yields
0o > E[V(x(0),7(0),2(0))] + KT = oo, (5.13)

which leads to the contradiction, so it is a must to have 7., = o a.s.
5.3 Existence of Ergodic Stationary Distribution

In this section, a suitable stochastic Lyapunov function is constructed to study
existence of a unique ergodic stationary distribution of the positive solutions to System
(5.3). First, assume x(¢) is a regular time-homogenous Markov process in R, illustrated

by the SDDEs

dx(t) =£(¢,x(¢),x(t — 7))dt + Zd: g (t,x(1))dW,(t). (5.14)

r=1

The diffusion matrix of the process x(t) is
d . .
Ax) = (Aij(x)),  Aij(x) = ) g (x)gl(x).
r=1

Lemma 5.3.1. [52]. The Markov process X(t) has a unique ergodic stationary distribu-

tion 7t(.) if there exist a bounded domain % C RY with regular boundary T and
(i): there is a positive number .# such that sz,jzl Xij(x)&E; > M NEPP x e U & e R4

(ii): there exists a nonnegative €>-function V such that £V is negative for any R4\ % .

A threshold parameter .7 of SDDEs (5.3) is defined as follows

rip1+r
T — 121Pl 0222P2 . (5.15)

(1% +02F +p35)
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where p; = (klkj_l), P2 = (kzkj_l), and p3 = max{ry,r}.

2 2
Theorem 5.3.2. If r| > 671, ry > %2 and J} > 1, then for any initial conditions (5.4),
the system of SDDEs (5.3) admits a stationary distribution 7t(.), and the solution of the

system is ergodic.

Proof. In order to prove Theorem 5.3.2, it is enough to validate conditions (i) and (i) of

Lemma 5.3.1. To prove condition (i); the diffusion matrix of System (5.3) is given by

ot 0 0
A(x,y,z) = 0 (722)72 0
0 0 o3

Let % be any bounded domain in R, then there exists a positive constant

: 2.2 2.2 2.2
‘%0: min _ {Glx ;027,032 }7
(XQ@Z)E%O-

such that

3
Y Aij(x,3,2)8) = 07T + 05287 + 057°85 > M|&I,
ij=1

for any (x,y,2) € %s,& = (£1,&2,&3) € R3.. Thus, condition (i) of Lemma 5.3.1 is satis-

fied. Then one needs to prove condition (ii) of Lemma 5.3.1. By System (5.3),

+1T) 2
Z(pi[lx—1—Inx]+ %/ x(s—11)ds) < pirix—rip1 + wx—kplﬁ,
Kl t K1 2 (5 16)
7 t+1T 7 62 ’
ZL(p2ly—1—Iny|+ &/ V(s —m2)ds) < paray —rap2 + EerPz—z,
Ky Ji K> 2

2
O
Z(—p3Inz) < P38+ p305z+p3— - (5.17)
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Then, assume V : Ri — R as follows

piry [0
Vi(x,y,z2) =p1(x—1—Inx)+pa(y — 1 —Iny) — p3lnz+—/ x(t —11)ds
t

ki
417
+ P]i_;’z /t y(t —1)ds,

thus, according to (5.16) and (5.17), one gets

02 02 o2
3

LV < —rip1 —np2+ (Pl —+ Pz +p3 S )+ rix+ry+ azpsz,

(5.18)

= —U+rix+ry+ o3psz.

o? o2 o2 .
Here, u = rip1 +rp2 — (P15 +p25 +p35) > 0, since ;' > 1.

Now, a ©2-function V : Ri — R is defined as follows

~ r 1+7 )
V(X,y,z) :Qvl(xayaz)—i_ +x y+z+ — / y (S—Tz)ds
ki (5.19)

1+13 > 9
+ / (ar®(s —13) + a2y (s — 1)) ds,
t

where 0 < 0 < 1, is sufficiently small constant satisfying (¢ — 6 > 9+1

037), where ¢ =
inf(, ) cp2 {a1x(t —13) + ary(t — 13)}, and 2 = %maX{Z, SUP (1 3 )eR3 {—0z%p-6—
O4162) + 0307 0 + Lx— 2y~ Szt (a1 — o) + ( + +ax)y* + (g +ay +a; —
oy — a3)z* }}. Note that V(x,y,z) is not only continuous, but also tends to o as (x,y,z)
approaches the boundary of R3 and as ||(x,y,z)| — o, where ||.|| denotes the Euclidean

norm of a point in Ri. Therefore, it must be a lower bounded and achieve this lower

bound at a point (xo, yo,z0) in the interior of Ri.
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Define a 42-function V : R3 — R U {0} of the form

V()C,y,Z) = V(X,y,z) _V(x()uy()az())

14173

Vi (x,y,2) +z° +x—y+z+/ (a1x*(s — 13) + azy* (s — 13))ds
t

(5.20)

r

K

o -
| = wds=Vny0.20)

= 9Vi(x,y,2) + Va(z) + V3(x,y,2).

Such that V5(z) =779, V3(x,y,2) =x—y+2z+ Ir(—ll TR (s—1)ds+ [P (@ (s —13) +

ary*(s — 13))ds — V (x0,0,20). By Ité formula to V5(z), one obtains

4 0(60+1 _
LV =—07 97 (= 8z— P +aix(t — 1)z +axy(t — 1)z) + %6321 °
0(0+1
<00 (9 8y ) + 20 g2 62D
0+1
<-0z%p-6- ki o3) + o360z .
2 n 2
LV3 <rix—ry—08z+ (a1 —a)x"+ (f +o+as)y
2 (5.22)
+(m+a;+ay—oy — OC3)Z2.
Thus, in view of (5.18), (5.21) and (5.22), one gets
—0 6+1 2 1-6
LV (x,y,2) < 2(—u~+rix+rny+apsz) — 0z ((p — 06— 63) + 030z
+rix—ry—8z+ (a1 —061)X2+(%+062+a2)y2 (5.23)
2

+ (062 +a;+a;— 01— 063)22.

To create a compact subset % such that condition (ii) of Lemma 5.3.1 holds. Define a

bounded closed set as follows

,e<y< (5.24)

o | =
M| =
oM
[\
IN]
VAN
M| =
W—/

U = {(x,y,z) eRi:egxg
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where 0 < € < 1 is a sufficiently small constant. In the set ]R?F \ %e, one can choose €

sufficiently small such that the following conditions hold

e< { 1 o _%
min
22’ 2205303
6 U
<
€ mm{ZQ 20@063[)3 41‘2}’
u
<
€ mln{ZQ 43063[)3}
6"
—— —1
28Jr ’
)
——+.7<-1
28+ -
0
——+.F < -1
28Jr -
where

F = sup {Q(r1x+r2y+p3a3z)—9z_9((p
(xy2)€RY
3N 2y O - o)+ (2 ot an)y?
—X—=y— = a X a
3 2)’ 2Z 1— 0 X 2 2)y

+(w+a+ay—oy — OC3)Z2}.

One can divide Ri \ % into six subdomains:

U ={(x,y2) eR} :x< e}, %> ={(x,y,z) eR} :y < e},

U ={(x,y,2) eR :z< e}, U’ =

{(x,y,2) e R} x> ¢},

%85 = {(x,y,z) € Ri— Yy 2> %}’ %86 =

UEUUS OUS U UL . Next, one may show that £V (x,y,7) <

Ri \ %¢, which is equivalent to proving it on the above six domains:

0+1

632) + 063921_9

{(x,32) €RY :z> 11 Clearly, R\ %

(5.25a)

(5.25b)

(5.25¢)

(5.25d)

(5.25¢)

(5.251)

(5.26)

=% U

—1 for any (x,y,z) €
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Case L. For any (x,y,z) € %, noting that x < x(1 +y+z) < &(1+y+z), one gets

2 2 r r 19)
< —— _ S — = —_—
LV (x,y,2) 2 u+ [ 1 ,U—i-,@rle} 2x—|— [Zre > Iy+ [Lospse 2]2
e@ -0 6+1 2 1—-0 31’1 1’2 5
+[—?,u—9z (p—6— 5 03) + 036z + xSy o7

I
+ (a1 — (xl)xz + (?2 + o +a2)y2 + (062 +ay+ay— o — (X3)Zz}
2

Q r 1) 5
< _= _= _ _z _Z
SRt [ 1 /,H—ers} 2x+[o@r28 2]y+[c@oc3p38 2]z
2 _ 0+1 _ 3r
+[——u+ sup {—Qz 9(([)—3— 0'32)+0630z1 0421y
2 (x 3 2 2
,y,z)€R+
—Qy—ﬁz-l-(al —061)X2+(2+(X2+a2)y2
2772 K
+(p+ar+ay—oy —O@)zz}].
Since 2 = %max{Z,sup(x_‘w)GIR@+ {- 670 (p—6— %G%) + 0307179 + %x— Dy —

52+ (a1 — o)X+ (,% +op+ar)y*+ (o +ay+ay— oy — OC3)Z2}}, one obtains %u > 1.

Therefore, from (5.25a), one gets

2 2
fV(x,y,z) < _Zu - Ex < _Z.u <-1

Consequently, LV (x, V,Z) < —1 for any (x, V,Z) S %1.

Case IL. For any (x,y,z) € %2, since y < y(14+x+z) < &(1 +x+2), one gets

2 2 r r 5
EV(x,y) < —Z,LL—F [— ZN +Qr28} — Ey+ [ere — E]X—F [Q(X3p3£— E]Z

2 _ 0+1 _
—1—[—?“—1— sup {—Bz 9(q)—5— > 632)-1-063911 0
(x.,2)ERY.

(5.28)
+3r1 r2, & + (a1 — )P+ (2 + 0+ )y
2x 2y 2z ay 1)x X 21T d2)Y

+ (062+a1 +ay)— o — 063)22}]



114

It follows from (5.25b) that

D%V(x,y,z) < —%H - %y < —§H <—1. For any (X,y,z) € %82' (529)

Case III. For any (x,y,z) € %2, such that z < z(1 +x+y) < &(1+x+y), one obtains

2 2 o r
LV (x,y,2) < —g Mt [— Z,U—FQO@pj;S] — 5t [2rie— E]X

2
+ [Qrzs—%]y—i— [— 7[44— sup { —GZ*G((p—S—
(xy,2)€RY

(5.30)

3r r )
M2y S @

aelfe
+ 030z +2 > 5

+ (Otz—f—al +ay — 01 — OC3)Z2}]

In view of (5.25c¢), one gets

Therefore, £V (x,y,z) < —1 for any (x,y,z) € %,’.

Case IV. For any (x,y,z) € %}, one may have

LV(xy2) S —Jx+ F S L+ F < -1, (5.32)

which follows from (5.25d). Thus, £V (x,y,z) < —1 for any (x,y,z) € %

Case V. For any (x,y,z) € %, one obtains

LT <1 (5.33)
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which follows from (5.25e). Thus, £V (x,y,z) < —1 for any (x,y,z) € %.

Case VL. For any (x,y,z) € %_5, one may have

1) o
fV(x,y,Z)S—EZ—i—fS—%—h?S—I, (5.34)
which follows from (5.25f). Thus, £V (x,y,z) < —1 for any (x,y,z) € %_9.

Hence, from (5.27)-(5.34), one can obtain that for a sufficiently small €,
LV (x,y,2) <=1 forany (x,y,2) € RI\ Z.

By Lemma 5.3.1, the solution of System (5.3) is ergodic and has a unique stationary

distribution 7(.).
5.4 Extinction

In this section, some sufficient conditions for the extinction of predator popula-
tions are investigated, that is, when the prey populations survival and the predator popu-
lation goes to extinct. It has been shown that a strong intensity of noise can be a cause for

extinction of the prey species, which will also drive predator population to extinct.
Theorem 5.4.1. Let (x(t),y(t),z(t)) be the solution the SDDEs (5.3) with initial condi-

tions (5.4).

2 2
(a) Ifr; > %‘, ry > 672 and Jy < 1 then the predator population will die out that is to

say

ltlgnz(t) =0 a.s. (5.35)
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(b) If r <% and r < 2 , then the prey and predator populations will die out, such

that

limx(r) =0 a.s., }l)r?oy(t) =0 a.s., }E?oz(t) =0 a.s. (5.36)

t—eo

Proof. Using of Ito’s formula to the first equation of System (5.3), yields

r t+11 2 r
d(Ina(r) — 7+ /t T 5= 1)ds) = ((r — A)- (o
—z(1)[on — By(1)])dt + o1dW (¢). (5.37)
2
<((r— %) - 1r<_1x( ))dt + 61dW (7).

Integrating of inequality (5.37) from O to ¢ results in

ln)c(t)—[r<—11 Thx(s—1)ds Inx(0 )— & fo x(s—11)ds ol n AG
: - t < (=)~ st} + 20
Thus,
K 62
(x(1)) < (=) +6i0),  where, (5.38)
1
G = KifoWi(t) Inx(z) — 12—'1 T x(s —11)ds N Inx(0) — r' o x(s — T1)ds |

r t t t

=0 a.s. Note that

Wi (t)
t

It follows from [81] that tlim
—>00

1417 . d 1 t 1 t -7

J; T x(s—1) S:_/ x(s)ds:—[/ x(s)ds—/ lx(s)ds]
t t —7 0 0

1 x(s—11)ds

Therefore, hm / ;
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T —
1x(s—11)ds — Lim

= 0. Thus, one obtains
1 t—oo

2. 91(t)dr
1

Moreover, lim /
t—o J(

limf =0 a.s. (5.39)

t—o0

By Ito’s formula, one gets

t+7 2
d(Iny(t) — 2/ “x(s—0)ds) < ((r—2) — 2y(1))di + 02dWa(t).  (5:40)
K> Ji 2 K>
Similarly, it follows
K> 022
00) < 2= )+ G0, where (5.41)

(1)

Y

K [Gsz(t) CIny() = 2 7T y(s— n)ds N Iny(0) — 2 Jo*¥(s — 2)ds

m t t t

Therefore, in the same manner, one can obtain, lim; ... {, = 0 a.s. Let
t+1T3
V =Inz(r)+ / [a1x(s — 13) + azy(s — 13)]ds, (5.42)
t
utilizing Ito formula, one obtains
1

dV =[-8 —onz(t) +ayx(t) +axy(t) — 5632]dt + 03dWj(1). (5.43)

Therefore, one may have

Sal(X(f)>+az<y(f)>—[5+—032]+07W3(f)7 (5.44)
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So, from (5.38) and (5.41), one gets

2 2
Inz(z) < a1 K (r— ﬁ) a2K2<r2_ &) _ (5+1032)+C1 )+ &)+ &(1), (5.45)
t r 2 rn 2 2

such that, one may have

 Inz(0) + [P[a1x(s — T3) +azy(s — 73)]ds

G(t) = .
(5.46)
f:”3 [a1x(s — 13) + axy(s — 13)]ds N o3Ws(t) .

t t

In view of the strong law of large numbers of Brownian motion, one can easily obtain

lim §3(1) =0 a.s. Therefore, by taking the superior limit on both sides of (5.45), one

t—ro0

may have
Inz(t K o} K o} 1
lim sup nz(t) <4 Lir — —1)+a2 2(rp— —2) — (8 +~07), (5.47)
f—soo 1 r 2 r 2 2

2 2
To prove (a), having the conditions r; > %‘, rp > %2 and 7 < 1, yields

Inz(z K K 1
lim sup nz() §a1K1+a2K2—min{u,@—z,—}(612+622+633)—5 <0. (5.48)
f—soo I 2r; 2ry "2

It implies that tlim z(t) =0a.s.
—>00

To prove (b), applying It6’s formula to the first equation of System (5.3), yields

d(Inx()) < ((rn = =) —2(0)[on = By (1)) )dr + 01aWi (1),
(5.49)

<(r - %)dt+61dW1 (1).
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Integrating (5.49) from O to ¢, one obtains

2
Inx(r) nx(0) _ oty aWi) (5.50)

t t 2 t

2
=0, a.s., and since r] < %, therefore, by taking the superior limit

Wi(z)
¢

Noting that lim
f—ro0

of both sides of (5.50), one obtains

lim sup
f—>o0

1 2
n’;(t) Srl—%<0, (5.51)

which implies tlim x(t) =0a.s.
—so0

Iny(r) _ )

.. . o .
Similarly, one can show that lim sup <r— 72 < 0, results in lim; 0 y(¢) =

t—roo

0 a.s. That is to say both preys x(z) and y(¢) will die out with probability one. From (5.47),

2 2
and considering r| < % and r, < %; one can obtain that lim z(¢) =0 a.s.
{—o0

Lemma 5.4.2. In the absence of time-delays i.e. T1 =T =13=0. If x :=ay [, x7w(x)dx+
oo o7 o} os .

ay o yrn(y)dy —6 — 5 <0, r; > 5+ and r; > 5, then the solution (x(t),y(t),z(t)) of

System (5.3) with any initial value (x(0),y(0),z(0)) € RS satisfies th_)m z2(t)=0 a.s, such

that the distributions of x(t) and y(t) converge weakly a.s., to the measures which have

the following densities respectively

2 = 2%1 - 2r12x
n(x)=Gio;*x  STe Mo x € (0,0);
2r2 2r2 (5.52)
- - - Yy
n(y) =G0y %y Fe %%y e (0,00),
21(622%_1 2 2K0'22L%_1 2
where Gy = 072(58) "2~ and G = fo (55 T2 - ) are

1 2

constants such that [;" w(x)dx =1 and [;" w(y)dy = 1.

Proof. Since the solution of System (5.3) is positive for any initial value (x(0),y(0),z(0)) €
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Ri, SO one gets

x(1)
K
< (rx(t)(1— ’%’l)))m + oux()dWi ().

dx(t) = (rx(r)(1 = ==) —x(1)z(t) (a1 — By(t)])dt + o1x(t)dWi (1)

(5.53)

Consider the following supplementary logistic equation with random perturbation

dX (1) = [nX(1)(1 - %)]dr + o X (1AW (1), (5.54)

with initial values X (0) = x(0) > 0.

Let g1 (x) = rix(r) (1= %), vi (x) = G1x(r). x € (0,20), such that

g1(s) / r r r r
— — — ——)ds=—=1Ins— s+ Gy.
/ v2(s) <612s Klolz) o2 Ko2 !

n

e

N
2
Klol X

fgl(f)

"
5= %
Therefore, ¢ ‘10 = ¢C15°i

One can verify that

2r1

1 x 281 () 2rq 2rq

oo K 62 oo
W) e 17l 9 2 T .2
/ — € i) dx = 3 / x 2x% e Ki°i dx < oo, (5.55)
0o vi(x) o Jo

From (5.55), one can say that System (5.54) has the ergodic property and the invariant
2r1 2r1 X
density is w(x) = G1o| 2x ~ ote f1o1 x € (0,00). Therefore, from ergodic Theorem it

follows that

t

lim1 x(s)ds = /Oooxn'(x)dx a.s. (5.56)

t—o t Jo

Let X (¢) be the solution of SDE (5.54) with the initial value X (0) = x(0) > 0. Therefore,
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one obtains

x(t) <X(t), vt>0 as. (5.57)

For the second prey y(¢), one can obtain

av(6) = (rav()(1 = 22) —y(0)2(0) s — o)) + 2y(e)awa()
2 (5.58)
< (l’zy(t)(l — )%tz)))dt + ooy (t)dWh(t).
Assume the following logistic equation with noise
dy (1) = [ra¥ (1)(1 - K%)]dt + oY ()dWi (1), (5.59)

with initial value Y (0) = y(0) > 0. Setting g>(y) = ray(t) (1 — y(—”)? va(y) = ooy(t), y €

K>
2(s rn r r rn
(0,00), one gets/gz( ) :/(—2— 2)a’s: — Ins— 55+ Ga.
fg%(s) 5~
Thus, e 2 = ¢%25% ¢ %29 Hence, one may have

2r2
) 2, 2 2 2
[ D P
2
0 Vi

e dy ="~ / Yy 2y e K29 dy < oo, (5.60)
) Gy, Jo

According to (5.60), one can conclude that System (5.59) has the ergodic property and the
2r2 2}“2

y
invariant density is 7(y) = G20, %y % ¢ %29 y € (0,00). Therefore, it follows that

t

lim1 y(s)ds = /Oooyn(y)dy a.s. (5.61)

t—oo t Jo

Let Y (¢) be the solution of SDE (5.59) with the initial value ¥ (0) = Y (0) > 0, then one
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obtains

y@)<Y(), Vt>0 a.s. (5.62)

By It6 formula to the third equation of System (5.3), one can derive that

2

Lo
d(Inz(t)) = (= & — aaz(t) + arx(t) + azy(t) — %)dt + 03dWs(1), (5.63)
Integrating both sides of (5.63) from O to ¢, yields
o2 t t
Inz(r) —Inz(0) = (—6 — 73)t—l—a1/ x(s)ds+a2/ y(s)ds
0 0
t
— 03 /0 z(s)ds + o3Ws(t)

5 . (5.64)

<(-3-Zy+ar [
2 0

t

x(s)ds+a2/0 y(s)ds+ o3Ws(1)

2 t t
g(—5—%)t+a1/ X(s)ds+a2/ Y (s)ds + o3Ws(1),
0 0

where in the last Inequality (5.57) and (5.62) have been used. Take the limit superior on

both sides of (5.64), together with (5.56) and (5.61), since lim;_,c W3T(t) =0 a.s, one gets

Inz(t ; > >
lim sup HZTO <—-6— %%—m/ xn’(x)dx~|—a2/ ya(y)dy:=x <0 a.s. (5.65)
0 0

t—roo

Therefore, limz(t) =0 a.s.
f—o0

5.5 Numerical Simulations

In this Section, some numerical simulations to validate the obtained theoretical re-
sults are provided. Milstein’s higher order scheme with a strong order of convergence one,

discussed in [56, 71], to solve SDDEs (5.3) is provided. The corresponding discretization
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Figure 5.1: Numerical simulations of deterministic DDEs (5.2) (left) and SDDEs (5.3) (right),
when 71 = 1.25, 7, = 0.6 and 73 = 0.5; with noise intensities o7 = 0.08, o5 = 0.1, o7 = 0.06.
With parameter values: r; = 0.2, r», =0.6, K; = 0.7, K, = 0.8, oy = 0.3, ap, = 0.6, a3 = 0.8,
B=0.1,06=08,a =1, a=14. For J > I, the stochastic model has a unique ergodic
stationary distribution 7(.) of System (5.3)
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8 ]
0 %15 ]
0 I I I I I I I I I Mp I I I I I I I I I ]
0 10 2 K} L} 5 60 0 80 9 100 0 10 2 Kl L] 50 60 0 80 90 100
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Figure 5.2: Numerical simulations of the solutions for System (5.3) (right) and the corresponding
undisturbed System (5.2) (left), with 7; = 1.25, 7, = 0.6 and 73 = 0.5, one can clearly see that the
predator goes to extinct; under the noise intensities 612 = 0.03, 622 = 0.02 and 632 = 1.4. When
Ty <1

system is then

2
Xpn— (03
Xpt1 = Xp + hxn[rl (1 - nklml ) — 0 Zn + Bynzn] + Glxnéhn\/z—’_ Tlxn[élz,n - l]h
2
_ O.
2

O
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Figure 5.3: Numerical simulations of the solutions for System (5.3) (right) and the corresponding
undisturbed System (5.2) (left), with 7 = 1.25, 7, = 0.6 and 73 = 0.5, one can clearly see that all
the species go to extinct . Under the noise intensities 0'12 =1.2, 622 = 1.2 and 632 = 0.5. When

of o3 s
r<-,rn<-and 75 <1

>
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Figure 5.4: Numerical simulations of the solutions for System (5.3) (right) and the corresponding
undisturbed System (5.2) (left), with 7; = 10, 7o = 0.1 and 73 = 0.1; under the noise intensities
02 =0.2, 07 =0.2 and ()'32 = 0.2. Clearly, the number of large oscillations in prey and predator
species (right) is more or less the same in comparison to its undisturbed counterpart

Here, & ,, &3, and &, , are mutually independent N (0, 1) random variables, my,my,ms3 are
integers such that the time-delays can be expressed in terms of the step-size as T; = m1h,

Ty = moh and T3 = m3h.

Example 5.5.1. Given 67 = 0.08, 67 = 0.1, 05 = 0.06, 7 = 1.25, 7, = 0.6, 73 =
0.5 and parameter values: r; = 0.2, r, = 0.6, K; =0.7, K, = 0.8, o =0.3, op =
0.6, 3 =0.8, B =0.1, § =0.8, a; = 1, ap = 1.4. Direct calculation leads to .75 =

2 2
NPLETPY 591, (1 =02>004=2)and (r, = 0.6 > 0.05 = Z).
PG+ F+p:3) 2 2
2 2 2
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Figure 5.5: The effect of white noise to prevent the explosion of the population, when = 0.5.
The explosion may occur when the cooperation parameter 3 is large, with the same parameter
values of Figure 5.1, there is an explosion of population with deterministic model (left); While the
noise prevent such explosion of the population (right)

Thus, the conditions of Theorem 5.3.2 hold. In view of Theorem 5.3.2, Figure 5.1 shows
that there is a unique ergodic stationary distribution 7(.) of System (5.3).

Example 5.5.2. Choosing 67 = 0.03, 05 =0.02, 67 = 1.4, 1) = 1.25,7, = 0.6, 73 = 0.5
and parameter values: r; =0.4,r, =0.5,K; =0.5,K, =0.6, o =0.3, a = 0.6,  =0.1,
0=04,03=1.8,a; =1, ap = 1.4. By a simple calculation, (r; =0.4 > 0.015 = %12),
(r,=0.5>0.01 = %22), and .7;' = 0.89 < 1. In view of Theorem 5.4.1 (a), extinction of
predator can occur. The predator populations dies out exponentially with probability one;
See Figure 5.2.

Example 5.5.3. With 62 = 1.2, 67 =1.2, 67 =0.5, 7y = 1.25, , = 0.6, 73 = 0.5 and
parameter values: r; = 0.4, r, =0.5, K; = 0.5, K, = 0.6, 1 = 0.3, op = 0.6, § = 0.1,

2
9
2 ’

0=04, 05 =1.8, a; =1, ap = 1.4. By a simple calculation, r; = 0.4 < 0.6 =
mn=05<0.6= %22, and .7 = 0.394 < 1. In view of Theorem 5.4.1 (b), one can see
that the preys x(z), y(z) and the predator z(¢) populations all die out exponentially with
probability one; see Figure 5.3 which shows that a strong intensity of noise can be a cause

for extinction of the prey species that will then teed to predator population to extinct.

Example 5.5.4. Figure 5.4 shows the periodicity of the solutions of deterministic and
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stochastic models when 7 = 10, 7, = 0.1, 73 = 0.1, 67 = 0.2, 07 = 0.2, 05 = 0.2, and
other parameter values r; =2, =2, K; =0.6, K, =0.6, a; = 1.3, p = 1.5, 6 = 0.8,
o3=1.6,a1=1,a,=14.
The author arrives at the following Remarks.

Remark 5.5.1. As .7 > 1, the stationary distribution indicates that all the species can be
exist in a long period of time, provided that the intensities of white noise are adequately
small. On the other hand, when 905 < 1, the tendency for extinction increases, which
never happens in the undisturbed system, without intensity of environmental perturba-
tions; See Figures 5.2 and 5.3.

Remark 5.5.2. Environmental Brownian noise suppresses the explosion of the population
(see Figure 5.5). Combination of time-delays and white noise enriches the dynamics of
the model and increases the complexity of the system, which rationally meets with the

reality.

5.6 Concluding Remarks

In this chapter, a stochastic delay differential model for the dynamics of two-preys
one-predator system, with cooperation among the prey species against predator was pro-
posed. By constructing a suitable stochastic Lyapunov function, sufficient conditions for
the existence and uniqueness of an ergodic stationary distribution of the positive solutions
to the model have been established. Sufficient conditions for extinction of the predator
population in two cases have been deduced, that is, the first case is the prey populations
survival and the predator population extinction; the second case is all the preys and preda-
tor populations extinction. A threshold parameter .7’ was also established. The solutions
of SDDEs (5.3) fluctuate in the vicinity of the positive equilibrium of the corresponding
undisturbed system when 705 > 1, which can be considered as weak stability. Whereas,

the predator dies out if ﬂos < 1. It has been seen, from the numerical simulations, that
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random noises can suppress the explosion of the species, where the solutions of the undis-
turbed system is unbounded. The combination time-delays and white noise have a great
impact on the dynamics, complexity and permanence of prey and predator populations.
Existence of the ergodic stationary distribution of the positive solutions to the proposed
model is a very important issue for the population system and affects the survival of the

species in the environment.

In the next chapter, the author introduces a stochastic SIRC epidemic model for
COVID-19. In which the impact of stochastic perturbation factors in the model are inves-

tigated.
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Chapter 6: Stochastic SIRC Epidemic Model with Time-Delay for
COVID-19

6.1 Introduction

Environmental factors, such as humidity, precipitation, and temperature, have sig-
nificant impacts on the spread of the new strain coronavirus COVID-19 to humans. In this
chapter, a stochastic epidemic SIRC model, with cross-immune class and time-delay in
transmission terms, for the spread of COVID-19 is used. The model is analyzed in which
the existence and uniqueness of positive global solution are proved. The basic reproduc-
tion number %, for the stochastic model which is smaller than % of the corresponding
deterministic model is deduced. Sufficient conditions that guarantee the existence of a
unique ergodic stationary distribution, using the stochastic Lyapunov function, and con-
ditions for the extinction of the disease are obtained. A stochastic SIRC model with time
delay is provided in Section 2. Section 3 studies the existence and uniqueness of global
positive solution for stochastic delayed SIRC model. In Sections 4 and 3, a stationary dis-
tribution and extinction analysis of the underlying model are investigated. Some virtual
numerical examples are present, in Section 6. Finally, concluding remarks are given in

Section 7.

The ongoing pandemic Coronavirus Disease (COVID-19) becomes a worldwide
emergency. This infectious disease is spreading fast, endangering large number of people
health, and thus needs immediate actions and intensive studies to control the disease in
communities [41]. COVID-19 is the seventh member of the coronavirus (CoV) family,
such as MERS-CoV and SARS-CoV [48]. Although SARS-CoV was more deadly, it
was much less infectious than COVID-19. There have been no outbreaks of SARS any-
where in the world since 2003. The symptoms of COVID-19 infection include cough,
fever, tiredness, diarrhea, and shortness of breath. Mostly in severe cases, COVID-19
causes pneumonia and death [136]. The primary studies show that the incubation period

of COVID-19 is between 3—14 days or longer [137]. Additionally, the average of basic re-
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production number % for COVID-19 is about 2-2.8. The disease may still be infectious
in the latent infection period. Studies to date suggest that the virus is very serious and
spreads fast from person to person through close contact and respiratory droplets rather
than through the air [137]. Table 6.1 shows the incubation period of several common

infectious diseases.

Mathematical modeling of the infectious diseases has an important role in the
epidemiological aspect of disease control [29]. Several epidemic models, with various
characteristics, have been described and investigated in the literature. Most of these mod-
els are based on Susceptible-Infected-Removed (SIR) model. Casagrandi et al. [30]
introduced SIRC model to describe the dynamical behaviors of Influenza A, by insert-
ing a new compartment, namely Cross-Immuney (C) component! of people who have
been recovered after being infected by different strains of the same viral subtype in pre-
vious years. The component C describes an intermediate state between the susceptible
S and the recovered R one. Rihan et al. [115] investigated the qualitative behaviours
of fractional-order SIRC model for Salmonella bacterial infection. Recently in [68], the
authors provided a deterministic SEIR epidemic model of fractional-order to describe the
dynamics of COVID-19. In other descriptions, quarantine state (Q) may be include in the

presence of subjects, such as SIRQ models [55].

In fact, stochastic perturbation factors, such as precipitation, absolute humidity,
and temperature, have a significant impact on the infection force of all types of virus
diseases to humans. Taking this into consideration enables to present randomness into
deterministic biological models to expose the environmental variability effect, whether
it is a environmental fluctuations in parameters or random noise in the differential sys-
tems [77, 85, 96, 134, 145]. Moreover, stochastic models give an extra degree of freedom
and realism in comparison with their corresponding deterministic models. Stochastic
population dynamics perturbed by white noise (or Brownian motion) has been studied

extensively by many authors [7, 94, 95]. It has been investigated in [93] that a envi-

! Cross-immunity (or cross-reactivity) is a major evolutionary force that affects pathogen diversity (i.e.
it drives viruses and microbes to be as distinct as possible from one another in order to avoid immunity
detection, memory recognition and clearance).
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ronmental Brownian noise can suppress explosions in population dynamics. Yuan et al.
[142] discussed the results of stochastic viral infection, immune response dynamics and
analyzed the human immuno-deficiency virus infection. In [62], the author investigated
the existence results of ergodic distribution for stochastic hepatitis B virus model based
on Lyapunov function. In [63], the authors explore the dynamics of SIR epidemic model
with environmental fluctuations. Additionally, they calculated a threshold parameter to
demonstrate the persistence and extinction of the disease. Recently, Lakshmi er al. [78]
identified some environmental factors such as geographic location of the countries, the
upcoming climate, atmospheric temperature, humidity, sociobiological factors, etc., that

influence the global spread of the COVID-19.

Up-to date studies, it has been reported that there are many COVID-19 carriers
who are not suffering the disease. This may be due to cross-immunity of other virus
survivors, people who have been recovered from the virus, such as other stains of coro-
navirus, HIN1, or influenza A. It has been reported in [48] that "SARS-CoV-2 immunity
has some degree of cross-reactive coronavirus immunity in a fraction of the human popu-
lation, and this fraction of population has influence susceptibility to COVID-19 disease".
Accordingly, in the present chapter, an SIRC epidemic model of cross-immune class for
the dynamics of transmission COVID-19 among groups is investigated. Time-delay is
included in the transmission terms to represent the incubation period of the virus (the
time between infection and symptom onset). White noise type of perturbations is also
incorporated to reveal the effect of environmental fluctuations and variability in parame-
ters. Based on existing literatures, this is the first work dealing with the persistence and
extinction of a stochastic epidemic model for COVID-19 infection. The impact of small
and large values of white noise in the ’persistence’ and ’extinction’ of the disease are
investigated. The existence results of stationary distribution and extinction of the disease

are also derived, using a novel combination of stochastic Lyapunov functional.
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Table 6.1: Incubation period of several common infectious diseases

Disease Range Ref.
COVID-19 3-14 days [137]
Cholera 0.5-4.5 days [6]
Common cold 1-3 days [80]
Ebola 1-21 days [135]
HIV 2-3 weeks to months or longer [66]
Influenza 1-3 days [42]
MERS 2-14 days [1]
SARS 1-10 days [124]

6.2 Stochastic SIRC Epidemic Model

For the spread of COVID-19 disease in humans, the population is classified into
four categories: S(¢),1(t),R(t), and C(¢) are the proportion of susceptible, infected, recov-
ered and cross-immune ones at time ¢ respectively. Let N(z) = S(¢) +1(t) +R(t) + C(t) be
the total population. At this stage, SIRC model efficiently describes the mechanism for

the spreading of the COVID-19 virus. The classical SIRC model [30, 65] takes the form

$(t) =n(1-5(t)) = ES()I(t — 7) + BC(r),

I(t) = ESNI(t —7) + 0EC(I(t) — (N + a)I(t),
R(t) = (1-0)5C)I(t) + el (1) — (N +7)R(1),
C(t) = YR(t) = EC()I(t) — (n + B)C(1).

6.1)

A discrete time-delay 7 is incorporated into the SIRC model, to represent the incubation
period, which is about 3-14 days [137]. All the parameters appearing in the model are
nonnegative see Table 6.2. In the absence of cross-immunity i.e. (1 — o = 0), the SIRC
model curtails to the SIRS model, since the two individuals S and C become immunolog-

ically indistinguishable. Figure 6.1 shows the scheme of SIRC model.

Time-delay 7 > 0 is incorporated in the transmission terms to represent the incuba-
tion period of the viral infection, the time between infection and symptom onset. The cur-
rent studies show that the average/median of incubation period of early confirmed cases
of COVID-19 is about 5.5 days, which is similar to SARS-CoV. Presence of time-delay

in the model may cause periodic solutions many times for different time-delay values T
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Table 6.2: Description of the model parameters

Parameters Description

n Mortality rate in every compartment and is assumed

equal to the rate of newborn in the population [30]

Rate at which the cross-immune population becomes susceptible again
Contact/transmission rate

The average reinfection probability of a cross-immune individual
Recovery rate of the infected population

Rate at which the recovered population becomes the cross-immune
population and moves from total to partial immunity

R QI QU™

[109]. The Model (6.1) has a disease-free equilibrium &y = [1,0,0,0], and an endemic

Figure 6.1: Scheme of SIRC Model (6.1), assuming that the total population N = 1.

equilibrium &, = [S*,I*, R*,C*], where

g_nta Byol*
& (n+y)-(A-o)&r+m+B)n+7y)
R — al*(§I"+n+B)
(m+7y) - —o)Ner++B)(m+7)’
cF yol*

(m+y)—(1-0)err+Mm+B)(n+7v)’

and I* is a root of quadratic equation pI® + gl 4+ r = 0, where

p=né(m+a+oy),
g=néla@2n+y+B)+M+B)n+y)+(M+oy)(n-§)l,

r=nm+B)n+rn+a)—Zo).

Here %, =

is known as the basic reproduction number of the deterministic model.

In fact, there is increasing indication that superior consistency with some phenom-
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ena can be contributed if the effects of environmental noises in the system are taken into
account [113]. The epidemic Model (6.1) assumes that the observed dynamics are driven
exclusively by internal deterministic cases. Ignoring environmental variability in the mod-
eling may affect the dynamics of the model and transmission of the disease. Accordingly,
there is need to extend the deterministic systems described by differential equations into
Stochastic Differential Equations (SDEs), where related parameters are modeled as suit-

able stochastic processes, added to the driving system equations.

From the mathematical and biological point of view, there are some assumptions
to incorporate stochastic perturbations into the epidemiological model, such as Markov
chain process, parameter perturbations, white noise type, etc. Here, white noise type

perturbation is incorporated into Model (6.1), which is proportional to S, I, R, C classes,

so that
dS(t) =[n(1—=S(r)) = &S@)I(r — 7) + BC(r)]dr + viS(t)dWi (¢),
dI(t) =[ESW)(t — 1)+ 0EC()I(t) — (N + a)I(t)]dt + VoI (1)dWa(t), 62)
dR(1) =[(1-0)8C(1)I(t) + al(t) — (n + V)R(t)]dt + v3R(t)dWs(1), |
dC(t) =[YR(t) = EC(1)I(t) — (n + B)C(t)]dt + vaC(t)dWa(2),

where Wy (1), W (t), Ws(t), and Wy (¢) stand for the independent Brownian motions. vZ,v3, v3,
and vf represent the intensity of the environmental white noises, v; > 0 (i = 1,2,3,4),

subject to the following initial conditions

S(0)=9:1(6), 1(8)=¢(0),
R(0) =¢3(0), C(0)=04(0), 6¢c[-1,0] (6.3)

0i(0) %, i=1,2,34,

such that € is the family of Lebesgue integrable functions from [—7,0] into ]R{i.
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6.3 Existence and Uniqueness of the Positive Solution

To investigate the dynamical characteristics of SDDEs (6.2), the first considera-
tion is to verify System(6.2) has a unique global positive solution. As the coefficients of
System(6.2) satisfy the local Lipschitz condition together with the linear growth condition
[23]; Consequently, there exists a unique local solution. Now, one needs to prove that the

solution is positive and global, using Lyapunov analysis method [91].
Theorem 6.3.1. System (6.2) has a unique positive solution (S(t),1(t),R(t),C(t)) ont >
—1, and the solution will remain in Rﬁ for the given initial condition (6.3) with probability

one.

Proof. For any initial value (6.3), as the coefficients of System(6.2) satisfy the local
Lipschitz condition, so System(6.2) has a unique local solution (S(¢),1(¢),R(t),C(t)) on

t € [-1,7,), a.s., where 7, represents the explosion time [91].

The purpose is to show that this solution is global i.e. T, = o, a.s. Assume ng > 1
be sufficiently large such that S(0),1(6),R(60) and C(0) (6 € [—7,0]) are lying in the

interval [nlo,no] . For each n > ng,n € N, define the stopping time

Tn:inf{te[—T,’L’e):min{S(t),I(t),R(t),C(t)}<% or max{S(t),I(t),R(t),C(t)}zn},

fixing inf¢ = oo (¢ be the empty set). Apparently, 7, is increasing as n — co. Assume
Too = lim,, 0 Ty, then T., < T, a.s. Therefore, one needs to show that 7., = « a.s., then
T, = oo a.s. and (S(¢),1(¢),R(¢),C(t)) € R* as. for all t > —1. If it is erroneous, there is

a pair € € (0,1) and T > 0 such that P{7.. < T} > €. Then, there is an integer n; > n
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such that
P{t, <T}>¢,n>n. (6.4)

Define a ¢ function ¥ : ]Ri — R, as

InS
¥ (S,I,R,C) = (S— Kk — KnT)-I-(I—l—lnI)-l-(R—1—1nR)+(C—1—lnC)+

/ttﬂ- k&EI(s—T)ds,

where K > 0 is a constant to be determined. By Ito’s formula, one can obtain

dV =LVdt+ vi(S—K)dW,(t) + vo(I — 1)dWa(t) + v3(R— 1)dW5(t)

+ V4<C— 1)dW4(t),

where

2V =(1~ )0 S~ &SIt — 1)+ BC) + (1~ )(ESI(E — 1) + 6ECT — (1 + )

1 1
+(1 —E)(.):CI—G&CH— ol —mMR—1YR)+ (1— E)(}/R—éCl
KVi+V3+Vvi+Vvi

5 +x&I(t) —x&EI(t—1),

-(m+B)C) +

<4n+xn+a+pB+y—nC—nR+(E(1+x)—o)l—nl—nS+

2 v2 4 v2 42
KVi+ Vs +Vv5+v;
5 :

Let x = ag;‘g, then one may have

2 2 2 2
KVE+VZ+V2+ V]

LV <Aan+kn+a+p+y+ 5
(6.5)

<A,
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where .# > 0 is a constant which is independent of S(¢), I(¢), R(¢) and C(¢). Therefore,

d’f/(S,I,R,C) < Adt+w (S— K’)dW1 (l) + V2(I— l)dWZ(l) + V3(R — 1)dW3(l‘)
(6.6)

+ V4(C— 1)dW4(l‘).

Integrating (6.6) from 0 to 7, AT = min{t,, T} and then taking the expectation E on both

sides, one gets

EV(S(tyAT),I(ty AT),R(ty AT),C(t, AT))]
(6.7)

< E[7(5(0),1(0),R(0),C(0))] +.#T.

Let Q, = {1, < T}, for n > n; and in view of (6.4), one obtains P(Q,) > €. Such that,
for every @ € Q,, there is at least one of (1, ®) ,I(7,, ®), R(7,, ®) or C(1,, ®) equaling

either to n or rll and then, one obtains
- - . - 1 |
V(S(ty AT ), I(ta ANT),R(t, AT),C(t,AT)) > (n—1—Inn) A(——1—1n—). (6.8)
n n

According to (6.7), one gets

E/(5(0).1(0).R(0),C(0)) +.4T > E[1g, (0¥ (S(, ).

. . (6.9)
I[(1,,®),R(1,,®)),C(Ty,0)]e(n—1—Inn) A(——1—1n—),
n n
where 1 represents the indicator function of ,. Letting n — oo yields
0o > EY/(8(0),1(0),R(0),C(0)) +.4T = oo, (6.10)

which leads to a contradiction, it can be conclude that 7., = oo a.s.
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6.4 Existence of Ergodic Stationary Distribution

In this section, the existence of a unique ergodic stationary distribution of the

positive solutions to System(6.2) is discussed.

Define the Reproduction Number of the stochastic model as

s~ M&*(1—o0)

f=—r 6.11)
nayp

=0+ %6 % and § g
where ) =N+, &=n+a+%,7=n+y+3,andf=n+p++.

2 2 2\ /2
viVvsVviVv e
——2-2—% > (), then for any initial value

Theorem 6.4.1. Assume that %Zy > 1, and 1 —
(5(0),1(0),R(0),C(0)) € R*, System(6.2) has a unique ergodic stationary distribution

m(-).

Proof. First, one needs to validate conditions (i) and (ii) of Lemma 5.3.1. To prove

condition (i), the diffusion matrix of Model (6.2) is described as

visZ 0 0 0
0 vil? 0 0

0 0 ViR® 0

0 0 0 wvi?

Then, the matrix A is positive definite for any compact subset of R* , then condition (i) of
Lemma 5.3.1 is satisfied. Next, condition (ii) is proved. To this end, define ¢’>-function

v Ri — R as follows

t+7T

¥(S,I,R,C) = Q(—lnS—cl 1n1—C21nR—C31nc+§/ I(s— r)ds)
t

t+1 1
—lnS+§/ I(s—T)ds—lnR—lnC+p—+1(5+1+R+C)p+1,
t
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V(S,,R,C) = Q¥ + Y+ V5+ Y4+ 5,

ny&*(1-o) ny&3(l
(’22’?3 ) CZ ~

where ¢; = TG), and c3 = ny5*(-0) Noting that #'(S,I,R,C) is

agp?

not only continuous, but also tends to 4o as (S,1,R,C) approaches to the boundary of Ri
and ||(S,1,R,C)|| — eo. Therefore, ¥ must have a minimum point (S(0),7(0),R(0),C(0))

in the interior of R% .. Define a 4> —function V : R* — R as

t+7

V(S,I,R,C) = Q(—lnS—q lnl—czlnR—C3lnC+§/ I(s— T)ds)
t

4T 1
—1nS+J;/ I(s—T)ds—InR—InC+ ——(S+1+R+C)P*!
‘ p+1 (6.12)

= 7(5(0),1(0),R(0),€(0)),

= QN+ Y+ 3+ Y4+ 75 —7(5(0),1(0),R(0),C(0))

where (S,I,R,C) € (%,n) X (%,n) X (%,n) X (%,n) and n > 1 is a sufficiently large integer,

= —lnS—cllnI—czlnR—03lnC+§ff“l(s— T)ds, Vo =—InS+& ff”](s— 7)ds,

¥ =—InR, ¥4=—1InCand ¥s = pLH(S—FI—kR—i—C)p“. p > 1 is a constant satisfying

n—g(v%\/vzzv@vvf)>o,

and Q > 0 is a sufficiently large number satisfying the following condition

—Qu+w< -2, where

(6.13)
201 _ 2
‘u:w—('rH—v—l) >0, since %> 1,
ap 2
1
(S,I,LR,C)eR% (6.14)

2 2 v2

\% \%
2er+A+-L4 23 5
HBH2RI+AS S+ S+
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A= sup {n(S—l—I-l—R-i—C)” — 5= %(v%\/v%Vv%Vv})]
(S,I,R,C)eRY (6.15)
X (S+1+R+C)P+1} <
Applying Ito’s formula to #], one obtains
C SI(t—7
2N —%Jrn+§I—%—%—c16§C+cl(n+a)
02(1 — )€CI CzOCI 3’}/ 12
2 I L
R g Tty == +adltam+p)+
C1V22 C2V§ C3VL%
2 2 2
) ) V2 (6.16)

1% V.
< —4{‘/173/62(1 —o)acctnt S +amtat

: )+ca(n +’}’+73)

v2
tes(m+B+ ) +E(1+ea)l
m/—éA(A >+n—|— +§(1—|—63) =—u+&(1+e3)l,
ayp

Similarly, one can get

_.n _Bc v
LV = S+n+2§l S + 5 (6.17)
~ (-o)cr ol V3
LV = I LR AN (6.18)
YR vi
3%:—F+§I+n+ﬁ+7, (6.19)

p

LVs=(S+I+R+C)PN—n(S+I1+R+C)] +§(S+I+R+C)p_l

X [V3S? 4+ v3I* + ViR* 4+ viC?,

P

<(SHI+R+C)P[N—n(S+I+R+C)] +§(S+1+R+C)P“(v12vv22vv§vv}),

<NES+I+R+C)P —(S+I+R+C)Pn - g(v%w%vvng%)],
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P v2vvEvvEvvA(S+1+R+C)PH!

2 (6.20)

1
<A-3[n- g(vlzVsz\/v%\/v})](Sp+1 + 1P L R L P,

2 <A~

where A is defined by (6.15). From the Equations (6.16)-(6.20), one gets

LV < QM+Q§(1+6‘3)1——[TI—p(V1VVz\/Va\/V4)](Sp+1+Ip+l+Rp+1+Cp+l)
—%+3n—%+§—%+Y+§—§+2§I+A+B+%‘%,
O+ QE(1+es)l — 31— BBV AV VISP 1P g R oot
g 4[n—£(v1\/vz\/v3\/v4)]lp+1+3n BSC%—%IZ—%I—%Y
+%§—%+2§1+A+ﬁ+7‘%.

For € > 0, define a bounded closed set

9= {(S,I,Rp) ER* 1e<S<

g2’ — gl

In the set Ri \ 2, choose ¢ satisfies the following conditions

—2+HS—17 (6.21)
—QuU+QE(1+c3)e+w< —1, (6.22)
_%JFHS_L (6.23)
Y H< -1 6.24
~L4H< -1, (6.24)
1 P2, 2,202

—Z[n —5("1 Vvy Vs \/V4)} eptl +H < -1, (6.25)
—l[n—B(V2VV2\/v2\/v2)}—+H<—1 (6.26)
4 2 1 2 3 4 82(p+1) — ’ )
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1 P 2, 20,020 ,2
_Z[” —E(v1 VVyVV3 \/V4)}W+H < -1, where (6.27)
1
H= sup {Q(C3+1)‘§1_—[n—B(Vlz\/"zz\/"s‘z\/vz%) IPH 430 +y+ B+ 281
(S,I,R,C)ERE 4 2
2 2 2
Vi vy oV
ALy Y5 _4}_
+A+ > + > + >

One needs to show that £V < —1 for any (S,I,R,C) € R*\ 2, and R* \ 2 = U}, %,

where

21 ={(S,[,R,C) cRY;0<S<e}, Zh={(S,I,R,C)cR:;0<I<¢},
P35 ={(S,I,R,C) e R;0 <R < &1 > e},
I ={(S,I,R,C) eR};0<C< & R>¢%},
1 1
95 ={(S,I,R,C) € R%;S > E}’ Ps = {(S,I,R,C) e RY ;1 > E}’

1 1
27 ={(S,I,R,C) €R%;R > b Zs={(S.LRC) € R*;C > =1

Case 1. For any (S,1,R,C) € %, one obtains

_ 1
.,zﬂvg—%+Q(c3+1)€l—Z[n—%(VfVVzZVV%VVf)]Ip“+37‘l+7+5
2 2 2
1% \% 1%
2EJT+ A+ L3 "4
+25I A+ S+ S
n
<——+H
< S+ ;
< Mim<,
£

which is obtained from (6.21). Therefore, £7# < —1 for any (S,I,R,C) € D;.
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Case 2. For any (S,1,R,C) € 95, one gets

~ 1
2LV < —QLL+Q§(1+C3)I—Z[n—g(va@\/v%\/v}) P 437

2 2 2

\% 1% \%
Y B2+ A+ S+ S+

< —Qu+Q&(1+c3)l+w

<—0u+0&(1+c3)e+w<—1,

which follows from (6.22) and (6.13). Thus, £¥ < —1 for any (S,I,R,C) € D;.

Case 3. For any (S,/,R,C) € &3, one can get

- ol 1
LV <~ 03 +1)E1— n—g(vlz\/sz\/Vsz\/Vf) P30+ 7+ B
2 2 2
\% \Z \%
2EI+A+L+ 244
T2+ A+T S+ 5+

oE
£

which follows from (6.23). Consequently, .£# < —1 for any (S,I,R,C) € Ds.

Case 4. For any (S,1,R,C) € Y, it yields

. R 1
zvs—%+Q(ca+1)§1—1[’7—§<V%vv22vv§vv§> P30 +y+p
2 2 2
\% \Z \%
EI+A+ LB "
T2+ A+ S+ S+

2
€
< _78—3+H§ 1,

which is obtained from (6.24). Thus, ¥ < —1 for any (S,I,R,C) € Ds.
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Case 5. If (S,I,R,C) € 95, one may have

_ 1

2V < Z[ gVl\/VQ\/V3\/V4i|Sp+l+Qc3+1)§I
1
Z[ gvl\/vz\/v3VV4 }I”+1+3’7
+y+B+2EI+A+— —l—v +
Y 2 2 2
1

S_Z[ ——vl\/vz\/v3\/v4} T +H < —1,

which is obtained from (6.25). Therefore, one obtains ¥ < —1 for any (S,/,R,C) € Ds.

Case 6 If (S,I,R,C) € P, one gets

1

4_1[ —gVIVV2VV3\/V :|IP+I+Q a3+ 1)E1
1

Z[ ——vl\/vz\/v3\/v4 }I"+1+3n

261 +A
+y+B+281+ +2+2+2
1
S—Z[ Vl\/Vz\/V3\/V4} p+1 -1,

which is obtained from (6.25). Hence, .7 < —1 for any (S,I,R,C) € Dg.

Case 7.If (S,I,R,C) € 97, then

1
Z|: _gvl\/V2\/V3\/V4 i|Rp+1+Q C3+1)€I
1
Z[ —B (VIVVIVVIV VI }I”“+3n
2EI+A 3
+y+B+2EI+ + 3 + 5 + 2
1
S—Z[ ——vl\/vz\/v3\/v4} 2p+2 -1,

which is obtained from (6.26). Hence, . < —1 for any (S,I,R,C) € D;.
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Case 8. If (S,I,R,C) € I3, one can see that

_ 1

2V < Z[ gV1VV2VV3\/V4i|Cp+1+QC3+1)§I
1 p p+1
Z[ 5vl\/vz\/v3VV4}I +3n
+y+B+251+A+— —l—v +
Y »t2 s
1

S_Z[ ——vl\/vz\/v3\/v4} 3p+3+H§—1,

which is obtained from (6.27). Therefore, £ ¥ < —1 for any (S,I,R,C) € Dg.
Clearly, condition (ii) of Lemma 5.3.1 holds. Therefore, the System(6.2) identifies a

unique stationary distribution 7(.).
6.5 Extinction

In order to show the extinction of the disease, one may go through the following

Lemma.
Lemma 6.5.1. (See Lemmas 2.1 and 2.2 in [146]) Let (S(t),1(t),R(t),C(t)) be the solu-

tion of (6.2) with any (S(0),1(0),R(0),C(0)) € R* , then

&:0, limm:O, limsz, limﬁzo, a.s.

t—oo f t—oo f t—oo f t—oo f

VIVVIVVIVVE  then
2

Furthermore, if N >

lim; e lim; e

JoSs)awi(s) _ Jo1(s)dWa(s) _
% =0, % =0,

fhCams) _

limt_m 7

a.s.

Theorem 6.5.2. If 7%y < 1 and 1 > M then the solution of (6.2) satisfies the

2
following tlirilosup%ln(oc(l(t) +C)+(M+o)R(t)) <& — 2((11)2 {052% AMmn+a+
2

V2 v
SynaP(n+B +74)} <Oandlim(S) =1 as.

M+m+a)
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Proof. Define U(t) = a(I(t) +C(t)) + (n + a)R(t), taking Ito’s formula, one can get

U0 = { o o (26810 — %) — e + BIC— (n* + mec+ MYR
2y2)2 2,2p2 202
B [a sz’(;(;’:)“i (:io_c:a) X } }dH oc(1+c;xf(ln TR0
Tl fgf 2:;341? R0+ (1+c()m(cn+a) dWa(t),
= o8- (oc(H—C)+1(n+a) R)? { 12+06 (n+B+ 2)
e R
Tl j(LBLf 21‘7/3f oc)RdW3<t) * a(1+c()x::4((i7 ) RAWa(t),
S 2((1)6)2 {“2%22 Anm+a+y)+(n+ a)zvé) ANo2(n+ B+ ‘%}dt
o +C;XJ\;2(I17 + a)RdWZ(t) o J(rncj)Lf 2;;?5 R (1)
a(l +C()xi4(c;7 TR0 (6.28)

From Model (6.2), one gets

d(S(6)+1(t) +R(t) +C(t)) = [r, —n(S(t) +1(t) +R(2) —|—C(t))] dt +vS(t)dW (1)

+ V21(l‘)dW2(l) + V3R(t)dW3 (t) + V4C(l‘)dW4(t). (6.29)
Taking integration of (6.29) from O to ¢, one obtains

(S(t)+1(t)+R(t)+C(t)) =1+ y(¢), where (6.30)
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V() = = [ (5(0)+100)+ R0) +C(0)) = 1 (S) +1() + K1)+ C(0)
. Vi fé S(S)dW1 (S) n \'%) fotl(s)sz(s) n V3 féR(S)de;(S) (6.31)

t t t
L Vah€ (i)dW4(S)] ‘

By Lemmas 4.2.1 and 6.5.1, one can easily obtain that tlim v (t) = 0 a.s. Therefore, by
—>00

taking the superior limit on both sides of (6.30), one may have

limsup(S(¢)+1(t)+R(t)+C(t)) =1 a.s. (6.32)

t—ro0

Integrating (6.28) from O to ¢, one obtains

i g L {@2Znmm+a+y)
(6.33)

N

Vv 2
+(+aP ) natm+B+ )k +ya(r),  where

_InU0) avy [ I(s)
) =22+ 2 [ (Gamrem) rmrare ™™ ®)
(T] + (X)V3 ! R(S)
+2 ), Grmrem) smrar ™)
V4 C(s)

2 Gaorremy rarara )

+

In the same manner; by Lemmas 4.2.1 and 6.5.1, one gets llbm Y (t) =0a.s. Since 9?8 <1,

therefore, by taking the superior limit of both sides of (6.33), one obtains

, InU(7) 1 V3
< E_ -2
20 25—
V2 V2 .
+(n+oc)273)/\oc2(n+[3+?4)}<0,

which implies that lim;_,e. I(¢) = 0,1im;_,0c R(¢) = 0,1im; . C(¢) = 0. a.s., which confirms

that the disease I can die out with probability one. It is easy, by using (6.32) and (6.34),
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to show that lim(S) =1 a.s.
f—o0

T
1

T
1

S(1),1(1),R((1),C(1)
T
1

" | | | | |
0 ) 100 K ) %) B
Time ({)

Figure 6.2: Numerical simulations of stochastic Model (6.2), when %, = 1.3 > 1. With
n =0.09,& = 1.3, =0.05,06 =09, = 0.36,y = 0.1;7 = 1 and white noises v; = 0.1,v, =
0.09,v3 =0.09,v4 = 0.07. The model has a unique ergodic stationary distribution and the infec-
tion is persistent

S(0).1(0),R(1).C(t)
S(t),10,R(.C(H)

50 60 70 E) % 100 0 10 20 30 a0 50
Time (t) Time(t)

Figure 6.3: Time domain behaviors of solutions of SDDEs Model (6.2) (right) and the corre-
sponding deterministic Model (6.1) (left), when %5 = 0.38 < 1. With n = 0.0005,& = 0.6,3 =
0.01,0 =0.12,x = 0.3,y =0.02; 7 = 1.4 and white noises v; = v, = 0.02,v3 = 0.01, v4 = 0.02.
The infection dies out with probability one

6.6 Numerical Simulations and Discussions

Numerical simulations are given to validate the theoretical results, through Euler-

Maruyama method for SDDEs, reported in [22, 91], to numerically solve SDDEs (6.2).
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S(b),1(1),R(1),C(t)
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Figure 6.4: Time domain behaviors of SDDEs Model (6.2) (right) and corresponding deterministic
Model (6.1) (left), the Figure shows a periodic outbreak due to the time-delay 7. When % =
0.38 < 1, with n = 0.0005,& = 0.6, = 0.01,06 = 0.12,¢ = 0.3,y = 0.02; T = 2.5 and white
noises Vi =0.02,v, =0.2,v3 =0.02,v4 =0.2

Figure 6.5: Simulations of stochastic Model (6.2) (right) and the corresponding deterministic
Model (6.1) (left), when Z; = 0.38 < 1. With n = 0.0005,§ = 0.6, =0.01,0 =0.12, & =
0.3,7=0.02;7 = 2.5 and white noises v = 0.2,v, = 0.2,v3 = 0.1, v4 = 0.2. The deterministic
model shows a periodic outbreak due to the time-delay 7. The infection dies out with time when
white noise is large

The discretization transformation takes the form

Siv1 =S;+ M1 —S;) —ESjl;_p+ BCjlAt +ViS VAL |,
Tiv1 =1+ [ESiTj—m + 0ECjl — (N + ) []At + Vol VAL Gy . (6.35)
Rjt1 =Rj+[(1—0)ECiL+ al; — (N + Y)R;)At + V3R VAL s |,
Cj1 =Cj+ [YR; = ECiI; — (N + B)CjlAt +vaCyV/AI Gy ;.
The independent Gaussian random variables denoted as {; j, (i = 1,2,3,4), which follow

the distribution N (0, 1), the time delay defines as T = mAt, m is an integer and the step
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S(1),1(1), R(1),C(1)

S, 1D, R®),C(t)
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Figure 6.6: Time domain behaviors of SDDEs Model (6.2) (right) and corresponding deterministic
Model (6.1) (left), where T = 1, when %y = 1.78 > 1. The infection persists in the deterministic
model; when Z; = 0.75 < 1, the infection dies out in the stochastic model. With parameter values
n=0.02,£ =0.5,=0.1,6 =0.2,0 = 0.26, Y = 1, and white noises v; = 0.13, v, =0.54, v3 =
0.26, vy =0.75
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Figure 6.7: Time response of solutions for Model (6.2) (right) and corresponding deterministic
Model (6.1) (left), when T = 0. Such that Zy = 1.78 > 1, the infection persists in the deterministic
model; when %5 = 0.75 < 1, the infection dies out in the stochastic model. With parameter values
n=0.02,£ =0.5,=0.1,6 =0.2,00 = 0.26, v = 1, and white noises v; = 0.13, v, =0.54, v3 =
0.26, v4 =0.75.
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size At. Let v; > 0, (i = 1,2,3,4) be the white noise values.
Example 6.6.1. Consider Model (6.2), with white noise values: v =0.1, v, =0.09, v3 =

0.09, v4 = 0.07, and parameter values: 1 =0.09,£ =1.3, =0.05,6 =0.9,y=0.1,0 =

0.36,7 = 1.2. Simple calculation leads to % = %

0.087 > 0. Therefore, the conditions of Theorem 6.4.1 hold. Based on Theorem 6.4.1,

2\ /v2\/v2\ /2
VIVVIVVIVYE

=13>1,andn— 5

there is a unique ergodic stationary distribution 7(.) of Model (6.2). Thus, the disease I
is persistent; See Figure 6.2.

Example 6.6.2. Given the Model (6.2), with parameters values: 1 =0.0005;& =0.6; 8 =
0.01;0 =0.12;¢ = 0.3;y=0.02,7 = 1.4 ,and white noises: v; = 0.02,v, =0.02,v; =

=—-0.0195<

2 2\ /v2\/v2vy2
0.01,v4 = 0.2. One obtains % = % —0.38 < 1,and  — Y2
0. In this case, the conditions of Theorem 6.4.1 are not satisfied. From Figure 6.3, one can
clearly find that the disease goes to extinction. In Figure 6.4 time-delay is increased to

T = 2.5, with white noises v = 0.01,v, =0.2,v3 =0.02, v4 = 0.03, other parameter val-
ues are the same as in Figure 6.3. Therefore 9?8 <l,andn — M =—0.0445 < 0.
The conditions of Theorem 6.4.1 are not satisfied. Figure 6.5 shows a periodic outbreak
due to the time-delay 7. However, the infection dies out with time with bigger white
noise.

Example 6.6.3. To further explain the impact of time-delay and white noises on System(6.2),
choose T = 2.5 and parameter values: 1 = 0.0005;& = 0.6;8 = 0.01;0 =0.12;a =
0.3;7 = 0.02, and white noises v; = 0.2,v» = 0.2,v3 = 0.1, v4 = 0.3. Such that, Z; =

2 v2y 2y 2
ViVVIVVEVY;

nE10) _ (38 < 1, and n — L2V 045 < 0. Thus, the conditions of Theo-

nayp
rem 6.4.1 are not satisfied. Figure 6.5 shows a periodic outbreak due to the time-delay 7,

when the white noise increased the periodicity of the outbreak decreased. The infection

dies out with time as white noise increases.
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Example 6.6.4. In order to show the impact of random perturbation. With 7 =1, and
by increasing the white noise values to vi = 0.13, v, = 0.54, v3 = 0.26, v4 = 0.75,
with parameter values 1 = 0.02;£ =0.5; =0.1;0 = 0.2;a = 0.26;y = 1. Thus, Ky =
% —0.75 <1< 1.78= 34 = o, and 1 - L2205 — 0,015 > 0. Therefore,
the conditions of Theorem 6.5.2 hold, and disease dies out exponentially with probability
one. However, the disease persists with deterministic model; See Figure 6.6.

Example 6.6.5. Consider the same parameter values of Example 6.6.4, but with time-
delay 7 = 0. Thus, according to Theorem 6.5.2 the disease dies out exponentially with
probability one; See Figure 6.7. Therefore, the smaller values of white noise ensure the
existence of unique stationary distribution, which gives the persistence of the disease;
While larger values of white noise can lead to disease extinction.

Remark 6.6.1. Given the deterministic SIRC Model (6.1), if the basic reproduction num-
ber Zy = OtéTn < 1, then the disease-free equilibrium point is globally asymptotically
stable; Whereas, if % > 1, the unique endemic equilibrium point is globally asymptot-
ically stable. Repeated outbreaks of the infection can occur due to the time-delay in the

2
1—-0o
transmission terms. In the stochastic SIRC Model (6.2), if % = M <1< %,

noyp
VIVVIVVIVVE . . . . o
and n > —-—25-—+= the stochastic Model (6.2) has disease extinction with probability
one, and for %, > 1, the stochastic Model (6.2) has a unique ergodic stationary distribu-

tion. See Figures 6.6 and 6.7.

6.7 Conclusion

In this chapter, a stochastic SIRC epidemic model with time-delay for the new
strain coronavirus COVID-19 has been provided. The stochastic components, due to en-
vironmental variability, are incorporated in the model as Gaussian white noise. Some

sufficient conditions for persistence and extinction in the mean of the disease have been
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established. The model has a unique stationary distribution which is ergodic if the in-
tensity of white noise is small. Introduction of noise in the deterministic SIRC model
modifies the basic reproductive number % giving rise to a new threshold quantity Z;. It
has been proved that the disease dies out if Z; < 1 < %. On the other hand, if % > 1
and Z, > 1, the disease persists with both models, but with different behaviors. In other
words, extinction of the infection possibly occurs when 9?8 < 1 < %, along with inten-
sity of white noise is large. This would not happen in the deterministic models. The
potential of using stochastic SIRC model for COVID-19 is to consider the environmental
fluctuation that all affects the spread of the virus. Periodicity of the outbreaks is possible

due to the presence of time-delay (memory) in the transmission terms.

The author believes that the stochastic SIRC model is an attempt to understand
epidemiological characteristics of COVID-19. The model provides new insights into epi-
demiological situations when the environmental noise (perturbations) and cross-immunity
are considered in the COVID-19 epidemic models. The combination of white noise and
time-delay, in the epidemic model, has a considerable impact on the persistence and ex-
tinction of the infection and enriches the dynamics of the model. This work can be ex-
tended to include control variables for a vaccination, treatment and/or quarantine actions.
More sophisticated model is also required to investigate the dynamics of COVID-19 with

immune system in cells level [119].

In the next chapter, some sufficient numerical schemes for stochastic delay differ-

ential equations is introduced.
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Chapter 7: Numerical Schemes for Stochastic Delay Differential
Equations

7.1 Introduction

Stochastic delay differential equations (SDDEs) are very important in ecology,
epidemiology and many of other fields. This chapter introduces some numerical ap-
proaches for the derivation of discrete time approximations for solutions of SDDEs. The
proposed schemes converge in a strong sense. Section 2 provides some required prelimi-
naries. Section 3 introduces a numerical scheme for an autonomous SDDE and investigate
local and global errors; convergence and consistency of the scheme. Section 4 discusses
strong discrete time approximations of solutions of non-autonomous SDDEs, including
Euler and Taylor schemes and implicit schemes. The mean square stability of Milstein

scheme is discussed in Section 5. Concluding remarks are given in Section 6.

SDDEs are considered as generalization of both deterministic delay differential
equations (DDESs) and stochastic ordinary differential equations (SODEs). Some basic
consents about stochastic differential equations are discussed in [103, 121, 138]. The
fundamental theory of existence and uniqueness of the solution of SDDEs has been stud-
ied by Mao [90] and Mohammed [99]. Some stability properties of numerical schemes
of SDDEs are also studied in [52, 73, 91]. In the literature, some numerical schemes
for SDDEs have been investigated, such as Euler-type schemes [10, 75], drift-implicit
Euler scheme [59, 83], Milstein schemes [24, 57], split-step schemes [50, 139], and ad-
ditionally multi-step schemes [25]. The extension of numerical approaches for SODEs
to SDDE:s is non-trivial, particularly since the time-delays may induce instabilities in the
basic SDDEs; while its corresponding SODEs are stable [59]. In addition, the presence
of time-delays influences on the convergence order and computational complexity of the
numerical schemes [28]. In general, there is no analytical closed-form solution of the
models considered in this dissertation, and usually numerical techniques are required to

investigate the models quantitatively.
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7.2 Preliminaries

Consider the d-dimensional SDDEs with r-dimensional standard Wiener pro-
cesses given on the filtered probability space (Q,.7,.<7,,P). Therefore, one may have

equations of the form

ay(e) = £,y(0), (7)) di + Y. g)(6,3(0),9(t— ) dW; (1), 1€ [0,T],

drift coefficient N (7.1)

~
diffusion coefficient

Y(t) = W(t)v S [_T’O]'

With one fixed delay 7, where y(t) is an <% -measurable ¢ ([—7,0],R¥)-valued random
variable. The drift coefficient f: [0,7] x R? x R? — R¢ and the diffusion coefficient
g;:[0,T] x R xRY - RY, j=1,2,...,r, are given d-dimensional. Equation (7.1) can

be formulated as
0 =30+ [ 163056~ s+ X [[a(03(9)3(5 - NaWits). - 02

fort € [0,T] and with y(¢) = y(¢), forr € [—7,0].
Definition 7.2.1 (Strong solution). A d-dimensional stochastic processy ={y(¢): [—7,T|}

is called a strong solution of (7.1) if it has the following properties:
e {y(t)} is measurable, sample continuous process and (%% )o<,;<r-adapted;

e Equations (7.1) and (7.2) hold for every ¢ € [0, T] almost surly.
Definition 7.2.2 (Path-wise unique solution). Let the set 2~ denotes some class of stochas-
tic processes that solve (7.1). If any two processes y\) = {y() (r),r € [-7,T]},i= 1,2 from

Z with the same initial functions have the same path on [0, 7], almost surely, that is

P( sup [yV(r) —y® (1) >0) =0, (7.3)

0<e<T
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then the solution of (7.1) is path-wise unique within 2.

Herein, the Lipschitz condition (L;) and Growth condition (L,) are formulated
to guarantee the existence of a unique solution of (7.1). Assuming that |.| denotes the

Eucilidian norm, one may have

(L1) Lipschitz condition: There exists a constant K € (0, ), such that

|£(t,x1,y1) —£(t,x2,y2) [+|g1 (£, x1,y1) — &1 (t,x2,y2) + -+
‘gr(tvxlayl) _gr(tvxzayz)’ S K(|X2 —X1’—|— b’z _yl‘)?

for ¢t € [0,7] and x1,x2,y1,y2 € RY.

(Lp) Growth condition: There exists a constant G € (0, ), such that

[£(,2,3) P + g1 (1,2, ) P -+ g (1,2, 0) ] < G(L+ 3 + 1),

fort € [0,T] and x,y € R,

Let € = € ([—1,0],RY) be the Banach space of all d—dimensional continuous functions
n on [—7,0] equipped with the sup-norm ||n|| = sup,c[_¢ ] [N (s)|. For every function

E|[-7,T] — R9 and every t € [0,T], so that

& ={a(s) =Gt +s),s€[-7,0]},

is a function defined on [—7,0], which is the segment of & at t. In the same manner,
the segment-valued function + — & for ¢ € [0,T] is obtained. Additionally, denoting
L4(Q, %, %), the set of R%-valued continuous processes 1 = {1(s),s € [~7,0]} with

n(s) being o%-measurable for all s € [—7,0] and

2

E(nlZ =E sup [n(s)]* <. (7.4)

s€[—1,0]
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Noting that the initial function y can be considered as a square integrable ¢’ = €’([—1,0], R¥)-

valued random variable on (Q, 2%, P). Hence, the above assumptions lead to the following

theorem.

Theorem 7.2.1. [75] Assume that (Ly) and (L) hold for both £ and g, where W be in

L(Q, €, ). Then with initial segment y, the SDDE (7.1) has a path-wise unique

strong solution’y = {y(t),t € [—7,T|} in L (Q, €, ). Moreover, E( sEup ] |y(t)|2) <
rel-1t

oo, and for each t € [0,T), the segment y, = {y(t +s),s € [~7,0]} is a €(]—7,0],RY)-

valued process having continuous paths. Additionally, if E||y||2F < oo for some k > 1,

then
Elly% =E( sup [y(t+5)P*) <o (71.5)
s€[—1,0]
and
Elly||% < Gi[1 +E||yw| ], (7.6)

forallt € [0,T] and some positive constant C.

For the proof of the above Theorem one can refer to [99]. Next numerical schemes

for autonomous and non-autonomous SDDEs are provided.

7.3 Numerical Scheme for an Autonomous SDDEs

For simplicity, SDDEs (7.1) is reduced to a scalar autonomous stochastic delay

differential equation of the form

dy(t) = f(y(2),y(t = 7))dt +g(y(1),y(t = 7))dW (t), 1€10,T],

y(t)=wyl(), te[-7,0]

(7.7)

Equation (7.7) can be formulated as

) =3(0)+ [ F005):5(6 = s+ [ ¢0ls)r(s— )W (o) 7.8
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for t € [0,T] and with y(¢t) = y(t), for t € [—7,0]. The second integral in (7.8) is a
stochastic integral in the Ito sense. For problem (7.7), mesh points are defined with a
uniform step on the interval [0,T], so that At = h =T /N, t, = nh, where n =0,...,N.
Also for the given £ it is assumed that there is a corresponding integer m, where the time-
delay can be expressed in terms of the step-size as T = mh. For all indices n —m < 0

define ¥, := y(t, — 7), otherwise

yn+1 :yn—f—(])(h?ynuyn—maIQ))u I’l:(),,N—l (79)

The increment function @ (4, 5, ¥u—m,1p) : R x R = R includes a finite number of multiple

[to-integrals (see [69, 98]) of the form

t+h  ps; k) 1 . .
Ijoion = /, /, /, AW (5)) ... dWI (s )dW i (s)

where j; € {0,1} and dW°(¢) = dt, and with ¢ = t,, for (7.9), one can denote I, the collec-

tion of Ito-integrals required to compute the increment function ¢.

Assumptions on the increment function ¢ of (7.9):

Suppose that V1, V,, Vs are positive constants, such that for all x, K/, o, o € R,

one may have

‘E(([)(k, K,0,1p) — ¢(h, K/,a)/,l(p))’ <Vih(lk—K |+ |o—o]),
(7.10)
E(10(hx,0,05) = (k@ 1) 2) < Vah(li— K 2+ |0~ @), and

E(|¢(h, K,a),1¢)|2> §V3h(1+\1<]2+|a)|2). (7.11)

Lemma 7.3.1. [10] If the increment function ¢ in Equation (7.9) satisfies condition

(7.11), then E|§,|*> < oo for alln < N.

Let y(t,+1) be the exact solution of (7.7) at the mesh point #,,; 1, y,+1 is the value
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of the approximate solution given by (7.9) and (#,1) is the solution of (7.9) after just

one step, so that

F(tus1) = y(tn) + O (h,y(tn), y(tn — T),Ip). (7.12)

7.3.1 Local and global errors

Definition 7.3.1. The local error that occurs in one step of the approximation {¥,} is the

sequence of random variables

Ont1 =Y(tar1) = F(tnr1), n=0,...,N—1. (7.13)

However, the global error is the amount of error that occurs in the use of a numerical

approximation to solve a problem, which is the sequence of random variables
& :=y(ty)—In, n=1,...,N. (7.14)

Noting that g, is 2%, -measurable since both y(#,) and y, are <% -measurable random vari-

1/2
able, such that (E|8n|2> is the .#?-norm of (7.14).
7.3.2 Convergence and consistency
Definition 7.3.2. Assume that, 0,+1 = y(ty,+1) —¥(ts+1), n=0,...,N — 1, then method

(7.9) is said to be consistent with order p; in the mean and with order p, in the mean

square with

1 1
D2 > > and p; sz-l-i, (7.15)
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if the estimates

< P1 .
o max |E(8pt1)| <CH"' as h—0, and (7.16)
o\ 1/2
max <|]E(6n+1)| ) <Ch? as h—0, (7.17)
0<n<N-1

hold, where the constant C does not depend on 4, but may depend on 7', and on the initial
data.

Theorem 7.3.2. [10] Assume that the conditions of Theorem 7.2.1 are satisfied. Such that
the method defined by Equation (7.9) is consistent with order p| in the mean and order p>
in the mean square sense, where p1, p fulfilling (7.15), and the increment function ¢ on
Equation (7.9) satisfies the estimates (7.10). Then the approximation (7.9) for Equation
(7.7) is convergent in £? (as h — 0 with T/h € N) with order p = py — 1/2. That is,

convergence is in the mean square sense, such that

1/

2
max <|]E(5,,+1)|2> <Ch as h—0, (7.18)

0<n<N-1

Theorem 7.3.3. [10] If the increment function ¢ of the approximation (7.9) satisfies the
estimates (7.10), then the one-step method (7.9) is zero stable in the quadratic mean-

square sense.

Next, the analysis to non-autonomous system of SDDEs (7.1) is extended.

7.4 Numerical Schemes for Non-autonomous SDDEs

There are some specific discrete time approximations for (7.1). The simplest
scheme which is defined by stochastic difference equation is represented by Euler ap-

proximation as the following

ni1 = Fn+E(tn, G Fn-m)+ Y, 8(tn,Fns Fnem) AW, (7.19)
j=1
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where ¥ = {J(¢),t € [—7,T]} is right continuous with left hands limits, a discrete time
approximation with step-size A, such that for eachn =0,1,...,N — 1, the random variable
¥(1,) is <7, -measurable and ¥(#,,+ | ) can be expressed as a function of §(t_,,), ¥(t—pm+1)s- - - »
§¥(t,), discretization time #, and a finite number of o7 .,-measurable random variable.
With AW, = Wity 1) —Wi(t,),forn=0,1,...,.N—1and j=0,1,...,r. By more gen-
eral assumptions, one can check that Euler approximation is strongly converges with order

1/2[751.

7.4.1 Taylor approximation

For stochastic differential equations, it is common that by application of the Wagner-
Platen stochastic Taylor expansion [70], one can construct discrete time approximations
that converge with a given order of strong convergence, which involve in each time step
certain multiple integrals. For the general multi-dimensional case d,r = 1,2, ... the order-

one strong Taylor approximation has the form

-
Yor1 =¥ +f(tnaynayn—m)h + Z gj(tmyn?yn—m)AWnJ
j=1
r d P
+ Z Zgi,jl (tmy’n,yn—m)ng,jz (tnyynay’n—m)
jla=li=1 Yn

Int1 51 . .
x / AW (52)dW P (s1) (7.20)
t"l l}'l
r d 0
+ Z Z 8i,ji (tn—ma);n—m;j’n—Zm)aTgi,jg (tmynayn—m)
jrja=li=1 Yn—m
th+1 S1 . .
x / AW (52 — T)AW (s1),
tn tl‘l
forn=0,1,...,N—1,i=1,2,...,d. One can check that approximation (7.20) converges
under suitable assumptions with strong order one [75]. In the one-dimensional case when
T = 0 scheme (7.20) coincides with the well-known Milstien Scheme for SDEs. However,
the time delay in (7.20) generates an extra term which describes a double Wiener integral

that integrates an earlier segment of the Wiener path with respect to the actual Wiener

path.
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7.4.2 Implicit strong approximations

In practice, explicit schemes have smaller computational costs but with lower
accuracy compared to implicit methods. It is sometimes recommended to use implicit
schemes to have numerically stable approximate solutions for SDDEs, as in the case of
stiff problem!. For the general multi-dimensional case (7.1), the family of implicit Euler

approximations are as the following

yn+1 = yn + [Gf(tn+1a5]n+17yn*m+l) + (1 - Q)f(tmyn,yn—m)]h
r . (7.21)
gj(tnyynyyn—m)Aany
j=1

_|_

forn=0,1,...,N —1, such that 6 € [0, 1] stands for the degree of implicitness. If 6 = 0,
one may have the explicit Euler approximation (7.19). For 8 = 1, one obtains the fully
implicit Euler approximation. The approximation (7.21) converge with strong order 1/2
[83]. In the same manner one can establish an order-one strong implicit Taylor approxi-

mation with

yn+1 = yn + [ef(t”H-] 75’n+1>yn—m+1) + (1 - e)f@mynaynﬂn)]h

r ] r d 0
+Zgj(tnaynuyn—m)AWnJ+ Z Zgi,jl(Zna);nayn—m)ng,jz(lnaymyn—m)
j=1 Jj1ja=1i=1 Yn
thtil 81 . .
x / AW (52)dW P2 (s1)
ll‘l tVl
r d a
+ Z Zgi,jl (tnfm>)7nfm7)7n—2m)aTgi,jz(tmynaynfm)
ji=1i=1 Yn—m
In+1 51 . .
x / AW (52— T)AW (s).
I In

(7.22)

Next, some details about the mean square stability of Milstein method will be given, since

this scheme has been used in the numerical simulations for SDDEs models through the

LA stiff problem is defined as that in which the global accuracy of the numerical solution is determined
by stability rather than local error and implicit methods are more appropriate for it.
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dissertation.

7.5 Milstien Scheme for SDDEs

In this section, Milstein scheme is introduced for SDDE and one can show that

the numerical method is mean square stable under suitable conditions.

Given the one-dimensional version of (7.1), r = d = 1, of the following form

dy(t) = f(t,(),y(t = 7))dt +g(t,y(1),y(t — 7))dW, 1 €[0,T],

y(t):l//(t)a Z‘G[—T,O].

(7.23)

Order one strong Taylor approximation for (7.23) in the one-dimensional case, is defined

by

Tnt+1 Tnt1
Yntr1 = In ‘|‘f(tn7)7n7)7nm)/ ds +g(tnv)7na)7nm)/ dW(Sl)
In In

o 0 o Int1 51
+g(tm))nayn—m)gg(tmynuyn—m)[ f dW(SZ)dW(Sl)
n n n

L J L
+ &(tn—m>In—m>In—2m) Fg(tmymynfm)
n—m

Iyl [S1
x / / AW (52— 7)dW (s1).
tn f

(7.24)

Once the Taylor approximation is considered, Milstein scheme can be constructed for

(7.23).

Vet =W+ f(tnay’n?yn—m)h + g(tnaynay’n—m)AWn

1 . o
+ Eg(tmynvynfm)gl(tna)’mynfm) [(AWn)z - h] (7.25)
_ _ 0 o Iyl 51
+g(tn—mayn—m7yn2m)a~—g(tnaymyn—m)/ dW<S2 - T)dW<s1)7
Yn—m Iy th
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7.5.1 Convergence and mean square stability of Milstein scheme

Consider the linear scalar SDDE of the form

dy(t) = [poy(t) + p1y(t — 7)]dt + [p2y(r) + p3y(t — 7)]dW (1), 1€[0,T],
(7.26)

yO) =y(), tel-7,0]

Where po, p1, 02,03 € R, W(t) is an one-dimensional standard Wiener process, and y/(r)

is continuous and bounded function with E[||y||?] < eo, where ||y = sup_,—,<o|w(?)].

Theorem 7.5.1. ([75]) Suppose that

(lp2] + |p3])?

) 5 (7.27)

po < —|p1|—

then the solution of (7.26) satisfies lim; .. E[|y(¢)|*] = 0, i.e. the solution is mean square
stable.

Using order 1 strong Taylor approximation formula to the linear one delay System

(7.26), one gets

Yl =Yn+ (pOyn + plynfm)h + (pZyn + p3yn7m>AWn (7.28)

+ p3 (pZynfm + p3)’n—2m)ll + P2 (pZYn + p3ynfm)12>

where y, is an approximation to y(z,), such that

thtl S Int1 S
L= / AW (1 — T)dW (s), b = / AW (1)dW (s).
1 In

n t}’l tVl

The convergence order of (7.28) can obtained by Theorem 10.2 in [75], since the coef-
ficients of (7.28) are satisfy Lipschitz condition and growth condition. Thus, Milstein

scheme (7.28) is strongly convergent of order 1.

Theorem 7.5.2. [133] The Milstein scheme (7.28) is mean square stable, if condition
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(7.27) satisfied.

Proof. By reorganizing the terms of (7.28), one gets

Yn+1 :(1 + pOh + pZAWn)yn + (Plh + p3AWn)yn—m + P3 (pZyn—m + p3yn—2m)11
(7.29)

=+ p2<p2yn + p3yn—m)12~

Squaring both sides of (7.29), then it follows from 2ab < a® + b? (Va,b € R), one may

have

Va1 S(L+pih+p2AWa)’y; + (prh+ psAW, Py,
+p31(05 + |p2031)ys + (3 + 10203 )yl 5
+p30(03 + 102031)Yn -+ (03 + 102031 )21 + 11+ pohl |01 A (v + Vi)
+ 203 AW, (Vs + Vi) +2[(1+ poh) p3 + P12 AW, Yy
+2P2p3(P2Yn + P3Yn—m) (P2Yn—m + P3Yn—2m) 1 12
+2p2(1 4 ol + P2An) (P20 + P3Yn—m)Ynl2
+2p3(1+ poh+ P2An) (P2Yn—m + P3Yn—2m)ynli
+2p2(p1h+ P3AW) (P2yn + P3Yn—m)Yn-ml2

+ 2P3 (plh + p3AWn) (pZyn—m + p3yn—2m)yn—mll
(7.30)

Assume that x, = E[y2], then take expectation for both sides of (7.30), yields
Xn+1 < Arxp +Axy—m +A3x,—2n, Where (7.31)

h2
Ar = (1+poh)* +p3h-+[1+pohl[p1|h+|p2pslh+ =3 (03 +[p2p3)).
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h2
Ay = pih* +pih+ |1+ pohl |pi |+ p2pslh+ =p3 (P3 + p2p3])

h? h2
+ §P32(P22+ p2p3]), Az= ?pgz(pzznt 1p2p3)).

Such that the following inequality holds

(14 poh)? + pih* + (3 + p3 +2|p2p3])h+ 2|1+ pohl|p: |1

(7.32)
R, 2
+?(P2+P3)(\P2|+|P3D <L
Consider
 —[2po+2lpi|+ (|p2| + |p3])?] S
= 2, 172 2 2 ’
(Ipol +1p1D)*+3(Py +p3) (P2 + |p3]) (7.33)

1 —[2po +2|p1| + (|p2] + |p3])?]

hy =min{—, >0,
pol” (|pol + 1p11)2 + 3 (P2 + p2)(Ip2| + |p3])?

e If 1 € (0,hy), Inequality (7.32) holds;

o If 1€ (0,hy), then 1+ poh > 0 (wider range of stable stepsize values) and Inequality

(7.32) holds.
Let hy = max{hy,h;}; Thus, Milstein scheme is MS-stable, whenever i € (0, ).

A Matlab program to produce the numerical results, using Milstien scheme is

provided in Appendix B.

7.6 Concluding Remarks

In this chapter, some numerical schemes for SDDEs were briefly discussed. Con-
vergence and consistency of such schemes were investigated. The mean square stability
of Milstein scheme had been discussed and the obtained result shows that the method
preserves the stability property of a class of linear scalar SDDE. In this dissertation, the
above discussed Milstein scheme for solving different examples and models of SDDEs

had been discussed. A Matlab program for an example is displayed in Appendix B.
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Chapter 8: Summary and Concluding Remarks

8.1 Introduction

In the present thesis the qualitative behaviour of deterministic and stochastic delay
differential equations with ecology and epidemics have been investigated. The main nov-
elty is to investigate the impact of time-delays in the models and effects of perturbations
to equations caused by random changes/noise in the system. Time-delays and random

noise have significant impact in the predator-prey systems and infectious diseases.

Chapter 2 provided a system of DDEs for predator-prey system with hunting co-
operation. Local and global asymptotic stabilities of the steady states, Hopf bifurcations
of interesting parameter T have been investigated. The combination of time-delay and
hunting cooperation have a considerable impact in the ecosystem. Chapter 3 introduced
a system of DDEs for a three species predator-prey system (two-prey one-predator) with
time-delays and an additive Allee effect in the prey’s growth functions, where there is a
direct competition between prey populations. Local stability of the system has been ana-
lyzed in detail. Verifiable sufficient conditions which guarantee the global stability around
the interior equilibrium using Lyapunov function, have been discussed. Sensitivity of the
model solution with respect to Allee parameters and time delays have been evaluated,

using the so-called "direct approach”.

Chapter 4 studied the dynamics of SDDEs for predator-prey system with hunt-
ing cooperation in predators. Relevant properties of the corresponding stochastic delayed
predator-prey model have been illustrated and revealed the effect of environmental noise
on the model. Under certain conditions the stochastic model will remain to have a positive
stable solution which gives a result of the robustness of the solution. The effect of envi-
ronmental noises on persistence and possible extinction of prey and predator populations

have been investigated.

Chapter 5 extended the analysis and investigated a system of SDDEs of two-preys
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one-predator system, with cooperation among the prey species against predator. The basic
features of the model in presence of multiplicative noise terms were discussed, in order
to understand the dynamics along with the environmental driving forces. Sharp criteria
for the existence of a unique ergodic stationary distribution, of the positive solution of the
model, under certain parametric restrictions have been analyzed. Sufficient conditions for
extinction of the predator population in two cases have been deduced. The first case is
the prey populations survival and the predator population extinction; the second case is

all the preys and predator populations die out.

Chapter 6 provided a stochastic SIRC epidemic model with time-delay for the new
strain coronavirus COVID-19. The stochastic components, due to environmental variabil-
ity, are incorporated in the model as Gaussian white noise. Some sufficient conditions for
persistence and extinction in the mean of the disease were established. The model has
a unique stationary distribution which is ergodic if the intensity of white noise is small.
Introduction of noise in the deterministic SIRC model modifies the basic reproductive

number ) giving rise to a new threshold quantity %,

Chapter 7 discussed some numerical schemes for stochastic delay differential

equations.

8.2 Concluding Remarks and Findings

By using a variety of analytical methods for studying the qualitative features of
deterministic and stochastic delay differential equations systems, the following results

have been seen:

e Time-delay (time-lag) parameters play an important role in the dynamics of predator-

prey systems, and improve the complexity of the models.

e Combination of time-delays and Allee effect enriches the the dynamics of the sys-

tem and can lead to bistability of equilibria.

e The model is very sensitive to the small perturbations of Allee parameters in early

time intervals and the sensitivity decreases by time.
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Possible Hopf bifurcations around the equilibrium points have been studied in de-
tail. In particular, the threshold parameters where the Hopf bifurcation occurs are

deduced.

The random noises can suppress the explosion of the species, where the solutions
of the deterministic system is unbounded. Furthermore, introduction of noise in the
deterministic epidemic models can modifies the basic reproductive number giving

rise to a new threshold quantity,

Extinction of predator population is possibly occur when the intensity of white noise

is relatively large.

In the case of the existence of a unique equilibrium point, the stability of the equi-

librium point and oscillations could exist globally.

Small scale of environmental fluctuations can promote the survival of species; while
large noises can lead to extinction of the species, this would not happen in the

deterministic systems without noises.

Long-term behaviour of the systems has been studied, and conditions for persis-

tence have been derived.

Verifiable criteria were developed, which guarantee the existence of a unique er-
godic stationary distribution of the positive solutions to stochastic models, using a

novel multiple Lyapunov functions.

White noise plays an important role in controlling the spread of the disease; The
large environmental noises may help to bring about extinction of diseases. When
the white noise is relatively large, the infectious diseases will become extinct; Re-
infection and periodic outbreaks can occur due to the time-delay in the transmission

terms.
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8.3 Software Used

The numerical experiments and numerical simulations of deterministic DDEs
have been carried out using DDE23 [126], which is based on explicit Runge-Kutta scheme;
See Appendix A. The numerical simulations of bifurcation diagrams have been carried out

by using the Matlab software DDE-BIFTOOLS [40].

For the numerical simulations of SDDEs, Euler Maruyame scheme of order of
convergence 1/2 in the mean square sense was utilized. Also, Milstein’s scheme for SD-

DEs of order one in the mean square sense had been used; See Appendix B.

8.4 Future Directions

In the next project, the proposed Models (3.3) and (5.2) can be further extended, to
investigate the effect of the combination of Monod-Haldane and Holling type II functional
response, of a two competing prey and one predator system; During predation both teams
of prey help each other and the rate of predation on both teams are different; Time-delays
can be considered due to reaction time of the predations. Including control variables are

also possible.

There are still some interesting topics deserve further investigation, such as in-
troducing the color noise or the telegraph noise, for example continuous-time Markov
chain, into Models (4.3) and (5.3), since the dynamics of population may suffer sudden-
environmental changes which can be modelled by a continuous-time Markov chain. There-
fore, the sufficient conditions for ergodicity are supposed to be expressed in terms of
model parameters, the intensities of Brownian motion along with the distribution of Markov

chain.

For the stochastic SIRC model, discussed in Chapter 6, it is possible to extend this
work and include control variables for a vaccination, treatment and/or quarantine actions.
More sophisticated model is also required to investigate the dynamics of COVID-19 with

immune system in cells level [119].
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Models with variable and state dependent time-lags deserve further study and
investigation. Furthermore, development of ordinary delay differential equations, and
stochastic delay differential equations to include the spatial state variables will be also

observed in the future work.
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