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Abstract

Mathematical modeling with delay differential equations (DDEs) is widely used
for analysis and predictions in various areas of life sciences, such as population dynam-
ics, epidemiology, immunology, physiology, and neural networks. The memory or time-
delays, in these models, are related to the duration of certain hidden processes like the
stages of the life cycle, the time between infection of a cell and the production of new
viruses, the duration of the infectious period, the immune period, and so on. In ordinary
differential equations (ODEs), the unknown state and its derivatives are evaluated at the
same time instant. In DDEs, however, the evolution of the system at a certain time instant
depends on the past history/memory. Introduction of such time-delays in a differential
model significantly improves the dynamics of the model and enriches the complexity of
the system.

Moreover, natural phenomena counter an environmental noise and usually do not
follow deterministic laws strictly but oscillate randomly about some average values, so
that the population density never attains a fixed value with the advancement of time.
Accordingly, stochastic delay differential equations (SDDEs) models play a prominent
role in many application areas including biology, epidemiology and population dynamics,
mostly because they can offer a more sophisticated insight through physical phenomena
than their deterministic counterparts do. The SDDEs can be regarded as a generalization
of stochastic differential equations (SDEs) and DDEs.

This dissertation, consists of eight Chapters, is concerned with qualitative and
quantitative features of deterministic and stochastic delay differential equations with ap-
plications in ecology and epidemics. The local and global stabilities of the steady states
and Hopf bifurcations with respect of interesting parameters of such models are investi-
gated. The impact of incorporating time-delays and random noise in such class of dif-
ferential equations for different types of predator-prey systems and infectious diseases
is studied. Numerical simulations, using suitable and reliable numerical schemes, are
provided to show the effectiveness of the obtained theoretical results.

Chapter 1 provides a brief overview about the topic and shows significance of the
study. Chapter 2, is devoted to investigate the qualitative behaviours (through local and
global stability of the steady states) of DDEs with predator-prey systems in case of hunt-
ing cooperation on predators. Chapter 3 deals with the dynamics of DDEs, of multiple
time-delays, of two-prey one-predator system, where the growth of both preys populations
subject to Allee effects, with a direct competition between the two-prey species having
a common predator. A Lyapunov functional is deducted to investigate the global stabil-
ity of positive interior equilibrium. Chapter 4, studies the dynamics of stochastic DDEs
for predator-prey system with hunting cooperation in predators. Existence and unique-
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ness of global positive solution and stochastically ultimate boundedness are investigated.
Some sufficient conditions for persistence and extinction, using Lyapunov functional, are
obtained. Chapter 5 is devoted to investigate Stochastic DDEs of three-species predator-
prey system with cooperation among prey species. Sufficient conditions of existence and
uniqueness of an ergodic stationary distribution of the positive solution to the model are
established, by constructing a suitable Lyapunov functional. Chapter 6 deals with stochas-
tic epidemic SIRC model with time-delay for spread of COVID-19 among population.
The basic reproduction number Rs

0 for the stochastic model which is smaller than R0 of
the corresponding deterministic model is deduced. Sufficient conditions that guarantee
the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov
functional, and conditions for the extinction of the disease are obtained. In Chapter 7,
some numerical schemes for SDDEs are discussed. Convergence and consistency of such
schemes are investigated. Chapter 8 summaries the main finding and future directions of
research.

The main findings, theoretically and numerically, show that time-delays and ran-
dom noise have a significant impact in the dynamics of ecological and biological systems.
They also have an important role in ecological balance and environmental stability of liv-
ing organisms. A small scale of white noise can promote the survival of population;
While large noises can lead to extinction of the population, this would not happen in the
deterministic systems without noises. Also, white noise plays an important part in con-
trolling the spread of the disease; When the white noise is relatively large, the infectious
diseases will become extinct; Re-infection and periodic outbreaks can also occur due to
the time-delay in the transmission terms.

Keywords: Allee effect, Bifurcation, Brownian motion, Epidemic models, Lyapunov
functionals, Predator-prey model, Sensitivity, SIRC, Stability, Stationary distribution,
Stochastic perturbations, Time-delays.



 
Title and Abstract (in Arabic) 

 
 ةئبولااو ةئیبلا مولع يف اھتاقیبطتو ةركاذلا تاذ ةیئاوشعلا ةیلضافتلا تلاداعملا

 صخلملا

 ةجذمنلا يف عساو قاطن ىلع )Delay Differential Equations, DDEs( ةركاذلا تاذ ةیلضافتلا تلاداعملا مدختست

 تایكیمانید لاثملا لیبس ىلع ،ةایحلا مولع تلااجم فلتخم يف تاؤبنتلاو  (Mathematical Modeling)ةیضایرلا

 فئاظو ملعو ، (Immunology)ةعانملا ملعو ، (Epidemiology)ةئبولأا ملعو ، (Dynamical Systems)ناكسلا

 جذامنلا يف ،(Memory) ةركاذلا طبترت ثیح . (Neural Networks) ةیبصعلا تاكبشلاو ، (Physiology)ءاضعلأا

 ةیلخلا ةباصإ نیب مزلالا تقولا كلذكو ،ةایحلا ةرود لحارم لثم ةیفخلا تایلمعلا ضعب لیثمتل ،ةینمزلا تارتفلل ةیضایرلا

 ةیلضافتلا تلاداعملا يف ھنا ركذلاب ریدجلاو  .ةیعانملا تارتفلاو ،ةیدعملا تارتفلل ةینمزلا ةدملاو ،ةدیدج تاسوریف جاتنإو

 تلاداعملا يف نكلو Current Time)( ينلآا تقولا يف اھتاقتشمو State Variables)( تاریغتملا   ةلاحلا مییقت متی ،ةیداعلا

 (Memory/History)ةیضاملا ةركاذلا /خیراتلا ىلع و ينلآا تقولا يف ماظنلا روطت دمتعی ، DDEs ةركاذلا تاذ ةیلضافتلا

 ةمظنلأا لیثمتل ةتنورمو جذومنلا تایكیمانید ریبك لكشب نسحی يلضافت يضایر جذومن يف ةینمزلا تاریخأتلا هذھ لثم لاخدإ .

 .ةایحلا مولع يف ةدقعملا

 Environmental Stochastic) ةیئاوشعلا ةیئیبلا تابارطضلاا ضعب ھجاوت دق ةیعیبطلا رھاوظلا نا مولعملا نم

Perturbations/Noise) ، عبتت لا رھاوظلا هذھ ةداعو ،خلإ خلإو ةبوطرلا ،ةرارحلا تاجردو سقطلا تاریغت ریثأت لثم 

 ىلإ اًدبأ لصت لا  و ةیناكسلا ةفاثكلا حجرأتت ثیح ،ةطسوتملا میقلا ضعب لوح يئاوشع لكشب حجرأتت اھنكلو ةیعطقلا نیناوقلا

 ةیلضافتلا تلاداعملا مادختساب ةیضایرلا جذامنلا ضعب ةلاسرلا هذھ يف حرتقن ،كلذ ىلع ءًانبو .تقولا مدقت عم ةتباث ةمیق

 رفوت اھنأ ثیح ،ةایحلا و ةئیبلا مولع يف ةیعیبطلا رھاوظلا ضعب ةجذمنو لیثمتل كلذو )SDDEs( ةركاذلا تاذ ةیئاوشعلا

 ةیئاوشعلا ةیلضافتلا تلاداعملا رابتعا نكمی (Deterministic).يئاوشعلا ریغ اھتاریظنبً ةنراقم ةیعقاولا نم ةیفاضإ تاجرد

  (Stochastic  Differential Equations, SDDEs) ةیئاوشعلا ةیلضافتلا تلاداعملا میمعت ةباثمب SDDEs ةركاذلا تاذ

 ةیمكلاو ةیعونلا صئاصخلا و تامسلا نع ةعسوم ةسارد ةحورطلأ هذھ مدقت ثیح .ةركاذلا تاذ ةیلضافتلا تلاداعملا و

(Qualitative and Quantitative Features)  ةمھملا اھتاقیبطتو ةركاذلا تاذ ةیئاوشعلاو ةیمتحلا ةیلضافتلا تلاداعملل 

 .ةئبولأاو راشتناو ةئیبلا مولع يف ةددعتملا و

 لصفلا صصخیو .ةساردلا هذھل ةیمھأو ةلاسرلل ةماع ةمدقم لولأا لصفلا مدقی ،لوصف ةینامث نم ةحورطلأا هذھ نوكتت  

 نواعت دوجو عم دیصلا ةلاح يف  (Prey-Predator Systems)سرتفملاو ةسیرفلا ةمظنلأ ةیعونلا صئاصخلا ةساردل يناثلا

 ةینمزلا تارتفلا نم ،DDEs تایكیمانید عم ثلاثلا لصفلا لماعتی .DDEs جذامن مادختساب كلذو ةسرتفملا تاناویحلا نیب

 نیب ةرشابم ةسفانم كانھو ،Allee تاریثأتل ةضرع نیتسیرفلا اتلك ومن نوكی ثیح ،سرتفملاو ةسیرفلا ةمظنلأ ،ةددعتملا

 تاذ ةیئاوشعلا ةیلضافتلا تلاداعملا تایكیمانید نع ةسارد عبارلا لصفلا مدقی .كرتشم سرتفم اھیدل يتلا ةسیرفلا تاذ عاونلأا

 ضعبل لصوتلا ىلإ ةفاضلإاب ،يباجیلإا لحلا درفتو دوجو نم ققحتلا مت ثیح  .ةسیرفلا سرتفملا ماظنل   SDDEsةركاذلا

ix



 
 عاونلأا تاذ سرتفملاو ةسیرفلا ةمظنأ ةساردل سركم سماخلا لصفلا .سرتفملاو ةسیرفلا ضارقناو دوجول ةیفاكلا طورشلا

 حبكت نأ ةیئاوشعلا ءاضوضلل نكمی ھنأ نیبت ثیح . DDEsجذامن مادختساب كلذو سئارفلا عاونأ نیب نواعت دوجو عم ةثلاثلا

 يئاوشعلا يئابولا SIRC جذومن ةسارد لوانتی ،سداسلا لصفلا .يمتحلا ماظنلا يف ةدودحم ریغ اھنوك ةلاح يف ،عاونلأا راجفنا

 طابنتسا مت ثیح  .عمتجملا لخاد (COVID-19) ٢-انوروك سوریف راشتنا ةیكیمانید ةساردـل كلذو ةینمزلا تاریخأتلا عم

 لولحلا ةسارد عباسلا لصفلا مدقی .ضرملا راشتنا ىلع ةرطیسلا ةیناكمإو رارقتسلاا ةلاح يلا لوصولل ةمزلالا طورشلا

 صخلی امنیب ،ةیبیرقتلا لولحلا رارقتسلا ةمزلالا طورشلاو (SDDEs) ةیئاوشعلا ةیلضافتلا تلاداعملل ةیبیرقتلاو ةیددعلا

 .ثحبلل ةیلبقتسم تاھاجتلااو جئاتنلا مھا نم ھیلإ انلصوت ام نماثلا لصفلا

 اھریغ ىلع (SDDEs) ةركاذلا تاذ ةیئاوشعلا ةیلضافتلا تلاداعملا ةیلضفأ ،اًیددعو اًیرظن ،اھیلإ انلصوت يتلا جئاتنلا رھظت

 يف امًھم ارًود اھل نأ امك .ةیجولویبلاو ةیئیبلا ةمظنلأا تایكیمانید يف ریبك ریثأت اھل نا ثیح ،ىرخلأا ةیضایرلا جذامنلا نم

  ةیحلا تانئاكلا ءاقب ززعی ،Small Noise) فیفطلا جیجضلا دوجو نا تبث ثیح  .ةیحلا تانئاكلل يئیبلا رارقتسلااو نزاوتلا

(Persisting)  ضارقنا ىلإ يدؤی نأ نكمی ریبكلا جیجضلا دوجو نیح يف اما ؛ (Extinction)   عاونلأا ضعب (some 

species) .   ھنا امك ،يئیب ماظن يأ تایكیمانید ىلع رثؤم يمتح بناجو ةدیفم ةیئیبلا ةیئاوشعلا تابارطضلاا نا دجو امك 

 تایكیمانید ةجذمن يف ةركاذلا تاذ ةیئاوشعلا ةیلضافتلا تلاداعملا مادختسا ،مث نم و .لمتحم يناكس راجفنا عمقل لاعف رود ھل

 تابارطضلاا و ةركاذلا دقتفت يتلا ىرخلأا ةیضایرلا جذامنلا نم اھریغ نم لضفا ةئبولأا راشتنا و ةیكیمانید و ناكسلا

  .ةیئاوشعلا

 ،SIRC ،سرتفملاو ةسیرفلا جذامن ،ةیئابو جذامن ،ةینواربلا ةكرحلا ،بعشتلا ،Allee ریثأت :ةسیئرلا ثحبلا میھافم

 .ةینمزلا تاریخأتلا ،ةیئاوشعلا تابارطضلاا تباثلا عیزوتلا ،رارقتسلاا
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Chapter 1: Delay Differential Equations with Population Problems

1.1 Introduction

In this chapter, some preliminaries about deterministic Delay Differential Equa-

tions (DDEs) and Stochastic Delay Differential Equations (SDDEs) are introduced. Sec-

tion 2 briefly discusses the existence and uniqueness of the solutions of DDEs. Section

3 provides some concepts about the stability of DDEs. Sections 4 and 5 provide some

background about the randomness, environmental noise and the existence of the solutions

of SDDEs. Section 6 provides some main concepts about the stability of SDDEs. The last

Section introduces the main objectives and significance of the study.

DDEs are a class of differential equations that have received a considerable at-

tention and been shown to model many real life problems, traditionally formulated by

systems of Ordinary Differential Equations (ODEs), more naturally and more accurately.

Such class of DDEs are widely used for analysis and predictions of systems with memory

such as population dynamics, epidemiology, immunology, physiology and neural net-

works [5, 20, 74, 107, 114]. In ODEs, the unknown function and its derivatives are

evaluated at the same time instant. However, in a DDE the evolution of the system at

a certain time instant, depends on the state of the system at an earlier time. The delay can

be related to the duration of certain hidden processes like the stages of the life cycle, the

time between infection of a cell and the production of new viruses, the duration of the

infectious period, the immune period, and so on; See [111, 112].

In ecological systems, the individuals of the prey and predator species usually

pass through various life stages during their entire life span and the involved morphology

differs from one stage to another. Construction of delay differential equation models is

a well known modelling strategy to take care of the stage specific activities which are

responsible for significant change in the dynamics of interacting populations. In various

existing literature, the biological processes like incubation, gestation, maturation, reaction
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time, etc., are taken care of by introducing relevant time-delay parameters to the models

for predator-prey and other types of interacting populations. Incorporating time-lags (or

time-delays) in biological models makes the systems much more realistic, as it can desta-

bilize the equilibrium points and give rise to a stable limit cycle, causing oscillations to

grow, and enriching the dynamics of the model. Time-delays have been considered and

extremely studied by many authors in predator-prey models and biological systems; See

[15, 16, 117].

Most of the studies in ecology utilize deterministic models, which of course sup-

ported the researchers with useful results for protecting species. In reality, natural phe-

nomena counter an environmental noise and usually do not follow strictly deterministic

laws but oscillate randomly about some average values, so that the population density

never attains a fixed value with the advancement of time [43, 118]. Ecological systems

are often subject to environmental noise, which is important factor in ecosystems, to sup-

press a potential population explosion [120].

A key question in population biology is understanding the conditions under which

populations coexist or go extinct. Extinction is one of the most important terms in pop-

ulation dynamics. A species is said to be extinct when the last existing member dies.

Therefore, extinction becomes a certainty when there are no surviving individuals that

can reproduce and create a new generation. In ecology, extinction is often used infor-

mally to refer to local extinction, in which a species ceases to exist in the chosen area

of study, but may still exist elsewhere. There are a variety of causes that can contribute

directly or indirectly to the extinction of species or group of species, such as lack of food

and space or toxic pollution of the entire population habitat, competition for food to bet-

ter adapted competitors, predation, etc. [84]. Some examples in modelling population

dynamics can be referred to [64, 84, 92, 100, 148].

In fact, stochastic perturbation factors, such as precipitation, absolute humid-

ity, and temperature, have a significant impact on the infection force of all types of

virus diseases to humans. Taking this into consideration enables a lot of authors to in-
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troduce randomness into deterministic model of biological systems to reveal the effect

of environmental variability, whether it is a random noise in the system of differential

equations or environmental fluctuations in parameters. Moreover, stochastic epidemic

models give an extra degree of realism in comparison with their deterministic models

[26, 79, 85, 134, 142, 143].

In the next Section, the existence and uniqueness of the solutions of DDEs are

discussed.

1.2 Existence and Uniqueness of Solutions for DDEs

Consider the Initial Value Problem (IVP) for the system of DDEs, with multiple

discrete time-delays, of the following form

dy(t)
dt

= f(t,y(t),y(t− τ1), . . . ,y(t− τm)), t ≥ t0,

y(t) = φ(t) t ≤ t0,
(1.1)

where y(t) ∈ Rn, f is a nonlinear smooth function, with respect to all of its arguments,

depending on delays τi > 0, i = 1, . . . ,m. Time-delay τi could be a constant, or variable

in time τi(t) (i = 1, . . . ,n) , or even state-dependent τi = τi(t,y(t)). If the right hand

side of (1.1) is a function of y′(t), then it be called Neutral Delay Differential Equations

(NDDEs). The function φ(t) is defined in [ν , t0], where ν = min
1≤i≤n

{
min
t≥t0

(t − τi)
}
. For

simplicity, consider DDEs of the form

dy(t)
dt

= f(t,y(t),y(t− τ(t))), t ≥ t0,

y(t) = φ(t) t ≤ t0.
(1.2)

In general, initial discontinuity y′(t0)+ = f(t0,y(t0),φ(t0− τ)) may differ from the value

φ ′(t0)−; and its propagation from initial point t0 along the integration interval and gives

rise to subsequent discontinuity points where the solution is smoothed out more and more.

On the other hand, it is well-known that every step by step numerical method for the initial
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value problem attains its own accuracy order provided that the solution is sufficiently

smooth at each step interval [tn, tn+1]; More details are discussed in Appendix A.

Now, some essential results for the DDEs (1.2) will be introduced (see [17, 39]).

Theorem 1.2.1. (Local existence) Consider the equation

dy(t)
dt

= f(t,y(t),y(t− τ(t))) t0 ≤ t < tb

y(t0) = y0.

(1.3)

Assume that the function f(t,u,v) is continuous with respect to t on A⊆ [t0, tb)×Rn×Rn

and Lipschitz continuous with respect to u and v. Moreover, assume that the delay function

τ(t)≥ 0 is continuous in [t0, tb), τ(t0) = 0 and, for some ξ > 0, t−τ(t)> t0 in the interval

(t0, t0 + ξ ]. Then the Equation (1.3) has a unique solution in [t0, t0 + δ ) for some δ > 0

and this solution continuously depends on the initial data.

To show the global existence theorem, under the same assumptions of Theorem

1.2.1, the solution can be carried on until a maximal solution defined in [t0, l), with t0 <

l ≤ tb.

Theorem 1.2.2. (Global existence) Under the assumptions of Theorem 1.2.1, if the unique

maximal solution of (1.3) is bounded, then it exists on the entire interval [t0, tb).

Therefore, the following lemma is illustrated to define a bound for the solution.

Lemma 1.2.3. Under the assumptions of Theorem 1.2.1, assume that the function f(t,u,v)

satisfies the condition

‖f(t,u,v)‖ ≤M1(t)+M2(t)(‖u‖+‖v‖)

in [t0, tb)×Rn×Rn, where M1(t) and M2(t) are continuous positive functions on [t0, tb).

Hence, the solution of (1.3) exists and is unique on the entire interval [t0, tb).
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Driver [37] proved the above results with multiple delays. Particularly, the global

existence, uniqueness and continuous dependence on the initial data for the solution of

the linear DDEs

y
′
(t) =A0y(t)+

r

∑
i=1

Ai(t)y(t− τi(t)), t ≥ t0

y(t) =φ(t), t ≤ t0,

for any continuous functions Ai(t), i = 0, . . . ,r, and φ(t), and for any set of continuous

delays τi(t)≥ 0.

Most DDEs don’t have analytic solutions, so it is generally essential to resort to

numerical methods (See Appendix A). For linear DDEs with constant delay, considering

solutions of exponential form; see [35]. Now, consider a scalar linear DDE of the form

dy
dt

= µ1y(t− τ)+µ0y(t), t ≥ 0,

y(t) = φ(t), t ∈ [−τ,0].
(1.4)

Let the solution y(t) =Ceλ t , where C is constant; then substituting it into Equation (1.4)

gives

Cλeλ t = µ0Ceλ t +µ1Ceλ (t−τ), (1.5)

which can be simplify to

(λ −µ0)eλτ −µ1 = 0, (1.6)

Equation (1.6) is the characteristic equation and the root λi of (1.6) gives a solution to

Equation (1.4) in the form of Ceλit . The following Theorem [18] illustrates the general

solution of (1.6).

Theorem 1.2.4. Assume that φ(t) is C [t0− τ, t0], and let {λi} be a sequence zeros of
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Equation (1.6) arranged in order of decreasing real parts (or of increasing imaginary

parts or absolute values). Then

y(t) =
∞

∑
i=1

pi(t)eλit , t ≥ t0, (quasi-polynomial), (1.7)

is the solution of Equation (1.4), where pi(t) is a polynomial of degree less than the

multiplicity of the root {λi}.

The above approach, is not a practical method for solving DDEs. However, it

provides useful information about solutions to DDEs. The following example affords the

basic theory for the simplest method for solving DDEs, which is the method of steps [17].

Example 1.2.1. Assume a special case of (1.4) when µ0 = 0. Therefore, Equation (1.4)

becomes

dy
dt

= µ1y(t− τ), t ≥ 0,

y(t) = φ(t), t ∈ [−τ,0].

(1.8)

Let µ1 =−1, τ = 1 and φ(t) = 1+ t; In the interval [0,1], one obtains

y1(t) = y(0)−
∫ t

0
sds = 1− t2

2
,

in the interval [1,2], one gets

y2(t) = y(1)−
∫ t

1
(1− (s−1)2

2
)ds =

(t−1)3

6
− t +

3
2
,
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similarly, in the interval [2,3], the solution is

y3(t) =−
1
3
−
∫ t

2

((t−2)3

6
− t +

5
2

)
ds

=
8
3
− (t−2)4

24
+

t2

2
− 5

2
t.

Now, one can check for discontinuity in the solutions. At t = 0, φ(0) = y1(0) = 1, but

φ ′(0) = 1 6= y
′
1(0) = 0. Thus, there is a discontinuity at y′(0). At t = 1, y1(1) = y2(1) = 1

2 ,

y
′
1(1) = y

′
2(1) =−1, but y

′′
1(1) =−1 6= y

′′
2(1) = 0. Thus, there is a discontinuity at y′′(1).

Similarly, at t = 2, there is a discontinuity at y′′′(3).

Applying Laplace transformation [18] to (1.8) also provides some useful facts

about the solutions but do not mostly acquire explicit solutions. The Laplace transform

L(y) of y(t) is denoted by ¯Y (s), where ¯Y (s) =
∫

∞

0
y(t)e−stdt.

By taking Laplace transform of y′(t) =−y(t−1), one obtains

∫
∞

0
y′(t)e−stdt =

∫
∞

0
−y(t−1)e−stdt

s ¯Y (s)−1 =−
∫

∞

−1
y(w)e−s(w+1)dw

=−e−s
∫

∞

0
y(w)e−swdw− e−s

∫ 0

−1
y(w)e−swdw

=−e−s ¯Y (s)− e−s
∫ 0

−1
(w+1)e−swdw

(s+ e−s) ¯Y (s) = 1− e−s[− 1
s2 −

1
s
+

es

s2 ]⇒
¯Y (s) =

1+ e−s

s + e−s−1
s2

s+ e−s .

Thus, y(t) can be found by the following inverse transform

y(t) = L−1
[1+ e−s

s + e−s−1
s2

s+ e−s

]
.

Next, some stability criteria of DDEs are discussed.
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1.3 Stability of Equilibria and Lyapunov Functions for DDEs

Definition 1.3.1. [12] The solution y(t) of (1.2) is stable if, given ε > 0, there exists

∆≡ ∆(ε) such that supt∈[t0−τ,t0] |u(t)−φ(t)| ≤ ∆ and u(t) is also a solution of (1.2), then

δy(t) := u(t)−y(t) is uniformly bounded for t ≥ t0 and supt≥t0 |δy(t)| ≤ ε. The solution

y(t) is asymptotically stable if it is stable and |δy(t)| → 0 as t → ∞ for all ∆ sufficiently

small.

There are two standard approaches for stability theory [72, 73], the first is stability

in variation (first approximation), and the second is Lyapunov theory. First, stability in

variation approach are introduced, which is based on local linearization of the DDE [89].

Consider a system of DDEs with multiple constant delays

dy
dt

= f(y(t),y(t− τ1), . . . ,y(t− τm)), (1.9)

where y(t) ∈ Rn, f : Rn(m+1)→ Rn is a nonlinear smooth function depending on delays

τi > 0, i = 1, . . . ,m. An equilibrium, y∗(t) ≡ y∗, of (1.9) is a solution of the nonlinear

algebraic system f(y∗,y∗, . . . ,y∗), which is solved by Newton iteration starting from an

initial guess y∗. The local asymptotic stability of y∗ is found out through the linearization

of (1.9) around y∗, i.e. through the following variation equation

du
dt

= A0u(t)+
m

∑
i=1

Aiu(t− τi), (1.10)

such that Ai stands for the partial derivatives of f with respect to the ith variable, i.e. Ai :=
∂ f
∂yi

∣∣∣
(y∗,y∗,...,y∗)

, i = 0,1, . . . ,m. The variational Equation (1.10) leads to the characteristic

equation,

det
(

λ I−A0−
m

∑
i=1

Aie−λτi
)
= 0, (1.11)
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where I is the identity matrix and λ ∈C. The local asymptotic stability of the equilibrium

y∗ is determined by the real parts of the characteristic roots λ , therefore, the solution is

stable if ℜ(λ ) is negative for all λ and it is unstable with ℜ(λ ) is positive. The number

of roots for Equation (1.11) could be countably infinite. However, the number of roots in

any right half-plane ℜ(λ )> η , η ∈ℜ, is finite such that ℜ(λ j)→−∞ as j→ ∞.

Generally, a bifurcation (or threshold point) occurs when a real characteristic root

passes through zero and a Hopf bifurcation occurs when a pair of complex conjugate char-

acteristic roots passes the imaginary axis; While a transcritical bifurcation occurs when

two branches of equilibrium solutions intersect. A periodic solution y∗(t) is a solution

that restates itself after a finite period T i.e., y∗(t + T ) = y∗(t) for all t > 0. The local

asymptotic stability of the periodic solution is determined by the time integration opera-

tor; which integrates the variational Equation (1.10) around y∗(t) from time t = 0 over the

period. This operator is also called the monodromy operator and its eigenvalues (which

are independent of the starting point t = 0) are called Floquet Multipliers. Additionally,

if T ≥ τ then the oprator is compact. The periodic solution is stable if all multipliers

(except the trivial one) have modulus smaller than one and it is unstable if there exists a

multipliers with modulus larger than one [40].

Example 1.3.1. To study the qualitative behaviour of the linear DDE, recall Equation

(1.4)

dy
dt

= µ1y(t− τ)+µ0y(t), t ≥ 0. (1.12)

The aim is to investigate the stability around the equilibrium solution y = 0. Consider the

exponential solution y(t) =Ceλ t , where C is constant and the eigenvalue λ are solutions

of the characteristic equation

λ −µ0−µ1e−λτ = 0, (1.13)
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which is a transcendental equation. Therefore, y = 0 is asymptotically stable if all eigen-

values of (1.13) have negative real parts. Let λ = ζ0 + iζ1. Substituting in the character-

istic Equation (1.13) then separating the real and the imaginary parts, one obtains

ζ0−µ0−µ1e−ζ0τ cosζ1τ = 0, ζ1 +µ1e−ζ0τ sinζ1τ = 0. (1.14)

Notice that when τ = 0, the eigenvalue of the characteristic Equation (1.13) has a negative

real number if λ = µ0 + µ1 < 0. For fixed τ > 0 the boundaries of the domains of the

(µ0,µ1)−plane are formed by the line µ1 =−µ0 and the parametric curve µ0 = ζ1 cotζ1τ ,

µ1 = −ζ1/sinζ1τ where ζ1 ∈ R, for which ζ0 = 0. Therefore, the stability condition is

µ0 ≤−|µ1|, that is independent of τ > 0; see Figure 1.1, which shows the stability region

of (1.12) when τ = 1. For complex-valued µ0,µ1, the solution are stable if |µ1|<−ℜ(µ0).

Restricting conditions on τ such that ℜ(λ ) changes from negative to positive. By

the continuity, if λ changes from µ0 +µ1 to a certain value such that ℜ(λ ) = ζ0 > 0 as τ

increases, there must be some threshold value of τ , say τ∗, at which ℜλ (τ∗) = ζ0(τ
∗) = 0;

In this case the characteristic Equation (1.13) must have a pair of purely imaginary roots

±iζ ∗1 , ζ ∗1 = ζ ∗1 (τ
∗). Therefore, having −µ0−µ1 cosζ ∗1 τ = 0, which implies

τk =
cos−1(−µ0/µ1)√

µ2
1 −µ2

0

+
2πk√

µ2
1 −µ2

0

,k ∈ Z. (1.15)

Noting that ζ ∗1 =
√

µ2
1 −µ2

0 > 0; Thus, when τ = τ∗ = minτk, Equation (1.13) has a

pair of purely imaginary roots. When 0 < τ < τ∗, all roots of (1.13) have negative real

parts then the equilibrium y = 0 is asymptotically stable. if τ > τ∗, then y = 0 is unsta-

ble. Assume λ (τ) = ζ0(τ)+ iζ1(τ) the root of Equation (1.13) satisfying ζ0(τk) = 0 and
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ζ1(τk) = ζ ∗1 , k = 0,1,2, . . . . In which the transversality condition as following

dℜ(λ )

dτ

∣∣∣
τ=τ∗

=
dζ0

dτ

∣∣∣
τ=τ∗

= (ζ ∗1 )
2 > 0, j = 0,1,2, . . . .

A Hopf bifurcation occurs at y = 0 with a period given by T = 2π√
µ2

1−µ2
0
, Figure 1.2 shows

a stable solution for Equation (1.12) when τ = 0.8 < τ∗; Periodic solution where a Hopf

bifurcation occurs as τ = τ∗ = 1.209; the solution of (1.12) becomes unstable when τ =

1.28 > τ∗. Now, one may discuss the stability of (1.12) when µ0 = 0 i.e. pure DDE,

µ
0

-5 -4 -3 -2 -1 0 1

µ
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

(1/τ,-1/τ)

µ
1
=µ

0

µ
1
=-µ

0

Stability Region

Figure 1.1: Stability region for scalar DDE y′(t) = µ1y(t−τ)+µ0y(t). Red line gives the real root
crossing µ1 =−µ0, while the blue line gives the imaginary root crossing; the dash line represents
the equation µ1 = µ0

Recall the Equation (1.8)

dy
dt

= µ1y(t− τ), (1.16)

Therefore the characteristic Equation of (1.16) is

λ −µ1e−λτ = 0, (1.17)
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Time t
0 5 10 15 20 25 30 35 40 45 50

y
(
t
)

-3

-2

-1

0

1

2

3
τ=0.8
τ=1.209
τ=1.28

Figure 1.2: Numerical simulations for DDE y′(t) = µ1y(t− τ)+µ0y(t). With µ1 =−2 and µ0 =
−1, where the initial function φ(t) = 1+ t, when τ = 0.8 the steady state y = 0 is stable; When
τ = τ∗ = 1.209 a Hopf bifurcation occurs; The solution of (1.12) becomes unstable when τ =
1.28 > τ∗

First, suppose that λ is real, for µ1 > 0 the equilibrium y = 0 is unstable; For µ1 < 0, one

can plot z = λ and z = µ1eλτ , when τ = 1; there are three cases; single intersection when

µ1 = µ∗1 = −e−1 when λ = −1, for µ1 ∈ [µ∗1 ,0] there are two real negative eigenvalues,

for µ1 < µ∗1 there are no real eigenvalues; See Figure 1.3. Assume that λ = ω0 + iω1 is

complex, in the same manner for studying the stability for linear case one may have,

τ j =
π

2ω∗1
+

kπ

ω∗1
, j ∈ Z, (1.18)

noting that ω∗1 = −µ1 > 0; Thus, when τ = τ ′ = minτ j, Equation (1.17) has a pair of

purely imaginary roots. When 0 < τ < τ ′, all roots of (1.17) have negative real parts then

the equilibrium y = 0 is asymptotically stable; if τ > τ ′, then y = 0 is unstable. Assume

λ (τ) =ω0(τ)+ iω1(τ) the root of Equation (1.17) satisfying ω0(τ j) = 0 and ω1(τ j)=ω∗1 ,
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λ

-2 -1.5 -1 -0.5 0 0.5 1

z

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 1.3: Number of real eigenvalues for the characteristic equation of DDE y′(t) = µ1y(t− τ).
Single intersection when µ1 = µ∗1 =−e−1 when λ =−1, for µ1 ∈ [µ∗1 ,0] there are two real negative
eigenvalues, for µ1 < µ∗1 there are no real eigenvalues

j = 0,1,2, . . . . The transversality condition

dℜ(λ )

dτ

∣∣∣
τ=τ ′

=
dω0

dτ

∣∣∣
τ=τ ′

= (ω∗1 )
2 > 0, j = 0,1,2, . . . .

When τ = π

2ω∗1
, a Hopf bifurcation occurs at y = 0.

Noting from Figure 1.2 that the large time delay can induce instability and cause

the solution to fluctuate when the time delay is larger than a critical value, the time delay

can induce a stable limit cycle generated through the Hopf bifurcation and larger time

delay can increase the amplitude of the oscillating orbits of the solution.

1.3.1 Lyapunov theory approach

Now, the author introduce the Lyapunov theory approach; by considering a more

general type for DDE (1.9) with one delay. Thus, a functional delay differential system is
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given by

ẏ(t) = f(t,yt), t ≥ t0,

yt(θ) = y(t +θ), −τ ≤ θ ≤ 0,

f(t,0)≡ 0, yt0 = φ .

(1.19)

Let Cn : [−τ,0]→Rn be the set of continuous functions, where τ > 0 is fixed. Suppose t ∈

R and y : [t−τ, t]→Rn is continuous. Define yt ∈Cn by yt(θ) = y(t+θ) for θ ∈ [−τ,0],

where φ ∈ Cn, such that one may consider the existence and uniqueness of solutions,

without loss of generality, the solution yt = 0 is an equilibrium. In this approach, the

idea is to consider a classical positive definite Lyapunov function V (t,y(t)), such that its

derivative with respect to time along the trajectories of System (1.19) is negative definite.

This concept is formalized in the following theorems.

Theorem 1.3.1. [72] Let u1, u2 and u3 : R+→ R+ be nondecreasing functions such that

u1(θ) and u2(θ) are strictly positive for all θ > 0. Assume that the vector field f of

(1.19) is bounded for bounded values of its arguments. If there exists a continuous and

differentiable function V : R×Rn→ R+ such that:

i) u1(‖φ(0)‖)≤V (t,φ)≤ u2(‖φ‖),

ii) V̇ (t,φ)≤−u3(‖φ(0)‖) for all trajectories of (1.19) satisfying

V (t +θ ,φ(t +θ))≤V (t,φ(t)), θ ∈ [−τ,0], (1.20)

then the solution yt = 0 is uniformly stable for (1.19).

Additionally, if u3(θ)> 0 and there exists a strictly increasing function u4 : R+→

R+ such that u2(θ)> θ as long with i) and ii), verifying that

V (t +θ ,y(t +θ))≤ u4(V (t,y(t))), θ ∈ [−τ,0], (1.21)
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such a function V is called Lyapunov-Razumikhin function and the solution yt = 0 is uni-

formly asymptotically stable for System (1.19). Commonly, the functions u4 are consid-

ered as u4 = N θ where N is a constant strictly greater than 1. The Lyapunov functions

in Razumikhin approach are of the form

V (t) = yT Py(t), (1.22)

where P is a symmetric positive definite matrix of dimension n. Thus Equation (1.22)

becomes

yT (t +θ)Py(t +θ)≤N yT Py(t), θ ∈ [−τ,0]. (1.23)

Theorem 1.3.2. [72] Let u1, u2 and u3 : R+ → R+ be increasing functions such that

u1(θ) and u2(θ) are strictly positive for all θ > 0 and u1(0) = u2(0) = 0. Assume that

the vector field f of (1.19) is bounded for bounded values of its arguments. If there exists

a continuous and differentiable function V : R×C [−τ,0]→ R+ such that i) and ii) of

Theorem 1.3.1 satisfied then V̇ (t,φ) = lim
ε→0+

sup
V (t + ε,y(t + ε))−V (t,y(t))

ε
. Such that,

the solution yt = 0 of (1.19) is uniformly stable. Moreover, if u3(θ)> 0, then the solution

yt = 0 is uniformly asymptotically stable for (1.19).

Example 1.3.2. Consider the linear delay differential equation

ẏ(t) =−µ1y(t− τ)−µ0y(t), t ≥ t0,τ > 0, (1.24)

where µ0 > 0 and µ1 are constants. To derive stability conditions for (1.24), one may

introduce a functional V : R×C [−τ,0]→ R as follows

V (φ) =
φ 2(0)

2
+

µ0

2

∫ 0

−τ

φ
2(θ)dθ .
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To find V̇ , utilizing Theorem 1.3.2, by simple computation, one obtains

V̇ (φ) =−µ0

2
φ

2(0)−µ1φ(0)φ(−τ)− µ0

2
φ

2(−τ). (1.25)

The right hand side of (1.25) is a quadratic form in (φ(0),φ(−τ)). Thus, one may have

to find parametric restrictions in which this quadratic form is positive, such that µ2
0 ≥ µ2

1

and positive definiteness if µ2
0 > µ2

1 ; which implies region of stability as µ0 ≥ |µ1| and

asymptotic stability as µ0 > |µ1|.

Next, some preliminaries for SDDEs, existence and uniqueness of the solutions

and stability criteria for SDDEs are introduced.

1.4 Stochastic Delay Differential Equations

A stochastic differential equation is a differential equation whose coefficients are

random numbers or random functions of the independent variables. Just as in normal

differential equations, the coefficients are supposed to be given, independently of the

solution that has to be found. Hence stochastic differential equations are the appropriate

tool for describing systems with external noise [67]. So far deterministic delay systems

have been assumed. However, there is an increasing evidence that better consistency with

some phenomena can be provided if the effects of random processes in the system are

taken into account [9].

Biological populations are strongly affected by the random variation in their en-

vironment. An important characteristic of environmental noise is its spectrum, which

describes the variance as a sum of sinusoidal waves of different frequencies. The spec-

trum of frequencies in noise is particularly important to dynamics and persistence of the

systems [130]. However, the Brownian motion with normally distributed errors is usually

and commonly used in the continuous differential models of dynamical systems. In this

dissertation white noise type is considered; In white noise, the variance is the same at all
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frequencies. Therefore, this is the most thoroughly studied and applied form of noise.

The reason for this is that it is a simple and easily articulated model for noise. From the

observation point of view, the random effect of Brownian motion is more visualized, with

normally distributed errors [91, 103].

Definition 1.4.1. [56] Let (Ω,A ,P) be a probability space with a filtration {At}t≥0.

A one-demential (standard) Brownian motion is a real-valued continuous {At}-adapted

process {Wt}t≥0 satisfying the following properties

1. W (0) = 0 a.s. (with probability 1).

2. For 0 ≤ s < t ≤ T the random variable given by the increment W (t)−W (s) is

normally distributed with mean zero and variance t−s; equivalently, W (t)−W (s)∼
√

t− sN(0,1), where N(0,1) denotes a normally distributed random variable with

zero mean and unit variance.

3. For 0≤ s < t < u < v≤ T the increments W (t)−W (s) and W (v)−W (u) are inde-

pendent.

Indeed, the random perturbations which are present in the real world imply that

deterministic equations are often an idealization. To model the dynamics of biological de-

lay systems under random perturbations, stochastic delay differential equations (SDDEs)

are used:

dy(t) = f(t,y(t),y(t− τ))dt︸ ︷︷ ︸
(a)

+g(t,y(t),y(t− τ))dW (t)︸ ︷︷ ︸
(b)

, t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].

(1.26)

Here, y(t)= [y1(t),y2(t), . . . ,yn(t)]T , with fixed time delay, Where ψ(t) is an At-measurable

C ([−τ,0],Rn)-valued random variable such that E‖ψ‖2 < ∞; (C ([−τ,0],Rn) means that

the Banach space of all continuous paths from [−τ,0]→ Rn equipped with the supre-

mum norm ‖η‖ := sups∈[−τ,0] |η(s)|, where η ∈ C ). Term (a) is the drift term and
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the second term (b) is the diffusion term; let W (t) be an m-dimensional Brownian mo-

tion given on the filtered probability space (Ω,A ,P) with a filtration (At) satisfying the

usual condition (it is right continuous i.e. At =
⋂

s>t As and A′ contains all P-null sets).

f : C ([−τ,0],Rn)×R+ → Rn and g : C ([−τ,0],Rn)×R+ → Rn×m are assumed to be

continuous. Such that W (t) depends continuously on t ∈ [0,T ]; more details and some

necessary results can be found in Chapter 4.

Example 1.4.1. Consider Hutchinson equation [61]

dy(t)
dt

= ry(t)
(

1− y(t− τ)

K

)
. (1.27)

Here, r > 0 is the intrinsic growth rate and K > 0 is the carrying capacity of the population

and time-delay τ was considered as hatching time. One could just add a small random

perturbation σdW , which usually referred to the noise term to Equation (1.27), which

becomes

dy(t) =
[

ry(t)
(

1− y(t− τ)

K

)]
dt +σdW. (1.28)

In the Equation (1.28) the noise term does not include the dependent variable y, and

hence the equation is referred to as a SDDE with additive noise. However, it may be more

natural to consider extension from Hutchinson equation by looking at the proportionate

population change dy(t)
y(t) and adding the stochastic term to this quantity. This gives

dy(t)
y(t)

=

[(
1− y(t− τ)

K

)]
dt. (1.29)

Therefore, Equation (1.29) becomes

dy(t)
y(t)

=

[
r
(
1− y(t− τ)

K

)]
dt +σdW. (1.30)
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Multiplying by y(t) obtains the following SDDE with multiplicative noise

dy =
[

r
(

1− y(t− τ)

K

)
y(t)
]

dt +σy(t)dW. (1.31)

This implies the more natural procedure, therefore, equations with multiplicative noise

will be only considered in this thesis. Figure 1.4 shows the effect of environmental fluc-

tuations on a Hutchinson equation such that r = 0.15 and k = 1; Top Banners show sim-

ulation results for τ = 5.6 and it indicates that the population attains its steady state value

1 regardless the external noise. Hence, it fluctuates within the interval [0.95,1.15] as

σ2 = 0.01 (top-left), and as the intensities of white noise increases to σ2 = 0.05 it fluc-

tuates within [0.65,1.5] (top-right). When the magnitude of time delay is increased to a

threshold value τ = 11 (periodic oscillations) and taking σ2 = 0.01 the stochastic fluctu-

ations disappears (bottom-left), and as σ2 = 0.05 one may observe abrupt oscillation in

population (bottom-right).

Remark 1.4.1. One of the important facts about the impact of the environmental noise is

that it can suppress a potential population explosion [92, 93]; See Figure 1.5.

To illustrate this phenomena, consider Equation (1.8) with multiplicative noise

dy = µ1y(t− τ)dt +σy(t)dW. (1.32)

As µ1 > 0 the solution of (1.8) increases exponentially to infinity as t → ∞. However,

Figure 1.5 shows the effect of environmental fluctuations on (1.8), with µ1 = 0.06 and

τ = 0.4, and σ2 = 0.16.
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Figure 1.4: Numerical simulations of deterministic Hutchinson DDE (1.27) and its corresponding
SDDE (1.31). When r = 0.15 and k = 1. Top Banners show simulation results for τ = 5.6 and it
indicates that the population attains its steady state value 1 regardless the external noise. Hence,
it fluctuates within the interval [0.95,1.15] as σ2 = 0.01 (top-left), and as the intensities of white
noise increases to σ2 = 0.05 it fluctuates within [0.65,1.5] (top-right). When the magnitude of
time delay is increased to a threshold value τ = 11 (periodic oscillations) and taking σ2 = 0.01 the
stochastic fluctuations disappears (bottom-left), and as σ2 = 0.05 abrupt oscillation in population
is observed (bottom-right)

1.5 Existence and Uniqueness of the Solutions for SDDEs

Consider W (t) be a 1-dimensional Wienner process, an autonomous scalar stochas-

tic delay differential equation of the form

dy(t) = f (y(t),y(t− τ))dt +g(y(t),y(t− τ))dW (t), t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].
(1.33)

Equation (1.33) can be formulated as

y(t) = y(0)+
∫ t

0
f (y(s),y(s− τ))ds+

∫ t

0
g(y(s),y(s− τ))dW (s), (1.34)
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Figure 1.5: The impact of environmental Brownian noise that suppresses explosions in popula-
tion dynamics. Described by dy = µ1y(t − τ)dt +σy(t)dW and its corresponding deterministic
Equation (1.8).

for t ∈ [0,T ] and with y(t) = ψ(t), for t ∈ [−τ,0]. The second integral in (1.34) is a

stochastic integral in the Itô sense; If it is taken as Stratonovich integral the notation of the

form
∫ t

0 g(s,y(s))◦dW (s) is used. Let f : R×R→R, g : R×R→R and ψ : [−τ,0]→R.

Now, one may introduce the following Theorem for Equation (1.33) [10, 23].

Theorem 1.5.1. Problem (1.33) has a unique strong solution, provided that the uniform

Lipschitz condition and a linear growth bound are satisfied for both f and g.

Example 1.5.1. Consider the stochastic delay differential equation

dy(t) = µ1y(t− τ)dt +σdW (t), t ≥ 0,

y(t) = t +1, t ∈ [−τ,0].

(1.35)

Assume µ1 = −1 and τ = 1; conditions of Theorem 1.5.1 can be easily verified. Thus,
one may solve (1.35) by Itô’s formula, in the interval [0,1], so that

y1(t) = y(0)−
∫ t

0
sds+

∫ t

0
σdW (s) = 1− t2

2
+σW (t).
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In the interval [1,2], one obtains

y2(t) = y(1)+σW (1)+
∫ t

1
(−1+

(s−1)2

2
+σW (s−1))ds+

∫ t

1
σdW (s)

=
(t−1)3

6
− t +

3
2
+
∫ t

1
σW (s−1)ds+σW (t).

Similarly, in the interval [2,3], the solution is

y3(t) =−
1
3
−
∫ t

2

((t−2)3

6
− t +

5
2

)
ds+

∫ 2

1
σW (s−1)ds+σW (2)

+
∫ t

2

∫ s1−1

1
σW (s−1)dsds1 +

∫ t

2
σW (s−1)ds+

∫ t

2
σdW (s)

=
8
3
− (t−2)4

24
+

t2

2
− 5

2
t +
∫ 2

1
σW (s−1)ds+

∫ t

2

∫ s1−1

1
σW (s−1)dsds1

+
∫ t

2
σW (s−1)ds+σW (t).

Noting that
∫ t

0 σdW (s) is a martingale. Hence, E
(∫ t

0 σdW (s)
)
= 0. To find the mean

function of y(t), one can take the expectation of the solutions on their intervals as follows

E(y(t)) =



1− t2

2 , t ∈ [0,1];

(t−1)3

6 − t + 3
2 , t ∈ [1,2];

8
3 −

(t−2)4

24 + t2

2 −
5
2t, t ∈ [2,3].

Numerical methods for SDDEs are very under-studying and development. They

must usually be used carefully from methods either for deterministic DDEs, or for Stochas-

tic Ordinary Differential Equations (SODEs). Direct analysis of some methods for SD-

DEs has been considered in Chapter 7.
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1.6 Stability Criteria for SDDEs

There are at least three different types of stability for SDDEs [91]. Consider the

following scalar SDDE with W (t) be a 1-dimensional Wienner process

dy(t) = f (t,y(t),y(t− τ))dt +g(t,y(t),y(t− τ))dW (t), t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].
(1.36)

Hence, Equation (1.36) can be formulated as

y(t) = y(0)+
∫ t

0
f (s,y(s),y(s− τ))ds+

∫ t

0
g(s,y(s),y(s− τ))dW (s). (1.37)

The main ideas of pth mean stability of the trivial solution of Equation (1.37) with respect

to perturbations in ψ(.) (for 1 ≤ p < ∞) are discussed in the next definition, also with

mean square stability when p = 2.

Definition 1.6.1. [11] For some p > 0, the trivial solution of the SDDE (1.37) is called

• Locally stable in the pth mean, if for each ε > 0, there exists a δ ≥ 0 such that

E(|y(t; t0,ψ)|p)< ε whenever t ≥ t0 and E(supt∈[t0−τ,t0] |ψ(t)|p)< δ ;

• Locally asymptotically stable in the pth mean if it is stable in the pth mean and if

there exists a δ ≥ 0 such that whenever E(supt∈[t0−τ,t0]|ψ(t)|p)< δ then E(|y(t; t0,ψ)|p)→

0 for t→ ∞;

• Locally exponentially stable in the pth mean if it is stable in the pth mean and if

there exists a δ ≥ 0 such that whenever E(supt∈[t0−τ,t0]|ψ(t)|p)< δ there exists some

finite constant C and a u∗ > 0 such that

E(|y(t; t0,ψ)|p) ≤ CE(sups∈[t0−τ,t0] |ψ(s)|p)exp(−u∗(t − t0)) (t0 ≤ t < ∞). If δ is

arbitrarily large then the stability, in the above, is in each case global rather than
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local.

• (Stability in probability) The trivial solution of the SDDE (1.37) is termed stochas-

tically stable in probability, if for each e ∈ (0,1) and ε > 0, there exists a δ ≡

δ (e,ε)≥ 0 such that

P(|y(t; t0,ψ)| ≤ ε for all t ≥ t0)≥ 1− e,

whenever t ≥ t0 and supt∈[t0−τ,t0] |ψ(t)|p < δ with probability 1.

Stability conditions for SDDEs can be also stated in terms of Lyapunov function-

als, similar to the theorems for DDEs. Now, the Lyapunov theory approach for SDDEs is

discussed; First, consider a more general type for (1.26) with one delay. Thus, an Itô type

SDDEs is given by

dy(t) = f(t,yt)dt +g(t,yt)dW (t), t ≥ t0,

yt(θ) = y(t +θ), −τ ≤ θ ≤ 0,

f(t,0)≡ 0, yt0 = ψ.

(1.38)

Define yt ∈ Cn by yt(θ) = y(t +θ) for θ ∈ [−τ,0], where ψ ∈ Cn, such that the existence

and uniqueness of solutions is considered, without loss of generality, the solution yt = 0

is an equilibrium.

Theorem 1.6.1. [72] Suppose there is a continuous functional V : [t0,∞]×C [−τ,0]→R

such that for any solution of (1.38), where yt(θ) = y(t +θ) as −τ ≤ θ ≤ 0, the following

inequalities hold; such that Ci i = 1,2,3 are positive constants

V (t,yt)≥C1|y(t)|2

EV (t,yt)≤C2 sup
−τ≤θ≤0

E|y(t +θ)|2,
(1.39)
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for arbitrary t ≥ t0, s≥ t,

E[V (s,ys)−V (t,yt)]≤−C3

∫ s

t
E|y(h)|2dh. (1.40)

Then the trivial solution of (1.38) is asymptotically mean-square stable.

Example 1.6.1. Consider a SDDE of the form

dy(t) =−µ1y(t− τ)dt +µ2y(t)dW (t), t > t0, (1.41)

where µ1,µ2 are positive constants. Sufficient conditions for asymptotic mean-square

stability of (1.41) are:

0 < µ1τ < 1, µ1(1−µ1τ)>
µ2

2
2
.

To prove this, consider the functional

V (ψ) =
[
ψ(0)−µ1

∫ 0

−τ

ψ(θ)dθ

]2
+µ

2
1

∫
θ

−τ

ds
∫ 0

s
ψ

2(θ)dθ . (1.42)

By Itô formula, one obtains

dV (yt) = 2
[
y(t)−µ1

∫ t

t−τ

y(θ)dθ

]
(dy(t)−µ1y(t)dt +µ1y(t− τ)dt)

+
[
µ

2
2 y2(t)+µ

2
1 τy2(t)−µ

2
1

∫ t

t−τ

y2(θ)dθ

]
dt

= 2
[
y(t)−µ1

∫ t

t−τ

y(θ)dθ

]
(µ2y(t)dW (t)−µ1y(t)dt)

+
[
µ

2
2 y2(t)+µ

2
1 τy2(t)−µ

2
1

∫ t

t−τ

y2(θ)dθ

]
dt.
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Noting that,

2µ
2
1 y(t)

∫ t

t−τ

y(θ)dθ ≤ µ
2
1

[
τy2(t)+

∫ t

t−τ

y2(θ)dθ

]
.

Hence,

dV (yt)≤ 2µ2

[
y(t)−µ1

∫ t

t−τ

y(θ)dθ

]
y(t)dW (t)− [2µ1(1−µ1τ)−µ

2
2 ]y

2(t)dt. (1.43)

Integration of both parts of (1.43) from s ∈ [t0, t] to t, then taking the expectation yields

E[V (yt)−V (ys)]≤−[2µ1(1−µ1τ)−µ
2
2 ]
∫ t

s
Ey2(h)dh. (1.44)

From inequality (1.44), one gets

EV (yt)≤ EV (yt0), t ≥ t0. (1.45)

Therefore,

E
[
y(t)−µ1

∫ t

t−τ

y(θ)dθ

]2
≤ EV (yt0),

∫
∞

t0
Ey2(s)ds < ∞. (1.46)

Inequalities (1.46) and condition µ1τ < 1 implies mean-square stability, since

sup
t≥t0

Ey2(t)≤C1 sup
−τ≤θ≤0

Eψ
2(θ). (1.47)

From inequalities (1.46) and since limt→∞Ey2(t)= 0; this implies asymptotic mean square

stability.
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1.7 Main Objectives and Significance of the Research

The main objective of this research is to study the qualitative and quantitative

features of deterministic and stochastic DDEs with biological systems. The study includes

the following.

• Develop a class of DDEs to study and analyze modelling ecological and epidemic

systems.

• Investigate the impact and role of time-delays in the dynamics of the models.

• Study the impact of Allee effect in modeling predator-prey systems and in the com-

plexity of the model.

• Study the qualitative features of SDDEs and investigate the impact of environmental

fluctuations on the dynamical behaviour of the proposed models.

• Provide and select the suitable numerical techniques for solving the resulting mod-

els of DDEs and SDDEs.

1.7.1 Research significance

Recently, there has been a worldwide movement aimed at enhancing the under-

standing of ecological stability. However, many significant problems are still unsolved.

Most of the studies in population dynamics models utilize deterministic models. However,

the natural growth of populations is always affected by stochastic perturbations which

should be taken into account in the process of mathematical modelling. It is observed that

small scale of white noise can promote the survival of population; while large noises can

lead to extinction of the population, this would not happen in the deterministic systems

without noises. Studying the existence of an ergodic stationary distribution is an interest-

ing problem, the key difficulty is how to construct a suitable stochastic Lyapunov function

and a bounded domain.

In addition, this research sheds some light on the influence of random noises that
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can suppress the explosion of the species, where the solutions of the undisturbed system is

unbounded. Furthermore, introduction of noise in the deterministic epidemic models can

modify the basic reproductive number giving rise to a new threshold quantity, in which

the disease dies out more rapidly along with intensity of white noise is large.

There are many models available in the literature representing the predator-prey

interactions. However, studying the impact of time delays and additive Allee effect in

multi-species models is still lacking. This is significant because establishing such a model

with theses properties exhibits rich dynamics behaviour such as bistability of equilibria

and Hopf bifurcation. Additionally, sensitivity analysis to evaluate the uncertainty of the

state variables to small changes in the Allee parameters and time delays are investigated.

Throughout the thesis, examples are contributed to demonstrate the results and are aug-

mented with Matlab numerical simulations.

This dissertation consists of 8 chapters. Chapter 2 introduces a predator-prey

model with time delay and hunting cooperation on predators. Cooperative hunting param-

eter is assumed with a Holling type II functional response with delay. The boundedness of

the system has been shown, and a local and global stability analysis of the interior equi-

librium have been implemented. The critical values of delays, where the Hopf bifurcation

occurs are obtained. Chapter 3 provides a system of DDEs of two-prey one-predator sys-

tem, where the growth of both preys populations subject to Allee effects, and there is a

direct competition between the two-prey species having a common predator. Sufficient

conditions for local stability of positive interior equilibrium and existence of Hopf bifur-

cations in terms of threshold parameters τ∗1 and τ∗2 are obtained. A Lyapunov functional

is deducted to investigate the global stability of positive interior equilibrium. Sensitivity

analysis to evaluate the uncertainty of the state variables to small changes in the Allee

parameters and time delays are also investigated.

Chapter 4 is devoted to investigate the dynamics of SDDEs for predator-prey sys-

tem with hunting cooperation in predators. Existence and uniqueness of global positive

solution and stochastically ultimate boundedness are investigated. Some sufficient condi-
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tions for persistence and extinction, using Lyapunov functional, are obtained.

Chapter 5 deals with stochastic DDEs of three-species predator-prey systems with

cooperation among prey species. The proposed model takes into consideration that the

intrinsic growth rate of preys and the death rate of predator are subject to environmental

noise. Sufficient conditions of existence and uniqueness of an ergodic stationary distribu-

tion of the positive solution to the model have been established, by constructing suitable

Lyapunov function. Sufficient criteria for extinction of the predator populations are also

obtained. These conditions are expressed in terms of the threshold parameter T s
0 which

rely strongly upon the Brownian motion.

Chapter 6 is devoted to a stochastic SIRC epidemic model for COVID-19 with

time-delay. For the stochastic analysis, existence and uniqueness of positive global solu-

tions are investigated. Some interesting sufficient conditions that guarantee the existence

of unique ergodic stationary distribution for the stochastic SIRC model are also derived

by using the stochastic Lyapunov function and Ito’s formula. The sufficient conditions

for the extinction of the disease are also obtained.

Chapter 7 is devoted to numerical solutions and suitable numerical schemes of

stochastic delay differential equations.

Chapter 8 summaries the main conclusions of the research and provides some

recommendations for future directions.

Next, DDEs of predator-prey system with hunting cooperation among predators

is discussed.
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Chapter 2: Delay Differential Equations of Predator-Prey
Interactions with Hunting Cooperation in Predators

2.1 Introduction

In this chapter, the dynamics of DDEs, with two different time-delays, for a

predator-prey system with hunting cooperation among predators is investigated. Section

2 introduces the model. Section 3 shows the existence of steady states and boundedness

of the solutions. Section 4 studies the qualitative behaviours of the model throughout

local stability of the steady states and Hopf bifurcation. The global stability, using Lya-

punov functional, is investigated in Section 5. Some numerical simulations are provided

in Section 6 and concluding remarks in Section 7.

Predator-Prey (PP) interaction is one of the most extensively studied issues in eco-

logical and mathematical literature; See [34, 47, 97]. The classic predator-prey models

are mostly variations of the Lotka–Volterra model, which was proposed by Lotka [88]

and Volterra [132] which are a system of first order, nonlinear differential equations that

describe the dynamics and interactions between two or more species of biological sys-

tems. Of course, the qualitative properties of a predator-prey system such as stability of

the steady states, bifurcations analysis and oscillation of the solutions usually depend on

the system parameters; See [74].

Incorporating time-delays has been considered by many authors in predator-prey

models and biological systems [15, 16, 20, 105, 114, 117]. Additionally, one important

component of predator-prey relationships is the functional response of predators to their

prey(s)’ densities. The response of predators to different prey densities depends on the

feeding behavior of individual predators. In [58], Holling discussed three different types

of functional responses: Holling type I (linear), type II, type III, etc. These responses

are used to model the phenomena of predation, which captures the usual properties, for

instance, positivity and increasing; See also [13, 45, 101, 128].
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2.2 Model Formulation

Hutchinson [61], first introduced the delay in a logistic differential equation. He

proposed a delay differential model for a single species of the form (Recall the equation)

as follows

dx(t)
dt

= rx(t)
(

1− x(t− τ)

K

)
, with x(θ) = φ(θ)> 0,θ ∈ [−τ,0],φ(0)> 0.

Here, (r > 0) is the intrinsic growth rate and (K > 0) is the carrying capacity of the

population and time-delay τ was considered as hatching time. φ(θ) is continuous on

θ ∈ [−τ,0]. (This equation is referred to as the Hutchinson’s equation or delayed logistic

equation).

Consider a simple general two dimensional delayed model of interaction between

a prey, x(t), and a predator, y(t), of the form

dx(t)
dt

= x(t)G1(x(t− τ1),K)− y(t)F (x(t)),

dy(t)
dt

= y(t)G2(y(t))+µy(t)F (x(t− τ2)).

(2.1)

The function G1(x(t− τ1),K) is the logistic per capita growth rate of prey, where K is the

environmental carrying capacity, and and G2(y) is the per capita growth rate of predator.

F (x(t)) and µF (x(t−τ2)) are functional responses of predator for a particular prey and

µ is the conversion efficiency (0 < µ < 1). Time-delay τ1 represents the gestation period

of the prey or reflects the impact of density dependent feedback mechanism [38]. Time-

delay τ2 is incorporated in the functional response of predator equation to represent the

reaction time with the prey: In reality, the reproduction of predators is not immediate to

the consumption of prey, as there is some discrete time lag necessary for prey gestation

[105].

There exist various and extensive studies of the dynamics of the delayed PP model;

See, e.g., [19, 76, 87, 140]. In [76], the authors investigated the complex dynamics of a
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delayed PP system with cooperation among the prey species, they have considered time

delays in the growth components for each of the species. Many studies have explored the

effect of predator hunting cooperation on PP systems [3, 104, 144]. Berec [19] assumed

a Holling type II functional response of the form F (x,y) =
σ(y)x

1+ c(y)σ(y)x
, where σ is

the consumption rate of prey by their predator and c is the handling time of the predator,

both σ and c are not constant quantities. Alves et al. [3] considered consumption rate

depending on the predator density to implement predator cooperation for searching and

capturing the prey. Assuming that α > 0 be the cooperative ’hunting’ parameter, with

functional response of the form F (x,y) =
(1+αy)x

1+ c(1+αy)x
.

The suggested model takes the form

dx(t)
dt

= rx(t)(1− x(t− τ1)

K
)− [1+αy(t)]x(t)y(t)

1+ c(1+αy(t))x(t)
,

dy(t)
dt

= y(t)(−δ −ay(t))+
µ[1+αy(t)]x(t− τ2)y(t)
1+ c(1+αy(t))x(t− τ2)

,

(2.2)

where δ > 0 is death rate of predator and a > 0 is an intra-specific competition rate for

predators. This system is subject to initial conditions

x(θ) = φ(θ)≥ 0, y(0)≥ 0.

θ ∈ [−τ,0], τ = max{τ1,τ2}, φ(0)> 0,
(2.3)

φ is continuous bounded functions in the interval [−τ,0]. The description of the model

parameters is presented in Table 2.1.

Table 2.1: One biological meaning for the parameters of Model (2.2)

Parameters Description
r Intrinsic growth rate
K Environmental carrying capacity
δ Death rate for predator
µ Conversion efficiency
α Cooperative hunting parameter
c Handling time of the predator,
a Predator intra-specific competition rate
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2.3 Existence of Equilibrium Points

There are three types of equilibrium points for the deterministic System (2.2): (i)

Trivial equilibrium point E0 ≡ (0,0); (ii) Axial equilibrium point E1 ≡ (K,0); And (iii)

Interior equilibrium point E ∗ ≡ (x∗,y∗). Here,

x∗ =
δ +ay∗

(1+αy∗)[µ− c(δ +ay∗)]
. (2.4)

y∗ is a positive real root of the equation

η5y5 +η4y4 +η3y3 +η2y2 +η1y1 +η0 = 0, (2.5)

where

η5 = Kc2a2, η4 = 2Kc2a2
α +2δaKc2−2Kµca,

η3 = Kc2
δ

2 +µ
2K +4δaKc2

α +Kc2a2−2µKcδ −4Kµcaα,

η2 = 2Kc2
δ

2
α +2αµ

2K +2δaKc2 + rKµαca−4αµKcδ −2Kµca

η1 = Kc2
δ

2 +µ
2K +µra+ rµαcδ −2µKδc− rKµ

2
α− rKµa,

η0 = rKµ(cδ −µ).

Equation (2.5) must have at least one positive real root if cδ < µ . Therefore, the existence

of the coexisting equilibrium E ∗ assumes restrictions on the parameters so that

cδ < µ and y∗ ≤ µ− cδ

ac
. (2.6)

2.3.1 Boundedness of the solutions

One can check that the System (2.2) has a non-negative solution with a positive

initial condition given in (2.3). To show the boundedness of this solution, the following
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Lemma [4, 102] is introduced.

Lemma 2.3.1. If for t ≥ 0 and x(0)≥ 0 one may have x′ ≤ x(a−bx) where a > 0, b > 0

then

lim
t→∞

supx(t)≤ a
b
.

Theorem 2.3.2. The non-negative solution of the deterministic Model (2.2), (x(t),y(t)),

satisfies

lim
t→∞

supx(t)≤ Kerτ1 , lim
t→∞

supy(t)≤ µKerτ2−δ

a
,

for τ1,τ2 > 0 with µKerτ2 > δ .

Proof. With the positive initial condition (x(0),y(0)), one can verify that the solution

(x(t),y(t)) of the System (2.2) is non-negative. From the first equation of System (2.2)

one may consider

dx(t)
dt
≤ rx(t), (2.7)

integrating both sides of (2.7) from t− τ1 to t one obtains

x(t− τ1)≥ x(t)e−rτ1 . (2.8)

Using (2.8) and from the first Equation of (2.2), one gets

dx(t)
dt
≤ x(t)(r− r

K
e−rτ1x(t)). (2.9)
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Following Lemma 2.3.1 one may have

lim
t→∞

supx(t)≤ Kerτ1.

i.e. for ε > 0, there exist T1 > 0 such that x(t) ≤ Kerτ1 + ε , for all t > T1. Similarly

following the same computation as done for the first equation of (2.2), one obtains from

the second equation of (2.2) the following

lim
t→∞

supy(t)≤ µK(erτ2 + ε)−δ

a
= ξ , thus, (2.10)

y(t)≤ ξ +ε , for all t > T2, conclusion of this Lemma can be achieved by letting ε→ 0.

2.4 Local Stability and Hopf Bifurcation

It is hard to find a closed analytical solution for the above nonlinear DDE Model

(2.2), instated one can investigate their qualitative behavior by studying the stability of

the steady states and Hopf bifurcation. The bifurcation analysis gives a deeper analysis

about the model. It answers the query that "how does the behavior of the solutions change

as parameters change".

By linearizing the system around E ∗ = (x∗,y∗), so that x(t) = x∗+ x̃(t), y(t) =

y∗+ ỹ(t), then one gets

dx̃(t)
dt

= a1x̃(t)+a2ỹ+a3x̃(t− τ1),

dỹ(t)
dt

= a4ỹ(t)+a5x̃(t− τ2),

(2.11)

where the coefficients are given by

a1 =
c(1+αy∗)2y∗x∗

(1+ c(1+αy∗)x∗)2 , a2 =−
(2αy∗+ cx∗(1+αy∗)2 +1)x∗

(1+ c(1+αy∗)x∗)2 , a3 =−
rx∗

K
,

a4 =−ay∗, a5 =
µ(1+αy∗)y∗

(1+ c(1+αy∗)x∗)2 .
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The characteristic equation of the linearization Model (2.11) is given by

λ
2− (a1 +a4)λ +a1a4 +(a3a4−a3λ )e−λτ1−a2a5e−λτ2 = 0. (2.12)

Define a threshold parameter T d
0 =

µK
δ (1+ cK)

.

Remark 2.4.1. The extinction equilibrium E0 is always a saddle point, and the boundary

equilibrium point E1 is locally asymptotically stable if T d
0 ≡

µK
δ (1+ cK)

< 1.

To gain insight regarding interior equilibrium E ∗, different values of time-lags τ1

and τ2 are considered as follows: (i) τ1 = τ2 = 0, (ii) τ1 > 0, τ2 = 0, (iii) τ1 = 0, τ2 > 0,

(iv) τ1 > 0, τ2 > 0.

• Case (i): When τ1 = τ2 = 0, Equation (2.12) becomes

λ
2− (a1 +a3 +a4)λ +a1a4 +a3a4−a2a5 = 0. (2.13)

Thus all roots of (2.13) have negative real part if

(H1) a3 +a4 <−a1, and a1a4 +a3a4 > a2a5 hold.

• Case (ii): When τ2 = 0,τ1 > 0, Equation (2.12) becomes

λ
2− (a1 +a4)λ +(a1a4−a2a5)+(a3a4−a3λ )e−λτ1 = 0. (2.14)

Let λ = iω be root of (2.14), then it follows that

−ω
2 +(a1a4−a2a5) = a3ω sinωτ1−a3a4 cosωτ1

−(a1 +a4)ω = a3ω cosωτ1 +a3a4 sinωτ1,

(2.15)

which leads to

ω
4 + c1ω

2 + c2 = 0, (2.16)
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where c1 = (a1 + a4)
2− 2(a1a4− a2a5)− a2

3 and c2 = (a1a4− a2a5)
2− (a3a4)

2. Thus,

Equation (2.16) has at least one positive root ω1 if c2 < 0, therefore, one may have

τ1, j =
1

ω1
{arccos

[(−ω2
1 +a1a4−a2a5)a3a4 +(a1 +a4)a3ω2

1
a2

3ω2
1 +(a3a4)2

]
+

2 jπ
ω1
},

j = 0,1,2, . . . .

(2.17)

Thus, E ∗ remains stable for τ1 < τ
′
1, and unstable for τ1 > τ

′
1 such that τ

′
1 = min{τ1, j}.

• Case (iii): For τ1 = 0,τ2 > 0, in the same manner, one obtains

τ2, j =
1

ω2
{arccos

[−ω2
2 +a1a4 +a3a4

a2a5

]
+

2 jπ
ω2
}, j = 0,1,2, . . . . (2.18)

Therefore, E ∗ remains stable for τ2 < τ
′
2, and unstable for τ2 > τ

′
2 such that τ

′
2 =min{τ2, j}

provided that (a1a4 +a3a4)
2 < (a2a5)

2.

• Case (iv): When τ1,τ2 > 0, assuming that τ1 is varying and τ2 is fixed in its stable

interval τ2 ∈ [0,τ ′2). Assume that there exists a real number ω > 0 such that λ = iω is a

root of the characteristic Equation (2.12), then separating real and imaginary parts, one

gets

−ω
2 +a1a4−a2a5 cosωτ2 = a3ω sinωτ1−a3a4 cosωτ1,

−(a1 +a4)ω +a2a5 sinωτ2 = a3ω cosωτ1 +a3a4 sinωτ1.

(2.19)

Squaring and adding both sides, yields

ω
4 +b1ω

2 +b2ω +b3 = 0, (2.20)

where,

b1 = a2
1 +a2

4−a2
3 +2a2a5 cosωτ2, b2 =−2(a1 +a4)a2a5 sinωτ2,

b3 = (a1a4)
2− (a3a4)

2 +(a2a5)
2−2a1a2a4a5 cosωτ2.
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Equation (2.20) is a peculiar equation in a complicated form, it is not easy to presume

about the nature of the roots. Thus, by applying Descartes rule of signs one can say that

(2.20) has at least one positive root ω0 if

(H2) (a1a4)
2 +(a2a5)

2 < (a3a4)
2 +2a1a2a4a5 cosωτ2.

In this case, one may have

τ1, j =
1

ω0
{arccos

[a3ω0(−(a1 +a4)ω0 +a2a5 sinω0τ2)

(a3ω0)2 +(a3a4)2

−
a3a4(−ω2

0 +a1a4−a2a5 cosω0τ2)

(a3ω0)2 +(a3a4)2

]
+2 jπ},

(2.21)

where j = 0,1,2, . . . . Thus, E ∗ remains stable for τ1 < τ∗1 , such that

τ∗1 = min{τ1, j} as in (2.21).

To check the transversality condition of Hopf bifurcation, τ2 is fixed in its stable

interval and differentiate equations (2.19) with respect to τ1. Then substitute τ1 = τ1,0 and

ω = ω0, one may have

A2
(d(ℜλ )

dτ1

)
|τ1=τ1,0

)
+A1

(d(ω)

dτ1

)
|τ1=τ1,0

)
= A3

−A1
(d(ℜλ )

dτ1

)
|τ1=τ1,0

)
+A2

(d(ω)

dτ1

)
|τ1=τ1,0

)
= A4,

(2.22)

where

A1 =−2ω0 +(−a3−a3a4τ1,0)sinω0τ1,0 +a2a5τ2 sinω0τ2−a3τ1,0ω0 cosω0τ1,0,

A2 = (a1 +a4)+(a3 +a3a4τ1,0)cosω0τ1,0−a3ω0τ1,0 sinω0τ1,0−a2a5τ2 cosω0τ2,

A3 = a3ω
2
0 cosω0τ1,0 +a3a4ω0 sinω0τ1,0, A4 = a3a4ω0 cosω0τ1,0−a3ω

2
0 sinω0τ1,0.

From (2.22), one gets

(d(ℜλ )

dτ1

)
|τ1=τ1,0

)
=

A2A3−A1A4

A2
2 +A2

1
.
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Assume that

(H3) A2A3 > A1A4 holds,

then a Hopf bifurcation occurs for τ1 = τ1,0. Therefore, for Case (iv), one can arrive at

the following Theorem.

Theorem 2.4.1. Suppose that E ∗ exists for System (2.2) and (H1)− (H3) hold, such that

τ2 ∈ [0,τ
′
2), then there exists a positive threshold parameter τ∗1 such that the interior

equilibrium E ∗ is locally asymptotically stable for τ1 < τ∗1 , and unstable τ1 > τ∗1 . Fur-

thermore, System (2.2) undergoes a Hopf bifurcation at E ∗ where τ1 = τ∗1 .

If τ1 is fixed in its stable interval and τ2 varies, one can arrive at the following

Remark.

Remark 2.4.2. If τ1 ∈ [0,τ
′
1), there exists a threshold parameter τ∗2 such that the interior

equilibrium E ∗ is locally asymptotically stable for τ2 < τ∗2 , and unstable τ2 > τ∗2 where

τ∗2 = min{τ2, j} is given by

τ2, j =
1

ω3
arccos

[a3a4 cosω3τ1−ω2
3 −a1a4−a3ω3 sinω3τ1

a2a5

]
+

2 jπ
ω3

, j = 0,1,2, . . . ,

(2.23)

2.5 Global Stability of the Interior Equilibrium Point

Now, the global stability of the interior equilibrium E ∗ is investigated, using Lya-

punov functional.

Theorem 2.5.1. Assume that e1 = 1+ c(1+αy∗)x∗, and e2 = 1+ c(1+αy)x. If re1e2 <

c(1+αy∗)(1+αy)(x∗y− y∗x), then System (2.2) is globally asymptotically stable at the

interior equilibrium point.
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Proof. Assume the Lyapunov function at E ∗ ≡ (x∗,y∗) of the form

V (t) = χ1(x(t)− x∗− x∗ ln
x(t)
x∗

)+χ2(y(t)− y∗− y∗ ln
y(t)
y∗

), (2.24)

where χ1 and χ2 are positive constants. By taking the derivative of V with respect to time
t, one obtains

dV (t)
dt

= χ1
x− x∗

x
dx
dt

+χ2
y− y∗

y
dy
dt

= χ1(x− x∗)
[
r− r

K
x(t− τ1)−

(1+αy)y
1+ c(1+αy)x

]
+χ2(y− y∗)

[
−δ −ay+

µ(1+αy)x(t− τ2)

1+ c(1+αy)x(t− τ2)

]
≤ χ1(x− x∗)

[
r− r

K
x(t− τ1)+ x∗+

(1+αy∗)y∗

1+ c(1+αy∗)x
− (1+αy)y

1+ c(1+αy)x

]
+χ2(y− y∗)

[
−a(y− y∗)+

µ(1+αy)x(t− τ2)

1+ c(1+αy)x(t− τ2)
− µ(1+αy)x

1+ c(1+αy∗)x∗

]
Since e1 = 1+ c(1+αy∗)x∗, and e2 = 1+ c(1+αy)x, one gets

dV (t)
dt
≤ rχ1(x− x∗)− rχ1

K
(x− x∗)2 +

cχ1(1+αy∗)(1+αy)(y∗x− x∗y)(x− x∗)
e1e2

− χ1(1+α(y∗+ y))(y− y∗)(x− x∗)
e1e2

−aχ2(y− y∗)2

− µχ2(1+αy)(y− y∗)(x− x∗)
e1

+
µχ2(1+αy)(y− y∗)(x− x∗)

e1e2

− µχ2αcxx∗(y− y∗)2

e1e2
.

Based on the assumption re1e2 < c(1+αy∗)(1+αy)(x∗y− y∗x) and since e2 > 1, one
may have

dV (t)
dt
≤−rχ1

K
(x− x∗)2 +

[re1e2 + c(1+αy∗)(1+αy)(y∗x− x∗y)]χ1(x− x∗)
e1e2

− χ1(1+α(y∗+ y))(y− y∗)(x− x∗)
e1e2

−aχ2(y− y∗)2

−
(
1− 1

e2

)µχ2(1+αy)(y− y∗)(x− x∗)
e2

− µχ2αcxx∗(y− y∗)2

e1e2

≤ 0.

Hence, the proof is complete.
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Figure 2.1: Stable population distribution (left) for Model (2.2) when τ1 = τ2 = 0. Figure (right) is
a phase space that shows the existence of E ∗ which is locally asymptotically stable; with a = 0.05,
α = 1.2, c = 0.9, δ = 0.69, K = 1
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Figure 2.2: Stable population distribution (left) for Model (2.2) when τ1 = 0.156 < τ∗1 and τ2 =
0.09 < τ∗2 . Hopf bifurcation periodic solution for τ∗1 = 1.169 and τ2 < τ∗2 = 0.5 (right), with the
parametric values as mentioned in the text

2.6 Numerical Simulations

Some numerical simulations, leading to the approximation of the System (2.2),

are performed using the Matlab DDE23 Package [126]. The parameters are taken as

follows: a = 0.05, α = 1.6, c = 0.6, K = 1, µ = 0.9, δ = 0.49, r = 1. Fig-

ure 2.1 shows a stable population distribution for (2.2), and E ∗ ≡ (0.55,0.31) is locally

asymptotically stable, when τ1 = τ2 = 0. Figure 2.2 depicts the stable population distribu-

tion for τ1 = 0.156 and τ2 = 0.09 (left). The stability behavior of the interior equilibrium

E ∗ changed as τ1 passes through critical values τ∗1 = 0.69 and τ2 < τ∗2 , where Hopf bifur-
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Figure 2.3: Bistability of the interior equilibrium E ∗ and E1 for Model (2.2). When τ1 = 0.24 < τ∗1
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Figure 2.4: Bifurcation diagram with respect to α for System (2.2). Figure (left) shows the bifur-
cation diagram of the threshold parameter α = 0.1 which is obtained numerically by maximum
and minimum amplitude of prey x(t). Figure (right) shows the bifurcation diagram of α with re-
spect to the predator y(t), when the other parameters are fixed as τ1 = 1.7, τ2 = 0.1, a = 0.005,
K = 1, δ = 0.49, µ = 0.9, c = 0.6 and r = 1

cation occurs (right).

Figure 2.3 shows bistability in the presence of interior equilibrium E ∗ and the

boundary E1. This bistability is related to coexistence of prey and predator or to the

predator extinction depending on the variation of some parameters, such that 0.79 < δ <

1.1. Figure 2.4 shows the bifurcation diagram with respect to the hunting cooperation

parameter α.

Remark 2.6.1. System (2.2) shows bistability between E ∗ and E1, therefore, any direction

starting from the interior of R2
+ corresponds either to E ∗ or E1 based on the variation of
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the parameter δ ∈ [0.79,1.1]; (See Figure 2.3).

Remark 2.6.2. For an incremental increase of hunting cooperation parameter α , System

(2.2) switches its stability from asymptotically stable to unstable limit cycle; ( Figure 2.4).

2.7 Concluding Remarks

In this chapter, an ecological model which describes the combined effect of time

delays and hunting cooperation in predators, on the dynamical behaviour of a predator-

prey model has been proposed and studied. The boundedness of System (2.2) has been

shown, and a local and global stability analysis of the interior equilibrium have been

implemented. Critical values of delays, where the Hopf bifurcation occurs have also been

obtained. Model (2.2) has at least one interior equilibrium under certain restrictions on

the parameters defined by (2.6). The condition for the Hopf bifurcation periodic solution,

by considering discrete time delay as a bifurcation parameter, is summarized in Theorem

2.4.1. Moreover, Remark 2.6.2 shows numerically that hunting cooperation acts as a

bifurcation parameter for the deterministic model. The main findings, theoretically and

numerically, indicate that time-delay and hunting cooperation can have a considerable

impact in the dynamics of predator-prey systems. The presence of time-delays in the

model improves the dynamics and enriches the complexity of the model.

In the next chapter, the author extends the analysis and propose a system of DDEs

for three-species predator-prey system with Allee effect.
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Chapter 3: Delay Differential Equations of Three-Species
Predator-Prey Interactions with Allee Effect

3.1 Introduction

This chapter extends the analysis and studies the impact of time-delays and Allee

effect on the dynamics of three-species predator-prey models. A two-prey one-predator

system is considered, where the growth of both preys populations subject to Allee ef-

fects, and there exists a direct competition between the two-prey species having a com-

mon predator (see Section 2). Two discrete time-delays τ1, τ2 are incorporated into the

predator growth equation to represent the reaction time with each prey. Local stability

of the steady states, Hopf bifurcation, existence of bistability are studied in Section 3.

Global stability of the interior steady state is discussed in Section 4. Sensitivity analysis

to evaluate the uncertainty of the state variables to small changes in the Allee parameters

and time delays is also considered in Section 5. Numerical simulations and concluding

remarks are, respectively, given in Sections 6 and 7.

Allee effect and time-delays greatly increase the likelihood of local and global

extinction and can produce a rich variety of dynamic effects. It is a natural question

that how the introduction of Allee effect in the prey growth function changes the system

dynamics of predator-prey system. However, before introducing the final model, some

preliminaries about Allee effects in the predator-prey model are given briefly; See [27,

82].

3.1.1 Allee effect

Allee effect was firstly reported by the American ecologist Allee [2], when he

asked "what minimal numbers are necessary if a species is to maintain itself in nature?"

Allee, in [2], shows that the growth rate is not always positive for small densities, and it

may not be decreasing as in the logistic model either. In general, Allee effect mechanisms
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arise from cooperation or facilitation among individuals in the species [51].

A population is said to have an Allee effect if the growth rate per capita is initially

an increasing function for the low density. It can be classified into two types: strong and

weak. A strong Allee effect takes place the population density is less than the specified

threshold population considered, resulting in the species dying out. However, if the pop-

ulation density is greater than the threshold, the growth rate will remain positive [105];

While a weak Allee effect means that the per capita growth rate cannot go below zero and

remains positive.
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Figure 3.1: The left banner shows the per-capita growth rate 1
N

dN
dt vs population N(t). With

logistic (black dashes), strong (blue curve) and weak (red curve) Allee effects. While the right
banner displays the population growth rate dN

dt vs population N(t). For the strong Allee effect, the
y-intercept of the per capita growth rate is less than zero at zero density, while in weak Allee effect
the y-intercept cannot go below zero

Now, one may show how an Allee effect can be modelled, and how the per capita

growth rate is affected with a weak Allee effect or a strong Allee effect throughout the

simple examples:

dN
dt

= rN2
(

1− N
K

)
for a weak Allee effect,

dN
dt

= rN
(

1− N
K

)(
N
A
−1
)

for a strong Allee effect.

Figure 3.1 shows a per-capita growth rate
1
N

dN
dt

of the population with strong and weak

Allee effect are represented. The straight line shows the logistic growth, and red curve dis-

plays a weak Allee effect; While the blue curve shows a strong Allee effect. The negative
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density dependence at low population sizes is described as a strong Allee effect, where

there exists a threshold population level A, such that for N < A, 1
N

dN
dt < 0 (the species will

die out) and for N > A, 1
N

dN
dt > 0, the growth will remain positive [105]. However, when

the growth rate remains positive at low population densities, it is considered as a weak

Allee effect.

Suppose that N(t) is the size of prey population and P(t) be the size of the predator

population at time t, then the Lotka-Volterra model is given by the following equations:

dN(t)
dt

= N(t)[β1− γ1−g1N(t)]− eN(t)P(t),
dP(t)

dt
= P(t)[−γ + eN(t)], (3.1)

with N(0) > 0, P(0) > 0. Here, β1 is per capita maximum filtering rate and γ1 is the

death rate of the prey N(t); While the parameter g1 denotes the strength of intra-specific

competition. The predator death rate and predation rate are respectively denoted by γ and

e. In the above model, it is assumed that prey population is subjected to logistic growth

rate and the exponential type functional response.

For multi-species models, there are flexible ways to formulate the Allee effects.

For example, due to difficulties in finding mates when prey population density becomes

low, Allee effect takes place in prey species. Herein, an additive Allee effect of the form

b(N)≡ N
α1 +N

in the prey growth function of Model (3.1) is proposed and incorporated,

which is considered as the probability of finding a mate, see [147], so that

dN(t)
dt

= N(t)[
β1N(t)

α1 +N(t)
− γ1−g1N(t)]− eN(t)P(t),

dP(t)
dt

= P(t)[−γ + eN(t)].
(3.2)

The parameter α1 is the strength of Allee effect, α1 = 1/R, where R is the average area

that can be searched by an individual [122]. One may notice that b(0) = 0, b′(N) > 0 if

N ∈ [0,∞) i.e. Allee effect decreases as density increases, and lim
N→∞

b(N) = 1 means that

Allee effect disappears at high densities. Therefore, the term b(N) is considered as a weak

Allee effect function in a rectangular hyperbola form, known as Michaelis-Menten-like
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function.

3.2 Distribution of the Model with Allee Effect

Many studies have been done on multi-species predator-prey systems, including

local and global bifurcations and different types of chaos etc. (See e.g., [76, 123, 127,

129]. Sen et al. [123] discussed the Allee effect on two-preys’ growth function, where

the predator is generalized. They explained how the Allee effect can suppress the chaotic

dynamics and the route to chaos in prey growth by comparing it with a model without the

Allee effect. In [76], the authors studied dynamics of three species (two preys and one

predator) delayed predator-prey model with cooperation among the preys against preda-

tion. The growth rate for preys is thought to be logistic. Delays are taken just in the

growth components for each of the species. Takeuchi et al. [129] considered two-preys

with logistic growth rates and an exponential functional response, where the predator sur-

vives on two-prey populations. Their results showed that the apparent chaotic behavior is

a result of the periodic solution when one of the two-prey has greater competitive strength

compared to the other. Song et al. [127] explored the dynamic behaviors of a Holling

II two-prey one-predator system by introducing constant periodic releases of predators

through periodically spraying a pesticide on the prey. They were then able to show that

the system remains permanent under certain conditions. Herein, the author generalize

𝑧𝛽#

Predator
Z(t)

Prey 2
y(t)

Prey 1
X(t)

𝜖𝛿𝑦𝑧
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Figure 3.2: Mathematical scheme of the three-species one-predator two-prey System (3.3).

Model (3.2) to multi-species predator-prey system (two-preys one-predator). The model
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consists of two teams of preys with densities x(t), y(t), interacting with one team of preda-

tor with densities z(t). Allee effects are also incorporated in the growth functions of the

two-prey populations, and there exists a direct competition between the two-prey species

having a common predator. The model takes the general form

dx(t)
dt

=x(t)
[

β1x(t)
α1 + x(t)

− γ1−g1x(t)
]
−αx(t)y(t)− ex(t)z(t)

dy(t)
dt

=y(t)
[

β2y(t)
α2 + y(t)

− γ2−g2y(t)
]
−βx(t)y(t)− δy(t)z(t)

1+ cy(t)
dz(t)

dt
=−β3z(t)+ εex(t− τ1)z(t− τ1)+

εδy(t− τ2)z(t− τ2)

1+ cy(t− τ2)
,

(3.3)

with initial conditions:

x(θ) = φ1(θ)> 0, y(θ) = φ2(θ)> 0, z(θ) = φ3(θ)> 0,

θ ∈ [−τ,0], τ = max{τ1,τ2}.
(3.4)

Here, φi(θ) (i = 1,2,3) are smooth initial functions. The description of the model pa-

rameters is presented in Table 3.1. It is reasonable to assume that the death (predation)

of preys is instantaneous when attacked by their predator but their contribution to the

growth of predator population must be delayed by some time-delay. Therefore, two dis-

crete time-delays τ1 and τ2 are incorporated in the reaction response functionals in the

predator growth to represent the reaction time. The interaction between first species of

prey and predator is assumed to be governed by Holling type I. While the interaction be-

tween the second species of prey and predator is assumed to be governed by Holling type

II (cyrtoid functional) δy(t)z(t)/(1+cy(t)), response indicates that it is a hard-to-capture

prey compared to the first species; See Figure 3.2. To investigate role of time-delay and

Allee effect on the dynamics of the system, the author first discusses the boundedness and

positivity of the solutions of the System (3.3) with the given positive initial conditions

(3.4).
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Table 3.1: One biological meaning for the parameters of Model (3.3)

Parameters Description
α1, α2 Strength of Allee effect
β1, β2 Per capita maximum filtering rate of population
g1, g2 Strength of intra competition
γ1, γ2 Death rate for preys
α , β Coefficient of competition
e, δ Decrease rate of x(t) and y(t) due to predation by z(t)
β3 Predator death rate
c Magnitude of interference between the second type of prey
ε An equal transformation rate of predator to preys x(t) and y(t)

3.2.1 Non-negativity and boundedness of the solution

The non-negativity of the solutions indicates the existence of the population;

While the boundedness explains the natural control of growth due to the restriction of

resources. The author arrives at the following Lemma:

Lemma 3.2.1. Every solution of System (3.3) corresponding to initial conditions (3.4) is

defined on [0,∞) remains non-negative for all t ≥ 0, which satisfies,

lim
t→∞

sup(x(t)+ y(t))≤ κ, lim
t→∞

supz(t)≤ N,

where κ = min{β1,β2} and N > 0.

Proof. Model (3.3) can be represented in a matrix form

U̇(t) = F(U), (3.5)

where U = (x,y,z)T ∈ R3, and

F(U) =


F1(U)

F2(U)

F3(U)

=


x
(

β1x
α1+x − γ1−g1x

)
−αxy− exz

y
(

β2y
α2+y − γ2−g2y

)
−βxy− δyz

1+cy

−β3z+ εex(t− τ1)z(t− τ1)+
εδy(t−τ2)z(t−τ2)

1+cy(t−τ2)

 .
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Let R3
+ = [0,∞)3, since the right hand side of System (3.3) is locally Lipschitz on C :

R3+1
+ →R3, such that Fi(U)|ui(t)=0,U∈R3

+
≥ 0, where u1 = x, u2 = y and u3 = z. According

to [60], the solutions of (3.5) with initial conditions (3.4) exist uniquely on the interval

[0,ξ ), where 0 < ξ < ∞, therefore all solutions exist on the first quadrant of the xyz-plane.

To prove the boundedness of solutions for System (3.3), first consider the case

when the predator is absent, so that

dx
dt

= x(
β1x

α1 + x
− γ1−g1x)−αxy≡ G1(x,y)

dy
dt

= y(
β2y

α2 + y
− γ2−g2y)−βxy≡ G2(x,y),

(3.6)

with initial conditions x(0) > 0 and y(0) > 0, one can easily show that G1(x,y) ≥ 0 for

y = 0 and x < β1−γ1
g1

, such that β1 > γ1 and G2(x,y) ≥ 0 for x = 0 and y < β2−γ2
g2

, where

β2 > γ2. Adding the two equations of (3.6) yields

d
dt
(x+ y) = x(

β1x
α1 + x

− γ1−g1x)+ y(
β2y

α2 + y
− γ2−g2y)− xy(α +β )

≤ x(β1− γ1−g1x)+ y(β2− γ2−g2y)

≤ β1x+β2y≤ κ(x+ y),

(3.7)

where κ = min{β1,β2}. Integrating both sides of (3.7), one gets

(x(t)+ y(t))≤ (x(0)+ y(0))e−κt .

Since (x(0)+y(0))> 0, the solutions are bounded, which clearly shows that limt→∞ sup(x(t)+

y(t))≤ κ.

To extend the analysis to (3.3), consider 0 < φ1(θ) + φ2(θ) + φ3(0) < M, θ ∈
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[−τ,0]. Assume also that H (t) = εx(t− τ1)+ εδy(t− τ2)+ z and choose 0 < ρ < β3.

By considering the derivative of H , for t > T + τ for some fixed positive time T , one

may have

dH

dt
+ρH ≤ εx(t− τ1)(β1 +ρ− x(t− τ1))+ εδy(t− τ2)(β2 +ρ− y(t− τ2))+(ρ−β3)z.

Since x and y are nonnegative and bounded by κ ,

dH

dt
+ρH ≤ (ε + εδ )κ +(ρ−β3)z≤M.

Due to the non-negativity of z and the parametric condition exists for ρ , the differential

inequality is bounded above, such that dH
dt ≤ M− ρH , i.e. there exist N where 0 <

H (t)< N for all t > T , which implies the boundedness of z, such that limt→∞ supz(t)≤

N.

3.3 Local Stability and Hopf Bifurcation

In this section, the qualitative behaviour of System (3.3) by studying the local sta-

bility of positive equilibrium points and Hopf bifurcation analysis is investigated, which

provides a deeper insight into the model to address the behavioral change of solutions as

a response to changes in a particular parameter. Since time-lags τ1 and τ2 have a sig-

nificant impact in the complexity and dynamics of the model, one can consider them as

bifurcation parameters.

3.3.1 Existence of equilibrium points

System (3.3) has some boundary and interior equilibrium points. However, one

can only focus on the dynamic analysis of the boundary equilibrium where the first prey

population is absent, and the interior equilibrium points. In order to obtain the attainable
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equilibrium points for the System (3.3), the zero growth isoclines of the system are given

by x
(

β1x
α1+x− γ1−g1x

)
−αxy−exz = 0, y

(
β2y

α2+y− γ2−g2y
)
−βxy− δyz

1+cy = 0 and −β3z+

εexz+ εδyz
1+cy = 0, in R3

+ = {(x,y,z) ∈ R3 : x,y,z ≥ 0}. Therefore, the equilibria are the

points of intersection of these zero growth isoclines regardless of the parameter values.

System (3.3) has the following equilibria in R3
+:

(i) Trivial equilibrium E0 ≡ (0,0,0);

(ii) The axial equilibrium, E1 ≡ (x∗1,0,0), for which the second prey and predator pop-

ulation are absent, where x∗1 is the root of quadratic equation g1x2
1 +(γ1 +α1g1−

β1)x1+α1γ1 = 0. Let ς0 = (
√

α1g1+
√

γ1)
2, the existence of E1 depends on the fol-

lowing conditions; If β1 < ς0, then E1 dose not exist; If β1 > ς0, then System (3.3)

has two equilibria; However, if β1 = ς0, then System (3.3) has a unique equilibrium

point.

In the same manner, one can show the existence of E2 ≡ (0,y2,0).

(iii) In the absence of second prey population, a boundary equilibrium point E3≡ (x3,0,z3)

exists if γ1 < ς1 < ς2, such that

ς1 = x3
( β1εe

α1εe+β3
−g1

)
, ς2 =

β1β3

α1εe+β3
, (3.8)

and x3 =
β3
εe > 0 and z3 =

1
e (x3ς2− γ1)> 0.

(iv) A boundary equilibrium point E4 ≡ (0,y4,z4) exists, where the first prey population

is absent, for γ2 < ς3 < ς4, where

ς3 =
β2β3(εδ −β3c)−g2β2(α2(εδ −β3c)+β3)

(α2(εδ −β3c)+β3)(εδ −β3c)
,

ς4 =
β2(β3−g2α2)

α2(εδ −β3c)+β3
, and

(3.9)

y4 =
β3

εδ −β3c
> 0, z4 =

1
δ
(1+ cy4)(ς3− γ2). (3.10)
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(v) An interior equilibrium point E ∗ ≡ (x∗,y∗,z∗) exists with
(

β1x∗
α1+x∗ − γ1− g1x∗

)
−

αy∗− ez∗ = 0,
(

β2y∗
α2+y∗ − γ2− g2y∗

)
−βx∗− δ z∗

1+cy∗ = 0, −β3 + εex∗+ εδy∗
1+cy∗ = 0.

Such that x∗ = 1
εe(β3− εδy∗

1+cy∗ ) > 0, z∗ = 1
e

(
β1(β3(1+cy∗)−εδy∗)

(1+cy∗)(εe+β3)
+ g1(β3− εδy∗

1+cy∗ )−

γ1−αy∗
)
> 0, where y∗ is the root(s) the following equation

G(y) = σ1y4 +σ2y3 +σ3y2 +σ4y+σ5 = 0. (3.11)

The coefficients σi , i = 1, . . . ,5 are defined by

σ1 = α2c2, σ2 = c(2α2 +α2cg2 +
ββ2c

εe
− βδ

e
−δα + cγ2),

σ3 =
β1δ 2ε− cδβ1β2

εe+β3
+

α2βδεc−ββ2α2c2−βδε

εe
−δ

2
εg1 + cβ2

+ c2
β2 + cg1δβ3 + cδγ1 +α2−δα,

σ4 =
ββ2−α2βδε

εe
+

δβ1β2 + cδβ1β3α2 +β1α2δ 2

εe+β3
−g1α2δ

2
ε

+ cα2δβ3g1 + cα2δγ1 + cα2γ2−β2−β2c+α2g2−δβ2g1−δγ1 + γ2,

σ5 =
δβ1β3α2

εe+β3
− α2β2β

εe
−α2δβ3g1−α2δγ1 +α2γ2.

The nature of the roots for (3.11) is determined by noting the sign of its discriminant [44].

Therefore, a sufficient condition that guarantees that (3.11) has at least one positive root

is σ5 < 0, which leads to
δβ1β3α2

εe+β3
+α2γ2 <

α2β2β

εe
+α2δβ3g1 +α2δγ1. Thus, System

(3.3) can have at most four interior equilibria in the presence of the Allee effect. However,

in the absence of Allee effect the author arrives at the following Remark.

Remark 3.3.1. In the absence of the Allee effect (α1 = α2 = 0), the interior equilibria for

System (3.3) are reduced to at most three interior equilibria. Consequently, Allee effect

can generate or eradicate interior equilibria. It may stabilize or destabilize the system.
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3.3.2 Existence of bistability

The phenomenon of bistability has been recognized experimentally in some bio-

logical situations, but much more commonly in theoretical models, such as the dynamics

of animal populations [46]. The coexistence between two stable attractors can be de-

termined by increasing or decreasing the value of some control parameters. Therefore,

the system pursues one branch of equilibrium points when increasing a control parameter

until a threshold limit point is reached at which the system jumps to another branch of sta-

ble equilibrium points. Bistability occurs when the system can converge to two different

equilibrium points, depending on the variation of the initial conditions in the same para-

metric region; Or the system is able to evolve into either one of two equilibrium points by

increasing or decreasing the level of one of the system’s parameters.

The underlying Model (3.3) displays bistability of two interior equilibrium, which

is based on the variation of the coefficient of competition α; See Figure 3.8. Both equi-

libria are locally asymptotically stable.

3.3.3 Stability and bifurcation analysis of the equilibria E4 and E ∗

The author focuses on studying local stability and bifurcation conditions for Sys-

tem (3.3), by analyzing the characteristic equations of the linearized system at E4 and E ∗.

The Jcobian matrix at E4 is given by:

JE4 =

(
C1 0 0
C2 C3 C4
D1 D2e−λτ2 C5+D3e−λτ2

)
,

where

C1 =−γ1−αy4− ez4, C2 =−βy4, C3 =
β2y4

(α2 + y4)

(
1+

α2

(α2 + y4)

)
−2g2y4− γ2−

δ z4

(1+ cy4)2 , C4 =−
δy4

1+ cy4
, C5 =−β3,

D1 = εez4, D2 =
εδ z4

(1+ cy4)2 , D3 =
εδy4

1+ cy4
.
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The characteristic equation for System (3.3) at E4 can be written as:

C(λ )+D(λ )e−λτ2 = 0, (3.12)

such that

C(λ ) = λ
3 +ψ0λ

2 +ψ1λ +ψ2, D(λ ) = φ0λ
2 +φ1λ +φ2,

where

ψ0 =−(C1 +C3 +C5); ψ1 =C1C3 +C3C5 +C1C5; ψ2 =−C1C3C5,

φ0 =−D3; φ1 =C1D3 +C3D3−C4D2; φ2 =C1C4D2−C1C3D3.

When τ2 = 0, Equation (3.12) becomes:

λ
3 +(ψ0 +φ0)λ

2 +(ψ1 +φ1)λ +ψ2 +φ2 = 0. (3.13)

Based on Routh-Hurwitz Criteria, all roots of (3.13) are negative if ψ0+φ0 > 0, ψ2+φ2 >

0 and (ψ0 + φ0)(ψ1 + φ1) > (ψ2 + φ2). Thus, E4 is locally asymptotically stable when

τ2 = 0.

If τ2 6= 0, assume λ = iω,ω > 0, then (3.12) becomes:

−ψ0ω
2 +ψ2 = (φ0ω

2−φ2)cosωτ2−φ1ω sinωτ2,

−ω
3 +φ1ω = (φ2−φ0ω

2)sinωτ2−φ1ω cosωτ2,

(3.14)

squaring and adding both sides, one gets:

ω
6 +q2ω

4 +q1ω
2 +q0 = 0, (3.15)
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where

q2 = ψ
2
0 −2ψ1−φ

2
0 , q1 = ψ

2
1 −2ψ0ψ2 +φ0φ2−φ

2
1 , q0 = ψ

2
2 −φ

2
2 .

The equilibrium point E4 is locally asymptotically stable, by Descartes rule of signs, if

Equation (3.15) has at least one positive root ω̂ , if ψ2
1 +φ0φ2 > 2ψ0ψ2+φ 2

1 and ψ2
2 < φ 2

2 .

From Equation (3.14), one obtains

τ2,k =
1
ω̂

arccos
[(ψ2−ψ0ω̂2)(φ0ω̂2−φ2)+φ1ψ1ω̂2−φ1ω̂4

(φ2−φ0ω̂2)2− (φ1ω̂)2

]
+

2kπ

ω̂
, (3.16)

where k = 0,1,2, . . . . By differentiating (3.12) with respect to τ2 such that ω = ω̂ and

τ2 = τ2,k, the transversality condition can be obtained in this form

ℜ(
dλ

dτ2
)−1 =

Ê1Ê4− Ê2Ê3

Ê2Ê4
. (3.17)

Here,

Ê1 = [ψ1−3ω̂
2](ψ1ω̂

2− ω̂
4)+2ψ0ω̂[ψ2ω̂−ψ0ω̂

3],

Ê2 = (ω̂4−ψ1ω̂
2)2 +(ψ2ω̂−ψ0ω̂

3)2,

Ê3 = φ
2
1 ω̂

2 +2(φ0ω̂
3−φ2ω̂)φ0ω̂,

Ê4 = (φ1ω̂
2)2 +(φ2ω̂−φ0ω̂

3)2.

Then a Hopf bifurcation occurs for τ̂2 = min{τ2,k}, if ℜ( dλ

dτ2
)−1 > 0. Therefore, based on

the above analysis, the author arrives to the following result.

Theorem 3.3.1. The boundary equilibrium E4 remains stable for τ2 < τ̂2, and unstable

for τ2 > τ̂2, where τ̂2 = min{τ2,k} defined by (3.16). Moreover, System (3.3) undergoes a

Hopf bifurcation at E4 when τ2 = τ̂2.

Herein, some numerical results and simulations for System (3.3) are provided, by
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using DDE-BIFTOOL [40, 131] Matlab packages, and choosing suitable values of param-

eters. To investigate the stability of E4, one can show how the real part of (3.12) changes

as τ2 varies, and fix parameters ς0 = 1.106 and consider τ2 as a bifurcation parameter and

varying it from 0.2 to 16 (See Figure 3.3). However, from this figure alone it is not clear

which real parts correspond to real roots respectively complex pairs of roots. In Figure

3.4 (left) taking τ2 = 4.6, shows that the eigenvalues of (3.12) have negative real part, the

eigenvalues representing by circles seem to be similar to zero, but indeed, they are a pair

of pure imaginary eigenvalues with real part a little bit less than zero. However, Figure

3.4 (right) shows that there is a pair of pure imaginary eigenvalues where the occurrence

of Hopf bifurcation is possible at ω̂ =±2.4.

Time delay τ
2

0 5 10 15

R
e

(λ
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Largest real parts

Figure 3.3: Real parts of the approximated and corrected roots of the characteristic Equation
(3.12). Which shows variation of real part of the eigenvalues as the bifurcation parameter τ2 is
varied at E4.

Now, the stability of the interior equilibrium E ∗≡ (x∗,y∗,z∗) is discussed in detail,

at which the Jcobian matrix is

JE ∗ =


F1 F2 F3

F4 F5 F6

I1e−λτ1 I2e−λτ2 F7 + I3e−λτ1 + I4e−λτ2

 .
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Figure 3.4: The eigenvalues of the characteristic Equation (3.12) at E4. Left banner shows eigen-
values of the characteristic Equation (3.12) at E4 (approximated (+) and corrected (•)), with the
same parameters as in Figure 3.3. According to the scaling, right banner illustrates that there is
a pair of pure imaginary eigenvalues which is consistent with the theoretical results that showed
(3.12) has a pair of pure imaginary eigenvalues where ω̂ =±2.4

Here,

F1 =
β1x∗

(α1 + x∗)

(
1+

α1

(α1 + x∗)

)
−2g1x∗− γ1−αy∗− ez∗ < 0, F2 =−αx∗, F3 =−ex∗,

F4 =−βy∗, F5 =
β2y∗

(α2 + y∗)

(
1+

α2

(α2 + y∗)

)
−2g2y∗− γ2−βx∗− δ z∗

(1+ cy∗)2 < 0,

F6 =−
δy∗

1+ cy∗
,F7 =−β3, I1 = εez∗, I2 =

εδ z∗

(1+ cy∗)2 , I3 = εex∗, I4 =
εδy∗

1+ cy∗
.

The characteristic equation for the interior point E ∗ ≡ (x∗,y∗,z∗) is then given by

A(λ )+B(λ )e−λτ1 +C(λ )e−λτ2 = 0. (3.18)

Here,

A(λ ) = λ
3 +R1λ

2 +R2λ +R3, B(λ ) = N1λ
2 +N2λ +N3, C(λ ) = M1λ

2 +M2λ +M3,

such that

R1 =−F1−F5−F7, R2 = F1F5 +F1F7 +F5F7−F2F4, R3 = F2F4F7−F1F5F7,

N1 =−I3, N2 = (F1 +F5)I3−F3I1, N3 = F2F4I3 +F3F5I1−F2F6I1−F1F5I3,
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M1 =−I4, M2 = (F1 +F5)I4−F6I2, M3 = F2F4I4 +F1F6I2−F3F4I2−F1F5I4.

To gain insight regarding interior equilibrium E ∗, the author discusses the stability of

interior steady states and Hopf bifurcation conditions of the threshold parameters τ1 and

τ2 by considering the following different cases:

• Case 1: When τ1 = τ2 = 0, Equation (3.18) becomes

λ
3 +(R1 +N1 +M1)λ

2 +(R2 +N2 +M2)λ +(R3 +N3 +M3) = 0. (3.19)

Therefore, the interior equilibrium E ∗ is locally asymptotically stable if

(H1) R1 +N1 +M1 > 0, R3 +N3 +M3 > 0 & (R1 +N1 +M1)(R2 +N2 +M2) >

R3 +N3 +M3 hold. Thus, based on Routh-Hurwitz Criteria, all the roots of (3.19) have

negative real parts.

• Case 2: For τ1 = 0,τ2 > 0, then Equation (3.18) becomes

λ
3+(R1+N1)λ

2+(R2+N2)λ +(R3+N3)+(M1λ
2+M2λ +M3)e−λτ2 = 0. (3.20)

For some values of (τ2 > 0), there exists a real number ω such that λ = iω is a root of

(3.20), then one gets

−(R1 +M1)ω
2 +(R3 +N3) = (M1ω

2−M3)cosωτ2−M2ω sinωτ2

−ω
3 +(R2 +N2)ω = (M3−M1ω

2)sinωτ2−M2ω cosωτ2.

(3.21)

Squaring and adding both of the equations, yields

ω
6 +a1ω

4 +a2ω
2 +a3 = 0, (3.22)

where

a1 = (R1 +M1)
2−2(R2 +N2)−M2

1 ,

a2 = (R2 +N2)
2−2(R1 +M1)(R3 +N3)+2M1M3−M2

2 ,
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a3 = (R3 +N3)
2−M2

3 .

By Descartes’ rule of signs, Equation (3.22) has at least one positive root ω1 if

(H2) R2
1 +2R1M1 > 2(R2 +N2) & (R3 +N3)

2 < M2
3 hold.

Eliminating sinω1τ2 from (3.21), yields

τ2, j =
1

ω1
arccos

[((R3 +N3)− (R1 +N1)ω
2
1 )(M1ω2

1 −M3)

(M3−M1ω2
1 )

2− (M2ω1)2

+
M2(R2 +N2)ω

2
1 −M2ω4

1
(M3−M1ω2

1 )
2− (M2ω1)2

]
+

2 jπ
ω1

,

(3.23)

where j = 0,1,2, . . . . By differentiating (3.20) with respect to τ2 such that ω = ω1 and

τ2 = τ2, j, the transversality condition can be obtained in this form

ℜ(
dλ

dτ2
)−1 =

A1A4−A2A3

A2A4
. (3.24)

Here,

A1 = [(R2 +N2)−3ω
2
1 ]((R2 +N2)ω

2
1 −ω

4
1 )+2(R1 +N1)ω1[(R3 +N3)ω1− (R1 +N1)ω

3
1 ],

A2 = (ω4
1 − (R2 +N2)ω

2
1 )

2 +((R3 +N3)ω1− (R1 +N1)ω
3
1 )

2,

A3 = M2
2ω

2
1 +2(M1ω

3
1 −M3ω1)M1ω1,

A4 = (M2ω
2
1 )

2 +(M3ω1−M1ω
3
1 )

2.

Then a Hopf bifurcation occurs for τ2 if ℜ( dλ

dτ2
)−1 > 0; i.e. A1A4 > A2A3. The authors

arrives at the following Theorem:

Theorem 3.3.2. Let (H1)-(H2) hold, where τ1 = 0, then there exists τ2 > 0 such that E ∗

remains stable for τ2 < τ
′
2, and unstable for τ2 > τ

′
2, where τ

′
2 = min{τ2, j} defined by

(3.23). Moreover, System (3.3) undergoes a Hopf bifurcation at E ∗ when τ2 = τ
′
2.

• Case 3: When τ2 = 0,τ1 > 0, in the same manner of the pervious case, one can

arrive to the following Theorem
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Theorem 3.3.3. For System (3.3), with τ2 = 0, there exists a positive number τ1, such

that the equilibrium point E ∗ is locally asymptotically stable for τ1 < τ
′
1, and unstable for

τ1 > τ
′
1, where τ

′
1 = min{τ1, j}. Furthermore, Hopf bifurcation occurs at τ1 = τ

′
1.

τ1, j =
1

ω2
arccos

[((R3 +M3)− (R1 +M1)ω
2
2 )(N1ω2

2 −N3)

(N1ω2
2 −N3)2 +(N2ω2)2

−
N2(R2 +M2)ω

2
2 +N2ω4

2
(N1ω2

2 −N3)2 +(N2ω2)2

]
+

2 jπ
ω2

,

(3.25)

where j = 0,1,2, . . . .

• Case 4: When τ1 > 0 & τ2 > 0, assuming that τ1 is a variable parameter and τ2 as fixed

on its stable interval. Let λ = iω as a root of (3.18); Separating real and imaginary parts,

implies

−ω
3 +R2ω +(M1ω

2−M3)sinωτ2+M2ω cosωτ2

= (N3−N1ω
2)sinωτ1−N2ω cosωτ1,

(3.26)

−R1ω
2 +R3 +(M3−M1ω

2)cosωτ2+M2ω sinωτ2

= (N1ω
2−N3)cosωτ1−N2ω sinωτ1.

(3.27)

Thus, by eliminating the trigonometric functions (sinωτ1 and cosωτ1) from (3.26) and

(3.27), yields

ω
6 +ξ4ω

5 +ξ3ω
4 +ξ2ω

3 +ξ1ω
2 +ξ0 = 0, (3.28)

where

ξ4 =−2M1 sinωτ2, ξ3 = R1 +M2
1 −2R2−N2

1 −2M2 cosωτ2,

ξ2 = 2(M1R2 +M3)sinωτ2−2M3R1 cosωτ2, ξ1 =−2M3R2 sinωτ2,

ξ0 = R2
3 +M2

3 −N2
3 +(2M3R3 +R1M1)cosωτ2.
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Equation (3.28) is a preternatural equation in a complicated form, it is quite difficult to

predict the nature of its roots. Thus, by applying Descartes’ rule of signs one can say that

(3.28) has at least one positive root ω0 if (H3) ξ4 > 0 since M1 < 0 & ξ0 < 0;

therefore, one obtains

τ1, j =
1

ω0
arccos

[AD+CB
A2 +C2

]
+

2 jπ
ω0

, j = 0,1,2, . . . . (3.29)

Here,

A = N1ω
2
0 −N3, B =−ω

3
0 +R2ω0 +(M3−M1ω

2
0 )sinω0τ2 + cosω0τ2,

C = N2ω0, D =−R1ω
2
0 +R3 +(M1ω

2
0 −M3)cosω0τ2 +M2ω0 sinω0τ2.

To study the Hopf bifurcation analysis, by fixing τ2 in its stable interval and differentiate

Equations (3.26) and (3.27) with respect to τ1. Then substitute τ1 = τ1,0 and ω = ω0, one

gets

Q2
(d(ℜλ )

dτ1

)
|τ1=τ1,0

)
+Q1

(d(ω)

dτ1

)
|τ1=τ1,0

)
= Q3

−Q1
(d(ℜλ )

dτ1

)
|τ1=τ1,0

)
+Q2

(d(ω)

dτ1

)
|τ1=τ1,0

)
= Q4, where

(3.30)

Q1 =−3ω
2
0 +R2 +(2N1ω0−N2ω0τ1,0)sinω0τ1,0 +(N2 +N1τ1ω

2
0 −N3τ1,0)cosω0τ1,0

+(2ω0M1−M2τ2ω0)sinω0τ2 +(M1τ2ω
2
0 −M3τ2 +M2)cosω0τ2,

Q2 =−2R1ω0 +(N1ω
2
0 τ1,0−N3τ1,0 +N2)sinω0τ1,0 +(N2ω0τ1−2N1ω0)cosω0τ1,0

+(M2 +M1ω
2
0 τ2−M3τ2)sinω0τ2 +(M2ω0τ2−2M1ω0)cosω0τ2,

Q3 = N2ω
2
0 sinω0τ1,0 +(N3ω0−N1ω

3
0 )cosω0τ1,0,

Q4 = N2ω
2
0 cosω0τ1,0 +(N1ω

3
0 −N3ω0)sinω0τ1,0.

From (3.30), one obtains

(d(ℜλ )

dτ1

)
|τ1=τ1,0

)
=

Q2Q3−Q1Q4

Q2
2 +Q2

1
. (3.31)
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As Q2Q3 >Q1Q4, then Hopf bifurcation occurs for τ1 = τ1,0. Therefore, the author arrives

at the following Theorem:

Theorem 3.3.4. If E ∗ exists, such that (H1) and (H3) hold, with τ2 ∈ (0,τ
′
2), then there

exists a positive threshold parameter τ∗1 such that the interior equilibrium E ∗ is locally

asymptotically stable for τ1 < τ∗1 , and unstable τ1 > τ∗1 , where τ∗1 =min{τ1, j} as in (3.29).

Additionally, System (3.3) undergoes Hopf bifurcation at E ∗ when τ1 = τ∗1 .

Remark 3.3.2. Similarly, for τ1 ∈ (0,τ
′
1), there exists a threshold parameter τ∗2 such that

the interior equilibrium E ∗ is locally asymptotically stable for τ2 < τ∗2 , and unstable τ2 >

τ∗2 . Also, Hopf bifurcation occurs for System (3.3) as τ2 = τ∗2 ; Where τ∗2 = min{τ2, j} is

given by

τ2, j =
1

ω3
arccos

[A1D1 +C1B1

A2
1 +C2

1

]
+

2 jπ
ω3

, j = 0,1,2, . . . , with (3.32)

A1 = M1ω
2
3 −M3, B1 = ω

3
3 −R2ω3 +(N3−N1ω

2
3 )sinω3τ1−N2ω3 cosω3τ1,

C1 = M2ω3, D1 =−R1ω
2
3 +R3 + cosω3τ1 +N2ω3 sinω3τ1.

The proofs are obtained in the same manner of the above analysis.

3.4 Global Stability of Interior Steady State E ∗

In this Section, the global stability of System (3.3) around interior steady state

E ∗ ≡ (x∗,y∗,z∗) is studied.

Theorem 3.4.1. If β1α1 < g1(α1 + x∗)(α1 + x) and β2α2(1+ cy∗)(1+ cy)+ δcz∗(α2 +

y∗)(α2 + y)< g2(α2 + y∗)(α2 + y)(1+ cy∗)(1+ cy), then System (3.3) is globally asymp-

totically stable at the interior equilibrium point E ∗.
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Proof. By suggesting the following Lyapunov function at E ∗ ≡ (x∗,y∗,z∗) of the form

V (t) = ρ1
(
x(t)−x∗−x∗ ln

x(t)
x∗
)
+ρ2

(
y(t)−y∗−y∗ ln

y(t)
y∗
)
+ρ3

(
z(t)−z∗−z∗ ln

z(t)
z∗
)

where ρ1,ρ2,ρ3 are nonnegative constants. Take derivative V with respect to time t, yield-

ing to

V̇ (t) = ρ1
x− x∗

x
ẋ(t)+ρ2

y− y∗

y
ẏ(t)+ρ3

z− z∗

z
ż(t)

= ρ1(x− x∗)
( β1x

α1 + x
− γ1−g1x−αy− ez

)
+ρ2(y− y∗)

( β2y
α2 + y

− γ2−g2y−βx− δyz
y(1+ cy)

)
+ρ3(z− z∗)

(
−β3 +

εex(t− τ1)z(t− τ1)

z
+

εδy(t− τ2)z(t− τ2)

z(1+ cy(t− τ2))

)

≤ ρ1(x− x∗)
( β1x

α1 + x
− β1x∗

α1 + x∗
−g1(x− x∗)−α(y− y∗)− e(z− z∗)

)
+ρ2(y− y∗)

( β2y
α2 + y

− β2y∗

α2 + y∗
−g2(y− y∗)−β (x− x∗)+

δy∗z∗

y∗(1+ cy∗)
− δyz

y(1+ cy)

)
+ρ3(z− z∗)

(εex(t− τ1)z(t− τ1)

z
+

εδy(t− τ2)z(t− τ2)

z(1+ cy(t− τ2))
− (εex∗+

εδy∗

1+ cy∗
)
)

≤−ρ1g1(x− x∗)2−ρ2g2(y− y∗)2− (ρ1α +ρ2β )(x− x∗)(y− y∗)

+(εeρ3− eρ1)(x− x∗)(z− z∗)+ρ1(x− x∗)
( β1x

α1 + x
− β1x∗

α1 + x∗
)

+ρ2(y− y∗)
( β2y

α2 + y
− β2y∗

α2 + y∗
)
+ρ2(y− y∗)(

δy∗z∗

y∗(1+ cy∗)
− δyz

y(1+ cy)
)

+ρ3(z− z∗)(
εδy

1+ cy
− εδy∗

1+ cy∗
)

≤−ρ1g1(x− x∗)2−ρ2g2(y− y∗)2− (ρ1α +ρ2β )(x− x∗)(y− y∗)

+(εeρ3− eρ1)(x− x∗)(z− z∗)+β1ρ1(x− x∗)2(
α1

(α1 + x∗)(α1 + x)
)

+β2ρ2(y− y∗)2(
α2

(α2 + y∗)(α2 + y)
)+δρ2(y− y∗)

(−(z− z∗)
1+ cy

+
cz∗(y− y∗)

(1+ cy∗)(1+ cy)

)
+ εδρ3(y− y∗)(z− z∗)(

1
1+ cy

− cy
(1+ cy∗)(1+ cy)

).
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Thus, based on the assumptions: β1α1 < g1(α1 + x∗)(α1 + x), β2α2(1+ cy∗)(1+ cy)+

δcz∗(α2 + y∗)(α2 + y) < g2(α2 + y∗)(α2 + y)(1+ cy∗)(1+ cy), ερ3 < max{ρ1,ρ2}, one

can get

V̇ (t)≤ (
ρ1α1β1

(α1 + x∗)(α1 + x)
−ρ1g1)(x− x∗)2 +(

εδρ3−δρ2

1+ cy
)(y− y∗)(z− z∗)

+
( δρ2cz∗

(1+ cy∗)(1+ cy)
+

ρ2α2β2

(α2 + y∗)(α2 + y)
−ρ2g2

)
(y− y∗)2

+(εeρ3−ρ1e)(x− x∗)(z− z∗)− (ρ1α +ρ2β )(x− x∗)(y− y∗)

− εδρ3cy
(1+ cy∗)(1+ cy)

(z− z∗)(y− y∗)≤ 0.

Hence the proof is complete.

3.5 Sensitivity Analysis

Sensitivity analysis of a particular model is the most important tool for investigat-

ing the quantitative (or qualitative) influence of perturbing the parameters on the model.

The objective of a sensitivity analysis is to determine systematically the effect of uncertain

parameters on system solutions and the effect of the noisy data on the accuracy to which

parameters may be determined [110]. Assume that System (3.3) is represented by a state

variable y(t,p) ∈ Rd (d = 3), for t ∈ [t0, tb] which is the unique non-negative solution of

the IVP

y′(t,p) = f(t,y(t,p),y(t− τ1,p),y(t− τ2,p);p), t0 ≤ t ≤ tb,

y(t,p) = φ(t,p), t ≤ t0.
(3.33)

The right-hand side of Equation (3.33) depends on the constant vector of parameters p,

which includes the initial values and time-lags. f is considered precisely if p is speci-

fied and generally it is continuously differentiable with respect to the arguments in bio-

mathematical systems; While the initial functions φ(t,p) are piecewise continuous with

possible jump discontinuities at a finite number of points [8].
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It is quite common for a model to exhibit high sensitivity to small variations in

some parameters; While showing robustness to variation in other parameters. There are

different ways to find the sensitivity functions of DDEs [110]. Nevertheless, the so called

"direct approach" is utilized to find sensitivity functions of Model (3.3).

By taking all the parameters appearing in Model (3.33) to be constants, then sen-

sitivity analysis, in this case, may just entail finding the partial derivatives of the solution

with respect to each parameter pl . One can denote by S(t) the matrix S(t;p) of the sensi-

tivity functions

S(t) = S(t;p) :=
[

∂yi(t;p)
∂ p j

]i=1,2,...,d

j=1,2,...,L
(3.34)

In Model (3.3), d = 3 and L = 20. Introducing the notation
{

∂

∂p

}T
, the matrix of local

sensitivity functions takes the form

S(t,p)(t) =
{

∂

∂p

}T
y(t,p) ∈ Rd×L. Its ith column is (3.35)

Si(t,p) =
[

∂yi(t,p)
∂ p1

,
∂yi(t,p)

∂ p2
, . . . ,

∂yi(t,p)
∂ pL

]
. (3.36)

Therefore, Si(t,p) is a vector whose components denote the sensitivity of the solution

yi(t,p) of the model to small variations in the parameters p j, j = 1,2, . . . ,L. Applying ∂

∂p

to Equation (3.33) yields the variational equation

S′(t,p) = J(t)S(t,p)+Jτ1(t)S(t− τ1,p)+Jτ2(t)S(t− τ2,p)+B(t), t ≥ 0, (3.37)

J(t) =
∂

∂y(t)
f(t,y(t),y(t− τ1),y(t− τ2);p),

Jτ1(t) =
∂

∂y(t− τ1)
f(t,y(t),y(t− τ1),y(t− τ2);p),

Jτ2(t) =
∂

∂y(t− τ2)
f(t,y(t),y(t− τ1),y(t− τ2);p),

B(t) =
∂

∂p
f(t,y(t),y(t− τ1),y(t− τ2);p).
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The sensitivity functions are directly obtained by solving the d×L sensitivity equations

(3.37) together with the original System (3.33). However, this is a challenging problem

when d and L are large, and when the model equations are stiff.

Now, consider Model (3.3), with the vector of parameters p=[α1, α2,β1, β2,g1,

g2,γ1, γ2,α , β ,e, δ ,β3,c,ε , τ1,τ2, x0,y0,z0]. The sensitivity functions with respect to the

parameters pi (i = 1,2, . . . ,20) are denoted by

Sxpi
(t) :=

∂

∂ pi
x(t), Sypi

(t) :=
∂

∂ pi
y(t), Szpi

(t) :=
∂

∂ pi
z(t). (3.38)

3.5.1 Sensitivity to severity of Allee effect

Here, the sensitivity of model solution of (3.3) is studied, with respect to the

parameters α1 and α2 (strength Allee effect). Hence, sensitivity functions due to small

perturbations in Allee parameter α1 are given by system of DDEs

S
′
xα1

(t) = Sxα1(t)[
β1x(t)

α1 + x(t)
− γ1−2g1x(t)−αy(t)− ez(t)]−αSyα1(t)x(t)

− eSzα1(t)x(t)+β1x(t)(
α1Sxα1(t)− x(t)
(α1 + x(t))2 ),

S
′
yα1

(t) = Syα1(t)[
β2y(t)

α2 + y(t)
− γ2−2g2y(t)−βx(t)]+ y(t)[−βSxα1(t)

+
α2β2Syα1(t)
(α2 + y(t))2 ]−δ [

Syα1(t)z(t)
(1+ cy(t))2 +

Szα1(t)y(t)
1+ cy(t)

],

S
′
zα1

(t) =−β3Szα1(t)+ εe[Sxα1(t− τ1)z(t− τ1)+Szα1(t− τ1)x(t− τ1)]

+ εδ [
Syα1(t− τ2)z(t− τ2)

(1+ cy(t− τ2))2 +
Szα1(t− τ2)y(t− τ2)

1+ cy(t− τ2)
].

(3.39)

To estimate the sensitivity functions Sxα1
(t), Syα1

(t) and Szα1
(t), then one may have to

solve the system of sensitivity equations (3.39) together with the original System (3.3).

Similarly, the sensitivity functions due to small changes in Allee coefficient α2
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satisfy the system of DDEs

S
′
xα2

(t) = Sxα2(t)[
β1x(t)

α1 + x(t)
− γ1−2g1x(t)−αy(t)− ez(t)]

+β1x(t)(
α1Sxα2(t)

(α1 + x(t))2 )−αSyα2(t)x(t)− eSzα2(t)x(t),

S
′
yα2

(t) = Syα2(t)[
β2y(t)

α2 + y(t)
− γ2−2g2y(t)−βx(t)]−βSxα2(t)y(t)

+β2y(t)[
α2Syα2(t)− y(t)
(α2 + y(t))2 ]−δ [

Syα2(t)z(t)
(1+ cy(t))2 +

Szα2(t)y(t)
1+ cy(t)

],

S
′
zα2

(t) =−β3Szα2(t)+ εe[Sxα2(t− τ1)z(t− τ1)+Szα2(t− τ1)x(t− τ1)]

+ εδ [
Syα2(t− τ2)z(t− τ2)

(1+ cy(t− τ2))2 +
Szα2(t− τ2)y(t− τ2)

1+ cy(t− τ2)
].

(3.40)

After-that, one may solve (3.40) along with (3.3) to evaluate Sxα2
(t), Syα2

(t) and Szα3
(t);

See Figure 3.10.

3.5.2 Sensitivity to time-delays

The sensitivity functions due to small changes in the time-lag parameters τ1 and

τ2 are obtained by solving the neutral delay differential equations (NDDEs)

S
′
xτ1

(t) = Sxτ1(t)[
β1x(t)

α1 + x(t)
− γ1−2g1x(t)−αy(t)− ez(t)]

+β1x(t)(
α1Sxτ1(t)

(α1 + x(t))2 )−αSyτ1(t)x(t)− eSzτ1(t)x(t),

S
′
yτ1

(t) = Syτ1(t)[
β2y(t)

α2 + y(t)
− γ2−2g2y(t)−βx(t)]+ y(t)[−βSxτ1(t)

+
α2β2Syτ1(t)
(α2 + y(t))2 ]−δ [

Syτ1(t)z(t)
(1+ cy(t))2 +

Szτ1(t)y(t)
1+ cy(t)

],

S
′
zτ1
(t) =−β3Szτ1(t)+ εe[Sxτ1(t− τ1)z(t− τ1)+(Szτ1(t− τ1)

− z′(t− τ1))x(t− τ1)]+ εδ [
Syτ1(t− τ2)z(t− τ2)

(1+ cy(t− τ2))2

+
Szτ1(t− τ2)y(t− τ2)

1+ cy(t− τ2)
].

(3.41)
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Noting that it is possible to obtain similar sensitivity equations with respect to the time

delay τ2. One can estimate the relative sensitivity functions,

∂y/y
∂p/p

=
relative change in y
relative change in p

;

which are useful to compare different parameters. The higher the relative sensitivity, the

more important the input parameter in the model.
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Figure 3.5: The roots of the characteristic equation of System (3.3) with negative real parts at the
stable steady state E ∗. Real parts computed up to ℜ(λ )≥−1 (left), ℜ(λ )≥−5 (right). Parameter
values are given in the text

3.6 Numerical Simulations

Some numerical simulations of System (3.3) are carried out, using Matlab pack-

age DDE23 and DDE-BIFTOOL, to confirm the theoretical results. The author first in-

vestigates the behavior of model around E ∗ with parameter values:

α = 0.9,α1 = 0.001,α2 = 0.001,β = 1.35,γ2 = 1,γ1 = 1,

β1 = 2,β2 = 2,β3 = 1,ε = 0.5,e = 5,δ = 1.
(3.42)

In Figure 3.5, the roots of (3.18) were computed, by setting minimal real part to a more

negative value (the roots are computed up to ℜ(λ )≥−1
τ
) (left), where τ = max{τ1,τ2},

and recompute stability up to ℜ(λ )≥−5 (right).
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Figure 3.6: Numerical simulations of System (3.3) around the steady state E ∗. Top Banners show
that E ∗ is asymptotically stable when τ1 = 3.54 < τ∗1 and τ2 ∈ (0,τ∗2 ); Below Banners display a
Hopf bifurcation when τ1 = τ∗1 = 4.34 and τ2 < τ∗2 = 5.34; the other parameter values are given
in (3.42).
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Figure 3.7: The Hopf bifurcation diagrams of τ1 and τ2 for System (3.3); which are obtained
numerically by maximum and minimum amplitude of z(t). The left banner displays the threshold
parameter τ∗1 = 4.34 with τ2 < τ∗2 ; While right banner shows that the threshold parameter τ∗2 = 5.54
with τ1 < τ∗1

Figure 3.6 shows the numerical simulations of the delayed System (3.3) around

the steady state E ∗. The interior steady state E ∗ is asymptotically stable when τ1 < τ∗1 and

τ2 ∈ (0,τ∗2 ); The model undergoes a Hopf bifurcation when τ1 = τ∗1 = 4.34 and τ2 < τ∗2 =
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Figure 3.8: Bistability of two interior equilibria for the delayed System (3.3); with α = 0.9 and
α = 0.5. Both equilibria are locally asymptotically stable, other parameter values are given in
(3.42)
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Figure 3.9: The sensitivity of the dynamics of the System (3.3) due to small changes in the severity
of Allee effect α1 and α2. The left banners show the numerical simulations with different values of
α1 ( 0.001≤α1≤ 0.02) and fixed value of α2 = 0.001; While right banners display the simulations
with different values of α2 (0.01 ≤ α2 ≤ 0.02) and fixed value of α1 = 0.01. The phase portrait
gets stretched over time as α1 reduced; While low values of α2 increases the oscillations over time.
The presence of Allee effect in the model enriches the dynamics of the system

5.34. Figure 3.7 displays the Hopf bifurcation diagrams of τ1 and τ2 which are obtained

numerically by maximum and minimum amplitude of z(t) . The left banner displays the

threshold parameter τ∗1 = 4.34 with τ2 < τ∗2 ; While right banner shows that the threshold

parameter τ∗2 = 5.54 with τ1 < τ∗1 .



72

0 20 40 60 80 100

|
∂

 
x
 
/
∂

 
α

1
|

0

5

10

15

20

0 20 40 60 80 100

|
∂

 
y
 
/
∂

 
α

1
|

0

5

10

15

20

0 20 40 60 80 100

|
∂

 
z
 
/
∂

 
α

1
|

0

1

2

3

4

5

6

7

8

Time

0 20 40 60 80 100

|
∂

 
x
 
/
∂

 
α

2
|

0

2

4

6

8

10

Time

0 20 40 60 80 100

|
∂

 
y
 
/
∂

 
α

2
|

0

5

10

15

20

25

Time

0 20 40 60 80 100

|
∂

 
z
 
/
∂

 
α

2
|

0

1

2

3

4

5

6

Figure 3.10: Sensitivity functions of model solution of System (3.3) with respect to Allee param-
eters α1 and α2. Top banners show the sensitivity functions for x(t), y(t) and z(t) with respect to
small changes in Allee parameter α1. However, the bottom banners display the sensitivity with
respect to α2. They show that the model is very sensitive to the small perturbations of Allee pa-
rameters in early time intervals and the sensitivity decreases by time. The two parameters α1 and
α2 are significant in the model, and cause high impact in early stages of interactions
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Figure 3.11: Sensitivity functions of model solution of System (3.3) with respect to time delay τ1;
which show the sensitivity functions for x(t), y(t) and z(t) with respect to small changes in τ1

Figure 3.8 displays a bistability of two interior equilibrium points, for the DDEs

Model (3.3), when parameter α varies from α = 0.5 to α = 0.9. If the interior equilibria

exists, any trajectory starting from the interior of R3
+ converges to one of the interior

equilibria.

Figure 3.9 shows the sensitivity of the dynamics of the System (3.3) due to small

changes in the severity of Allee effect α1 and α2. The left banners show the numerical

simulations with different values of α1 ( 0.001 ≤ α1 ≤ 0.02) and fixed value of α2 =
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0.001; While right banners display the simulations with different values of α2 (0.01 ≤

α2 ≤ 0.02) and fixed value of α1 = 0.01. The phase portrait gets stretched over time as

α1 reduced; While low values of α2 increases the oscillations over time. The presence

of Allee effect in the model enriches the dynamics of the system; While Figure 3.10

exhibits the absolute values of sensitivity functions: |∂x(t)/∂α1,2|, |∂y(t)/∂α1,2| and

|∂ z(t)/∂α1,2| to evaluate the sensitivity of the state variables due to a small perturbations

in α1 and α2. The oscillation behaviour indicates that the species population is very

sensitive to small changes in the parameter. It is clear that α1 and α2 are important in

the model and have a significant impact in the dynamics, specially in the early stages of

time. However, the sensitivity to these parameters decreases with time. Figure 3.11 shows

that the parameter τ1 has a significant effect in the model at the first subintervals and this

sensitivity decreases by time.

3.7 Concluding Remarks

In this chapter, the author established two-prey one-predator model with time-

delays and a weak Allee effect in the preys’ growth functions, where there is a direct

competition between prey populations. Non-negativity and boundedness of the solutions

have been investigated. Some new sufficient conditions for local and global asymptotic

stability of interior steady states have been deduced. In addition, Hopf bifurcation with

respect to time-delays threshold parameters τ∗1 and τ∗2 have been studied. The model

undergoes a Hopf bifurcation when time-delays pass through its critical values. The sen-

sitivity of model solutions to small perturbations in the severity of Allee effect α1 and

α2 and time delays was investigated. The obtained results confirm that Allee effect has

a significant impact in the dynamics in the early stages of interaction. Introduction of

time-delay and Allee effects, in the model, improves the stability results, and enrich the

dynamics of the system, keep the populations densities in balance, and makes the model

closer to reality.

It is known that the previous deterministic DDEs models are sometimes stable

with a cyclic behaviors in the common period for the sizes of species populations. How-
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ever, in practice, stochastic variations will occur in the values of x and y, which may

produce a qualitatively different behavior. Thus, in next chapters, the author extends the

analysis and study impact of environmental noise, by using stochastic DDEs with biolog-

ical systems.
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Chapter 4: Stochastic DDEs of Predator-Prey System with Hunting
Cooperation in Predators

4.1 Introduction

Stochastic differential models provide an additional degree of realism compared

to their corresponding deterministic counterparts because of the randomness and stochas-

ticity of real life. This work extends the analysis and studies the dynamics of a stochastic

delay differential model for predator-prey system with hunting cooperation in predators;

Existence and uniqueness of global positive solution are discussed in Section 3. Stochas-

tically ultimate boundedness and almost surely asymptotic properties are investigated in

Sections 4 and 5. Some sufficient conditions for persistence and extinction, using Lya-

punov functional, are obtained in Section 6. Illustrative examples and numerical simu-

lations, using Milstein’s scheme, are carried out to validate the analytical findings; See

Section 7. The concluding remarks are given in Section 8.

Many studies have explored the effect of predator hunting cooperation on Predator-

Prey (PP) systems [3, 104, 144]. Deterministic models such as (2.2) may be inadequate

for capturing the exact variability in nature. Then, stochastic models are required for an

accurate approximation of the dynamics of such interactions. The random fluctuations

result in changing some degree of parameters in the deterministic environment. Many au-

thors have studied stochastic population models and revealed the effects of environmental

noises on the dynamics of population models (see [31, 32, 54, 141]). In [108], the authors

studied the effect of environmental fluctuations of a delayed Harrison-type PP model, they

analyzed the impact of the combination of delay and noise in the dynamical behavior of

the model. In [14], the authors studied the effect of environmental fluctuations on a com-

petitive model for two phytoplankton species where one species liberate toxic substances

by considering a discrete time delay parameter in the growth equations of both species.

Before starting the analysis, one can provide some necessary results which will
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be used in this and next chapters.

4.2 Preliminaries

The mathematical model for a random quantity is a "random variable". Herein,

the author recall some concepts from general probability theory. Consider

Rn
+ = {y = (y1,y2, . . . ,yn) ∈ Rn : yi > 0,1≤ i≤ n}.

Definition 4.2.1. [138] If Ω is a given set, then a σ−algebra A on Ω is a family A of

subset Ω with the following properties:

(i) φ ∈A ;

(ii) A ∈A ⇒ Ac ∈A , where Ac = Ω\A is the complement of A in Ω;

(iii) A1,A2, · · · ∈A ⇒ A := ∪∞
i=1Ai ∈A .

Thus, the pair (Ω,A ) is a measurable space. If C is a family of subsets of Ω,

there is a smallest σ -algebra σ(C) on Ω which contains C. Hence, σ(C) is the σ -algebra

generated by C. Assume Ω=Rn and C is the family of all open sets in Rn, then Bn =σ(C)

is the Borel σ -algebra and the elements of Bn are the Borel sets. A real valued-function

y : Ω→ R is A -measurable if

{ω : y(ω)≤ c} ∈A for all c ∈ R.

An Rn-valued function y(ω) = (y1(ω),y2(ω), . . . ,yn(ω))T is A -measurable if yi is A -

measurable for all i = 1, . . . ,n. Additionally, a n×m-matrix-valued function y(ω) =

(yi j(ω)) is A -measurable if yi j is A -measurable for all i = 1, . . . ,n and j = 1, . . . ,m.

A probability measure P on a measurable space (Ω,A ) is a function P : A →

[0,1] such that:
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(a) P(φ) = 0, P(Ω) = 1;

(b) if A1,A2, · · · ∈A and {Ai}∞
i=1 is disjoint, then P

(
∪∞

i=1 Ai

)
=

∞

∑
i=1

P(Ai).

The triple (Ω,A ,P) is called a probability space [92]. If y is a real-valued random variable

and is integrable with respect to the probability measure P, the expectation of y with

respect to P is

E(y) =
∫

Ω

y(ω)dP(ω).

The variance of y is

Var(y) = E(y−E(y))2.

The pth moment of y is denoted as E|y|p (p > 0). A statement S about outcomes is said

to be true almost surely (a.s.), or with probability 1, if

A := {ω : S (ω) is true} ∈A and P(A) = 1.

4.2.1 Stochastic processes

Let (Ω,A ,P) be a probability space. A filtration is a family {At}t≥0 of increasing

sub-σ -algebras of A (i.e. At ⊂ As ⊂ A for all 0 ≤ t < s < ∞). The filtration is said to

be right continuous if At = ∩s>tAs for all t ≥ 0. Considering the probability space is

complete, the filtration is said to satisfy the usual conditions if it is right continuous and

A0 contains all P-null sets. Additionally, one can define A∞ = σ(∪t≥0At).

In general, a stochastic process is a family {yt}t∈I of Rn-valued random vari-

ables with parameter set I which could be (R+ = [0,∞), an interval [a,b], the non-

negative integers or subsets of Rn), and state space Rn. For a fixed t ∈ I, a random

variable Ω 3 ω → yt(ω) ∈ Rn is considered. Wheres for a fixed ω ∈ Ω, a function
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I 3 t → yt(ω) ∈ Rn is assumed, which is called a sample path of the process, also one

can denote yt(ω) by y(t,ω) and the stochastic process can be considered as a function of

two components (t,ω) from I×Ω to Rn; a stochastic process is often written as {yt}, yt

or y(t). {At} is said to be adapted if for every t, yt is At-measurable; and it is said to be

measurable if the stochastic process considered as a function of two components (t,ω)

from R+×Ω to Rn is B(R+)×A -measurable.

Now, one may define a random variable τ : Ω→ [0,∞), which is called an {At}-

stopping time if {ω : τ(ω)≤ t} ∈At for any t ≥ 0. An Rn-valued {At}-adapted integrable

process {Mt}t≥0 is a martingale with respect to {At} if E(Mt |As) = Ms a.s. for all 0 ≤

s < t < ∞. A stochastic process y = {yt}t≥0 is called square integrable if E|yt |2 < ∞ for

every t ≥ 0. If M = {Mt}t≥0 is a real-valued square-integrable continuous martingale,

then there exists a unique continuous integrable adapted increasing process {〈M,Mt〉t}

(quadratic variation of M) such that {M2
t −〈M,M〉t} is a continuous martingale vanishing

at t = 0. A right continuous adapted process M = {Mt}t>0 is a local martingale if there

exists a nondecreasing sequence {τk}k≥1 of stopping times with τk → ∞ a.s. such that

every {Mτk∧t−M0}t≥0 is a martingale.

Lemma 4.2.1. (Strong Law of Large Numbers) [81]. Let M = {Mt}t≥0 be a real valued

continuous local martingale vanishing at t = 0. Then

lim
t→∞
〈M,M〉t = ∞ a.s. ⇒ lim

t→∞

Mt

〈M,M〉t
= 0 a.s.,

and also

lim sup
t→∞

〈M,M〉t
t

< ∞ a.s.⇒ lim
t→∞

Mt

t
= 0 a.s.

In Chapter 1 the properties of Brownian motions were discussed, now one can

introduce the stochastic integrals and Itô formula.
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4.2.2 Itô formula

Consider the following indicator function

I[ti,ti+1](t) =


1 when t ∈ [ti, ti+1];

0 otherwise.

The stochastic integral
∫ t

0
f (s)dWs with an m−dimensional Brownian motion {Wt} for a

class of n×m-matrix-valued stochastic processes { f (t)} is defined; Unfortunately, W (t)

does not have a derivative and so one cannot write the integral as a Riemann integral

[103]. Let t∗i ∈ [ti, ti+1] then one can approximate f (t) by ∑i f (t∗i ).I[ti,ti+1](t). Therefore,

one can define
∫ t

0
f (s)dWs as the limit ∑

i
f (t∗i )[Wti+1−Wti] as n→ ∞.

Noting that one may consider t∗i = ti then the Itô integral have been defined. How-

ever, if t∗i =
ti+ti+1

2 , this gives the Stratonovich integral. For example the stochastic integral∫ t

0
WdW by Itô approach is

1
2
(W 2(t)− t); While with the Stratonovich definition yields

1
2

W 2(t). The Itô integral is a martingale and the Stratonovich provides the results ex-

pected from ordinary calculus; the difference between these two integrals comes from the

lack of smoothness of W (t); which can be illustrated by Itô stochastic chain rule formula

[70, 103].

Definition 4.2.2. ([52]) The transition probability function P(s,y, t,A ) is said to be time-

homogeneous if the function P(s,y, t + s,A ) is independent of s, where 0≤ s≤ t,y ∈Rn

and A ∈B,B denotes the σ− algebra of Borel sets in Rn.

Assume y(t) is a regular time homogeneous Markov process in C ([−τ,0];Rn
+)

and satisfies the following stochastic delay differential equations (SDDEs)

dy(t) = f(t,y(t),y(t− τ))dt +
n

∑
r=1

gr(t,y(t))dWr(t) for t ≥−τ,τ ≥ 0 (4.1)

with the initial value y(t) = y0 ∈ C ([−τ,0];Rn
+). The diffusion matrix of the process y(t)
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is defined as follows:

A(y) =
k

∑
r=1

(gi
r)

T (t,y(t))g j
r(t,y(t)) = (ai j(y)).

Define a C 2,1(C ([−τ,0];Rn
+)×[−τ,∞);R+) the family of all nonnegative functions V (t,yt)

such that it is continuously twice differentiable in y and once in t. The differentiable op-

erator L of (4.1) is defined by [91]

L =
∂

∂ t
+

n

∑
i=1

fi(t,y(t),y(t− τ))
∂

∂yi
+

1
2

n

∑
i, j=1

[gT (t,y(t))g(t,y(t))]i j
∂ 2

∂yi∂y j
. (4.2)

If L acts on a functional V (t,yt) ∈ C 2,1(C ([−τ,0];Rn
+)× [τ,∞);R+), then

LV (t,yt)=Vt(t,yt)+Vy(t,yt)f(t,y(t),y(t−τ))+
1
2

trace[gT (t,y(t))Vyy(t,yt)g(t,y(t))],

where Vt =
∂V
∂ t , Vy = ( ∂V

∂y1
, . . . , ∂V

∂yn
), Vyy = ( ∂ 2V

∂yi∂y j
)n×n. According to Itô formula, if y(t) ∈

C ([−τ,0];Rn
+), then

dV (t,yt) = LV (t,yt)dt +Vy(t,yt)g(t,y(t))dW (t).

4.3 SDDEs for Predator-Prey System

In this chapter, the author considers a stochastic version of a predator-prey Sys-

tem (2.2), where white noise is incorporated into the growth equations of both prey and

predator, so that

dx(t) =
[
rx(t)(1− x(t− τ1)

K
)− [1+αy(t)]x(t)y(t)

1+ c(1+αy(t))x(t)

]
dt +σ1x(t)dW1(t),

dy(t) =
[
−δy(t)−ay2(t)+

µ[1+αy(t)]x(t− τ2)y(t)
1+ c(1+αy(t))x(t− τ2)

]
dt +σ2y(t)dW2(t).

(4.3)
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W1(t),W2(t) are standard independent Wiener processes defined on a complete probability

space (Ω,A ,{A }t≥0,P) with a filtration {A }t≥0 satisfying the usual conditions; and σ1,

σ2 are the positive intensities of white noises. Assuming that κ ∈ [−τ,0],τ =max{τ1,τ2},

i.e. (x0,y0) ∈ C ([−τ,0],R2
+) with R2

+ = {(x,y) ∈ R2 : x > 0,y > 0}, if (x,y) ∈ R2, its

norm is denoted by |(x,y)|=
√

x2 + y2. The initial value of System (4.3) becomes

(x(κ),y(κ)) = {(x(κ),y(κ)) :−τ ≤ κ ≤ 0} ∈ C ([−τ,0];R2
+). (4.4)

Now, the existence and uniqueness of positive solutions is investigated.

4.3.1 Existence and uniqueness of positive solution

In order to prove that the model of SDDEs (4.3) has a unique global solution (i.e.

no explosion in a finite-time) for any given initial condition, the coefficients of the System

(4.3) are generally required to satisfy the linear growth condition and local Lipschitz

condition [23, 92]. Although, the response function f (x,y) = (1+αy)x
1+c(1+αy)x is nonlinear,

coefficients of (4.3) don not satisfy the linear growth condition. Thus, to show that Model

(4.3) has a global positive solution, let firstly prove that the model has a positive local

solution by making the change of variables. Then, one can prove that this solution will

also not explode to infinity at any finite time, by using a suitable stochastic Lyapunov

functional.

Theorem 4.3.1. Let the coefficients of the System (4.3) be locally Lipschitz continuous,

then for any given initial data (4.4) there is a unique positive solution (x(t),y(t)) of System

(4.3) on t ≥−τ , and the solution will remain in R2
+ with probability one.

Proof. Let n(t) = lnx(t), p(t) = lny(t), one may have the system

dn(t) =
(

r− r
K

en(t−τ1)− (1+αep(t))en(t)

1+ c(1+αep(t))en(t)
−

σ2
1

2

)
dt +σ1dW1(t)

d p(t) =
(

µ(1+αep(t))en(t−τ2)

1+ c(1+αep(t))en(t−τ2)
−δ −aep(t)−

σ2
2

2

)
dt +σ2dW2(t),

(4.5)
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for any initial values n(κ) = lnx(κ), p(κ) = lny(κ), κ ∈ [−τ,0]. It is easy to show that all

the coefficients of (4.5) satisfy the local Lipschitz condition, therefore, there is a unique

local solution (n(t), p(t)) on [−τ,τe), where τe is explosion time. By Ito’s formula, one

can see that x(t) = en(t), y(t) = ep(t), therefore, there is a unique local positive solution of

(4.3) for any given initial value (x0,y0) ∈ R2
+.

To show this solution is global, one may need to show τe = ∞ a.s. (almost

surely). Let l0 > 0 be sufficiently large so that (x(t),y(t)) = {(φ1(t),φ2(t)) : −τ ≤ t ≤

0} ∈ C ([−τ,0];R2
+) all lie within the interval [

1
l0
, l0]. Now for each integer l ≥ l0, define

the stopping time τl = inf{t ∈ [−τ,τe) : x(t) /∈ (
1
l
, l),y(t) /∈ (

1
l
, l)}, let infφ = ∞. τl is

increasing with l and let τ∞ = lim
l→∞

τl , then τ∞ ≤ τe and by showing τ∞ = ∞ a.s., now the

idea is to conclude that τe = ∞ a.s. If this assertion is erroneous, then there exists a pair

of constants T > 0 and ε ∈ (0,1) such that P{τ∞ ≤ T}> ε . Therefore, there is an integer

l1 ≥ l0

P{τl ≤ T}> ε, for all l ≥ l1. (4.6)

Define a C 2-function V (x,y) : R+×R+→ R+ by

V (x,y) = (x− logx−1)+(y− logy−1)+
r
K

∫ t+τ1

t
x(s− τ1)ds.

Clearly, this function is non-negative for all x,y ≥ 0. Let l ≥ l0 and T > 0 be arbitrary.

For 0≤ t ≤ τl ∧T , by Itô’s formula for V , one gets

dV =
[
(x−1)[r− r

K
x(t− τ1)−

(1+αy)y
1+ c(1+αy)x

]+ (y−1)[
µ(1+αy)x(t− τ2)

1+ c(1+αy)x(t− τ2)

−δ −ay]+
σ2

1 +σ2
2

2
+

r
K

x− r
K

x(t− τ1)
]
dt +σ1(x−1)dW1(t)+σ2(y−1)dW2(t),
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dV ≤
[
−ay2 +(1+µ +a−δ )y+ r

K +1
K

x+(δ − r)+
σ2

1 +σ2
2

2

]
dt

+σ1(x−1)dW1(t)+σ2(y−1)dW2(t),

≤ γdt +σ1(x−1)dW1(t)+σ2(y−1)dW2(t),

where γ is a positive number. Therefore

∫
τl∧T

τl∧T−τ

dV (x,y)≤
∫

τl∧T

τl∧T−τ

γdt +
∫

τl∧T

τl∧T−τ

σ1(x−1)dW1(t)

+
∫

τl∧T

τl∧T−τ

σ2(y−1)dW2(t).

(4.7)

Taking expectation of both sides implies

E[V (x(tl ∧T ),y(tl ∧T ))]≤V (x(0),y(0))+ γT. (4.8)

Set Ωl = {τl ≤ T} for l ≥ l1 and by the virtue of (4.6), one obtains P(Ωl)≥ ε. For every

η ∈ Ωl , x(τl,η) and y(τl,η) equal either to l or 1
l , Consequently, V (x(τl,η),y(τl,η)) is

no less than either l− log l−1 or 1
l + log l−1. Therefore, one can get

V (x(τl,η),y(τl,η))≥min{l− log l−1,
1
l
+ log l−1}.

It follows from (4.8) that

V (x(0),y(0))+ γT ≥ E[1Ωl(η)V (x(τl),y(τl))]≥ ε[l− log l−1]∧ [1
l
+ log l−1],

where 1Ωl is the indicator function of Ωl . Letting l → ∞ leads to a contradiction that

∞ >V (x(0),y(0))+ γT = ∞. Therefore, one gets τ∞ = ∞ a.s.
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4.4 Stochastically Ultimate Boundedness

After discussion existence and uniqueness of positive solution of SDDEs (4.3),

one can show that the positive solution does not explode to infinity in a finite time.

Definition 4.4.1. [91] The solution of the SDDE Model (4.3) is said to be stochasti-

cally ultimately bounded if for any ε ∈ (0,1), there is a positive constant ϕ = ϕ(ε),

such that for any initial value (4.4), the solution of Model (4.3) has the property that

limt→∞ supP{|(x(t),y(t))|> ϕ}< ε.

The system is said to be stochastically ultimately bounded if the following Theo-

rem is satisfied.

Theorem 4.4.1. For any θ ∈ (0,1) and µθ(µKeτ2−δ ) > a, there is a positive constant

N = N(θ), which is independent of the initial value (4.4), such that the solution Model

(4.3) has the following properties

lim
t→∞

supE[|(x(t),y(t))|θ ]≤ N. (4.9)

Then System (4.3) is stochastically ultimately bounded.

Proof. To prove (4.9), define

V (x,y) = xθ + yθ , (x,y) ∈ R2
+. (4.10)

Applying Itô’s formula, gives

LV (x,y) = θxθ
[
r− r

K
x(t− τ1)−

(1+αy)y
1+ c(1+αy)x

]
+

σ2
1

2
θ(θ −1)xθ

+θyθ [
µ(1+αy)x(t− τ2)

1+ c(1+αy)x(t− τ2)
−δ −ay]+

σ2
2

2
θ(θ −1)yθ ,
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LV (x,y)≤ θxθ (r− r
K

x(t− τ1))−
σ2

1
2

θ(1−θ)xθ +
µθyθ (1+αy)x(t− τ2)

1+ c(1+αy)x(t− τ2)

−
σ2

2
2

θ(1−θ)yθ −θayθ+1

≤ rθxθ −
σ2

1
2

θ(1−θ)xθ −
σ2

2
2

θ(1−θ)yθ

+µθ(
µKeτ2−δ

a
)|x(t− τ2)|2

= H(x,y)−V (x,y)− eτ2|x(t)|2 +µθ(
µKeτ2−δ

a
)|x(t− τ2)|2, where,

H(x,y) = (rθ +1)xθ + yθ −
σ2

1
2
(1−θ)xθ −

σ2
2

2
θ(1−θ)yθ + eτ2|x(t)|2 ≤ N0,

for (x,y) ∈ R2
+. Note that H(x,y) is bounded in R2

+. Hence, one gets

LV (x,y)≤ N0−V (x,y)− eτ2 |x(t)|2 + µθ(µKeτ2−δ )

a
|x(t− τ2)|2.

Thus, one obtains

dV (x,y) = LV (x,y)dt +σ1θxθ dW1(t)+σ2θyθ dW2(t)

≤ (N0−V (x,y)− eτ2|x(t)|2 + µθ(µKeτ2−δ )

a
|x(t− τ2)|2)dt

+σ1θxθ dW1(t)+σ2θyθ dW2(t).

Again, using Itô’s formula, one may have

d(etV (x,y)) = etV (x,y)dt + etdV (x,y)

≤ et [N0− eτ2|x(t)|2 + µθ(µKeτ2−δ )

a
|x(t− τ2)|2]dt

+ et
σ1θxθ dW1(t)+ et

σ2θyθ dW2(t).
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If µθ(µKeτ2−δ )> a, then

etE[V (x,y)]≤V (x(0),y(0))+N0et−E[
∫ t

0
es+τ2|x(s)|2ds]

+µθ
µKeτ2−δ

a
E[
∫ t

0
es|x(s− τ2)|2ds]

=V (x(0),y(0))+N0et−E[
∫ t

0
es+τ2|x(s)|2ds]

+
µ2θK

a
E[
∫ t−τ2

−τ2

es+τ2|x(s)|2ds]− δ µθ

a
E[
∫ t

0
es|x(s− τ2)|2ds]

≤V (x(0),y(0))+N0et +
µ2θK

a
E[
∫ 0

−τ2

es+τ2|x(s)|2ds],

which implies that lim
t→∞

supE[V (x(t),y(t))]≤ N0. Therefore, one gets

lim
t→∞

supE[|x(t),y(t)|θ ]≤
√

2θ lim
t→∞

supE[V (x(t),y(t))]≤
√

2θ N0 = N(θ). (4.11)

Since lim
t→∞

supE[|x(t),y(t)|θ ] ≤ N, then for any ε > 0 let ϕ = N2/ε2. By Chebyshev in-

equality, P{|(x(t),y(t))|>ϕ}≤
E[(
√
|(x(t),y(t))|)]
√

ϕ
, one obtains lim

t→∞
supP{|(x(t),y(t))|>

ϕ} ≤ N
√

ϕ
:= ε , which implies

lim
t→∞

supP{|(x(t),y(t))| ≤ ϕ} ≥ 1− ε.

Thus, Model (4.3) is stochastically ultimately bounded.

4.5 Almost Surely Asymptotic Properties

When the model is subject to stochastic noises, it is valuable and interesting to

examine whether the stochastic model preserve some stability properties for the determin-

istic model. For simplicity, one can introduce the following notations.

• Mi(t) =
∫ t

0
σi(x(t),y(t))i
V (x(s),y(s)) dW (s), i = 1,2. Such that Mi(t) is a real-valued continuous

local martingale vanishing at t = 0 and its quadratic form is given by
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〈Mi(t),Mi(t)〉=
∫ t

0
σ2

i (x(t),y(t))
2
i

V (x(s),y(s)) ds; i = 1,2.

• Let ε ∈ (0,1) and ζ > 0, by the exponential martingale inequality [92], for each

n≥ 1,

P{ sup
0≤t≤n

(Mi(t)−
ε

2
〈Mi(t),Mi(t)〉)>

ζ lnn
ε
} ≤ n−ζ .

Since Σ∞
n=1n−ζ is convergent, By using Borel-Cantelli Lemma, there is Ω0 ⊂ Ω

with P(Ω0) = 1 such that for ρ ∈Ω0 there exists an integer n0 = n0(ρ) and choosing

ζ = 2, one may have

Mi(t)≤
ε

2
〈Mi(t),Mi(t)〉+

2
ε

lnn, for all 0≤ t ≤ n∧n≥ n0(ρ). (4.12)

Theorem 4.5.1. For any given initial value (4.4), such that the solution of Model (4.3)

has the property that

limsup
t→∞

t−1 ln |(x(t),y(t))| ≤ D2 a.s,

where D2 = 1+δ +a+ D̂2

2σ̂2 , such that σ̂ = min{σ1a1,σ2a2} and D̂ = max{α,µ}.

Proof. Define V (x(t),y(t)) = x(t)+ y(t), using Itô’s formula it gives that

lnV (x(t),y(t))− lnV (x(0),y(0)) =
∫ t

0

( x
(x(s)+ y(s))

(1− r
K

x(s− τ1)

− (1+αy)y
1+ c(1+αy)x

)−
σ2

1 x2

2(x(s)+ y(s))2

)
ds

+
∫ t

0

( y
(x(s)+ y(s))

(
µ(1+αy)x(s− τ2)

1+ c(1+αy)x(s− τ2)
−δ −ay)

−
σ2

2 y2

2(x(s)+ y(s))2

)
ds+M1(t)+M2(t).

(4.13)
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Substituting Inequality (4.12) into (4.13) one obtains

ln
V (x(t),y(t))
V (x(0),y(0))

≤
∫ t

0

( x
(x(s)+ y(s))

(1− r
K

x(s− τ1)−
(1+αy)y

1+ c(1+αy)x
)

−
(1− ε)σ2

1 x2

2(x(s)+ y(s))2

)
ds

+
∫ t

0

( y
(x(s)+ y(s))

(
µ(1+αy)x(s− τ2)

1+ c(1+αy)x(s− τ2)
−δ −ay)

−
(1− ε)σ2

2 y2

2(x(s)+ y(s))2

)
ds

+
4
ε

lnn,

(4.14)

assume that a1,a2 ∈ (0,1) are positive constants. Thus,

ln
V (x(t),y(t))
V (x(0),y(0))

≤
∫ t

0
(1+αy+µx(s− τ2)+δ +a− (1− ε)σ̂2|(x(s),y(s))|2

2
)ds

+
4
ε

lnn,

(4.15)

where, σ̂ = min{σ1a1,σ2a2} for all 0 ≤ t ≤ n, n ≥ n0(ρ) and ρ ∈ Ω0. From (4.15), one

gets

lnV (x(t),y(t))+
(1−2ε)σ̂2

4

∫ t

0
|(x(s),y(s))|2ds

≤ D1 +
∫ t

0
(1+αy+µx+δ +a− σ̂2|(x(s),y(s))|2

2
)ds+

4
ε

lnn,

(4.16)

such that D1 = lnV (x(0),y(0))+µ
∫ 0
−τ2

x(s)ds. Due to

1+αy+µx+δ +a− σ̂2|(x(t),y(t))|2

2
≤ 1+δ +a+

D̂2

2σ̂2 = D2,

where D̂ = max{α,µ}, therefore, if ρ ∈Ω0,

lnV (x(t),y(t))+
(1−2ε)σ̂2

4

∫ t

0
|(x(s),y(s))|2ds≤ D1 +D2t +

4
ε

lnn,
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for all 0≤ t ≤ n, n≥ n0(ρ). Hence, for all ρ ∈Ω0, if n−1≤ t ≤ n, n≥ n0(ρ), as ε → 0

it gives that

limsup
t→∞

(t−1 lnV (x(t),y(t))+ t−1 (1−2ε)σ̂2

4

∫ t

0
|(x(s),y(s))|2ds)≤ D2 a.s,

using V (x(t),y(t))≥ |(x(t),y(t))|√
2

, implies limsup
t→∞

(t−1 ln |(x(t),y(t))|)≤ D2 a.s.

4.6 Persistence and Extinction of the Solution

Herein, sufficient conditions for persistence and extinction are provided, using

Lyapunov functionals.

4.6.1 Persistence

Under certain restrictions on the parameters values with small intensities of white

noise, the conditions under which persistence of the system SDDEs (4.3) occurs are in-

vestigated. Let first define persistence in the mean of a dynamical system.

Definition 4.6.1. The species y(t) is said to be persistence (See [84].) in the mean if

lim inf
t→∞

1
t

∫ t

0
y(s)ds > 0, a.s.

In order to show the persistence, the author go through the following Lemma.

Lemma 4.6.1. [63]. Let y(t)∈C [[0,∞)×Ω,(0,∞)]. If there exist positive constants λ0,λ

such that

lny(t)≥ λ t−λ0

∫ t

0
y(s)ds+F(t) a.s.,
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for all t ≥ 0, where F ∈ C [[0,∞)×Ω,R] and limt→∞
F(t)

t = 0 a.s., then

lim inf
t→∞

1
t

∫ t

0
y(s)ds≥ λ

λ0
a.s.

Define a threshold parameter T s
0 as follows.

T s
0 =

µK
δ̃ (1+ c)

> 0, where δ̃ = δ +
σ2

2
2
. (4.17)

Theorem 4.6.2. Let (x(t),y(t)) be the solution the SDDEs (4.3) with initial conditions

(4.4). Assume that 2r > σ2
1 , then the System (4.3) will be persistence if T s

0 > 1. So that

lim inf
t→∞

1
t

∫ t

0
y(s)ds > 0, a.s.

Proof. Using of Itô’s formula to the first equation of System (4.3), yields

d(lnx(t)− r
K

∫ t+τ1

t
x(s− τ1)ds)≤ ((r−

σ2
1

2
)− r

K
x(t))dt +σ1dW1(t). (4.18)

Integrating of Inequality (4.18) from 0 to t results in

lnx(t)− r
K
∫ t+τ1

t x(s− τ1)ds
t

−
lnx(0)− r

K
∫ τ1

0 x(s− τ1)ds
t

≤ (r−
σ2

1
2
)− r

K
〈x(t)〉+ σ1W1(t)

t
.

Thus,

〈x(t)〉 ≤ K
r
(r−

σ2
1

2
)+ γ1(t), where, (4.19)

γ1(t) =
K
r

[
σ1W1(t)

t
−

lnx(t)− r
K
∫ t+τ1

t x(s− τ1)ds
t

+
lnx(0)− r

K
∫ τ1

0 x(s− τ1)ds
t

]
,
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it follows from Lemma 4.2.1 that

lim
t→∞

W1(t)
t

= 0 a.s.

Noting that

∫ t+τ1
t x(s− τ1)ds

t
=

1
t

∫ t

t−τ1

x(s)ds =
1
t

[∫ t

0
x(s)ds−

∫ t−τ1

0
x(s)ds

]
.

Therefore, limt→∞

∫ t+τ1
t

x(s−τ1)ds
t = 0. Moreover, limt→∞

∫ τ1
0

x(s−τ1)ds
t = limt→∞

∫ 0
−τ1

φ1(t)dt
t =

0. Thus, one obtains

lim
t→∞

γ1 = 0 a.s. (4.20)

By Itô’s formula, one gets

d(lnx(t)− r
K

∫ t+τ1

t
x(s− τ1)ds)

=
[
r(1− x(t− τ1)

K
)− (1+αy)y(t)

1+ c(1+αy)x(t)
− r

K
x(t)+

r
K

x(t− τ1)−
σ2

1
2

]
dt +σ1dW1(t)

≥
[
r− r

K
x(t)−2(1+α)y(t)−

σ2
1

2

]
dt +σ1dW1(t),

so one may have

lnx(t)− r
K
∫ t+τ1

t x(s− τ1)ds
t

−
lnx(0)− r

K
∫ τ1

0 x(s− τ1)ds
t

≥ (r−
σ2

1
2
)−2(1+α)〈y〉− r

K
〈x〉+ σ1W1(t)

t
.

Therefore,

〈x(t)〉 ≥ −2K(1+α)

r
〈y(t)〉+ K

r
(r−

σ2
1

2
)+ γ1(t). (4.21)
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Let

V = lny(t)+
∫ t+τ2

t

[
µx(s− τ2)

1+ cx(s− τ2)

]
ds, (4.22)

utilizing Itô formula, one obtains

dV = [
µ(1+αy)x(t− τ2)

1+ c(1+αy)x(t− τ2)
−δ −ay− 1

2
σ

2
2 +

µx(t)
1+ cx(t)

− µx(t− τ2)

1+ cx(t− τ2)
]dt +σ2dW2(t),

(4.23)

According to (4.23), one may have

dV ≥ [
µx(t)

1+ cx(t)
−δ −ay− 1

2
σ

2
2 ]dt +σ2dW2(t), (4.24)

• Case (1) When x(t)≤ 1, then

dV ≥ [
µx(t)
1+ c

−δ −ay− 1
2

σ
2
2 ]dt +σ2dW2(t). (4.25)

V (t)−V (0)
t

≥ µ

1+ c
〈x(t)〉−a〈y(t)〉− [δ +

1
2

σ
2
2 ]+

σ2

t
W2(t). (4.26)

Substituting (4.21) into (4.26), one obtains

V (t)−V (0)
t

≥ µ

1+ c

[−2K(1+α)

r
〈y(t)〉+K(1−

σ2
1

2r
)+ γ1(t)

]
−a〈y(t)〉− δ̃ +

σ2

t
W2(t). Therefore,

(4.27)

lny(t)≥
[

µK
(1+ c)

(1−
σ2

1
2r

)− δ̃

]
t−
[2µK(1+α)

r(1+ c)
+a
]
〈y(t)〉t

+
µ

1+ c
γ1(t)t +σ2W2(t)+ lny(0)+

∫
τ2

0

µx(s− τ2)

1+ cx(s− τ2)
ds

−
∫ t+τ2

t

µx(t− τ2)

1+ cx(t− τ2)
ds

(4.28)
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lny(t)≥ λ t−λ0

∫ t

0
y(s)ds+F(t), (4.29)

where

λ =
µK

(1+ c)
(1−

σ2
1

2r
)− δ̃ , λ0 =

2µK(1+α)

r(1+ c)
+a,

F(t) =
µ

1+ c
γ1(t)t +σ2W2(t)+ lny(0)+

∫
τ2

0

µx(s− τ2)

1+ cx(s− τ2)
ds−

∫ t+τ2

t

µx(t− τ2)

1+ cx(t− τ2)
ds.

Since 2r > σ2
1 and T s

0 > 1, this implies that λ > 0. This together with (4.20) and Lemma

4.6.1, one obtains

lim inf
t→∞
〈y(t)〉 ≥ r(1+ c)

2µK(1+α)+ar(1+ c)

(
µK(2r−σ2

1 )

2r(1+ c)
− δ̃

)
> 0.

• Case (2) When x(t)> 1, from (4.24), one can get

dV ≥ [
µ

1+ c
−δ −ay− 1

2
σ

2
2 ]dt +σ2dW2(t), (4.30)

V (t)−V (0)
t

≥ µ

1+ c
−a〈y(t)〉− δ̃ +

σ2

t
W2(t). (4.31)

Since T s
0 > 1, and following a similar proof to Case (1), one can obtain

lim inf
t→∞
〈y(t)〉 ≥ 1

a

(
µ

1+ c
− δ̃

)
> 0.

This completes the proof.

4.6.2 Extinction

Extinction is one of the most important term in population dynamics. A species

is said to be extinct if there is no existing member in the habitat. Although, under some

conditions, the solution to the original deterministic DDEs (2.2) may be persistent. How-

ever, the solution to the associated SDDEs will become extinct with probability one. This



94

reveals the important fact that the environmental noise may make the population extinct.

Now, the conditions under which extinction of predator population occurs are established.

Definition 4.6.2. [92] The species y(t) is said to go to extinction with probability one if

lim
t→∞

y(t) = 0 a.s.

Theorem 4.6.3. Let a > µα . If T s
0 < 1, then the solution (x(t),y(t)) of Model (4.3), for

any given initial value (4.4), satisfies

lim sup
t→∞

lny(t)
t

< 0 a.s., (4.32)

which means lim
t→∞

y(t) = 0 exponentially a.s. In other words, the predators die out with

probability one. In addition,

lim
t→∞
〈x(t)〉= K(1−

σ2
1

2r
).

Proof. According to (4.23), one obtains

dV ≤ [
µ(1+αy)x(t− τ2)

1+ cx(t− τ2)
−δ −ay− 1

2
σ

2
2 +

µx(t)
1+ cx(t)

− µx(t− τ2)

1+ cx(t− τ2)
]dt +σ2dW2(t)

≤ [
µx(t)

1+ cx(t)
−δ − (a−µα)y(t)− 1

2
σ

2
2 ]dt +σ2dW2(t),

(4.33)

since (a > µα), then

dV ≤ [
µx(t)

1+ cx(t)
−δ − 1

2
σ

2
2 ]dt +σ2dW2(t). (4.34)

Thus, one may have two cases. Case I. When x(t)≤ 1, according to (4.34), one can get

dV ≤ [
µ

1+ c
− δ̃ ]dt +σ2dW2(t), (4.35)



95

therefore, one gets

V (t)−V (0)
t

≤ µ

1+ c
− δ̃ +

σ2

t
W2(t). So, (4.36)

lny(t)
t
≤ µ

1+ c
− δ̃ +χ1(t), where (4.37)

χ1(t) =
σ2

t
W2(t)+

lny(0)
t

+
1
t

∫
τ2

0

µx(s− τ2)

1+ cx(t− τ2)
ds− 1

t

∫ t+τ2

t

µx(s− τ2)

1+ cx(s− τ2)
ds. (4.38)

In view of the strong law of large numbers of Brownian motion, one can easily obtain that

lim
t→∞

χ1(t) = 0 a.s. Thus, it follows from (4.37) and since T s
0 < 1

lim sup
t→∞

lny(t)
t
≤ µ

1+ c
− δ̃ < 0. a.s. (4.39)

Case II. When x(t)> 1, by (4.34), one may have

dV ≤ [
µx(t)
1+ c

− δ̃ ]dt +σ2dW2(t), then, (4.40)

V (t)−V (0)
t

≤ µK
1+ c

− µ

1+ c
γ1(t)− δ̃ +

σ2

t
W2(t). (4.41)

Therefore,
lny(t)

t
≤ µK

1+ c
− δ̃ +χ2(t), where (4.42)

χ2(t) =
σ2

t
W2(t)+

lny(0)
t

+
1
t

∫
τ2

0

µx(s− τ2)

1+ cx(s− τ2)
ds− 1

t

∫ t+τ2

t
(

µx(s− τ2)

1+ cx(s− τ2)
ds

− µ

1+ c
γ1(t).

(4.43)

In view of the strong law of large numbers of Brownian motion, one can easily obtain that

lim
t→∞

χ2(t) = 0 a.s. Therefore,

lim sup
t→∞

lny(t)
t
≤ µK

1+ c
− δ̃ < 0. a.s. (4.44)
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Which implies that, y(t) tends to zero exponentially with probability one,

lim
t→∞

y(t) = 0 a.s. (4.45)

By taking the limit both sides of (4.19) and (4.21) at the same time, one can get

lim
t→∞
〈x(t)〉= K(1−

σ2
1

2r
).

This completes the proof.
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Figure 4.1: Numerical simulations of System (4.3) which displays the persistence of the system,
when T s

0 > 1. With α = 0.12, a= 0.08, c= 0.3, r = 1, µ = 0.9, δ = 0.39, K = 1, σ1 = σ2 = 0.001
and τ1 = τ2 = 0.1. However, the right banner illustrates that the predator population dominates the
prey population as time goes when α is increased to α = 1.2

4.7 Numerical Simulations

In this Section, the author attempts to validate the mathematical results obtained

in the previous sections. Milstein’s scheme with a strong order of convergence one, dis-

cussed in [71] is utilized. The corresponding discretization system to SDDEs (4.3) is

xn+1 = xn +hxn[r(1−
xn−m1

K
)− (1+αyn)yn

1+ c(1+αyn)xn
]+σ1xnξ1,n +

σ2
1

2
xn[(ξ1,n(h)

1
2 )2−h]

yn+1 = yn +hyn[
µ(1+αyn)xn−m2

1+ c(1+αyn)xn−m2

−δ −ayn]+σ2ynξ2,n +
σ2

2
2

yn[(ξ2,n(h)
1
2 )2−h].
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Figure 4.2: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2), when T s

0 > 1. With τ1 = τ∗1 = 0.8 and τ2 = 0.1 < τ∗2 , a = 0.08, δ = 0.19,
α = 1.6, c = 0.6, K = 1, µ = 0.9, r = 1, while the intensities of Brownian motions are relatively
small σ1 = 0.004 and σ2 = 0.0001. Top (left) displays a periodic solution of the deterministic
model for the prey population; while in the stochastic model a damped periodic solution is ob-
served. Top (right) shows a periodic solution of the deterministic model for predator population
with a damped periodic solution in the stochastic model. Bottom (left) is a phase space that shows
the existence of a limit cycle around E ∗. Bottom (right) is a numerical simulation that shows the
damped periodic oscillation around E ∗ in the stochastic model.

Here, ξ1,n and ξ2,n are mutually independent N(0,1) random variables, m1,m2 are integers

such that the time delays can be expressed in terms of the step-size as τ1 = m1h & τ2 =

m2h. Some numerical simulations of the stochastic Model (4.3) and its corresponding

deterministic Model (2.2) are provided.

Taking the parameter values α = 0.12, a= 0.08, c= 0.3, r = 1, µ = 0.9, δ = 0.39,

K = 1, σ1 = σ2 = 0.001, and τ1 = τ2 = 0.1. Figure 4.1 shows persistence of System

(4.3) with initial values (0.4,0.8), such that T s
0 = µK

δ̃ (1+c)
= 1.78 > 1. If the hunting

cooperative parameter α is increased as α = 1.2 keeping all other parameters the same,
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Figure 4.3: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2), when T s

0 < 1. With a = 0.19, µ = 0.8, α = 0.1, c = 0.8, K = 1, δ = 0.59,
r = 1, σ1 = 0.001, σ2 = 0.023 and τ1 = τ2 = 0.1. In the left banner the population of prey varies
around the deterministic steady state value. In the right banner predator population goes to extinct
at t = 70 for deterministic system; While extinction occurs at t = 20 with stochastic model.
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Figure 4.4: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2), when T s

0 < 1 with τ1 = τ2 = 0.1, σ1 = 0.001 and σ2 = 0.1. With a = 0.19,
µ = 0.6, α = 0.1, c = 0.3, K = 1, δ = 0.4, r = 1. In the left banner, the increasing of the inten-
sities of white noise promote the prey population densities. in the right banner the large scale of
white noises may lead to no surviving predator individuals that can reproduce and create a new
generation; While in the deterministic one the predator individuals are still survival.

one can observe that the predator dominates the prey population; See Figure 4.1 (right).

The population densities vary around the deterministic steady state values.

Figure 4.2 shows the impact of small white noise in dynamics of the system. The

Figure displays a periodic solution of the deterministic system when τ1 = τ∗1 = 0.8 and

τ2 = 0.1 < τ∗2 , a = 0.08, δ = 0.19, α = 1.6, c = 0.6, K = 1, µ = 0.9, r = 1. However,

with small noises σ1 = 0.004 and σ2 = 0.0001, where T s
0 = 2.96 > 1, one can observe
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Figure 4.5: Numerical simulations of the solutions for System (4.3) and the corresponding deter-
ministic System (2.2) with time delay τ1 > τ∗1 = 2.1. An unstable solution for prey population
(left-top and bottom); while the large oscillation leads to the extinction of predator both in the
deterministic and stochastic models (right-top and bottom)

that the periodic solution is damped in both population densities. If the intensity of White

noises increases then the predator goes to extinct, as T s
0 < 1.

Figure 4.3 shows that the population of prey varies around the deterministic steady

state value (left), and predator population goes to extinction at t = 70 with determinis-

tic model; while with white noise at t = 20 (right). In this simulation, the initial value

(x(0),y(0)) = (0.8,0.4) and parameter values a = 0.19, µ = 0.8, α = 0.1, c = 0.8, K = 1,

δ = 0.59, r = 1, σ1 = 0.001, σ2 = 0.023, τ1 = τ2 = 0.01 are chosen. Then T s
0 = 0.75< 1.

According to Theorem 4.6.3, the solution of (4.3) obeys lim sup
t→∞

lny(t)
t

< 0 a.s., that is y(t)

tends to zero exponentially with probability one. In the other hand, for the deterministic

Model (2.2), the condition of T d
0 =

µK
δ (1+ cK)

= 0.7 < 1 is satisfied, so the boundary

equilibrium point E1 ≡ (1,0), is a stable point.
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Figure 4.4 shows that the environmental noise plays an important role in extinc-

tion of predator population. When the intensity of Brownian motion W2(t) is increased to

σ2 = 0.1, c = 0.3, µ = 0.6 and δ = 0.4 with other parameters as of Figure 4.3, the extinc-

tion occurs in predator population, when T s
0 = 0.92 < 1. This means y(t) of System (4.3)

will go to extinction with probability one. However, with the same parameters, the de-

terministic Model (2.2), has an interior stable equilibrium E ∗ = (0.82,0.22). Therefore,

the population y(t) becomes extinct exponentially with probability one when white noise

increases.

Figure 4.5 shows fluctuation in population densities of the prey and predator when

time delay τ1 = 2.1 cases large oscillation for deterministic Model (2.2) as well as stochas-

tic Model (4.3). Let σ1 = σ2 = 0.001 (top) one can see that the stochastic fluctuation dis-

appears in both prey predator species and they behave as if there is no external noise. On

the other hand, let σ1 = 0.004,σ2 = 0.005 one can see (bottom) that with the increase of

noise intensities, the amplitude also slightly increased. Moreover, the predator population

go to extinct with large value of time delay.

Remark 4.7.1. Extinction of predator population is possibly occur when the intensity of

white noise is large, such that T s
0 < 1. This would not happen in the deterministic System

(2.2) without noises (See Figure 4.4). If the predators’ death rate is large, extinction of

the predators can also occur in the deterministic Model (2.2); While a small noise in the

stochastic model, the extinction of predator population occurs faster than the deterministic

model; (See Figure 4.3).

4.8 Concluding Remarks

In this chapter, the dynamics of SDDEs for predator-prey system with hunting

cooperation in predators was studied. Considering the environmental noise, the existence

and uniqueness of global positive solution and the stochastically ultimate boundedness

of the system were established. The effect of environmental noises on persistence and

possible extinction of prey and predator populations have been shown. The obtained ana-
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lytical results with supportive numerical simulations, have been verified using Milstein’s

scheme. Conditions under which persistence of the system occurs have been established,

when T s
0 > 1 have been deduced; While with T s

0 < 1, extinction of predator occurs. It

can also be observed that the extinction of the predator population occurs more rapidly for

the stochastic System (4.3) when the intensity of white noise increases, see Figures 4.3-

4.4. It has also been shown numerically that the predator population dominates the prey

population as cooperative hunting parameter increases (See Figure 4.1). The main find-

ings, theoretically and numerically, are all represented in terms of the system parameters

and the intensity of randomly fluctuating driving forces. This indicates that time-delay

and white noise have a considerable impact on the dynamics and presence of prey preda-

tor populations.

In the next chapter, the author extends the stochastic analysis to a three-species

model consisting of two-prey one-predator model with time-delays and cooperation among

prey species.
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Chapter 5: Stochastic DDEs of Three-Species Predator-Prey Systems
with Cooperation among Prey Species

5.1 Introduction

In this chapter, a stochastic delay differential model for three species (two preys,

one predator) predator-prey system with cooperation among prey species against predator

is proposed. Section 2 investigates the existence and uniqueness of global positive solu-

tion of the SDDEs model. Section 3 establishes sufficient conditions for the existence and

uniqueness of an ergodic stationary distribution of the positive solutions to the model.

Section 4 shows the extinction of the predator populations under certain parametric re-

strictions. Some numerical simulations and discussions are carried out, in Section 5, to

illustrate the theoretical results. Finally, concluding remarks are presented in Section 6.

A typical cooperative Lotka-Volterra system for two teams of preys with densities

x(t), y(t), interacting with one team of predator with densities z(t), can be written in the

following form

dx(t)
dt

= x(t)[r1(1− x(t))−α1z(t)+βy(t)z(t)]

dy(t)
dt

= y(t)[r2(1− y(t))−α2z(t)+βx(t)z(t)]

dz(t)
dt

= z(t)[−δ −α3z+a1x(t)+a2y(t)].

(5.1)

The coefficients α1 and α2 are the rate of predation, and β is the rate of cooperation for

the preys x(t) and y(t), respectively. The preys are chosen such that they can support each

other’s existence and there is no competition among them, mutualism can be established

among the preys against predation. Table 5.1 displays the biological meaning of the model

parameters.

Incorporating time-lags in biological models makes the systems much more real-
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istic. Therefore, In [76], the authors studied the following system

dx(t)
dt

= r1x(t)(1− x(t− τ1)

k1
)−α1x(t)z(t)+βx(t)y(t)z(t)

dy(t)
dt

= r2y(t)(1− y(t− τ2)

k2
)−α2y(t)z(t)+βx(t)y(t)z(t)

dz(t)
dt

=−δ z(t)−α3z2 +a1x(t− τ3)z(t)+a2y(t− τ3)z(t).

(5.2)

It is assumed that the rate of cooperation β is not as much as the rate of predation, ( i.e.

x <
α2

β
and y <

α1

β
); Which follows that System (5.2) has permanence and its positive

equilibrium is locally asymptotically stable for all τ1, τ2 and τ3, under certain parametric

restrictions. However, when the rate of cooperation is greater than the rate of predation

the number of species becomes unbounded. It is known that deterministic models, such

Table 5.1: One biological meaning for the parameters of Model (5.3)

Parameters Description
r1, r2 Intrinsic growth rate for x and y
k1 , k2 Carrying capacity for x and y
α1, α2 The rate of predation to decrease the preys growth rate
β The rate of cooperation for the preys x and y
δ Predator death rate
α3 The rate of intra-species competition within the predators
a1, a2 An equal transformation rate of predator to preys x and y.

as (5.2), are stable with a cyclic behaviour in the common period for the sizes of species

populations. However, in practice, stochastic variations will occur in the values of x, y and

z, which may produce a qualitatively different behaviour. These variations may lead to

an extinction of the predator as a result of a possible extinction of the prey. Deterministic

models may be inadequate for capturing the exact variability in nature. Then, stochastic

models are required for an accurate approximation of the dynamics of such interactions.

The random fluctuations result in changing some degree of parameters in the determin-

istic environment. Moreover, the natural growth of populations is always affected by

environmental stochastic perturbations which is an inevitable aspect of dynamics of any

ecosystems, to suppress a potential population explosion [43, 113, 118, 120]. In Chapter 4

the dynamics of a stochastic delay differential model for predator-prey system with hunt-

ing cooperation in predators was studied [113]. Sufficient conditions for persistence and
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extinction of predator population have been investigated. Liu et al. [86] studied the im-

pact of random noise in the dynamics of predator-prey model with herd behaviour. They

established sufficient conditions for the existence and uniqueness of an ergodic stationary

distribution of the positive solutions to the model. In [145], the authors studied the effect

of environmental fluctuations on a predator-prey model with stage structure for predator

population and ratio dependent functional response.

As a matter of fact, the random fluctuations result in changing some degree of

parameters in the deterministic environment [86, 145]. Motivation to what have been

mentioned above, it is interesting and important to study, in this chapter, the impact of

stochastic perturbations on the dynamics of three-species predator-prey Model (5.2). As-

suming that the intrinsic growth rate of preys and the death rate of predator are subject to

environmental noise. Suppose that r1, r2 and −δ are stochastically perturbed with

r1→ r1 +σ1Ẇ1 r2→ r2 +σ2Ẇ2 −δ →−δ +σ3Ẇ3,

where σ2
1 , σ2

2 and σ2
3 abide the intensities of the white noise, W1, W2, and W3 denote the

independent standard Brownian motions. Thus, the stochastic version of a predator-prey

Model (5.2) can be written in the form

dx(t) = [r1x(t)(1− x(t− τ1)

k1
)−α1x(t)z(t)+βx(t)y(t)z(t)]dt +σ1x(t)dW1(t)

dx(t) = [r2y(t)(1− y(t− τ2)

k2
)−α2y(t)z(t)+βx(t)y(t)z(t)]dt +σ2y(t)dW2(t)

dz(t) = [−δ z(t)−α3z2 +a1x(t− τ3)z(t)+a2y(t− τ3)z(t)]dt +σ3z(t)dW3(t).

(5.3)

Here,

x(κ) = φ1(κ), y(κ) = φ2(κ), z(κ) = φ3(κ), κ ∈ [−τ,0], τ = max{τ1,τ2,τ3}, (5.4)

φi(0)> 0 and φi(κ), (i = 1,2,3), are nonnegative continuous initial functions on [−τ,0].

i.e. (x0,y0,z0) = (φ1,φ2,φ3)
T ∈ C ([−τ,0],R3

+) with R3
+ = {(x,y,z) ∈ R3 : x > 0,y >
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0,z > 0}, if (x,y,z) ∈ R3, its norm is denoted by |(x,y,z)|=
√

x2 + y2 + z2.

Studying the existence of an ergodic stationary distribution of the stochastic de-

lay differential equations (SDDEs) (5.3) for the three-species predator-prey system is an

interesting problem. In the current study, a suitable stochastic Lyapunov function and a

bounded domain of R3
+ = {x = (x1,x2,x3) ∈ R3,xi > 0, i = 1,2,3} are established.

5.2 Existence and Uniqueness of Positive Solution

In order to prove that the SDDEs (5.3) has a unique global solution (i.e. no explo-

sion in a finite-time) for any given initial condition, the coefficients of the System (5.3)

are generally required to satisfy the linear growth condition and local Lipschitz condition

[23, 92].

Theorem 5.2.1. If the coefficients of System (5.3) are locally Lipschitz continuous, then

for any given initial condition (5.4) there is a unique positive solution (x(t),y(t),z(t))

of System (5.3) on t ≥ −τ , and the solution will remain in R3
+ with probability one, if

βx < α2, βy < α1.

Proof. Since all the coefficients of System (5.3) are Lipschitz continuous, therefore, there

is a unique local solution (x(t),y(t),z(t)) on [−τ,τe), where τe is an explosion time. To

show this solution is global, one may need to show τe = ∞ a.s. (almost surely). Let

l0 > 0 be sufficiently large so that (x(t),y(t),z(t)) = {(φ1(t),φ2(t),φ3(t)) :−τ ≤ t ≤ 0} ∈

C ([−τ,0];R3
+) all lie within the interval [

1
l0
, l0]. Now for each integer l ≥ l0, define

the stopping time τl = inf{t ∈ [−τ,τe) : x(t) /∈ (
1
l
, l),y(t) /∈ (

1
l
, l)}, let infφ = ∞. τl is

increasing with l and let τ∞ = lim
l→∞

τl , then τ∞ ≤ τe and by showing τ∞ = ∞ a.s., the aim

is to conclude that τe = ∞ a.s. If this assertion is erroneous, then there exists a pair of

constants T > 0 and ε ∈ (0,1) such that P{τ∞ ≤ T} > ε . Therefore, there is an integer
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l1 ≥ l0 such that

P{τl ≤ T}> ε, for all l ≥ l1. (5.5)

Define a C 2-function V (x,y,z) : R3
+→R+ by V (x,y,z) =V1+V2+V3. Where, V1 = (x−

logx−1)+ r1
k1

∫ t+τ1
t x(t−τ1)ds, V2 = (y− logy−1)+ r2

k2

∫ t+τ2
t y(t−τ2)ds and V3 = d0(z−

logz− 1) + d0
2
∫ t+τ3

t (a1x2(t − τ3) + a2y2(t − τ3))ds, such that d0 = α1a2+α2a1
a1a2

. Clearly,

this function is non-negative for all x,y,z ≥ 0. Let l ≥ l0 and T > 0 be arbitrary. For

0≤ t ≤ τl ∧T , by Itô’s formula for V , one gets

dV (x,y,z) = LV (x,y,z)+σ1(x−1)dW1(t)+σ2(y−1)dW2(t)+d0σ3(z−1)dW3(t).

LV1 = r1x− r1

K1
xx(t− τ1)+ xz(βy−α1)− r1 +α1z−β zy+

r1

K1
x+

σ2
1

2

≤ (r1 +
r1

K1
)x− r1 +

σ2
1

2
.

(5.6)

LV2 = r2y− r2

K2
yy(t− τ1)+ yz(βx−α2)− r2 +α2z−β zx+

r2

K2
y+

σ2
2

2

≤ (r2 +
r2

K2
)y− r2 +

σ2
2

2
.

(5.7)

LV3 =−d0δ z−d0α3z2 +d0a1x(t− τ3)z+d0a2y(t− τ3)z+d0z+d0α3z

−d0a1x(t− τ3)−d0a2y(t− τ3)+
d0a1

2
x2 +

d0a2

2
y2− d0a1

2
x2(t− τ3)

− d0a2

2
y2(t− τ3)+

d0σ2
3

2

≤ (d0α3−d0)z+(a1 +a2−α3)d0z2 +d0δ +
d0a1

2
x2 +

d0a2

2
y2 +

d0σ2
3

2
.

(5.8)

LV = LV1 +LV2 +LV3

≤ d0δ − r1− r2 + r1(
K1 +1

K1
)x+

d0a1

2
x2 + r2(

K2 +1
K2

)y+
d0a2

2
y2

+d0(α3−δ )z+d0(a1 +a2−α3)z2 +
σ2

1
2

+
σ2

2
2

+
d0σ2

3
2
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LV ≤ sup
x∈R+

{
r1(

K1 +1
K1

)x+
d0a1

2
x2
}
+ sup

y∈R+

{
r2(

K2 +1
K2

)y+
d0a2

2
y2
}

+ sup
z∈R+

{
d0(α3−δ )z+d0(a1 +a2−α3)z2

}
+d0δ

− r1− r2 +
σ2

1
2

+
σ2

2
2

+
d0σ2

3
2
≤ K,

where K is a positive constant. It follows that LV is bounded. Hence,

dV ≤ Kdt +σ1(x−1)dW1(t)+σ2(y−1)dW2(t)+d0σ3(z−1)dW3(t). (5.9)

Integrating (5.9) from 0 to τl ∧T = min{τl,T} and then taking the expectation on both

sides, one may have

E[V (x(τl ∧T ),y(τl ∧T ),z(τl ∧T ))]≤ E[V (x(0),y(0),z(0))]+KT. (5.10)

Let Ωl = {τl ≤ T}, for l ≥ l1 and in view of (5.5), one obtains P(Ωl)≥ ε . Such that, for

every ω ∈ Ωl , there is at least one of x(τl,ω) ,y(τl,ω), or z(τl,ω) equaling either to l or

1
l and then, one obtains

V (x(τl ∧T ),y(τl ∧T ),z(τl ∧T ))≥ (l−1− ln l)∧ (1
l
−1− ln

1
l
). (5.11)

According to (5.10), one gets

E[V (x(0),y(0),z(0))]+KT ≥ E[1Ωl(ω)V (x(τl,ω),y(τl,ω),z(τl,ω))]

≥ ε(l−1− ln l)∧ (1
l
−1− ln

1
l
),

(5.12)
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where 1Ωl is the indicator function of Ωl . Letting l→ ∞ yields

∞ > E[V (x(0),y(0),z(0))]+KT = ∞, (5.13)

which leads to the contradiction, so it is a must to have τ∞ = ∞ a.s.

5.3 Existence of Ergodic Stationary Distribution

In this section, a suitable stochastic Lyapunov function is constructed to study

existence of a unique ergodic stationary distribution of the positive solutions to System

(5.3). First, assume x(t) is a regular time-homogenous Markov process in Rd , illustrated

by the SDDEs

dx(t) = f(t,x(t),x(t− τ))dt +
d

∑
r=1

gr(t,x(t))dWr(t). (5.14)

The diffusion matrix of the process x(t) is

Λ(x) = (λi j(x)), λi j(x) =
d

∑
r=1

gi
r(x)g

j
r(x).

Lemma 5.3.1. [52]. The Markov process x(t) has a unique ergodic stationary distribu-

tion π(.) if there exist a bounded domain U ⊂ Rd with regular boundary Γ and

(i): there is a positive number M such that ∑
d
i, j=1 λi j(x)ξiξ j ≥M |ξ |2,x ∈U ,ξ ∈ Rd.

(ii): there exists a nonnegative C 2-function V such that LV is negative for any Rd \U .

A threshold parameter T s
0 of SDDEs (5.3) is defined as follows

T s
0 =

r1ρ1 + r2ρ2

(ρ1
σ2

1
2 +ρ2

σ2
2

2 +ρ3
σ2

3
2 )

, (5.15)
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where ρ1 =
k1

(k1+1) , ρ2 =
k2

(k2+1) , and ρ3 = max{r1,r2}.

Theorem 5.3.2. If r1 >
σ2

1
2 , r2 >

σ2
2

2 and T s
0 > 1, then for any initial conditions (5.4),

the system of SDDEs (5.3) admits a stationary distribution π(.), and the solution of the

system is ergodic.

Proof. In order to prove Theorem 5.3.2, it is enough to validate conditions (i) and (ii) of

Lemma 5.3.1. To prove condition (i); the diffusion matrix of System (5.3) is given by

Λ(x,y,z) =


σ2

1 x2 0 0

0 σ2
2 y2 0

0 0 σ2
3 z2

 .

Let U be any bounded domain in R3
+, then there exists a positive constant

M0 = min
(x,y,z)∈Ūσ

{σ2
1 x2,σ2

2 y2,σ2
3 z2},

such that

3

∑
i, j=1

λi j(x,y,z)ξiξ j = σ
2
1 x2

ξ
2
1 +σ

2
2 y2

ξ
2
2 +σ

2
3 z2

ξ
2
3 ≥M0|ξ |2,

for any (x,y,z) ∈ Ūσ ,ξ = (ξ1,ξ2,ξ3) ∈ R3
+. Thus, condition (i) of Lemma 5.3.1 is satis-

fied. Then one needs to prove condition (ii) of Lemma 5.3.1. By System (5.3),

L (ρ1[x−1− lnx]+
ρ1r1

K1

∫ t+τ1

t
x(s− τ1)ds)≤ ρ1r1x− r1ρ1 +

ρ1r1

K1
x+ρ1

σ2
1

2
,

L (ρ2[y−1− lny]+
ρ2r2

K2

∫ t+τ2

t
y(s− τ2)ds)≤ ρ2r2y− r2ρ2 +

ρ2r2

K2
y+ρ2

σ2
2

2
,

(5.16)

L (−ρ3 lnz)≤ ρ3δ +ρ3α3z+ρ3
σ2

3
2
. (5.17)
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Then, assume V1 : R3
+→ R as follows

V1(x,y,z) = ρ1(x−1− lnx)+ρ2(y−1− lny)−ρ3 lnz+
ρ1r1

k1

∫ t+τ1

t
x(t− τ1)ds

+
ρ2r2

k2

∫ t+τ2

t
y(t− τ2)ds,

thus, according to (5.16) and (5.17), one gets

LV1 ≤−r1ρ1− r2ρ2 +(ρ1
σ2

1
2

+ρ2
σ2

2
2

+ρ3
σ2

3
2
)+ r1x+ r2y+α3ρ3z,

=−µ + r1x+ r2y+α3ρ3z.

(5.18)

Here, µ = r1ρ1 + r2ρ2− (ρ1
σ2

1
2 +ρ2

σ2
2

2 +ρ3
σ2

3
2 )> 0, since T s

0 > 1.

Now, a C 2-function Ṽ : R3
+→ R is defined as follows

Ṽ (x,y,z) = QV1(x,y,z)+ z−θ + x− y+ z+
r1

K1

∫ t+τ2

t
y2(s− τ2)ds

+
∫ t+τ3

t
(a1x2(s− τ3)+a2y2(s− τ3))ds,

(5.19)

where 0 < θ < 1, is sufficiently small constant satisfying (ϕ − δ > θ+1
2 σ2

3 ), where ϕ =

inf(x,y)∈R2
+
{a1x(t−τ3)+a2y(t−τ3)}, and Q = 2

µ
max{2,sup(x,y,z)∈R3

+

{
−θz−θ

(
ϕ−δ −

θ+1
2 σ2

3
)
+α3θz1−θ + 3r1

2 x− r2
2 y− δ

2 z+(a1−α1)x2+( r2
K2

+α2+a2)y2+(α2+a1+a2−

α1−α3)z2}}. Note that V (x,y,z) is not only continuous, but also tends to ∞ as (x,y,z)

approaches the boundary of R3
+ and as ‖(x,y,z)‖ → ∞, where ‖.‖ denotes the Euclidean

norm of a point in R3
+. Therefore, it must be a lower bounded and achieve this lower

bound at a point (x0,y0,z0) in the interior of R3
+.
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Define a C 2-function V : R3
+→ R+∪{0} of the form

V (x,y,z) = Ṽ (x,y,z)−Ṽ (x0,y0,z0)

= QV1(x,y,z)+ z−θ + x− y+ z+
∫ t+τ3

t
(a1x2(s− τ3)+a2y2(s− τ3))ds

+
r1

K1

∫ t+τ2

t
y2(s− τ2)ds−Ṽ (x0,y0,z0)

= QV1(x,y,z)+V2(z)+V3(x,y,z).

(5.20)

Such that V2(z) = z−θ , V3(x,y,z) = x−y+z+ r1
K1

∫ t+τ2
t y2(s−τ2)ds+

∫ t+τ3
t (a1x2(s−τ3)+

a2y2(s− τ3))ds−Ṽ (x0,y0,z0). By Itô formula to V2(z), one obtains

LV2 =−θz−θ−1(−δ z−α3z2 +a1x(t− τ3)z+a2y(t− τ2)z
)
+

θ(θ +1)
2

σ
2
3 z−θ

≤−θz−θ−1((ϕ−δ )z−α3z2)+ θ(θ +1)
2

σ
2
3 z−θ

≤−θz−θ
(
ϕ−δ − θ +1

2
σ

2
3
)
+α3θz1−θ .

(5.21)

LV3 ≤ r1x− r2y−δ z+(a1−α1)x2 +(
r2

K2
+α2 +a2)y2

+(α2 +a1 +a2−α1−α3)z2.

(5.22)

Thus, in view of (5.18), (5.21) and (5.22), one gets

LV (x,y,z)≤Q(−µ + r1x+ r2y+α3ρ3z)−θz−θ
(
ϕ−δ − θ +1

2
σ

2
3
)
+α3θz1−θ

+ r1x− r2y−δ z+(a1−α1)x2 +(
r2

K2
+α2 +a2)y2

+(α2 +a1 +a2−α1−α3)z2.

(5.23)

To create a compact subset Uε such that condition (ii) of Lemma 5.3.1 holds. Define a

bounded closed set as follows

Uε =
{
(x,y,z) ∈ R3

+ : ε ≤ x≤ 1
ε
,ε ≤ y≤ 1

ε
,ε ≤ z≤ 1

ε

}
, (5.24)
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where 0 < ε < 1 is a sufficiently small constant. In the set R3
+ \Uε , one can choose ε

sufficiently small such that the following conditions hold

ε ≤min{ µ

4r1
,

1
2Q

,
δ

2Qα3ρ3
}, (5.25a)

ε ≤min{ 1
2Q

,
δ

2Qα3ρ3
,

µ

4r2
}, (5.25b)

ε ≤min{ 1
2Q

,
µ

4Qα3ρ3
}, (5.25c)

− r1

2ε
+F ≤−1, (5.25d)

− r2

2ε
+F ≤−1, (5.25e)

− δ

2ε
+F ≤−1, (5.25f)

where

F = sup
(x,y,z)∈R3

+

{
Q(r1x+ r2y+ρ3α3z)−θz−θ

(
ϕ−δ − θ +1

2
σ

2
3
)
+α3θz1−θ

+
3r1

2
x− r2

2
y− δ

2
z+(a1−α1)x2 +(

r2

K2
+α2 +a2)y2

+(α2 +a1 +a2−α1−α3)z2}.

(5.26)

One can divide R3
+ \Uε into six subdomains:

U 1
ε = {(x,y,z) ∈ R3

+ : x≤ ε}, U 2
ε = {(x,y,z) ∈ R3

+ : y≤ ε},

U 3
ε = {(x,y,z) ∈ R3

+ : z≤ ε}, U 4
ε = {(x,y,z) ∈ R3

+ : x≥ 1
ε
},

U 5
ε = {(x,y,z) ∈ R3

+ : y ≥ 1
ε
}, U 6

ε = {(x,y,z) ∈ R3
+ : z ≥ 1

ε
}. Clearly, R3

+ \Uε = U 1
ε ∪

U 2
ε ∪U 3

ε ∪U 4
ε ∪U 5

ε ∪U 6
ε . Next, one may show that LV (x,y,z)≤−1 for any (x,y,z) ∈

R3
+ \Uε , which is equivalent to proving it on the above six domains:
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Case I. For any (x,y,z) ∈U 1
ε , noting that x≤ x(1+ y+ z)≤ ε(1+ y+ z), one gets

LV (x,y,z)≤−Q

4
µ +

[
−Q

4
µ +Qr1ε

]
− r1

2
x+[Qr2ε− r2

2
]y+[Qα3ρ3ε− δ

2
]z

+
[
−Q

2
µ−θz−θ

(
ϕ−δ − θ +1

2
σ

2
3
)
+α3θz1−θ +

3r1

2
x− r2

2
y− δ

2
z

+(a1−α1)x2 +(
r2

K2
+α2 +a2)y2 +(α2 +a1 +a2−α1−α3)z2

]
≤−Q

4
µ +

[
−Q

4
µ +Qr1ε

]
− r1

2
x+[Qr2ε− r2

2
]y+[Qα3ρ3ε− δ

2
]z

+
[
−Q

2
µ + sup

(x,y,z)∈R3
+

{
−θz−θ

(
ϕ−δ − θ +1

2
σ

2
3
)
+α3θz1−θ +

3r1

2
x

− r2

2
y− δ

2
z+(a1−α1)x2 +(

r2

K2
+α2 +a2)y2

+(α2 +a1 +a2−α1−α3)z2
}]

.

Since Q = 2
µ

max{2,sup(x,y,z)∈R3
+

{
− θz−θ

(
ϕ − δ − θ+1

2 σ2
3
)
+α3θz1−θ + 3r1

2 x− r2
2 y−

δ

2 z+(a1−α1)x2+( r2
K2

+α2+a2)y2+(α2+a1+a2−α1−α3)z2}}, one obtains Q
4 µ ≥ 1.

Therefore, from (5.25a), one gets

LV (x,y,z)≤−Q

4
µ− r1

2
x≤−Q

4
µ ≤−1 (5.27)

Consequently, LV (x,y,z)≤−1 for any (x,y,z) ∈U 1
ε .

Case II. For any (x,y,z) ∈U 2
ε , since y≤ y(1+ x+ z)≤ ε(1+ x+ z), one gets

LV (x,y)≤−Q

4
µ +

[
−Q

4
µ +Qr2ε

]
− r2

2
y+[Qr1ε− r1

2
]x+[Qα3ρ3ε− δ

2
]z

+
[
−Q

2
µ + sup

(x,y,z)∈R3
+

{
−θz−θ

(
ϕ−δ − θ +1

2
σ

2
3
)
+α3θz1−θ

+
3r1

2
x− r2

2
y− δ

2
z+(a1−α1)x2 +(

r2

K2
+α2 +a2)y2

+(α2 +a1 +a2−α1−α3)z2
}]

.

(5.28)
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It follows from (5.25b) that

LV (x,y,z)≤−Q

4
µ− r2

2
y≤−Q

4
µ ≤−1. For any (x,y,z) ∈U 2

ε . (5.29)

Case III. For any (x,y,z) ∈U 3
ε , such that z≤ z(1+ x+ y)≤ ε(1+ x+ y), one obtains

LV (x,y,z)≤−Q

4
µ +

[
−Q

4
µ +Qα3ρ3ε

]
− δ

2
z+[Qr1ε− r1

2
]x

+[Qr2ε− r2

2
]y+

[
−Q

2
µ + sup

(x,y,z)∈R3
+

{
−θz−θ

(
ϕ−δ − θ +1

2
σ

2
3
)

+α3θz1−θ +
3r1

2
x− r2

2
y− δ

2
z+(a1−α1)x2 +(

r2

K2
+α2 +a2)y2

+(α2 +a1 +a2−α1−α3)z2
}]

.

(5.30)

In view of (5.25c), one gets

LV (x,y,z)≤−Q

4
µ− δ

2
z≤−Q

4
µ ≤−1. (5.31)

Therefore, LV (x,y,z)≤−1 for any (x,y,z) ∈U 3
ε .

Case IV. For any (x,y,z) ∈U 4
ε , one may have

LV (x,y,z)≤−r1

2
x+F ≤− r1

2ε
+F ≤−1, (5.32)

which follows from (5.25d). Thus, LV (x,y,z)≤−1 for any (x,y,z) ∈U 4
ε .

Case V. For any (x,y,z) ∈U 5
ε , one obtains

LV (x,y,z)≤−r2

2
y+F ≤− r2

2ε
+F ≤−1, (5.33)
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which follows from (5.25e). Thus, LV (x,y,z)≤−1 for any (x,y,z) ∈U 5
ε .

Case VI. For any (x,y,z) ∈U 6
ε , one may have

LV (x,y,z)≤−δ

2
z+F ≤− δ

2ε
+F ≤−1, (5.34)

which follows from (5.25f). Thus, LV (x,y,z)≤−1 for any (x,y,z) ∈U 6
ε .

Hence, from (5.27)-(5.34), one can obtain that for a sufficiently small ε ,

LV (x,y,z)≤−1 for any (x,y,z) ∈ R3
+ \Uε .

By Lemma 5.3.1, the solution of System (5.3) is ergodic and has a unique stationary

distribution π(.).

5.4 Extinction

In this section, some sufficient conditions for the extinction of predator popula-

tions are investigated, that is, when the prey populations survival and the predator popu-

lation goes to extinct. It has been shown that a strong intensity of noise can be a cause for

extinction of the prey species, which will also drive predator population to extinct.

Theorem 5.4.1. Let (x(t),y(t),z(t)) be the solution the SDDEs (5.3) with initial condi-

tions (5.4).

(a) If r1 >
σ2

1
2 , r2 >

σ2
2

2 and T s
0 < 1 then the predator population will die out that is to

say

lim
t→

z(t) = 0 a.s. (5.35)
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(b) If r1 <
σ2

1
2 and r2 <

σ2
2

2 , then the prey and predator populations will die out, such

that

lim
t→∞

x(t) = 0 a.s., lim
t→∞

y(t) = 0 a.s., lim
t→∞

z(t) = 0 a.s. (5.36)

Proof. Using of Itô’s formula to the first equation of System (5.3), yields

d(lnx(t)− r1

K1

∫ t+τ1

t
x(s− τ1)ds) = ((r1−

σ2
1

2
)− r1

K1
x(t)

− z(t)[α1−βy(t)])dt +σ1dW1(t).

≤ ((r1−
σ2

1
2
)− r1

K1
x(t))dt +σ1dW1(t).

(5.37)

Integrating of inequality (5.37) from 0 to t results in

lnx(t)− r1
K1

∫ t+τ1
t x(s− τ1)ds

t
−

lnx(0)− r1
K1

∫ τ1
0 x(s− τ1)ds

t
≤ (r1−

σ2
1

2
)− r1

K1
〈x(t)〉+ σ1W1(t)

t
.

Thus,

〈x(t)〉 ≤ K1

r1
(r1−

σ2
1

2
)+ζ1(t), where, (5.38)

ζ1(t) =
K1

r1

[
σ1W1(t)

t
−

lnx(t)− r1
K1

∫ t+τ1
t x(s− τ1)ds

t
+

lnx(0)− r1
K1

∫ τ1
0 x(s− τ1)ds

t

]
.

It follows from [81] that lim
t→∞

W1(t)
t

= 0 a.s. Note that

∫ t+τ1
t x(s− τ1)ds

t
=

1
t

∫ t

t−τ1

x(s)ds =
1
t

[∫ t

0
x(s)ds−

∫ t−τ1

0
x(s)ds

]
.

Therefore, lim
t→∞

∫ t+τ1

t

x(s− τ1)ds
t

= 0.
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Moreover, lim
t→∞

∫
τ1

0

x(s− τ1)ds
t

= lim
t→∞

∫ 0
−τ1

φ1(t)dt

t
= 0. Thus, one obtains

lim
t→∞

ζ1 = 0 a.s. (5.39)

By Itô’s formula, one gets

d(lny(t)− r2

K2

∫ t+τ2

t
x(s− τ2)ds)≤ ((r2−

σ2
2

2
)− r2

K2
y(t))dt +σ2dW2(t). (5.40)

Similarly, it follows

〈y(t)〉 ≤ K2

r2
(r2−

σ2
2

2
)+ζ2(t), where (5.41)

ζ2(t) =
K2

r2

[
σ2W2(t)

t
−

lny(t)− r2
K2

∫ t+τ1
t y(s− τ2)ds

t
+

lny(0)− r2
K2

∫ τ2
0 y(s− τ2)ds

t

]
,

Therefore, in the same manner, one can obtain, limt→∞ ζ2 = 0 a.s. Let

V = lnz(t)+
∫ t+τ3

t
[a1x(s− τ3)+a3y(s− τ3)]ds, (5.42)

utilizing Itô formula, one obtains

dV = [−δ −α3z(t)+a1x(t)+a2y(t)− 1
2

σ
2
3 ]dt +σ3dW3(t). (5.43)

Therefore, one may have

V (t)−V (0)
t

≤ a1〈x(t)〉+a2〈y(t)〉− [δ +
1
2

σ
2
3 ]+

σ3

t
W3(t), (5.44)
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So, from (5.38) and (5.41), one gets

lnz(t)
t
≤ a1K1

r1
(r1−

σ2
1

2
)+

a2K2

r2
(r2−

σ2
2

2
)−(δ +

1
2

σ
2
3 )+ζ1(t)+ζ2(t)+ζ3(t), (5.45)

such that, one may have

ζ3(t) =
lnz(0)+

∫ τ3
0 [a1x(s− τ3)+a2y(s− τ3)]ds

t

−
∫ t+τ3

t [a1x(s− τ3)+a2y(s− τ3)]ds
t

+
σ3W3(t)

t
.

(5.46)

In view of the strong law of large numbers of Brownian motion, one can easily obtain

lim
t→∞

ζ3(t) = 0 a.s. Therefore, by taking the superior limit on both sides of (5.45), one

may have

lim sup
t→∞

lnz(t)
t
≤ a1K1

r1
(r1−

σ2
1

2
)+

a2K2

r2
(r2−

σ2
2

2
)− (δ +

1
2

σ
2
3 ), (5.47)

To prove (a), having the conditions r1 >
σ2

1
2 , r2 >

σ2
2

2 and T s
0 < 1, yields

lim sup
t→∞

lnz(t)
t
≤ a1K1 +a2K2−min{a1K1

2r1
,
a2K2

2r2
,
1
2
}(σ2

1 +σ
2
2 +σ

3
3 )−δ < 0. (5.48)

It implies that lim
t→∞

z(t) = 0 a.s.

To prove (b), applying Itô’s formula to the first equation of System (5.3), yields

d(lnx(t))≤ ((r1−
σ2

1
2
)− z(t)[α1−βy(t)])dt +σ1dW1(t),

≤ (r1−
σ2

1
2
)dt +σ1dW1(t).

(5.49)
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Integrating (5.49) from 0 to t, one obtains

lnx(t)
t
− lnx(0)

t
≤ (r1−

σ2
1

2
)+

σ1W1(t)
t

. (5.50)

Noting that lim
t→∞

W1(t)
t

= 0, a.s., and since r1 <
σ2

1
2 , therefore, by taking the superior limit

of both sides of (5.50), one obtains

lim sup
t→∞

lnx(t)
t
≤ r1−

σ2
1

2
< 0, (5.51)

which implies lim
t→∞

x(t) = 0 a.s.

Similarly, one can show that lim sup
t→∞

lny(t)
t
≤ r2−

σ2
2

2
< 0, results in limt→∞ y(t)=

0 a.s. That is to say both preys x(t) and y(t) will die out with probability one. From (5.47),

and considering r1 <
σ2

1
2 and r2 <

σ2
2

2 ; one can obtain that lim
t→∞

z(t) = 0 a.s.

Lemma 5.4.2. In the absence of time-delays i.e. τ1 = τ2 = τ3 = 0. If χ := a1
∫

∞

0 xπ(x)dx+

a2
∫

∞

0 yπ(y)dy− δ − σ2
3

2 < 0, r1 >
σ2

1
2 and r2 >

σ2
2

2 , then the solution (x(t),y(t),z(t)) of

System (5.3) with any initial value (x(0),y(0),z(0))∈R3
+ satisfies lim

t→∞
z(t) = 0 a.s, such

that the distributions of x(t) and y(t) converge weakly a.s., to the measures which have

the following densities respectively

π(x) = G1σ
−2
1 x

−2+ 2r1
σ2

1 e
− 2r1

K1σ2
1

x
,x ∈ (0,∞);

π(y) = G2σ
−2
2 y

−2+ 2r2
σ2

2 e
− 2r2

K2σ2
2

y
,y ∈ (0,∞),

(5.52)

where G1 = [σ−2
1 (

K1σ2
1

2r1
)

2r1
σ2

1
−1

Γ(2r1
σ2

1
−1)]−1 and G2 = [σ−2

2 (
K2σ2

2
2r2

)

2r2
σ2

2
−1

Γ(2r2
σ2

2
−1)]−1, are

constants such that
∫

∞

0 π(x)dx = 1 and
∫

∞

0 π(y)dy = 1.

Proof. Since the solution of System (5.3) is positive for any initial value (x(0),y(0),z(0))∈
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R3
+, so one gets

dx(t) =
(
r1x(t)(1− x(t)

K1
)− x(t)z(t)[α1−βy(t)]

)
dt +σ1x(t)dW1(t)

≤
(
r1x(t)(1− x(t)

K1
)
)
dt +σ1x(t)dW1(t).

(5.53)

Consider the following supplementary logistic equation with random perturbation

dX(t) =
[
r1X(t)(1− X

K1
)
]
dt +σ1X(t)dW1(t), (5.54)

with initial values X(0) = x(0)> 0.

Let g1(x) = r1x(t)
(
1− x(t)

K1

)
, ν1(x) = σ1x(t), x ∈ (0,∞), such that

∫ g1(s)
ν2

1 (s)
=
∫ ( r1

σ2
1 s
− r1

K1σ2
1

)
ds =

r1

σ2
1

lns− r1

K1σ2
1

s+G1.

Therefore, e
∫ g1(s)

ν2
1 (s) = eG1s

r1
σ2

1 e
− r1

K1σ2
1

s
.

One can verify that

∫
∞

0

1
ν2

1 (x)
e
∫ x

1
2g1(s)
ν2

1 (s)
ds

dx =
e

2r1
K1σ2

1

σ2
1

∫
∞

0
x−2x

2r1
σ2

1 e
− 2r1

K1σ2
1

x
dx < ∞. (5.55)

From (5.55), one can say that System (5.54) has the ergodic property and the invariant

density is π(x) = G1σ
−2
1 x

−2+ 2r1
σ2

1 e
− 2r1

K1σ2
1

x
,x ∈ (0,∞). Therefore, from ergodic Theorem it

follows that

lim
t→∞

1
t

∫ t

0
x(s)ds =

∫
∞

0
xπ(x)dx a.s. (5.56)

Let X(t) be the solution of SDE (5.54) with the initial value X(0) = x(0)> 0. Therefore,
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one obtains

x(t)≤ X(t), ∀t ≥ 0 a.s. (5.57)

For the second prey y(t), one can obtain

dy(t) =
(
r2y(t)(1− y(t)

K2
)− y(t)z(t)[α2−βx(t)]

)
dt +σ2y(t)dW2(t)

≤
(
r2y(t)(1− y(t)

K2
)
)
dt +σ2y(t)dW2(t).

(5.58)

Assume the following logistic equation with noise

dY (t) =
[
r2Y (t)(1− Y

K2
)
]
dt +σ2Y (t)dW2(t), (5.59)

with initial value Y (0) = y(0) > 0. Setting g2(y) = r2y(t)
(
1− y(t)

K2

)
, ν2(y) = σ2y(t), y ∈

(0,∞), one gets
∫ g2(s)

ν2
2 (s)

=
∫ ( r2

σ2
2 s
− r2

K2σ2
2

)
ds =

r2

σ2
2

lns− r2

K2σ2
2

s+G2.

Thus, e
∫ g2(s)

ν2
2 (s) = eG2s

r2
σ2

2 e
− r2

K2σ2
2

s
. Hence, one may have

∫
∞

0

1
ν2

2 (y)
e
∫ y

1
2g2(s)
ν2

2 (s)
ds

dy =
e

2r2
K2σ2

2

σ2
2

∫
∞

0
y−2y

2r2
σ2

2 e
− 2r2

K2σ2
2

y
dy < ∞. (5.60)

According to (5.60), one can conclude that System (5.59) has the ergodic property and the

invariant density is π(y) = G2σ
−2
2 y

−2+ 2r2
σ2

2 e
− 2r2

K2σ2
2

y
,y ∈ (0,∞). Therefore, it follows that

lim
t→∞

1
t

∫ t

0
y(s)ds =

∫
∞

0
yπ(y)dy a.s. (5.61)

Let Y (t) be the solution of SDE (5.59) with the initial value Y (0) = Y (0) > 0, then one
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obtains

y(t)≤ Y (t), ∀t ≥ 0 a.s. (5.62)

By Itô formula to the third equation of System (5.3), one can derive that

d(lnz(t)) =
(
−δ −α3z(t)+a1x(t)+a2y(t)−

σ2
3

2
)
dt +σ3dW3(t), (5.63)

Integrating both sides of (5.63) from 0 to t, yields

lnz(t)− lnz(0) = (−δ −
σ2

3
2
)t +a1

∫ t

0
x(s)ds+a2

∫ t

0
y(s)ds

−α3

∫ t

0
z(s)ds+σ3W3(t)

≤ (−δ −
σ2

3
2
)t +a1

∫ t

0
x(s)ds+a2

∫ t

0
y(s)ds+σ3W3(t)

≤ (−δ −
σ2

3
2
)t +a1

∫ t

0
X(s)ds+a2

∫ t

0
Y (s)ds+σ3W3(t),

(5.64)

where in the last Inequality (5.57) and (5.62) have been used. Take the limit superior on

both sides of (5.64), together with (5.56) and (5.61), since limt→∞
W3(t)

t = 0 a.s, one gets

lim sup
t→∞

lnz(t)
t
≤−δ −

σ2
3

2
+a1

∫
∞

0
xπ(x)dx+a2

∫
∞

0
yπ(y)dy := χ < 0 a.s. (5.65)

Therefore, lim
t→∞

z(t) = 0 a.s.

5.5 Numerical Simulations

In this Section, some numerical simulations to validate the obtained theoretical re-

sults are provided. Milstein’s higher order scheme with a strong order of convergence one,

discussed in [56, 71], to solve SDDEs (5.3) is provided. The corresponding discretization
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Figure 5.1: Numerical simulations of deterministic DDEs (5.2) (left) and SDDEs (5.3) (right),
when τ1 = 1.25, τ2 = 0.6 and τ3 = 0.5; with noise intensities σ2

1 = 0.08, σ2
2 = 0.1, σ2

3 = 0.06.
With parameter values: r1 = 0.2, r2 = 0.6, K1 = 0.7, K2 = 0.8, α1 = 0.3, α2 = 0.6, α3 = 0.8,
β = 0.1, δ = 0.8, a1 = 1, a2 = 1.4. For T s

0 > 1, the stochastic model has a unique ergodic
stationary distribution π(.) of System (5.3)
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Figure 5.2: Numerical simulations of the solutions for System (5.3) (right) and the corresponding
undisturbed System (5.2) (left), with τ1 = 1.25, τ2 = 0.6 and τ3 = 0.5, one can clearly see that the
predator goes to extinct; under the noise intensities σ2

1 = 0.03, σ2
2 = 0.02 and σ2

3 = 1.4. When
T s

0 < 1

system is then

xn+1 = xn +hxn[r1(1−
xn−m1

k1
)−α1zn +βynzn]+σ1xnξ1,n

√
h+

σ2
1

2
xn[ξ

2
1,n−1]h

yn+1 = yn +hyn[r2(1−
yn−m2

k2
)−α2zn +βxnzn]+σ2ynξ2,n

√
h+

σ2
2

2
yn[ξ

2
2,n−1]h

zn+1 = zn +hzn[δ +α3zn +a1xn−m3 +a2yn−m3]+σ3znξ3,n
√

h+
σ2

3
2

zn[ξ
2
3,n−1]h.

(5.66)



124

0 10 20 30 40 50
x
(
t)

0

0.5

1

0 10 20 30 40 50

y
(
t)

0

0.5

1

Time
0 10 20 30 40 50

 z
(
t)

0

1

2

0 5 10 15 20 25 30 35 40 45 50

x
(
t
)

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50

y
(
t
)

0

0.5

1

Time
0 5 10 15 20 25 30 35 40 45 50

 
z
(
t
)

0

0.5

1

Figure 5.3: Numerical simulations of the solutions for System (5.3) (right) and the corresponding
undisturbed System (5.2) (left), with τ1 = 1.25, τ2 = 0.6 and τ3 = 0.5, one can clearly see that all
the species go to extinct . Under the noise intensities σ2

1 = 1.2, σ2
2 = 1.2 and σ2

3 = 0.5. When

r1 <
σ2

1
2 , r2 <

σ2
2

2 and T s
0 < 1
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Figure 5.4: Numerical simulations of the solutions for System (5.3) (right) and the corresponding
undisturbed System (5.2) (left), with τ1 = 10, τ2 = 0.1 and τ3 = 0.1; under the noise intensities
σ2

1 = 0.2, σ2
2 = 0.2 and σ2

3 = 0.2. Clearly, the number of large oscillations in prey and predator
species (right) is more or less the same in comparison to its undisturbed counterpart

Here, ξ1,n, ξ3,n and ξ2,n are mutually independent N(0,1) random variables, m1,m2,m3 are

integers such that the time-delays can be expressed in terms of the step-size as τ1 = m1h,

τ2 = m2h and τ3 = m3h.

Example 5.5.1. Given σ2
1 = 0.08, σ2

2 = 0.1, σ2
3 = 0.06, τ1 = 1.25, τ2 = 0.6, τ3 =

0.5 and parameter values: r1 = 0.2, r2 = 0.6, K1 = 0.7, K2 = 0.8, α1 = 0.3, α2 =

0.6, α3 = 0.8, β = 0.1, δ = 0.8, a1 = 1, a2 = 1.4. Direct calculation leads to T s
0 =

r1ρ1 + r2ρ2

(ρ1
σ2

1
2 +ρ2

σ2
2

2 +ρ3
σ2

3
2 )

= 5.9 > 1, (r1 = 0.2 > 0.04 =
σ2

1
2 ) and (r2 = 0.6 > 0.05 =

σ2
2

2 ).



125

0 2 4 6 8 10 12
x
(
t
)

×10
12

0

2

4

6

0 2 4 6 8 10 12

y
(
t
)

×10
12

0

2

4

6

Time
0 2 4 6 8 10 12

 
z
(
t
)

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

x
(
t
)

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

y
(
t
)

0.2

0.4

0.6

0.8

Time
0 10 20 30 40 50 60 70 80 90 100

 
z
(
t
)

0

0.5

1

1.5

Figure 5.5: The effect of white noise to prevent the explosion of the population, when β = 0.5.
The explosion may occur when the cooperation parameter β is large, with the same parameter
values of Figure 5.1, there is an explosion of population with deterministic model (left); While the
noise prevent such explosion of the population (right)

Thus, the conditions of Theorem 5.3.2 hold. In view of Theorem 5.3.2, Figure 5.1 shows

that there is a unique ergodic stationary distribution π(.) of System (5.3).

Example 5.5.2. Choosing σ2
1 = 0.03, σ2

2 = 0.02, σ2
3 = 1.4, τ1 = 1.25,τ2 = 0.6, τ3 = 0.5

and parameter values: r1 = 0.4, r2 = 0.5, K1 = 0.5, K2 = 0.6, α1 = 0.3, α2 = 0.6, β = 0.1,

δ = 0.4, α3 = 1.8, a1 = 1, a2 = 1.4. By a simple calculation, (r1 = 0.4 > 0.015 =
σ2

1
2 ),

(r2 = 0.5 > 0.01 =
σ2

2
2 ), and T s

0 = 0.89 < 1. In view of Theorem 5.4.1 (a), extinction of

predator can occur. The predator populations dies out exponentially with probability one;

See Figure 5.2.

Example 5.5.3. With σ2
1 = 1.2, σ2

2 = 1.2, σ2
3 = 0.5, τ1 = 1.25, τ2 = 0.6, τ3 = 0.5 and

parameter values: r1 = 0.4, r2 = 0.5, K1 = 0.5, K2 = 0.6, α1 = 0.3, α2 = 0.6, β = 0.1,

δ = 0.4, α3 = 1.8, a1 = 1, a2 = 1.4. By a simple calculation, r1 = 0.4 < 0.6 =
σ2

1
2 ,

r2 = 0.5 < 0.6 =
σ2

2
2 , and T s

0 = 0.394 < 1. In view of Theorem 5.4.1 (b), one can see

that the preys x(t), y(t) and the predator z(t) populations all die out exponentially with

probability one; see Figure 5.3 which shows that a strong intensity of noise can be a cause

for extinction of the prey species that will then teed to predator population to extinct.

Example 5.5.4. Figure 5.4 shows the periodicity of the solutions of deterministic and
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stochastic models when τ1 = 10, τ2 = 0.1, τ3 = 0.1, σ2
1 = 0.2, σ2

2 = 0.2, σ2
3 = 0.2, and

other parameter values r1 = 2, r2 = 2, K1 = 0.6, K2 = 0.6, α1 = 1.3, α2 = 1.5, δ = 0.8,

α3 = 1.6, a1 = 1, a2 = 1.4.

The author arrives at the following Remarks.

Remark 5.5.1. As T s
0 > 1, the stationary distribution indicates that all the species can be

exist in a long period of time, provided that the intensities of white noise are adequately

small. On the other hand, when T s
0 < 1, the tendency for extinction increases, which

never happens in the undisturbed system, without intensity of environmental perturba-

tions; See Figures 5.2 and 5.3.

Remark 5.5.2. Environmental Brownian noise suppresses the explosion of the population

(see Figure 5.5). Combination of time-delays and white noise enriches the dynamics of

the model and increases the complexity of the system, which rationally meets with the

reality.

5.6 Concluding Remarks

In this chapter, a stochastic delay differential model for the dynamics of two-preys

one-predator system, with cooperation among the prey species against predator was pro-

posed. By constructing a suitable stochastic Lyapunov function, sufficient conditions for

the existence and uniqueness of an ergodic stationary distribution of the positive solutions

to the model have been established. Sufficient conditions for extinction of the predator

population in two cases have been deduced, that is, the first case is the prey populations

survival and the predator population extinction; the second case is all the preys and preda-

tor populations extinction. A threshold parameter T s
0 was also established. The solutions

of SDDEs (5.3) fluctuate in the vicinity of the positive equilibrium of the corresponding

undisturbed system when T s
0 > 1, which can be considered as weak stability. Whereas,

the predator dies out if T s
0 < 1. It has been seen, from the numerical simulations, that
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random noises can suppress the explosion of the species, where the solutions of the undis-

turbed system is unbounded. The combination time-delays and white noise have a great

impact on the dynamics, complexity and permanence of prey and predator populations.

Existence of the ergodic stationary distribution of the positive solutions to the proposed

model is a very important issue for the population system and affects the survival of the

species in the environment.

In the next chapter, the author introduces a stochastic SIRC epidemic model for

COVID-19. In which the impact of stochastic perturbation factors in the model are inves-

tigated.
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Chapter 6: Stochastic SIRC Epidemic Model with Time-Delay for
COVID-19

6.1 Introduction

Environmental factors, such as humidity, precipitation, and temperature, have sig-

nificant impacts on the spread of the new strain coronavirus COVID-19 to humans. In this

chapter, a stochastic epidemic SIRC model, with cross-immune class and time-delay in

transmission terms, for the spread of COVID-19 is used. The model is analyzed in which

the existence and uniqueness of positive global solution are proved. The basic reproduc-

tion number Rs
0 for the stochastic model which is smaller than R0 of the corresponding

deterministic model is deduced. Sufficient conditions that guarantee the existence of a

unique ergodic stationary distribution, using the stochastic Lyapunov function, and con-

ditions for the extinction of the disease are obtained. A stochastic SIRC model with time

delay is provided in Section 2. Section 3 studies the existence and uniqueness of global

positive solution for stochastic delayed SIRC model. In Sections 4 and 5, a stationary dis-

tribution and extinction analysis of the underlying model are investigated. Some virtual

numerical examples are present, in Section 6. Finally, concluding remarks are given in

Section 7.

The ongoing pandemic Coronavirus Disease (COVID-19) becomes a worldwide

emergency. This infectious disease is spreading fast, endangering large number of people

health, and thus needs immediate actions and intensive studies to control the disease in

communities [41]. COVID-19 is the seventh member of the coronavirus (CoV) family,

such as MERS-CoV and SARS-CoV [48]. Although SARS-CoV was more deadly, it

was much less infectious than COVID-19. There have been no outbreaks of SARS any-

where in the world since 2003. The symptoms of COVID-19 infection include cough,

fever, tiredness, diarrhea, and shortness of breath. Mostly in severe cases, COVID-19

causes pneumonia and death [136]. The primary studies show that the incubation period

of COVID-19 is between 3–14 days or longer [137]. Additionally, the average of basic re-
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production number R0 for COVID-19 is about 2–2.8. The disease may still be infectious

in the latent infection period. Studies to date suggest that the virus is very serious and

spreads fast from person to person through close contact and respiratory droplets rather

than through the air [137]. Table 6.1 shows the incubation period of several common

infectious diseases.

Mathematical modeling of the infectious diseases has an important role in the

epidemiological aspect of disease control [29]. Several epidemic models, with various

characteristics, have been described and investigated in the literature. Most of these mod-

els are based on Susceptible-Infected-Removed (SIR) model. Casagrandi et al. [30]

introduced SIRC model to describe the dynamical behaviors of Influenza A, by insert-

ing a new compartment, namely Cross-Immuney (C) component1 of people who have

been recovered after being infected by different strains of the same viral subtype in pre-

vious years. The component C describes an intermediate state between the susceptible

S and the recovered R one. Rihan et al. [115] investigated the qualitative behaviours

of fractional-order SIRC model for Salmonella bacterial infection. Recently in [68], the

authors provided a deterministic SEIR epidemic model of fractional-order to describe the

dynamics of COVID-19. In other descriptions, quarantine state (Q) may be include in the

presence of subjects, such as SIRQ models [55].

In fact, stochastic perturbation factors, such as precipitation, absolute humidity,

and temperature, have a significant impact on the infection force of all types of virus

diseases to humans. Taking this into consideration enables to present randomness into

deterministic biological models to expose the environmental variability effect, whether

it is a environmental fluctuations in parameters or random noise in the differential sys-

tems [77, 85, 96, 134, 145]. Moreover, stochastic models give an extra degree of freedom

and realism in comparison with their corresponding deterministic models. Stochastic

population dynamics perturbed by white noise (or Brownian motion) has been studied

extensively by many authors [7, 94, 95]. It has been investigated in [93] that a envi-

1Cross-immunity (or cross-reactivity) is a major evolutionary force that affects pathogen diversity (i.e.
it drives viruses and microbes to be as distinct as possible from one another in order to avoid immunity
detection, memory recognition and clearance).
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ronmental Brownian noise can suppress explosions in population dynamics. Yuan et al.

[142] discussed the results of stochastic viral infection, immune response dynamics and

analyzed the human immuno-deficiency virus infection. In [62], the author investigated

the existence results of ergodic distribution for stochastic hepatitis B virus model based

on Lyapunov function. In [63], the authors explore the dynamics of SIR epidemic model

with environmental fluctuations. Additionally, they calculated a threshold parameter to

demonstrate the persistence and extinction of the disease. Recently, Lakshmi et al. [78]

identified some environmental factors such as geographic location of the countries, the

upcoming climate, atmospheric temperature, humidity, sociobiological factors, etc., that

influence the global spread of the COVID-19.

Up-to date studies, it has been reported that there are many COVID-19 carriers

who are not suffering the disease. This may be due to cross-immunity of other virus

survivors, people who have been recovered from the virus, such as other stains of coro-

navirus, H1N1, or influenza A. It has been reported in [48] that "SARS-CoV-2 immunity

has some degree of cross-reactive coronavirus immunity in a fraction of the human popu-

lation, and this fraction of population has influence susceptibility to COVID-19 disease".

Accordingly, in the present chapter, an SIRC epidemic model of cross-immune class for

the dynamics of transmission COVID-19 among groups is investigated. Time-delay is

included in the transmission terms to represent the incubation period of the virus (the

time between infection and symptom onset). White noise type of perturbations is also

incorporated to reveal the effect of environmental fluctuations and variability in parame-

ters. Based on existing literatures, this is the first work dealing with the persistence and

extinction of a stochastic epidemic model for COVID-19 infection. The impact of small

and large values of white noise in the ’persistence’ and ’extinction’ of the disease are

investigated. The existence results of stationary distribution and extinction of the disease

are also derived, using a novel combination of stochastic Lyapunov functional.
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Table 6.1: Incubation period of several common infectious diseases

Disease Range Ref.
COVID-19 3–14 days [137]
Cholera 0.5–4.5 days [6]
Common cold 1–3 days [80]
Ebola 1–21 days [135]
HIV 2–3 weeks to months or longer [66]
Influenza 1–3 days [42]
MERS 2–14 days [1]
SARS 1–10 days [124]

6.2 Stochastic SIRC Epidemic Model

For the spread of COVID-19 disease in humans, the population is classified into

four categories: S(t), I(t),R(t), and C(t) are the proportion of susceptible, infected, recov-

ered and cross-immune ones at time t respectively. Let N(t) = S(t)+ I(t)+R(t)+C(t) be

the total population. At this stage, SIRC model efficiently describes the mechanism for

the spreading of the COVID-19 virus. The classical SIRC model [30, 65] takes the form

Ṡ(t) = η(1−S(t))−ξ S(t)I(t− τ)+βC(t),

İ(t) = ξ S(t)I(t− τ)+σξC(t)I(t)− (η +α)I(t),

Ṙ(t) = (1−σ)ξC(t)I(t)+αI(t)− (η + γ)R(t),

Ċ(t) = γR(t)−ξC(t)I(t)− (η +β )C(t).

(6.1)

A discrete time-delay τ is incorporated into the SIRC model, to represent the incubation

period, which is about 3-14 days [137]. All the parameters appearing in the model are

nonnegative see Table 6.2. In the absence of cross-immunity i.e. (1−σ = 0), the SIRC

model curtails to the SIRS model, since the two individuals S and C become immunolog-

ically indistinguishable. Figure 6.1 shows the scheme of SIRC model.

Time-delay τ > 0 is incorporated in the transmission terms to represent the incuba-

tion period of the viral infection, the time between infection and symptom onset. The cur-

rent studies show that the average/median of incubation period of early confirmed cases

of COVID-19 is about 5.5 days, which is similar to SARS-CoV. Presence of time-delay

in the model may cause periodic solutions many times for different time-delay values τ
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Table 6.2: Description of the model parameters

Parameters Description
η Mortality rate in every compartment and is assumed

equal to the rate of newborn in the population [30]
β Rate at which the cross-immune population becomes susceptible again
ξ Contact/transmission rate
σ The average reinfection probability of a cross-immune individual
α Recovery rate of the infected population
γ Rate at which the recovered population becomes the cross-immune

population and moves from total to partial immunity

[109]. The Model (6.1) has a disease-free equilibrium E0 = [1,0,0,0], and an endemic

Figure 6.1: Scheme of SIRC Model (6.1), assuming that the total population N = 1.

equilibrium E+ = [S∗, I∗,R∗,C∗], where

S∗ =
η +α

ξ
− βγαI∗

[(η + γ)− (1−σ)γ]ξ I∗+(η +β )(η + γ)
,

R∗ =
αI∗(ξ I∗+η +β )

[(η + γ)− (1−σ)γ]ξ I∗+(η +β )(η + γ)
,

C∗ =
γαI∗

[(η + γ)− (1−σ)γ]ξ I∗+(η +β )(η + γ)
,

and I∗ is a root of quadratic equation pI2 +qI + r = 0, where

p = ηξ (η +α +σγ),

q = ηξ [α(2η + γ +β )+(η +β )(η + γ)+(η +σγ)(η−ξ )] ,

r = η(η +β )(η + γ)(η +α)(1−R0).

Here R0 =
ξ

η +α
is known as the basic reproduction number of the deterministic model.

In fact, there is increasing indication that superior consistency with some phenom-
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ena can be contributed if the effects of environmental noises in the system are taken into

account [113]. The epidemic Model (6.1) assumes that the observed dynamics are driven

exclusively by internal deterministic cases. Ignoring environmental variability in the mod-

eling may affect the dynamics of the model and transmission of the disease. Accordingly,

there is need to extend the deterministic systems described by differential equations into

Stochastic Differential Equations (SDEs), where related parameters are modeled as suit-

able stochastic processes, added to the driving system equations.

From the mathematical and biological point of view, there are some assumptions

to incorporate stochastic perturbations into the epidemiological model, such as Markov

chain process, parameter perturbations, white noise type, etc. Here, white noise type

perturbation is incorporated into Model (6.1), which is proportional to S, I, R, C classes,

so that

dS(t) =[η(1−S(t))−ξ S(t)I(t− τ)+βC(t)]dt +ν1S(t)dW1(t),

dI(t) =[ξ S(t)I(t− τ)+σξC(t)I(t)− (η +α)I(t)]dt +ν2I(t)dW2(t),

dR(t) =[(1−σ)ξC(t)I(t)+αI(t)− (η + γ)R(t)]dt +ν3R(t)dW3(t),

dC(t) =[γR(t)−ξC(t)I(t)− (η +β )C(t)]dt +ν4C(t)dW4(t),

(6.2)

where W1(t),W2(t),W3(t), and W4(t) stand for the independent Brownian motions. ν2
1 ,ν

2
2 ,ν

2
3 ,

and ν2
4 represent the intensity of the environmental white noises, νi > 0 (i = 1,2,3,4),

subject to the following initial conditions

S(θ) = φ1(θ), I(θ) = φ2(θ),

R(θ) = φ3(θ), C(θ) = φ4(θ), θ ∈ [−τ,0]

φi(θ) ∈ C , i = 1,2,3,4,

(6.3)

such that C is the family of Lebesgue integrable functions from [−τ,0] into R4
+.
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6.3 Existence and Uniqueness of the Positive Solution

To investigate the dynamical characteristics of SDDEs (6.2), the first considera-

tion is to verify System(6.2) has a unique global positive solution. As the coefficients of

System(6.2) satisfy the local Lipschitz condition together with the linear growth condition

[23]; Consequently, there exists a unique local solution. Now, one needs to prove that the

solution is positive and global, using Lyapunov analysis method [91].

Theorem 6.3.1. System (6.2) has a unique positive solution (S(t), I(t),R(t),C(t)) on t ≥

−τ , and the solution will remain in R4
+ for the given initial condition (6.3) with probability

one.

Proof. For any initial value (6.3), as the coefficients of System(6.2) satisfy the local

Lipschitz condition, so System(6.2) has a unique local solution (S(t), I(t),R(t),C(t)) on

t ∈ [−τ,τe), a.s., where τe represents the explosion time [91].

The purpose is to show that this solution is global i.e. τe = ∞, a.s. Assume n0 ≥ 1

be sufficiently large such that S(θ), I(θ),R(θ) and C(θ) (θ ∈ [−τ,0]) are lying in the

interval
[

1
n0
,n0

]
. For each n≥ n0,n ∈ N, define the stopping time

τn = inf
{

t ∈ [−τ,τe) : min{S(t), I(t),R(t),C(t)}≤ 1
n

or max{S(t), I(t),R(t),C(t)}≥ n
}
,

fixing infφ = ∞ (φ be the empty set). Apparently, τn is increasing as n→ ∞. Assume

τ∞ = limn→∞ τn, then τ∞ ≤ τe a.s. Therefore, one needs to show that τ∞ = ∞ a.s., then

τe = ∞ a.s. and (S(t), I(t),R(t),C(t)) ∈ R4
+ a.s. for all t ≥−τ . If it is erroneous, there is

a pair ε ∈ (0,1) and T̃ > 0 such that P{τ∞ ≤ T̃} > ε. Then, there is an integer n1 ≥ n0
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such that

P{τn ≤ T̃} ≥ ε,∀n≥ n1. (6.4)

Define a C 2 function V : R4
+→ R+ as

V (S, I,R,C) = (S−κ−κ
lnS
κ

)+(I−1− ln I)+(R−1− lnR)+(C−1− lnC)+∫ t+τ

t
κξ I(s− τ)ds,

where κ > 0 is a constant to be determined. By Ito’s formula, one can obtain

dV = LV dt +ν1(S−κ)dW1(t)+ν2(I−1)dW2(t)+ν3(R−1)dW3(t)

+ν4(C−1)dW4(t),

where

LV =(1− κ

S
)(η−ηS−ξ SI(t− τ)+βC)+(1− 1

I
)(ξ SI(t− τ)+σξCI− (η +α)I)

+(1− 1
R
)(ξCI−σξCI +αI−ηR− γR)+(1− 1

C
)(γR−ξCI

− (η +β )C)+
κν2

1 +ν2
2 +ν2

3 +ν2
4

2
+κξ I(t)−κξ I(t− τ),

≤ 4η +κη +α +β + γ−ηC−ηR+(ξ (1+κ)−α)I−ηI−ηS+

κν2
1 +ν2

2 +ν2
3 +ν2

4
2

.

Let κ = α−ξ

ξ
, then one may have

LV ≤ 4η +κη +α +β + γ +
κν2

1 +ν2
2 +ν2

3 +ν2
4

2

≤M ,

(6.5)
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where M > 0 is a constant which is independent of S(t), I(t), R(t) and C(t). Therefore,

dV (S, I,R,C)≤M dt +ν1(S−κ)dW1(t)+ν2(I−1)dW2(t)+ν3(R−1)dW3(t)

+ν4(C−1)dW4(t).

(6.6)

Integrating (6.6) from 0 to τn∧ T̃ = min{τn, T̃} and then taking the expectation E on both

sides, one gets

E[V (S(τn∧ T̃ ), I(τn∧ T̃ ),R(τn∧ T̃ ),C(τn∧ T̃ ))]

≤ E[V (S(0), I(0),R(0),C(0))]+M T̃ .

(6.7)

Let Ωn = {τn ≤ T̃}, for n ≥ n1 and in view of (6.4), one obtains P(Ωn) ≥ ε . Such that,

for every ω ∈Ωn, there is at least one of S(τn,ω) ,I(τn,ω), R(τn,ω) or C(τn,ω) equaling

either to n or 1
n and then, one obtains

V (S(τn∧ T̃ ), I(τn∧ T̃ ),R(τn∧ T̃ ),C(τn∧ T̃ ))≥ (n−1− lnn)∧ (1
n
−1− ln

1
n
). (6.8)

According to (6.7), one gets

EV (S(0), I(0),R(0),C(0))+M T̃ ≥ E[1Ωn(ω)V (S(τn,ω),

I(τn,ω),R(τn,ω)),C(τn,ω)]ε(n−1− lnn)∧ (1
n
−1− ln

1
n
),

(6.9)

where 1Ωn represents the indicator function of Ωn. Letting n→ ∞ yields

∞ > EV (S(0), I(0),R(0),C(0))+M T̃ = ∞, (6.10)

which leads to a contradiction, it can be conclude that τ∞ = ∞ a.s.
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6.4 Existence of Ergodic Stationary Distribution

In this section, the existence of a unique ergodic stationary distribution of the

positive solutions to System(6.2) is discussed.

Define the Reproduction Number of the stochastic model as

Rs
0 =

ηγξ 2(1−σ)

η̂α̂ γ̂ β̂
, (6.11)

where η̂ = η +
ν2

1
2 , α̂ = η +α +

ν2
2
2 , γ̂ = η + γ +

ν2
3
2 , and β̂ = η +β +

ν2
4
2 .

Theorem 6.4.1. Assume that Rs
0 > 1, and η− ν2

1∨ν2
2∨ν2

3∨ν2
4

2 > 0, then for any initial value

(S(0), I(0),R(0),C(0)) ∈ R4
+, System(6.2) has a unique ergodic stationary distribution

π(·).

Proof. First, one needs to validate conditions (i) and (ii) of Lemma 5.3.1. To prove

condition (i), the diffusion matrix of Model (6.2) is described as

Λ =



ν2
1 S2 0 0 0

0 ν2
2 I2 0 0

0 0 ν2
3 R2 0

0 0 0 ν2
4C2


.

Then, the matrix Λ is positive definite for any compact subset of R4
+, then condition (i) of

Lemma 5.3.1 is satisfied. Next, condition (ii) is proved. To this end, define C 2-function

V : R4
+→ R as follows

V (S, I,R,C) = Q
(
− lnS− c1 ln I− c2 lnR− c3 lnC+ξ

∫ t+τ

t
I(s− τ)ds

)
− lnS+ξ

∫ t+τ

t
I(s− τ)ds− lnR− lnC+

1
ρ +1

(S+ I +R+C)ρ+1,
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V (S, I,R,C) = QV1 +V2 +V3 +V4 +V5,

where c1 = ηγξ 2(1−σ)

α̂2γ̂ β̂
, c2 = ηγξ 2(1−σ)

α̂ γ̂2β̂
, and c3 = ηγξ 2(1−σ)

α̂ γ̂ β̂ 2 . Noting that V (S, I,R,C) is

not only continuous, but also tends to +∞ as (S, I,R,C) approaches to the boundary of R4
+

and ‖(S, I,R,C)‖→∞. Therefore, V must have a minimum point (S(0), I(0),R(0),C(0))

in the interior of R4
+. Define a C 2−function Ṽ : R4

+→ R+ as

Ṽ (S, I,R,C) = Q
(
− lnS− c1 ln I− c2 lnR− c3 lnC+ξ

∫ t+τ

t
I(s− τ)ds

)
− lnS+ξ

∫ t+τ

t
I(s− τ)ds− lnR− lnC+

1
ρ +1

(S+ I +R+C)ρ+1

−V (S(0), I(0),R(0),C(0)),

:= QV1 +V2 +V3 +V4 +V5−V (S(0), I(0),R(0),C(0))

(6.12)

where (S, I,R,C) ∈ (1
n ,n)× (1

n ,n)× (1
n ,n)× (1

n ,n) and n > 1 is a sufficiently large integer,

V1 =− lnS−c1lnI−c2 lnR−c3 lnC+ξ
∫ t+τ

t I(s−τ)ds, V2 =− lnS+ξ
∫ t+τ

t I(s−τ)ds,

V3 =− lnR, V4 =− lnC and V5 =
1

ρ+1(S+ I +R+C)ρ+1. ρ > 1 is a constant satisfying

η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )> 0,

and Q > 0 is a sufficiently large number satisfying the following condition

−Qµ +w≤−2, where

µ =
ηγξ 2(1−σ)

α̂ γ̂ β̂
− (η +

ν2
1

2
)> 0, since Rs

0 > 1,
(6.13)

w = sup
(S,I,R,C)∈R4

+

{
− 1

4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η + γ

+β +2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

}
.

(6.14)
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A = sup
(S,I,R,C)∈R4

+

{
η(S+ I +R+C)ρ − 1

2
[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )]

× (S+ I +R+C)ρ+1
}
< ∞.

(6.15)

Applying Itô’s formula to V1, one obtains

LV1 =−
η

S
+η +ξ I− βC

S
− c1ξ SI(t− τ)

I
− c1σξC+ c1(η +α)

− c2(1−σ)ξCI
R

− c2αI
R

+ c2(η + γ)− c3γR
C

+ c3ξ I + c3(η +β )+
ν2

1
2

+
c1ν2

2
2

+
c2ν2

3
2

+
c3ν2

4
2

≤−4 4
√

ηγξ 2(1−σ)c1c2c3 +η +
ν2

1
2
+ c1(η +α +

ν2
2

2
)+ c2(η + γ +

ν2
3

2
)

+ c3(η +β +
ν2

4
2
)+ξ (1+ c3)I

≤−ηγξ 2(1−σ)

α̂ γ̂ β̂
+η +

ν2
1

2
+ξ (1+ c3)I =−µ +ξ (1+ c3)I,

(6.16)

Similarly, one can get

LV2 =−
η

S
+η +ξ I− βC

S
+

ν2
1

2
, (6.17)

LV3 =−
(1−σ)ξCI

R
− αI

R
+η + γ +

ν2
3

2
, (6.18)

LV4 =−
γR
C

+ξ I +η +β +
ν2

4
2
, (6.19)

LV5 = (S+ I +R+C)ρ [η−η(S+ I +R+C)]+
ρ

2
(S+ I +R+C)ρ−1

× [ν2
1 S2 +ν

2
2 I2 +ν

2
3 R2 +ν

2
4C2],

≤ (S+ I +R+C)ρ [η−η(S+ I +R+C)]+
ρ

2
(S+ I +R+C)ρ+1(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 ),

≤ η(S+ I +R+C)ρ − (S+ I +R+C)ρ+1[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )],
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LV5 ≤ A− 1
2
[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )](S+ I +R+C)ρ+1

≤ A− 1
2
[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )](S

ρ+1 + Iρ+1 +Rρ+1 +Cρ+1),

(6.20)

where A is defined by (6.15). From the Equations (6.16)-(6.20), one gets

L Ṽ ≤−Qµ +Qξ (1+ c3)I−
1
2
[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )](S

ρ+1 + Iρ+1 +Rρ+1 +Cρ+1)

− η

S
+3η− βC

S
+

ν2
1

2
− αI

R
+ γ +

ν2
3

2
− γR

C
+2ξ I +A+β +

ν2
4

2
,

≤−Qµ +Qξ (1+ c3)I−
1
4
[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )](S

ρ+1 + Iρ+1 +Rρ+1 +Cρ+1)

− η

S
− 1

4
[η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )]I

ρ+1 +3η− βC
S

+
ν2

1
2
− αI

R
+ γ

+
ν2

3
2
− γR

C
+2ξ I +A+β +

ν2
4

2
.

For ε > 0, define a bounded closed set

D =
{
(S, I,R,C) ∈ R4

+ : ε ≤ S≤ 1
ε
,ε ≤ I ≤ 1

ε
,ε2 ≤ R≤ 1

ε2 ,ε
3 ≤C ≤ 1

ε3

}
.

In the set R4
+ \D , choose ε satisfies the following conditions

−η

ε
+H ≤−1, (6.21)

−Qµ +Qξ (1+ c3)ε +w≤−1, (6.22)

−α

ε
+H ≤−1, (6.23)

−γ

ε
+H ≤−1, (6.24)

−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ερ+1 +H ≤−1, (6.25)

−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ε2(ρ+1)
+H ≤−1, (6.26)
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−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ε3(ρ+1)
+H ≤−1, where (6.27)

H = sup
(S,I,R,C)∈R4

+

{
Q(c3 +1)ξ I− 1

4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η + γ +β +2ξ I

+A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

}
.

One needs to show that L Ṽ ≤ −1 for any (S, I,R,C) ∈ R4
+ \D , and R4

+ \D =
⋃8

i=1 Di,

where

D1 = {(S, I,R,C) ∈ R4
+;0 < S < ε}, D2 = {(S, I,R,C) ∈ R4

+;0 < I < ε},

D3 = {(S, I,R,C) ∈ R4
+;0 < R < ε

2, I ≥ ε},

D4 = {(S, I,R,C) ∈ R4
+;0 <C < ε

3,R≥ ε
2},

D5 = {(S, I,R,C) ∈ R4
+;S >

1
ε
}, D6 = {(S, I,R,C) ∈ R4

+; I >
1
ε
},

D7 = {(S, I,R,C) ∈ R4
+;R >

1
ε2}, D8 = {(S, I,R,C) ∈ R4

+;C >
1
ε3}.

Case 1. For any (S, I,R,C) ∈D1, one obtains

L Ṽ ≤−η

S
+Q(c3 +1)ξ I− 1

4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η + γ +β

+2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−η

S
+H,

≤−η

ε
+H ≤−1,

which is obtained from (6.21). Therefore, LV ≤−1 for any (S, I,R,C) ∈ D1.
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Case 2. For any (S, I,R,C) ∈D2, one gets

L Ṽ ≤−Qµ +Qξ (1+ c3)I−
1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η

+ γ +β +2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2
,

≤−Qµ +Qξ (1+ c3)I +w

≤−Qµ +Qξ (1+ c3)ε +w <−1,

which follows from (6.22) and (6.13). Thus, LV ≤−1 for any (S, I,R,C) ∈ D2.

Case 3. For any (S, I,R,C) ∈D3, one can get

L Ṽ ≤−αI
R

+Q(c3 +1)ξ I− 1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η + γ +β

+2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−αε

ε2 +H ≤−1,

which follows from (6.23). Consequently, LV ≤−1 for any (S, I,R,C) ∈ D3.

Case 4. For any (S, I,R,C) ∈D4, it yields

L Ṽ ≤−γR
C

+Q(c3 +1)ξ I− 1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η + γ +β

+2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−γε2

ε3 +H ≤−1,

which is obtained from (6.24). Thus, LV ≤−1 for any (S, I,R,C) ∈ D4.
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Case 5. If (S, I,R,C) ∈D5, one may have

L Ṽ ≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Sρ+1 +Q(c3 +1)ξ I

− 1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η

+ γ +β +2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ερ+1 +H ≤−1,

which is obtained from (6.25). Therefore, one obtains LV ≤−1 for any (S, I,R,C)∈D5.

Case 6 If (S, I,R,C) ∈D6, one gets

L Ṽ ≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +Q(c3 +1)ξ I

− 1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η

+ γ +β +2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ερ+1 +H ≤−1,

which is obtained from (6.25). Hence, LV ≤−1 for any (S, I,R,C) ∈ D6.

Case 7. If (S, I,R,C) ∈D7, then

L Ṽ ≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Rρ+1 +Q(c3 +1)ξ I

− 1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η

+ γ +β +2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ε2ρ+2 +H ≤−1,

which is obtained from (6.26). Hence, LV ≤−1 for any (S, I,R,C) ∈ D7.
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Case 8. If (S, I,R,C) ∈D8, one can see that

L Ṽ ≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Cρ+1 +Q(c3 +1)ξ I

− 1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
]
Iρ+1 +3η

+ γ +β +2ξ I +A+
ν2

1
2
+

ν2
3

2
+

ν2
4

2

≤−1
4

[
η− ρ

2
(ν2

1 ∨ν
2
2 ∨ν

2
3 ∨ν

2
4 )
] 1

ε3ρ+3 +H ≤−1,

which is obtained from (6.27). Therefore, LV ≤−1 for any (S, I,R,C) ∈ D8.

Clearly, condition (ii) of Lemma 5.3.1 holds. Therefore, the System(6.2) identifies a

unique stationary distribution π(.).

6.5 Extinction

In order to show the extinction of the disease, one may go through the following

Lemma.

Lemma 6.5.1. (See Lemmas 2.1 and 2.2 in [146]) Let (S(t), I(t),R(t),C(t)) be the solu-

tion of (6.2) with any (S(0), I(0),R(0),C(0)) ∈ R4
+, then

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, lim
t→∞

C(t)
t

= 0, a.s.

Furthermore, if η >
ν2

1∨ν2
2∨ν2

3∨ν2
4

2 , then

limt→∞

∫ t
0 S(s)dW1(s)

t = 0, limt→∞

∫ t
0 I(s)dW2(s)

t = 0, limt→∞

∫ t
0 R(s)dW3(s)

t = 0,

limt→∞

∫ t
0 C(s)dW4(s)

t = 0, a.s.

Theorem 6.5.2. If Rs
0 < 1 and η >

ν2
1∨ν2

2∨ν2
3∨ν2

4
2 then the solution of (6.2) satisfies the

following lim
t→∞

sup
1
t

ln(α(I(t)+C(t))+(η +α)R(t))≤ ξ − 1
2(α)2

{
α

2 ν2
2

2
∧ (η(η +α +

γ)+(η +α)2 ν2
3

2
)∧α

2(η +β +
ν2

4
2
)
}
< 0 and lim

t→∞
〈S〉= 1 a.s.
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Proof. Define U(t) = α(I(t)+C(t))+(η +α)R(t), taking Ito’s formula, one can get

d lnU(t) =
{ 1

α(I +C)+(η +α)R

[
αξ SI(t− τ)−α(η +β )C− (η2 +ηα +ηγ)R

]
−

[
α2ν2

2 I2 +(η +α)2ν2
3 R2 +α2ν2

4C2
]

2(α(I +C)+(η +α)R)2

}
dt +

αν2I
α(I +C)+(η +α)R

dW2(t)

+
(η +α)ν3R

α(I +C)+(η +α)R
dW3(t)+

αν4C
α(I +C)+(η +α)R

dW4(t),

≤ ξ Sdt− 1
(α(I +C)+(η +α)R)2

{
α

2 ν2
2

2
I2 +α

2(η +β +
ν2

4
2
)C2

+(η(η +α + γ)+(η +α)2 ν2
3

2
)R2
}

dt +
αν2I

α(I +C)+(η +α)R
dW2(t)

+
(η +α)ν3R

α(I +C)+(η +α)R
dW3(t)+

αν4C
α(I +C)+(η +α)R

dW4(t),

≤ ξ Sdt− 1
2(α)2

{
α

2 ν2
2

2
∧ (η(η +α + γ)+(η +α)2 ν2

3
2
)∧α

2(η +β +
ν2

4
2
)
}

dt

+
αν2I

α(I +C)+(η +α)R
dW2(t)+

(η +α)ν3R
α(I +C)+(η +α)R

dW3(t)

+
αν4C

α(I +C)+(η +α)R
dW4(t). (6.28)

From Model (6.2), one gets

d(S(t)+ I(t)+R(t)+C(t)) =
[
η−η(S(t)+ I(t)+R(t)+C(t))

]
dt +ν1S(t)dW1(t)

+ν2I(t)dW2(t)+ν3R(t)dW3(t)+ν4C(t)dW4(t). (6.29)

Taking integration of (6.29) from 0 to t, one obtains

〈S(t)+ I(t)+R(t)+C(t)〉= 1+ψ1(t), where (6.30)
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ψ1(t) =
1
η

[1
t
(S(0)+ I(0)+R(0)+C(0))− 1

t
(S(t)+ I(t)+R(t)+C(t))

+
ν1
∫ t

0 S(s)dW1(s)
t

+
ν2
∫ t

0 I(s)dW2(s)
t

+
ν3
∫ t

0 R(s)dW3(s)
t

+
ν4
∫ t

0 C(s)dW4(s)
t

]
.

(6.31)

By Lemmas 4.2.1 and 6.5.1, one can easily obtain that lim
t→∞

ψ1(t) = 0 a.s. Therefore, by

taking the superior limit on both sides of (6.30), one may have

lim
t→∞

sup〈S(t)+ I(t)+R(t)+C(t)〉 = 1 a.s. (6.32)

Integrating (6.28) from 0 to t, one obtains

lnU(t)
t
≤ ξ − 1

2(α)2

{
α

2 ν2
2

2
∧ (η(η +α + γ)

+(η +α)2 ν2
3

2
)∧α

2(η +β +
ν2

4
2
)
}
+ψ2(t), where

(6.33)

ψ2(t) =
lnU(0)

t
+

αν2

t

∫ t

0

( I(s)
α(I(s)+C(s))+(η +α)R(s)

dW2(s)
)

+
(η +α)ν3

t

∫ t

0

( R(s)
α(I(s)+C(s))+(η +α)R(s)

dW3(s)
)

+
αν4

t

∫ t

0

( C(s)
α(I(s)+C(s))+(η +α)R(s)

dW4(s)
)
.

In the same manner; by Lemmas 4.2.1 and 6.5.1, one gets lim
t→∞

ψ2(t)= 0 a.s. Since Rs
0 < 1,

therefore, by taking the superior limit of both sides of (6.33), one obtains

lim
t→∞

sup
lnU(t)

t
≤ ξ − 1

2(α)2

{
α

2 ν2
2

2
∧ (η(η +α + γ)

+(η +α)2 ν2
3

2
)∧α

2(η +β +
ν2

4
2
)
}
< 0,

(6.34)

which implies that limt→∞ I(t) = 0, limt→∞ R(t) = 0, limt→∞C(t) = 0. a.s., which confirms

that the disease I can die out with probability one. It is easy, by using (6.32) and (6.34),
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to show that lim
t→∞
〈S〉= 1 a.s.
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Figure 6.2: Numerical simulations of stochastic Model (6.2), when Rs
0 = 1.3 > 1. With

η = 0.09,ξ = 1.3,β = 0.05,σ = 0.9,α = 0.36,γ = 0.1;τ = 1 and white noises ν1 = 0.1,ν2 =
0.09,ν3 = 0.09,ν4 = 0.07. The model has a unique ergodic stationary distribution and the infec-
tion is persistent
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Figure 6.3: Time domain behaviors of solutions of SDDEs Model (6.2) (right) and the corre-
sponding deterministic Model (6.1) (left), when Rs

0 = 0.38 < 1. With η = 0.0005,ξ = 0.6,β =
0.01,σ = 0.12,α = 0.3,γ = 0.02;τ = 1.4 and white noises ν1 = ν2 = 0.02,ν3 = 0.01,ν4 = 0.02.
The infection dies out with probability one

6.6 Numerical Simulations and Discussions

Numerical simulations are given to validate the theoretical results, through Euler-

Maruyama method for SDDEs, reported in [22, 91], to numerically solve SDDEs (6.2).
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Figure 6.4: Time domain behaviors of SDDEs Model (6.2) (right) and corresponding deterministic
Model (6.1) (left), the Figure shows a periodic outbreak due to the time-delay τ . When Rs

0 =
0.38 < 1, with η = 0.0005,ξ = 0.6,β = 0.01,σ = 0.12,α = 0.3,γ = 0.02;τ = 2.5 and white
noises ν1 = 0.02,ν2 = 0.2,ν3 = 0.02,ν4 = 0.2
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Figure 6.5: Simulations of stochastic Model (6.2) (right) and the corresponding deterministic
Model (6.1) (left), when Rs

0 = 0.38 < 1. With η = 0.0005,ξ = 0.6,β = 0.01,σ = 0.12,α =
0.3,γ = 0.02;τ = 2.5 and white noises ν1 = 0.2,ν2 = 0.2,ν3 = 0.1,ν4 = 0.2. The deterministic
model shows a periodic outbreak due to the time-delay τ . The infection dies out with time when
white noise is large

The discretization transformation takes the form

S j+1 =S j +[η(1−S j)−ξ S jI j−m +βC j]∆t +ν1S j
√

∆tζ1, j,

I j+1 =I j +[ξ S jI j−m +σξC jI j− (η +α)I j]∆t +ν2I j
√

∆tζ2, j,

R j+1 =R j +[(1−σ)ξC jI j +αI j− (η + γ)R j]∆t +ν3R j
√

∆tζ3, j,

C j+1 =C j +[γR j−ξC jI j− (η +β )C j]∆t +ν4C j
√

∆tζ4, j.

(6.35)

The independent Gaussian random variables denoted as ζi, j,(i = 1,2,3,4), which follow

the distribution N(0,1), the time delay defines as τ = m∆t, m is an integer and the step
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Figure 6.6: Time domain behaviors of SDDEs Model (6.2) (right) and corresponding deterministic
Model (6.1) (left), where τ = 1, when R0 = 1.78 > 1. The infection persists in the deterministic
model; when Rs

0 = 0.75 < 1, the infection dies out in the stochastic model. With parameter values
η = 0.02,ξ = 0.5,β = 0.1,σ = 0.2,α = 0.26,γ = 1, and white noises ν1 = 0.13, ν2 = 0.54, ν3 =
0.26, ν4 = 0.75
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Figure 6.7: Time response of solutions for Model (6.2) (right) and corresponding deterministic
Model (6.1) (left), when τ = 0. Such that R0 = 1.78 > 1, the infection persists in the deterministic
model; when Rs

0 = 0.75 < 1, the infection dies out in the stochastic model. With parameter values
η = 0.02,ξ = 0.5,β = 0.1,σ = 0.2,α = 0.26,γ = 1, and white noises ν1 = 0.13, ν2 = 0.54, ν3 =
0.26, ν4 = 0.75.
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size ∆t. Let νi > 0,(i = 1,2,3,4) be the white noise values.

Example 6.6.1. Consider Model (6.2), with white noise values: ν1 = 0.1, ν2 = 0.09, ν3 =

0.09, ν4 = 0.07, and parameter values: η = 0.09,ξ = 1.3,β = 0.05,σ = 0.9,γ = 0.1,α =

0.36,τ = 1.2. Simple calculation leads to Rs
0 =

ηγξ 2(1−σ)

η̂α̂ γ̂ β̂
= 1.3> 1, and η− ν2

1∨ν2
2∨ν2

3∨ν2
4

2 =

0.087 > 0. Therefore, the conditions of Theorem 6.4.1 hold. Based on Theorem 6.4.1,

there is a unique ergodic stationary distribution π(.) of Model (6.2). Thus, the disease I

is persistent; See Figure 6.2.

Example 6.6.2. Given the Model (6.2), with parameters values: η = 0.0005;ξ = 0.6;β =

0.01;σ = 0.12;α = 0.3;γ = 0.02,τ = 1.4 ,and white noises: ν1 = 0.02,ν2 = 0.02,ν3 =

0.01,ν4 = 0.2. One obtains Rs
0 =

ηγξ 2(1−σ)

η̂α̂ γ̂ β̂
= 0.38< 1, and η− ν2

1∨ν2
2∨ν2

3∨ν2
4

2 =−0.0195<

0. In this case, the conditions of Theorem 6.4.1 are not satisfied. From Figure 6.3, one can

clearly find that the disease goes to extinction. In Figure 6.4 time-delay is increased to

τ = 2.5, with white noises ν1 = 0.01,ν2 = 0.2,ν3 = 0.02,ν4 = 0.03, other parameter val-

ues are the same as in Figure 6.3. Therefore Rs
0 < 1, and η− ν2

1∨ν2
2∨ν2

3∨ν2
4

2 =−0.0445< 0.

The conditions of Theorem 6.4.1 are not satisfied. Figure 6.5 shows a periodic outbreak

due to the time-delay τ . However, the infection dies out with time with bigger white

noise.

Example 6.6.3. To further explain the impact of time-delay and white noises on System(6.2),

choose τ = 2.5 and parameter values: η = 0.0005;ξ = 0.6;β = 0.01;σ = 0.12;α =

0.3;γ = 0.02, and white noises ν1 = 0.2,ν2 = 0.2,ν3 = 0.1,ν4 = 0.3. Such that, Rs
0 =

ηγξ 2(1−σ)

η̂α̂ γ̂ β̂
= 0.38 < 1, and η− ν2

1∨ν2
2∨ν2

3∨ν2
4

2 =−0.045 < 0. Thus, the conditions of Theo-

rem 6.4.1 are not satisfied. Figure 6.5 shows a periodic outbreak due to the time-delay τ ,

when the white noise increased the periodicity of the outbreak decreased. The infection

dies out with time as white noise increases.
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Example 6.6.4. In order to show the impact of random perturbation. With τ = 1, and

by increasing the white noise values to ν1 = 0.13, ν2 = 0.54, ν3 = 0.26, ν4 = 0.75,

with parameter values η = 0.02;ξ = 0.5;β = 0.1;σ = 0.2;α = 0.26;γ = 1. Thus, Rs
0 =

ηγξ 2(1−σ)

η̂α̂ γ̂ β̂
= 0.75< 1< 1.78= ξ

α+η
=R0, and η− ν2

1∨ν2
2∨ν2

3∨ν2
4

2 = 0.0115> 0. Therefore,

the conditions of Theorem 6.5.2 hold, and disease dies out exponentially with probability

one. However, the disease persists with deterministic model; See Figure 6.6.

Example 6.6.5. Consider the same parameter values of Example 6.6.4, but with time-

delay τ = 0. Thus, according to Theorem 6.5.2 the disease dies out exponentially with

probability one; See Figure 6.7. Therefore, the smaller values of white noise ensure the

existence of unique stationary distribution, which gives the persistence of the disease;

While larger values of white noise can lead to disease extinction.

Remark 6.6.1. Given the deterministic SIRC Model (6.1), if the basic reproduction num-

ber R0 =
ξ

α +η
< 1, then the disease-free equilibrium point is globally asymptotically

stable; Whereas, if R0 > 1, the unique endemic equilibrium point is globally asymptot-

ically stable. Repeated outbreaks of the infection can occur due to the time-delay in the

transmission terms. In the stochastic SIRC Model (6.2), if Rs
0 =

ηγξ 2(1−σ)

η̂α̂ γ̂ β̂
< 1 <R0,

and η >
ν2

1∨ν2
2∨ν2

3∨ν2
4

2 the stochastic Model (6.2) has disease extinction with probability

one, and for Rs
0 > 1, the stochastic Model (6.2) has a unique ergodic stationary distribu-

tion. See Figures 6.6 and 6.7.

6.7 Conclusion

In this chapter, a stochastic SIRC epidemic model with time-delay for the new

strain coronavirus COVID-19 has been provided. The stochastic components, due to en-

vironmental variability, are incorporated in the model as Gaussian white noise. Some

sufficient conditions for persistence and extinction in the mean of the disease have been
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established. The model has a unique stationary distribution which is ergodic if the in-

tensity of white noise is small. Introduction of noise in the deterministic SIRC model

modifies the basic reproductive number R0 giving rise to a new threshold quantity Rs
0. It

has been proved that the disease dies out if Rs
0 < 1 < R0. On the other hand, if Rs

0 > 1

and R0 > 1, the disease persists with both models, but with different behaviors. In other

words, extinction of the infection possibly occurs when Rs
0 < 1 < R0, along with inten-

sity of white noise is large. This would not happen in the deterministic models. The

potential of using stochastic SIRC model for COVID-19 is to consider the environmental

fluctuation that all affects the spread of the virus. Periodicity of the outbreaks is possible

due to the presence of time-delay (memory) in the transmission terms.

The author believes that the stochastic SIRC model is an attempt to understand

epidemiological characteristics of COVID-19. The model provides new insights into epi-

demiological situations when the environmental noise (perturbations) and cross-immunity

are considered in the COVID-19 epidemic models. The combination of white noise and

time-delay, in the epidemic model, has a considerable impact on the persistence and ex-

tinction of the infection and enriches the dynamics of the model. This work can be ex-

tended to include control variables for a vaccination, treatment and/or quarantine actions.

More sophisticated model is also required to investigate the dynamics of COVID-19 with

immune system in cells level [119].

In the next chapter, some sufficient numerical schemes for stochastic delay differ-

ential equations is introduced.
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Chapter 7: Numerical Schemes for Stochastic Delay Differential
Equations

7.1 Introduction

Stochastic delay differential equations (SDDEs) are very important in ecology,

epidemiology and many of other fields. This chapter introduces some numerical ap-

proaches for the derivation of discrete time approximations for solutions of SDDEs. The

proposed schemes converge in a strong sense. Section 2 provides some required prelimi-

naries. Section 3 introduces a numerical scheme for an autonomous SDDE and investigate

local and global errors; convergence and consistency of the scheme. Section 4 discusses

strong discrete time approximations of solutions of non-autonomous SDDEs, including

Euler and Taylor schemes and implicit schemes. The mean square stability of Milstein

scheme is discussed in Section 5. Concluding remarks are given in Section 6.

SDDEs are considered as generalization of both deterministic delay differential

equations (DDEs) and stochastic ordinary differential equations (SODEs). Some basic

consents about stochastic differential equations are discussed in [103, 121, 138]. The

fundamental theory of existence and uniqueness of the solution of SDDEs has been stud-

ied by Mao [90] and Mohammed [99]. Some stability properties of numerical schemes

of SDDEs are also studied in [52, 73, 91]. In the literature, some numerical schemes

for SDDEs have been investigated, such as Euler-type schemes [10, 75], drift-implicit

Euler scheme [59, 83], Milstein schemes [24, 57], split-step schemes [50, 139], and ad-

ditionally multi-step schemes [25]. The extension of numerical approaches for SODEs

to SDDEs is non-trivial, particularly since the time-delays may induce instabilities in the

basic SDDEs; while its corresponding SODEs are stable [59]. In addition, the presence

of time-delays influences on the convergence order and computational complexity of the

numerical schemes [28]. In general, there is no analytical closed-form solution of the

models considered in this dissertation, and usually numerical techniques are required to

investigate the models quantitatively.
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7.2 Preliminaries

Consider the d-dimensional SDDEs with r-dimensional standard Wiener pro-

cesses given on the filtered probability space (Ω,A ,At0 ,P). Therefore, one may have

equations of the form

dy(t) = f(t,y(t),y(t− τ))︸ ︷︷ ︸
drift coefficient

dt +
r

∑
j=1

g j(t,y(t),y(t− τ))︸ ︷︷ ︸
diffusion coefficient

dW j(t), t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].

(7.1)

With one fixed delay τ , where ψ(t) is an At0-measurable C ([−τ,0],Rd)-valued random

variable. The drift coefficient f : [0,T ]×Rd ×Rd → Rd and the diffusion coefficient

g j : [0,T ]×Rd ×Rd → Rd , j = 1,2, . . . ,r, are given d-dimensional. Equation (7.1) can

be formulated as

y(t) = y(0)+
∫ t

0
f(s,y(s),y(s− τ))ds+

r

∑
j=1

∫ t

0
g(s,y(s),y(s− τ))dW j(s), (7.2)

for t ∈ [0,T ] and with y(t) = ψ(t), for t ∈ [−τ,0].

Definition 7.2.1 (Strong solution). A d-dimensional stochastic process y= {y(t) : [−τ,T ]}

is called a strong solution of (7.1) if it has the following properties:

• {y(t)} is measurable, sample continuous process and (At)0≤t≤T -adapted;

• Equations (7.1) and (7.2) hold for every t ∈ [0,T ] almost surly.

Definition 7.2.2 (Path-wise unique solution). Let the set X denotes some class of stochas-

tic processes that solve (7.1). If any two processes y(i)= {y(i)(t), t ∈ [−τ,T ]}, i= 1,2 from

X with the same initial functions have the same path on [0,T ], almost surely, that is

P( sup
0≤t≤T

|y(1)(t)− y(2)(t)|> 0) = 0, (7.3)
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then the solution of (7.1) is path-wise unique within X .

Herein, the Lipschitz condition (L1) and Growth condition (L2) are formulated

to guarantee the existence of a unique solution of (7.1). Assuming that |.| denotes the

Eucilidian norm, one may have

(L1) Lipschitz condition: There exists a constant K ∈ (0,∞), such that

|f(t,x1,y1)− f(t,x2,y2)|+|g1(t,x1,y1)−g1(t,x2,y2)+ · · ·+

|gr(t,x1,y1)−gr(t,x2,y2)| ≤ K(|x2− x1|+ |y2− y1|),

for t ∈ [0,T ] and x1,x2,y1,y2 ∈ Rd .

(L2) Growth condition: There exists a constant G ∈ (0,∞), such that

|f(t,x,y)|2 + |g1(t,x,y)|2 + · · ·+ |gr(t,x,y)|2 ≤ G(1+ |x|2 + |y|2),

for t ∈ [0,T ] and x,y ∈ Rd .

Let C = C ([−τ,0],Rd) be the Banach space of all d−dimensional continuous functions

η on [−τ,0] equipped with the sup-norm ‖η‖C = sups∈[−τ,0] |η(s)|. For every function

ξ |[−τ,T ]→ Rd and every t ∈ [0,T ], so that

ξt = {at(s) := ξ (t + s),s ∈ [−τ,0]},

is a function defined on [−τ,0], which is the segment of ξ at t. In the same manner,

the segment-valued function t → ξt for t ∈ [0,T ] is obtained. Additionally, denoting

L2(Ω,C ,A0), the set of Rd-valued continuous processes η = {η(s),s ∈ [−τ,0]} with

η(s) being A0-measurable for all s ∈ [−τ,0] and

E‖η‖2
C = E sup

s∈[−τ,0]
|η(s)|2 < ∞. (7.4)
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Noting that the initial function ψ can be considered as a square integrable C =C ([−τ,0],Rd)-

valued random variable on (Ω,A0,P). Hence, the above assumptions lead to the following

theorem.

Theorem 7.2.1. [75] Assume that (L1) and (L2) hold for both f and g, where ψ be in

L2(Ω,C ,A0). Then with initial segment ψ , the SDDE (7.1) has a path-wise unique

strong solution y = {y(t), t ∈ [−τ,T ]} in L2(Ω,C ,A0). Moreover, E
(

sup
t∈[−τ,t]

|y(t)|2
)
<

∞, and for each t ∈ [0,T ], the segment yt = {y(t + s),s ∈ [−τ,0]} is a C ([−τ,0],Rd)-

valued process having continuous paths. Additionally, if E‖ψ‖2k
C < ∞ for some k ≥ 1,

then

E‖yt‖2k
C = E

(
sup

s∈[−τ,0]
|y(t + s)|2k

)
< ∞ (7.5)

and

E‖yt‖2k
C ≤Ck[1+E‖ψ‖2k

C ], (7.6)

for all t ∈ [0,T ] and some positive constant Ck.

For the proof of the above Theorem one can refer to [99]. Next numerical schemes

for autonomous and non-autonomous SDDEs are provided.

7.3 Numerical Scheme for an Autonomous SDDEs

For simplicity, SDDEs (7.1) is reduced to a scalar autonomous stochastic delay

differential equation of the form

dy(t) = f (y(t),y(t− τ))dt +g(y(t),y(t− τ))dW (t), t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].
(7.7)

Equation (7.7) can be formulated as

y(t) = y(0)+
∫ t

0
f (y(s),y(s− τ))ds+

∫ t

0
g(y(s),y(s− τ))dW (s), (7.8)
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for t ∈ [0,T ] and with y(t) = ψ(t), for t ∈ [−τ,0]. The second integral in (7.8) is a

stochastic integral in the Itô sense. For problem (7.7), mesh points are defined with a

uniform step on the interval [0,T ], so that ∆t = h = T/N, tn = nh, where n = 0, . . . ,N.

Also for the given h it is assumed that there is a corresponding integer m, where the time-

delay can be expressed in terms of the step-size as τ = mh. For all indices n−m ≤ 0

define ỹn−m := ψ(tn− τ), otherwise

ỹn+1 = ỹn +φ(h, ỹn, ỹn−m, Iφ ), n = 0, . . . ,N−1. (7.9)

The increment function φ(h, ỹn, ỹn−m, Iφ ) :R×R→R includes a finite number of multiple

Itô-integrals (see [69, 98]) of the form

I( j1,..., jl),h =
∫ t+h

t

∫ sl

t
· · ·
∫ s2

t
dW j1(s1) . . .dW jl−1 ,(sl−1)dW jl(sl)

where ji ∈ {0,1} and dW 0(t) = dt, and with t = tn for (7.9), one can denote Iφ the collec-

tion of Itô-integrals required to compute the increment function φ .

Assumptions on the increment function φ of (7.9):

Suppose that V1,V2,V3 are positive constants, such that for all κ,κ
′
,ω,ω

′ ∈ R,

one may have

∣∣∣E(φ(h,κ,ω, Iφ )−φ(h,κ
′
,ω
′
, Iφ )

)∣∣∣≤V1h(|κ−κ
′
|+ |ω−ω

′
|),

E
(
|φ(h,κ,ω, Iφ )−φ(h,κ

′
,ω
′
, Iφ )|2

)
≤V2h

(
|κ−κ

′
|2 + |ω−ω

′
|2
)
, and

(7.10)

E
(
|φ(h,κ,ω, Iφ )|2

)
≤V3h

(
1+ |κ|2 + |ω|2

)
. (7.11)

Lemma 7.3.1. [10] If the increment function φ in Equation (7.9) satisfies condition

(7.11), then E|ỹn|2 < ∞ for all n≤ N.

Let y(tn+1) be the exact solution of (7.7) at the mesh point tn+1, ỹn+1 is the value
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of the approximate solution given by (7.9) and ỹ(tn+1) is the solution of (7.9) after just

one step, so that

ỹ(tn+1) = y(tn)+φ(h,y(tn),y(tn− τ), Iφ ). (7.12)

7.3.1 Local and global errors

Definition 7.3.1. The local error that occurs in one step of the approximation {ỹn} is the

sequence of random variables

δn+1 = y(tn+1)− ỹ(tn+1), n = 0, . . . ,N−1. (7.13)

However, the global error is the amount of error that occurs in the use of a numerical

approximation to solve a problem, which is the sequence of random variables

εn := y(tn)− ỹn, n = 1, . . . ,N. (7.14)

Noting that εn is Atn-measurable since both y(tn) and ỹn are Atn-measurable random vari-

able, such that
(
E|εn|2

)1/2
is the L 2-norm of (7.14).

7.3.2 Convergence and consistency

Definition 7.3.2. Assume that, δn+1 = y(tn+1)− ỹ(tn+1), n = 0, . . . ,N−1, then method

(7.9) is said to be consistent with order p1 in the mean and with order p2 in the mean

square with

p2 ≥
1
2

and p1 ≥ p2 +
1
2
, (7.15)
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if the estimates

max
0≤n≤N−1

|E(δn+1)| ≤Chp1 as h→ 0, and (7.16)

max
0≤n≤N−1

(
|E(δn+1)|2

)1/2
≤Chp2 as h→ 0, (7.17)

hold, where the constant C does not depend on h, but may depend on T , and on the initial
data.

Theorem 7.3.2. [10] Assume that the conditions of Theorem 7.2.1 are satisfied. Such that

the method defined by Equation (7.9) is consistent with order p1 in the mean and order p2

in the mean square sense, where p1, p2 fulfilling (7.15), and the increment function φ on

Equation (7.9) satisfies the estimates (7.10). Then the approximation (7.9) for Equation

(7.7) is convergent in L 2 (as h→ 0 with τ/h ∈ N) with order p = p2− 1/2. That is,

convergence is in the mean square sense, such that

max
0≤n≤N−1

(
|E(δn+1)|2

)1/2
≤Chp as h→ 0, (7.18)

Theorem 7.3.3. [10] If the increment function φ of the approximation (7.9) satisfies the

estimates (7.10), then the one-step method (7.9) is zero stable in the quadratic mean-

square sense.

Next, the analysis to non-autonomous system of SDDEs (7.1) is extended.

7.4 Numerical Schemes for Non-autonomous SDDEs

There are some specific discrete time approximations for (7.1). The simplest

scheme which is defined by stochastic difference equation is represented by Euler ap-

proximation as the following

ỹn+1 = ỹn + f(tn, ỹn, ỹn−m)h+
r

∑
j=1

g j(tn, ỹn, ỹn−m)∆W j
n , (7.19)
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where ỹ = {ỹ(t), t ∈ [−τ,T ]} is right continuous with left hands limits, a discrete time

approximation with step-size h, such that for each n = 0,1, . . . ,N−1, the random variable

ỹ(tn) is Atn-measurable and ỹ(tn+1) can be expressed as a function of ỹ(t−m), ỹ(t−m+1),. . . ,

ỹ(tn), discretization time tn and a finite number of Atn+1-measurable random variable.

With ∆W j
n =W j(tn+1)−W j(tn), for n = 0,1, . . . ,N−1 and j = 0,1, . . . ,r. By more gen-

eral assumptions, one can check that Euler approximation is strongly converges with order

1/2 [75].

7.4.1 Taylor approximation

For stochastic differential equations, it is common that by application of the Wagner-

Platen stochastic Taylor expansion [70], one can construct discrete time approximations

that converge with a given order of strong convergence, which involve in each time step

certain multiple integrals. For the general multi-dimensional case d,r = 1,2, . . . the order-

one strong Taylor approximation has the form

ỹn+1 = ỹn + f(tn, ỹn, ỹn−m)h+
r

∑
j=1

g j(tn, ỹn, ỹn−m)∆W j
n

+
r

∑
j1, j2=1

d

∑
i=1

gi, j1(tn, ỹn, ỹn−m)
∂

∂ ỹi
n

gi, j2(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1(s2)dW j2(s1)

+
r

∑
j1, j2=1

d

∑
i1=1

gi, j1(tn−m, ỹn−m, ỹn−2m)
∂

∂ ỹi
n−m

gi, j2(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1(s2− τ)dW j2(s1),

(7.20)

for n = 0,1, . . . ,N−1, i = 1,2, . . . ,d. One can check that approximation (7.20) converges

under suitable assumptions with strong order one [75]. In the one-dimensional case when

τ = 0 scheme (7.20) coincides with the well-known Milstien Scheme for SDEs. However,

the time delay in (7.20) generates an extra term which describes a double Wiener integral

that integrates an earlier segment of the Wiener path with respect to the actual Wiener

path.
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7.4.2 Implicit strong approximations

In practice, explicit schemes have smaller computational costs but with lower

accuracy compared to implicit methods. It is sometimes recommended to use implicit

schemes to have numerically stable approximate solutions for SDDEs, as in the case of

stiff problem1. For the general multi-dimensional case (7.1), the family of implicit Euler

approximations are as the following

ỹn+1 = ỹn +[θ f(tn+1, ỹn+1, ỹn−m+1)+(1−θ)f(tn, ỹn, ỹn−m)]h

+
r

∑
j=1

g j(tn, ỹn, ỹn−m)∆W j
n ,

(7.21)

for n = 0,1, . . . ,N−1, such that θ ∈ [0,1] stands for the degree of implicitness. If θ = 0,

one may have the explicit Euler approximation (7.19). For θ = 1, one obtains the fully

implicit Euler approximation. The approximation (7.21) converge with strong order 1/2

[83]. In the same manner one can establish an order-one strong implicit Taylor approxi-

mation with

ỹn+1 = ỹn +[θ f(tn+1, ỹn+1, ỹn−m+1)+(1−θ)f(tn, ỹn, ỹn−m)]h

+
r

∑
j=1

g j(tn, ỹn, ỹn−m)∆W j
n +

r

∑
j1, j2=1

d

∑
i=1

gi, j1(tn, ỹn, ỹn−m)
∂

∂ ỹi
n

gi, j2(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1(s2)dW j2(s1)

+
r

∑
j1, j2=1

d

∑
i=1

gi, j1(tn−m, ỹn−m, ỹn−2m)
∂

∂ ỹi
n−m

gi, j2(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1(s2− τ)dW j2(s1).

(7.22)

Next, some details about the mean square stability of Milstein method will be given, since

this scheme has been used in the numerical simulations for SDDEs models through the

1A stiff problem is defined as that in which the global accuracy of the numerical solution is determined
by stability rather than local error and implicit methods are more appropriate for it.
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dissertation.

7.5 Milstien Scheme for SDDEs

In this section, Milstein scheme is introduced for SDDE and one can show that

the numerical method is mean square stable under suitable conditions.

Given the one-dimensional version of (7.1), r = d = 1, of the following form

dy(t) = f (t,y(t),y(t− τ))dt +g(t,y(t),y(t− τ))dW, t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].
(7.23)

Order one strong Taylor approximation for (7.23) in the one-dimensional case, is defined

by

ỹn+1 = ỹn + f (tn, ỹn, ỹn−m)
∫ tn+1

tn
ds1 +g(tn, ỹn, ỹn−m)

∫ tn+1

tn
dW (s1)

+g(tn, ỹn, ỹn−m)
∂

∂ ỹn
g(tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn
dW (s2)dW (s1)

+g(tn−m, ỹn−m, ỹn−2m)
∂

∂ ỹn−m
g(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW (s2− τ)dW (s1).

(7.24)

Once the Taylor approximation is considered, Milstein scheme can be constructed for

(7.23).

ỹn+1 = ỹn + f (tn, ỹn, ỹn−m)h+g(tn, ỹn, ỹn−m)∆Wn

+
1
2

g(tn, ỹn, ỹn−m)g′(tn, ỹn, ỹn−m)[(∆Wn)
2−h]

+g(tn−m, ỹn−m, ỹn−2m)
∂

∂ ỹn−m
g(tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn
dW (s2− τ)dW (s1),

(7.25)
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7.5.1 Convergence and mean square stability of Milstein scheme

Consider the linear scalar SDDE of the form

dy(t) = [ρ0y(t)+ρ1y(t− τ)]dt +[ρ2y(t)+ρ3y(t− τ)]dW (t), t ∈ [0,T ],

y(t) = ψ(t), t ∈ [−τ,0].
(7.26)

Where ρ0,ρ1,ρ2,ρ3 ∈ R, W (t) is an one-dimensional standard Wiener process, and ψ(t)

is continuous and bounded function with E[‖ψ‖2]< ∞, where ‖ψ‖= sup−τ≤t≤0 |ψ(t)|.

Theorem 7.5.1. ([75]) Suppose that

ρ0 <−|ρ1|−
(|ρ2|+ |ρ3|)2

2
, (7.27)

then the solution of (7.26) satisfies limt→∞E[|y(t)|2] = 0, i.e. the solution is mean square

stable.

Using order 1 strong Taylor approximation formula to the linear one delay System

(7.26), one gets

yn+1 =yn +(ρ0yn +ρ1yn−m)h+(ρ2yn +ρ3yn−m)∆Wn

+ρ3(ρ2yn−m +ρ3yn−2m)I1 +ρ2(ρ2yn +ρ3yn−m)I2,

(7.28)

where yn is an approximation to y(tn), such that

I1 =
∫ tn+1

tn

∫ s

tn
dW (t− τ)dW (s), I2 =

∫ tn+1

tn

∫ s

tn
dW (t)dW (s).

The convergence order of (7.28) can obtained by Theorem 10.2 in [75], since the coef-

ficients of (7.28) are satisfy Lipschitz condition and growth condition. Thus, Milstein

scheme (7.28) is strongly convergent of order 1.

Theorem 7.5.2. [133] The Milstein scheme (7.28) is mean square stable, if condition
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(7.27) satisfied.

Proof. By reorganizing the terms of (7.28), one gets

yn+1 =(1+ρ0h+ρ2∆Wn)yn +(ρ1h+ρ3∆Wn)yn−m +ρ3(ρ2yn−m +ρ3yn−2m)I1

+ρ2(ρ2yn +ρ3yn−m)I2.

(7.29)

Squaring both sides of (7.29), then it follows from 2ab ≤ a2 + b2 (∀a,b ∈ R), one may

have

y2
n+1 ≤(1+ρ1h+ρ2∆Wn)

2y2
n +(ρ1h+ρ3∆Wn)

2y2
n−m

+ρ
2
2 [(ρ

2
2 + |ρ2ρ3|)y2

n +(ρ2
3 + |ρ2ρ3|)y2

n−m]I
2
2

+ρ
2
3 [(ρ

2
2 + |ρ2ρ3|)y2

n−m +(ρ2
3 + |ρ2ρ3|)y2

n−2m]I
2
1 + |1+ρ0h||ρ1|h(y2

n + y2
n−m)

+ |ρ2ρ3|∆W 2
n (y

2
n + y2

n−m)+2[(1+ρ0h)ρ3 +ρ1ρ2h]∆Wnynyn−m

+2ρ2ρ3(ρ2yn +ρ3yn−m)(ρ2yn−m +ρ3yn−2m)I1I2

+2ρ2(1+ρ0h+ρ2∆n)(ρ2yn +ρ3yn−m)ynI2

+2ρ3(1+ρ0h+ρ2∆n)(ρ2yn−m +ρ3yn−2m)ynI1

+2ρ2(ρ1h+ρ3∆Wn)(ρ2yn +ρ3yn−m)yn−mI2

+2ρ3(ρ1h+ρ3∆Wn)(ρ2yn−m +ρ3yn−2m)yn−mI1

(7.30)

Assume that xn = E[y2
n], then take expectation for both sides of (7.30), yields

xn+1 ≤ A1xn +A2xn−m +A3xn−2m, where (7.31)

A1 = (1+ρ0h)2 +ρ
2
2 h+ |1+ρ0h||ρ1|h+ |ρ2ρ3|h+

h2

2
ρ

2
2 (ρ

2
2 + |ρ2ρ3|),
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A2 = ρ
2
1 h2 +ρ

2
3 h+ |1+ρ0h||ρ1|h+ |ρ2ρ3|h+

h2

2
ρ

2
2 (ρ

2
3 + |ρ2ρ3|)

+
h2

2
ρ

2
3 (ρ

2
2 + |ρ2ρ3|), A3 =

h2

2
ρ

2
3 (ρ

2
2 + |ρ2ρ3|).

Such that the following inequality holds

(1+ρ0h)2 +ρ
2
1 h2 +(ρ2

2 +ρ
2
3 +2|ρ2ρ3|)h+2|1+ρ0h||ρ1|h

+
h2

2
(ρ2

2 +ρ
2
3 )(|ρ2|+ |ρ3|)2 < 1.

(7.32)

Consider

h1 =
−[2ρ0 +2|ρ1|+(|ρ2|+ |ρ3|)2]

(|ρ0|+ |ρ1|)2 + 1
2(ρ

2
2 +ρ2

3 )(|ρ2|+ |ρ3|)2
> 0,

h2 =min{ 1
|ρ0|

,
−[2ρ0 +2|ρ1|+(|ρ2|+ |ρ3|)2]

(|ρ0|+ |ρ1|)2 + 1
2(ρ

2
2 +ρ2

3 )(|ρ2|+ |ρ3|)2
}> 0,

(7.33)

• If h ∈ (0,h1), Inequality (7.32) holds;

• If h∈ (0,h2), then 1+ρ0h> 0 (wider range of stable stepsize values) and Inequality

(7.32) holds.

Let h0 = max{h1,h2}; Thus, Milstein scheme is MS-stable, whenever h ∈ (0,h0).

A Matlab program to produce the numerical results, using Milstien scheme is

provided in Appendix B.

7.6 Concluding Remarks

In this chapter, some numerical schemes for SDDEs were briefly discussed. Con-

vergence and consistency of such schemes were investigated. The mean square stability

of Milstein scheme had been discussed and the obtained result shows that the method

preserves the stability property of a class of linear scalar SDDE. In this dissertation, the

above discussed Milstein scheme for solving different examples and models of SDDEs

had been discussed. A Matlab program for an example is displayed in Appendix B.
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Chapter 8: Summary and Concluding Remarks

8.1 Introduction

In the present thesis the qualitative behaviour of deterministic and stochastic delay

differential equations with ecology and epidemics have been investigated. The main nov-

elty is to investigate the impact of time-delays in the models and effects of perturbations

to equations caused by random changes/noise in the system. Time-delays and random

noise have significant impact in the predator-prey systems and infectious diseases.

Chapter 2 provided a system of DDEs for predator-prey system with hunting co-

operation. Local and global asymptotic stabilities of the steady states, Hopf bifurcations

of interesting parameter τ have been investigated. The combination of time-delay and

hunting cooperation have a considerable impact in the ecosystem. Chapter 3 introduced

a system of DDEs for a three species predator-prey system (two-prey one-predator) with

time-delays and an additive Allee effect in the prey’s growth functions, where there is a

direct competition between prey populations. Local stability of the system has been ana-

lyzed in detail. Verifiable sufficient conditions which guarantee the global stability around

the interior equilibrium using Lyapunov function, have been discussed. Sensitivity of the

model solution with respect to Allee parameters and time delays have been evaluated,

using the so-called "direct approach".

Chapter 4 studied the dynamics of SDDEs for predator-prey system with hunt-

ing cooperation in predators. Relevant properties of the corresponding stochastic delayed

predator-prey model have been illustrated and revealed the effect of environmental noise

on the model. Under certain conditions the stochastic model will remain to have a positive

stable solution which gives a result of the robustness of the solution. The effect of envi-

ronmental noises on persistence and possible extinction of prey and predator populations

have been investigated.

Chapter 5 extended the analysis and investigated a system of SDDEs of two-preys
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one-predator system, with cooperation among the prey species against predator. The basic

features of the model in presence of multiplicative noise terms were discussed, in order

to understand the dynamics along with the environmental driving forces. Sharp criteria

for the existence of a unique ergodic stationary distribution, of the positive solution of the

model, under certain parametric restrictions have been analyzed. Sufficient conditions for

extinction of the predator population in two cases have been deduced. The first case is

the prey populations survival and the predator population extinction; the second case is

all the preys and predator populations die out.

Chapter 6 provided a stochastic SIRC epidemic model with time-delay for the new

strain coronavirus COVID-19. The stochastic components, due to environmental variabil-

ity, are incorporated in the model as Gaussian white noise. Some sufficient conditions for

persistence and extinction in the mean of the disease were established. The model has

a unique stationary distribution which is ergodic if the intensity of white noise is small.

Introduction of noise in the deterministic SIRC model modifies the basic reproductive

number R0 giving rise to a new threshold quantity Rs
0.

Chapter 7 discussed some numerical schemes for stochastic delay differential

equations.

8.2 Concluding Remarks and Findings

By using a variety of analytical methods for studying the qualitative features of

deterministic and stochastic delay differential equations systems, the following results

have been seen:

• Time-delay (time-lag) parameters play an important role in the dynamics of predator-

prey systems, and improve the complexity of the models.

• Combination of time-delays and Allee effect enriches the the dynamics of the sys-

tem and can lead to bistability of equilibria.

• The model is very sensitive to the small perturbations of Allee parameters in early

time intervals and the sensitivity decreases by time.
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• Possible Hopf bifurcations around the equilibrium points have been studied in de-

tail. In particular, the threshold parameters where the Hopf bifurcation occurs are

deduced.

• The random noises can suppress the explosion of the species, where the solutions

of the deterministic system is unbounded. Furthermore, introduction of noise in the

deterministic epidemic models can modifies the basic reproductive number giving

rise to a new threshold quantity,

• Extinction of predator population is possibly occur when the intensity of white noise

is relatively large.

• In the case of the existence of a unique equilibrium point, the stability of the equi-

librium point and oscillations could exist globally.

• Small scale of environmental fluctuations can promote the survival of species; while

large noises can lead to extinction of the species, this would not happen in the

deterministic systems without noises.

• Long-term behaviour of the systems has been studied, and conditions for persis-

tence have been derived.

• Verifiable criteria were developed, which guarantee the existence of a unique er-

godic stationary distribution of the positive solutions to stochastic models, using a

novel multiple Lyapunov functions.

• White noise plays an important role in controlling the spread of the disease; The

large environmental noises may help to bring about extinction of diseases. When

the white noise is relatively large, the infectious diseases will become extinct; Re-

infection and periodic outbreaks can occur due to the time-delay in the transmission

terms.
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8.3 Software Used

The numerical experiments and numerical simulations of deterministic DDEs

have been carried out using DDE23 [126], which is based on explicit Runge-Kutta scheme;

See Appendix A. The numerical simulations of bifurcation diagrams have been carried out

by using the Matlab software DDE-BIFTOOLS [40].

For the numerical simulations of SDDEs, Euler Maruyame scheme of order of

convergence 1/2 in the mean square sense was utilized. Also, Milstein’s scheme for SD-

DEs of order one in the mean square sense had been used; See Appendix B.

8.4 Future Directions

In the next project, the proposed Models (3.3) and (5.2) can be further extended, to

investigate the effect of the combination of Monod-Haldane and Holling type II functional

response, of a two competing prey and one predator system; During predation both teams

of prey help each other and the rate of predation on both teams are different; Time-delays

can be considered due to reaction time of the predations. Including control variables are

also possible.

There are still some interesting topics deserve further investigation, such as in-

troducing the color noise or the telegraph noise, for example continuous-time Markov

chain, into Models (4.3) and (5.3), since the dynamics of population may suffer sudden-

environmental changes which can be modelled by a continuous-time Markov chain. There-

fore, the sufficient conditions for ergodicity are supposed to be expressed in terms of

model parameters, the intensities of Brownian motion along with the distribution of Markov

chain.

For the stochastic SIRC model, discussed in Chapter 6, it is possible to extend this

work and include control variables for a vaccination, treatment and/or quarantine actions.

More sophisticated model is also required to investigate the dynamics of COVID-19 with

immune system in cells level [119].
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Models with variable and state dependent time-lags deserve further study and

investigation. Furthermore, development of ordinary delay differential equations, and

stochastic delay differential equations to include the spatial state variables will be also

observed in the future work.
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Appendices
Appendix A: Software for Solving DDEs

Consider a scalar DDE with multiple delays of the form

y
′
(t) = f (t,y(t),y(t− τ1),y(t− τ2), . . . ,y(t− τ j)), (8.1)

with constant delays τ j such that τ = min(τ1,τ2, . . . ,τ j) > 0. The equation is to hold
on a ≤ t ≤ b, which requires the history y(t) = φ(t) to be given for t ≤ a. Runge-Kutta
scheme is very common standard way to solve the ODE problem y

′
= f (t,y) on [a,b] with

given y(a), which can be extended to solve DDEs. Actually, dde23 is closely related to the
ODE solver ode23 [125] which use the BS(2,3) triple [21]. Assume that an approximation
yn to y(t) at tn and wish to compute an approximation at tn+1 = tn + hn. For i = 1, . . . ,s,
the stages fni = f (tni,yni) are defined in terms of tni = tn + cihn, such that yni = yn +

hn

i−1

∑
j=1

ai j fn j, one may advance a step by defining yn+1 = yn + hn

s

∑
i=1

bi fni. For briefness

one can write this in terms of the increment function Φ(tn,yn) =
s

∑
i=1

bi fni. The solution

satisfies this formula with a local truncation error lten,

y(tn+1) = y(tn)+hnΦ(tn,y(tn))+ lten.

For smooth f and y(t) the local truncation error is O(hp+1
n ). The triple includes anther

formula,

y∗n+1 = yn +hn

s

∑
i=1

b∗i fni = yn +hnΦ
∗(tn,yn).

The solution satisfies this formula with a local truncation error lte∗n is O(hp
n). This second

formula is considered only for choosing the stepsize. The third formula is

yn+ρ = yn +hn

s

∑
i=1

bi(ρ) fni.

The coefficients bi(ρ) are polynomials in ρ , which shows a polynomial approximation to
y(tn+ρhn) for 0≤ ρ ≤ 1. One may assume that this formula obtains the value yn as ρ = 0
and yn+1 as ρ = 1. Therefore, the third formula is considered as a continuous extension of
the first. As a special case when ρ = 1, for such a triples one can assume that the formula
is used to advance the integration of the continuous extension as follows

yn+ρ = yn +hnΦ(tn,yn,ρ),
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where the local truncation error of the continuous extension is defined by

y(tn +ρhn) = y(tn)+hnΦ(tn,y(tn),ρ)+ lten(ρ).

Consider that for smooth f and y(t), there is a constant R1 such that |lten(ρ)| ≤ R1hp+1
n

for 0≤ ρ ≤ 1. To utilize an explicit Runge-Kutta triple to solve the DDE (8.1), one may
need a plan to deal with the history terms y(tni− τ j) that present in

fni = f (tni,yni,y(tni− τ), . . . ,y(tni− τk)). (8.2)

Two criteria should be distinguished; hn ≤ τ and hn > τ j for some j.

• For hn ≤ τ assume that an approximation φ(t) to y(t) for all t ≤ tn is considered,
then all tni− τ j ≤ tn and

fni = f (tni,yni,φ(tni− τ), . . . ,φ(tni− τk)).

After taking the step to tn+1, one may use the continuous extension to define φ(t)

on [tn, tn+1] as φ(tn+ρhn) = yn+ρ , then one can take another step, which is enough
for proving convergence as the maximum stepsize tends to zero.

• When hn > τ j, the initial function φ(t) evaluated in the span of the current step
where the formulas are defined implicitly. Such that one can evaluate the formulas
with simple iteration. By reaching tn, one may have define φ(t) for t ≤ tn. Thus, its
definition to (tn, tn+hn] as long with the resulting function φ (0)(t) can be extended.
Usually, the stage of simple iteration begins with the approximate solution φ (m)(t),
where the next iteration is computed with the explicit formula

φ
(m+1)(tn +ρhn) = yn +hnΦ(tn,yn,ρ : φ

(m)(t)).

In dde23 φ (0)(t) is assumed to be constant y0 for the first step. Since the solution is
not smooth at a, one can not attempt to predict more accurately then. Thus, one may
do not know a suitable stepsize to the scale of the problem. Actually, reducing the
stepsize as needed to obtain convergence of simple iteration is a useful technique
for finding an initial stepsize that is on scale. Therefore, after the first step, the
continuous extension of the preceding step as φ (0)(t) for the current step is used.
This prediction has a good order of accuracy, following Dormand [36] approach for
treating the local truncation error of the BS(2,3) triples, the accuracy quantitatively
can be determined using

A4(ρ) =
ρ2

288
(1728ρ

4−7536ρ
3 +13132ρ

2−11148ρ +3969)1/2. (8.3)
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Convergence

Theorem A.1: [126] Suppose an explicit Runge-Kutta triple is used to solve (8.1), such
that the meshes {tn} include all discontinuities of low orders and that the maximum step-
size H satisfies (8.6) and (8.8). If f satisfies a Lipschitz condition in its dependent vari-
ables and is sufficiently smooth in all its variables, then there exist a constant C such that
for a≤ t ≤ b,

‖y(t)−φ(t)‖ ≤CH p. (8.4)

For simplicity, one assumes that there is only one delay and take the Lipschitz condition
in the form

‖ f (t, ỹ, z̃)− f (t,y,z)‖ ≤ Lmax(‖ỹ− y‖,‖z̃− z‖).

The Runge-Kutta formulas utilized to DDEs involve a history term in which one may
write in the increment function as θ(t). Therefore, the following two lemmas about how
the increment functions depend on their arguments.
Lemma A.1: [126] There is a constant L such that for 0≤ ρ ≤ 1.

‖Φ(tn, ỹn,ρ;θ(t))−Φ(tn,yn,ρ,θ(t))‖ ≤ L‖ỹn− yn‖. (8.5)

Lemma A.2: Let ∆ be a bound on ‖Λ(t)−θ(t)‖ for all t ≤ tn+1. If the maximum stepsize
H is small enough that

HLmax
i

( i−1

∑
j=1
|ai j|

)
≤ 1, (8.6)

then there is a constant Γ such that

‖Φ(tn, ỹn,ρ;Λ(t))−Φ(tn,yn,ρ,θ(t))‖ ≤ Γ∆. (8.7)

Additionally,

HΓ = HΓ

s

∑
i=1

max(|bi(ρ)|)≤
1
2
. (8.8)

The proof of the of Lemma A.2 is discussed in [125].
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Error Estimation

dde23 estimates the local truncation error of lower order formula, lte∗n, by making use of
local extrapolation, with est = yn+1− y∗n+1. The local truncation error

lte∗n = (y(tn+1)− y(tn))−hnΦ
∗(tn,y(tn);y(t)),

it follows from the definition of lten that

lte∗n = hnΦ(tn,y(tn);y(t))−hnΦ
∗(tn,y(tn);y(t))+O(hp+1

n ).

Since hnΦ(tn,y(tn);y(t)) = hnΦ(tn,yn;φ(t))+O(hnH p), from Lemma A.1 one obtains

‖hnΦ(tn,y(tn);y(t))−hnΦ(tn,yn;y(t))‖ ≤ hnL‖y(tn)yn‖ ≤ hnLCH p,

therefore, from (8.7)

‖hnΦ(tn,yn;y(t))−hnΦ(tn,yn;φ(t))‖ ≤ hnΓCH p.

Since hnΦ(tn,yn;φ(t)) = yn+1− yn, one obtains

lte∗n = hnΦ(tn,yn;φ(t))−hnΦ
∗(tn,yn;φ(t))+O(hnH p)

= (yn+1− yn)− (y∗n+1− yn)+O(hnH p)

= est +O(hnH p),

which confirms the estimate of the local truncation error, hence, it can be expanded to

lte∗n = Φ
∗(tn,y(tn);y(t))hp

n +O(hp+1
n ).

If the stepsize hn is rejected from (tn,yn), the local truncation error of another attempt of
size h can be predicted as est(h/hn)

p ≈Φ∗(tn,y(tn);y(t))hp. In the same manner the pre-
diction applies to a stepsize h from (tn+1,yn+1) as Φ∗(tn+1,y(tn+1);y(t))≈Φ∗(tn,y(tn);y(t)),
since the change in each arguments is O(hn).

Several packages and software are available for the numerical integration and/or
the study of bifurcations in delay differential equations. Here is a short list for available
software:

- DDE23 (Shampine and Thompson [126]) simulates retarded differential equations
with several fixed discrete delays.

- Archi (Paul [106]) simulates a large class of functional differential equations.
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- RADAR5 (Guglielmi and Hairer [49]) simulates stiff problems, including differential-
algebraic and neutral delay equations with constant or state-dependent (eventually
vanishing) delay.

- DKLAG6 (Thompson [33]) simulates retarded and neutral differential equations
with state dependent delays.

- MIDDE (Rihan et al. [116]) simulates stiff and non-stiff delay differential equa-
tions and Volterra delay integro-differential equations, using mono-implicit RK
methods.

- BIFDD (Hassard [53]) (Fortran 77) normal form analysis of Hopf bifurcations of
differential equations with several fixed discrete delays.

- DDE-BIFTOOL (Engelborghs [40]) (MatLab) allows computation and stability
analysis of steady state solutions, their fold and Hopf bifurcations and periodic
solutions of differential equations with several fixed discrete delays.
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Appendix B: Sample of Matlab Program for SDDEs Using Milstein
Scheme

Here, a sample of Matlab program for solving SDDE is provided, Figures 4.1–4.4.

1 %This program t o s o l v e SDDE model and i t s d e t e r m i n i s t i c
model

2 %dx =[ rx ( t ) (1−x ( t −\ t a u _ 1 ) / k )−(1+ a l p h a y ( t ) ) y ( t ) x ( t ) / ( 1 + c (1+
a l p h a

3 %y ( t ) ) x ( t ) ) ] d t +sigma_1 x ( t ) dB_1 ( t )
4 %dy=[− d e l t a y ( t )−ay ^2 ( t ) + mu(1+ a l p h a y ( t ) ) x ( t −\ t a u _ 2 ) / ( 1 + c

(1+ a l p h a
5 %y ( t ) ) x ( t −\ t a u _ 2 ) ) ] d t +sigma_2y ( t ) dB_2 ( t )
6 c l c ;
7 x1= c e l l ( 1 , 1 ) ;
8 x2= c e l l ( 1 , 1 ) ;
9 x3= c e l l ( 1 , 1 ) ;

10 x4= c e l l ( 1 , 1 ) ;
11 x1 { 1 } ( 1 ) = s i n (−0.3∗ r and ) + . 8 ;%i n t i a l d a t a f o r x ( t ) SDDE
12 x2 { 1 } ( 1 ) = s i n (−0.3∗ r and ) + 0 . 4 ;%i n i t i a l d a t a f o r y ( t ) SDDE
13 x3 { 1 } ( 1 ) = . 8 ;%i n i t i a l c o n d i t i o n f o r x ( t ) DDE
14 x4 { 1 } ( 1 ) = . 4 ;%i n i t i a l c o n d i t i o n f o r y ( t ) DDE
15 h = 0 . 0 0 1 ;
16 t e n d =100;
17 t a u 1 = . 1 ;
18 t a u 2 = . 1 ;
19 a l p h a = . 1 ;%h u n t i n g c o o p e r a t i v e p a r a m e t e r
20 a = 0 . 1 9 ;%i n t r a −c o m p e t i t i o n between p r e d a t o r
21 c = 0 . 8 ;%t h e h a n d l i n g t ime of t h e p r e d a t o r
22 d e l t a = 0 . 5 9 ;%d e a t h r a t e o f p r e d a t o r
23 mu= 0 . 8 ;%c o n v e r s i o n e f f i c i e n c y
24 r =1 ;%growth r a t e o f p rey
25 K=1;%e n v i r o n m e n t a l c a r r y i n g c a p a c i t y
26 s i g 1 = 0 . 0 0 1 ;%w h i t e n o i s e f o r x ( t )
27 s i g 2 = 0 . 0 2 3 ;%w h i t e n o i s e f o r y ( t )
28 t =0 ;
29 k =1;
30 w h i l e t <= t e n d
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31 x1 {1}( k +1)=x1 {1}( k ) +h ∗ ( r ∗x1 {1}( k ) ∗(1−x1 {1}( max ( 1 , k−t a u 1 / h ) )
/K)−(1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( k ) ∗x2 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗
x2 {1}( k ) ) ∗x1 {1}( k ) ) ) + . . .

32 s i g 1 ∗x1 {1}( k ) ∗ r andn + s i g 1 ^2∗0 .5∗ x1 {1}( k ) ∗ ( r andn ^2−h ) ;
33 x2 {1}( k +1)=x2 {1}( k ) +h ∗ (mu∗ (1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( max ( 1 , k−

t a u 2 / h ) ) ∗x2 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( max ( 1 , k−
t a u 2 / h ) ) )−d e l t a ∗x2 {1}( k )−a∗x2 {1}( k ) . ^ 2 ) + . . .

34 s i g 2 ∗x2 {1}( k ) ∗ r andn + s i g 2 ^2∗0 .5∗ x2 {1}( k ) ∗ ( r andn ^2−h ) ;
35 x3 {1}( k +1)=x3 {1}( k ) +h ∗ ( r ∗x3 {1}( k ) ∗(1−x3 {1}( max ( 1 , k−t a u 1 / h ) )

/K)−(1+ a l p h a ∗x4 {1}( k ) ) ∗x3 {1}( k ) ∗x4 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗
x4 {1}( k ) ) ∗x3 {1}( k ) ) ) ;

36 x4 {1}( k +1)=x4 {1}( k ) +h ∗ (mu∗ (1+ a l p h a ∗x4 {1}( k ) ) ∗x3 {1}( max ( 1 , k−
t a u 2 / h ) ) ∗x4 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗x4 {1}( k ) ) ∗x3 {1}( max ( 1 , k−
t a u 2 / h ) ) )−d e l t a ∗x4 {1}( k )−a∗x4 {1}( k ) . ^ 2 ) ;

37 k=k +1;
38 t = t +h ;
39 end
40 f i g u r e ( 1 )
41 t t = ( 0 : h : t e n d ) ;
42 p l o t ( t t , x1 {1} , t t , x3 {1} , ’ LineWidth ’ , 3 )
43 x l a b e l ( ’ Time ( t ) ’ ) ;
44 y l a b e l ( ’ x ( t ) ’ ) ;
45 l e g e n d ( ’ S t o c h a s t i c ’ , ’ D e t e r m i n s t i c ’ ) ;
46 g r i d on ;
47 f i g u r e ( 2 )
48 t t = ( 0 : h : t e n d ) ;
49 p l o t ( t t , x2 {1} , t t , x4 {1} , ’ LineWidth ’ , 3 )
50 x l a b e l ( ’ Time ( t ) ’ ) ;
51 y l a b e l ( ’ y ( t ) ’ ) ;
52 l e g e n d ( ’ S t o c h a s t i c ’ , ’ D e t e r m i n s t i c ’ ) ;
53 g r i d on ;
54 %%%%%%%%%%%%%%%%%%%%%%PERSISTENCE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 x1 { 1 } ( 1 ) = s i n (−0.3∗ r and ) + . 4 ;%i n t i a l d a t a f o r x ( t ) SDDE
56 x2 { 1 } ( 1 ) = s i n (−0.3∗ r and ) + 0 . 8 ;%i n i t i a l d a t a f o r y ( t ) SDDE
57 h = 0 . 0 0 1 ;
58 t e n d =200;
59 t a u 1 = . 1 ;
60 t a u 2 = . 1 ;



189

61 a l p h a = . 1 2 ; a = . 0 8 ; c = 0 . 3 ; d e l t a = 0 . 3 9 ; mu = 0 . 9 ; r =1 ;K=1;
62 s i g 1 = 0 . 0 0 1 ;%w h i t e n o i s e f o r x ( t )
63 s i g 2 = 0 . 0 0 1 ;%w h i t e n o i s e f o r y ( t )
64 t =0 ;
65 k =1;
66 w h i l e t <= t e n d
67 x1 {1}( k +1)=x1 {1}( k ) +h ∗ ( r ∗x1 {1}( k ) ∗(1−x1 {1}( max ( 1 , k−t a u 1 / h ) )

/K)−(1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( k ) ∗x2 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗
x2 {1}( k ) ) ∗x1 {1}( k ) ) ) + . . .

68 s i g 1 ∗x1 {1}( k ) ∗ r andn + s i g 1 ^2∗0 .5∗ x1 {1}( k ) ∗ ( r andn ^2−h ) ;
69 x2 {1}( k +1)=x2 {1}( k ) +h ∗ (mu∗ (1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( max ( 1 , k−

t a u 2 / h ) ) ∗x2 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( max ( 1 , k−
t a u 2 / h ) ) )−d e l t a ∗x2 {1}( k )−a∗x2 {1}( k ) . ^ 2 ) + . . .

70 s i g 2 ∗x2 {1}( k ) ∗ r andn + s i g 2 ^2∗0 .5∗ x2 {1}( k ) ∗ ( r andn ^2−h ) ;
71 k=k +1;
72 t = t +h ;
73 end
74 f i g u r e ( 4 )
75 t t = ( 0 : h : t e n d ) ;
76 p l o t ( t t , x1 {1} , t t , x2 {1} , ’ LineWidth ’ , 3 )
77 x l a b e l ( ’ Time ( t ) ’ ) ;
78 y l a b e l ( ’ P o p u l a t i o n s x ( t ) , y ( t ) ’ ) ;
79 l e g e n d ( ’ x ( t ) ’ , ’ y ( t ) ’ ) ;
80 g r i d on ;
81 x1 { 1 } ( 1 ) = s i n (−0.3∗ r and ) + . 4 ;%i n t i a l d a t a f o r x ( t ) SDDE
82 x2 { 1 } ( 1 ) = s i n (−0.3∗ r and ) + 0 . 8 ;%i n i t i a l d a t a f o r y ( t ) SDDE
83 h = 0 . 0 0 1 ;
84 t e n d =200;
85 t a u 1 = . 1 ;
86 t a u 2 = . 1 ;
87 a l p h a = 1 . 2 ; a = . 0 8 ; c = 0 . 3 ; d e l t a = 0 . 3 9 ; mu = 0 . 9 ; r =1 ;K=1;
88 s i g 1 = 0 . 0 0 1 ;%w h i t e n o i s e f o r x ( t )
89 s i g 2 = 0 . 0 0 1 ;%w h i t e n o i s e f o r y ( t )
90 t =0 ;
91 k =1;
92 w h i l e t <= t e n d
93 x1 {1}( k +1)=x1 {1}( k ) +h ∗ ( r ∗x1 {1}( k ) ∗(1−x1 {1}( max ( 1 , k−t a u 1 / h ) )

/K)−(1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( k ) ∗x2 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗
x2 {1}( k ) ) ∗x1 {1}( k ) ) ) + . . .
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94 s i g 1 ∗x1 {1}( k ) ∗ r andn + s i g 1 ^2∗0 .5∗ x1 {1}( k ) ∗ ( r andn ^2−h ) ;
95 x2 {1}( k +1)=x2 {1}( k ) +h ∗ (mu∗ (1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( max ( 1 , k−

t a u 2 / h ) ) ∗x2 {1}( k ) / ( 1 + c ∗ (1+ a l p h a ∗x2 {1}( k ) ) ∗x1 {1}( max ( 1 , k−
t a u 2 / h ) ) )−d e l t a ∗x2 {1}( k )−a∗x2 {1}( k ) . ^ 2 ) + . . .

96 s i g 2 ∗x2 {1}( k ) ∗ r andn + s i g 2 ^2∗0 .5∗ x2 {1}( k ) ∗ ( r andn ^2−h ) ;
97 k=k +1;
98 t = t +h ;
99 end

100 f i g u r e ( 5 )
101 t t = ( 0 : h : t e n d ) ;
102 p l o t ( t t , x1 {1} , t t , x2 {1} , ’ LineWidth ’ , 3 )
103 x l a b e l ( ’ Time ( t ) ’ ) ;
104 y l a b e l ( ’ P o p u l a t i o n s x ( t ) , y ( t ) ’ ) ;
105 l e g e n d ( ’ x ( t ) ’ , ’ y ( t ) ’ ) ;
106 g r i d on ;
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