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música es el placer que el alma experimenta contando sin darse cuenta de

que cuenta”.



Abstract

Mathematical epidemic models are frequently used in biology for analyzing

transmission dynamics of infectious diseases and assessing control measures

to interrupt their expansion.

In order to select and develop properly the above mathematical models,

it is necessary to take into account the particularities of an epidemic process

as type of disease, mode of transmission and population characteristics.

In this thesis we focus on infectious diseases with stochastic transmission

including vaccination as a control measure to stop the spread of the pathogen.

To that end, we consider constant and moderate size populations where

individuals are homogeneously mixed. We assume that characteristics re-

lated to the transmission/recovery of the infectious disease present a com-

mon probabilistic behavior for individuals in the population. To assure herd

immunity protection, we consider that a percentage of the population is pro-

tected against the disease by a vaccine, prior to the start of the outbreak.

The administered vaccine is imperfect in the sense that some individuals,

who have been previously vaccinated, failed to increase antibody levels and,
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in consequence, they could be infected. Pathogenic transmission occurs by

direct contact with infected individuals. As population is not isolated, disease

spreads from direct contacts with infected individuals inside or outside the

population.

In this context, we describe the compartmental stochastic Susceptible-

Vaccinated-Infected-Susceptible (SVIS) y Susceptible-Vaccinated-Infected

-Recovered (SVIR) models, considering an external source of infection and

imperfect vaccine. We represent the evolution of an epidemic process in

terms of multidimensional continuous-time Markov chains and we organize

state spaces in terms of levels and sub-levels. Such organization will permit

us to simplify the study and to analyze the underlying Markov chains as

quasi-birth-and-death (QBD) processes.

Under the above model hypothesis, we study the effect of vaccination in

the expansion of an epidemic, taking into account different possibilities in the

selection of model parameters regarding the transmission of the infectious dis-

ease. To attain this objective we analyze the stationary probabilistic behavior

of several random variables related to reproduction numbers, incidence mea-

sures and time measures, in a post-vaccination context, by applying specific

techniques of stochastic processes.

Overall, we show that vaccination plays a fundamental role in the control

of an infectious disease. In general, we observe that large vaccine coverage

produce less severe epidemics in terms of incidence and speed of transmission

of the infectious disease. Vaccine effectiveness also plays an important role

in the transmission of the pathogen.



Less effective vaccines could produce faster loss of herd immunity and more

incidence of the infectious disease than others more effective. The external

source of infections also plays a special role to study the long-term behavior

of the epidemic. This hypothesis implies that, for both models, the epidemic

process does not end when there are not infected individuals within the popu-

lation, in contradistinction to the traditional stochastic SIS and SIR models.

In that sense, although infection clears, there is an eventual reintroduction

of the infectious disease in the population. Consequently, epidemic processes

are larger in time and produce more incidence of infectious cases.





Resumen

Los modelos matemáticos epidémiológicos se usan frecuentemente en bioloǵıa

para analizar las dinámicas de transmisión de enfermedades infecciosas y para

evaluar medidas de control con el objetivo de frenar su expansión.

Para poder seleccionar y desarrollar adecuadamente estos modelos es

necesario tener en cuenta las particularidades propias del proceso epidémico

tales como el tipo de enfermedad, modo de transmisión y caracteŕısticas de

la población.

En esta tesis nos centramos en el estudio de enfermedades de tipo in-

feccioso con transmisión por contacto directo, que disponen de una vacuna

como medida de contención en la propagación del patógeno.

Para ello, consideramos poblaciones de tamaño moderado, que permanece

constante a lo largo de un brote y asumiremos que los individuos no tienen

preferencia a la hora de relacionarse y que las caracteŕısticas referentes a la

transmisión de la enfermedad se representan en términos de variables aleato-

rias, comunes para todos los individuos. La población no está aislada y la

transmisión del patógeno se produce mediante contacto directo con cualquier

persona infectada, tanto de dentro de la población como fuera de ella. Asum-

imos que, antes del inicio del brote epidémico, se ha administrado la vacuna
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a un porcentaje suficiente de individuos de la población, de forma que se

asegure la inmunidad de rebaño. Consideramos que la vacuna administrada

es imperfecta en el sentido que algunos individuos vacunados no logran de-

sarrollar anticuerpos frente a la enfermedad y por lo tanto, podŕıan resultar

infectados al contactar con individuos enfermos.

En este contexto describimos los modelos compartimentales estocásticos

Susceptible-Vacunado-Infectado-Susceptible (SVIS) y Susceptible-Vacunado-

Infectado-Recuperado (SVIR) pero considerando, además, que existe una

fuente externa de infección y que la vacuna administrada es imperfecta. En

ambos modelos, representamos la evolución del proceso epidémico mediante

cadenas de Markov en tiempo continuo multidimensionales y organizamos su

espacio de estados en niveles y subniveles. Esta organización nos permite

simplificar el estudio y analizar las cadenas de Markov subyacentes como

procesos de cuasi-nacimiento y muerte (QBD).

Bajo las hipótesis anteriores, estudiamos el efecto de la vacunación en la

expansión de una epidemia teniendo en cuenta diversas posibilidades en la

selección de los parámetros caracteŕısticos relativos a la transmisión de la

enfermedad. Para lograr este objetivo analizamos el comportamiento prob-

abiĺıstico, en situación estable, de diversas variables aleatorias tales como

números reproductivos, medidas de incidencia y medidas de tiempo, desde el

punto de vista post-vacunación, aplicando una metodoloǵıa enfocada en los

procesos estocásticos.

De manera global, mostramos que la vacunación juega un papel funda-

mental en la contención de la expansión del patógeno. En general, observa-

mos que grandes coberturas vacunales producen epidemias menos severas



en cuanto a incidencia y a velocidad de propagación de la enfermedad. La

efectividad de la vacuna también es un aspecto importante a considerar. Va-

cunas con alta probabilidad de fallo pueden producir más rápidamente una

pérdida de la inmunidad de rebaño y mayor incidencia de la enfermedad,

que si consideramos vacunas más efectivas. La fuente externa de contagio

tiene un papel importante en el comportamiento a largo plazo de la epi-

demia. Esta hipótesis hace que en ambos modelos, a diferencia de los mod-

elos tradicionales SIS y SIR estocásticos, la erradicación de la enfermedad

no se produzca cuando no haya en la población individuos infectados y por

lo tanto exista una reintroducción de la enfermedad dando lugar a proce-

sos epidémicos mucho más largos y con una mayor incidencia de individuos

contagiados.
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Chapter 1

Introduction

Diseases have afflicted humanity since the earliest days. The Centers for Dis-

ease Control and Prevention (CDC) describes an epidemic as an unexpected

increase in the number of disease cases in a specific geographical area. If the

spread of the disease occurs over a wide geographic area, such as multiple

countries or continents, affecting a significant proportion of the population,

it is called pandemic. Sometimes the disease is present permanently but

limited to a particular region and it is called an endemic outbreak.

This thesis is related to the mathematical modelling of the spread of in-

fectious diseases under the effect of vaccination. In this Chapter, we present

an overview of the investigation, giving details about the objectives, the

methodology applied that has led us to obtain theoretical and algorithmic

results and its organization. We discuss and include up-to-date historical

information about the most significant epidemics and pandemics in the his-

tory. We also give an introduction to mathematical epidemiology including

the development of mathematical models along history. We describe sev-
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Chapter 1

eral mathematical models and focus on those that consider vaccination as a

health control strategy. We provide information about available vaccines and

present important insights and concepts related to vaccination. Several mea-

sures related to the spread of an infectious disease are described to introduce

the quantifiers studied in this investigation.

1.1 Objectives, methodology and thesis orga-

nization

1.1.1 Objectives

This thesis aims to draw attention to the effect of vaccination in epidemic

models under a stochastic approach. The specific objectives of this project

are:

(a) To construct mathematical models to represent the evolution of an epi-

demic process. In particular, we study the dynamics of the spread of

infectious diseases that are transmitted by direct contact, in a pop-

ulation of constant and moderate size. Compared with the existing

literature, this research work considers mathematical epidemic mod-

els where the underlying population is not isolated and it is partially

protected against the disease by an imperfect vaccine. Vaccine was ad-

ministered, prior to the onset of the outbreak, to a percentage of the

population. According to the imperfect vaccine hypothesis, eventually,

the number of vaccinated individuals drops down during an epidemic

process and the herd immunity could be lost.

2
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(b) To explore the long-term behavior of the infectious process.

(c) To describe and analyze stochastic measures, related to exact repro-

duction numbers, incidence measures and time measures, in a post-

vaccination context, in order to quantify and provide information about:

(c1) The impact of vaccination on transmission dynamics of the infec-

tious disease in a given population.

(c2) The potential transmission of the pathogen, through exact repro-

duction numbers.

(c3) The scope and severity of an epidemic, trough incidence measures.

(c4) The speed of transmission of the pathogen, through time mea-

sures.

(c5) The appropriate vaccine coverage that guarantees herd immunity

during an outbreak.

(c6) The possibility of an immediate re-vaccination program and if not

possible, the time until it could be launched, through incidence

and time measures

(c7) The appropriate number of susceptible individuals that should be

in the population to guarantees that a re-vaccination could be

launched immediately.

(d) To carry out a comprehensive sensitivity analysis to measure the ro-

bustness of the model and to understand the impact of vaccination.

(e) To illustrate theoretical and algorithmic results by carrying out a set

of numerical examples regarding the transmission of the pathogen.

3



Chapter 1

1.1.2 Methodology

The purpose of this Section, is to give an outline of mathematical methods

that are followed in the study. Theoretical techniques are focused on the use

of the stochastic processes to describe the dynamics of transmission of infec-

tious diseases. This framework is more appropriate than the deterministic

one to describe the evolution of the infectious process in small communities,

since it takes into account the random nature of an epidemic and differences

among individuals regarding epidemic characteristics. In particular, we de-

scribe the evolution of an epidemic process in terms of a continuous-time

Markov chain (CTMC), with finite state space. We present a specific organi-

zation of states that leads to the study of a level-dependent quasi-birth and

death process (LD-QBD). In this sense, the transmission dynamics can be

analyzed applying matrix methods. In order to carry out objectives (a)-(e),

we apply specific techniques such as first step analysis. Gaussian elimination

and recursive methods are used to solve system of equations obtained during

the analysis of the CTMC.

The first step method proceeds by analyzing or discomposing the possi-

bilities that can arise when sojourn times end and then, appealing the law

of total probability, in combination with the Markov property, to establish

a system of equations involving the characteristic of interest. Systems of

equations obtained in this research work present interesting block matrix

structures that led us to obtain theoretical results, using inverse matrix and

Gaussian elimination methods and recursive schemes exploiting the special

structure of the matrices involved in the CTMC. In more detail, we apply

the methodology as follows.

4
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For a given initial state, we establish relationships between probability

mass or generating functions or Laplace transforms and the corresponding

functions associated to those states accessible from the initial in a single

transition. These transitions are associated with the effective events that

produce a change in the current state of the epidemic process. The resulting

set of recursive equations can be solved using inverse matrix and Gaussian

elimination methods.

In this investigation, the incidence measures analyzed are discrete random

variables. To compute factorial moments of these measures, we define the

related generating functions, conditioned to a specific state, l, as follows

ϕl(z) = E[zXl ] =
∞∑

k=0

zkP [Xl = k], (1.1)

where Xl, is the incidence measure of interest conditioned to the current state

l.

Next, a first step argument, conditioning on the possible transitions out

a fixed state, gives a set of linear equations that can be expressed in matrix

form. Conditioned factorial moments of order k, mk
l , can be obtained solving

these system of linear equations by applying inverse matrix and Gaussian

elimination methods taking into the account applicable boundary conditions

and applying the following equality

mk
l = [ϕl(z)]

k)|z=1, (1.2)

where k) denotes the k derivative of the generating function of the random

variable of interest.

Time measures, described in this research work, are continuous random

variables. We compute conditioned moments of order k ≥ 0, Mk
l , of these

5
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measures proceeding in a similar way as we make for the incidence measures

but defining the Laplace-Stieltjes transforms conditioned to a specific state,

l, appearing in Expression (1.3) instead of generating functions in (1.1) and

applying Property (1.4) instead of (1.2),

Φl(s) = E[e−sXl ], (1.3)

where Xl, is the time measure of interest, conditioned to a fixed state, l, and

Mk
l = E[Xk

l ] = (−1)k[Φl(z)]
k)|s=0. (1.4)

This methodology can be extended to higher dimensions to obtain the

probabilistic characteristics for the bi-dimensional random variables appear-

ing in Chapter 6.

Random variables depend on model parameters. Variations in their values

produce notable changes in the distributions of these quantifiers. To assess

the influence of the model parameters on the variation and robustness of the

measures of interest, we can perform a sensitivity analysis.

In general, a sensitivity analysis is a technique used to study perturbation

effects in the model parameters, on the outputs of the model [258] and to

determine which parameter is the most influential. This methodology is

very useful for models with many parameters. In this investigation, the

perturbation problem is approached through sensitivities and elasticities of

the random variable of interest.

For a given model parameter, θ, the elasticity of a general characteristic, Y ,

is defined as

εY (θ) =
(∂Y/∂θ)

(Y/θ)
. (1.5)
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In recent years, this methodology has been applied to various subjects of

study as demography, ecology [77] and epidemiology [149]. There is a vast

literature that addresses this problem, for example in [78], Caswell et al. use

matrix calculus to obtain sensitivities and elasticities for moments of several

epidemic measures in a continuous-time Markov chain. In [138], Gómez-

Corral et al. analyze the perturbation problem through matrix calculus in a

LD-QBD process and provide different algorithms to compute elasticities for

several random variables related to an epidemic process.

To compute derivatives and elasticities, we mainly rely on matrix calculus

[43, 202].

Theoretical and algorithmic results are implemented using R and Matlab

software.

1.1.3 Thesis organization

This thesis is organized by chapters. The first one is an introductory Chapter

containing a brief description on infectious diseases in history and emerging

epidemics that actually, have a relevant scientific, political and social inter-

est. We detail different approaches concerning the mathematical modeling

of an infectious process. An exhaustive description of the current vaccines

is provided in order to describe different mathematical models that include

vaccination as a control health measure. In particular, we describe thor-

oughly the Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-

Recovered (SIR) models for constant size and isolated populations. Then,

we extend this description to models where there is an external source of

infection and individuals are partially protected against the disease by an

7
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imperfect vaccine. Finally, we review the existent literature related to nu-

merical characteristics of disease transmission. In particular, we describe in

detail reproductive numbers, incidence and time measures, for the SIS and

SIR models and their variants.

Chapters 2-4, are based on the published papers [121, 123, 124], re-

spectively. We start by describing the objectives, the specific methodology

applied in the investigation and general conclusions. In addition, printed

versions of these articles are included. Mathematical model deals with non-

isolated, constant and moderate size populations where individuals are mixed

homogeneously. Populations are afflicted by an infectious disease that does

not confer immunity after recovery. We describe the stochastic Susceptible-

Vaccinated-Infected-Susceptible (SVIS) model with infection reintroduction.

To assure herd-immunity protection we assume that prior to the start of

the epidemic process, a percentage of the population is vaccinated with an

imperfect vaccine that fails with a certain probability. We do not consider

additional vaccination during the epidemic process and vaccine confers long-

last protection.

Specifically, in Chapter 2 we quantify the expansion of an infectious dis-

ease through the exact and the population reproduction numbers. For both

random variables, we derive theoretical schemes involving their mass proba-

bility and generating functions, and moments distributions. We complement

theoretical and algorithmic results with several numerical examples. Ad-

ditional work, related to these measures, is provided in Appendix A that

includes: the stationary distribution for the SVIS model, a global sensitivity

analysis of the mentioned random variables and some Rp-algorithms.
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In Chapter 3, we focus on the imperfect vaccine hypothesis. In this con-

text, eventually, an individual who has been previously vaccinated, can be

infected with a fixed probability and the initial number of vaccinated indi-

viduals can drop down and the protection conferred by herd-immunity could

be lost. In that sense, we fix a threshold on the number of vaccinated indi-

viduals. We define the sleeping period and the wake-up time, as the period

while the number of vaccinated individuals is over this threshold and the

time at which the threshold level is reached, respectively. In addition, an

incidence measure is described to inform about the cases of infection occur-

ring during the sleeping period. We study probability mass and generating

functions and distribution moments for the incidence measure. For the time

measure, Laplace transforms and distribution moments are analyzed. We ob-

tain recursive expressions that permit to derive a global and local sensitivity

analysis. Additional work related to these measures is provided in Appendix

B.

In Chapter 4, the interest is in providing information about the possibility

and the time required to launch a re-vaccination. These aims are obtained

analysing the incidence measure that informs about the size of the suscepti-

ble population at wake-up time and the required time to have the sufficient

number of susceptible individuals, eligible to be vaccinated, in order to el-

evate the vaccine coverage to the initial level. We analyze the probabilistic

behaviour of both random variables analyzing probability mass and gener-

ating functions and distribution moments for the discrete random variable

and for the continuous one, Laplace transforms and distribution moments are

derived. We give theorems and stable recursive schemes to compute them.

9



Chapter 1

We show the applicability of both measures carrying out a numerical analysis

and additional work related to these measures are included in Appendix C.

In Chapters 5 and 6, we assume the same population and vaccine hy-

pothesis as in Chapters 2-4 but considering an infectious disease that con-

fers permanent immunity after overcoming the illness. The model involved

is the stochastic Susceptible-Vaccinated-Infected-Recovered (SVIR) model,

with infection reintroduction and imperfect vaccine.

In more detail, Chapter 5, is based on the published paper [120] and

includes the printed version of the study and their scientific impact informa-

tion, objectives, methodology and conclusions. Our interest is to analyze the

speed of transmission of an epidemic process. Specifically, we are concerned

with the study of the random variable that quantifies the time to reach a

threshold on the number of individuals to become infected. We provide al-

gorithmic recursive schemes for the computation of its Laplace transforms

and distribution moments and illustrate numerically the behaviour of this

random variable. Complementing this research work, in Appendix D, we

describe the random variable that analyze the time until all individuals are

infected.

In Chapter 6, we focus on the potential of transmission of an infectious

disease by studying analogous measures to the exact reproduction number

and population reproduction number but with a novel feature. We distin-

guish between contagions to susceptible individuals from those to vaccinated.

In this sense, we deal with bi-dimensional random variables, and study joint

distribution and measures of both characteristics. We complement theoret-

ical and algorithmic results with several numerical examples. This article
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is under review. The analysis of the time until all individuals have been

infected is included in Appendix E complementing this research work.

1.2 Preliminaries

Epidemics and pandemics have been a threat to the population along the

human history. They have killed many people and produced disastrous health

impacts and economic disruptions.

One of the most famous epidemic in the history is the bubonic plague or

Black Death. It was caused by the bacterium Yersinia pestis and killed more

than one third of the European population, about 25 million people, during

the fourteenth century [131], and even today this pathogen kills people in

many areas of the world [167, 54, 182, 65].

Another example of an infectious disease is the cholera. It is an ancient

disease that remains a public health problem in many impoverished locations

around the world. Seven pandemics of cholera have been recorded since the

first pandemic in 1817 [95, 148, 284]. The disease had a high case-fatality

ratio that approached 50% in some areas and spread relentlessly in worldwide

pandemics from endemic foci in Asia to the Middle East, Europe, East Africa,

and the Americas [130].

Another important infectious disease is the smallpox, which has caused

the deaths of millions of people and disfigured many from its probable origin,

3000 to 6000 years ago, to its worldwide eradication in 1978 [127].

Although these are examples of diseases that have been extensively miti-

gated, in today we find other persistent illnesses. From the 19th century, flu is
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one of the most spreading infectious diseases of the world. The most famous

and deadly pandemic was the 1918 Spanish flu caused by an influenza A

(H1N1) virus [126, 286] that killed more than 50 million people worldwide.

The infectious disease affected mostly young and healthy persons and the

rapid progression of the illness to fatal multi-organ failure and death, were

specific features of this pandemic [277, 199]. In addition, its socioeconomic

consequences were huge [206]. But it was not the only flu in the history.

In 1957, a new influenza A (H2N2) virus emerged and produced the Asian

flu pandemic. It had a speedy transmission and the estimated number of

deaths was 1.1 million worldwide [132]. Later, in 1968 a descended from

H2N2, an H3N2 strain of the influenza A virus, come out and it resulted

in the Hong Kong flu pandemic killing between one and four million people

globally [172]. In 2009, a new strain H1N1 swine flu spread fast around the

world among humans, and the World Health Organization (WHO) declared

it as a pandemic [312]. Currently, influenza cases should be interpreted with

caution as the ongoing COVID-19 pandemic has influenced the transmission

of infectious diseases. Several hygiene and distancing measures implemented

by governments to control SARS-CoV-2 virus transmission have likely played

a role in reducing influenza virus propagation. Globally, influenza prevalence

remained low in comparison with pre-COVID era, but activity has increased

again since February 2022 [312]. The tuberculosis epidemic peaked in the late

18th century in England, in the early 19th century in Western Europe, and in

the late of the 19th century in Eastern Europe and North and South America,

while in many areas of Asia and Africa have not reached their peak incidence

yet. Recent WHO data suggest that the incidence rate may have started to
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decline in these regions as well [60]. Poliomyelitis is an acute paralytic dis-

ease caused by the polio virus (PV) and has three known serotypes. In 1988,

when the Global Polio Eradication Initiative (GPEI) began, polio infected

more than 350, 000 children across 125 countries [61]. In 2021, only one of

three wild polio virus serotypes, type 1 (WPV1), persists in Afghanistan and

Pakistan. Varicella is an easily transmitted disease caused by the varicella

zoster virus (VZV). In 1990, globally, 8900 people died due to this disease

but in 2013, due to worldwide vaccination programs, the number reduced to

7000, which occurred at a rate of 1 death per 60,000 cases [239]. Rubella,

also called German measles, is a communicable viral illness produced by the

rubella virus (RV). Prior to the introduction of the rubella vaccine, rubella

was endemic worldwide, epidemics occurred at 6- to 9-year intervals [186].

Today, rubella outbreaks continue to occur in some parts of the world, where

there is a substantial proportion of the population that are susceptible to get

the disease. Another important epidemic of this Modern Era, is the acquired

immune deficiency syndrome (AIDS). It is caused by the human immunod-

eficiency virus (HIV) that was first diagnosed in 1981. Since the beginning

of the epidemic, 79.3 million people have been infected with the HIV virus

and 36.3 million people have died of HIV. This virus destroys CD4 cells

(also called T cells or helper cells), which are critical to the immune system.

CD4 cells are responsible for keeping people healthy and protecting them

from common diseases and infections. However, not everyone with HIV will

go on to develop AIDS. The availability of triple antiretroviral therapy in

the mid-1990s marked the transition from fatal disease to chronic infection.

However, AIDS continues to be a global health problem. The rate of new
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infections and deaths have shown an increase in recent years in some regions

of Asia, the Pacific, the Middle East and North Africa [311, 248]. No ef-

fective vaccine has been developed, yet. However, novel promising vaccine

platforms are currently under investigation [283]. The diphtheria is a severe

vaccine preventable infectious disease caused by a bacteria that affects the

mucous membranes of the nose and throat. Usually the diphtheria vaccine

is combined with another preventive serums to interrupt several infectious

diseases as the tetanus and whooping cough. In November 2017, the largest

diphtheria outbreak of this century emerged among Rohingya refugees in

Kutupalong camp, Bangladesh. By June 2019, 8640 cases and 45 deaths

had been reported [278]. The first known case of severe acute respiratory

syndrome (SARS) was detected in November 2002, in Foshan, China. By

February 2003, more than 300 cases were reported [93]. It was the first pan-

demic caused by a coronavirus, it spread over 37 countries and contributed

to the deaths of 774 people. Also it produced an economic loss of over US40

billion dollars over a period of 6 months [225]. Ten years later, in 2012, a very

aggressive coronavirus was initially reported in Saudi Arabia and the related

disease was called as Middle East respiratory syndrome (MERS-CoV). By

2019, 2494 cases were reported, resulting in 858 deaths [44]. The Ebola virus

(EV) is also a very aggressive one that causes the Ebola virus disease. It

is transmitted by close contact with an infected individual by bodily fluids,

secretions, organs and contaminated surfaces and materials [310, 4]. The EV

can be lethal and produces, on average, the death of 50% of infected indi-

viduals. The 2014 West Africa outbreak was the most devastating and was

expanded around several African countries as Guinea, Liberia, Sierra Leone,
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Nigeria, Senegal and Mali.

However, all these examples are probably not the last communicable pan-

demics in history. Actually, we cope with many others infectious diseases that

are frequently present in the population as mononucleosis and pertussis and

even producing recurrent infections such as conjunctivitis (pink Eye) and im-

petigo [105]; among others. The WHO and other scientific organizations, are

alerting us every day about the appearance of new viruses, a fact which indi-

cates a clear risk of future epidemic outbreaks [234]. Indeed, we are currently

immersed in a pandemic produced by a new coronavirus, the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), that causes the coron-

avirus disease (COVID-19), which is unprecedented in recent years. The

whole world is trying to stop its spread and counteract all collateral effects

produced by the highly contagious nature of this disease. It causes mild to

severe respiratory problems, as fever, cough, pneumonia, and in some cases

the death [162]. Recent data show that COVID-19 has spread out very fast

and the Data Repository by the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University estimates by 22nd of March of 2022 that

there are more that 450.6 million of cases and 6.000.000 of deaths around the

world. Vaccination mitigates severe disease and actually we have more than

4335 million of individuals full-vaccinated, that corresponds to the 56.49%

of the world population [243].

This current pandemic reveals the importance of vaccination and health

protection measures to control an epidemic process. Health protection mea-

sures as social-distance, lockdown, isolation, quarantine, hygiene measures,

spraying, among others, are adequate when we want to reduce the trans-
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mission of an infectious disease [231, 261, 299]. All these measures are very

effective but the safest and the most powerful tool to reduce and prevent an

outbreak is vaccination [116, 181, 228].

Vaccines are serums that need to be administrated to an individual, before

the exposition to the pathogen, to stimulate the body’s immune response

against diseases.

At the moment, we administrate the following types of vaccines: inacti-

vate, live-attenuated, messenger RNA, subunit, recombinant, polysaccharide,

conjugate, toxoid and viral vector vaccines [57, 191, 236]. Inactivate vaccines

use the killed form of the pathogen that produces the disease [257]. The flu,

hepatitis A, polio and rabies are diseases that we prevent with this types

of vaccines. Live attenuated vaccines utilize an attenuated version of the

original pathogen that produces an infectious disease [169]. This type of

vaccines produces a strong and long-lifelong immunity similar to the natural

infection. Measles, rubella, rotavirus, smallpox, chickenpox, yellow fever are

diseases that can be mitigated with live-attenuated vaccines. The new type

Messenger RNA vaccine [233], produces proteins in order to activate an im-

mune response. As they are not made with any part of the virus, they are

safe and there is no risk of causing the disease when they are administered.

At the moment, we are using them to protect against the COVID-19. Sub-

unit, recombinant, polysaccharide and conjugate vaccines are very safe, they

utilize a specific part of the pathogen to raise a protective immune response

and since they cannot replicate in the host, there is no risk of pathogenicity

[145]. Hepatitis B, HPV, Pneumococcal disease and Meningococcal disease

can be disrupted by these vaccines. Toxoid vaccines use a toxin produced by
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the pathogen that produces the infection [210]. The immune system targets

that toxin and it will create an immune response to this toxin and not to

whole pathogen. These vaccines may need booster doses to achieve an ef-

ficient protection to the disease. We use this types of vaccines to mitigate

diphtheria and tetanus. Viral vector vaccines modify a different virus as a

vector to give protection. These vaccines also have been used for COVID-19

and Ebola diseases; among others [280].

Although all vaccines should be effective in preventing infectious diseases,

in some cases they are not perfect at 100% and they can fail. There are three

different types of vaccine failure that are commonly considered in the lit-

erature [203, 208]: (i) a leaky vaccine prevents the development of disease

symptoms, but do not protect against infection and the onward transmission

of pathogens [304, 47]; (ii) all-or-nothing vaccine describes a vaccine that

has no effect on some individuals but confers complete protection in others

[203, 240]; (iii) waning vaccine is the one for which the protection conferred

wanes over time [264]. In this thesis, we focus on imperfect vaccines of type

(ii) considering that vaccine fails with a fixed probability, h. This failure oc-

curs due to inadequacies of the vaccine or factors inherent in the host [156].

In consequence, a proportion of vaccinated individuals can not develop im-

munity and can be infected by the pathogen [297]. In real-world situations,

to obtain perfect vaccines is not as frequent as expected and it is very im-

portant to study its consequences. Thus, a good point of this research work

is that we take into account this phenomenon and we incorporate the effect

of an imperfect vaccine to the analyzed models.

To control the expansion of an infectious disease in a population, when a

17



Chapter 1

vaccine is available, it is necessary that a proportion of the population (i.e.;

vaccine coverage) was vaccinated preventively.

The herd immunity is a concept that is getting attention due to the pan-

demic of the COVID-19 [242]. Herd immunity, also known as “population

immunity”, represents the indirect protection from infection conferred to sus-

ceptible individuals when a sufficiently large proportion of immune individ-

uals (either vaccination or immunity developed through previous infection)

exists in a population. In this case, individuals can act as a barrier of in-

fectious disease transmission to other individuals. The point at which the

proportion of susceptible individuals in a population falls below the threshold

needed for transmission is called herd immunity threshold or herd immunity

level and vaccination plays an important role to achieve this value. Reaching

optimal vaccination rates is an essential public health strategy to establish

herd immunity and to control the spread of an outbreak [229]. This threshold

varies for each disease and depends on pathogen characteristics and human

behaviour. For example, herd immunity against measles requires about 95%

of a population to be vaccinated while for polio the threshold is about 80%.

For the current COVID-19 pandemic the herd immunity is uncertain. This

fact is due that current serums are leaky vaccines and in consequence, they

do not avoid the transmission of the infectious disease.

Sometimes the herd immunity is lost due to the vaccine failures and it

is therefore essential to provide health authorities with tools, coming from

mathematical models, that enable and facilitate decision-making to manage

an epidemic effectively.

Mathematical modeling in epidemics is a crucial tool to analyze the mech-
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Figure 1.1: Herd Immunity. Note. From Randolph, H. E.; Barreiro, L. B.

Herd immunity: understanding COVID-19. Immunity 2020, 52(5), 737-741.

https://doi.org/10.1016/j.immuni.2020.04.012 [242]
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anisms by which diseases spread, to forecast and anticipate the future course

of an epidemic process and to evaluate strategies to control an outbreak.

What is considered the first approach to mathematical modelling in epi-

demics is the work of Bernoulli, in the year 1760. The author proposed a

mathematical model to encourage the technique of variolation to prevent

smallpox [59]. He applied differential calculus to construct a mathematical

model including life-long immunity against the disease. He tried to obtain

from mortality tables, in the natural and the infected states, another table

where the disease was eradicated [252]. Another relevant precursor of the

mathematical modeling was Farr who, in 1840, modeled the evolution of a

disease that cattle had. In our days, this model has been applied to the evo-

lution of the acquired immunodeficiency syndrome (AIDS) [110]. Some years

later, in London 1854, there was a cholera epidemic and Snow studied the

temporal and spatial patterns of cases that were produced. He was able to

detect the main source of infection of the outbreak that was in Broad Street

water pump [266].

In real-world situations, at the beginning of an epidemic, there is not a

large number of infective individuals and transmission depends on the con-

tacts between individuals in the population and this effect should be included

in the model. The first authors to study this effect were Galton and Wat-

son in 1874, with a research on the extinction of the “family names” [292].

Some years later, in 1889, Galton redefine the example of Galton-Watson

model and the models described are considered the first branching processes

[119]. After, in 1930, Steffensen completed these works [269] and Metz, in

1978 [211], provided the derivation of the probabilistic structure of a general
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branching process.

The origins of modern theoretical epidemiology owe much to the work

of En’ko, Hamer, Ross, Kermack and McKendrick [24]. In 1889, En’ko de-

veloped a discrete chain binomial model for the expansion of an epidemic

process in a susceptible population [109]. Hamer, in 1906, postulated that

the behaviour of an epidemic process depends on the rate of contacts between

susceptible and infected individuals. In particular, he assumed that the av-

erage number of contacts per individual in unit time sufficient to produce

infection, is proportional to the population density. It is called the “mass

action” principle of transmission for infectious diseases [144, 67].

Later, in 1908, Ross extended this hypothesis, in a pioneering work, where

he studied the transmission by mosquitoes of the malaria [251]. Then, in

1927, Kermack and McKendrick extended and explored, in more detail, the

ideas of Hamer and Ross and formulated what is considered the first mathe-

matical model to describe an epidemic process in recent decades. The model

was used to describe and count the deaths produced during the Indian plague

epidemic, between years 1905 and 1906, and to make predictions using the

observed cases [171]. The simple Kermack-McKendrick epidemic model as-

sumes that population is divided into groups according their health status

and their sizes are large enough that individuals are mixed homogeneously.

The first epidemiological book describing the beginning of an outbreak

was the work of Diekmann and Heesterbeek, in 2000 [98]. The authors ap-

pealed to the work initiated by Hamer, focusing on the importance of the

contacts between individuals during the first period of the epidemic and as-

sumed that there is a network of contacts of individuals. This network is
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described by a graph, where vertices represent members of the population

and edges represent contacts between individuals. In addition, authors dealt

with concepts as repeated outbreaks, the final size, thresholds and population

regulation, that can be useful for evaluating the extent of an outbreak.

The most powerful use of mathematical modeling on public health came

with the need for evaluating control strategies for newly emerging and re-

emerging infectious diseases [288]. At the end of the twentieth century, the

fear of a bio-terrorist attack with smallpox virus took action to use math-

ematical modeling combining historical data from smallpox epidemics with

questions about vaccination in modern societies [178, 114]. Some years after,

the epidemic produced by the SARS virus started to employ mathematical

models to study infectious disease outbreak data, in real time, to assess the

effectiveness of health control measures [287]. In recent years, mathematical

modeling come into more widespread use for public health policy making.

For example, during the last decades of the AIDS pandemic and lately dur-

ing the COVID-19 outbreak among others, the development of mathematical

models has been very useful to predict the evolution of an infectious disease

and to identify the most effective prevention control health strategies.

Above we described a selective account of historical highlights to illus-

trate the developments of the mathematical epidemic modelling along human

history and to introduce the next section, where an exhaustive description

of the ongoing epidemic models are described. To give a full account of

the history of the mathematical modeling we refer the interested reader to

[45, 161, 227, 117].
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1.3 Mathematical modeling in epidemics

Our interest in this section, is to explore various types of compartmental

mathematical models for describing the evolution of an epidemic process.

Compartmental models are adaptable enough to represent social dynam-

ics and pathogen characteristics. These models divide the population into

mutually exclusive compartments, according to their health status regard-

ing the infectious disease. They describe the variation of the number of

individuals included at each compartment while the epidemic is in progress.

Individuals are assumed to have the same characteristics and they can be

assigned from one compartment to other according to their infectious sta-

tus. These movements depend on the characteristics of the disease and/or

community intervention.

Diseases spread by contact through a virus or bacterium. The different

health stages related to an infectious disease can be susceptible, infected,

exposed and recovered. A susceptible, (S), individual is at risk of developing

the disease when getting in touch with an infectious individual. An infec-

tious, (I), individual has developed the illness and is able to infect another

individual. In some contagious diseases there is a period, after being infected

by the pathogen, while the infected individual can not transmit the illness.

During this time span, individuals are called exposed, (E). Some contagious

diseases confer long-lasting or temporal immunity after overcome the disease

and the individual can not be infected again by the same pathogen during

this immunity period. In this case, the individual is called recovered, (R).

Taking into account the different stages related to an infectious process, we

can describe different compartmental epidemiological mathematical models
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[23, 176, 235, 275, 66, 70, 274].

The most studied compartmental models are the Susceptible-Infected-

Susceptible (SIS) and the Susceptible-Infected-Recovered (SIR) models.

The SIS model is suitable to model diseases where immunity is not ac-

quired after overcoming the illness and, as a result, over time individuals in

the population oscillate between susceptibility and contagion. Conjunctivi-

tis (pink-eye), impetigo and most sexually transmitted illnesses, as human

papillomavirus (HPV) and chlamydia, can be modeled using an SIS model

[253, 83, 153]. Some viruses, as the human immunodeficiency virus (HIV),

produce permanent infection and can be modeled by the Susceptible-Infected

(SI) type model. Some other variants of the original SIS model, are devel-

oped by combining different stages related to an infectious disease as the

Susceptible-Exposed-Infected-Susceptible (SEIS) model, that is employed to

model pneumococcal infections [273]. When a vaccine is available, it re-

duces the incidence of infection by diminishing the proportion of susceptible

individuals in the population. In this situation, the Susceptible-Vaccinated-

Infected-Susceptible (SVIS) model is suitable to model the propagation of

vaccine preventable infectious diseases that do not confer immunity [307].

The SIR models is appropriate for diseases in which permanent immunity

is acquired and individuals who have overcome the disease will therefore no

longer be susceptible to reinfection. In this case, the human immune system

is itself capable of generating antibodies that fight the pathogens causing

the disease. MERS, rubella, measles and varicella are epidemics that can

be modeled by a SIR model [81, 62, 308, 128]. Many models have been

developed from the original SIR-type model. For example, the Susceptible-
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Infected-Recovered-Susceptible model (SIRS) is an extension of the general

SIR assuming that acquired immunity may disappear after some time. Hence,

after losing this temporal immunity, any recovered individual is again sus-

ceptible to the disease. Influenza epidemic can be modeled by this type-

model [157]. The Susceptible-Exposed-Infectious-Recovered (SEIR) model is

appropriated to represent the spread of diseases when there is an exposed

period from contact to infection transmission. Ebola and COVID-19 infec-

tious processes can be modeled by an SEIR type model [29, 263, 185, 238].

In case when a vaccine is available, several models have been developed.

For example, the Susceptible-Vaccinated-Infected-Recovered (SVIR) that is

suitable when the immunity acquired after infection is permanent and the

Susceptible-Vaccinated-Infected-Recovered-Susceptible (SVIRS) that is suit-

able when the immunity acquired is not permanent [300, 30].

There are many mathematical epidemiological models not stated in this

work that can be constructed by adding different compartments to the orig-

inal structure such as: antidote, dead, hospitalized, quarantined , tested and

so on. We refer the interested reader to [19, 20, 255, 164] and the references

therein, for a detailed description of these models.

Sometimes it is necessary to take into account the specifications of indi-

viduals, local interactions and adaptive behavior to study an epidemiological

process. In such cases, it is preferable to construct models focused on indi-

viduals. These are the so called IBM or individual based models where each

individual presents a set of features that change dynamically over time to

account for stochastic fluctuations of epidemiological variables [306, 220, 94].

There are mainly two mathematical approaches to represent the evolu-
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tion of an epidemic process: the deterministic and the stochastic approaches

[10, 25, 90, 147, 2, 75, 300, 213, 293, 267, 305]. The first one constitutes a

huge part of the existing studies. In deterministic models, the number of

individuals in each model compartment involved in the epidemic, are esti-

mated as functions of discrete time n = 0, 1, 2... or differentiable functions in

continuous time t ≥ 0. Such estimations allow us to derive sets of difference

or differential equations governing the process. Consequently they attempt

to explain behaviours on the average at the population scale. Solutions of

deterministic models are functions of time or space that depend on the ini-

tial conditions. These models have been widely used due to their generally

simpler analysis and mathematical tractability [154, 56]. They are especially

relevant when considering large populations or when stochastic effects can

be neglected. Deterministic models assume that the observed dynamics are

forced only by internal, deterministic mechanisms. However, real epidemio-

logical systems will always be exposed to influences that are not completely

controlled or not viable to model explicitly. In this cases, it is necessary

to incorporate these variations in the dynamics. Stochastic noise is often

linked to undesirable disturbance for controlling systems. However, it can be

beneficial if we use it appropriately. Some models incorporate this stochas-

tic term to the differential equations, to include variation in the dynamics

and to stabilize a deterministic dynamical system. These methods are called

stabilization by noise (e. g.; Wiener Processes) [103, 158, 272].

Stochastic approach is based on models that employ stochastic processes.

These models have the ability to handle unpredictability in the inputs applied

and have some inherent randomness. The solution of a stochastic model is a
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probability distribution for each one of the random variables describing the

evolution of an epidemic process. In consequence, the same set of parameter

values and initial conditions produce different outputs.

Both approaches are very important in epidemiology and their main dif-

ferences rely in their asymptotic behaviour. For instance, Weiss and Dishon,

in [294], show that the asymptotic values of the expected number of infected

individuals as calculated by the two theories do not necessarily agree and

demonstrate that when the deterministic mean tends to zero, the stochastic

mean time to extinction remains bounded. Nevertheless, when the deter-

ministic mean time tends to infinity, the mean time to extinction tends to

infinity as the total population number grows without bound. Several stud-

ies suggest that, the stochastic approach better explains the evolution of an

infectious process when underlying populations are not excessively large or

in epidemics, where the transmission of the disease, recovery, the variabil-

ity in demographics or the environment are highly influential [23, 25, 58].

This is the case of small communities as intensive care units in hospitals

[118, 40, 289], prisons [159] and schools [270, 37] among others. A large

part of the studies concerning stochastic epidemic processes employs Markov

chains to represent the evolution of the infectious process.

To describe the evolution of an infectious disease over time in terms of a

Markov chain, it is assumed the exponentially of the sojourn times and the

independence among the random events that determine transitions among

states in state space. Markov chains are widely used in epidemiology. Some

classic books, where the reader can find an accurate development of theo-

retical results, are the monographies by Kemeny and Snell [170]; Karlin and
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Taylor [166] and the one by Schinazi [259]. There are mainly two types of

mathematical epidemic models based on Markov chains: discrete-time and

continuous-time Markov chains. Discrete-time Markov chains (DTMC) study

the evolution of an epidemic process at time points [8, 256, 108, 291, 122, 11].

In contrast, continuous-time Markov chains (CTMC) analyze the epidemic

behaviour assuming time as a continuum [281, 9, 167]. The underlying math-

ematical theory involved in a CTMC is widely analyzed by Allen. She has

contributed with many textbooks and publications applied to a variety of bi-

ological processes such as: epidemic, competition, predation and population

genetic processes [15, 16, 9, 10].

1.3.1 The SIS and SIR models

In this thesis we focus on the stochastic SIS and SIR mathematical models

to cover infectious diseases that are transmitted by direct contact with a

infected individual. Both models differ in the immunity acquired when an

infected individual overcome the disease.

As we stated in the previous section, the SIS model is appropriate to

describe the transmission dynamics of infectious diseases that do not con-

fer immunity after recovering the illness and the population consists only of

susceptible and infected individuals. Individual health state oscillates from

susceptible to infected compartments along time. When a susceptible indi-

vidual comes into direct contact with an infected individual, he/she becomes

infected. After an infectious period he/she overcomes the disease and is

susceptible again to be infected. In Figure 1.2 we show the movements of

individuals in an SIS model.
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Figure 1.2: Movements of individuals in an SIS model

In what follows, for any time t ≥ 0, we denote by S(t) and I(t), the

number of susceptible and infected individuals at time t, respectively.

For a constant size population where an infectious process is ongoing, the

number of susceptible and infected individuals at time t satisfies the following

equation

S(t) + I(t) = N, t ≥ 0. (1.6)

Assuming “the law of Mass Action” that says that, the rate of interaction

between two different subsets of the population is proportional to the product

of the numbers in each of the subsets concerned [89], the deterministic SIS

model can be formulated in terms of the following system of differential

equations, for t ≥ 0

S ′(t) = − β

N
S(t)I(t) + γI(t)

I ′(t) =
β

N
S(t)I(t)− γI(t),

whereN denotes population size, transmission occurs through direct contacts
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(effective contacts) with rate β and any infected individual recovers with rate

γ.

Under a stochastic approach and considering a constant and moderate size

population where individuals are homogeneous and well-mixed, the evolution

of the analogous stochastic model can be described by a birth-death process,

assuming the exponentially independence of contact periods and recovery

times.

According to the constant size population hypothesis, the Equation (1.6) is

also satisfied and the evolution of the epidemic process is modeled in terms

of the following one-dimensional CTMC

X = {I(t); t ≥ 0}, (1.7)

with birth and death rates given by

λi = βi(N − i)/N, 1 ≤ i ≤ N − 1,

µi = γi, 1 ≤ i ≤ N,

and state space S = {0, 1, ..., N}.

In Figure 1.3, we show the transition diagram of the Markov chain X.

We point that the state {0} is an absorbing one. Since the state space is

finite, the extinction is certain and the epidemic will end in a finite expected

time. The Markov chain, X, also has a reflecting state in I(t) = N that

corresponds to a fully infected population.
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Figure 1.3: Transition diagram of the Markov chain X

Considering an infectious disease that confers permanent immunity, the

SIR model is preferable. After an infectious period the infected individual

turns into recovered and he/ she never becomes again susceptible to the

disease. In Figure 1.4, we show the movements of individuals in an SIR

model.
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Figure 1.4: Movements of individuals in a SIR model

Let R(t) represents the number of recovered individuals at time t ≥ 0.

According to the constant size hypothesis, the number of susceptible, infected

and recovered individuals at time t ≥ 0, satisfy the following equation

N = S(t) + I(t) +R(t), t ≥ 0. (1.8)

Again, applying “the law of Mass Action”, the deterministic SIR model can
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be formulated in terms of the following system of differential equations for

any t ≥ 0

S ′(t) = − β

N
S(t)I(t) (1.9)

I ′(t) =
β

N
S(t)I(t)− γI(t)

R′(t) = γI(t),

where model parameters are the same as in the analogous deterministic SIS

model.

Under a stochastic approach the spread of the disease can be described

by the following bidimensional CTMC:

Y = {(I(t), S(t)) : t ≥ 0}. (1.10)

Assuming the initial condition (I(0), S(0), R(0)) = (m,n, 0) we can express

the state space as

S = {(i, j) : 0 ≤ i ≤ m+ n, 0 ≤ j ≤ min(n,m+ n− i)}.

For a given state (i, j) ∈ S, the infection and removal rates are respectively

λij = βij/N, (i, j) ∈ S,

µi = γi, 1 ≤ i ≤ m+ n.

In Figure 1.5, we show the transition diagram of the Markov chain Y ,

described in Expression (1.10), when m = n = 3.

The states {(0, j) ∈ S, 0 ≤ j ≤ n} are absorbing ones and the rest are

transient states, that are visited at most once. Since the state space is finite
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then, the extinction is certain and the epidemic will end in a finite expected

time.

Figure 1.5: Transition diagram of the Markov chain Y. Note. From

Artalejo, J. R.; Economou, A.; Lopez-Herrero, M. J. Stochas-

tic epidemic models revisited: analysis of some continuous perfor-

mance measures. Journal of Biological Dynamics 2012, 6(2), 189-211.

https://doi.org/10.1080/17513758.2011.552737 [38]

1.3.2 Compartmental models including vaccination as

a health control measure

In this thesis, we are interested in compartmental epidemic models that in-

clude vaccination as a prophylactic device to stop or control the expansion

of an epidemic process. In particular, we consider models of epidemics tak-

ing into account various possibilities in the selection of the characteristic
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parameters of a vaccine to explore the effect of vaccination.

There is a vast literature dealing with epidemic models that include vac-

cination and other intervention mechanisms to control and reduce the inci-

dence of an infectious disease. For example, in [88], authors review the effect

of information communicated by the public health authorities in determin-

ing the outcome of measles vaccination programs for an SIR-type epidemic

model. In [142], an SEIR model is developed, authors compare five control

policies that can be addressed simultaneously and provide main qualitative

properties of the controls. Also a comparison with an SIR model is pro-

vided. For the ongoing COVID-19 pandemic, authors in [241], propose a

compartmental epidemic model including compartments for susceptible, ex-

posed, infected, quarantined, hospitalized, recovered, deceased and insuscep-

tible individuals in the population taking into the account the use of social

distancing, hospitalization and vaccination in order to stop the expansion

of the virus. These are some examples of studies that analyze the effect

of vaccination on a previous selected compartmental model. Other studies

include an specific compartment for vaccinated individuals. For example,

in [190], authors propose a compartmental SVIR model to describe the ex-

pansion of the influenza virus and they calculate the most efficient critical

vaccination coverage to maximize the herd effect. In [97], an extended com-

partmental SVIR model is described to study the risk of re-emergence of

polio and its effect, in a region with low vaccination coverage where unvac-

cinated people are arriving. In [189], authors describe an SVIS epidemic

model applying numerical techniques. In more detail, they investigate the

Euler-Maruyama numerical approximated solution to the model and propose
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a positivity-preserving numerical method for the compartmental epidemic

model described. To explore more literature that includes vaccination as a

control measure for the spread of an infectious disease, we refer the interested

reader to [69, 25, 147, 2, 300, 181, 228, 301, 290].

According to the several vaccination policies and types of vaccines, math-

ematical epidemic models assume different inherent characteristics of the vac-

cine as its efficacy, life-long or waning protection, eligibility, number of doses,

vaccine uptake, and so forth.

In our approach, we assume an imperfect vaccine that fails with a fixed

probability. Under this assumption, there are several studies that analyze

different epidemic models [121, 52, 82, 193, 5]. For example, in [173] and [298],

the stationary distribution and stability are studied in SVIR-type models and

in [303], the martingale theory is used to estimate the probability of failure of

a vaccine. In [143, 271], the authors develop mathematical models assuming

imperfect vaccination including an incubation period for infectious diseases

that confer permanent immunity. In contrast, for infectious diseases that does

not confer immunity, in [1, 31], the authors deal with the threshold dynamics

of SIS epidemic models. The effectiveness of a vaccine is widely analyzed in

[228], where a mathematical model for the transmission of the SARS-CoV-

2 virus is described. The authors propose a mass vaccination strategy to

control the transmission of the virus. They quantify the impact of different

levels of vaccine efficacy and also other control measures are included in the

model as social distance and testing of susceptible individuals. In [301], the

authors propose an SVIS model with waning of vaccine-induced immunity

and general nonlinear incidence to analyze the optimal vaccine coverage to
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eradicate the disease. A time-delayed SVEIR model with a generalized non

monotone incidence is considered in [6], where the authors provide a useful

application to measles disease. In [187], the authors analyze the effect of

vaccine failure on the spreading of a pathogen exploring the dynamics of an

SIS epidemic model with three types of imperfect vaccinations on complex

networks. A vaccinated compartment is included to indicate if leaky, all-or-

nothing and waning vaccines are involved.

A waning protection is considered in [309], where the authors describe the

expansion of a cholera epidemic process considering an extended SIR model

with additional compartments describing the pathogen population and the

number of vaccinated individuals at time t. They assume that susceptible

population is vaccinated during the outbreak and also discuss the local and

global stability of the endemic equilibrium. In [75], an SIS epidemic model

is considered with varying population size and vaccination in presence of

environmental noise where vaccinated individuals lose their immunity at a

constant rate. In [116], authors examine the effect of various control strate-

gies including vaccination campaigns with a waning vaccine, using systems

of differential equations. In [190], the authors consider an SVIS model where

vaccinated individuals become again susceptible when vaccine loses its pro-

tective properties. The authors call the time individuals spend in the vac-

cinated class, vaccine-age and they prove that the number of immunized

individuals at time t ≥ 0 depends upon vaccine-age. A life-long vaccine is

introduced in [279], for an SEIR model and the stability of the model is

discussed using the Lyapunov method. In [179], the authors consider an

SVIRS model and suppose the vaccine’s effects to be permanent but only

36



Chapter 1

proportionally effective.

Related to the number of doses administrated of a vaccine, in [104], au-

thors find the most efficient critical vaccination coverage assuming that one

dose of vaccine suffices and that vaccination instantaneously leads to perma-

nent immunity against infection. However, in [183], the critical vaccination

coverage is analyzed with two doses of vaccine.

Vaccines are administered at certain ages, for people in at-risk groups,

or for catch-up according to the schedule or even mass vaccination programs

with no distinction and not taking into account specific characteristics of in-

dividuals. The eligibility criteria to receive a vaccine in a population is also

the purpose of several studies. For example, in [175], authors demonstrate

for hepatitis B virus disease, that neonatal vaccination influences more the

control of transmission than mass vaccination programs. In [113], authors

discuss the effect of different criteria related to the selection of individuals

to be vaccinated to control the transmission of the measles virus. The vac-

cine up-take is defined as the proportion of a population that has received

a specific vaccine. The difference between this concept and coverage is that,

up-take expresses vaccination activity over time, while coverage expresses the

resulting protection among a population [313]. When vaccine is not manda-

tory, this proportion is influenced by a range of factors as the risk of diseases

and their effects, information provided to eligible individuals about the avail-

able vaccine and social norms among others. This effect is widely analyzed

in [74], where authors describe an SIR model with voluntary vaccination and

public health system intervention.

To describe above models different population hypotheses are assumed
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such as: constant size population [276, 174], non-constant size population

[146, 302], demographics variation throughout the epidemic process [265, 140]

and keeping the population isolated, among others [207, 298].

Other hypotheses that are assumed in the existent literature, are related

to how individuals mix with each other in the population and to the mech-

anism of transmission of an infectious disease. Usually, models try to work

with homogeneous populations [46, 296] but, it is also frequent to work with

populations whose individuals are not homogeneously mixed. For example, in

[194], several descriptors are studied in small and heterogeneous populations

where, in addition, the population is not isolated and there is an external

source of infection. The analysis of the transmission of an infectious dis-

ease has been expanded assuming heterogeneous contacts [106], infective and

susceptible immigrants [18], exposed individuals [197], generally distributed

recovery times [137], Markov-modulated interactions [136], vector-borne in-

fections [33], two-species competition [136] and a non-linear incidence rate

hypothesis [107], among others.

Next, we describe the SVIS and SVIR models for a constant size popula-

tion.

1.3.2.1 The SVIS model

Our main interest in this section is to develop deterministic and stochastic

SVIS and SVIR models with imperfect vaccine.

We consider a constant size population where individuals are homoge-

neous and are uniformly mixed. Prior the start of the epidemic, a percentage

of the population was immunized preventively to an infectious disease that
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does not confers immunity after overcoming the illness. According to the vac-

cine failure classification described in Section 1.2, we assume an all-or-nothing

type vaccine in the sense, that it fails with a fixed probability h ∈ (0, 1)..

Hence, susceptible and, eventually, vaccinated individuals can be infected

through direct contact with infected individuals in the population. We are

not considering an additional vaccination program during the epidemic pro-

cess and vaccine induces long-last protection.

Figure 1.6 shows the movements of individuals between compartment in

an SVIS model.
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Figure 1.6: Movements of individuals in an SVIS model

At any time t ≥ 0, we introduce the random variable, V (t), that counts

the number of vaccinated individuals at time t.

According to the constant size population hypothesis, the number of suscep-

tible, vaccinated and infected individuals, at time t ≥ 0, can be calculated

from the following equation

N = S(t) + V (t) + I(t), t ≥ 0. (1.11)

The deterministic SVIS model with imperfect vaccine is described in

terms of the following differential equations, for any t ≥ 0
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S ′(t) = − β

N
S(t)I(t) + γI(t)

V ′(t) = −βh
N
V (t)I(t)

I ′(t) =
β

N
S(t)I(t) +

βh

N
V (t)I(t)− γI(t),

(1.12)

where β and γ, correspond to the effective contact and recovery rates, re-

spectively and are detailed in the following table

Population size N

Effective contact rate β

Vaccine failure probability h

Recovery rate γ

Table 1.1: Model parameters with vaccination

Figure 1.7 shows the deterministic trajectories of an SVIS model, for a pop-

ulation of 101 individuals, assuming that the initial state of the outbreak

is a single infectious, 48 susceptible and 52 vaccinated individuals. We fix

the time unit to be the recovery time, therefore the recovery rate is taken as

γ = 1. The effective contact rate is β = 2.5 and vaccine fails with probability

h = 0.3. We simulate the evolution during 24 unit times and we record the

number of susceptible, vaccinated and infected individuals at time t, during

this period.

The blue line corresponds to the number of vaccinated individuals overtime.

It presents a decreasing shape due that additional vaccination is not consid-
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ered during this period. Black and red lines correspond to the number of

susceptible and infected individuals in the population, respectively.
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Figure 1.7: Outbreak simulation for 24 days for a deterministic SVIS model

Under a stochastic approach, we consider the same population and vac-

cine hypothesis as in the deterministic SIVS model. It is assumed that the

pathogen is transmitted through direct contacts with an infective individual

within the population, following a time-homogeneous Poisson process of rate,

β/N . Population is not isolated and in consequence, infections also can be

produced through direct contact with an infected individual that is not a

community member at rate, ξ.

Once an infected individual overcomes the disease, after independent expo-

nentially distributed times with rate γ, he/she is susceptible again, no matter

if he/she was previously vaccinated or not. The length of any infectious av-

erage period is, γ−1. The epidemics dynamics are consequence of movements
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between separate classes overtime and are described in Figure 1.6.

Under this framework, V (t) and I(t), are random variables that record

the number of vaccinated and infected individuals respectively, at time t ≥ 0.

According to the fixed population size hypothesis, we can recover the number

of susceptible individuals at time t, from the following equation

S(t) = N − V (t)− I(t).

The evolution of the epidemic process, at each time point t, is described in

terms of the following bi-dimensional Markov chain

X = {(V (t), I(t)), t ≥ 0}. (1.13)

The state space of X depends on the initial coverage, v0. Hence, assuming

that at time, t = 0, we have v0 vaccinated individuals, with 0 < v0 ≤ N , the

state space is given by

S = {(v, i) : 0 ≤ v ≤ v0, 0 ≤ i ≤ N − v}, (1.14)

that contains (v0 + 1) (N + 1− v0/2) states.

Assuming that ξ > 0 and h > 0, the number of vaccinated individuals

could drop down from v = v0 to v = 0. The stationary distribution concen-

trates in the set of absorbing states, {(0, i) : 0 ≤ i ≤ N}. Consequently, the
protection conferred by the vaccine is lost, almost surely, in a finite expected

time and, in the long-term, all the population will be susceptible to get the

infection. This distribution agrees with the one described in [270] for an

SIS-type model with an additional source of infection.

As we are dealing with Markovian models, transition rates are determined

by the effective events that cause a change in the current state (v, i) ∈ S.
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Next, we give an exhaustive description of the possible events and in

Table 1.3.2.1 we also list their rates.

(S1) A susceptible individual gets the disease through direct contact with

an infected individual within the population.

(S2) A susceptible individual gets the disease through direct contact with

an infected individual who is not a community member.

(S3) Due to the imperfect vaccine hypothesis, a vaccinated individual is

infected by direct contact with an infected individual within the pop-

ulation.

(S4) Due to the imperfect vaccine hypothesis, a vaccinated individual is

infected by direct contact with an infected individual who is not a

community member.

(S5) An infected individual is recovered and becomes again susceptible to

be infected.

Effective event Transition Rate

(S1) (v, i) → (v, i+ 1) βi(N − v − i)/N

(S2) (v, i) → (v, i+ 1) ξ(N − v − i)

(S3) (v, i) → (v − 1, i+ 1) hβiv/N

(S4) (v, i) → (v − 1, i+ 1) hξv

(S5) (v, i) → (v, i− 1) γi

Table 1.2: Effective events and their transition rates
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1.3.2.2 The SVIR model

We describe the deterministic SVIR model with imperfect vaccine considering

the same population hypothesis as in the deterministic SVIS model but,

assuming that the pathogen confers permanent immunity to individuals after

recovery.

In Figure 1.8, we show the movements of individuals in an SVIR model.
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Figure 1.8: Movements of individuals in an SVIR model

Notice that, at time t ≥ 0 and according to the constant size hypothesis, the

number of susceptible, vaccinated, infected and recovered individuals satisfies

the following equation

N = S(t) + V (t) + I(t) +R(t), t ≥ 0. (1.15)

The deterministic SVIR model with imperfect vaccine can be formulated for

t ≥ 0, in terms of the following differential equations

S ′(t) = − β

N
S(t)I(t)

V ′(t) = −βh
N
V (t)I(t)

I ′(t) =
β

N
S(t)I(t) +

βh

N
V (t)I(t)− γI(t)

R′(t) = γI(t).
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Figure 1.9 shows deterministic trajectories of an SVIR model, for a popula-

tion of 101 individuals, assuming that the initial state of the epidemics is a

single infectious, 40 susceptible, 60 vaccinated and no recovered individuals.

The infectious period of an infected individual is on average 2 days and the

recovery rate is taken as γ = 0.5. The effective contact rate is β = 1.5 and

vaccine fails with probability h = 0.4. We simulate the evolution during

24 days and we record the number of susceptible, vaccinated, infected and

recovered individuals at time t, during this period. Black and blue lines

correspond to the number of susceptible and vaccinated individuals along

time, respectively. Both present a decreasing shape due to the permanent

immunity acquired after recovery and that we do not consider additional

vaccination during the epidemic. Green line corresponds to the number of

recovered individuals, that show an increasing behaviour.
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Figure 1.9: Outbreak simulation for 24 days for a deterministic SVIR model
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Under a stochastic approach, we assume the same population, vaccine

and transmission of the pathogen hypothesis as in the stochastic SVIS model

but considering that once an individual is recovered from the disease, he/she

acquires permanent immunity and will not be able to become infected again.

Model parameters are described in Table 1.3.2.1 and are identical for the

stochastic SIVS model described in the previous section. Figure 1.8, repre-

sents the movements of individuals for the SVIR model.

Since the size of the population remains constant throughout the epidemic

process, the number of recovered individuals at time, t ≥ 0, can be computed

from the following equation

R(t) = N − S(t)− V (t)− I(t).

Under the above assumptions, the evolution of the epidemic process will be

carried out by means of the following three-dimensional CTMC

X = {(V (t), S(t), I(t)); t ≥ 0}. (1.16)

We consider that at the beginning of the outbreak, there are v0 vaccinated,

s0 susceptible and no recovered individuals. Consequently, the initial state

is given by (V (0), S(0), I(0)) = (v0, s0, N − v0 − s0) for any v0, s0 ≥ 0, with

v0 + s0 ≤ N, and the state space of the CMTC, X , is given by

S = {(v, s, i) : 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, 0 ≤ v + s+ i ≤ N}, (1.17)

which is finite and contains (v0 + 1)(s0 + 1)(N + 1− s0+v0
2

) states.

There is a unique absorbing state in S: (0, 0, 0) that corresponds to the

situation when all individuals have been recovered from the disease.
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As we are dealing with a Markovian model, the dynamics of the outbreak

over time are represented by transitions between states in S. In Table 1.3,

we detail the possible events, their respective rates and transitions between

the states of S involved in the propagation of an infectious disease. For a

current state (v, s, i) ∈ S, these possible events are:

(R1) A susceptible individual gets infected through contact with an infected

individual within the population.

(R2) A susceptible individual gets infected from the external source of infec-

tion.

(R3) Due to the imperfect vaccine hypothesis, a previously vaccinated in-

dividual get the disease through contact with an infected individual

within the population.

(R4) Due to the imperfect vaccine hypothesis, a previously vaccinated indi-

vidual get the disease through contact with an infected individual that

is not a community member.

(R5) An infected individual is recovered from the disease.
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Effective Outgoing Event Transition Rate

(R1) (v, s, i) → (v, s− 1, i+ 1) βi(N − v − i)/N

(R2) (v, s, i) → (v, s− 1, i+ 1) ξ(N − v − i)

(R3) (v, s, i) → (v − 1, s, i+ 1) hβiv/N

(R4) (v, s, i) → (v − 1, s, i+ 1) hξv

(R5) (v, s, i) → (v, s, i− 1) γi

Table 1.3: Possible events and their transition rates.

Throughout this manuscript, attention is focused on the quantification of

an epidemic process analyzing several random variables. Thus, next we de-

scribe several epidemic measures related to disease transmission and include

related bibliography to place our research work.

1.4 Epidemic characteristics of disease trans-

mission

To provide a comprehensive overview of what has been done in the quan-

tification of the spread of an epidemic process, in the following we describe

the main epidemic characteristics of disease transmission as reproduction

numbers, incidence measures and time measures and we recompile precedent

research studies related to above mentioned descriptors.
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1.4.1 Reproduction numbers

Reproduction numbers are fundamental measures used to quantify the poten-

tial transmission of an epidemic in public health practice. There are several

quantities that can be classified as reproduction numbers but the basic repro-

ductive number, R0, is probably the most widely used descriptor of disease

spread and plays a privileged role in epidemiology.

As described by Heesterbeek, in [184, 151], R0 was created by demogra-

phers in 1880 and formalized in 1925 to model the progression of a country’s

population. However, in recent years, it is mostly found on an epidemiology

context, to quantify the transmission potential during the initial period of an

outbreak. R0 is defined as, the average number of infections produced in a

fully susceptible population, by a typical infective individual during its entire

period of infectiousness in absence of any control measure [150, 96]. Under

a deterministic approach and for simple models, it is proven that values of

R0 < 1 (i.e.; each individual infects less than one individual, on average)

establish that there is a decline in the number of cases and infection does

not persists in the population. On the other hand, for values of R0 > 1 the

pathogen persists in the population. Commonly it is assumed that pathogens

evolve to maximize R0, and its value provides a direct measure of the control

effort required to eliminate the infection [246].

In some situations, the previous epidemic threshold on R0 does not ap-

ply. The basic reproductive number depends on many factors that impact

transmission dynamics, including population density, population structure

and differences in contact rates across demographic groups, among others.

The incorporation of these factors, to the related epidemic model, can imply
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assuming different critical values for the basic reproductive number determin-

ing the persistence of an infectious disease. For example, in [111], the authors

suggest that exogenous reinfection has a drastic effect on the qualitative dy-

namics of tuberculosis transmission. In particular, exogenous reinfection al-

lows us the possibility of a sub-critical bifurcation at the critical value of the

basic reproductive number R0, and hence the existence of multiple endemic

equilibriums for R0. They suggest that reducing the basic reproductive num-

ber to be smaller than one, may not be sufficient to eradicate the disease and

an additional reduction in reinfection rate may be required. Another exam-

ple that illustrate that deterministic assumptions are not always well applied

is described in [135]. The authors demonstrate that the heterogeneity in

transmission rates is critical for control. They describe several SIR and SIS

models assuming that the force of infection is a nonlinear function of density

of infectious individuals and they demonstrate that general assumptions for

R0 are also not satisfied for these cases. In [87], the authors assess that, for

populations with social or spatial structure, a chronic disease is more likely

to invade than an acute disease with the same R0, because it persists longer

within each group and allows, for more hosts, movement between groups. For

example, in network models, not only the properties of the individual but

also the nature of the network of connections between them, is important

in determining the basic reproduction number. These are some of several

examples where the basic reproduction number presents inconveniences and

we refer the interested reader to [165, 209, 254, 112, 245, 282, 247, 141] and

the references therein to get a wide knowledge on the topic.

Under a deterministic approach, there are several methods to calculate R0

50



Chapter 1

as survival functions, the next-generation methods and Jacobian methods,

among others [188].

To compute R0, applying a methodology based on the survival function,

we consider a large population and we denote by F (a) the probability that a

new individual remains infected during a time units and by b(a) the average

of new infections produced per unit time when the time infected is a [150].

Then, the basic reproductive number is defined as follows

R0 =

∫ ∞

0

b(a)F (a)da.

This method is very simple and it can not be applied in some situations.

For example, in vector-borne infections, disease is transmitted by infected

arthropods and this factor of transmission is not included in the survival

function and it should contemplate it.

To solve this inconvenience the next-generation method is preferable be-

cause it takes into account more than one transmission element. The next

generation method was developed by Diekmann et al. in [100] and popu-

larized by Driessche et al. in [282]. In this method, population is divided

into a finite and disjoint number of discrete categories. Then, the so-called

next-generation matrix is obtained computing the numbers of newly infected

individuals in the various categories in consecutive generations. R0 is defined

as the dominant eigenvalue of the next-generation matrix.

Regarding the Jacobian methods, in [98], Diekmann et al. compute a

predictive threshold analyzing the eigenvalues of the Jacobian matrix at the

disease-free equilibrium. Around this point, if all the eigenvalues of the

Jacobian matrix have a negative real part, the equilibrium is stable and they
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use the characteristic polynomial and the Routh–Hurwitz stability conditions

to compute the basic reproduction number, R0. This method is appropriate

when the evolution of an infectious process is described in terms of systems of

ordinary differential equations. These methods and others are fully described

in [99, 282, 102, 188].

The herd immunity level, introduced in Section 1.2 and denoted by, vc,

depends on the basic reproduction number R0 [115, 72]. The indirect protec-

tion will begin to take effect when a population reaches the herd immunity

threshold, and it occurs when the proportion of immunized individuals is

over the value

vc = 1− 1

R0

. (1.18)

The more transmissible a pathogen, the greater its associated basic repro-

duction number and the greater the proportion of the population that must

be immunized to block sustained transmission [152]. The above interpreta-

tion of the basic reproduction number and its relation to the herd immunity

threshold only is applicable assuming some hypothesis. Specifically, it is as-

sumed that individuals have no preferences in their relationships, develop

permanent immunity after recovery and vaccine offers life-long protection.

In the real world, these epidemiological and immunological assumptions are

not always satisfied and in consequence, the herd immunity level can not be

derived from Equation 1.18 [152]. As we stated before, R0 depends on many

factors and, consequently, these will directly or indirectly impact the herd

immunity threshold.

In Figure 1.10 we show the herd immunity thresholds for several dis-
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eases/outbreaks, as functions of the basic reproduction number. A highly

infectious virus, as measles, will have a high R0 (14− 15) and a high propor-

tion of the population must be vaccinated to decrease the transmission of the

infectious disease. In contrast, the outbreak of Ebola virus in Guinea 2014,

had a low R0 (1−2) and only the 35% of the population should be vaccinated

to control the outbreak. By 2020, most of the studies suggested the R0 for

SARS-CoV-2 pandemic to be between 2 and 3 and it would be necessary to

immunize the 60% of the population to attain the herd immunity, in case

that permanent immunity was achieved.

Figure 1.10: Herd Immunity Thresholds by Disease. Note. From

Omer, S. B.; Yildirim, I.; Forman, H. P. Herd Immunity and

Implications for SARS-CoV-2 Control. JAMA 2020, 324 (20),

2095–2096.https://doi.org/10.1001/jama.2020.20892 [229]

We previously mentioned that R0 works well under a deterministic ap-

proach where population group sizes are, as a premise, infinite. In con-
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sequence, the probability that two specific individuals have contact equals

zero. However, in real-world situations, this behaviour is not true at all.

In particular, R0 quantifies well the initial spread of an epidemic process.

It is defined as the invasion time when the index case, who is the first in-

dividual who brings the infection to a population, is introduced in a fully

susceptible population. The deterministic approach takes into account only

average values and neglects that the agent itself diminishes the availability of

susceptible individuals (linearization assumption) [98, 102]. This has a bad

consequence in the computation of R0 because there is an overestimation

of the number of contacts and secondary infections produced by the typical

individual as authors discuss in [102]. Contacts of infectious individuals to

individuals, whom have been previously infected, are futile and their should

be eliminated [101].

For this reason, it seems relevant to explore alternative measures to R0.

However, the utility of R0 to quantify the severity and the expansion of an

infectious disease still holds. For example, for an SIS model, high values of R0

are associated with epidemics that persist for long time. In contrast, short

epidemics are identified by lower values of the basic reproduction number

[42].

The methodology to compute R0, described above, is preferable under a

deterministic approach and assuming that all individuals in the population

are equally susceptible to be infected. When a control measure is available,

for instance a vaccine, it is preferable to deal with the control reproduction

number to quantify the spread of an epidemic [86]. The control reproduc-

tion number, denoted by Rc, is the average number of secondary cases due
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to a infective individual in a totally susceptible population, in the presence

of control measures. The relationship between Rc and R0 when a propor-

tion f of individuals are vaccinated with a perfect vaccine is very simple.

The control reproduction number can be calculated as the product of the

basic reproductive number and the fraction of the host population that is

susceptible; that is, Rc = R0(1− f). If the available vaccine is imperfect and

there is a proportion h of individuals for which the vaccine has no effect, the

relationship between R0 and Rc is as follows Rc = R0(1 − (1 − h)f). If a

perfect vaccine is available and assuming that a proportion f of individuals

are vaccinated, then disease will not spread if (1 − f)R0 < 1. When the

vaccine is not perfect and it fails with probability h, the vaccine coverage,

v∗c , necessary to eradicate the infectious disease should satisfies

v∗c > (1− 1/R0)/(1− h).

Under a stochastic approach, the literature usually assumes deterministic

values for the basic reproduction number. Commonly, for the SIR and SIS

models R0 = β/γ, even that this value is not the real average of secondary

infections produced by the index case [71]. For example, in [53], the classical

definition for R0 is well considered in a stochastic SIR model when population

is large by the average of the first generation of a Galton-Watson process.

Other studies present a method for incorporating uncertainty in the es-

timate of the basic reproduction number in a deterministic model of an epi-

demic. For example in [244], author analyzes an SIR model, with R0 specified

by a probability distribution instead of a single value.

The first paper dealing with the correction of the overestimation that R0

makes and under a deterministic approach, was written by Diekmann et al.
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in [101]. The authors say that, when individuals systematically contact the

same individuals, the probability that an infectious individual has contact

with an already infected individual is higher than it is when all members of

the community contact with each other with the same probability. Thus, the

effectivity of the infectious output gets reduced. In particular, the authors

assume that each individual has contacts with precisely k other individuals

and they give an alternative expression ofR0, taking into the account selective

contacts and eliminating the effect of those that are repeated.

Under a stochastic approach, and for SIS and SIR models, Ross in [250]

also generalizes the study of transmission to any stage of the epidemic and

not only to the instant of invasion, as R0 makes. The author, combines the

basic reproduction number with the probability mass function of secondary

infections produced by a typical infected individual, to gain further informa-

tion and to correct its overestimation.

Other alternatives to the basic reproduction number, in a Markovian

framework, are the exact reproduction number, Re0 and the population re-

production number, Rp. These descriptors were first described in 2013, by

Artalejo and López-Herrero, in [41], for stochastic SIS and SIR models pro-

viding exact measures of the number of secondary cases of infection.

The authors described Re0 as a random variable that counts the exact

number of secondary cases, produced by a typical infective individual during

its entire period. The main feature of Re0 is that it does not count infections

produced to individuals that previously have been infected. These contacts

are vain and their effect should be neglected as the authors explain in [51]. In

consequence, Re0 corrects the effect of the linearization hypothesis, assumed
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under a deterministic approach and it does not overestimate the number

of secondary cases produced by the index case. In this sense, for small

communities and in a stochastic framework, the exact reproduction number

is preferable to measure the spread of epidemics.

We recall that, R0 is defined at the time of invasion, when a typical

individual is introduced in a fully-susceptible population, even so, Re0 can

be defined at any time t, regardless which the compartmental situation is.

We point that, Re0 is a random variable and it is not an average value, as

R0 is. In consequence, additional probabilistic information can be obtained

via generating functions, probability mass functions, moments distributions,

among others. When an epidemic process is ongoing and assuming that

invasion starts at t = 0 with an unique infectious individual, the expected

value R̄e0 = E[Re0|I(0) = 1] is the exact measure of the disease spread of the

traditional R0.

The population reproduction number, Rp, also was introduced in [41], by

Artalejo and López-Herrero, to measure the disease of spread by the whole

infective population. Since individuals are not marked to investigate their in-

fections to other individuals, Rp is described as a global measure of the disease

spread. In addition, authors analyze these exact reproduction numbers and

compare them to the traditional R0. They also provide algorithmic recursive

schemes for the computation of the generating functions, mass probability

functions and factorial moments of Re0 and Rp applying first-step arguments

and iterative methods to solve the set of linear equations involved.

In recent years, the exact reproduction number is getting more attention

and several studies analyze this descriptor assuming different epidemiologi-

57



Chapter 1

cal and immunology hypotheses. For example, in [33], Artalejo analyzes the

dynamics for a vector-borne infection overtime, in intensive care units and

calculate factorial moments distributions for the exacta reproduction num-

ber, Re0. Economou et al. in [106], studied the exact reproductive number

for the spread of a respiratory disease and infections caused by nosocomial

pathogens in intensive care units, for a stochastic SIS epidemic model with

heterogeneous contacts. Almaraz et al. in [18], describe the Re0 for epidemic

models with infective and susceptible immigrants. In [197], Lopez-Herrero

extended the work initiated in [41], and she introduced a latency period in

the model to quantify the spread of an infective process, assuming a generic

incidence rate in a finite and homogeneous population.

Gómez-Corral et al. described these descriptors for infection periods that

are not necessarily exponentially distributed in [137]. For the same infec-

tious agent than in [33], López-Garćıa et al. in [195], analyzed the Re0, for

a unified SIS model, to allow one to move from more compartment-based

models for highly homogeneous scenarios to agent-based type models with

highly heterogeneous settings.

As we stated in this section, reproduction numbers are very useful to

quantify the potential transmission of an outbreak but they are also very

practical to evaluate the plausibility of some incidence measures and the

uniqueness of their solutions [196].

1.4.2 Incidence measures

Incidence measures quantify the extent and spread of an infectious disease.

In addition, these descriptors are useful for assessing the possibility of inter-
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vention and to check its impact, in controlling the expansion of the pathogen.

Incidence and prevalence are two concepts that are appropriate to use jointly.

In epidemiology, “prevalence” is the number of cases of a disease in a

specific population at a particular time point or over a specified period of

time. “Incidence” is the rate of new cases of a disease occurring, in a specific

population, over a particular period of time. Prevalence tells us the size of

the infected group and, in some circumstances, it gives information about

the size of the susceptible group. Alternatively, incidence describes the rate

of spread [84].

There is a large variety of epidemic descriptors related to incidence mea-

sures. Some of them give information about the size of each compartment

at a certain time or during a period of time (i.e.; the number of individu-

als susceptible to infection, the number of infected individuals who are able

to transmit the pathogen...). Other descriptors focus on provide informa-

tion about the epidemic size, counting the total number of transitions to a

selected state during a period of time (i.e.; the total number of cases of infec-

tion and the number of recovered individuals during an epidemic outbreak,

the number of infections produced during a period of time, the total number

of infections produced to a marked individual during an epidemic process...).

Another measures study the peak prevalence of an infectious disease, during

a period of time (i.e.; the maximum number of simultaneously infected indi-

viduals during an outbreak, the maximum number of infections produced to

a marked individual during an epidemic process...).

The final size of an epidemic is one of the most important incidence

measures. It can be defined, informally, as the total number of people expe-

59



Chapter 1

riencing infection during the outbreak. For example, in the classic SIR model

described in Section 1.3.1, the final size of an epidemic corresponds with the

number of individuals that have been infected during the epidemic process.

In contrast, in the classic SIS model, this size corresponds to the number of

infections produced during an outbreak.

In the early literature, assuming a deterministic approach, equations in-

volved in the calculation of the the final size of an epidemic are directly

related to the basic reproduction number, R0. The well-known Kermack-

McKendrik equation for the final size of an epidemic and for the classic SIR

model, was formulated in 1927, and it is the solution of the following equation

Z = 1− e−R0Z , (1.19)

where Z denotes the estimate of an epidemic’s expected final size [171] and

infectious periods are assumed exponentially distributed. But, some years

later was demonstrated that Equation (1.19), is also valid in remarkably

general circumstances.

For example, in 1980, Anderson andWatsons, in [22], proved that the final

size equation (1.19), remains true if infectious periods are gamma distributed.

In 2000, Diekmann and Heesterbeek, extended this assumption to cover an

arbitrary distribution of infectious periods [98]. In [200], Ma et al. showed

that same Equation, is invariant to models that include a stage during which

infectives are isolated and/or a latent stage and/or multiple infectious stages.

In addition, the above equation is unchanged when transmission rates of

infectious individuals, are arbitrarily distributed.

The final size of an epidemic is influenced by the human behaviour and

this effect has been widely analyzed. For example, in [68], Brauer et al.
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studied how having knowledge about the severity of an infectious disease

affects the transmission when epidemic is produced by a serious infectious

disease. In this situations, individuals can modify their social habits to avoid

the infection. In consequence, a contact rate that decreases in time can be

considered and the epidemic size decreases considerably. As an application of

his methodology, final sizes were calculated for the Sierra Leona and Guinea

outbreaks, in 2014. For both epidemics, authors demonstrated knowing the

severity of the Ebola virus produced more realistic and smaller estimated

values of the final epidemic size than estimates that did not do. Gart, in

1968, [125] extended the original Equation (1.19) to the situation where the

initial population of susceptible individuals is divided into two classes with

different infection rates. A recent work that deals with a similar situation was

conducted by Magal et al. in [201]. The authors divided the population in

two classes, the super spreader individuals (highly contagious and capable of

spreading disease to an unusually large number of people) and the non-super

spreader individuals. The authors studied the final size of the epidemic for

each sub-population and focused on the role of super spreaders, in the context

of the SARS outbreak in Singapore, in 2003. Another studies suggested that

homogeneous mixing population assumptions predicts an unrealistically large

final size of an epidemic. Many researches have included detailed accounts

for heterogeneities in contact structure, to obtain results in a more realistic

scenario. We refer the interested reader to [27, 288, 215, 177] to extend the

knowledge about the impact of host heterogeneity on the structure of the

final size equation under a deterministic approach.

Ball, in 1985, [48] generalized Gart’s result to stochastic epidemics mod-
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els, where individuals vary in their susceptibility to the disease, though the

exact values of the susceptibilities are not known. The author proved that

assuming an average infection rate, for the transmission of an infectious dis-

ease, offers increased outcomes of spread of disease under both deterministic

and stochastic form.

Under a stochastic approach, it can be obtained the probability distribu-

tion of the final size. There is a large number of methodologies to calculate

the probability mass function. In 1953, Bailey in [46], analyzed a stochas-

tic SIR epidemic model and calculated the probability mass distribution of

the total number of infected individuals solving a set of doubly recurrent

relations. Later, in 1955, Whittle [296] showed that this probability mass

function can be obtained by solving a set of single recurrent relations. In

addition, author provided a stochastic equivalent to Kermack-McKendrick

total size equation (1.19). Another methodologies were considered by House

et al. in [160], where authors proposed a technique, based on Monte Carlo

simulations and on Sellke’s method (full method is described in [260]), to

simulate the final size for outbreaks with arbitrary recovery period distribu-

tions. Moreover, several methods involving Markov chains were detailed in

[160], for evaluating the probability mass function of the final size, for homo-

geneous finite populations and also for heterogeneous and large populations.

In [63], Black and Ross presented a new method to calculate the final size

distribution applicable to homogeneously mixing Markovian models. The

authors used the called degree-of-advancement (DA) representation of the

stochastic process, which considers the epidemic process as a random walk

ending in an absorbing state, and obtained the final size of the outbreak from

62



Chapter 1

a probability tree. There are additional methods to determine the probabil-

ity mass function of the final size of an epidemic involving transforms, matrix

and spectral approach, approximations and asymptotic results. We refer the

interested reader to [167, 222, 204, 212, 27, 50, 32, 51, 71, 219] to explore

alternative methodologies.

Under a stochastic Markovian approach, several incidence measures were

described. For example, for the SIS model, an infection reintroduction is

considered by Stone et al. in [270]. The authors analyzed the maximum

number of infectives, the total number of infections produced by an infec-

tious individual during an outbreak, the individual’s probability of becoming

infected, the mean number of individuals infected and the number of infec-

tions per individual among others for an SIS model. In [37], Artalejo et

al. provided factorial moments and probability mass functions for the final

size of an epidemic until its eradication and also during a fixed period, for

SIR an SIS models. Theoretical analysis relies on generating functions and

forward-elimination-backward-substitution arguments, providing updated in-

formation about the severity of the outbreak, at each time t ≥ 0. This is a

distinguished feature in comparison with the existing literature because they

analyze the size of an epidemic even, in transient regime.

In this context, in [36], same authors studied the maximum number of

simultaneous infected individuals in an SIS model. This descriptor is use-

ful to measure the severity of an outbreak and it denotes the “peak size”

of the epidemic curve. It also provides substantial information about the

necessary resources on demand, during an epidemic. In [42], the authors

analyze the number of infected on a least one occasion, during an outbreak,
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for an SIS model. In addition, mass probability, generating functions and

factorial moments for the number of infections per individual are investi-

gated. López-Garćıa et al. in [194], studied the final size and the maximum

number of individuals simultaneously infected during an outbreak assuming

heterogeneous mixed population and small networks. The author proposed

a structure by levels and sub-levels of the state space of the Markov chain

involved that permits to study the propagation dynamics in a matrix form.

Efficient algorithms to compute the distributions of the total and the max-

imum size of the epidemic are provided. In [21], Amador et al. considered

an SEIR model with non-linear incidence rate and limited resources to study

the total number of cases of infection and also the maximum number of

simultaneous infective individuals in an outbreak.

To complement the literature, we refer the interested reader to [49, 51,

163, 219], where authors described several incidence measures for more re-

fined and pragmatic models, including household, multi-population and ru-

mours, are described. To explore incidence measures, in the framework of

queuing theory, we refer to [221, 262, 35, 39, 34], where several descriptors

are applied to assess an optimal number of customers to avoid congested

systems.

For these cases, among others, it is important to provide information

about the propagation dynamics in terms of the length of an epidemic.

1.4.3 Time measures

Time measures are essential in characterizing the expansion of an infectious

disease. They are useful to assess if incidence rates and case numbers, have
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changed over time and to measure the length and persistence of an epidemic

process. They are also practical to quantify the persistence of the infection

and the velocity of transmission.

Health control strategies depend not only on their intrinsic efficacy, but

also on the time needed for their implementation. For example, for diseases

that occur seasonally, health experts can anticipate their appearance and

implement control and prevention strategies in advance to avoid severe out-

breaks. In this section, we present some time measures as time to extinction,

time to reach a number of infections, time to infection and recovery time of

a selected individual; among others.

Probably the extinction time is one of the most studied measure in epi-

demic modelling. Under a deterministic approach and assuming the constant

size population hypothesis, this measure is not very practical. By definition,

the endpoint of an epidemic process is ambiguous since the information about

the size of each compartment, is represented by percentages that never reach

zero. In consequence, a threshold as the basic reproduction number, R0, is

required, to determine if extinction may occur.

Some studies provided approximations of the stochastic versions apply-

ing a deterministic approach. For example, in [216, 217], the author demon-

strated for SI, SIS, SIR, and SIRS models, that these approximations are

valid for sufficiently large population sizes. Conditions for validity of the

approximations are given for each of the models analyzed and also for the

corresponding deterministic models. It is noted that, some deterministic

models are unacceptable approximations of the stochastic models, for a large

range of realistic parameter values. In [26], the authors provided asymptotic
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approximations for the extinction time, for large population sizes, which vary

according to the values of R0 and the number of initial infectives. In [237],

author provided a further approximation for large population sizes. In [13]

and [12], Allen and the rest of the authors analyzed relationships between

deterministic and stochastic thresholds for disease extinction in continuous

and discrete-time epidemic models. In a deterministic framework, the litera-

ture is limited [205, 3]. A study conducted by Aliee et al. [7], focused on the

computation of the distribution in predicted extinction times, which had not

been done elsewhere. The authors, developed a basic scheme to study the

peri-elimination phase, for an infectious disease, using a simplified SIS model.

They used solutions of the corresponding forward Kolmogorov equations, to

predict the point of infection extinction in deterministic solutions and ex-

tended this framework, to estimate the extinction time of more complicated

infection dynamics.

Under a stochastic approach, the time to disease eradication has been

widely studied. Norden, in [226], analyzed the distribution of the extinction

times for a stochastic logistic process and showed that it is a gamma-type

distribution. The author provided explicit expressions for the mean time

to extinction given an initial state. Highers moments were computed us-

ing backward Kolmogorov equations. Furthermore, a consideration of the

process, conditioned on non-extinction, is showed to be an effective way of

obtaining a large t (time) description of the unconditioned process. In [216],

N̊asell analyzed the extinction time for the SIS model assuming constant

and finite population and demonstrate that, if the epidemic process starts

in the quasi-stationary state, the time to extinction follows an exponential
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distribution, with mean 1/(γq1), where q1 is the quasi-stationary probability

of having a single infective individual. In [11], Allen et al. analyzed numeri-

cally, the distribution of the extinction time for several epidemic models and

in [133], Goel et al. applied a Laplace transform method to obtain moments

of the distribution of the extinction time for several epidemic models. Similar

studies were addresses by Oppenheim et al. [230] for a model on chemical re-

actions, by Cavender, in [79], for birth-and-death processes, by Bartholomew

[55] for social diffusion process and by kryscio et al. in [180] who combined

and extended previous results to obtain an approximation to the mean time

to extinction, for the standard SIS epidemic model. When a single initial in-

fective individual is in the population, closed expressions for expected values

and standard deviations of the extinction time were calculated by Newman

et al. [223]. A spectral decomposition is applied to study time to extinction

by Keilson et al., in [168]. Assuming an isolated population, heterogeneous

contacts and an SIS model, Economou et. al [106] analyzed the time until

extinction using an appropriate labeling of the states of the involved CTMC.

The length of this outbreak was described as a phase-type random variable

and its Laplace transform and moments were computed applying a forward

elimination backward substitution method. An extension of this work is con-

ducted by Gómez-Corral et. al in [139], where authors analyzed first-passage

times to higher levels of the labeled state space and supplied a numerical

analysis of an epidemic model for the transmission of varicella-zoster virus

within a nursing home.

For stochastic SIR and SIS models, theoretical and computational results,

regarding extinction time or the time to reach a specific state, are included in
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[42, 38]. We recall that, for the general SIS and SIR models on isolated pop-

ulations, the epidemic process ends when the number of infective individuals

reaches 0. In contrast, when infectious diseases can be recurrent, it is useful

to provide alternative measures as an indicator of the disease spread as the

time until reach a number of infections. The time to reach a number of infec-

tions has been widely analyzed. For example, in [270], Stone et al. consider

a stochastic SIS model with an external source of infection and investigate

the time to reach 0 infectives, conditioned the current number of infected in-

dividuals. The authors also computed expressions for the moments applying

generating functions and demonstrated that after reached 0 infected individ-

uals in the population, the process will remain in this state for a period of

time that is exponentially distributed with mean 1/(ξN). Artalejo et al. [42]

studied the time to reach an individual run of infections for a birth-and-death

model and the time that the epidemic needs to reach certain critical levels

when dealing with an SIR model. In [20], Amador et al. incorporated an

additional compartment for quarantined individuals to an SIS model with

limited carrying capacity. The focus is on the analysis of the length of an

outbreak and on the time until the quarantined compartment is full for the

first time. The authors applied matrix-analytic methods to characterize the

arising phase-type random variables and their investigation revealed the im-

portance to quarantine individuals as a strategy for controlling an epidemic

process.
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Measuring Infection

Transmission in a Stochastic

SVI Model with Infection

Reintroduction and Imperfect

Vaccine

This Chapter is oriented to quantify the potential transmission of an infec-

tious disease that does not confer immunity, trough reproduction numbers,

taking into the account vaccination to control its spread. The underlying

mathematical model is the SVIS model described in Section 1.3.2.1.

The title of the Chapter matches the title of the published paper [121]. We

point out that notation SVI, appearing on the publishing paper, corresponds

to the above mentioned SVIS model.
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A printed version of [121] is included at the end of Chapter 2, along with

scientific information regarding the academic journal where manuscript is

published.
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2.1 Background

In this research work, we consider the stochastic SIS-type model with an

additional compartment of vaccinated individuals and external source of in-

fection, SVI, described in Section 1.3.2.1, where the evolution of the infec-

tious disease, at each time point t, is represented in terms of a bidimensional

CTMC.

We focus on the study of the potential transmission of the infectious

disease for the SIS-type model with external source of infection in a post-

vaccination context. We derive analytical and algorithmic results involving

the exact and population reproduction numbers (Re0, Rp) which were de-

scribed in [41] and in Section 1.4.1.

2.2 Objectives

In this research work we carry out the objectives (a), (b), (c.1), (c.2), (c.5),

(d) and (e) described in Section 1.1.1. In more detail:

We construct the stochastic SVI model and we explore the long-term

behaviour of the epidemic process, that are objectives, (a) and (b).

We study the effect of vaccination on the spread of an infectious disease and

its potential transmission by describing the exact reproduction number, Re0

and the population reproduction number, Rp in order to carry out purposes

(c.1) and (c.2).

Objectives (d) and (e) are reached by providing a comprehensive sensitivity

analysis taking into the account several possibilities in the selection of the

model parameters and showing several numerical examples.
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Finally, we applied these measures to set an appropriate vaccine coverage that

guarantees herd immunity during an epidemic that is the objective (c.5).

This investigation is a first approach to investigate the optimal policies

to control an epidemic process that will be described in the Chapter 3.

2.3 Methodology

In this investigation we apply the methodology described in Section 1.1.2.

In more detail, we analyze the behaviour of the Markov chain involved

by applying the specific techniques of the stochastic processes.

To compute probability mass functions and moments of the discrete ran-

dom variables, Re0 and Rp, we apply first-step arguments, conditioning on

the possible transitions out a fixed state, to derive a set of linear equations

involving mass and generating functions and moments of the random variable

of interest. We solve these linear system of equations applying matrix and

Gaussian elimination methods.

2.4 Conclusions

We obtain that the infinitesimal generator of the CTMC has a bi-diagonal

structure that guarantee that matrices involved in the theoretical results are,

at most, tri-diagonal and diagonally dominant. In consequence, the linear

systems involved can be solved efficiently applying matrix methods and a

simplified form of the Gaussian elimination algorithms.

The speed of these schemes depends on the population size and model param-
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eters and we only present numerical results for moderate sizes populations.

The numerical analysis shows that probability mass functions, present long

right tails. Consequently, to avoid prolonged computations we use a stopping

criterion that consists on iterate the algorithms provided, until the 95% of

the mass points are accumulated.

Regarding to the probabilistic behaviour of Re0 and Rp, we appreciate

the following:

We obtain decreasing values of the number of secondary cases produced

by the index case, for increasing values of the external contact rate, ξ. It

means that, when we deal with long external contact rates, there are an in-

creasing number of infection cases produced by individuals that do not are in

the population. In consequence, the marked individual has less opportunities

to spread the pathogen compared with the external source of infection. In

contrast, increasing values of the internal contact rate, β, produce increasing

values of the number of secondary cases produced by the index case. The

effect of the vaccine failure is greater for longer internal contact rates for

both random variables. In particular, there are more cases of infection for

longer probabilities of vaccine failure. This is an expected behaviour because

when a vaccine fails with more probability, there are more possibilities that

the marked individual (the entire population) spreads the pathogen to vacci-

nated individuals. The vaccine coverage has a big impact on the propagation

of the infectious disease. For increasing values of the initial number of vacci-

nated individuals we obtain decreasing values of Re0 and Rp. This reveals the

importance of vaccination in the control of an epidemic process. In addition,

we use Re0 and Rp to obtain the minimum level of initial vaccinated individu-

73



Chapter 2

als and we obtain that, when the internal contact rate increases it is necessary

to rise the vaccine coverage to assure herd immunity in the population.
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tic epidemic model with infection reintroduction. The quantification of the spread 
of the disease is modeled by a continuous time Markov chain. A well-known meas-
ure of the initial transmission potential is the basic reproduction number R0 , which 
determines the herd immunity threshold or the critical proportion of immune indi-
viduals required to stop the spread of a disease when a vaccine offers a complete 
protection. Due to repeated contacts between the typical infective and previously 
infected individuals, R0 overestimates the average number of secondary infections 
and leads to, perhaps unnecessary, high immunization coverage. Assuming that 
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1  Introduction

Mathematical modeling is an essential tool to represent the progress of an epi-
demic through a population. It is commonly accepted that the work of Kermack 
and McKendrick (1927) is the prototype of almost all epidemiological models 
based on a classification of individuals by their epidemic status. Since then, many 
other compartmental models have been developed to investigate a diverse range 
of communicable diseases to obtain a better knowledge of their transmission 
mechanisms (Anderson and Britton 2000; Kretzschmar et al. 2001; Aguiar et al. 
2010; Artalejo and Lopez-Herrero 2014; Liu et al. 2018).

A common assumption is that the communicable disease spreads in a com-
munity of constant size. The population can be closed in the sense that infectious 
individuals can infect only other individuals within the population under study 
during the epidemic’s time span. However, assuming reintroduction of the dis-
ease through contact with infected individuals from other areas could represent a 
more realistic scenario (Marchette and Wierman 2004; Stone et al. 2007; Amador 
2016).

After infection, it is assumed that patients recover due to their own immune 
system which acts as a body’s defense force against germs and other invading 
substances. Hence, to reduce the incidence of an infectious disease requires 
improving sanitary and living conditions. In that sense, we cannot ignore the 
impact of vaccination on this reduction, especially in the developing world. Vac-
cines activate the immune system’s capacity of producing antibodies to fight dis-
eases without exposing it to diseases-producing pathogens. If a vaccinated per-
son comes into contact with the disease for which she/he has been vaccinated, 
her/his immune system recognizes the invading germs and immediately produces 
the antibodies that will kill foreign invaders. Generally, vaccines provide immu-
nity similar to that acquired from the natural infection, and duration of protection 
varies depending on diseases and also on vaccine strains. Lifelong immunity is 
not always provided by vaccination and usually several doses of vaccine may be 
required. Furthermore, the immune response may wane over time and it is neces-
sary to administrate new doses of vaccine to increase or restore immunity.

As it is an effective method of disease control, recent epidemiological models 
(Kribs-Zaleta and Martcheva 2002; Arino et al. 2003, 2010; Ball and Sirl 2013; 
Samanta 2015; Ball and Sirl 2018; Li and Zhang 2019) have added a vaccina-
tion compartment and vaccination strategies into their mathematical model. Some 
papers discussing the impact of vaccination on the spread of an epidemic assume 
complete protection (Iannelli et al. 2005; Alexander et al. 2006; Ball et al. 2007; 
Lin et  al. 2014; Eckalbar and Eckalbar 2015; Guo 2017) but even vaccine effi-
cacy, as measured by observational studies, is not 100% (e.g., measles: 90−95%, 
mumps: 72−88% or rubella: 95−98%) and depends on internal or individual fac-
tors, as well as on the dose and strain of the vaccine virus (Demicheli et al. 2012). 
In scientific literature, vaccine efficacy and effectiveness are often used inter-
changeably. Vaccine efficacy represents the reduction in the risk of infection at 
individual level under optimal condition (e.g., randomized controlled trials) while 
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vaccine effectiveness compares rates of the transmission of the disease between 
vaccinated and unvaccinated individuals once the vaccine is approved for use in 
the general population.

The SIS model with imperfect vaccine has been studied from a deterministic 
point of view in the papers by Moghadas (2004) and Safan and Rihan (2014), under 
nonlinear incidence in Xiao and Tang (2010) and Yang et al. (2015), and with inclu-
sion of a latency period as well as psychological effects in both susceptible and vac-
cinated individuals in Cheng et al. (2015). A SIV model with stochastic perturba-
tions is discussed in Liu et al. (2018) and López-García (2016).

The above-mentioned studies deal with large populations, but transmission pat-
terns become quantitatively different when a small population is involved. Firstly, 
individual variations of infectivity, recovery periods and vaccine protection, even 
for a homogeneous social group, should be taken into account. Moreover, when the 
susceptible population becomes depleted the extent of the epidemic is interrupted 
and, for closed populations, the extinction of the disease is possible (Keeling and 
Ross 2008).

The aim of this paper is to quantify the spread of an infectious disease that does 
not confer immunity, within a population that is partially protected against the 
disease by a vaccine. A continuous time Markov chain (CTMC) model represents 
changes in the composition of infected and vaccinated classes. Two random varia-
bles will quantify the transmission of the epidemic process with reintroduction: Re0 , 
the number of infectious cases caused directly by the first infected individual, and 
Rp , which is the number of infectious cases caused by any infectious spreader. These 
random variables act as stochastic counterparts to the basic reproduction number, 
R0 , and more specifically the control reproduction number, Rc , when there is an 
available vaccine.

In the literature, the term herd-immunity threshold refers to the critical propor-
tion of immune individuals that is needed to interrupt epidemic transmission in a 
population. There is a simple relationship between herd-immunity coverage and the 
basic reproduction number. If a perfect vaccine is available and a fraction f of the 
population is vaccinated, then the disease will not spread if (1 − f )R0 < 1 . In general 
terms, we can represent the quality of a vaccine by a measure of the vaccine imper-
fection h ∈ [0, 1] , with h = 0 indicating a perfect vaccine, and h = 1 a useless vac-
cine. For imperfect but not useless vaccines, the critical vaccination coverage level 
to eradicate the infection is related to the proportion (1 − 1∕R0)∕(1 − h). In any case, 
herd immunity depends on estimates of R0 , and is the result of a reduction in viral 
transmission caused by removing vaccinated individuals from the susceptible class. 
We will investigate the spread of the disease directly, at any time, by updating the 
current population state, and we will apply our alternative measures to control dis-
ease spread by fixing an adequate vaccine coverage level.

The structure of the paper is as follows. In Sect. 2, we describe the SIV stochastic 
model with infection reintroduction and summarize results for its long term behavior 
in terms of the reintroduction parameter. Section  3 introduces the proposed random 
variables, Re0 and Rp , as measures of the infection transmission in a partially vacci-
nated population. Theoretical and algorithmic results will provide probability mass 
functions and moments for Re0 and Rp , depending on the initial vaccine coverage and 
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effectiveness. Section 4 illustrates the applicability of the algorithmic results and pre-
sents several qualitative facts regarding the infection transmission. Finally, we present 
some concluding remarks and tentative future research lines.

2 � Model Description

We consider a homogeneous and uniformly mixing population of constant size, N, 
where individuals are affected by a contagious disease. This disease is transmitted by 
direct contact with an infected individual. The population is not isolated, so we assume 
that there is an additional source of infection due to external contacts. We suppose 
that some individuals in the population have been protected against the disease with 
an available vaccine that confers immunity, but it is not a perfect vaccine and some 
contacts between vaccinated and infectious individuals produce an effective contagion. 
Once a vaccinated individual gets the infection, he no longer belongs to the class of 
individuals that have been vaccinated and he belongs to the infective class while he is 
infectious. Recovered individuals become susceptible to the disease, no matter if they 
were previously vaccinated or not. Consequently, individuals in the population are clas-
sified into three separate classes, namely susceptible, vaccinated and infected. Vaccina-
tion was implemented at t = 0 and no vaccination will take place after this epoch.

In general terms, the underlying mathematical model involves a SIV model, where 
movement of individuals among the three epidemiological classes is shown in Fig. 1, 
with S denoting the class of susceptible individuals, I denoting the class of infected 
individuals, and V denoting the class of vaccinated individuals.

At any time t > 0 , the state of the epidemic is described by random variables 
S(t), V(t), I(t) , that record the number of susceptible, vaccinated and infective individu-
als, respectively, at time t. According to the constant size hypothesis we have

We represent the evolution of the disease in terms of a two-dimensional CTMC: 
X = {(V(t), I(t)), t ≥ 0}. Assuming that initially the population contains v0 vacci-
nated individuals, with 0 ≤ v0 ≤ N , the state space of X is � = {(v, i) ∶ 0 ≤ v ≤ v0 , 
0 ≤ i ≤ N, 0 ≤ v + i ≤ N} that contains (v0 + 1)

(
N + 1 − v0∕2

)
 states. Notice that 

once v = 0 the vaccination compartment is empty and the underlying model is the 
standard SIS epidemic one.

Next, we describe the dynamics of the Markov chain, X, in full details. See Table 1 
for a summary of parameters used. The exhaustive description of the events and their 
transition rates is presented in Table 2. Finally, a diagram showing transitions from a 
general state (v, i) ∈ � is depicted in Fig. 2.

S(t) + V(t) + I(t) = N.

Fig. 1   SIV compartmental 
diagram
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To understand the dynamics of the model it is necessary to describe the events 
that cause a change in the current model state (v, i). There are five possible effec-
tive events that are listed in Table 2. 

E1.	� A susceptible individual gets the infection from an infective individual within 
the population.

E2.	� A susceptible individual gets the infection from an external source of infection.
E3.	� Due to vaccine failure, a vaccinated individual becomes infected from an 

infective individual within the population.
E4.	� Due to vaccine failure, a vaccinated individual becomes infected from an 

external source of infection.
E5.	� An infective individual is recovered and becomes susceptible.

Sojourn times at each state in � are independent and exponential random vari-
ables, with rate

Table 1   Parameters of the 
model Population size N

Disease internal transmission rate �

Disease external transmission rate �

Probability of vaccine failure h
Recovery rate �

Table 2   Effective events and their transition rates

Effective event Transition Rate

Susceptible-infected internal contagion (v, i) → (v, i + 1) �i(N − v − i)∕N

Susceptible-infected external contagion (v, i) → (v, i + 1) �(N − v − i)

Vaccinated-infected internal contagion (v, i) → (v − 1, i + 1) h�iv∕N

Vaccinated-infected external contagion (v, i) → (v − 1, i + 1) h�v

Recovery and loss of immunity (v, i) → (v, i − 1) �i

Fig. 2   Transitions among states
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To describe � , the infinitesimal generator of the Markov chain X, we partition 
the state space in levels regarding the number of vaccinated individuals, that is 
� = ∪

v0
v=0

L(v) , where level L(v) = {(v, i) ∈ � ∶ 0 ≤ i ≤ N − v}, for 0 ≤ v ≤ v0 , which 
contains (N + 1 − v) states. Then, we can express the infinitesimal generator of X in 
the following non-null block form

where ��,�∗ , for 0 ≤ v, v∗ ≤ v0 , are matrices of dimension (N + 1 − v) × (N + 1 − v∗) . 
The blocks ��,�−� , for 1 ≤ v ≤ v0 , correspond to transitions due to vaccine failures, 
and the blocks ��,� , for 0 ≤ v ≤ v0 , correspond to transitions within level L(v) that 
are due either to infections of susceptible or recoveries. Non-null sub-matrices are 
described as follows

and

The above block bidiagonal structure of � guarantees that square matrices appearing 
in the forthcoming theoretical results are, at most, tridiagonal and diagonally domi-
nant. Thus, they are non-singular, and linear systems involving these matrices can be 
solved efficiently by a simplified form of the Gaussian elimination algorithm (Golub 
and van Loan 1996).

(1)qv,i =

(
�i

N
+ �

)
(N − v − i) + h

(
�i

N
+ �

)
v + �i.

� =

⎛
⎜⎜⎜⎜⎜⎝

��,�

��,� ��,�

��,� ��,�

⋱ ⋱
���,��−�

���,��

⎞
⎟⎟⎟⎟⎟⎠

,

��,�−� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 h�v

0 h
�

�

N
+ �

�
v

⋱ ⋱

0 h
�

�(N−v)

N
+ �

�
v

⎞⎟⎟⎟⎟⎟⎟⎠

��,� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−qv,0 �(N − v)

� − qv,1

�
�

N
+ �

�
(N − v − 1)

⋱ ⋱ ⋱
(N − v − 1)� − qv,N−v−1

�(N−v−1)

N
+ �

(N − v)� − qv,N−v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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2.1 � Stationary Behavior

As we are dealing with a finite state CTMC, the long-term behavior of X depends on 
the structure of communicating classes of absorbing states. In that sense, we notice 
that the reintroduction parameter (that is, the external transmission rate � ) plays an 
important role in the classification of the states in � . If we assume that the popula-
tion is isolated and contagions are produced only by internal contacts; i.e., � = 0 , 
then states with 0 infective individuals are absorbing. This fact and the finiteness 
of the state space guarantee that the process will become absorbed into any of the 
non-communicating classes of absorbing states with probability one. Hence, the epi-
demic extinction is certain and outbreaks involve a single epidemic episode that will 
last a finite expected time.

On the other hand, when 𝜉 > 0 , the state space of the finite CTMC X contains 
a single absorbing set given by L(0) = {(0, i) ∶ 0 ≤ i ≤ N} . Thus, once the process 
enters into L(0) it can move across these states but it can not leave the absorbing 
set. Hence the stationary distribution assigns mass to every state with no vaccinated 
individuals. Which means that, in the model with external source of infection, occa-
sionally the disease is faded away (i.e., I = 0 ) for a short time, but the infection is 
reintroduced at a later time. More specifically, the theoretical long-term distribution 
of the number of infective individuals agrees with the stationary distribution pro-
vided in Stone et al. (2007), Section 2.6.

Figures 3 and 4 show typical trajectories for the CTMC X, starting from a single 
individual infected in a population of 25 individuals, 5 of which are vaccinated. We 
simulate 500 transitions among states and keep track of the time at which a transi-
tion occurs. Each line in Figs. 3 and 4 represents the sequence of time points and the 
number of individuals (infected, vaccinated or susceptible) recorded at these time 
epochs. The paths in Fig.  3 correspond to an isolated population and we observe 
that, approximately, after 2 time units the epidemic transmission will cease. In 
Fig. 4, the reintroduction parameter is � = 0.01 . The path for vaccinated individuals 
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Fig. 3   Simulated trajectories of X when N = 25 , � = 2.5 , � = 0 , h = 0.3 and � = 1.0
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shows that vaccine protection has faded away in about 10 time units, while the paths 
for the infected and susceptible populations settle towards the stationary endemic 
scenario.

3 � Disease Spread

This section deals with a probabilistic characterization of the offspring distribution 
of secondary infections of an epidemic process, at a particular time. We will con-
sider two random variables to measure the spread of the infection, when a first case 
of disease is identified in a population.

In epidemiology, the individual who first brings the disease into a group is called 
the index case and we will start focusing on the number of infections coming from 
the index case during its entire infectious period. Secondly, we will study all of the 
secondary cases produced by the whole set of currently infectious individuals prior 
to the first recovery. The above mentioned measures are the stochastic analogues to 
the well-known basic reproduction number R0 and, more specifically, to the control 
reproduction number Rc , defined as the average number of secondary cases due to 
each infective individual in the presence of control measures. In the case of vac-
cination R0 and Rc satisfy the simple expression Rc = R0(1 − (1 − h)f ) , where h is 
the proportion of vaccinated individuals for which the vaccine has no effect (hence, 
1 − h quantifies the vaccine effectiveness), and f represents the vaccine coverage as 
the initial fraction of the target population that has received the vaccine (Alexander 
et al. 2004; Magpantay 2014).

The Markovian chain, describing the evolution of the epidemic in the compart-
mental model, will play an essential role to develop theoretical results. The eval-
uation of the probability mass distribution of the number of secondary infections 
produced by a selected individual was firstly introduced by Ross (2011) and, in an 
independent way, by Artalejo and Lopez-Herrero (2013). Both papers consider finite 
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Fig. 4   Simulated trajectories of X when N = 25 , � = 2.5 , � = 0.01 , h = 0.3 and � = 1.0
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SIS and SIR compartmental models and present probabilities of the offspring dis-
tribution as the solution of systems of linear equations. Their results generalize the 
study of the infection transmission from the instant of the invasion to any stage of 
the disease progression and show that, for populations of moderate size, the basic 
reproduction number can overestimate the potential transmission of the epidemic 
process.

The analysis of the transmission of an epidemic process has been extended to epi-
demic models with vector-borne infections (Artalejo 2014), heterogeneous contacts 
(Economou et al. 2015; López-García 2016), infective and susceptible immigrants 
(Almaraz et al. 2016), latency periods (Lopez-Herrero 2017), generally distributed 
infectious periods (Gómez-Corral and López-Garcia 2017), Markov-modulated 
interactions (Almaraz and Gómez-Corral 2018) or to models for two-species compe-
tition (Gómez-Corral and López-Garcia 2015).

Our results will reveal the influence of the vaccine, coverage and effectiveness, 
and the reintroduction parameter on the transmission potential of the disease. Hence, 
in the subsequent sections we proceed with theoretical discussions leading to proba-
bilistic results.

3.1 � The Exact Transmission Variable R
e0

In this section we study the potential transmission of an infective process by study-
ing the random variable Re0 , defined as the number of infective individuals that arise 
from contagions caused directly by the index case, that is, the first individual in the 
population able to spread the disease. The objective is to characterize the distribu-
tion of the random variable Re0 and to observe the influence of the initial group of 
vaccinated individuals (i.e., vaccine coverage) on the transmission.

This analysis is directly related to the infectious period of the index case. During 
this period, the underlying Markov chain X evolves in Ŝ , the subset of states show-
ing at least one infectious individual. For practical purposes Ŝ will be partitioned in 
levels, according to the current number of vaccinated individuals, as follows:

Ŝ =
v0⋃
v=0

L̂(v) =
v0⋃
v=0

{(v, i) ∶ 1 ≤ i ≤ N − v}.

First, we introduce appropriate notations for the generating and probability mass 
functions, and for the factorial moments of Re0 conditioned to a specific state (v, i) ∈ 
Ŝ.

𝜑
v,i(z) = E

[
z
Re0 |(V(0) = v, I(0) = i)

]

=

∞∑
k=0

z
k
P
({

R
e0 = k|(V(0) = v, I(0) = i)

})
, for |z| ≤ 1,

x
k

v,i
= P

({
R
e0 = k|(V(0) = v, I(0) = i)

})
, for k ≥ 0,

m
k

v,i
=

{
1 if k = 0,

E
[
R
e0

(
R
e0 − 1

)
⋯

(
R
e0 − k + 1

)|(V(0) = v, I(0) = i)
]
if k > 0.
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In the rest of the section we will develop algorithmic schemes for determining 
�v,i(z) , xkv,i and the moments mk

v,i
 . Firstly, we mark the index case. The homogeneous 

mixing assumption guarantees all-to-all interactions with no preferences in relation-
ship among individuals. Therefore, individuals are all the same and we split transi-
tions in Table 2, associated to contagions, by distinguishing whether or not a new 
infection comes from the index case. That is, we partition contagion rates in the 
following way

Then, for (v, i) ∈ Ŝ , we define new rates �∗
v,i

 , �̃v,i , �∗v and �̃v,i as follows.

A first-step argument, conditioning on the possible transitions out of a fixed state 
(v, i) ∈ Ŝ , shows that generating functions �v,i(z) satisfy the following set of linear 
equations:

where �i,j represents the Kronecker’s delta function, defined as 1 when i = j , and 0 
otherwise.

Equation (6) is the basis to get the mass function of the conditional random 
variable Re0|(V(0) = v, I(0) = i) by numerical inversion, which can be done with 
the help of a Fast Fourier Transform (FFT) algorithm (Tijms 2003). As mass 

(
�i

N
+ �

)
(N − v − i) =

�

N
(N − v − i) +

(
�(i − 1)

N
+ �

)
(N − v − i),

h

(
�i

N
+ �

)
v =h

�

N
v + h

(
�(i − 1)

N
+ �

)
v.

(2)�∗
v,i

=
�

N
(N − v − i),

(3)�̃v,i =

(
�(i − 1)

N
+ �

)
(N − v − i),

(4)�∗
v
= h

�

N
v,

(5)�̃v,i = h

(
�(i − 1)

N
+ �

)
v.

(6)

�v,i(z) =
�

qv,i
+ (1 − �v,0)

(
�∗
v

qv,i
z�v−1,i+1(z) +

�̃v,i

qv,i
�v−1,i+1(z)

)

+ (1 − �i,1)
�(i − 1)

qv,i
�v,i−1(z)

+ (1 − �i,N−v)

(
�∗
v,i

qv,i
z�v,i+1(z) +

�̃v,i

qv,i
�v,i+1(z)

)
,
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functions will be obtained through a direct recursive scheme, we do not go fur-
ther on this point and we proceed to get factorial moments mk

v,i
 , for k ≥ 1.

By differentiating Eq. (6) with respect to z repeatedly k times ( k ≥ 1 ) and evaluat-
ing at z = 1 , we obtain the equations involving factorial moments conditioned to states 
(v, i) ∈ Ŝ.

Using relationships appearing in (2)–(5), we can write a useful and simplified ver-
sion of (7),

We notice that Eq. (8) provides conditional moments of order k based on conditional 
moments of one order less.

Moreover, at any level 0 ≤ v ≤ v0 , the system of equations described in (8), for 
1 ≤ i ≤ N − v and k ≥ 0 , can be written in matrix form as follows

where the auxiliary matrices and vectors involved in (9)–(10) are defined below.
For 0 ≤ v ≤ v0 , �� is an all-ones vector of dimension (N − v) and �� will denote the 

square (N − v) matrix with non null entries

In addition, ��,��� and ��� represent (N − v) diagonal matrices, defined as follows:

(7)

mk
v,i

= (1 − �v,0)

(
�∗
v

qv,i
mk

v−1,i+1
+

�̃v,i

qv,i
mk

v−1,i+1

)
+ (1 − �i,1)

�(i − 1)

qv,i
mk

v,i−1

+ (1 − �i,N−v)

(
�∗
v,i

qv,i
mk

v,i+1
+

�̃v,i

qv,i
mk

v,i+1

)

+ (1 − �v,0)k
�∗
v

qv,i
mk−1

v−1,i+1
+ (1 − �i,N−v)k

�∗
v,i

qv,i
mk−1

v,i+1
.

(8)

qv,im
k
v,i

= (1 − �v,0)h

(
�i

N
+ �

)
vmk

v−1,i+1
+ (1 − �i,1)�(i − 1)mk

v,i−1

+ (1 − �i,N−v)

(
�i

N
+ �

)
(N − v − i)mk

v,i+1

+ (1 − �v,0)k�
∗
v
mk−1

v−1,i+1
+ (1 − �i,N−v)k�

∗
v,i
mk−1

v,i+1
.

(9)��
�
= ��,

(10)���
�
�
= −

((
1 − �v,0

)
(���̂

�
�−�

+ ����̂
�−�
�−�

) + k����̃
�−�
�

)
,

Av(i, j) =

⎧⎪⎨⎪⎩

(i − 1)� if j = i − 1, 2 ≤ i ≤ N − v,

−qv,i if j = i, 1 ≤ i ≤ N − v,�
�i

N
+ �

�
(N − v − i) if j = i + 1, 1 ≤ i ≤ N − v − 1.
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Finally, for k ≥ 0 and 0 ≤ v ≤ v0 , ��
�
 and �̃�

�
 are (N − v)-dimensional vectors defined 

as

and �̂�
�
 is an (N − v − 1)-dimensional vector given by �̂�

�
=
(
mk

v,2
, ...,mk

v,N−v

)T

 , 
where notation T denotes transposition.

Given an integer k,  factorial moments are recursively determined with the help of 
the algorithmic scheme shown in Algorithm 1.

Remark 1  Notice that the random variable Re0 measures the exact number of second-
ary infective individuals arising directly from the index case and, in contradistinc-
tion with R0 or Rc that are defined at the time of the invasion, Re0 can be checked at 
all times. If we set t = 0 for the time at which the invasion starts the initial situation 
is V(0) = v0 and I(0) = 1 , and Re0 = E

[
Re0

||V(0) = v0, I(0) = 1
]
 provides the exact 

amount of expected disease transmission, considering vaccine characteristics such 
as coverage and effectiveness.

Let us proceed to the analytic derivation of the probabilities xk
v,i

 that the index 
case will originate k ≥ 0 new infections, given that the current situation is (v, i) ∈ Ŝ. 

�� = Diag

(
h

(
�i

N
+ �

)
v ∶ 1 ≤ i ≤ N − v

)
,

��� = Diag
(
�∗
v
∶ 1 ≤ i ≤ N − v

)
,

��� = Diag
(
�∗
v,i

∶ 1 ≤ i ≤ N − v
)
.

��
�
=
(
mk

v,1
, ...,mk

v,N−v

)T

,

�̃�
�
=
(
mk

v,2
, ...,mk

v,N−v
, 0

)T

,
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A new appeal to the first-step methodology, by observing transitions out of the state 
(v, i), provides the following set of recursive equations:

For k ≥ 0 and 0 ≤ v ≤ v0 , Eq. (11) for states in L(v) can be written in matrix form in 
the following way:

where notations �� , ��� and ��� represent the same algebraic structures as defined in 
the lines following Eqs. (9, 10).

The remaining algebraic structures appearing in matrix expressions (12) are 
described next: �� and �� are (N − v) square matrices with entries

and the vectors ��
�
 , �̂�

�
 and �̃�

�
 , containing probabilities xk

v,i
 , are

Notice that P({Re0 < ∞|V(0) = v, I(0) = i}) = 1 for (v, i) ∈ Ŝ , because Ŝ is a finite 
union of disjoints sets, and in a finite population the number of infective individuals 
arising from contagions caused by the index case is necessarily finite. Consequently, ∑∞

k=0
xk
v,i

= 1 , for (v, i) ∈ Ŝ.
For every number of contagions k ≥ 0 the equations in (12) are solved recursively 

with the help of Algorithm 2. In order to determine mass distribution functions, a 
stopping criteria should be provided to avoid longer computation runs. In fact, 
numerical results appearing in Sect.  4 come from applying both recursive Algo-
rithms 1 and 2. More specifically, those results dealing with Re0-distributions for a 

(11)

qv,ix
k
v,i

= �k,0� + (1 − �k,0)
(
(1 − �v,0)�

∗
v
xk−1
v−1,i+1

+ (1 − �i,N−v)�
∗
v,i
xk−1
v,i+1

)

+ (1 − �v,0)�̃v,ix
k
v−1,i+1

+ (i − 1)�xk
v,i−1

+ (1 − �i,N−v)�̃v,ix
k
v,i+1

.

(12)
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�
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,

���
�
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�
�−�

+ �𝛽���
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)
− �𝛼���

�−�
�

, k > 0,

B
v
(i, j) =
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(i − 1)� if j = i − 1, 2 ≤ i ≤ N − v,

−q
v,i if j = i, 1 ≤ i ≤ N − v,
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v,i if j = i + 1, 1 ≤ i ≤ N − v − 1,

0 otherwise,
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.
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given initial coverage value, v0 , are obtained from iterating Algorithm 2 until 95% of 
the values of the distribution of (Re0

||V(0) = v0, I(0) = 1 ) is accumulated.

3.2 � The Population Transmission Variable

Another measure of the expansion of a contagious disease is Rp , which provides the 
global spread of the disease by counting all the infections that take place within the 
population, no matter who is the infectious spreader, before the first recovery occurs. 
Rp is a random variable that can be analyzed either at the beginning of the outbreak 
or at any later time, by updating the population situation in terms of the current state 
of the CTMC X.

The aim of this section is to describe the probabilistic behavior of Rp and to study 
the influence of the model parameters on global infection transmission. In particular, 
we are interested in comparing Rc , the control reproduction number of this model, 
with the expected value Rp = E[Rp

||(V(0) = v0, I(0) = 1)] for different scenarios.
First, we derive theoretical results involving the probability distribution and fac-

torial moments of Rp . As in the preceding section, the central tool for our results will 
be the first-step methodology. But to avoid repetitive arguments we provide results 
in a comprehensive manner, leaving out unnecessary details.

Let �v,i(z) be the generating function of Rp , given that the current state of X is 
(v, i) ∈ Ŝ , with factorial moments Mk

v,i
 for k ≥ 1 ( M0

v,i
= 1 ). At any point z,   with 

|z| ≤ 1 , generating functions are the solution of the following tridiagonal set of lin-
ear equations:

for 0 ≤ v ≤ v0 , 1 ≤ i ≤ N − v.

(13)
�v,i(z) =

�i

qv,i
+ (1 − �v,0)

h
(

�i

N
+ �

)
v

qv,i
z�v−1,i+1(z)

+ (1 − �i,N−v)

(
�i

N
+ �

)
(N − v − i)

qv,i
z�v,i+1(z),
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The k− th factorial moments of states (v, i) ∈ Ŝ are the solution of a system of linear 
equations, arising from (13) as usual by taking derivatives with respect to z followed by 
an evaluation for z = 1 , that is expressed in matrix form as follows:

for k ≥ 1 and 0 ≤ v ≤ v0 . Here �� and �̃� are (N − v) square matrices defined by:

Vectors ��
�
 , �̂�

�
 and �̃�

�
 related to factorial moments are defined as follows

The distribution of the random variable Rp , conditioned to any state (v, i) ∈ Ŝ , can 
be obtained by inverting transforms with the help of the recursive equations (13) 
and an FFT algorithm. But, as it was stated in the preceding section, it is possible to 
find a set of equations whose solution provides directly the point mass function of 
Rp : zkv,i = P(

{
Rp = k|V(0) = v, I(0) = i

}
), when (v, i) ∈ Ŝ , for 0 ≤ k ≤ N − 1. Notice 

that when we observe i infected individuals in the population, then the number of 
secondary cases taking place before the first recovery is at most N − i . So, for any 
integer k, with 0 ≤ k ≤ N − 1, zk

v,i
= 0 , whenever i > N − k.

Next, we introduce appropriate vectors to derive probabilities zk
v,i

when (v, i) ∈ Ŝ , 
that is:

Finally, for each level v, with 0 ≤ v ≤ v0, Rp point probabilities come from the fol-
lowing recursive equations:

(14)���
�
�
= −(1 − �v,0)��
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zk
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zk
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zk
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(15)���
�
�
= �� ,
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where �� and �� are a diagonal matrix and a vector, with respective entries qv,i and 
�i , for 1 ≤ i ≤ N − v.

As in Sect.  3.1, Rp factorial moments and probabilities can be computed from 
recursive schemes based on Eqs. (14–16), respectively. Their algorithmic descrip-
tions are similar to Algorithms 1–2 and are not stated in the text, but they are the 
basis for obtaining Rp ’s numerical results appearing in Sect. 4.

Remark 2  In the paper by Artalejo and Lopez-Herrero (2014), the authors presented 
closed form expressions for probabilities dealing with the population transmission 
random variable in stochastic SIS and SIR models. For our SIV model, the math-
ematics is more involved due to the external transmission parameter and, unfortu-
nately, it is not possible to derive general closed expressions for conditional prob-
abilities zk

v,i
 . However, after some algebra we obtained the closed values of point 

probabilities in a few specific situations.

For 0 ≤ v ≤ v0 and 1 ≤ i ≤ N − v we get:

4 � Numerical Illustrations

This section illustrates theoretical and algorithmic results derived in previous 
sections.

We fix the recovery rate as � = 1.0 in all the experiments, so the time unit is taken 
as to be the expected time that an infected individual takes to recover to become 
susceptible again.

In the first scenario, we consider a population of N = 100 individuals, 20% of 
which is partially protected against the infection by a vaccine with effectiveness of 
97%. We are interested in the random variable Re0 , that is the number of secondary 
infections produced by the index case. Hence, the initial number of infective indi-
viduals is I(0) = i0 = 1.

Figures  5 and 6 represent histograms for the distribution of Re0 when we vary 
external or internal contact rates, respectively. Heights indicate the value of the 
probabilities xk

20,1
= P({Re0 = k|V(0) = 20, I(0) = 1}) and colors appearing in both 

figures are depicted for a better distinction among considered situations. In more 

(16)���
�
�
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�−�

+ �̃��̃
�−�
�

, for 1 ≤ k ≤ N − 1,
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{
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}
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z0
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{
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}
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qv,i
,
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.
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detail, Fig. 5 shows mass functions of Re0 when the external transmission rate � is 
0.01, 0.1, 1.0 and 2.0, for a fixed internal transmission rate � = 10.0 . For each rate 
� , mean values of Re0 are 4.2035, 3.7601, 2.5342 and 2.0592, respectively. Moreo-
ver, distributions present a strictly positive mode that occurs with a probability that 
decreases for increasing values of the external rate. This remark is according to the 
intuition because for a fixed internal contact transmission rate � , when the external 
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Fig. 5   Re0 distribution for several values of � , when N = 100 , � = 10.0 and h = 0.03
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Fig. 6   Re0 distribution for several values of � , when N = 100 , � = 0.01 and h = 0.03
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transmission rate increases the index case has less opportunities to spread the dis-
ease compared with outsider infection sources.

Figure 6 displays mass functions corresponding to � = 1.0, 5.0 and 10.0, for an 
external transmission rate � = 0.01 . We get decreasing shape functions for � = 1.0 
or � = 5.0 and the chance that the index case produces no secondary infections is 
55% and 20%, respectively. However, for � = 10.0 , the Re0 distribution is bimodal, 
with an 11.2% chance that the index case recovers before spreading the infection. In 
general terms, long internal transmission rates contribute a higher number of sec-
ondary cases.

Next we focus on the effect of the vaccine coverage on the expansion of the infec-
tion. Figure 7 shows the probability that the index case produces two or more sec-
ondary cases of infection, as a function of the external rate � . This quantity can give 
an idea of what is, for a given infective process, the chance of invading a susceptible-
vaccinated population. Each curve corresponds to a different initial vaccine cover-
age. The remaining parameters of the model are N = 100 , � = 0.01 , and the vaccine 
is efficient in 97% of the vaccinated individuals. Probability increases with � , no 
matter how large the initial coverage v0 is. For a fixed external transmission rate, the 
chance of having at least two infections increases when initial coverage decreases. In 
particular for a small population of 100 individuals affected by a hard measles out-
break, with R0 = �∕� = 18.0 , numerical results evince that a massive vaccination 
policy with two doses of MMR vaccine (measles, mumps, rubella) guarantees that 
the probability of having two or more measles infections from the index case is 0.12, 
while in an unprotected population ( v0 = 0 ) this probability grows up to 0.9.
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Fig. 7   P({Re0 > 1||V(0) = v
0
, I(0) = 1 }) as a function of the internal transmission rate when N = 100 , 

� = 0.01 and h = 0.03
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Now we deal with the expected number of secondary cases produced by the index 
case since their introduction in a population where individuals are either susceptible 
or vaccinated. We observe the influence of the model parameters � , � , h and v0 on the 
expected value of Re0 . Results correspond to a population of N = 100 individuals.

Figures 8, 9 and 10 are contour graphs for Re0 = E[Re0
||V(0) = v0, I(0) = 1 ] , aris-

ing when we combine the influence of two parameters of the model. Different colors 
represent different values for Re0 , as it is indicated by the color code given in each of 
the Figures.

Figure  8 shows the influence on Re0 of the internal and external transmission 
rates, when 20% of the population has received a vaccine which is effective among 
97% of the vaccinated individuals. The average of secondary infections, produced by 
the index case, increases with the internal transmission rate and it decreases when � 
increases, which is in agreement with the comment for Fig. 5. These behaviors are 
more noticeable for large transmission intensities.

Figure 9 displays Re0 as a function of the internal transmission rate, � , and the 
potential risk of vaccine failure, h. We assume in addition that 20% of the population 
is vaccinated and that the rate of external transmission is � = 0.01 . The expected 
number of infections caused directly by the index case increases with � . In the early 
spread of the epidemic, the influence of the vaccine failure risk is relatively small 
for outbreaks showing internal rates � smaller than 6 compared to those with higher 
values for �.

Finally, the contour graph shown in Fig.  10 presents the relationship of the 
internal transmission and vaccine coverage on Re0 . The additional parameters 
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Fig. 8   Re0 as a function of � and � when N = 100 , h = 0.03 and v
0
= 20



414	 M. Gamboa, M. J. Lopez‑Herrero 

1 3

β

h

2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 9   Re0 as a function of � and h when N = 100 , � = 0.01 and v
0
= 20

β

v 

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 10   Re0 as a function of � and v0 when N = 100 , � = 0.01 and h = 0.03
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are N = 100, � = 0.01 and 97% for vaccine effectiveness. An increase of vaccine 
coverage produces a decrease on the initial spread of the infection. For instance, 
administration of two doses of MMR vaccine is 97% effective against rubella 
(basic reproduction number R0 ≈ 6). So, assuming that R0 = �∕� , results in 
Fig. 10 show that the index case transmits an infection like rubella to an average 
of 3.5 people in an unprotected population, and to less than one person when a 
massive vaccination policy was launched in the population. To achieve that the 
infection will not propagate in the population, that is Re0 < 1 , higher immuniza-
tion coverage is needed as � increases.

The boxplot appearing in Fig. 11 corresponds to the distribution of the num-
ber of secondary infections produced by the index case. The box encloses the 
middle central part of the distribution, lower and upper edges of the box corre-
spond to the lower and upper quartile, respectively, and the line drawn across the 
box indicates the median of the distribution; finally, whiskers above and below 
the box cover 95% of the distribution. The objective is to compare the patterns 
of the epidemic when we increase the vaccination coverage, in a population of 
N = 100 individuals, assuming that a 97%-effective vaccine is available to control 
an epidemic process with internal and external transmission rates � = 10.0 and 
� = 0.1 , respectively. This choice for model parameters corresponds to an infec-
tion by varicella-zoster virus (VZV) and the administration of varicella vaccine 
that is 97% effective in the first year after vaccination. A low vaccine coverage 
leads to a large number of secondary infections. In general terms, the number of 
secondary cases produced by the index case decreases when v0 increases. Notice 
that changes on the number of secondary infections are not significant while the 
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Fig. 11   Boxplot for Re0 under several vaccine coverage values when N = 100 , � = 10.0 , � = 0.1 and 
h = 0.03
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vaccination coverage is under 25. This fact shows the importance of the random 
variable Re0 to fix an appropriate vaccination level.

Next we present some results relative to the global spread of the disease. In 
Fig.  12, we compare Rc , Re0 and Rp when the internal transmission rate � varies 
over the interval (0,  20.0). As in previous scenarios, the recovery rate is � = 1.0 . 
Vaccine coverage reaches half of the population and presents an effectiveness 
of 97%. We compare results for populations of N = 100 and 1000 individuals, 
with external transmission rate � = 1∕N . For our parameter selection R0 = � and 
Rc = R0(1 − (1 − h)∕2) = 0.515� . Hence, as a function of � , the control repro-
duction number corresponds to the top line in Fig. 12. We notice that differences 
between Rc and Re0 increase with increasing transmission rates. When � = 20.0 , we 
find Rc = 10.30 and Re0 = 4.36 for N = 100 , and Re0 = 5.67 for N = 1000 . These 
magnitudes show the overestimation of the number of secondary cases of infection 
produced by the index case, as provided by Rc , and how the expected exact repro-
duction number Re0 corrects the effect of the linearization hypothesis commonly 
assumed in the deterministic literature. Regarding the expected population transmis-
sion, Rp , we conclude that it converges to the control reproduction number as the 
population size increases. In fact, for N = 1000 differences between Rc and Rp are 
smaller than 0.4 when � ∈ (0, 20.0) . Hence, the line for Rp is graphically indistin-
guishable from Rc and it is not plotted for N = 1000.

Finally, Table 3 shows the minimal vaccination coverage needed to interrupt epi-
demic transmission; that is, in order to get values smaller than one for the expected 
number of secondary cases coming from the index case. Notice that if the expected 
transmission (either from the whole set of infectious or limited to the index case) 
is less than 1, each infected individual transmits the disease to less than one per-
son, which means that not every case will result in a new individual infection and 
epidemic transmission will cease. We display results for a population of N = 1000 
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Fig. 12   Comparing Rc , Re0 and Rp versus the internal transmission rate when � = 1∕N , h = 0.03 and 
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0
= N∕2
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individuals, where the external transmission rate is taken as � = 1∕N and the inter-
nal rate � is assumed to be at least 1. We compare two scenarios by considering 
that the effectiveness of a vaccine is either 97% or 90%. Values represented by vc 
give the herd-immunity threshold based on the control reproduction number Rc (i.e., 
starting from R0 = �∕� , coverage is chosen as vc∕N > (R0 − 1)∕(R0(1 − h)) in order 
that Rc < 1 ). Additionally, ve0 and vp are minimal critical levels that guarantee that 
expected values Re0 and Rp , respectively, are less than one. Numerical values come 
from an iterative application of Algorithm 1 for Re0 and its variant for Rp , by rais-
ing initial coverage until expected values fulfill the required condition. Any dash 
symbol in Table 3 means that even a 100% vaccine coverage does not guarantee that 
the expected number of secondary cases (measured in terms of Rc , Re0 or Rp ) are 
less than one. Note that, as Rp includes also secondary cases arising from external 
infectious individuals, the minimal critical level vp presents higher values, at a fixed 
transmission rate � , when it is compared with vc or ve0 . On the other hand, when the 
internal transmission rate � increases, higher immunization coverage is needed to 
keep the expansion of the epidemic under control.

5 � Conclusions

This paper studies infectious disease dynamics in a stochastic framework, where a 
Markov chain is used to model disease transmission. The continuous time Markov 
chain models changes in the state of the process defined as the number of individu-
als that are susceptible, infected or vaccinated. Assuming that susceptible and vacci-
nated individuals (due to vaccine failures) can get the infection through both internal 
and external contacts makes the model more realistic than those with only internal 
contacts.

Table 3   Minimum level of 
vaccination with parameters 
N = 1000 and � = 1∕N

h = 0.03 h = 0.1

� vc ve0 vp vc ve0 vp

1 0 0 413 0 0 445
1.5 344 341 556 370 368 695
2 515 513 645 556 554 808
3 687 686 750 741 739 873
4 773 772 809 833 832 915
5 825 823 848 889 888 944
6 859 858 875 926 925 966
7 884 882 896 952 952 982
8 902 902 911 972 972 996
9 916 915 923 988 988 −
10 928 927 933 − − −
11 937 936 942 − − −
12 945 944 949 − − −
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Deterministic models are very useful in understanding the dynamics of infectious 
diseases and estimating important epidemiological descriptors as, for instance, the 
basic reproduction number. In this context, populations are relatively large, and the 
effect of depletion of susceptibles is minor but leads to reproductive numbers that 
overestimate the transmission potential of the disease. Our research involves a pair 
of random variables, Re0 and Rp , as alternative measures of the control reproduction 
number Rc . The stochastic Markovian framework allows us to identify the effective 
event leading to a new contagion. Consequently, we exclude repeated contacts estab-
lished between the index case and already infected individuals, thus correcting for 
the effect of the linearization assumption commonly assumed in the deterministic 
framework and which produces the overestimation of the reproductive potential of 
a disease.

Concerning speed, our numerical algorithms provide results depending strongly 
on the population size and the other parameters of the model. For instance, 
the derivation of Re0 through Algorithm  1 involves factorial moments m1

v,i
 of 

(N − v0∕2)(v0 + 1) transient states, which for the particular choice of N = 1000 and 
v0 = N∕2 implies 375, 750 such states and requires 118 sec CPU time, in a personal 
computer of 2.31GHz and 6GB RAM.

Numerical results regarding vaccination coverage levels should be seen as a first 
approach to investigate optimal policies for controlling the spread of an infectious 
disease. The aim for future research is to develop health policies based on time hori-
zons and warning levels related to the remaining vaccinated individuals.

This research can be generalized to different models for imperfect vaccine 
response by considering vaccines that reduce the probability of infection or that con-
fer protection that wanes over time (see, for instance, Ball et al. 2008; Ball and Sirl 
2018). Additionally, more sophisticated models could be treated by introducing pop-
ulation structures such as households, and also by including assumptions concerning 
to epidemics showing latent infectious periods or lifetime immunity after recovery.
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Chapter 3

The Effect of Setting a

Warning Vaccination Level on a

Stochastic SIVS Model with

Imperfect Vaccine

In this paper we extend the work initiated in [121].

The main feature of this investigation is to provide optimal policies to

control an epidemic process. In this sense, we introduce a threshold for the

number of vaccinated individuals. We focus on two epidemic characteristics:

the time until the number of vaccinated individuals descends to the above

mentioned threshold and the incidence of infections observed until this epoch.

This research was published in [123] and at the end of the Chapter, we

include a printed version of the article adding the academic journal scientific

information.
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Chapter 3

3.1 Background

Considering the epidemic model described in [121] and due to the imperfect

vaccine assumption, eventually, the number of vaccinated individuals can be

drop down. Thus, the group of vaccinated individuals is gradually disappear-

ing and the herd immunity could be lost. In addition, the external source of

infection also contributes to descend the number of immunized individuals

even when there is no infective individuals in the population.

To manage this issue, we introduce a threshold for the number of vaccinated

individuals and we call it, the warning vaccination level, w.When the critical

vaccination level is reached, an alarm is triggered in order to take appropriate

action like planning a re-vaccination.

We introduce two concepts related to w: the sleeping period and the wake-up

time. Both are necessary to alert health authorities about the possibility of

a lost population immunity and to quantify the time to reach the warning

vaccination level.

The sleeping period is the interval time starting at the onset of the epi-

demic and ending when the threshold, w, is reached. The instant when

the number of immunized individuals reaches the warning level is called the

wake-up time, Tw.

To quantify the incidence of infectious cases during the sleeping period, we

define the random variable Nw, that describes the total number of infections

involving non-vaccinated individuals in [0, Tw].
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3.2 Objectives

In this research work we attain the objectives (c.1), (c.3), (c.4), (d) and (e)

described in Section 1.1.1. In more detail:

We describe the random variable, Tw, to measure the speed of transmission

in order to carry out purpose (c.4).

We quantify the disease incidence during the interval (0, Tw] by analysing the

random variable Nw, that is aim (c.3).

Objectives (c.1), (d) and (e) are reached by carrying out general and local

sensitivity analysis. In more detail, these objectives are reached by studying

the relative importance of the model parameters for several numerical exam-

ples for transmission of HPV virus and using derivatives and elasticities for

both random variables.

3.3 Methodology

To study the random variables, Tw and Nw, we exploit the block-structure

of the infinitesimal generator of the CTMC and a set of linear equations sys-

tems are obtained applying first-step arguments, conditioning on the possible

transitions out a fixed state, involving Tw-Laplace transforms, Nw-Generating

and Nw-Probability mass functions.

Moments of both measures are derived by applying to these equations proper-

ties (1.4) and (1.2) in Section 1.1.2. We solve the linear systems of equations

obtained by applying matrix methods.

To assess the influence of the model parameters on the variation and ro-

bustness of the random variables, Tw and Nw, we apply the sensitivity analy-
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sis described in Section 1.1.2, using derivatives of their conditional moments

and elasticities.

3.4 Conclusions

We derive Tw and Nw−Moments and Nw−Probability mass functions by

applying recursive algorithms where a stopping criterion is used to avoid long

iterative runs. Execution times of these algorithms depend on population size

and model parameters and we only present numerical results for moderate

size populations.

Regarding the probabilistic behaviour of the random variable, Tw, we

notice that as a function of the internal transmission rate, β, expected values

have a decreasing behavior. This is reasonable due to increasing values of β

produce increases contacts, contagions and, consequently, the time to reach

the warning level is shorter. For the external contact rate, ξ, we also obtain

this behaviour. When we fix the internal contact rate, β, we obtain that

average values of Tw, increase with the recovery rate, γ. In contrast, we obtain

shorter expected values of the sleeping period, if individuals are protected

by vaccines with high failure probabilities, h. The average time to reach the

warning level increases with the initial coverage, v0. Longer warning levels,

w, produce shorter sleeping periods. We point that, any increase in the time

to reach the warning level, w, will produce an increase in the number of cases

of infection observed during the sleeping period.

For the random variable Nw we obtain that for increasing values of β,

the Nw-probability mass functions are displaced to the right. This is a logic
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behaviour due to there are more contacts between individuals and in conse-

quence, eventually, more infections can be produced to susceptible individ-

uals. As we expected, we obtain more infections during the sleeping period

considering lower warning levels, w.

We carry out a local sensitivity study and, analyzing elasticities, we ob-

serve that changes on β and γ produce more noticeable changes on E[Tw]

and σ[Tw] than the remaining parameters. Regarding measures for Nw the

more influential parameters are the internal contact rate and vaccine failure

probability.

This research work is a first approach to investigate the possibility of an

immediate re-vaccination that is the goal of the next Chapter.
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Abstract: This paper deals with a stochastic Susceptible-Infective-Vaccinated-Susceptible (SIVS) model
with infection reintroduction. Health policies depend on vaccine coverage, v0, that guarantees herd
immunity levels in the population. Vaccine failures occur when an organism develops a disease despite of
being vaccinated against it. After vaccination, a proportion of healthy individuals unsuccessfully tries to
increase antibody levels and, consequently these individuals are not immune to the vaccine preventable
disease. When an infectious process is in progress, the initial vaccine coverage drops down and herd
immunity will be lost. Our objective was to introduce a warning vaccination level and define random
measures quantifying the time until the number of vaccinated descends to a warning vaccination level
(i.e., the so-called sleeping period), and the epidemic size. A sensitivity analysis was performed to assess
the influence of the model parameters on the variation and robustness of the sleeping period and the
number of infections observed within it.
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MSC: 92D30; 60J22; 60J28

1. Introduction

Infectious diseases have a huge impact on human society across the globe and throughout history.
At the moment, people all over the world are concerned about the novel corona-virus disease
(COVID-19) and its dramatic clinical and nonclinical consequences. This is an example of new emerging
diseases (avian influenza, Ebola, SARS, etc.) but old-time significant diseases are still present today
(diphtheria, measles, polio, tuberculosis, etc.). The main purpose for public health is to increase knowledge
about the spread of a disease within a community, with the goal to establish control measures and
surveillance strategies to minimize or to stop viral transmission.

Mathematical models have been used to investigate the dynamics of infectious disease since the first
mathematical model of Bernouilli, proposed in 1760 for smallpox inoculation [1]. In general terms,
there are mainly two mathematical approaches to represent the evolution of an epidemic process:
the deterministic approach whose models rely on differential equations and the stochastic approach
based on models that employ stochastic processes (Markov chains, branching and diffusion processes, etc.).
Historically, deterministic models have received more attention. Although the 1926 stochastic model by

Mathematics 2020, 8, 1136; doi:10.3390/math8071136 www.mdpi.com/journal/mathematics
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A.G. Mckendric [2] preceded his well-known deterministic model in the joint work with W.O. Kermack [3],
the early model passed practically unnoticed. Both types of models play an important role in epidemiology
showing main differences in their asymptotic behavior. According to several authors [4–6], stochastic
modeling of epidemics is important in small populations or to model phenomenon where the epidemic
outcome depends strongly on the variability in demography, disease transmission or environment.

A possible way to formulate a stochastic model is to directly use its deterministic counterpart [7].
It requires defining random variables depending on individual dynamics. In Markov chain models,
the transition probabilities depend on the time between events and the process providing the state of the
population at any time satisfy the Markov property. Stochastic differential equations (SDE) models are the
natural extension of deterministic models, either by adding a noise term to ordinary differential equations
or by randomizing in some sense relevant parameters.

Vaccination is a really effective way to prevent infectious diseases. Vaccines train the body’s immune
system in a way that it can recognize and fight pathogens to which it has not been exposed before. Typically,
vaccines are given to healthy people to keep them healthy. Hence, they are medications with the highest
standards of safety. However a vaccine failure can occur and a proportion of vaccinated individuals do
not develop immunity against its infectious pathogen [8]. The main reasons for this failure are failure of
the vaccine delivery system and failure of the immune response due to inadequacies of the vaccine or
host factors. People that are immune to an infectious disease can impede the transmission of a disease to
vulnerable people, this is called herd protection. An interesting question is to determine the number of
people in a population that should be immunized against a disease in order to practically remove disease
transmission in the population. This threshold, which is called the immunity threshold, varies among
diseases, depending on the reproductive potential of the pathogen. For instance, the measles virus needs
a high and sustained level of vaccine coverage to interrupt disease transmission. Recent outbreaks of
vaccine preventable diseases have arisen in communities with low vaccine coverage because they do not
have herd protection [9].

There is a large number of publications dealing with compartmental models involving vaccination as
a strategy for disease control [10–14]. Susceptible-Infected-Susceptible (SIS) type models are appropriate
for diseases showing repeated infections, where recovery does not confer immunity. Hence, a protective
vaccine alleviates, when available, many of these infections and the associated health and economic issues.

Assuming imperfect vaccination, the SIS model has been studied in a deterministic framework in [15,16],
assuming nonlinear incidence in [17,18] and including a latency period as well as psychological effects in
both susceptible and vaccinated individuals in [19]. A Susceptible-Infective-Vaccinated-Susceptible (SIVS)
model under stochastic disturbance approach is discussed in [20,21], in a population of varying size [22],
or assuming nonlinear incidence in [23].

In this paper, we deal with a stochastic compartmental model, where the propagation of a contagious
disease was modeled in terms of a continuous time Markov chain (CTMC) [7,24–27]. We assumed that
an infectious disease outbreak is taking place within an homogeneous moderately-sized community in
which individuals are identical in terms of social mixing and disease contact or recovery characteristics.
For community protection, a certain number of individuals were vaccinated against the contagious disease
prior to the arrival of the outbreak.

Under the same model assumptions, in [27], the transmission potential of a contagious disease was
analyzed by studying Re0 and Rp, two stochastic descriptors equivalent to the basic reproduction number,
R0. Like R0, the above mentioned stochastic measures provide the minimal vaccination coverage needed
to interrupt epidemic transmission. As the administered vaccine was not perfect, since the onset of the
epidemic, the group of vaccinated people gradually disappears, leaving the whole population unprotected
when the number of vaccinated declines to zero.
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The purpose of the present paper was to introduce a threshold for the number of vaccinated
individuals, say w, that triggers an alarm when the critical vaccination level drops down. We focused
on the sleeping period, defined as the interval of time starting at the epidemic onset and ending when
the warning level w is reached. More specifically, we analyzed both the length of the sleeping period
and disease incidence during this time interval. To measure the strength of the model across parameter
changes and to identify which one of them must be estimated accurately, we conducted a sensitivity
analysis on performance measures of the random variables defined to study the length of the interval and
disease incidence.

The rest of the paper is organized in the following way: Section 2 contains the description of the
stochastic SIVS model with imperfect vaccine and infection reintroduction. Section 3 deals with the warning
vaccination level w, the wake up time, Tw, and the disease incidence, Nw, during the sleeping period [0, Tw].
Theoretical and algorithmic results regarding the distribution of both random variables are provided in
terms of the model parameters. Theoretical results in Section 4 come from the application of matrix calculus
techniques to a perturbation analysis for performance measures of the random variables introduced in
Section 3. In Section 5, we illustrate both theoretical and algorithmic results and present a local sensitivity
analysis applied to human papillomavirus (HPV). Results and main insights are summarized in Section 6.

2. Model Description

The stochastic SIVS model, used to represent the evolution of a contagious disease within a population,
was described in [27]. It refers to a compartmental model where individuals are classified in three groups:
namely, susceptible (S), vaccinated (V), and infected (I). The model describes the movement of individuals
from one compartment to another as it is shown in Figure 1.

Figure 1. Movements of individuals in a Susceptible-Infective-Vaccinated-Susceptible (SIVS) model.

The model tracks the changes in a constant-sized, homogeneous, and uniformly-mixed population
suffering from the contagious disease. This population was not isolated. Hence, infection was transmitted
due to contacts, whether inside or outside the population, with infected individuals.

To prevent disease spread, health authorities launched a vaccination policy and part of the population
received a vaccine that confers immunity. Due to several reasons, the vaccine was not fully effective,
a proportion of vaccinated individuals failed to increase antibody levels and was not immune to the
vaccine-preventable communicable disease. Therefore, a proportion of contacts between vaccinated and
infectious individuals produced new cases of infection. When this occurred, the vaccinated individual
loses vaccine protection and becomes an infected individual.

After recovery, any infected individual became susceptible (i.e., unprotected) to the disease, regardless
of whether or not he was previously vaccinated. There was no immunity after recovery and consequently
any unprotected individual can get the infection several times during an outbreak.

Our mathematical description involved a CTMC that provides the evolution of the disease in terms
of the number of individuals present at each compartment at any time t. In this framework, at time t ≥ 0
we record the number of unprotected susceptible, S(t), vaccinated, V(t), and infected individuals, I(t).
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On the other hand, the constant population size hypothesis implies that S(t) + V(t) + I(t) = N.
Assuming that at t = 0 there are v0 vaccinated individuals, with 0 < v0 ≤ N, the underlying stochastic
model is a bidimensional CTMC

X = {(V(t), I(t)) : t ≥ 0},

with state space S = {(v, i) : 0 ≤ v ≤ v0, 0 ≤ v + i ≤ N}, that has a cardinality of
(v0 + 1)(N + 1− v0/2) states.

As provided in [27], the structure of the infinitesimal generator of X presents a block bidiagonal
structure that is helpful for computational purposes.

Regarding the dynamics and evolution of the disease, we summarize model parameters in Table 1
and we describe the effective events that produce a change in the current state of the epidemic process.
Therefore, Table 2 enlists events jointly with outer transitions and rates. In more detail, the effective events
were the following:

E1. A susceptible individual gets the infection through a direct contact with an infected individual
either within the population or from an external source of infection.

E2. Since the vaccine was not fully effective, a vaccinated individual becomes infected through a
contact with an infectious individual either within the population or from an external source of infection.

E3. An infectious individual recovers and becomes susceptible.

Table 1. Summary of model parameters.

Size of the population N
Rate for disease internal transmission β
Rate for disease external transmission ξ

Probability of vaccine failure h
Rate for recovery γ

Table 2. Outgoing events and their transition rates.

Effective Outgoing Event Transition Rate

Susceptible-Infectious contagion (v, i)→ (v, i + 1) (
βi
N + ξ)(N − v− i)

Vaccinated-Infectious contagion (v, i)→ (v− 1, i + 1) h( βi
N + ξ)v

Recovery and loss of immunity (v, i)→ (v, i− 1) γi

Times spent at each state (v, i) ∈ S are independent and exponentially distributed random variables,
with rates qv,i, depending on the state and on the model parameters, which are as follows

qv,i = (
βi
N

+ ξ)(N − v− i) + h(
βi
N

+ ξ)v + γi. (1)

In more detail, transitions out of a specific general state (v, i) ∈ S are depicted in Figure 2, where the
appearing rates are introduced in order to ease the notation in the sequel. More explicitly, we define
transition rates as follows

γi = (1− δi,0)γi,

λv,i = (1− δi,N−v)(
βi
N

+ ξ)(N − v− i), (2)

ηv,i = (1− δv,0)h(
βi
N

+ ξ)v
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where the symbol δi,j represents the well-known Kronecker delta function, which takes the value 1 if i = j
and 0 otherwise.

Figure 2. Outer transitions from a generic state.

When no vaccination takes place after t = 0 and ξ > 0, the long-term behavior of X is given by the
stationary distribution, which is concentrated in the absorbing set of states with no vaccinated individuals
{(0, i) : 0 ≤ i ≤ N} and agrees with the stationary distribution of the number of infectious individuals in
a SIS model with external source of infection [27,28]. That is, the protection provided by the vaccine fades
away almost surely in finite expected time, leaving the whole population unprotected and vulnerable to
the disease.

The aim of this paper was to introduce a warning vaccination level, w < v0, that alerts health
authorities not only about the danger of a major outbreak but also the need to urge some individuals to
get re-vaccinated.

3. The Warning Vaccination Level

In this section, we analyze the random variables Tw and Nw related to the warning vaccination level, w.
We assume that, for an initial vaccine coverage v0, w is an integer such that 0 ≤ w ≤ v0.

At time t = 0, v0 is the number of vaccine protected individuals and the first case of
infection is detected. During the outbreak, the number of vaccinated individuals V(t) decreases according
to the number of infections that are due to vaccine failure. As soon as the number of vaccine protected
individuals drops to w an alert is triggered.

Hence, given a warning level, we first focus on the time at which the alert is activated. We refer to
the random variable Tw as the wake-up time and we call the random interval [0, Tw] the sleeping period.
Secondly, we put attention on Nw, the number of cases of infection among unprotected people taking place
until the wake-up time, that is, during the sleeping period [0, Tw].

3.1. The Wake-Up Time, Tw

The aim of this section is to analyze the period of time that the infectious process needs to hit the
warning level for vaccination.

It is interesting to know how fast the warning level will be reached to take an appropriate action like
planning a re-vaccination.

Given a warning level for vaccination w, 0 ≤ w ≤ v0, we are interested in the random variable

Tw = in f {t ≥ 0 : V(t) = w},
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which indicates how long the number of vaccinated individuals takes to reach the warning level w.
Additionally, Tw is called first passage time into the set {(w, i) : 0 ≤ i ≤ N − w}. It can be shown that Tw

presents a phase-type distribution [29], that involves the exponential of a matrix, which is a sub-matrix
of the infinitesimal generator of X. In this paper we proceed by using a different approach based on the
first-step methodology.

Let us denote by Ŵ = {(v, i) ∈ S : w ≤ v ≤ v0, 0 ≤ i ≤ N − v}. We are going to study the
probabilistic behavior of the random variable Tw conditioned to the current situation, that is the set
of random variables {(Tw |V(0) = v, I(0) = i ), for (v, i) ∈ Ŵ}. Therefore, we need to identify Laplace
transforms and central moments for these conditioned variables. To ease theoretical derivations, we
eliminate the warning level from the notation of transforms and central moments. Hence, for s ∈ C,
with Re(s) ≥ 0 and (v, i) ∈ Ŵ we define

ψv,i(s) = E[e−sTw |V(0) = v, I(0) = i ],

Mk
v,i = E[Tk

w |V(0) = v, I(0) = i ] = (−1)k ∂k[ψv,i(s)]
∂sk |s=0.

When we condition to the initial situation of the outbreak, we can state some basic results.

P(Tw = 0 |V(0) = w, I(0) = i ) = 1, for 0 ≤ i ≤ N − w. (3)

P(Tw < ∞ |V(0) = v, I(0) = i ) = 1, for (v, i) ∈ Ŵ. (4)

Result (3) is trivially true from the definition of Tw by noticing that the warning level agrees with the
initial number of vaccinated individuals. Result (4) comes from the long-term behavior of the CTMC X.
On one hand, Ŵ is a finite set of transient states. On the other hand, the mean time to absorption, in the set
{(0, i) : 0 ≤ i ≤ N}, is finite. Hence, any level of vaccination will be reached in a finite time almost surely.

Moreover, we notice that Equation (4) gives that

ψv,i(0) = M0
v,i = 1, for (v, i) ∈ Ŵ. (5)

Additionally, from Equation (3), we get that

ψw,i(s) = 1, for 0 ≤ i ≤ N − w, (6)

at any point s ∈ C, with Re(s) ≥ 0.
In fact, the result in Equation (6) will be the starting point to determine the remaining set of Laplace

transforms for a given number of vaccinated individuals v, with w < v ≤ v0.
Let us assume that the initial situation of the outbreak is V(0) = v, and I(0) = i, with w + 1 ≤ v ≤ v0

and 0 ≤ i ≤ N − v. A first step argument conditioning on the exponentially distributed time to the first
transition, out of the state (v, i), gives the following relationship

ψv,i(s) =
γi

s + qv,i
ψv,i−1(s) +

λv,i

s + qv,i
ψv,i+1(s) +

ηv,i

s + qv,i
ψv−1,i+1(s).

That is equivalent to

−γiψv,i−1(s) + (s + qv,i)ψv,i(s)− λv,iψv,i+1(s) = ηv,iψv−1,i+1(s). (7)
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Remark 1. Notice that, at any point s, the right hand side term of Equation (7) just depends on model parameters
and on Laplace transforms of one level less of vaccination. Therefore, it is possible to get the numerical value of
any Laplace transform ψv,i(s) in a recursive way starting from the boundary result (6), in the natural order for v.
With the help of numerical methods for Laplace transforms inversion (see [30,31]) it is possible to calculate probability
distribution functions. Although the numerical inversion is indeed possible, it is many times computationally not
feasible. In our model, the recursive solution of Equation (7) could be particularly useful to get computational results.

Apart from the above observation, Equation (7) is the basis to get the central moments of the wake up
time random variable: Tw.

Firstly, we need to introduce some notation. For any number of vaccinated, v, with w ≤ v ≤ v0 and
any integer k ≥ 0, we denote

Mk
v = (Mk

v,0, · · · , Mk
v,N−v)

′
,

M̃k
v = (Mk

v,1, · · · , Mk
v,N−v)

′

where notation ′ stands for transpose vectors.
In what follows 1j and 0j will represent j−dimensional all-ones and all-zeroes vectors, respectively.
The following theorem provides central moments as the solution of a system of linear equations.

Theorem 1. Given a fixed warning vaccination level w, with 0 ≤ w ≤ v0, and an integer k, k ≥ 0, the central
moments of order k, are the solution of the following system of linear equations:

M0
v = 1N−v+1, for w ≤ v ≤ v0, (8)

Mk
w = 0N−w+1, for k ≥ 1, (9)

RvMk
v = kMk−1

v + DvM̃k
v−1, for k ≥ 1 and w < v ≤ v0. (10)

where Rv and Dv are (N − v + 1) square matrices whose non-null entries are

Rv(i, j) =





−γi, if j = i− 1 and 1 ≤ i ≤ N − v
qv,i, if j = i and 0 ≤ i ≤ N − v
−λv,i, if j = i + 1 and 0 ≤ i ≤ N − v− 1

and Dv(i, j) = ηv,i, for j = i and 0 ≤ i ≤ N − v.

Proof. First we notice that Equation (8) summarizes the result appearing in Equation (5). By differentiating
repeatedly k times Equation (6) with respect to s, and setting s = 0, we get the result appearing in
Equation (9).

For any initial situation (v, i), such that w + 1 ≤ v ≤ v0 and 0 ≤ i ≤ N − v, to obtain higher order
central moments, we take k ≥ 1 derivatives on Equation (7) with respect to s and, after evaluation in s = 0,
we get

−γi Mk
v,i−1 + qv,i Mk

v,i − λv,i Mk
v,i+1 = kMk−1

v,i + ηv,i Mk
v−1,i+1. (11)

This system of equations can be written in matrix form as appears in Equation (10).
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Theorem 1 provides a recursive scheme for the computation of any central moment Mk
v,i, for k ≥ 0

and (v, i) ∈ Ŵ. It is summarized in the following algorithmic scheme (Algorithm 1).

Algorithm 1 Tw− central moments.
For any integer k, 0 ≤ k ≤ N − w, central moments of order k for the random variable Tw are determined
from the following scheme:
Step 1: Set j = 0.

Step 1a: For w ≤ v ≤ v0, set M0
v = 1N−v+1.

Step 2: Set j = 1.
Step 2a: Set v = w and Mj

v = 0N−v+1. If w = v0 go to Step 3.
Step 2b: Set v = v + 1. While v ≤ v0 compute

Mj
v = (Rv)

−1(jMj−1
v + DvM̃j

v−1).

Step 3: Set j = j + 1. While j ≤ k, go to Step 2a.

3.2. Epidemic Transmission during the Sleeping Period [0, Tw]: Number of Infectious Cases

In this section, we investigate the epidemic transmission until the number of individuals in the
vaccinated compartment drops to the warning level, w. More precisely, we observe the number of cases of
infection that take place in the time interval [0, Tw]. We recall that a vaccinated individual, once infected
and subsequently recovered becomes susceptible to the infection. Hence, the epidemic final size in the
time interval [0, Tw] amounts to (v0 − w) infections due to vaccine failure plus the number of infections
related to susceptible individuals (i.e., unprotected people).

We introduce a random variable, Nw, that provides the number of infections of unprotected
individuals that take place during [0, Tw]. As Tw was analyzed conditioned on the population description
at t = 0, we study a conditional version of Nw, that is (Nw|V(0) = v, I(0) = i), for (v, i) ∈ Ŵ.

First, we notice that when the warning level is chosen equal to the vaccine coverage at t = 0 no
infections of susceptible can occur, that is

P(Nw = 0|V(0) = w, I(0) = i) = 1, for 0 ≤ i ≤ N − w. (12)

Equation (12) shows that, for this particular initial condition, Nw is a random variable of finite
support; however, in general, this property is not satisfied when the warning level is fixed below the initial
vaccination level. Instead of that there is an unbounded set of outcomes for the number of infections
of susceptible individuals taking place in the sleeping period [0, Tw]. Nevertheless, from the long-term
behavior of the CTMC X and the result shown in Equation (4) we get

P(Nw < ∞|V(0) = v, I(0) = i) = 1, for (v, i) ∈ Ŵ. (13)

We recall that any outbreak of the infectious process is detected as soon as the first infection occurs.
Consequently, we assume that at time t = 0 the population is composed of v0 vaccinated, a single infectious
individual and (N − v0 − 1) susceptible.

Let us fix a warning vaccination level w, with 0 ≤ w ≤ v0. To study the probabilistic behavior of
(Nw|V(0) = v0, I(0) = 1) we introduce a set of auxiliary variables where, in order to ease theoretical
derivations, the warning level has been removed from the notation. Hence, for any (v, i) ∈ Ŵ, we denote

Nv,i ≡ (Nw|V(0) = v, I(0) = i).
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Probabilistic behavior of any random variable Nv,i, with (v, i) ∈ Ŵ, is analyzed from its mass
probability and generating functions, and factorial moments. Notation for probabilities, generating
functions and factorial moments is as follows:

xk
v,i = P(Nv,i = k), for k ≥ 0, (14)

φv,i(z) = E[zNv,i ] =
∞

∑
k=0

zkP[Nv,i = k], for z ∈ C, |z| ≤ 1,

mk
v,i =

∂k[φv,i(z)]
∂zk |z=1, for k ≥ 0.

Observe that, due to the result shown in Equation (13), the factorial moments of order zero are

m0
v,i = φv,i(1) = 1, (15)

and we have that mk
v,i = E[Nv,i(Nv,i − 1) · · · (Nv,i − k + 1)], for k ≥ 1.

As a consequence of the Markovian property and of Equation (12) we obtain some trivial results
when the number of vaccinated individuals reaches the warning level.

xk
w,i = δ0,k, for 0 ≤ i ≤ N − w, (16)

φw,i(z) = 1, for 0 ≤ i ≤ N − w and |z| ≤ 1, (17)

mk
w,i = δ0,k, for 0 ≤ i ≤ N − w and k ≥ 0. (18)

Let us begin by exploring generating functions. As we did with the analysis of Tw, we use a first step
argument conditioning on the first effective event leading to an outer transition from a state (v, i) ∈ Ŵ to
get the relationship

φv,i(z) =
γi
qv,i

φv,i−1(z) +
λv,i

qv,i
zφv,i+1 +

ηv,i

qv,i
φv−1,i+1(z).

That is equivalent to

− γiφv,i−1(z) + qv,iφv,i(z)− λv,izφv,i+1(z) = ηv,iφv−1,i+1(z). (19)

Equation (19) is the starting point in the derivation of factorial moments of the random variables Nv,i,
for (v, i) ∈ Ŵ. We follow the lines stated in the previous section and, for any integer k ≥ 0, we obtain
factorial moments of order k as the solution of a system of linear equations. First, we introduce some
notation for vectors involving moments mk

v,i that will appear in the Theorem 2 that summarizes the
complete set of results for computing any factorial moment

mk
v = (mk

v,0, · · · , mk
v,N−v)

′
,

m̂k
v = (mk

v,1, · · · , mk
v,N−v, 0)

′
,

m̃k
v = (mk

v,1, · · · , mk
v,N−v)

′
.
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Theorem 2. Given k ≥ 0, factorial moments of order k in the set {mk
v,i : (v, i) ∈ Ŵ} are recursively computed

from the following equations:

m0
v = 1N−v+1, for w ≤ v ≤ v0, (20)

mk
w = 0N−w+1, for k ≥ 1, (21)

Rvmk
v = kLvm̂k−1

v + Dvm̃k
v−1, for k ≥ 1 and w < v ≤ v0, (22)

where matrices Rv and Dv are defined in Theorem 1 and Lv is a diagonal matrix of dimension N − v + 1,
with non-null elements λv,i, for 0 ≤ i ≤ N − v.

Proof. We start from the explicit results shown in Equations (15) and (18), which can be expressed in
matrix form as appears in Equations (20) and (21) in the statement of this theorem.

Remaining moments will arise by taking k ≥ 1 derivatives regarding z, followed by an evaluation at
z = 1, in Equation (19). In that sense, for any initial state (v, i), with w + 1 ≤ v ≤ v0 and 0 ≤ i ≤ N − v,
we get

−γimk
v,i−1 + qv,imk

v,i − λv,imk
v,i+1 = kλv,imk−1

v,i+1 + ηv,imk
v−1,i+1, (23)

which can be expressed in matrix form as it is shown in Equation (22).
Notice that the right hand side of Equation (23) depends on moments of one order less and moments

related to one vaccinated individual less. Hence, we can solve the system of equations given in (22) in a
recursive way starting from the explicit results that appear at Equations (20) and (21).

Remark 2. Another algorithm can be written for the recursive computation of factorial moments. The scheme is
similar to the one shown in the Algorithm 1 with the natural changes in notation and substituting computation in
Step 2b by

mj
v = (Rv)

−1(jLvm̂j−1
v + Dvm̃j

v−1).

For any initial situation (v, i) ∈ Ŵ, the distribution of Nv,i, the number of infections taking place in
the interval [0, Tw], could be computed recursively by inverting generating functions φv,i(z) with the help
of the Equations (17) and (19), and applying a fast Fourier transform (FFT) algorithm [32]. Instead of that,
in Theorem 3, we derive a system of equations whose solution provides directly the mass probability
function of Nv,i, introduced in expression (14).

As in the preceding sections, first, we set out some adequate notation. Let define a new set of vectors
associated to the probability of having k ≥ 0 infections of unprotected individuals during the sleeping
interval [0, Tw]

xk
v = (xk

v,0, · · · , xk
v,N−v)

′
,

x̂k
v = (xk

v,1, · · · , xk
v,N−v, 0)

′
,

x̃k
v = (xk

v,1, · · · , xk
v,N−v)

′
.

Theorem 3. For any initial state (v, i) ∈ Ŵ, the distribution of the conditional random variables Nv,i is given by
the probabilities {xk

v,i, k ≥ 0}, which are determined from the following equations:

xk
w = δ0,k1N−w+1, (24)

R∗vxk
v = (1− δ0,k)Lvx̂k−1

v + Dvx̃k
v−1, for w < v ≤ v0, (25)
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where matrices Lv and Dv are defined in Theorem 2 and R∗v is a square (N − v + 1) matrix whose non-null
entries are

R∗v(i, j) =

{
−γi, if 1 ≤ i ≤ N − v and j = i− 1
qv,i, if 0 ≤ i ≤ N − v and j = i.

Proof. First, we observe that the result in Equation (24) is the matrix version of Equation (16). For a
vaccination level v, such that v ≥ w, we proceed by using the first step methodology. Again,
by conditioning on the first possible transition out of the state (v, i), for 0 ≤ i ≤ N − v, we are able
to derive the following linear equation

xk
v,i =

γi
qv,i

xk
v,i−1 + (1− δ0,k)

λv,i

qv,i
xk−1

v,i+1 +
ηv,i

qv,i
xk

v−1,i+1,

which is equivalent to

− γixv,i−1 + qv,ixk
v,i = (1− δ0,k)λv,ixk−1

v,i+1 + ηv,ixk
v−1,i+1. (26)

For 0 ≤ i ≤ N − v, Equation (26) can be expressed in matrix form as appears in Equation (25).

Recalling the result stated in Equation (13), we get that ∑∞
k=0 xk

v,i = 1, for (v, i) ∈ Ŵ. For every number
of cases of infection in the susceptible compartment, k ≥ 0, the system of equations in (24) and (25) are
solved recursively with the help of Algorithm 2. To compute the mass distribution function up to the
mass point k, a stopping criterion should be provided to avoid too long iterative runs. In particular,
numerical results shown in Section 5 come directly from Algorithm 2 until 99% of the probability mass of
Nv,i is accumulated.

Algorithm 2 Nw− distribution.

Given an integer k ≥ 0, the set of conditional probabilities {xk
v,i, (v, i) ∈ Ŵ} can be determined through

the following iterative scheme:
Step 1: Set v = w.

Step 1a: Set j = 0 and x0
w = 1N−w+1.

Step 1b: Set j = j + 1. While j ≤ k, set xj
w = 0N−w+1.

Step 2: Set v = w + 1. If v0 = w, stop.
Step 2a: Set j = 0 and compute x0

v = (R∗v)−1Dvx̃0
v−1.

Step 2b: Set j = j + 1. While j ≤ k, compute

xj
v = (R∗v)

−1(Lvx̂j−1
v + Dvx̃j

v−1).

Step 3: Set v = v + 1. If v ≤ v0, go to Step 2a.

4. Local Sensitivity Analysis

Related to the Markov chain that represents the evolution of the disease, in this section we use matrix
calculus to conduct a perturbation or local sensitivity analysis of the steady-state results, presented in
the Section 3. There is a large body of literature on the perturbation analysis of Markov chains [33],
which involves problems related to measuring the difference between two transition matrices [34,35] and
also local sensitivity, which is the problem of quantifying the effect of changes in the parameters defining
transition probabilities on the behavior of the Markov chain. This second line of problems involves
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differentiation and it can be solved using the approach suggested by Caswell for absorbing chains [36] or
the extension for non-absorbing structured Markov processes as in [37,38].

The study of sensitivities is of interest in modeling natural phenomena where the estimates of
the model parameters come from a set of data (see [39] and the references therein). A local sensitivity
analysis is a really helpful methodology to quantify the impact of a small variation of model parameters
on the performance measures of interest and also to determine which parameter is of most influence.
This methodology is especially relevant for models with many parameters, where this type of analysis is
useful to disentangle the effect of each rate over these measures.

In this section, the perturbation problem is approached via derivatives and elasticities
(i.e., proportional sensitivities). In that sense, the discussion that follows depends on the derivatives
of conditional moments Mk

v,i and mk
v,i, for k ≥ 1 and (v, i) ∈ Ŵ, with respect to the model parameters.

For simplicity we denote θ = (θ1, θ2, θ3, θ4)
′ = (β, ξ, γ, h)′.

Since we do not have closed form expressions for the moments of Tw and Nw, we cannot derive
analytical expressions for sensitivities. However, we take advantage of the matrix-form results, shown in
Theorems 1 and 2, to derive recursive equations involving sensitivity and elasticity of the moments of the
wake-up time, Tw, and the epidemic incidence during the sleeping period, Nw.

This analysis reveals how parameter variations, close to the baseline input values, influence model
behavior. For instance, the sensitivity index defined as the partial derivative ∂Mk

v,i/∂θj gives the rate of
change of the moment Mk

v,i in response to a change in the parameter θj, while the remaining parameters
hold constant. The sensitivity analysis provides a prospective study giving outcomes for changes on Mk

v,i
if the parameter θj were to change.

We deal firstly with the moments of the wake-up random variable Tw. By conditioning to the initial
situation (v, i) ∈ Ŵ, a relationship for partial derivatives of Mk

v,i can be obtained from expression (11),
which is as follows:

−γi
∂Mk

v,i−1

∂θj
+ qv,i

∂Mk
v,i

∂θj
− λv,i

∂Mk
v,i+1

∂θj
= k

∂Mk−1
v,i

∂θj
+ ηv,i

∂Mk
v−1,i+1

∂θj
(27)

+
∂ηv,i

∂θj
Mk

v−1,i+1 +
∂γi
∂θj

Mk
v,i−1 −

∂qv,i

∂θj
Mk

v,i +
∂λv,i

∂θj
Mk

v,i+1.

From relationship (27), we can derive recursive schemes providing numerical values of ∂Mk
v,i/∂θj,

for any parameter θj with 1 ≤ j ≤ 4. In fact, if we denote by Ak
v,i(θj) =

∂Mk
v,i

∂θj
and, for k ≥ 1 and w < v ≤ v0,

define the vectors of derivatives as

Ak
v(θj) = (Ak

v,0(θj), · · · , Ak
v,N−v(θj))

′
,

Ãk
v(θj) = (Ak

v,1(θj), · · · , Ak
v,N−v(θj))

′
,

then the Equation (27) can be expressed in matrix form as follows, with the help of the matrices involved
in Theorem 1

RvAk
v(θj) = kAk−1

v (θj) + DvÃk
v−1(θj) +

∂Dv

∂θj
M̃k

v−1 −
∂Rv

∂θj
Mk

v, (28)

where ∂Dv
∂θj

and ∂Rv
∂θj

are the gradient matrices, respect to a scalar θj, of Dv and Rv, respectively.
However, changes in an outcome conditional moment are caused by changes in the vector of

parameters θ. Thus, sensitivity analysis in conditional moments requires more than a single derivative
∂Mk

v,i
∂θj

.
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In fact, we have to solve the corresponding Equation (28) once for each parameter. We need an approach
to differentiate matrix valued functions of vector arguments, whose usefulness is more relevant for model
with a large number of parameters. Matrix calculus permits us to collect various partial derivatives with
respect to a vector into vectors and matrices of derivatives, simplifying solving systems of differential
equations. A revision on notation and properties of matrix calculus can be found in the paper by Magnus
and Neudecker [40].

Starting from Equation (10) in Theorem 1, by applying some basic rules and properties of calculating
differentials, we get that

dMk
v

dθ′
= −((Rv)

−1(kMk
v + DvM̃k

v−1)
′ ⊗ (Rv)

−1)
dvecRv

dθ′
(29)

+ (Rv)
−1(k

dMk−1
v

dθ′
+ Dv

dM̃k
v−1

dθ′
) + ((M̃k

v−1)
′ ⊗ (Rv)

−1)
dvecDv

dθ′
.

where dMk
v

dθ′ is the Jacobian matrix with entries given by
dMk

v,i
dθj

, ⊗ represents Kronecker product and vecA
transforms matrix A into a vector by stacking the columns of the matrix one underneath the other.

We observe that conditional random variables (Tw|V(0) = v, I(0) = i), for (v, i) ∈ Ŵ, are defined as
the first passage times to the set {(w, j) : 0 ≤ j ≤ N − w} which can be seen as an absorbing set of states
and, consequently, the above random variables can be regarded as absorption times. Hence, arguments by
Caswell (see [36,41]) for sensitivities and elasticities of continuous time absorbing Markov chains can be
applied to get the result in Equation (29).

In addition, the structure of the expression appearing in Algorithm 1 can be exploited to derive an
algorithm that provides the computation of partial derivatives of the moments Mk

v,i, with respect to the

vector of parameters θ = (θ1, · · · , θ4)
′. The starting point are the frontier conditions dM0

v
dθ′ = 0(N−v+1)×4,

for w ≤ v ≤ v0, and dMk
w

dθ′ = 0(N−w+1)×4, for k ≥ 1.
Derivatives involving factorial moments of the conditional random variables

Nv,i = (Nw|V(0) = v, I(0) = i), for (v, i) ∈ Ŵ, can be obtained following a parallel reasoning.
We start by taking derivatives on Equation (23), respect to any parameter θj:

−γi
∂mk

v,i−1

∂θj
+ qv,i

∂mk
v,i

∂θj
− λv,i

∂mk
v,i+1

∂θj
= kλv,i

∂mk−1
v,i+1

∂θj
+ ηv,i

∂mk
v−1,i+1

∂θj
(30)

+k
∂λv,i

∂θj
mk−1

v,i+1 +
∂ηv,i

∂θj
mk

v−1,i+1 +
∂γi
∂θj

mk
v,i−1 −

∂qv,i

∂θj
mk

v,i +
∂λv,i

∂θj
mk

v,i+1.

From Equation (30), we can derive recursive schemes to get partial derivatives of factorial moments,
regarding any single parameter. Moreover, a matrix calculus approach gives the following relationship
between parameters and moment outcomes.

dmk
v

dθ′
= −((Rv)

−1(kLvm̂k−1
v + Dvm̃k

v−1)
′ ⊗ (Rv)

−1)
dvecRv

dθ′

+ (Rv)
−1(kLv

dm̂k−1
v

dθ′
+ Dv

dm̃k
v−1

dθ′
) (31)

+ ((km̂k−1
v )′ ⊗ (Rv)

−1)
dvecLv

dθ′
+ ((m̃k

v−1)
′ ⊗ (Rv)

−1)
dvecDv

dθ′
.
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Numerical values of the partial derivatives regarding the vector of parameters θ will result

in an iterative manner, starting from boundary conditions dm0
v

dθ′ = 0(N−v+1)×4, for w ≤ v ≤ v0,

and dmk
w

dθ′ = 0(N−w+1)×4, for k ≥ 1.

In Section 5 we quantify the effect of the model parameters on moments of Tw and Nw.
To interpret sensitivities we need to be aware that model parameters are measured in different units.
Failure probability h only takes values between 0 and 1. Contact or recovery rates have not such restrictions.
Therefore, the sensitivity of a given moment to changes in an epidemic rate is difficult to compare with the
sensitivity of the failure probability. To avoid this difficulty, we introduce elasticity indices that measure
relative changes in moments when a parameter changes. Hence, in what follows, the elasticity index of a
moment m, depending differentiably on a parameter θ, is defined as ∂m

∂θ × θ
m .

5. Sensitivity Analysis

In this section, we present some numerical work for the sleeping time, Tw, and for the epidemic
incidence during this period, Nw. Firstly, we present global sensitivity results when the parameters of the
model vary over their entire range of interest. Secondly, a local sensitivity analysis is performed to check
if results are robust with small changes in the parameters. For illustrative purposes we focus on results
related to human papillomavirus.

We consider a population of N = 100 individuals where an outbreak of a contagious disease is in
progress. We assume that some individuals of the population, v0, have received a vaccine to be protected
against the disease. The outbreak started at the time at which the first infection occurs. Hence, at time
t = 0, the initial state of the CTMC X is (v0, 1). Therefore, in the sequel we ease the notation and represent
(Tw|V(0) = v0, I(0) = 1) = Tw and (Nw|V(0) = v0, I(0) = 1) = Nw.

5.1. Global Sensitivity Analysis

Next, we focus on the effect of each parameter of the model on the sleeping period and on the
incidence of infections during the sleeping period.

Let us deal first with the sleeping period. Our interest is to observe the influence of the parameters on
the expected value and on the standard deviation of Tw. Numerical results for E[Tw] and σ[Tw] have been
obtained by means of Algorithm 1.

In the first scenario we assume a 90% of vaccine coverage for a population of N = 100 individuals.
The warning level is fixed at w = 70. Consequently, at the start of the outbreak the population contains
90 vaccinated, a single infected, and 9 susceptible individuals. The alarm will be triggered as soon as the
number of vaccinated individuals drops to 70 vaccinated.

Figure 3 represents the expected sleeping time as a function of he internal transmission rate β

combined with recovery, external transmission rate, and vaccine failure, respectively. Shaded areas have
been obtained by considering E[Tw]± σ[Tw].

We notice that, as a function of the internal transmission rate, the expected value shows a decreasing
behavior. This fact can be explained by noticing that an increase in the internal transmission rate β increases
contacts, contagions and, consequently, the time to reach the warning level is shortened.

Let us go deeper into each graph to analyze the behavior of Tw regarding the remaining parameters.
Figure 3a presents E[Tw] and σ[Tw] as a function of β in a scenario with external contact rate ξ = 0.01 and
vaccine failure h = 0.1. The curves correspond to different recovery rates, namely γ = 1.0, 5.0 and 10.0.
We observe that curves for E[Tw] show a monotonic behavior. For a fixed β the expected time increases
with the recovery rate. We notice that the slope of the curves decreases for increasing recovery rates. All of
these facts agree with the intuition. Higher recovery rates guaranty the existence of a group of susceptible
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individuals that are more vulnerable to the disease than the vaccinated ones. In consequence, long recovery
rates contribute to a longer sleeping periods. Curves in Figure 3b represent the expected sleeping time
in a scenario with recovery rate γ = 1.0 and vaccine failure h = 0.1. Each curve corresponds to internal
contact rates ξ = 0.25, 0.5 and 1.5. We can observe that E[Tw] decreases for increasing external transmission
rates, in agreement with the observation made above on the behavior of the expected time regarding the
internal rate β. Figure 3c corresponds to scenarios with external transmission rate ξ = 0.01 and recovery
rate γ = 1.0. Curves correspond to the choice on the probability of a vaccine failure as h = 0.05, 0.1 and
0.25. We notice that for a fixed internal transmission rate, as could be expected, a less efficient vaccine
makes a decrease in the sleeping period. The influence of the vaccine failure on the sleeping period is more
noticeable for diseases with smaller transmission rates.

The following set of numerical results focuses on the influence of vaccine coverage and warning
level on the sleeping period. We fix the external contact rate as ξ = 0.01, the recovery rate as γ = 1.0,
and we consider a vaccine whose failure probability is h = 0.1. Figure 4 displays expected values and
standard deviation of Tw for different choices on the internal transmission rate, the initial coverage and the
warning level.

Figure 3. E[Tw] and σ[Tw] as a function of β when N = 100, v0 = 90, w = 70. Curves in (a) correspond
to ξ = 0.01, h = 0.1 and γ = 1.0, 5.0, 10.0. In (b), E[Tw] and σ[Tw] are represented for ξ = 0.25, 0.5, 1.5,
h = 0.1 and γ = 1.0. In (c), mean and standard deviation are represented for ξ = 0.01, h = 0.05, 0.1, 0.25
and γ = 1.0.

Figure 4a presents E[Tw] and σ[Tw] as a function of β for three values of the initial coverage, that is,
v0 = 50, 70, and 90 individuals. The warning level is fixed as w = 37. All curves present a decreasing shape
as a function of β. However, for a fixed internal transmission rate we observe that the expected length of
the sleeping period increases with the initial coverage. In Figure 4b we assume an initial vaccine coverage
of 90 individuals and represent mean and standard deviation of Tw as a function of β, for several warning
levels, namely w = 20, 50 and 80. As could be expected, under the same internal transmission, higher
warning levels give shorter sleeping times. Finally in Figure 4c, the expected and standard deviation are
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represented as functions of the warning level, the internal contact rate is β = 1.15 and we consider an
initial number of vaccinated individuals v0 = 50, 70 and 90. Notice that the warning levels are bounded by
v0, that is 0 ≤ w ≤ v0. According to the intuition, expected values and standard deviation decrease for
increasing warning levels. When we fix an allowable warning level we observe the same behavior on v0

described for Figure 4a.

Figure 4. E[Tw] and σ[Tw] when N = 100, ξ = 0.01, γ = 1.0, and h = 0.1. In (a), mean and standard
deviation are represented as a function of β, for warning level w = 37 and vaccine coverage v0 = 50, 70, 90.
In (b), mean and standard deviation are represented as a function of β, for warning levels w = 20, 50, 80
and vaccine coverage v0 = 90. Curves in (c) display E[Tw] and σ[Tw] as a function of w for β = 1.15 and
vaccine coverage v0 = 50, 70, 90.

Following examples correspond to the disease incidence in the group of susceptible individuals
during the sleeping time, Nw. Numerical results dealing with probabilities come by applying Algorithm 2
and results for moments come from a modified version of Algorithm 1. As in the preceding examples,
we consider a population of N = 100 individuals, with an initial coverage of v0 = 90, the recovery rate is
γ = 1.0, the external transmission rate is ξ = 0.01, the vaccine failure is h = 0.1 and we fixed the warning
level at w = 70 vaccinated.

In Figure 5, the distribution of the number of infections of susceptible individuals, taking place during
the sleeping time, is plotted for different values of β = 1.15, 5.0 and 10.0. We can observe that for increasing
rates of the internal transmission rate, the distribution of Nw is displaced to the right.

Other experiments, not reported in this paper, show similar patterns when we consider the distribution
of Nw for several values either of the probability of vaccine failure or the warning level. In both cases,
larger values for h or for w produce a right displacement of the distribution.
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Figure 5. Nw distribution when N = 100, v0 = 90, w = 70, γ = 1.0, ξ = 0.01, and h = 0.1 for several
values of β.

To have a better understanding of the distribution of the total number of infections during the sleeping
time, we represent in Figure 6 a boxplot graph of the random variable Nw + (v0 − w). We assume that the
initial number of vaccine protected is v0 = 90 and the outbreak starts with a single infected individual,
(v0, i0) = (90, 1). Our purpose is to compare patterns of the epidemic, when we modify the warning level.
The whiskers start at the lowest value of infectious cases, that is v0 − w, and extend to the 99th percentile.
We observe that the dispersion of the total incidence, measured in terms of the inter-quartile range,
decreases as a function of the warning level and the distribution changes from left-skewed to right-skewed
as w increases. As expected, the epidemic process involves more individuals when warning is kept at
low levels. Numerical experiments not reported in the paper, when the warning level is w = 0, indicate
that there is a 0.99 probability that the number of infections until the complete loss of vaccine protection
fluctuates in the interval (90, 6700), with median at 3500 cases.
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Figure 6. Boxplot for Nw under several warning levels when N = 100, v0 = 90, β = 1.15, γ = 1.0, ξ = 0.01,
and h = 0.1.
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Our knowledge on the Nw distribution can be applied to determine the optimal warning level to
guarantee enough resources with a fixed probability. For instance, if we have at hand only 150 treatment
units, from Figure 6, we observe that setting the warning level at w = 55 vaccinated guaranties that the
probability of having at least 150 infections, before the alarm was triggered, is 0.25, while an upper warning
level, say w ≥ 65, guaranties that the probability of having more than 150 infections prior to the alarm
activation (i.e., shortage of resources) is less than 0.01.

5.2. Local Sensitivity Analysis Applied to the Spread of Human Papillomavirus Infection

In this section, we present a perturbation analysis on Tw and Nw, to observe the effect of changing
contact and recovery rates, and also vaccine efficacy. To this end, we derive elasticities of the mean
and standard deviations of the time and incidence of infectious cases until the activation of the alarm.
We particularize our results for an infection of human papillomavirus.

The human papillomavirus infection is a viral infection that is transmitted among individuals through
a skin-to-skin contact. HPV is the most common sexually transmitted infection [42], in fact, at least 70% of
sexually active people gets the HPV once in their lives. Most people get a genital HPV infection through
direct sexual contact but, as HPV is a contact disease, it can occur without intercourse.

Although the incidence of the infection is high, most of the infections do not cause symptoms
and go away spontaneously. However, the absence of symptoms makes it easy to transfer the virus
among individuals. Due to the fact that HPV infects and resides in a latent state in epidermal cells,
recurrences are very common. The contagiousness or transmissibility of the HPV virus can be measured
by the basic reproductive number R0, that is usually estimated depending on the underlying mathematical
model. The R0 values have been published for different HPV types and scenarios [42–44] and run
from 1.09 to 5.6.

There are four HPV vaccines that protect against HPV types that cause most of HPV cancer.
Clinical trials have shown that HPV vaccination induces lifelong protection against new HPV infections.
All HPV vaccines have been found to have high efficacy, over 80%, depending on the vaccine used and
also on the HPV type [45].

Some of the clinical characteristics of the HPV justify the use of a SIVS mathematical model to
represent the evolution and transmission of this disease. HPV is a vaccine preventable disease with very
common recurrences. However, we can not ignore that our model is probably far too simplistic to represent
the complex dynamic of the HPV transmission. We include it as an application of the methodology.

As in the preceding section, we assume that outbreaks are detected as soon as the first case of infection
occurs and that population size remains constant during the epidemic process. The baseline parameter
values are summarized in Table 3. The year is the unit of time, the recovery rate γ was fixed as to
keep expected recovery times around 300 days, the internal rate β was chosen in order to have a basic
reproduction number R0 = β/γ = 2.8, the external rate is ξ = 0.01, and we assume that vaccine efficacy is
90% (i.e.; h = 0.1).

Table 3. Baseline parameter values.

Parameter Value

N 100
v0 70
β 3.5
ξ 0.01
γ 1.25
h 0.1



Mathematics 2020, 8, 1136 19 of 23

Additionally, we assume that vaccine coverage is v0 = 70. We consider three scenarios regarding
the warning level, w. Say low, medium, and high warning level condition. More specifically, a low
warning level implies that the alert is activated when the number of protected individuals drops to the
10% of the initial coverage; medium and high warning levels are associated to 50% and 90% of the initial
coverage, respectively.

Table 4 shows values for mean and standard deviation of Tw and Nw, under low, medium, and
high warning conditions. Behavior regarding warning level variations agrees with the one stated in the
preceding section.

Table 4. Mean and standard deviation of Tw and Nw for different warning level conditions.

Low Medium High

E[Tw] 43.96852 33.96278 18.33432
σ(Tw) 16.36562 16.23378 12.76035

E[Nw] 777.7604 226.6682 30.08812
σ(Nw) 130.1556 46.00042 12.74736

Elasticities evaluated at the baseline parameter values appearing in the rest of this section were
determined numerically by applying the theoretical results in Section 4. In Table 5 we show elasticities of
the sleeping period, Tw, and of the number of cases of infection in unprotected individuals, Nw.

Table 5. Tw and Nw elasticities versus warning condition.

Warning Variable Parameter Mean Sd

Low
Condition

Tw

β −2.611602 +2.778346
ξ −0.477366 −0.253497
h −1.092157 +1.231468
γ +2.088969 −1.470340

Nw
β −1.891158 +15.90355
ξ −0.029536 +0.539073
h −1.006530 −0.939145
γ +0.920694 +0.911401

Medium
Condition

Tw

β −2.834902 +1.500176
ξ −0.613948 −0.267127
h −1.118875 +0.522567
γ +2.448851 −0.888822

Nw
β −1.676597 +10.02865
ξ −0.068708 +0.905739
h −1.019953 −0.890020
γ +0.745304 +0.705858

High
Condition

Tw

β −2.028866 −0.070704
ξ −0.819625 −0.385364
h −1.050907 −0.124000
γ +1.848492 +0.222181

Nw
β −1.031938 +1.412817
ξ −0.204952 +0.571329
h −0.997156 −0.893880
γ +0.236890 +0.301462
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In interpreting each elasticity index for E[Tw], in Table 5, we keep all other parameters fixed. We notice
that, no matter what the warning conditions are, increasing contact rates (either internal or external) will
lead to a decrease in the expected length of the sleeping period. Similarly, reducing vaccine effectivity
shortens the sleeping period; however, increasing the recovery rate γ increases E[Tw].

Looking closer to the results for the sleeping period, we appreciate that the more influential parameters
are the internal contact rate β and the recovery rate γ. Changes in these parameters have opposite effects.
In this sense, either decreasing β or increasing γ by a 1% increases the expected length of the sleeping
period by around a 2%, no matter the warning condition.

The stochastic uncertainty of Tw, represented by σ(Tw), is more affected by perturbations in β or γ

than in h or ξ, whenever we set low or medium warning conditions.
Regardless of the warning condition, sign patterns for E[Nw] agree with the observed for E[Tw].

Indicating that any increase in the length of the sleeping period will be accompanied by an increase in the
number of cases of infection observed during this interval of time. Elasticities of the expected number of
cases of infection show that changes in the internal contact rate β or in the vaccine failure probability h are
always among the most significant.

Elasticities for σ(Nw) show that standard deviation increases in terms of transmission rates and
of recovery rate and decreases for increasing values of the vaccine failure probability. It is noticeable
that the volatility of Nw is highly influenced by the internal transmission rate, under low or medium
warning conditions. Where an increase of 1% on β produces an increase larger than 10% on the stochastic
uncertainty of Nw.

6. Conclusions and Future Work

We analyzed a stochastic SIVS model with imperfect vaccine and infection reintroduction.
Disease transmission was modeled by a continuous time Markov chain recording, at any time t, both the
number of vaccinated and infectious individuals.

Assuming that v0 individuals in the population have been vaccinated prior to the onset of the
outbreak, we set a level of vaccinated individuals, w, to trigger an alert when the number of vaccinated
reaches‚ w. Our research involves two random variables, Tw and Nw, associated to the warning threshold.
Tw, or the wake-up time, gives the epoch, from the onset, at which the alarm is triggered. Nw helps to
measure disease incidence until this moment.

For the continuous variable Tw, probability distribution is described in terms of moments, while for
Nw we are able to give a complete probabilistic description in terms of its mass distribution function.
Algorithmic schemes are provided for getting numerical results. Additionally, the influence of parameter
variation on performance measures, related to both variables, was studied using both a global and local
sensitivity analysis.

Results are related to outbreaks starting from the initial situation (v0, 1) but algorithmic procedures
provide results for higher initial infected individuals i, with 0 ≤ i ≤ v0.

Given a warning level, w, performance measures for the length and disease incidence of the
sleeping period are easily computable. Indeed, they are related to first passage times of the underlying
Markov chain describing the evolution of the epidemics. Therefore, our study can be adapted to more
involved compartmental models that include natural immunization [46] or a relationship structure among
individuals [47]. On the other hand, since vaccine failure tends to leave the population completely
unprotected against the disease, our future research will focus on re-vaccination models allowing
transitions from the susceptible to the vaccinated compartments. This extension could be used to plan
vaccination strategies where the warning level will play a role in the re-vaccination schedule.
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Chapter 4

Measures to Assess a Warning

Vaccination Level in a

stochastic SIV Model with

imperfect vaccine

This Chapter extends the work initiated in [121] and [123].

The main highlight of this research work is to define appropriate measures

to evaluate if an immediate re-vaccination could be launched and if it is not

possible, to estimate the time until it can be initiated.

We also establish appropriate warning vaccination levels to attain the possi-

bility of launching an immediate re-vaccination.

A printed version of [124], is included in this Chapter, along with scientific

information regarding the academic journal where article is published.
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Chapter 4

4.1 Background

We recall that in [123], we introduced the warning vaccination level, w. Re-

lated to this threshold, we defined the sleeping period and the wake-up time,

Tw.

As vaccine is administered only to susceptible individuals, it could hap-

pen that at the wake-up time, the number of susceptible individuals in the

population is not enough to return to the initial level of vaccinated individ-

uals. To inform about the number of individuals eligible to be vaccinated

and in consequence, about the possibility of an immediate re-vaccination,

we define the random variable, Sw, that records the number of susceptible

individuals in the population when the threshold w is reached.

When an immediate re-vaccination campaign is not possible, we measure the

time elapsed until it could be launched by analyzing the random variable,

Rw. This measure is defined in terms of the wake-up time and provide a tool

to manage properly, a re-immunization of the population.

4.2 Objectives

We define the random variables, Sw and Rw to evaluate the possibility of an

immediate re-vaccination program and if it is not possible, we measure the

time until it could be launched, that is objective (c.6).

In addition, we calculate appropriate warning levels, w, that guarantee to

launch a re-vaccination campaign at the instant of time that the threshold

for the number of vaccinated individuals is reached, that is objective (c.7).

Aims (d) and (e) are attained taking into the account several possibilities in
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the selection of the model parameters representing the evolution of diphtheria

outbreaks taking place in a population of moderate size.

4.3 Methodology

We analyze the random variable Sw applying an analogous methodology to

the one described for Nw, in [123] and Chapter 3, but considering the discrete

auxiliary random variables, Iwv,i, defined as the number of infected individ-

uals in the population at the wake-up time, conditioned to a current state.

Assuming that prior the beginning of the outbreak the population contains

v0 vaccinated individuals and a single infectious individual, we find a rela-

tionship among Sw and the auxiliary variables, which looks as follows:

Sw = N − w − Iwv0,1.

We obtain explicit recursive expressions for generating and probability

mass functions and factorial moments for the random variable Sw.

In addition the random variable Sw is used to set the appropriate warning

level, w, described in Section 4.2. In more detail, we calculate it as the

minimum w that satisfy the following Expression:

w ≥ v0 − E[Sw].

Regarding the re-vaccination time, Rw, we point out that it is a degenerate

random variable with a single mass point corresponding to 0 time units.

Hence, we obtain the probability of an immediate re-vaccination in terms of
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the random variable Sw, from the following expression

P{Rw = 0} = P{Sw ≥ v0 − w}.

If at the wake-up time there are not enough number of susceptible individuals

eligible to be vaccinated there is not possibility to schedule an immediate re-

vaccination and in that case, the random variable is a continuous one with

support in (0,∞) and it should be analyzed applying a similar methodology

to the one described for Tw, in [123].

To illustrate our methodology we represent the evolution of a diphtheria

outbreak taking place in a population of moderate size and we analyze the

influence of parameter variation on both random variables.

4.4 Conclusions

This investigation is focused on studying the possibility of an immediate re-

vaccination, to restore the vaccine coverage to the initial level, analyzing the

random variables, Sw and Rw.

We obtain explicit recursive schemes for computing Sw-Probability mass

functions and moments for both random variables that are stable even for

large populations.

We illustrate theoretical results by considering a boarding school or or-

phanage institution of 500 individuals where an outbreak of diphtheria is

produced. According to the specific characteristics of the infectious disease

in [268], we establish the internal contact rate to β = 6.5 and the recovery

rate to γ = 1. In that situation, for the variable Sw we appreciate that its
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distributions are displaced to the right when the warning level increases. Ex-

pected values present a decreasing behaviour for increasing values of w, no

matter how effective the vaccine is. Such behaviour is also detected for the

minimum quantity of susceptible individuals that should be vaccinated, to

raise the number of vaccinated individuals to the initial level. When we es-

tablish appropriate warning vaccination levels using expected values, E[Sw],

we notice that for increasing initial vaccine coverage values we obtain in-

creasing optimal warning levels. This criterion does not always guarantee an

immediate re-vaccination in that sense, we analyze numerically, the average

time required needed to launch a vaccination campaign, Rw, conditioned to

an immediate re-vaccination can not be launched. We observe that if we can-

not re-vaccinate immediately, then there is a big chance that we will never

be able to as a consequence of the high transmission potential of diphtheria.
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Abstract
A stochastic Markovian Susceptible-Infectious-
Susceptible (SIS) model, with infection reintroduction
is considered to represent the evolution of an epidemic
process within a finite population. Disease is assumed
to be a contact disease whose effect can be prevented
by a vaccine. Before the epidemic process emerges, 𝑣0
individuals got vaccinated to assure that the population
is protected by herd immunity. In consequence, we
formulate the model by adding a new compartment
for vaccine protected individuals. The administered
vaccine is not a perfect one and consequently it fails
in a proportion of vaccinated individuals that are not
protected against the vaccine preventable communica-
ble disease. Hence, while the infectious process is in
progress, the initial vaccine coverage declines and herd
immunity could be lost. A threshold on the size of the
vaccinated group is included as a warning measure on
the protection of the community. Our objective is to
define and study random characteristics, depending on
the vaccination eligible group, that could advise health
authorities when to launch a new vaccination program
to recover the initial immunity level.
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1 INTRODUCTION

Mathematical representation of the spread of infectious diseases has been helpful in the under-
standing of contagious processes. Even simple models permit to derive key insights into the trans-
mission dynamics and to compare the effect of different intervention strategies1–3; serving as a
starting point that can be adapted to real-world complexities by adding or refining assumptions
in the light of the achieved results. Even in the absence of updated information of the epidemic
parameters, mathematical models aim to describe adequately the patterns of interest.4
Compartmental models are versatile enough to capture social dynamics and disease character-

istics with the purpose of representing the evolution of infectious diseases within a population.
Individuals are classified into several mutually exclusive groups according to their status regard-
ing the infectious disease. In the course of epidemics, each individual belongs to a single group or
compartment at a given time, and canmove fromone to another depending ondisease characteris-
tics and/or community interventions. Since the pioneering Susceptible-Infectious-Removed (SIR)
model, by Kermack andMcKendrick,5 numerous andmore complex compartmental models have
been developed and applied to describe epidemic infections.6,7 Roughly speaking, mathematical
models can be classified into two types: deterministic and stochastic, whose main difference lies
in the mathematical description of the evolution of the epidemic process. Deterministic models
are formulated in terms of a system of difference or differential equations, reflecting the variation
in the number of individuals in each compartmental group by assuming that all the individuals
present the same behavior regarding the disease of interest. Stochastic models introduce a source
of stochasticity that could arise from the transmission process, experimental procedures and from
individual characteristics. These models are formulated in terms of a stochastic process, whose
solution predicts distributions of random variables involving incidence, transmission, or dura-
tion of the random process. Stochastic models are preferable and useful when dealing with small
communities, due to the influence on the impact of the epidemics of random differences in infec-
tiousness and susceptibility of an individual, while these random effects tend to cancel out each
other as population size increases.
Health protection measures, designed to ensure health safety, become effective in reducing the

consequences of infectious diseases. In the absence of effective antiviral drugs and vaccines, non-
pharmaceutical interventions based on control strategies, such as social distance, lockdown, iso-
lation, quarantine, hygienemeasures, spraying, and so forth, would reduce the incidence by inter-
rupting transmission.8–10 Vaccines help the immune system to create and keep antibodies specific
to a bacteria or a virus in the way that, in case of encountering the disease, the immune system
prevents the infection from developing. Hence, when available, vaccination drastically reduces
chances of contracting many diseases.11–13
Literature on compartmental epidemic models includes many papers where vaccination was

used as an intervention mechanism. Some of them introduce vaccination as a control or strat-
egy on a selected model14–16 but most of the studies rely on models including additional compart-
ments for vaccinated individuals.17–20 Models are flexible enough tomatch vaccine characteristics,
such as efficacy,21,22 life-long or waning protection,23,24 eligibility,25 number of doses,26 vaccine
uptake,27 and so forth.



GAMBOA and LOPEZ-HERRERO 1413

For contact diseases, when a large proportion of individuals of a community is protected by vac-
cination, it makes it difficult for the infection to spread within the community due to the small
number of people susceptible to this disease. Seen that people immune to the disease protect vul-
nerable people, this type of protection is known as herd immunity. Herd immunity level varies
with each disease, it depends on the infectiousness of the pathogen and also on the duration of
the infectivity of affected individuals. In consequence, herd immunity is linked to appropriate esti-
mates of the basic reproduction number 𝑅0, that measures the reproductive potential of a disease
regarding population characteristics and also vaccine attributes, when available.28–32
Public health objective of vaccination is to increase the level of herd immunity to keep the infec-

tion controlled or even eliminated from the population, and in the longer term to eradicate the
infection world or region-wide. To achieve this goal, vaccination coverage must be optimal. Usu-
ally, following a national immunization schedule, routine vaccination campaigns are conducted
to prevent epidemics. In addition,mass vaccinationsmay be organized to help control an epidemic
in a short period. Compartmental models can be employed to assess and compare incidence and
cost benefit of different vaccination policies.33,34 As vaccines are not fully effective and induced-
immunity can be lost over time, tomaintain community protection it is necessary to revise vaccine
coverage periodically and to plan supplementary vaccination programs if necessary. Recommen-
dations to evaluate strategies can focus on vaccine allocation (see Ref. 35, Chapter 3) and also on
optimizing time periods.36 Alternatively, in the present paper we propose to schedule activities
based on thresholds controlling vaccinated and susceptible compartments.
In this paper, we deal with a stochastic compartmental Susceptible-Infectious-Vaccinated (SIV)

model, that represents the propagation of a contact disease bymeans of a continuous timeMarkov
chain (CTMC). We deal with a constant size population and assume that it is initially protected
against the disease because a vaccine has been administered to a proportion of individuals, which
is large enough to provide herd protection. However, a vaccine is not fully effective and some
vaccinated individuals can get the infection and, after recovery, they are unprotected from the
disease. In consequence, the proportion of vaccinated individuals decreases within the course of
the epidemic process. To control the loss of protection, in Ref. 37, we introduced an alarm thresh-
old 𝑤 on the number of protected individuals and we focused on the period of time going from
the start of an epidemic outbreak until the number of vaccinated individuals drops to the alarm
level. To fix the warning level 𝑤, in this paper we introduce two random variables, 𝑆𝑤 and 𝑅𝑤,
investigating the population in the susceptible group at the time the threshold is reached and the
required time to have the sufficient number of susceptible individuals, eligible to be vaccinated,
to raise the vaccine coverage to the initial level.
The paper is organized as follows. In Section 2, we describe the stochastic SIVmodel and intro-

duce the Markov chain representing disease evolution within a population of constant size. In
Section 3, we introduce the randommeasures 𝑆𝑤 and 𝑅𝑤, related to the warning vaccination level𝑤. We present theoretical and algorithmic results involving the stochastic distribution of these
random measures. Section 4 illustrates our analysis in the setting of diphtheria infections, and
concluding remarks and future work appear in Section 5.

2 MODEL DESCRIPTION

Themodel represents the evolution of a contagious diseasewithin a closed homogeneous and uni-
formlymixed population. This disease is transmitted by direct contact with an infected individual.
We assume that the population is not isolated. Hence, there is an additional source of infection
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F IGURE 1 Movement of individuals
among compartments of the SIVS model

due to external contacts that contributes to the spread of the disease. In any case, we assume that
during the epidemic time span there are not noticeable demographic changes in the population
so, the standard constant population hypothesis is accepted.
To prevent large disease outbreaks, part of the population has been vaccinated against the dis-

ease with an available vaccine that confers immunity, but it is not a perfect vaccine and not all
vaccinated individuals develop immunity. Consequently, some contacts between vaccinated and
infectious individuals produce an effective contagion. When this occurs, the vaccinated individ-
ual loses vaccine protection and becomes an infectious individual. Once an infected individual
recovers he becomes susceptible to the disease, no matter if he was previously vaccinated or not.
According to the above description, the involved model is a standard SIS/logistic one, with

external infection and the additional feature that some of the population is initially vaccinated,
with imperfect immunity. More specifically, mathematical model was introduced in the paper31
as a compartmental model that, at any particular instant 𝑡, classifies individuals as susceptible(𝑆), vaccinated (𝑉), or infected (𝐼). Figure 1 represents the movement of individuals among the
three epidemiological classes.
The rates of transition between classes depend on disease and vaccine characteristics, and also

on model assumptions. Infectious periods of different individuals, no matter if they were previ-
ously vaccinated or not, are assumed to be independent and identically distributed according to
an exponential law, with rate 𝛾. While infected, local infectious individuals make contact with
susceptible and vaccinated ones within the population, at the time points of a time homogeneous
Poisson process with intensity 𝛽𝑁 , where𝑁 represents the population size. In addition, we assume
that there is an external source of infection that occurs at a constant rate 𝜉, independently of the
internal contacts. Any contact between susceptible and infected individuals produces a new case
of infection. However, pathogenic transmission in the vaccinated group depends on vaccine effec-
tiveness. Hence, when the contacted individual was previously vaccinated and had not yet got the
infection, she/he could become infected with a constant probability ℎ, independently of the time
the vaccinated individual is contacted by an infectious one.
In a nutshell, from now on, model parameters will be related to the following concepts: 𝛾 will

represent the recovery rate, 𝛽 the disease internal transmission rate, 𝜉 the disease external trans-
mission rate, and ℎ the vaccine failure probability.
The evolution of the epidemic process, at each time point 𝑡, is described by the randomvariables𝑆(𝑡), 𝑉(𝑡), and 𝐼(𝑡), where 𝑆(𝑡) records the number of susceptible, 𝑉(𝑡) the number of vaccine

protected, and 𝐼(𝑡) the number of infected individuals. In accordance with the fixed population
size assumption, we have that 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) = 𝑁. Consequently, there is no need to record all
the compartment occupancy levels. Thus, the number of susceptible individuals is not reported
and the evolution of the disease within the population is represented in terms of a bidimensional
CTMC as follows: 𝑋 = {(𝑉(𝑡), 𝐼(𝑡)); 𝑡 ≥ 0}, (1)

whose state space contains a number of states that depends on the initial vaccine coverage.
In that sense, for an initial number of vaccinated individuals 𝑣0, with 0 < 𝑣0 ≤ 𝑁, the finite
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F IGURE 2 Outgoing transitions and rates from a generic state

countable state space of 𝑋 is 𝐒 = {(𝑣, 𝑖) ∶ 0 ≤ 𝑣 ≤ 𝑣0, 0 ≤ 𝑣 + 𝑖 ≤ 𝑁}, that contains (𝑣0 + 1)(𝑁 +1 − 𝑣0∕2) states.
We assume that the epidemic process begins with a single infectious individual and 𝑣0 vacci-

nated individuals. Subsequent infections jointly with vaccine failures, diminish the number of
vaccine protected individuals. Once 𝑣 = 0, the vaccination compartment is empty and the under-
lying model behaves as the standard SIS epidemic model with an external source of infection
described in Ref. 38.Moreover, the set of states {(0, 𝑖) ∶ 0 ≤ 𝑖 ≤ 𝑁} is an absorbing set. Hence, once
the process 𝑋 enters into this set it never leaves it because launching a new vaccination schedule
in the population is not considered in our model.
Markovian models rely on the memoryless hypothesis, that guarantees that the rate of leaving

any of the states in 𝐒 depends only on the current state of the process and not on the trajectory
leading to the state itself. Hence, transition rates of theMarkov chain are subject to the events that
cause a change in the current model state, (𝑣, 𝑖) ∈ 𝐒. Namely, the effective events correspond to
new infections, either of susceptible or of vaccinated individuals, and recoveries. The exponential
transition rates are given by

𝑞(𝑣,𝑖),(𝑣∗,𝑖∗) =
⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ℎ(𝛽𝑖𝑁 + 𝜉)𝑣, if (𝑣∗, 𝑖∗) = (𝑣 − 1, 𝑖 + 1),𝛾𝑖, if (𝑣∗, 𝑖∗) = (𝑣, 𝑖 − 1),−𝑞𝑣,𝑖 , if (𝑣∗, 𝑖∗) = (𝑣, 𝑖),(𝛽𝑖𝑁 + 𝜉)(𝑁 − 𝑣 − 𝑖), if (𝑣∗, 𝑖∗) = (𝑣, 𝑖 + 1),0, otherwise,
(2)

where 𝑞𝑣,𝑖 = (𝛽𝑖𝑁 + 𝜉)(𝑁 − 𝑣 − 𝑖) + ℎ(𝛽𝑖𝑁 + 𝜉)𝑣 + 𝛾𝑖 and represents the total sojourn rate in the
state (𝑣, 𝑖) ∈ 𝐒.
The matrix structure of the infinitesimal generator 𝐐 = [𝑞(𝑣,𝑖),(𝑣∗,𝑖∗)] of 𝑋 was fully described

in Appendix A of our previous paper31 and it shows a block bidiagonal representation, which is
really appropriate for computational purposes.
In more detail, the transitions out of a specific general state (𝑣, 𝑖) ∈ 𝐒 are depicted in Figure 2,

where the appearing rates are introduced to ease the notation in the sequel.
More explicitly, we define the rates in Figure 2 as follows:𝛾𝑖 = 𝛾𝑖,𝜆𝑣,𝑖 = (𝛽𝑖𝑁 + 𝜉)(𝑁 − 𝑣 − 𝑖), (3)
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𝜇𝑣,𝑖 = ℎ(𝛽𝑖𝑁 + 𝜉)𝑣.
When no vaccination takes place after 𝑡 = 0 and 𝜉 > 0, the long-term behavior of 𝑋 is given

by the stationary distribution, which is concentrated in the set of states with no vaccinated
individuals.31 That is, the protection provided by the vaccine fades away almost surely in finite
expected time, leaving the population unprotected and vulnerable to the disease. A new vaccina-
tion program should be scheduled to raise vaccine coverage to the initial level.
The aim of this paper is to use the warning threshold for the number of vaccinated individ-

uals, 𝑤 < 𝑣0, introduced in Ref. 37, to get information about the distribution of susceptible and
infectious individuals, when the number of vaccinated individuals first reaches the level 𝑤. This
information could help health authorities to take a decision about when a new vaccination cam-
paign should be scheduled to prevent massive outbreaks of the disease.

3 RANDOMMEASURES RELATED TO THEWARNING
VACCINATION LEVEL

We recall that there is an allowable vaccine that has been administered to a group of 𝑣0 individuals
in the population. Vaccine directly protects these individuals from infection but the vaccinated
group also indirectly protects the community because it serves as a shield to interrupt the chain
of transmission of a contact disease.
According to disease characteristics, there is a minimum percentage of people in the popula-

tion that should be vaccinated to ensure that the disease will not persist in the population. This
threshold is known as the herd immunity and, in the case of large population, its value depends
on the reproductive number, 𝑅0, associated to the model representing the evolution of the disease
itself. Specifically for the model on hand, in Ref. 31 we derive stochastic measures, alternative to
the reproductive number, that assess the choice of vaccine coverage depending on disease trans-
mission parameters and on the effectiveness of a vaccine.
In some communities, due to vaccine rare effects, individuals tend to refrain from being vacci-

nated and consequently vaccination rates decline below the ideal herd immunity threshold, caus-
ing a resurgence of outbreaks of preventable diseases.39–41 Community protection decreases not
only when vaccination rates do. Notice that, even though vaccination objective is to establish life-
long immunity, vaccine-induced protection wanes over time for a number of infectious diseases
(pertussis, meningococcal, influenza, mumps, malaria, etc.). In addition, vaccination does not
guarantee that vaccinated individuals are protected.We recall that vaccines do not produce immu-
nity it is the body’s immune system that produces antibodies triggering immune response. Hence,
the effectiveness of a vaccine may also cause a decrease in the number of protected individuals.
For a given warning level 𝑤, in Ref. 37 we quantified the time from the start of an outbreak

until the number of vaccinated individuals descends to the warning level. During this period, the
infection is relatively controlled and we identified this interval of time as the sleeping period for
healthmeasures. Obviously, the end of any sleeping period is linked to the so-calledwake-up time,𝑇𝑤, which indicates the moment at which the number of vaccine protected individuals drops to𝑤. Knowledge on 𝑇𝑤 provides information that can be used by health authorities to reallocate
resources, in case that they were below the demand for health care services.
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More precisely, 𝑇𝑤 was formally defined as the random variable𝑇𝑤 = inf {𝑡 ≥ 0 ∶ 𝑉(𝑡) = 𝑤} (4)

and the sleeping period corresponds to the random interval [0, 𝑇𝑤].
Next, we introduce two random variables focusing on the eligibility of susceptible individuals

to receive new doses of vaccine to restore the initial immunity level. In more detail, we define𝑆𝑤, the size of the susceptible group when the wake-up time arrives, and the revaccination time𝑅𝑤 or the elapsed time until the susceptible group contains a number of eligible individuals to be
vaccinated large enough to recover the initial mass of vaccinated individuals. More properly, the
above random variables are defined in terms of the wake-up time as 𝑆𝑤 = 𝑆(𝑇𝑤) and 𝑅𝑤 = inf {𝑡 ≥0 ∶ 𝑆((𝑇𝑤 + 𝑡) + 𝑉(𝑇𝑤 + 𝑡) ≥ 𝑣0}. Our aim is to use the analytic properties of both variables to set
an appropriate warning level 𝑤 that triggers an alert to organize a new vaccination campaign.

3.1 Susceptible population at the wake-up time, 𝑺𝒘
In this section, we are interested in the probabilistic description of the susceptible group that can
be found when the number of vaccinated individuals drops down to the warning level 𝑤. This
means that, this warning or wake-up time has been reached and the alert for a new vaccination
program has been triggered. As vaccine is administrated to susceptible individuals, it is really of
interest to have information about the size of this group.
Given a warning level for vaccination, 𝑤, random variable 𝑆𝑤 is defined as the number of sus-

ceptible individuals that can be found in the population by the time the number of vaccinated
individuals drops down to the alert level 𝑤.
We are going to assume that the epidemic process is detected as soon as the first infectious case

appears, but the study can be conducted under any other initial condition. To ease the notation
and without loss of generality, the random variable 𝑆𝑤 will represent the number of susceptible
individuals at time horizon𝑇𝑤, conditioned to the initial situation (𝑉(0) = 𝑣0, 𝐼(0) = 1) of the out-
break.
The mathematical analysis will be developed using the information provided by the CTMC𝑋, that keeps track of the number of vaccinated and infectious individuals at any time. As we

assume that the population size remains unchanged while the epidemic is in progress, we can
use the information provided by𝑋 to understand the behavior of 𝑆𝑤. More precisely, we introduce
auxiliary random variables 𝐼𝑤𝑣,𝑖 , defined as the number of infected individuals in the population at
the wake-up time, given that the current situation is (𝑣, 𝑖) ∈ 𝑊 = {(𝑣, 𝑖) ∈ 𝐒 ∶ 𝑤 ≤ 𝑣 ≤ 𝑣0, 0 ≤ 𝑖 ≤𝑁 − 𝑣}, that represents the set of states 𝑋 takes up to the time 𝑇𝑤, when we first have 𝑉(𝑡) = 𝑤.
We notice that 𝑆𝑤 is a discrete random variable, with finite support in the set of integer values{0, 1, 2, … ,𝑁 − 𝑤 − 1}, that links to the auxiliary variable 𝐼𝑤𝑣0,1 according to the following equation:𝑆𝑤 = 𝑁 − 𝑤 − 𝐼𝑤𝑣0,1. (5)

Relationship (5) will be the key to determine the distribution and moments of 𝑆𝑤.
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Let us first deal with the probability distribution of 𝑆𝑤. According to (5), for 0 ≤ 𝑘 ≤ 𝑁 − 𝑤 − 1
we have that 𝑃{𝑆𝑤 = 𝑘} = 𝑃{𝐼𝑤𝑣0,1 = 𝑁 − 𝑤 − 𝑘}. (6)

Hence, the distribution of 𝑆𝑤 depends on a set of probabilities involving the auxiliary variable𝐼𝑤𝑣0,1.
For a fixed warning level 𝑤, to simplify the notation we will write 𝐼𝑣,𝑖 instead of 𝐼𝑤𝑣,𝑖 unless

the value of a warning level must be explicitly shown. Therefore, for (𝑣, 𝑖) ∈ 𝑊, let us denote by𝑥𝑘𝑣,𝑖 = 𝑃{𝐼𝑣,𝑖 = 𝑘}, for any integer 𝑘 such that 1 ≤ 𝑘 ≤ 𝑁 − 𝑤.
Theorem 1 provides a computationally stable recursive scheme, from which the computation

of the auxiliary probabilities can be done at a low computational cost.

Theorem 1. Given 𝑘, 1 ≤ 𝑘 ≤ 𝑁 − 𝑤, the set of auxiliary probabilities {𝑥𝑘𝑣,𝑖 ∶ (𝑣, 𝑖) ∈ 𝑊} are com-
puted by the equations 𝑥𝑘𝑤,𝑖 = 𝛿𝑖,𝑘, when 0 ≤ 𝑖 ≤ 𝑘, (7)

where 𝛿𝑖,𝑗 represents the Kronecker’s delta function, defined as 1, when 𝑖 = 𝑗, and 0, otherwise.
For 𝑤 + 1 ≤ 𝑣 ≤ 𝑣0, we have

𝑥𝑘𝑣,𝑁−𝑣 = 𝐷𝑘𝑣,𝑁−𝑣𝐶𝑣,𝑁−𝑣 , (8)

𝑥𝑘𝑣,𝑖 = 𝑁−𝑣−1∑
𝑗=𝑖

𝐷𝑘𝑣,𝑗𝐶𝑣,𝑗(𝑗−1∏
𝑚=𝑖 𝜆𝑣,𝑚𝐶𝑣,𝑚−1𝐶𝑣,𝑚 )

(9)

+(𝑁−𝑣−1∏
𝑚=𝑖 𝜆𝑣,𝑚𝐶𝑣,𝑚−1𝐶𝑣,𝑚 )𝑥𝑘𝑣,𝑁−𝑣, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣 − 1,

where coefficients 𝐶𝑣,𝑗 and 𝐷𝑘𝑣,𝑗 are determined recursively as follows:
𝐶𝑣,𝑗 = ⎧⎪⎨⎪⎩

1, if 𝑗 < 0,𝑞𝑣,0, if 𝑗 = 0,𝑞𝑣,𝑗𝐶𝑣,𝑗−1 − 𝛾𝑗𝜆𝑣,𝑗−1𝐶𝑣,𝑗−2, if 1 ≤ 𝑗 ≤ 𝑁 − 𝑣, (10)

𝐷𝑘𝑣,𝑗 = {𝜇𝑣,0𝑥𝑘𝑣−1,1, for 𝑗 = 0,𝛾𝑗𝐷𝑘𝑣,𝑗−1 + 𝜇𝑣,𝑗𝐶𝑣,𝑗−1𝑥𝑘𝑣−1,𝑗+1, for 1 ≤ 𝑗 ≤ 𝑁 − 𝑣. (11)

Here and throughout the paper, empty products are interpreted as 1.
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Proof. Recall that wake-up time, 𝑇𝑤, is defined as the time point at which the warning level for
vaccination 𝑤 is reached. Thus, at this time point the CTMC enters in the set {(𝑤, 𝑖) ∈ 𝑊 ∶ 0 ≤𝑖 ≤ 𝑁 − 𝑤}. Consequently, at wake-up time, the number of infected individuals is 𝑖, almost surely,
whenever the current situation is (𝑤, 𝑖). That is, probabilities associated to the warning level 𝑤
satisfy 𝑥𝑘𝑤,𝑖 = 𝛿𝑖,𝑘, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑤 and 1 ≤ 𝑘 ≤ 𝑁 − 𝑤, (12)

that is the result shown in Equation (7).
Remaining set of auxiliary probabilities will be determined by using a first-step argument, con-

ditioning on the exponentially distributed time to the first transition. Given 𝑘 and 𝑣, such that1 ≤ 𝑘 ≤ 𝑁 − 𝑣 and 𝑤 + 1 ≤ 𝑣 ≤ 𝑣0, we have that
𝑥𝑘𝑣,𝑖 = 𝛾𝑖𝑞𝑣,𝑖 𝑥𝑘𝑣,𝑖−1 + 𝜆𝑣,𝑖𝑞𝑣,𝑖 𝑥𝑘𝑣,𝑖+1 + 𝜇𝑣,𝑖𝑞𝑣,𝑖 𝑥𝑘𝑣−1,𝑖+1, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣, (13)

or equivalently−𝛾𝑖𝑥𝑘𝑣,𝑖−1 + 𝑞𝑣,𝑖𝑥𝑘𝑣,𝑖 − 𝜆𝑣,𝑖𝑥𝑘𝑣,𝑖+1 = 𝜇𝑣,𝑖𝑥𝑘𝑣−1,𝑖+1, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣. (14)

Observe that the expression in the right-hand side of Equation (14) depends on model parame-
ters and auxiliary probabilities of one level of vaccination less. For everymass point 𝑘, it is possible
to solve the equations in (14) in a recursive way, in the natural order for 𝑣, starting from the bound-
ary result (7).
By using a Forward Elimination Backward Substitution (FEBS) procedure,42 Equation (14) can

be written in triangular form as follows:𝐶𝑣,𝑖𝑥𝑘𝑣,𝑖 − 𝜆𝑣,𝑖𝐶𝑣,𝑖−1𝑥𝑘𝑣,𝑖+1 = 𝐷𝑘𝑣,𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣 − 1, (15)

where the constants 𝐶𝑣,𝑖 and 𝐷𝑘𝑣,𝑖 match the definition in the statement of the Theorem 1.
Now, working on Equation (15), for 𝑖 = 𝑁 − 𝑣 − 1, and on Equation (14), for 𝑖 = 𝑁 − 𝑣, we get

that 𝐶𝑣,𝑁−𝑣𝑥𝑘𝑣,𝑁−𝑣 = 𝐷𝑘𝑣,𝑁−𝑣, (16)

which gives the explicit value of the probability 𝑥𝑘𝑣,𝑁−𝑣 as appears in Equation (8).
Furthermore, for 1 ≤ 𝑘 ≤ 𝑁 − 𝑣 and𝑤 + 1 ≤ 𝑣 ≤ 𝑣0, Equation (15) gives auxiliary probabilities𝑥𝑘𝑣,𝑖 in terms of probabilities 𝑥𝑘𝑣,𝑖+1

𝑥𝑘𝑣,𝑖 = 𝐷𝑘𝑣,𝑖 + 𝜆𝑣,𝑖𝐶𝑣,𝑖−1𝑥𝑘𝑣,𝑖+1𝐶𝑣,𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣 − 1. (17)

Finally, iterating (17) we obtain the relationship appearing in expression (9). ■
Next algorithm implements Theorem 1, providing the scheme to compute probabilities associ-

ated to the random variable 𝑆𝑤.
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Algorithm 1 (𝑆𝑤-distribution). For any 𝑘, 1 ≤ 𝑘 ≤ 𝑁 − 𝑤, the set {𝑥𝑘𝑣,𝑖 ∶ (𝑣, 𝑖) ∈ 𝑊} of point prob-
abilities and the distribution of the random variable 𝑆𝑤 are determined from the following scheme:

Step 1: Set 𝑣 = 𝑤.
Step 2: Set 𝑘 = 1. If 𝑘 > 𝑁 − 𝑤, go to Step 3.

Step 2a: Set 𝑖 = 0 and compute 𝑥𝑘𝑣,𝑖 from Equation (7).
Step 2b: Set 𝑖 = 𝑖 + 1. While 𝑖 ≤ 𝑘, compute 𝑥𝑘𝑣,𝑖 from Equation (7).
Step 2c: Set 𝑘 = 𝑘 + 1. While 𝑘 ≤ 𝑁 − 𝑤, go to Step 2a.

Step 3: Set 𝑣 = 𝑣 + 1. If 𝑣 > 𝑣0, stop.
Step 3a: Set 𝑘 = 0 and 𝑖 = −1. Define 𝐶𝑣,𝑖 = 1.
Step 3b: Set 𝑖 = 𝑖 + 1. While 𝑖 ≤ 𝑁 − 𝑣, compute 𝐶𝑣,𝑖 from Equation (10).

Step 4: Set 𝑘 = 𝑘 + 1. If 𝑘 > 𝑁 − 𝑤, go to Step 3.
Step 4a: Compute 𝐷𝑘𝑣,𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣, from Equation (11).
Step 4b: Set 𝑖 = 𝑁 − 𝑣 and compute 𝑥𝑘𝑣,𝑖 from Equation (8).
Step 4c: Set 𝑖 = 𝑖 − 1. If 𝑖 < 0, go to Step 4.
Step 4d: Compute 𝑥𝑘𝑣,𝑖 from Equation (9).
Step 4e: If 𝑣 = 𝑣0 and 𝑖 = 1, set 𝑃{𝑆𝑤 = 𝑁 − 𝑤 − 𝑘} = 𝑥𝑘𝑣,𝑖 .
Step 4f: Go to Step 4c.

Any order moment of 𝑆𝑤 could be determined directly from the mass distribution function
of the random variable due to the finiteness of its support. Instead of that, we deduce a result
involving moments of the auxiliary variable 𝐼𝑣0,1 that provides a computational scheme which is
stable even for large populations.
First, we introduce the following notation for probability generating functions and factorial

moments. Given 𝑧, |𝑧| ≤ 1, and (𝑣, 𝑖) ∈ 𝑊, let us define

𝜙𝑆𝑤(𝑧) = 𝐸[𝑧𝑆𝑤 ] = 𝑁−𝑤−1∑
𝑛=0 𝑧𝑛𝑃{𝑆𝑤 = 𝑛}, (18)

𝜑𝑣,𝑖(𝑧) = 𝐸[𝑧𝐼𝑣,𝑖 ] = 𝑁−𝑤∑
𝑛=1 𝑧𝑛𝑥𝑛𝑣,𝑖 , (19)

𝑀𝑘𝑆𝑤 = { 1, for 𝑘 = 0,𝐸[∏𝑘−1𝑛=0(𝑆𝑤 − 𝑛)], for 𝑘 ≥ 1, (20)

𝑚𝑘𝑣,𝑖 = { 1, for 𝑘 = 0,𝐸[∏𝑘−1𝑛=0(𝐼𝑣,𝑖 − 𝑛)], for 𝑘 ≥ 1. (21)

Since 𝑆𝑤 and {𝐼𝑣,𝑖 ∶ (𝑣, 𝑖) ∈ 𝑊} are random variables with finite support included in the set{0, 1, … ,𝑁 − 𝑤}, probability calculus provide an elementary result for factorial moments, namely,𝑀𝑘𝑆𝑤 = 𝑚𝑘𝑣,𝑖 = 0, for 𝑘 ≥ 𝑁 − 𝑤. Next proposition shows a nontrivial relationship between facto-
rial moments of 𝑆𝑤 and of 𝐼𝑣0,1.
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Proposition 1. Given 𝑘, 1 ≤ 𝑘 ≤ 𝑁 − 𝑤 − 1, the factorial moment of order 𝑘 for 𝑆𝑤 ,𝑀𝑘𝑆𝑤 , can be
recovered from factorial moments of 𝐼𝑣0,1 according to the following expression:

𝑀𝑘𝑆𝑤 = 𝑘∑
𝑛=0(−1)𝑛(𝑘𝑛) 𝑘−1∏

𝑗=𝑛(𝑁 − 𝑤 − 𝑗)𝑚𝑛𝑣0,1. (22)

Proof. Well-known properties of the expected value operator 𝐸[⋅] and relationship (5) give
𝜙𝑆𝑤(𝑧) = 𝑧𝑁−𝑤𝜑𝑣0,1(1𝑧), for 𝑧 ≠ 0, |𝑧| ≤ 1. (23)

On the other hand, factorial moments arise by differentiating generating functions with respect
to 𝑧.More precisely,𝑀𝑘𝑆𝑤 = 𝜕𝑘[𝜙𝑆𝑤 (𝑧)]𝜕𝑧𝑘 |𝑧=1 and𝑚𝑘𝑣0,1 = 𝜕𝑘[𝜑𝑣0,𝑖 (𝑧)]𝜕𝑧𝑘 |𝑧=1, for 𝑘 ≥ 1. Hence, we begin by
taking derivatives on Equation (23), 𝑘 times with respect to 𝑧. After that, an iterative application
of the Leibniz rule and the mathematical induction principle give

𝜕𝑘𝜙𝑆𝑤𝜕𝑧𝑘 (𝑧) = 𝑘∑
𝑛=0(−1)𝑛(𝑘𝑛) 𝑘−1∏

𝑗=𝑛(𝑁 − 𝑤 − 𝑗)𝑧𝑁−𝑤−𝑘−𝑛 𝜕𝑛𝜑𝑣0,1𝜕𝑧𝑛 (1𝑧 ). (24)

Finally, result in Equation (22) follows by evaluating the expression (24) at 𝑧 = 1. ■
Following result presents a recursive scheme for computing factorialmoments of auxiliary vari-

ables {𝐼𝑣,𝑖 ∶ (𝑣, 𝑖) ∈ 𝑊}, which is the basis for obtaining moments of the random variable 𝑆𝑤 by
means of Proposition 1.

Theorem 2. For a given warning level 𝑤, with 0 ≤ 𝑤 < 𝑣0, and a nonnegative integer 𝑘, factorial
moments of order k𝑚𝑘𝑣,𝑖 , for (𝑣, 𝑖) ∈ 𝑊, are determined as follows:

𝑚0𝑣,𝑖 = 1. (25)

For order 𝑘, with 1 ≤ 𝑘 ≤ 𝑁 − 𝑤, we have that
𝑚𝑘𝑤,𝑖 = {0, if 0 ≤ 𝑖 < 𝑘,𝑖!(𝑖−𝑘)! , if 𝑘 ≤ 𝑖 ≤ 𝑁 − 𝑤. (26)

Moreover, for 𝑤 + 1 ≤ 𝑣 ≤ 𝑣0, we have
𝑚𝑘𝑣,𝑁−𝑣 = 𝐻𝑘𝑣,𝑁−𝑣𝐶𝑣,𝑁−𝑣 , (27)

𝑚𝑘𝑣,𝑖 = 𝑁−𝑣−1∑
𝑗=𝑖

𝐻𝑘𝑣,𝑗𝐶𝑣,𝑗 (𝑗−1∏
𝑛=𝑖 𝜆𝑣,𝑛𝐶𝑣,𝑛−1𝐶𝑣,𝑛 )

(28)
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+(𝑁−𝑣−1∏
𝑛=𝑖 𝜆𝑣,𝑛𝐶𝑣,𝑛−1𝐶𝑣,𝑛 )𝑚𝑘𝑣,𝑁−𝑣, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣 − 1,

where coefficients 𝐶𝑣,𝑗 match the definition (10), in Theorem 1, and

𝐻𝑘𝑣,𝑗 = {𝜇𝑣,0𝑚𝑘𝑣−1,1, for 𝑗 = 0,𝛾𝑗𝐻𝑘𝑣,𝑗−1 + 𝜇𝑣,𝑗𝐶𝑣,𝑗−1𝑚𝑘𝑣−1,𝑗+1, for 1 ≤ 𝑗 ≤ 𝑁 − 𝑣. (29)

Finally, for order 𝑘 > 𝑁 − 𝑤 we have that 𝑚𝑘𝑣,𝑖 = 0. (30)

Proof. First, we notice that results in (25) and (30) follow from factorial moments definition and
the elementary result mentioned prior the statement of Proposition 1.
Now, for 1 ≤ 𝑘 ≤ 𝑁 − 𝑤 and 𝑣 = 𝑊 using Equation (7 ) we have that𝜑𝑤,𝑖(𝑧) = 𝑧𝑖, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑤. (31)

By differentiating Equation (31) repeatedly 𝑘 ≥ 1 times with respect to 𝑧 and evaluating at 𝑧 = 1,
we get the expression (26) for 𝑘th order moment of 𝐼𝑤,𝑖 , when 0 ≤ 𝑖 ≤ 𝑁 − 𝑤.
Again, a first-step argument conditioning on the possible transitions out of the state (𝑣, 𝑖), shows

that generating functions 𝜑𝑣,𝑖(𝑧) satisfy the following set of linear equations, for 𝑤 + 1 ≤ 𝑣 ≤ 𝑣0
and 0 ≤ 𝑖 ≤ 𝑁 − 𝑣:

𝜑𝑣,𝑖(𝑧) = 𝛾𝑖𝑞𝑣,𝑖 𝜑𝑣,𝑖−1(𝑧) + 𝜆𝑣,𝑖𝑞𝑣,𝑖 𝜑𝑣,𝑖+1(𝑧) + 𝜇𝑣,𝑖𝑞𝑣,𝑖 𝜑𝑣−1,𝑖+1(𝑧). (32)

Once more, by differentiating repeatedly Equation (32) with respect to 𝑧 and evaluating at 𝑧 = 1,
we obtain the following system of equations−𝛾𝑖𝑚𝑘𝑣,𝑖−1 + 𝑞𝑣,𝑖𝑚𝑘𝑣,𝑖 − 𝜆𝑣,𝑖𝑚𝑘𝑣,𝑖+1 = 𝜇𝑣,𝑖𝑚𝑘𝑣−1,𝑖+1, (33)

whose solution gives factorial moments of order 𝑘, for states (𝑣, 𝑖) such that 𝑤 + 1 ≤ 𝑣 ≤ 𝑣0 and0 ≤ 𝑖 ≤ 𝑁 − 𝑣.
Observe that Equation (33) looks like Equation (14) just by substituting probabilities 𝑥𝑘𝑣,𝑖 for 𝑘th

order moments 𝑚𝑘𝑣,𝑖 . Consequently, the proof of Theorem 2 follows along the lines stated on the
proof of Theorem 1. Thus, we do not proceed any further. ■
A computational recursive scheme, implementing Theorem 2, allows computation of factorial

moments of the auxiliary variables {𝐼𝑣,𝑖 ∶ 𝑤 ≤ 𝑣 ≤ 𝑣0, 0 ≤ 𝑖 ≤ 𝑁 − 𝑣} and of 𝑆𝑤.
Algorithm 2 (𝑆𝑤-moments). Let 𝑘 be a nonnegative integer. Given a warning level𝑤, with 0 ≤ 𝑤 <𝑣0, the moment of order 𝑘 of the random variable 𝑆𝑤 can be determined numerically according to the
following scheme:

Step 1: If 𝑘 > 𝑁 − 𝑤, set𝑀𝑘𝑆𝑤 = 0 and stop.



GAMBOA and LOPEZ-HERRERO 1423

Step 2: Set 𝑛 = 0, 𝑣 = 𝑤, and𝑀𝑛𝑆𝑤 = 1. If 𝑘 = 0, stop.
Step 3: Set 𝑣 = 𝑣 + 1. If 𝑣 > 𝑣0, go to Step 4.

Step 3a: Set 𝑖 = −1 and define 𝐶𝑣,𝑖 = 1.
Step 3b: Set 𝑖 = 𝑖 + 1. While 𝑖 ≤ 𝑁 − 𝑣, compute 𝐶𝑣,𝑖 from expression (10).
Step 3c: Go to Step 3.

Step 4: Set 𝑛 = 𝑛 + 1. If 𝑛 > 𝑘, stop.
Step 4a: Set 𝑣 = 𝑤. Compute𝑚𝑛𝑣,𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣, from expression (26).
Step 4b: Set 𝑣 = 𝑣 + 1. If 𝑣 > 𝑣0, go to Step 5.
Step 4c: Compute𝐻𝑛𝑣,𝑖 , for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣, using expression (29).
Step 4d: Set 𝑖 = 𝑁 − 𝑣. Compute𝑚𝑛𝑣,𝑁−𝑣 , from Equation (27).
Step 4e: Set 𝑖 = 𝑖 − 1. If 𝑖 < 0, go to Step 4b.
Step 4f: Compute𝑚𝑛𝑣,𝑖 , from Equation (28) and go to Step 4e.

Step 5: Compute𝑀𝑛𝑆𝑤 from Equation (22) and go to Step 4.

3.2 Revaccination time, 𝑹𝒘
Management of vaccine routines depends, of course, on the vaccine availability and vaccination
services but also it depends on the size of the susceptible group, because infectious and still-
vaccinated individuals, usually, are not eligible for vaccination. The objective of the current section
is to study the possibility of launching a supplementary vaccination program at the wake-up time,
in order that population recovers the level of protection provided by the initial vaccine coverage as
soon as possible. To ease the problem, we assume that revaccination is instantaneous or involves
a negligible time in comparison with the time to observe a small number of new infections.
Hence, we focus on the time that is required to launch a new vaccination program with the

purpose of increasing vaccination level to the initial coverage 𝑣0. This elapsed time is represented
by the random variable 𝑅𝑤, that was defined in terms of the wake-up time as 𝑅𝑤 = inf {𝑡 ≥ 0 ∶𝑆((𝑇𝑤 + 𝑡) + 𝑉(𝑇𝑤 + 𝑡) = 𝑣0} and it studies the interval of time going from 𝑇𝑤, when the alarm
is triggered, until the instant at which the susceptible group has a large enough size to start a
new vaccination campaign. For a given warning level 𝑤, the analysis of 𝑅𝑤 relies on the initial
outbreak condition but, again to ease the notation as we did in Section 3.1, we do not include the
initial condition (𝑉(0) = 𝑣0, 𝐼(0) = 1) in the representation of the time for revaccination.
Notice that a new vaccination program can be launched at time 𝑇𝑤 whenever the size of the

susceptible group will be of at least (𝑣0 − 𝑤) individuals. There is a basic fact that can be stated
with the help of the random variables 𝑆𝑤 and 𝐼𝑣0,1, introduced in the preceding section. Thus,
with the help of the relationship (5), we get the probability of an immediate arrangement for
vaccination.

𝑃{𝑅𝑤 = 0} = 𝑃{𝑆𝑤 ≥ 𝑣0 − 𝑤} = 𝑁−𝑣0∑
𝑖=1 𝑥𝑖𝑣0,1. (34)

To investigate 𝑅𝑤, when it is strictly positive, let us introduce the set of states𝑊 = {(𝑣, 𝑖) ∶ 0 ≤𝑣 ≤ 𝑤, 0 ≤ 𝑖 ≤ 𝑁 − 𝑣} and the conditioned random variables 𝑅𝑣,𝑖 , which describe the revaccina-
tion time given that the current state of the underlying Markov chain is (𝑣, 𝑖) ∈ 𝑊.
We notice again that, whenever the current state (𝑣, 𝑖) guarantees enough susceptible individ-

uals to schedule an immediate supplementary vaccination, random variables 𝑅𝑣,𝑖 are degenerate
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with a single mass point corresponding to 0 time units. That is,𝑃{𝑅𝑣,𝑖 = 0} = 1, for 0 ≤ 𝑣 ≤ 𝑤, 0 ≤ 𝑖 ≤ 𝑁 − 𝑣0. (35)

If the current state does not have enough number of susceptible individuals to schedule an imme-
diate supplementary vaccination, the conditional variables are continuous ones with support in(0,∞).
Now we introduce some notation for density functions, Laplace–Stieltjes transforms and

moments of the random variable 𝑅𝑤 and the auxiliary variables 𝑅𝑣,𝑖 , for (𝑣, 𝑖) ∈ 𝑊.
Let us denote by 𝑓𝑤(𝑡), for 𝑡 > 0, the density function of the continuous part of 𝑅𝑤 and we

represent by 𝑓𝑣,𝑖(𝑡) the density functions of the continuous random variables {𝑅𝑣,𝑖 ∶ 0 ≤ 𝑣 ≤𝑤,𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣}.
Laplace–Stieltjes transforms and moments will be represented as follows:Ψ𝑤(𝑧) = 𝐸[𝑒−𝑧𝑅𝑤 ], for 𝑧 ∈ ℂ, 𝑅𝑒(𝑧) ≥ 0, (36)

𝜓𝑣,𝑖(𝑧) = 𝐸[𝑒−𝑧𝑅𝑣,𝑖 ], for 𝑧 ∈ ℂ, 𝑅𝑒(𝑧) ≥ 0, (37)

𝑀̃𝑘𝑅𝑤 = 𝐸[𝑅𝑘𝑤], for 𝑘 ≥ 0, (38)

𝑚̃𝑘𝑣,𝑖 = 𝐸[𝑅𝑘𝑣,𝑖], for 𝑘 ≥ 0. (39)

Next, Proposition 2 summarizes results dealingwith Laplace–Stieltjes transforms andmoments
of the auxiliary variables.

Proposition 2. Given (𝑣, 𝑖) ∈ 𝑊 and 𝑧 ∈ ℂ, with 𝑅𝑒(𝑧) ≥ 0, the Laplace–Stieltjes transform of 𝑅𝑣,𝑖
and the central moment of order zero satisfy:

𝜓𝑣,𝑖(𝑧) = {1, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣0,∫ ∞0 𝑒−𝑧𝑦𝑓𝑣,𝑖(𝑦)𝑑𝑦, for𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣 (40)

𝑚̃0𝑣,𝑖 = 1. (41)

Proof. Result in (40) comes trivially from the definition of Laplace–Stieltjes transforms and from
result shown in Equation (35). Result in Equation (41) is consequence of the relationship 𝑚̃0𝑣,𝑖 =𝜓𝑣,𝑖(0) and (40). ■
Coming back to the revaccination time, 𝑅𝑤, next proposition contains relationships for density

functions, Laplace–Stieltjes transforms and moments of 𝑅𝑤 with their counterparts of the auxil-
iary variables 𝑅𝑣,𝑖 .
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Proposition 3. For a fixed warning level 𝑤, the distribution of the revaccination time 𝑅𝑤 can be
obtained from the distribution of the auxiliary random variables {𝑅𝑤,𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁 − 𝑤} as follows:

𝑓𝑤(𝑡) = 𝑁−𝑤∑
𝑖=𝑁−𝑣0+1 𝑥𝑖𝑣0,1𝑓𝑤,𝑖(𝑡), for 𝑡 > 0, (42)

Ψ𝑤(𝑧) = 𝑁−𝑤∑
𝑖=1 𝑥𝑖𝑣0,1𝜓𝑤,𝑖(𝑧), for 𝑧 ∈ ℂ, 𝑅𝑒(𝑧) ≥ 0, (43)

𝑀̃𝑘𝑅𝑤 = {1, for 𝑘 = 0,∑𝑁−𝑤𝑖=𝑁−𝑣0+1 𝑥𝑖𝑣0,1𝑚̃𝑘𝑤,𝑖, for 𝑘 ≥ 1. (44)

Proof. First we notice that 𝑅𝑤-distribution is the mixture distribution derived from auxiliary vari-
ables 𝑅𝑤,𝑖 with weights 𝑥𝑖𝑣0,1, for 1 ≤ 𝑖 ≤ 𝑁 − 𝑤. Therefore, results in Equations (42) and (43) fol-
low from this remark.
Regarding moments, for order zero we have that 𝑀̃0𝑅𝑤 = Ψ𝑤(0). Particularizing Equation (43)

at 𝑧 = 0 and plugging Equation (41) we get the stated result in (44) for 𝑘 = 0.
To deal with higher central ordermoments, we take into account that all of them arise as deriva-

tives of its corresponding generating function. More explicitly, for 𝑘 > 0 we have that
𝑀̃𝑘𝑅𝑤 = (−1)𝑘 𝜕𝑘Ψ𝑤(𝑧)𝜕𝑧𝑘 |||||𝑧=0, (45)

and similarly for central moments and generating functions of the auxiliary variables.
Finally, we differentiate Equation (43) 𝑘-times regarding 𝑧 and evaluating at 𝑧 = 0 we get

𝑀̃𝑘𝑅𝑤 = 𝑁−𝑤∑
𝑖=1 𝑥𝑖𝑣0,1𝑚̃𝑘𝑤,𝑖. (46)

Result in (44) comes after taking into account that, as it was stated in Equation (35), random
variables 𝑅𝑤,𝑖 for 1 ≤ 𝑖 ≤ 𝑁 − 𝑣0 are degenerate at value 0. ■
To find the distribution of the revaccination time,𝑅𝑤, we need to characterize the distribution of

the auxiliary variables 𝑅𝑣,𝑖 , for (𝑣, 𝑖) ∈ 𝑊. Next theorem provides a recursive scheme to determine
their Laplace–Stieltjes transforms, which will be the basis to derive central moments of any order.

Theorem 3. Given 𝑧 ∈ ℂ, 𝑅𝑒(𝑧) ≥ 0. The Laplace–Stieltjes transforms of the random variables{𝑅𝑣,𝑖 ∶ (𝑣, 𝑖) ∈ 𝑊} are determined as follows:𝜓𝑣,𝑖(𝑧) = 1, for 0 ≤ 𝑣 ≤ 𝑤, 0 ≤ 𝑖 ≤ 𝑁 − 𝑣0. (47)
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For 𝑣 = 0 and𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁,
𝜓0,𝑖(𝑧) = 𝑖∏

𝑗=𝑁−𝑣0+1
𝐴0,𝑗(𝑧)𝐵0,𝑗(𝑧) . (48)

For 1 ≤ 𝑣 ≤ 𝑤, we have
𝜓𝑣,𝑁−𝑣0+1(𝑧) = 𝐴𝑣,𝑁−𝑣0+1(𝑧) + 𝐺𝑣,𝑁−𝑣0+1(𝑧)𝐵𝑣,𝑁−𝑣0+1(𝑧) , (49)

𝜓𝑣,𝑖(𝑧) = 𝑖∑
𝑗=𝑁−𝑣0+2

(𝐺𝑣,𝑗(𝑧)𝐵𝑣,𝑗(𝑧)) 𝑖∏
𝑘=𝑗+1

(𝐴𝑣,𝑘(𝑧)𝐵𝑣,𝑘(𝑧))
+ 𝑖∏

𝑗=𝑁−𝑣0+2
(𝐴𝑣,𝑗(𝑧)𝐵𝑣,𝑗(𝑧))𝜓𝑣,𝑁−𝑣0+1(𝑧), for𝑁 − 𝑣0 + 2 ≤ 𝑖 ≤ 𝑁 − 𝑣. (50)

Functions 𝐴𝑣,𝑗(𝑧), 𝐵𝑣,𝑗(𝑧), and 𝐺𝑣,𝑗(𝑧) are determined recursively in reverse order, according to the
following scheme:

𝐴𝑣,𝑗(𝑧) = {𝛾𝑁−𝑣, for 𝑗 = 𝑁 − 𝑣,𝛾𝑗𝐵𝑣,𝑗+1(𝑧), for𝑁 − 𝑣0 + 1 ≤ 𝑗 ≤ 𝑁 − 𝑣 − 1, (51)

𝐵𝑣,𝑗(𝑧) = {𝑧 + 𝑞𝑣,𝑁−𝑣, for 𝑗 = 𝑁 − 𝑣,(𝑧 + 𝑞𝑣,𝑗)𝐵𝑣,𝑗+1(𝑧) − 𝜆𝑣,𝑗𝐴𝑣,𝑗+1(𝑧), for𝑁 − 𝑣0 + 1 ≤ 𝑗 ≤ 𝑁 − 𝑣 − 1, (52)

𝐺𝑣,𝑗(𝑧) = {𝜇𝑣,𝑁−𝑣𝜓𝑣−1,𝑁−𝑣+1(𝑧), for 𝑗 = 𝑁 − 𝑣,𝜇𝑣,𝑗𝜓𝑣−1,𝑗+1(𝑧)𝐵𝑣,𝑗+1(𝑧) + 𝜆𝑣,𝑗𝐺𝑣,𝑗+1(𝑧), for𝑁 − 𝑣0 + 1 ≤ 𝑗 ≤ 𝑁 − 𝑣 − 1. (53)

Proof. First, we notice that Equation (47) comes directly from result (40) in Proposition 2.
For a given state (𝑣, 𝑖) ∈ 𝑊, we condition on the next state the process visits, getting the rela-

tionship

𝜓𝑣,𝑖(𝑧) = 𝛾𝑖𝑧 + 𝑞𝑣,𝑖 𝜓𝑣,𝑖−1(𝑧) + 𝜆𝑣,𝑖𝑧 + 𝑞𝑣,𝑖 𝜓𝑣,𝑖+1(𝑧) + 𝜇𝑣,𝑖𝑧 + 𝑞𝑣,𝑖 𝜓𝑣−1,𝑖+1(𝑧). (54)

That is equivalent to−𝛾𝑖𝜓𝑣,𝑖−1(𝑧) + (𝑧 + 𝑞𝑣,𝑖)𝜓𝑣,𝑖(𝑧) − 𝜆𝑣,𝑖𝜓𝑣,𝑖+1(𝑧) = 𝜇𝑣,𝑖𝜓𝑣−1,𝑖+1(𝑧). (55)

At any point 𝑧 ∈ ℂ, with 𝑅𝑒(𝑧) ≥ 0, to get the value of the Laplace–Stieltjes transforms we have
to solve the set of equations arising from (55) when we consider states (𝑣, 𝑖) ∈ 𝑊.
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Let us begin by considering states with no vaccinated individuals, that is 𝑣 = 0. By using the
Gaussian elimination technique we express the initial system of equations (55) into a new system
of triangular form:−𝐴0,𝑖(𝑧)𝜓0,𝑖−1(𝑧) + 𝐵0,𝑖(𝑧)𝜓0,𝑖(𝑧) = 0, for 𝑁 − 𝑣0 + 2 ≤ 𝑖 ≤ 𝑁, (56)

where functions𝐴0,𝑁(𝑧) = 𝛾𝑁 , 𝐵0,𝑁(𝑧) = 𝑧 + 𝑞0,𝑁 and the remaining functions are determined in
reverse order using the recursive expressions for 𝑁 − 𝑣0 + 2 ≤ 𝑖 ≤ 𝑁 − 1𝐴0,𝑖(𝑧) = 𝛾𝑖𝐵0,𝑖+1(𝑧), (57)

𝐵0,𝑖(𝑧) = (𝑧 + 𝑞0,𝑖)𝐵0,𝑖+1(𝑧) − 𝜆0,𝑖𝐴0,𝑖+1(𝑧). (58)

Therefore, we can write any transform involving 𝑖 infected individuals in terms of the transform
involving (𝑖 − 1) infected individuals

𝜓0,𝑖(𝑧) = 𝐴0,𝑖(𝑧)𝐵0,𝑖(𝑧) 𝜓0,𝑖−1(𝑧), for 𝑁 − 𝑣0 + 2 ≤ 𝑖 ≤ 𝑁. (59)

Iterating this procedure, we canwrite transforms related to zero vaccinated individuals in terms
of 𝜓0,𝑁−𝑣0+1.

𝜓0,𝑖(𝑧) = 𝑖∏
𝑗=𝑁−𝑣0+2

𝐴0,𝑗(𝑧)𝐵0,𝑗(𝑧) 𝜓0,𝑁−𝑣0+1. (60)

On the other hand, plugging result (47) in Equation (55) for 𝑖 = 𝑁 − 𝑣0 + 1, we obtain(𝑧 + 𝑞0,𝑁−𝑣0+1)𝜓0,𝑁−𝑣0+1(𝑧) − 𝜆0,𝑁−𝑣0+1𝜓0,𝑁−𝑣0+2(𝑧) = 𝛾𝑁−𝑣0+1. (61)

Which jointly with Equation (56), particularized at 𝑖 = 𝑁 − 𝑣0 + 2, gives
𝜓0,𝑁−𝑣0+1(𝑧) = 𝐴0,𝑁−𝑣0+1(𝑧)𝐵0,𝑁−𝑣0+1(𝑧) , (62)

where functions 𝐴0,𝑁−𝑣0+1(𝑧) and 𝐵0,𝑁−𝑣0+1(𝑧) fit the structure given in the statement of the the-
orem.
Finally, substituting expression (62) in Equation (60) we get the expression stated in Equation

(48).
For any 𝑣, with 0 < 𝑣 ≤ 𝑤, Equation (55) can be solved recursively in an iterative manner by

using the Laplace–Stieltjes transforms involving one vaccinated individual less. By applying again
the Gaussian elimination procedure, we write the system of equations appearing in (55), for 𝑁 −𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣, as follows:−𝐴𝑣,𝑖(𝑧)𝜓𝑣,𝑖−1(𝑧) + 𝐵𝑣,𝑖(𝑧)𝜓𝑣,𝑖(𝑧) = 𝐺𝑣,𝑖(𝑧), (63)
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where 𝐴𝑣,𝑁−𝑣(𝑧) = 𝛾𝑁−𝑣, 𝐵𝑣,𝑁−𝑣(𝑧) = (𝑧 + 𝑞𝑣,𝑁−𝑣), 𝐺𝑣,𝑁−𝑣(𝑧) = 𝜇𝑣,𝑁−𝑣𝜓𝑣−1,𝑁−𝑣+1(𝑧) and the
remaining functions for 𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣 + 1 are determined in reverse order according
to the following expressions: 𝐴𝑣,𝑖(𝑧) = 𝛾𝑖𝐵𝑣,𝑖+1(𝑧), (64)

𝐵𝑣,𝑖(𝑧) = (𝑧 + 𝑞𝑣,𝑖)𝐵𝑣,𝑖+1(𝑧) − 𝜆𝑣,𝑖𝐴𝑣,𝑖+1(𝑧), (65)

𝐺𝑣,𝑖(𝑧) = 𝜇𝑣,𝑖𝜓𝑣−1,𝑖+1(𝑧)𝐵𝑣,𝑖+1(𝑧) + 𝜆𝑣,𝑖𝐺𝑣,𝑖+1(𝑧), (66)

that correspond to the expressions (51)–(53) in the statement of the theorem.
Using the explicit result given in Equation (47), for 0 < 𝑣 ≤ 𝑁 − 𝑣0, we get the closed-form

expression for the Laplace–Stieltjes transform corresponding to 𝑖 = 𝑁 − 𝑣0 + 1. That is,
𝜓𝑣,𝑁−𝑣0+1(𝑧) = 𝐴𝑣,𝑁−𝑣0+1(𝑧) + 𝐺𝑣,𝑁−𝑣0+1(𝑧)𝐵𝑣,𝑁−𝑣0+1(𝑧) . (67)

After some algebra on Equation (63), we can express transforms 𝜓𝑣,𝑖(𝑧), for 0 < 𝑣 ≤ 𝑤 and𝑁 −𝑣0 + 2 ≤ 𝑖 ≤ 𝑁 − 𝑣, in terms of 𝜓𝑣,𝑁−𝑣0+1(𝑧) as it is written in Equation (50) in the statement of
the theorem. ■
Now we focus on the central moments of order 𝑘 of the revaccination time, 𝑀̃𝑘𝑅𝑤 = 𝐸[𝑅𝑘𝑤], for𝑘 ≥ 0. First we recall the result stated in Equation (44) of the Proposition 3. Hence, moments of

order 𝑘 ≥ 1 can be determined frommoments of the random variables {𝑅𝑣,𝑖 ∶ (𝑣, 𝑖) ∈ 𝑊} through
the relationship appearing in the expression (44).
Consequently, we will develop an iterative scheme that will provide central moments𝑚𝑘𝑣,𝑖 , for(𝑣, 𝑖) ∈ 𝑊. Moments of order zero come from the explicit results shown in Equations (41) and

(44). For 𝑘 ≥ 1, we start from Equations (47) and (55). Taking derivatives of order 𝑘 regarding 𝑧
on both equations, and setting 𝑧 = 1, we get for any 0 ≤ 𝑣 ≤ 𝑤:𝑚̃𝑘𝑣,𝑖 = 0, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣0, (68)

−𝛾𝑖𝑚̃𝑘𝑣,𝑖−1 + 𝑞𝑣,𝑖𝑚̃𝑘𝑣,𝑖 − 𝜆𝑣,𝑖𝑚̃𝑘𝑣,𝑖+1 = 𝑡𝑘𝑣,𝑖 , for 𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣, (69)

where 𝑡𝑘𝑣,𝑖 = 𝜇𝑣,𝑖𝑚̃𝑘𝑣−1,𝑖+1 + 𝑘𝑚̃𝑘−1𝑣,𝑖 .
Notice that the right-hand side of Equation (69) depends on moments of one order less and on

moments of one vaccinated individual less. Therefore, it is possible to obtain the moments of any
order 𝑘 ≥ 1 in a recursive manner, starting from the explicit results of order zero moments stated
in Equation (41). The following theorem provides this recursive scheme.

Theorem 4. Given any integer 𝑘 ≥ 0, the central order moments 𝑚̃𝑘𝑣,𝑖 = 𝐸[𝑅𝑘𝑣,𝑖], for (𝑣, 𝑖) ∈ 𝑊, can
be recursively determined in the following way:
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For 0 ≤ 𝑣 ≤ 𝑤 and 0 ≤ 𝑖 ≤ 𝑁 − 𝑣, 𝑚̃0𝑣,𝑖 = 1. (70)

Given 𝑘 ≥ 1, for 0 ≤ 𝑣 ≤ 𝑤 we have that𝑚̃𝑘𝑣,𝑖 = 0, for 0 ≤ 𝑖 ≤ 𝑁 − 𝑣0, (71)

𝑚̃𝑘𝑣,𝑁−𝑣0+1 = 𝐺𝑘𝑣,𝑁−𝑣0+1𝐵𝑘𝑣,𝑁−𝑣0+1 , (72)

𝑚̃𝑘𝑣,𝑖 = 𝑖∑
𝑙=𝑁−𝑣0+2

(𝐺𝑘𝑣,𝑙𝐵𝑘𝑣,𝑙
) 𝑖∏

𝑗=𝑙+1
(𝐴𝑘𝑣,𝑗𝐵𝑘𝑣,𝑗

)

+ 𝑖∏
𝑙=𝑁−𝑣0+2

(𝐴𝑘𝑣,𝑙𝐵𝑘𝑣,𝑙
)𝑚̃𝑘𝑣,𝑁−𝑣0+1, for𝑁 − 𝑣0 + 2 ≤ 𝑖 ≤ 𝑁 − 𝑣, (73)

where the coefficients𝐴𝑘𝑣,𝑗 , 𝐵𝑘𝑣,𝑗 , and 𝐺𝑘𝑣,𝑗 are determined, in reverse order from𝑁 − 𝑣 to𝑁 − 𝑣0 + 1,
according to the following scheme:

𝐴𝑘𝑣,𝑗 = {𝛾𝑁−𝑣, for 𝑗 = 𝑁 − 𝑣,𝛾𝑗𝐵𝑘𝑣,𝑗+1, for𝑁 − 𝑣0 + 1 ≤ 𝑗 ≤ 𝑁 − 𝑣 − 1, (74)

𝐵𝑘𝑣,𝑗 = {𝑞𝑣,𝑁−𝑣, for 𝑗 = 𝑁 − 𝑣,𝑞𝑣,𝑗𝐵𝑘𝑣,𝑗+1 − 𝜆𝑣,𝑗𝐴𝑘𝑣,𝑗+1, for𝑁 − 𝑣0 + 1 ≤ 𝑗 ≤ 𝑁 − 𝑣 − 1, (75)

𝐺𝑘𝑣,𝑗 = {𝑡𝑘𝑣,𝑁−𝑣, for 𝑗 = 𝑁 − 𝑣,𝑡𝑘𝑣,𝑗𝐵𝑘𝑣,𝑗+1 + 𝜆𝑣,𝑗𝐺𝑘𝑣,𝑗+1, for𝑁 − 𝑣0 + 1 ≤ 𝑗 ≤ 𝑁 − 𝑣 − 1. (76)

Proof. For 𝑘 = 0, 0 ≤ 𝑣 ≤ 𝑤, and 0 ≤ 𝑖 ≤ 𝑁 − 𝑣 result in Equation (70) is given by Equation (41).
Given any integer 𝑘 ≥ 1, themoments 𝑚̃𝑘𝑣,𝑖 , for 0 ≤ 𝑣 ≤ 𝑤 and 0 ≤ 𝑖 ≤ 𝑁 − 𝑣, can be determined

by solving Equations (68)–(69).
We start with the first-order moments, that is 𝑘 = 1. We notice that plugging in Equation (69)

the result given in Equation (41), the right-hand side term of (69) becomes 𝑡1𝑣,𝑖 = 𝜈𝑣,𝑖𝑚̃1𝑣−1,𝑖+1 + 1,
that depends on first-order moments of one vaccinated individual less.
In more detail, for 0 ≤ 𝑣 ≤ 𝑤 and 𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣, we get−𝛾𝑖𝑚̃1𝑣,𝑖−1 + 𝑞𝑣,𝑖𝑚̃1𝑣,𝑖 − 𝜆𝑣,𝑖𝑚̃1𝑣,𝑖+1 = 𝑡1𝑣,𝑖 . (77)
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Hence, Equation (77) presents the same structure as Equation (55). Therefore, first-ordermoments
can be recursively determined using the Gaussian elimination technique presented in the proof
of Theorem 3, by substituting in Equation (55) transforms 𝜓𝑣,𝑖(𝑧)with 𝑚̃1𝑣,𝑖 , functions 𝑞𝑣,𝑖(𝑧)with𝑞𝑣,𝑖 and the right-hand side term with 𝑡1𝑣,𝑖 .
Hence, the resulting triangular form is−𝐴1𝑣,𝑖𝑚̃1𝑣,𝑖−1 + 𝐵1𝑣,𝑖𝑚̃1𝑣,𝑖 = 𝐺1𝑣,𝑖 , for 0 ≤ 𝑣 ≤ 𝑤,𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑣. (78)

Now, by considering Equation (77), for 𝑖 = 𝑁 − 𝑣0 + 1, and Equation (78), for 𝑖 = 𝑁 − 𝑣0 + 2, with
the help of the explicit result (41), we finally get that𝐵1𝑣,𝑁−𝑣0+1𝑚̃1𝑣,𝑁−𝑣0+1 = 𝐺1𝑣,𝑁−𝑣0+1, (79)

which gives the first-order moment 𝑚̃1𝑣,𝑁−𝑣0+1 as appears in Equation (72), when 𝑘 = 1.
Finally, iterating this procedure we can get moments of any order 𝑘 ≥ 2 from moments of one

order less. ■
To compute themoments of the revaccination time 𝑅𝑤, the recursive scheme appearing in The-

orem 4 is implemented in the following algorithm.

Algorithm 3 (𝑅𝑤-moments). For a given integer 𝑘, the central moments of the revaccination time{𝑀̃𝑘𝑅𝑤 ∶ for 𝑘 ≥ 0} are determined according to the following scheme:
Step 1: Set 𝑗 = 0.
Step 2: Set 𝑣 = 0

Step 2a: Set 𝑖 = 0. Set 𝑚̃𝑗𝑣,𝑖 = 1.
Step 2b: Set 𝑖 = 𝑖 + 1. While 𝑖 ≤ 𝑁 − 𝑣, compute 𝑚̃𝑗𝑣,𝑖 using Equation (41).
Step 2c. Set 𝑣 = 𝑣 + 1. While 𝑣 ≤ 𝑤, go to Step 2a.

Step 3. Set 𝑀̃𝑗𝑅𝑤 = 1.
Step 4: Set 𝑗 = 𝑗 + 1. If 𝑗 > 𝑘, stop.
Step 5: Set 𝑣 = 0.

Step 5a: Set 𝑖 = 𝑁 − 𝑣 and compute coefficients𝐴𝑗𝑣,𝑖 ,𝐵𝑗𝑣,𝑖 , and𝐺𝑗𝑣,𝑖 throughEquations (74)–(76).
Step 5b: Set 𝑖 = 𝑖 − 1. While 𝑖 ≥ 𝑁 − 𝑣0 + 1, compute coefficients 𝐴𝑗𝑣,𝑖 , 𝐵𝑗𝑣,𝑖 , and 𝐺𝑗𝑣,𝑖 through

Equations (74)–(76).
Step 5c: Set 𝑖 = 0. While 𝑖 ≤ 𝑁 − 𝑣0, set 𝑚̃𝑗𝑣,𝑖 = 0 and 𝑖 = 𝑖 + 1.
Step 5d: For 𝑖 = 𝑁 − 𝑣0 + 1, compute 𝑚̃𝑗𝑣,𝑖 through Equation (72) and set 𝑖 = 𝑖 + 1.
Step 5e: While𝑁 − 𝑣0 + 2 ≤ 𝑖 ≤ 𝑁 − 𝑣, compute 𝑚̃𝑗𝑣,𝑖 through Equation (73) and set 𝑖 = 𝑖 + 1.

Step 6: Set 𝑣 = 𝑣 + 1. If 𝑣 ≤ 𝑤, go to Step 5a.
Step 7: Compute 𝑀̃𝑗𝑅𝑤 using Equation (44) and go to Step 4.
Note that Step 7 inAlgorithm3 requires the set of probabilities {𝑥𝑖𝑣0,1 ∶ 𝑁 − 𝑣0 + 1 ≤ 𝑖 ≤ 𝑁 − 𝑤}

that can be computed by means of Algorithm 1.
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F IGURE 3 Probability mass functions of 𝐼𝑤480,1 and of 𝑆𝑤 for 𝑤 ∈ {100, 200, 400}, when ℎ = 0.1
4 NUMERICAL RESULTS

Next we proceed to show numerical insights and applicability of theoretical and algorithmic
results shown in previous sections. Wewill apply theoretical derivations to amathematical model
representing the evolution of diphtheria outbreaks taking place in a population of moderate size.
Diphtheria is a serious respiratory illness, caused by strains ofCorynebacteriumdiphtheriae that

spread from person to person mainly through respiratory droplets but also through close con-
tact with an infected individual. Diphtheria toxoid-based vaccines have been part of the WHO
Expanded Programme of Immunization since 1974. Vaccination campaigns have resulted in a
more than 90% decrease in number of cases worldwide during the period 1980–2000.43 However,
diphtheria is still a potentially fatal disease that is found in many areas such as Asia, the South
Pacific, the Middle East, eastern Europe, and the Caribbean.
From now on, we consider that a diphtheria outbreak has been detected in a boarding school or

orphanage institution with an overall population of 𝑁 = 500 residents. We assume that initially𝑣0 dwellers have received a vaccine against this disease. We fix the time unit to be the recovery
time, therefore the recovery rate is taken as 𝛾 = 1.0. The internal rate of transmission is 𝛽 = 6.5,
that is selected by assuming a basic reproduction number 𝑅0 = 𝛽∕𝛾 = 6.5, in agreement with the
estimate of diphtheria transmission given in Ref. 44. Values for the vaccine failure probability, ℎ,
will be chosen from 0.05 to 0.2, in accordance to clinical evidences43 that show that diphtheria
vaccines are effective at least among 80% of the vaccinated individuals. The external transmis-
sion rate is taken as 𝜉 = 0.01, to represent that most of the contacts occur within the institution
premises and to guarantee infection reintroduction when occasionally the disease is faded away.
In Figure 3, we display mass distribution functions of the number of infected individuals (𝐼𝑤𝑣0,1,

in Figure 3A) and the number of susceptible individuals (𝑆𝑤, in Figure 3B), that can be found
in the institution when the number of vaccinated persons decreases to the level 𝑤. We assume
an initial vaccination coverage of 𝑣0 = 480 individuals, for a vaccine that is 90% effective, and
the warning level 𝑤 is taken as 100, 200, or 400 individuals. We can observe that the distribu-
tion of 𝐼𝑤480,1 is displaced to the left when the warning level 𝑤 increases. This is what is expected
because high control values for triggering the alarm give fewer possibilities of a higher number of
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F IGURE 4 Box-plot for 𝑆𝑤 under
several warning levels when 𝑣0 = 480
and ℎ = 0.1

infectious cases. On the other hand, notice that the basic reproduction number 𝑅0 is large enough
as to increase muchmore the number of infectious in comparison with the number of susceptible
individuals, when the warning level decreases. Hence, distributions of 𝑆𝑤 depicted in Figure 3B
are graphically indistinguishable for 𝑤 = 100 and 200. This fact is in accordance with the pattern
show in Figure 3A for the distribution of 𝐼𝑤480,1 and the relationship: 𝑆𝑤 + 𝐼𝑤𝑣0,1 = 𝑁 − 𝑤, appearing
in Equation (5) that links both random variables. Hence, lowering the warning level leads to an
increase in the number of infected individuals in the institution, while the number of susceptible
individuals is mostly concentrated in low values of the interval (50, 100).
The box-plot appearing in Figure 4 corresponds to the distribution of 𝑆𝑤, the number of sus-

ceptible individuals at the wake-up time; that is, the epoch at which the number of vaccinated
individuals reaches the warning level 𝑤. The box encloses first and third quartiles of the distri-
bution, the line drawn across the box indicates the median of the distribution. Dashed lines in
the plot are drawn from the lower and upper quartile to 0.005 and 0.995-quantile, respectively,
covering 99% of the distribution. We compare patterns in the number of susceptible people when
we increase the alert level, in a population of 𝑁 = 500 individuals, where 𝑣0 = 480 of them have
received a 90% effective vaccine. 𝑆𝑤-distribution presents a symmetric shape, which is more con-
centrated around the median when we consider higher warning levels. Again, due to high value
of 𝑅0, reducing𝑤 under 200 produces a small quantitative effect on 𝑆𝑤. In consequence, box-plots
for 𝑤 < 200 look like those for 𝑤 = 200 or 250. Therefore, we point out that when we choose a
warning vaccination level under 350, we cannot guarantee that at wake-up time the institution
would be lodging the minimum number of individuals (i.e., 480 − 𝑤) needed to increase vaccine
coverage up to the initial value 𝑣0 = 480 through vaccine administration.
In the following set of experiments, we evaluate the influence of the potential risk of vaccine

failure on 𝑆𝑤. We assume that the initial coverage is 𝑣0 = 480. In Figure 5, we represent the
expected number of susceptible individuals at wake-up time, 𝐸[𝑆𝑤], as a function of the warn-
ing level. Each curve corresponds to a different vaccine described in terms of its vaccine failure
probability ℎ. In accordance with box-plot characteristics indicated in Figure 4, 𝐸[𝑆𝑊] decreases
with 𝑤, no matter how effective the vaccine is. We notice that, for 𝑤 < 200 the influence of the
vaccine failure risk in 𝐸[𝑆𝑤] is relatively small. However, for a fixed warning level 𝑤 > 200, the
expected number of susceptible individuals decreases when the risk of vaccine failure increases.
In particular, in this institution of 500 individuals affected by a diphtheria outbreak where 480
of them were vaccinated prior to the start of the outbreak, numerical results evince that, at the
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F IGURE 5 𝐸[𝑆𝑤] as a function of
the warning level when 𝑣0 = 480 andℎ ∈ {0.05, 0.1, 0.2}

F IGURE 6 Lowest warning level,
as a proportion of the initial coverage,
satisfying 𝐸[𝑆𝑤] > 𝑣0 − 𝑤 for several
vaccine failure probabilities

moment when 80 vaccinated persons have developed the infection (i.e., 𝑤 = 400), a low effective
vaccine with ℎ = 0.2 guarantees around 50 susceptible individuals in the population while for a
more effective vaccine with ℎ = 0.05 the expected value grows up to 70 susceptible individuals.
We observe that we can select an appropriate warning level using a criterion on the expected

number of susceptible persons at wake-up time 𝑇𝑤. In that sense, we depict the yellow line corre-
sponding to the straight line𝐸[𝑆𝑤] = 𝑣𝑜 − 𝑤which, for everywarning level𝑤, gives theminimum
quantity of susceptible individuals that should be vaccinated to raise the vaccination coverage to
its initial level.
To develop this idea, we introduce 𝛼 as the lowest proportion of the initial coverage 𝑣0 that

guarantees that at wake-up time, 𝑇𝛼𝑣0 , the mean number of eligible (i.e., susceptible) individuals
is large enough to raise the number of vaccinated individuals to the initial level 𝑣0. That is, 𝛼 =𝑚𝑖𝑛{𝑎 ∈ (0, 1) ∶ 𝐸(𝑆𝑎𝑣0) > 𝑣0(1 − 𝑎)}.
In Figure 6, we represent this lowest proportion as a function of the initial coverage. Each curve

corresponds to a different potential risk of vaccine failure ℎ and initial coverage ranges from an
unprotected (𝑣0 = 0) to a fully protected (𝑣0 = 𝑁 = 500) population. In general terms, an increase
in initial vaccine coverage implies an increase in the lowest proportion 𝛼 and consequently in
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TABLE 1 Optimal warning level and 𝑅𝑤 measures according to vaccine efficacy when 𝑣0 = 480 and 𝑖0 = 1𝒉 𝒘∗ 𝑷(𝑹𝒘∗ > 𝟎) 𝑬[𝑹𝒘∗ ∣ 𝑹𝒘∗ > 𝟎] 𝝈(𝑹𝒘∗ ∣ 𝑹𝒘∗ > 𝟎)
0.05 417 0.40753 5.86253 × 1013 1.07798 × 1014
0.1 429 0.43929 8.11198 × 1013 1.19392 × 1014
0.2 448 0.37959 9.47003 × 1013 1.23915 × 1014
the warning level. We recall that in accordance with diphtheria and vaccine characteristics, it
is possible to determine the appropriate vaccination level that provides herd immunity in the
population. In aMarkovian stochastic framework, vaccination coverage providing herd immunity
can be determined in terms of the exact reproduction number 𝑅𝑒0.30,31 Applying this methodology
to our choice of model parameters, we get that an initial coverage of 424 vaccinated individuals
reduces viral transmission and prevents major outbreaks in the whole institution. In addition, as
was pointed out in Figure 5, for vaccination coverage values higher than 424 less efficient vaccines
need larger warning levels to assure that the population will contain, in mean terms, enough
eligible individuals to recover the initial vaccine coverage 𝑣0 when the alarm is triggered.
We have suggested a criterion for selecting the warning level𝑤 based on checking the expected

size of the susceptible group at wake-up time. Though, a choice of a threshold 𝑤 fulfilling this
rule does not guarantee that the event of finding a large enough eligible group will occur in every
outbreak. To try to avoid this inconvenience, we can use the information provided by the random
variable 𝑅𝑤. We recall that this was defined in Section 3.2 as the elapsed time between the wake-
up time and the instant at which the population contains sufficient susceptible individuals to be
vaccinated to raise the vaccinated group to its initial size (i.e., the initial coverage 𝑣0).
To illustrate this fact, we state the above criterion clearly. For a fixed initial vaccine coverage,𝑣0, we choose the warning vaccination level as follows 𝑤∗ = 𝑚𝑖𝑛{𝑤 ∈ [0, 𝑣0) ∶ 𝐸[𝑆𝑤] ≥ 𝑣0 − 𝑤}.
Having in mind the applicability of this choice, next we evaluate some measures related to𝑅𝑤, when a warning level was fixed according to the above-mentioned criteria. Specifically, for a

selected warning level we will compute mean and standard deviation of 𝑅𝑤, and also the prob-
ability 𝑃{𝑅𝑤 > 0}, that gives the chances of not being able to launch an immediate vaccination
campaign due to an insufficient number of individuals in the eligible group.
Table 1 summarizes numerical characteristics of revaccination timewhenwe vary potential risk

of vaccine failure. Again we consider a diphtheria outbreak taking place within an institution of𝑁 = 500 individuals, where 480 have received a vaccine before the start of the outbreak. Accord-
ing to vaccine and disease parameters, we fix the optimal warning level 𝑤∗ using the criterion
explained in the previous paragraph. Hence, by the time that the number of vaccine protected
individuals drops down to 𝑤∗ individuals, it is expected that the number of susceptible individ-
uals staying in the institution is large enough to increase the total number of vaccine protected
individuals to the initial coverage of 480 residents, through a new (and instantaneous) vaccination
campaign among the susceptible group. However, the choice of 𝑤∗ does not guarantee that this
new vaccination campaign could be implemented at wake-up time. In that sense, results shown in
the Table 1 indicate that, for an (1 − ℎ)100% efficient vaccine and awarning level settled at𝑤∗ indi-
viduals, it is necessary towait until themass of susceptible individuals is large enough inmost out-
breaks. In addition, entries corresponding to the mean and standard deviation of (𝑅𝑤∗ ∣ 𝑅𝑤∗ > 0)
indicate that if we cannot revaccinate immediately, then there is a big chance that we will never
be able to. Hence, as a consequence of the high transmission potential of diphtheria (𝑅0 = 6.5), it
is likely to have to wait a long time to get the number of eligible individuals high enough. Numer-
ical experiments, additional to those reported here, show that the mean and standard deviation
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of 𝑅𝑤 increase as functions of vaccine failure probability ℎ, but decrease for increasing values of
the warning level.
Consequently, the criterion to select the appropriate warning level can be refined by fixing

a maximum value on 𝑃{𝑅𝑤 > 0} and/or on 𝐸[𝑅𝑤] regarding the idiosyncrasies of the institu-
tion itself.

5 CONCLUSIONS AND FUTUREWORK

This paper studies a stochastic Susceptible-Infectious-Vaccinated-Susceptible (SIVS)modelwhere
a Markov chain represents disease transmission. The CTMC models the changes in the state of
the epidemic process that records the number of individuals that are susceptible, infected, or vac-
cinated at any time 𝑡 > 0. Model hypothesis assume infection reintroduction and imperfect vac-
cine. Hence, susceptible and vaccinated individuals (when vaccine fails) can get the infection
from internal and external contacts. In any case, any individual recovers as a susceptible one, as if
he/she had never had the vaccine.We assume that population is herd immunity protected because
a sufficient number of individuals, 𝑣0, has been vaccinated prior to the onset of the outbreak. As
disease remains present, due to external contacts, eventually every vaccinated individual can get
the disease. Consequently, while the epidemic process evolves, the number of vaccinated individ-
uals decreases and herd protection can be lost.
In Ref. 37, we set a level of vaccinated individuals, 𝑤, to activate an alert in case the number of

vaccinated individuals drops down to the selected level. Our present research focuses on restor-
ing the herd immunity level by scheduling a new vaccination campaign. With this aim in mind
and linked to the warning level, we observe the group of individuals eligible for vaccination and
introduce the random variables 𝑆𝑤 and 𝑅𝑤 recording the size of the susceptible group when the
alarm is triggered and the time until the size of this group is large enough to increase the vacci-
nated population to the initial herd level 𝑣0, respectively. We present results giving both analytical
formulas and practical numerical methods for calculating moments and generating functions of
these variables of interest.
We notice that, the underlying Markov chain 𝑋 can be identified as a finite quasi-birth-death

(QBD) process. These processes are extensively used in modeling stochastic systems and their
analysis can be addressed by thematrix-analytics methodology.45 Most of the theoretical work for
QBD concerns stationary distributions and moments of first passage times, but it can be applied
to derive other interesting characteristics such as absorption and hitting probabilities.46,47 In this
sense, we point out that the distribution of the random variable 𝑆𝑤 can be derived from hitting
probabilities of reaching states showing𝑤 vaccinated for an auxiliary absorbing process that takes
values in𝑊, while the random variable 𝑅𝑤 can be seen as a first passage time to states in the set{(𝑣, 𝑖) ∶ 0 ≤ 𝑣 ≤ 𝑤, 0 ≤ 𝑖 ≤ 𝑁 − 𝑣0 + 𝑤 − 𝑣}. Hence results presented in this paper can be derived
by the matrix-analytics methodology. Instead of that our approach exploits the structure of the
systems of equations to derive the explicit recursive expressions appearing in Theorems 1, 2, 3,
and 4.
With illustrative purposes, we consider that a diphtheria outbreak occurs in a herd protected

boarding school where 500 pupils live within premises. Institution authorities are aware of health
condition of any dweller. In particular, they have information about the number of vaccinated
individuals who get the disease, therefore they know if 𝑉(𝑡) had reached or not the alarm level𝑤 and the time 𝑇𝑤. Analytic and algorithmic results provide information on the distribution of
the above-mentioned random variables. Recalling numerical results, for this particular situation
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where disease transmission is quite high, we observe that as the warning level is less restrictive,
the population will contain a larger number of infectious cases when the alarm is triggered and it
will be less probable to be able to schedule an immediate vaccination program at wake-up time.
Consequently, too low values of 𝑤 will not guarantee enough individuals in the eligible group for
vaccination to restore herd immunity in a reasonable time interval. According to vaccine charac-
teristics and initial coverage, we can select a warning level𝑤 that guarantees that𝑤 + 𝐸[𝑆𝑤] ≥ 𝑣0
and refine the search by adding additional criteria depending on the time 𝑅𝑤 required for launch-
ing a vaccination campaign at the time when the alert is activated.
We point out that a criterion based on 𝑆𝑤 and on 𝑅𝑤 is also of interest to manage outbreaks of

many other vaccine preventable contact diseases. One drawback of ourmodel is the instantaneous
revaccination assumption. In practice, giving the cycling of individuals through 𝑆 and 𝐼 compart-
ments, the number of susceptible will probably change while the vaccination campaign is run-
ning. Another drawback is the assumption of fixed value for failure probability, ℎ, which implies
that, within each individual, the vaccine successfully resists challenge by the infection indepen-
dently and with a fixed probability until the vaccine fails. Assuming more realistic hypothesis
increases model complexity, compromises its mathematical tractability, and can pose computa-
tional instability. The possibility of studying randomvariables associated towarning levels inmore
sophisticated models depends on a balance between the realism of a model and its mathematical
simplicity. In this sense, we plan to extend the analysis to epidemic models with latency period or
recovery, involving immunization waning effects (see, for instance, Refs. 17, 48–50). Hoping that
the study can be developed in a stochastic Markovian framework, where it is possible to identify
events leading to a new contagion, recovery, waning immunization, and so forth.
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Chapter 5

A Stochastic SVIR Model with

Imperfect Vaccine and External

Source of Infection

In this Chapter we analyze the stochastic SVIR model with external source

of infection and imperfect vaccine described in Section 1.3.2.2.

The investigation is published in[120], as a conference paper during the

26th International Conference on Analytical and Stochastic Modelling Tech-

niques and Applications (ASMTA 2021). The publication was restricted to

not exceed 15 pages, including figures, tables, and references. Consistent with

standard practice, the submitted paper received rigorous peer reviewing.

At the end of the Chapter, a printed version of [120] is included, along

with scientific information regarding the conference paper published.
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5.1 Background

According to the epidemic model description appearing in Section 1.3.2.2, we

study the propagation of infectious diseases that confer permanent immunity

for a finite homogeneous population of constant size.

We describe the evolution of the epidemic process, at each time point t, in

terms of a three-dimensional CTMC.

The state space of the Markov chain is finite and contains a unique absorbing

state which corresponds to the situation when all individuals are recovered.

An appropriate description of this state space will result in a bi-diagonal block

structured infinitesimal generator that leads one to analyze its behaviour as

a LD-QBD process.

Our interest is on the quantification of the speed of transmission analyzing

the random variable W (M) that denotes the time until a number M of

infections are produced in the population. This random variable is not an

improper one and the time to reach M infections in the population is finite

with probability one, since the external source of infections ensures that all

individuals will eventually infected.

5.2 Objectives

In this investigation we attain objectives (a), (c.1), (c.2), (c.4), (d) and (e)

described in Section 1.1.1. In more detail:

We construct the stochastic SVIR model with infection reintroduction and

imperfect vaccine that is objective (a).

We study the impact of vaccination on the expansion of the infectious dis-
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ease and measure the speed of transmission by analyzing the time until hit

a threshold number of individuals to become infected in order to perform

objectives (c.1) and (c.4).

Aims (d) and (e) are reached through several numerical examples where we

analyze the random variable of interest by considering different selection in

the model parameters.

5.3 Methodology

To analyze the behaviour of the epidemic process overtime, we apply the

methodology detailed in Section 1.1.2.

Specifically, we describe the evolution of the epidemic process in terms

of a three-dimensional CTMC and we organize the state space in levels and

sub-levels that permits us to the study of a (LD-QBD) process.

To obtain moments of the random variable,W (M), we derive a methodol-

ogy based on Laplace–Stieltjes transforms and first-step arguments, adapting

techniques in, [123, 124].

5.4 Conclusions

We analyse the speed of transmission describing the random variable, W (M)

and we obtain explicit expressions to compute its moments.

Computational times are very high when considering large size popula-

tions. In that sense, we only show numerical examples for small size popula-

tions.
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Regarding the behaviour of the random variable, W (M), we observe that

the average time to reach a total M number of infections increases when

we consider increasing values of M . When we vary the model parameters,

we obtain that increasing transmission rates, β and ξ, produce lower aver-

age times, E[W (M)]. The vaccine failure probability has a big effect of the

average, E[W (M)]. We observe that more effective vaccines produce longer

periods to reach M infections. This effect is more relevant when we increase

the value of M.
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Abstract. A stochastic SIR (Susceptible - Infected - Recovered) type
model, with external source of infection, is considered for the spread
of a disease in a finite population of constant size. Our interest is in
studying this process in the situation where some individuals have been
vaccinated prior to the start of the epidemic, but where the efficacy of
the vaccine to prevent infection is not perfect. The evolution of the epi-
demic is represented by an absorbing three-dimensional continuous-time
Markov chain. We focus on analysing the time for a threshold number of
individuals to become infected, and carry out a global sensitivity analysis
for the impact of varying model parameters on the summary statistic of
interest.

Keywords: Stochastic epidemic model · Markov chain · Time to
absorption · Imperfect vaccine

1 Introduction

Infectious diseases have been a serious threat to society throughout history.
Plague, cholera and smallpox are examples of epidemics in the past that killed
many people. This is a problem that we still suffer today, with emerging diseases
such as Ebola, SARS and COVID-19 that continue to claim lives every day.

Understanding epidemic processes is vitally important to forecast the inci-
dence of a disease and to establish mitigation strategies, and mathematical mod-
elling has proven to be a robust tool in this area. Deterministic models have
been widely used due to their mathematical tractability [1,2], and are especially
relevant when considering large populations or when stochastic effects can be
neglected. On the other hand, when considering small populations or if extinc-
tion events play a relevant role, stochastic models need to be considered instead
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of classic ones due to the influence on the impact of the disease of random differ-
ences in infectiousness and susceptibility among individuals, while these random
effects tend to cancel out each other as population size increases [3,4].

The Kermack and McKendrick model [5] has probably been the most influ-
ential in representing the spread of an epidemic in the last decades. It is a
compartmental deterministic model that classifies individuals according to their
“state” with respect to the disease over time: susceptible (S), infected (I) and
recovered (R). This SIR model is appropriate for describing a disease for which
individuals develop permanent immunity after infection. The SIR model, and a
number of different variations, has been widely analysed both for homogeneous
[6,7] and heterogeneous populations [8]. In these systems, of particular interest
can be specific summary statistics that characterize an outbreak, such as the
size of the outbreak [9], its length [10,11] or the reproduction number [12].

Vaccination is an effective preventive measure to limit or avoid an outbreak,
where the presence of a high percentage of vaccinated individuals in a given
population can prevent transmission, reducing the size and impact of epidemic
outbreaks, or the probability of these outbreaks happening at all. A number of
mathematical models have considered vaccinated individuals as an extra com-
partment in the model [13], and some studies have added vaccination strategies
into these mathematical models [14–17]. In some cases, vaccines do not provide
permanent immunity, and boosters are required [18]. In other occasions, a vac-
cine might not be fully effective in preventing disease [19], and a proportion of
vaccinated individuals might still be partially susceptible against infection. In
this situation of an imperfect vaccine, the population runs the risk of losing or
not achieving herd immunity [20].

In the literature we can find examples of studies assuming either fully pro-
tective [21] or imperfect [22,23] vaccines. In [24,25], authors quantify disease
transmission in a stochastic SIS model with external source of infection and
imperfect vaccine and study preventive measures surrounding vaccination. Under
the assumption of imperfect vaccine, authors in [26] study the stationary distri-
bution of the system for a closed population in a stochastic SVIR-type model.
On the other hand, in [27] the time to extinction is studied for a non-linear
incidence rate model.

In this paper, we consider a SVIR model with imperfect vaccine and external
source of infection for a finite homogeneous population of fixed size. Our interest
is in analysing the time until a threshold number of individuals get infected, as a
way of quantifying the timescales for disease spread. We do this by representing
the epidemic process in terms of a multidimensional continuous-time Markov
chain (CTMC), and studying a time to absorption in this process. We show
how a particular organization of states in this CTMC leads to the study of a
level-dependent quasi birth-and-death process (LD-QBD) [28], and propose an
efficient scheme to analyse the summary statistic of interest. Our methodology
is based on the analysis of Laplace-Stieltjes transforms and the implementation
of first-step arguments, adapting techniques in [24,25].
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This paper is organized as follows. In Sect. 2 we introduce the SVIR stochastic
model with imperfect vaccine and external source of infection. In Sect. 3 we
define the summary statistic of interest, and provide an efficient algorithm to
compute any of its moments. In Sect. 4 we illustrate our methodology by carrying
out a global sensitivity analysis on model parameters. Finally, we present our
conclusions in Sect. 5, and discuss possible future lines of research.

2 Model Description

We model the spread of an infectious disease across a population of constant
size N , where a percentage of individuals are vaccinated at time t = 0 as a pro-
phylactic device to control disease spread. We assume that vaccine is not perfect
so that vaccinated individuals can get the infection with probability h ∈ (0, 1),
which we refer to as the vaccine failure probability. Vaccine protection lasts for
at least the length of an outbreak, hence further vaccination during the outbreak
is not considered. We consider SIR-type dynamics, so that infected individuals
become recovered after their infectious period, and denote the recovery rate by
γ. Transmission can occur through direct contact, with rate β, or due to an
external source of infection, with rate ξ.

We represent this epidemic process in terms of a three-dimensional
continuous-time Markov chain (CTMC) X = {(V (t), S(t), I(t)) : t ≥ 0}, where
V (t), S(t) and I(t) represent the number of vaccinated, susceptible and infected
individuals in the population at time t ≥ 0. Given that the population size
remains constant, it is clear that R(t) = N − V (t) − S(t) − I(t) represents the
number of recovered individual at time t. If one assumes that there are no recov-
ered individuals at the beginning of the epidemic process, the initial state is
given by (V (0), S(0), I(0)) = (v0, s0, N − v0 − s0), for some v0, s0 ≥ 0, with
v0 + s0 ≤ N . The state space of the Markov chain is then given by

S = {(v, s, i) : 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, 0 ≤ v + s + i ≤ N}, (1)

which is finite and contains (v0 +1)(s0 +1)(N +1− s0+v0
2 ) states, with a unique

absorbing state (0, 0, 0).
We assume that recoveries and contacts between individuals happen inde-

pendently of each other, with exponentially distributed inter-event times. The
evolution of the epidemic process over time is represented by transitions between
states in S, where the possible events/transitions are outlined in Table 1. In par-
ticular, given the current state (v, s, i) ∈ S, possible events are:

(E1) A susceptible individual gets infected, which occurs with rate

λs,i = s

(
βi

N
+ ξ

)
.

(E2) Considering imperfect vaccination with vaccine failure probability h, a vac-
cinated individual can still become infected at rate

ηv,i = vh

(
βi

N
+ ξ

)
.
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(E3) An infectious individual recovers with rate

γi = γi.

Table 1. Possible events and their transition rates.

Effective outgoing event Transition Rate

Infection of susceptible individual (v, s, i) → (v, s − 1, i + 1) λs,i

Infection of vaccinated individual (v, s, i) → (v − 1, s, i + 1) ηv,i

Recovery (v, s, i) → (v, s, i − 1) γi

Times spent at each state (v, s, i) ∈ S are independent and exponentially
distributed random variables, with rate qv,s,i = λs,i + ηv,i + γi. The dynamics
of X is determined by its infinitesimal generator, Q, which one can efficiently
construct by organising first the space of states S in terms of levels and sub-levels.
In particular, for a particular initial state (v0, s0, N − s0 − v0),

S = ∪v0
v=0l(v),

l(v) = ∪s0
s=0l(v, s), 0 ≤ v ≤ v0,

l(v, s) = {(v, s, i) ∈ S : 0 ≤ i ≤ N − v − s}, 0 ≤ s ≤ s0, 0 ≤ v ≤ v0.

We note that the number of states in each sub-level is #l(v, s) = N − v − s + 1,
while the number of states in each level is #l(v) = (s0 +1)(N −v+1)− s0(s0+1)

2 .
By ordering states within each sub-level as

(v, s, 0) ≺ (v, s, 1) ≺ · · · ≺ (v, s,N − v − s),

and ordering then states by sub-levels and levels, the infinitesimal generator of
X , Q, is given by

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q0,0

Q1,0 Q1,1

Q2,1 Q2,2

. . . . . .
Qv0,v0−1 Qv0,v0

⎞
⎟⎟⎟⎟⎟⎠

,

with v0, s0 ≥ 0 and v0 + s0 ≤ N .
We note that sub-matrices Qv,v∗ are of dimensions #l(v) × #l(v∗). Sub-

matrices Qv,v, for 0 ≤ v ≤ v0, contain rates corresponding to transitions between
states within the level l(v). These events, according to the definition of levels
and Table 1, correspond to susceptible individuals becoming infected, or infected
individuals recovering. On the other hand, sub-matrices Qv,v−1, for 1 ≤ v ≤ v0,
correspond to transitions from states in level l(v) to states in level l(v − 1),
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which occur due to vaccinated individuals becoming infected. More specifically,
sub-matrices Qv,v∗ are described as follows:

Qv,v−1 =

⎛
⎜⎜⎜⎝

Av,v−1(0, 0)
Av,v−1(1, 1)

. . .
Av,v−1(s0, s0)

⎞
⎟⎟⎟⎠ , 1 ≤ v ≤ v0,

Qv,v =

⎛
⎜⎜⎜⎜⎜⎝

Av,v(0, 0)
Av,v(1, 0) Av,v(1, 1)

Av,v(2, 1) Av,v(2, 2)
. . . . . .

Av,v(s0, s0 − 1) Av,v(s0, s0)

⎞
⎟⎟⎟⎟⎟⎠

, 0 ≤ v ≤ v0.

Sub-matrices Av,v−1(s, s), for 1 ≤ v ≤ v0, 0 ≤ s ≤ s0, have dimensions
(N − v − s + 1) × (N − v − s + 2), and contain the transition rates from states
in sub-level l(v, s) to states in sub-level l(v − 1, s). These transitions represent
infections of vaccinated individuals. Sub-matrices Av,v(s, s) contain the tran-
sition rates from states in sub-level l(v, s) to states within the same sub-level,
and correspond to recoveries of infected individuals. Sub-matrices Av,v(s, s − 1)
contain transition rates from states in sub-level l(v, s) to states in sub-level
l(v, s − 1), corresponding to infections of susceptible individuals. In particular,
these sub-matrices are defined as follows:

• For 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, Av,v(s, s) is a matrix of dimensions (N − v − s +
1) × (N − v − s + 1), with

Av,v(s, s) =

⎛
⎜⎜⎜⎜⎜⎝

−qv,s,0

γ −qv,s,1

2γ −qv,s,2

. . . . . .
(N − v − s)γ −qv,s,N−v−s

⎞
⎟⎟⎟⎟⎟⎠

.

• For 1 ≤ v ≤ v0, 0 ≤ s ≤ s0, Av,v−1(s, s) is a matrix of dimensions (N − v −
s + 1) × (N − v − s + 2), with

Av,v−1(s, s) =

⎛
⎜⎜⎜⎝

0 ηv,0

0 ηv,1

. . . . . .
0 ηv,N−v−s

⎞
⎟⎟⎟⎠ .
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• For 0 ≤ v ≤ v0, 1 ≤ s ≤ s0, Av,v(s, s − 1) is a matrix of dimensions (N − v −
s + 1) × (N − v − s + 2), with

Av,v(s, s − 1) =

⎛
⎜⎜⎜⎝

0 λs,0

0 λs,1

. . . . . .
0 λs,N−v−s

⎞
⎟⎟⎟⎠ .

3 Time Until M Individuals Get Infected

In this section, we analyse the speed of transmission by focusing on the time that
it takes for a threshold number M of individuals to get infected, W (M). W (M) is
a non-negative continuous random variable that denotes the time elapsed until
a total of M individuals become infected. In order to analyse this summary
statistic, we redefine the CTMC as X ∗ = {(J(t), S(t), I(t)) : t ≥ 0} where S(t)
and I(t) denote the number of susceptible and infected individuals respectively
at time t, and J(t) = S(t)+V (t) represents the sum of vaccinated and susceptible
individuals at time t. For an initial state (j0, s0, i0) and a threshold value M of
interest, with 1 ≤ M ≤ N , W (M) can be defined as

Wj0,s0,i0(M) = inf{t ≥ 0 : J(t) = N − M | (J(0), S(0), I(0)) = (j0, s0, i0)}.

To analyse this random variable, one can study the evolution of the Markov chain
X ∗ in the set of states S∗ = {(j, s, i) : N −M ≤ j ≤ j0,max(0, j +s0−j0) ≤ s ≤
s0,max(0, N − M − j + 1) ≤ i ≤ N − j}, and where trivially Wj0,s0,i0(M) ≡ 0
if M ≤ N − j0. Then, the variable Wj0,s0,i0(M) can be studied as first-passage
time to the set of absorbing states S∗

M = {(N − M, s, i) ∈ S∗} of the Markov
chain X ∗.

For any initial state (j0, s0, i0), and threshold value of interest 1 ≤ M ≤ N ,
it is clear that P(Wj0,s0,i0(M) < +∞) = 1, since the external source of infection
ensures that all individuals will eventually become infected. On the other hand,
the definition of Wj0,s0,i0(M) for the initial state of interest (j0, s0, i0) can be
extended to any other state (j, s, i) ∈ S∗, and the random variable of interest
Wj0,s0,i0(M) can be studied by analysing as well the auxiliary ones Wj,s,i(M),
(j, s, i) ∈ S∗. In particular, we can introduce the Laplace-Stieltjes transforms for
any (j, s, i) ∈ S∗ as φj,s,i(z) = E

[
e−zWj,s,i

]
, z ∈ C, with Re(z) ≥ 0, and where

we omit M from notation from now on.
The Laplace-Stieltjes transforms φj,s,i(z) satisfy a set of linear equations,

which is obtained via first-step arguments by conditioning on the possible tran-
sitions out of state (j, s, i) ∈ S∗. In particular,
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φj,s,i(z) = (1 − δi,0)
γi

z + qj−s,s,i
φj,s,i−1(z)

+(1 − δs,0)
λs,i

z + qj−s,s,i
φj−1,s−1,i+1(z)

+
ηj−s,i

z + qj−s,s,i
φj−1,s,i+1(z), (2)

where δi,j represents the Kronecker’s delta function, defined as 1 when i = j, and
0 otherwise. This system of equations has boundary conditions φN−M,s,i(z) = 1
for those states at which the number M of infections is reached. We can also
note that, by definition, φj,s,i(0) = 1, for any (j, s, i) ∈ S∗.

These Laplace-Stieltjes transforms could be computed, at any point z ∈ C, by
solving system (2). Furthermore, with the help of numerical methods for Laplace
transforms inversion, it is possible to calculate the probability distribution func-
tion of W (M) [29,30]. Although the numerical inversion is indeed possible, it is
many times computationally not feasible. However, our interest instead here is
in computing different order moments of these variables. In particular, moments
can be computed from direct differentiation of the transform, as

mk
j,s,i = E

[
W k

j,s,i

]
= (−1)k dkφj,s,i(z)

dzk

∣∣∣∣
z=0

, k ≥ 1. (3)

Thus, by differentiating Eq. (2) with respect to z k times (k ≥ 1) and evaluating
at z = 0, we obtain the equations involving the moments as

qj,s,im
k
j,s,i = kmk−1

j,s,i + λs,im
k
j−1,s−1,i+1 + ηj−s,im

k
j−1,s,i+1 + γim

k
j,s,i−1, (4)

with boundary conditions m0
j,s,i = 1, mk

N−M,s,i = 0 for any k ≥ 1.
The loop-free structure of the transition rates of the CMTC X ∗ allows one to

compute moments in a recursive way from the system above, for increasing values
of k ≥ 1 and taking into account that moments of order 0 are trivially equal
to 1. Algorithm 1 outlines how to carry out this computation in an efficient and
ordered way, which is based on Theorem1 below. Proof of Theorem1 is omitted
here for the sake of brevity, since it consists of a recursive solution scheme directly
based on Eq. (4).
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Algorithm 1. Computation of the kth-order moments of the random variable
Wj0,s0,i0(M), for 1 ≤ k ≤ kmax for some maximum desired order kmax

Input : j0, s0, i0, N, M, β, ξ, γ and kmax.
Step 1: Set j = N − M

Step 1a: Set s = max(0, j + s0 − j0)
Step 1b: Set k = 0 and set m0

N−M,s,i = 1 for max(0, N−M−j+1) ≤ i ≤ N−j.
Step 1c: Set k = k+1, set mk

N−M,s,i = 0 for max(0, N−M−j+1) ≤ i ≤ N−j.
Step 1d: If k < kmax, go to Step 1c.
Step 1e: Set s = s + 1. If s ≤ s0, go to Step 1b.

Step 2: Set j = N − M + 1.
Step 2a: Set s = max(0, j + s0 − j0).
Step 2b: Set k = 0 and set m0

j,s,i = 1 for max(0, N − M − j + 1) ≤ i ≤ N − j.
Step 2c: Set k = 1 and set mk

j,s,i for max(0, N − M − j + 1) ≤ i ≤ N − j,
from (6).

Step 2d: Set k = k+1 and compute mk
j,s,i for max(0, N−M−j+1) ≤ i ≤ N−j,

from (7)-(8).
Step 2e: If k < kmax, go to Step 2d.
Step 2f: If s < s0, set s = s + 1 and go to Step 2b.

Step 3: If j = j0, stop.
Step 4: Set j = j + 1.

Step 4a: Set s = max(0, j + s0 − j0).
Step 4b: Set k = 0 and set m0

j,s,i = 1 from max(0, N −M −j+1) ≤ i ≤ N −j.
Step 4c: Set k = k+1 and compute mk

j,s,i for max(0, N−M−j+1) ≤ i ≤ N−j,
from (7)-(8).

Step 4d: If k < kmax, go to Step 4c.
Step 4e: If s < s0, set s = s + 1 and go to Step 4b.

Step 5: If j < j0, go to Step 4. If j = j0, stop.
Output: mk

j0,s0,i0 , for 0 ≤ k ≤ kmax.

Theorem 1. Given a number of initial vaccinated and susceptible individuals
v0 ≥ 0 and s0 ≥ 0, with 0 ≤ v0 + s0 ≤ N and an integer k, k ≥ 0, and
1 ≤ M ≤ N , the central moments of order k of the variable Wj0,s0,i0(M), are
obtained from the following expressions for all (j, s, i) ∈ S∗:

m0
j,s,i = 1, mk

N−M,s,i = 0, for k ≥ 1, (5)

m1
N−M+1,s,i =

i∑
r=0

i!γi−r

r!∏i
l=r qN−M−s+1,s,l

, (6)

mk
j,s,i =

i∑
r=0

i!γi−r

r! T k
j,s,r∏i

l=r qj−s,s,l

for k ≥ 1 (7)

with

T k
j,s,i = kmk−1

j,s,i + (1 − δs,0)λs,im
k
j−1,s−1,i+1 + (1 − δj,s)ηj−s,im

k
j−1,s,i+1. (8)
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4 Results

In this section, we illustrate our analysis in Sect. 3 by carrying out a global
sensitivity analysis on model parameters for the summary statistic of interest.
We set the recovery rate γ = 1.0 in all the numerical experiments, so that the
time unit is taken as the expected time that an infected individual takes to
recover. We consider a population of N = 100 individuals here, and assume that
50% of them are partially protected against the infection through the vaccine,
so that the initial state is (v0, s0, i0) = (50, 49, 1).

Fig. 1. Mean time E[W (M)] until M individuals get infected, for different values of
M , R0, h and ξ. Initial state (v0, s0, i0) = (50, 49, 1).

In Fig. 1, we plot WM = E[W (M)] for different values of the Basic Repro-
duction Number, R0 = β/γ, ξ, h and M . The average time to reach a total of
M infections increases with increasing values of M , as one would expect. On the
other hand, WM decreases with the external source of infection rate, ξ, since
these external infections can contribute towards reaching the threshold M . An
interplay can be observed between the value of the reproduction number R0 and
the vaccine failure probability h, so that large values of WM can be due to small
transmission rates (small R0) or to small probability of vaccine failure, h. We
note that the value of M , together with the proportion of individuals initially
vaccinated, are directly relevant to understand the dynamics in Fig. 1. The rel-
evance of h is observed to be smaller for M = 50, since in this situation the
outbreak can reach 50 infections just by those infections suffered by susceptible
individuals in this system. On the other hand, increasing values of M require
infections to happen among the vaccinated sub-population, and thus small val-
ues of the vaccine failure probability lead to significantly increased times WM to
reach M infections. We also note that, for small values of ξ (e.g.; ξ = 0.01R0),
the mean time WM to reach M infections can span several orders of magnitude
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for different values of the parameters (M,R0, h). This can be explained by the
fact that, if the external source of infection is small and the outbreak was to
finish without the level M of infections being reached, one would need to wait
until a subsequent outbreak to occur in the remaining susceptible/vaccinated
population, which would take long under small values of ξ. Larger values of ξ
lead to “overlapping” outbreaks, where external infections can constantly occur,
facilitating smaller values of the mean time WM .

Fig. 2. Mean time E[W (M)] (solid curves) plus and minus its standard deviation
σ[W (M)] (shaded area) versus M , for ξ = 0.01R0, N = 100, R0 ∈ {1.5, 5} and h ∈
{0.01, 0.1, 0.3}. Initial state (v0, s0, i0) = (50, 49, 1).

Some of the dynamics described above can be better understood by exploring
Fig. 2, that shows the expected time elapsed until M infections have been reached
as a function of M , for a relatively small value of ξ = 0.01R0 and for several val-
ues of h and two different values of R0. Shaded areas are obtained by considering
E[W (M)]±σ[W (M)]. As expected, increasing values of R0 or decreasing values
of h lead to increasing times to reach M infections. On the other hand, vaccines
with higher probability of failure lead to situations where less time is needed in
order to reach M infections, and in consequence the expansion of the disease is
faster. This behaviour reveals the importance of the vaccine effectiveness. Par-
ticularly interesting is the asymptotic behaviour of the curves, where the time
to reach M infections can significantly increase when approaching particular
values of M in some situations. This is directly related to the vaccine failure
probability h, and the initial number of susceptible and vaccinated individuals
(s0, v0) = (49, 50). In particular, and when focusing for example on R0 = 1.5 and
h = 0.01, the small vaccine failure probability means that infections in order to
reach the threshold value M are likely to occur among susceptible individuals,
and unlikely to happen among vaccinated ones. Since 50% of the population is
vaccinated, and we start with 1 infected individual, up to M = 50 individuals
can become infected in relatively short periods of time (given that R0 = 1.5)
by infections happening in the susceptible pool. However, as soon as M exceeds
the value 50 infections among the vaccinated pool are required to happen for
this threshold to be reached. These infections would be rare (h = 0.01), leading
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to significant increases in the expected time E[W (M)]. These behaviours nicely
illustrate the protection that a nearly perfect vaccination confers to the pool of
vaccinated individuals, where a relatively fast outbreak (due to R0 = 1.5 > 1)
would decelerate when approaching M = s0 + i0. For significantly small values
of h (e.g.; h = 0.01), the dynamics described above are relatively similar regard-
less of considering R0 = 5 instead of R0 = 1.5, although increasing values of
R0 facilitate an overshoot effect, as can be observed when comparing the two
plots in Fig. 2. For relatively larger vaccine failure probabilities (e.g.; h = 0.1 or
h = 0.3), these asymptotic behaviours can be partially compensated by increas-
ing values of R0, where some infections in the vaccinated pool can be achieved
due to the large value of R0, facilitating the attainment of the threshold number
of infections M .

Numerical experiments show that the expected value of W (M) presents an
increasing behaviour, as a function of M . Moreover, when we increase the vac-
cination coverage v0 and keep fixed the remaining model parameters, the mean
time to achieve a number of M infections also increases. This is in accordance to
intuition because when an outbreak starts with a big proportion of vaccine pro-
tected individuals, infections are becoming less likely and the time to infect M
individuals is larger in comparison with outbreaks starting with a lesser number
of vaccinated individuals.

Computational times are very high and complexity increases when consid-
ering populations larger than 1000 individuals. For instance, when N = 1000
individuals the state space S∗ contains around 4.16 × 107 states, while for a
population of 10000 individuals the number of states increases to 4.16 × 1010.
The elapsed time to compute E[W (M)] takes around 4 min when N = 1000 and
it lasts more than 5 h when N = 10000, in a personal computer with 8 GB of
RAM, M1 memory Chip with GPU of 7 Kernels.

5 Conclusions

In this paper, we have considered a stochastic SVIR model with imperfect vaccine
and external source of infection. We have represented this in terms of a multidi-
mensional continuous-time Markov chain, and have showed that by appropriately
ordering its space of states in terms of levels and sub-levels, this leads to the
study of a LD-QBD. Our interest was in analysing the speed at which the epi-
demic occurs, by studying the time to reach a threshold number M of infections
in the population. By means of first-step arguments, we have obtained a system
of linear equations which can be solved efficiently and recursively, as outlined in
Algorithm 1. In our results in Sect. 4, we have illustrated our methodology by
carrying out a wide sensitivity analysis on model parameters, where an interplay
can be observed between the reproduction number R0, the threshold of interest
M , the vaccine failure probability h, the external source of infection rate ξ, and
the initial number of vaccinated individuals v0. Our techniques can in principle
be applied in order to study other summary statistics of potential interest in this
system, such as the exact reproduction number [24,31] or the time until the end
of the outbreak [8]. This remains the aim of future work.
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Chapter 6

On the Exact and Population

Reproduction Numbers in a

Stochastic SVIR Model with

Imperfect Vaccine

In this research work we extend the investigation described in the previous

Chapter for the SVIR epidemic model.

We focus on the quantification of the potential transmission of an infec-

tious disease through reproduction numbers, as we made in Chapter 2, but

with a novel approach that permits one to understand better the effect of

vaccination on the potential transmission of the pathogen.

The article is being prepared for submission to a scientific journal.
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6.1 Background

In this paper, we consider the stochastic SVIR model with external source

of infection and imperfect vaccine that was analyzed in [120].

We quantify the potential transmission of the infectious disease analyzing

the exact and population reproduction numbers, Re0 and Rp, but distinguish-

ing infections produced to vaccinated from those of susceptible individuals.

In this context, the reproduction numbers can be partitioned as follows:

Re0 = RV
e0 +RS

e0,

Rp = RV
p +RS

p ,

where superscripts V and S represent infections either to vaccinated or sus-

ceptible individuals, respectively.

Our analysis focus on the study of the bidimensional random variables (RV
e0, R

S
e0)

and (RV
p , R

S
p ).

6.2 Objectives

In this investigation we carry out objectives (b), (c.1), (c.2), (d) and (e)

described in Section 1.1.1. In more detail:

We define the reproduction numbers, RV
e0, R

S
e0, R

V
p and RS

p to analyze the

impact of vaccination in the propagation of the infectious disease and to

measure its potential transmission in order to attain purposes (c.1) and (c.2).

We carry out a general sensitivity analysis by studying the effect of varying

model parameters in the random variables of interest that are objectives (d)

and (e).
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6.3 Methodology

To derive joint probability mass functions and joint moments of the random

variables (RV
e0, R

S
e0) and (RV

p , R
S
p ), we apply a similar methodology to one in

[121], but considering analogous bi-dimensional expressions for probability

mass and generating functions and moments. We solve the linear system of

equations involved applying recursive methods.

6.4 Conclusions

Numerical analysis shows that marginal probability mass functions for both

random variables are right-skewed for all selection on the model parameters.

In that sense, to avoid prolonged computations we use a stopping criterion

that consists on iterate the algorithms provided, until the 95% of the marginal

and the 99% of the joint mass points are accumulated.

In general, we obtain increasing expected values of the number of sec-

ondary cases produced by the index case, for increasing values of the internal

contact rate, no mater if the infection is to a vaccinated or a susceptible

individual. It means that, when we deal with long internal contact rates, β,

the marked individual has more opportunities to infect individuals within the

population no distinguishing if they are previously vaccinated or not. But,

we appreciate that these averages are greater in the number of infections

produced to susceptible individuals. Considering more effective vaccines we

obtain, in the vaccinated pool of individuals, lower expected values of the

exact reproduction number.

Regarding the vaccine coverage we observe that for lower v0 values, we
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obtain greater values of RS
e0 than RV

e0 and we notice that this effect is more

accused for lower external contact rates, ξ.

The behavior of the random variables, RV
p and RS

p are very similar to

their analogous exact reproductive numbers but we observe that in general

we obtain larger expected values. This is a reasonable behavior since the

exact reproduction number only record infections produced by the index

case until the first case of recovery occurs and the population reproduction

number counts infections produced by all entire population during this period

of time.
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1. Introduction8

Outbreaks have been nearly constant through history and they have killed9

millions of individuals around the world. For example, the Black Death, also10
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known as the Plague, was a bubonic plague pandemic that struck Europe and11

Asia in the mid-1300s. It is considered the most fatal pandemic recorded in12

human history and it caused around 200 million of deaths. In 1520, another13

devastating pandemic was caused by smallpox. Although the origin of this14

disease is unknown, there is evidence of its existence at a very early time,15

since remains have been found in Egyptian mummies dating from the third16

century BC [1]. Even in the modern era, epidemic outbreaks are a serious17

threat to public health. SARS, MERS, avian influenza, Ebola and COVID-1918

among others have reminded the world of the risk associated with outbreaks19

of infectious diseases, and the importance of increase knowledge on disease20

spread dynamics with the goal to establish control policies to stop or reduce21

transmission.22

Vaccination is one of the most powerful tools to prevent infectious dis-23

eases. Over the last two centuries, vaccination has enabled smallpox to be24

eradicated, it has reduced global child mortality rates preventing countless25

birth defects and lifelong disabilities [2, 3]. Vaccines can provide immunity26

against a disease, by helping the immune system to recognize the pathogens27

that cause the disease, without the need for the host to be exposed to it.28

However, lifelong immunity is not always provided by vaccines, and the dura-29

tion of protection against a given pathogen depends on the type of infectious30

agent and the type of vaccine. In some occasions, several doses are neces-31

sary to guarantee immunity in the long-term, and even vaccine boosters or32

constant pulse vaccination programs in the population are required for some33

pathogens [4, 5, 6]. In other occasions, which is of interest for this work,34

vaccines are imperfect and do not provide full immunity to all individuals, so35

that some vaccinated individuals can eventually become infected if exposed36

to the corresponding pathogen [7].37

As vaccination is an effective method to prevent the spread of infection,38

mathematical compartmental epidemic models, with a specific vaccination39

compartment, have been developed to study the efficacy of vaccination strate-40

gies to control relevant diseases and where the interest has sometimes been41

in studying the efficacy of different vaccination strategies for certain relevant42

diseases [8, 9, 10, 11, 12, 13, 14]. Some papers deal with compartmental epi-43

demic models assuming that vaccine is 100% perfect [15, 16, 17, 18, 19, 20]44

but many others deal with vaccines that are imperfect, and where some vac-45

cinated individuals in the population can still be infected by the infectious46

pathogen with certain probability [21, 22, 23].47

The SIS and SIR models with imperfect vaccine have been analyzed by48
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a deterministic approach [24, 25]. On the other hand, the SIS model with49

imperfect vaccine is studied from a stochastic approach in [26, 27]. In [28, 4],50

authors study a stochastic SIS model with external source of infection and51

imperfect vaccine and quantify the efficacy of different preventive measures52

surrounding vaccination. Under the assumption of imperfect vaccine, authors53

in [29], study the stationary distribution in a closed population stochastic54

SVIR-type model. In [30], the time to extinction is studied for a non-linear55

incidence rate model and in [31], a latency period is included in the model.56

In [32], we consider a constant size population, where individuals become57

infected due to either contacts with infectious individuals in the population58

or through an external source of infection. For community protection, a59

percentage of the population is vaccinated with an imperfect vaccine that60

fails with a certain probability. The underlying mathematical model involved61

is the stochastic SVIR model with external source of infection and imperfect62

vaccine and we represent the evolution of the epidemic process in terms of an63

absorbing three-dimensional CTMC. We show how a particular organization64

of the state space of the Markov chain leads us to the study of a QBD65

process. We analyze the time until reach total number M infections in order66

to quantify the timescales for disease spread.67

In this paper we consider the same epidemic model as, in [32], and we68

focus on the potential transmission of an infectious disease by analyzing69

alternatives measures to the basic reproduction number, R0 [39, 40, 41, 42, 43]70

and the control reproduction number, Rc.71

When we are dealing with populations of small-to-moderate size, the basic72

reproduction and the control number quantities tend to overestimate the real73

number of infections caused by a single individual during each stochastic74

realisation of the process because they count infections to individuals that75

previously they have been infected. Instead of that, the exact and population76

reproduction numbers Re0 and Rp, respectively, do not count that repeated77

contacts that R0 and Rc make and we provide exact measures to quantify78

the expansion of an epidemic process.79

In this work, we reformulate the treatment of Re0 and Rp initiated in [28,80

37], for a stochastic SVIR model. This refinement consists in analyzing81

both measures in terms of two different contributions each, by distinguishing82

between those infections caused across the susceptible or vaccinated pools of83

individuals in the population. In this way, one can better understand the84

contribution that susceptible and vaccinated individuals play in the overall85

transmission through the corresponding reproduction numbers.86
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This paper is organized as follows. Section 2 contains the description of87

the stochastic SVIR model with an external source of infection and imperfect88

vaccine. In Sections 3 and 4, we define and analyse the random variables89

Re0 and Rp regarding the compartment where the individuals were included90

immediately prior to get the infection. Section 5 contains a set of numerical91

experiments to illustrate our techniques, while concluding remarks are given92

in Section 6.93

2. Model description94

We consider a homogeneous and well-mixed population of constant size,95

N, where individuals are affected by a disease that confers permanent im-96

munity. The pathogen is transmitted by direct contact with an infected97

individual. We assume that a proportion of the population is vaccinated98

with an available imperfect vaccine, meaning that some vaccinated individ-99

uals can get the disease with probability h ∈ (0, 1) if exposed. Vaccination100

was implement at t = 0 and additional vaccination during the outbreak is101

not considered.102

Population is not isolated and infections can be produced either trough103

direct contacts with infected individuals within the population following a104

time-homogeneous Poisson process with rate β/N or through an external105

source of infection (e.g.; external contacts with infected individuals) with rate106

ξ. Infected individuals recover after independent exponentially distributed107

times with rate γ.108

We consider a general stochastic SIR-type model with an additional com-109

partment of vaccinated individuals, where once an infected individual re-110

covers from the disease they become immune. Thus, individuals within the111

population are classified into four groups, namely susceptible (S), vaccinated112

(V), infected (I) and recovered (R).113

The epidemic dynamics are then represented by movement of individuals114

among these compartments over time, as it is shown in Figure 1.115
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Figure 1: Possible individual transitions between coompartments in the Susceptible-
Vaccinated-Infected-Removed (SVIR) model.
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At any time, t > 0, the state of the epidemic is described by random
variables V (t), S(t) and I(t). Since we consider a population of constant
size, it is clear that the number of recovered individual is given by

R(t) = N − V (t)− S(t)− I(t).

We represent the evolution of the disease in terms of a three-dimensional
continuous continuous-time Markov (CMTC),

X = {(V (t), S(t), I(t)) : t ≥ 0},

where V (t), S(t), and I(t) record the number of vaccinated, susceptible and116

infected individuals, respectively, at time t ≥ 0.117

We assume that at t = 0 there are not recovered individuals so the initial118

state can be expressed as (V (0), S(0), I(0)) = (v0, s0, N − v0 − s0) for some119

v0, s0, such that 0 ≤ v0 + s0 ≤ N .120

The state space of X is given by121

S = {(v, s, i) : 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, 0 ≤ v + s+ i ≤ N}. (1)

and the cardinality of this set is given by #S = (v0+1)(s0+1)
(
N + 1− s0+v0

2

)
,122

with an unique absorbing state in (0, 0, 0).123

The dynamics of the epidemic over time is represented by the transition of124

X across states in S. For a particular current state (v, s, i) ∈ S, the following125

events can occur: (a) An infected individual contacts a susceptible individual,126

and they become infected; this occurs with rate λs,i =
(
βi
N
+ ξ
)
s. (b) A127

vaccinated individual contact an infected individual and, due to the imperfect128

vaccine, they become infected; this occurs with rate ηv,i = h
(
βi
N
+ ξ
)
v. (c)129

An infected individual recovers; this occurs with rate γi = γi. Thus, the130
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infinitesimal transition rates of X are given by131

q(v,s,i),(v∗,s∗,i∗) =





h(βi
N
+ ξ)v, if (v∗, s∗, i∗) = (v − 1, s, i+ 1),

γi, if (v∗, s∗, i∗) = (v, s, i− 1),
−qv,s,i, if (v∗, s∗, i∗) = (v, s, i),

(βi
N
+ ξ)s, if (v∗, s∗, i∗) = (v, s− 1, i+ 1),

0, otherwise,

(2)

where qv,s,i = (βi
N
+ ξ)s+ h(βi

N
+ ξ)v + γi. We point out that q−1

v,s,i represents132

the average sojourn time spent at each state (v, s, i) ∈ S.133

To describe the infinitesimal generator of X , Q, we partition the space134

of states S in terms of levels and sub-levels, using the same ordering states135

as we considered in [32]. This organisation of states leads to a LD-QBD136

structure for Q, as described in [32]. In particular, for a particular initial137

state (v0, s0, N − s0 − v0),138

S = ∪v0
v=0l(v),

l(v) = ∪s0
s=0l(v, s), for 0 ≤ v ≤ v0,

l(v, s) = {(v, s, i) ∈ S : 0 ≤ i ≤ N − v − s}, for 0 ≤ s ≤ s0, 0 ≤ v ≤ v0.

We notice that the number of states in each sub-level is #l(v, s) = N − v −139

s + 1, while the number of states in each level is #l(v) = (s0 + 1)(N − v +140

1)− s0(s0+1)
2

.141

As we are dealing with a finite state Markov chain and assuming ξ > 0, in142

long-term the process will become absorbed into the unique absorbing state143

in (0, 0, 0), in a finite expected time.144

3. The exact transmission variable Re0145

In this section we study the transmission potential of an infectious disease146

by studying the random variable Re0, defined as the number of secondary147

infections caused directly by a marked infective individual during his/her148

infectious period.149

During the infectious period of the marked individual, the underlying CTMC150

evolves in the following subset of S151

Ŝ = {(v, s, i) ∈ S : 1 ≤ i ≤ N − v − s}.
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We point out that although it is clear that Re0 depends on the initial152

state (v0, s0, N − s0 − v0) ∈ Ŝ, with s0 + v0 ≤ N − 1, we omit this from153

notation.154

A particular novel approach in this work is to distinguish between trans-155

mission to susceptible and vaccinated individuals when analysing this mea-156

sure. Thus, we define RV
e0 as the number of vaccinated individuals directly157

infected by the marked infective individual, and we denote by RS
e0 the number158

of susceptible individuals directly infected by the tracked infective individual.159

Hence,160

Re0 = RV
e0 +RS

e0. (3)

As we are dealing with an infectious disease that confers permanent im-161

munity and a finite state Markov chain, the maximum number of infections162

produced by the index case to vaccinated and susceptible individuals are v0163

and s0, respectively. In consequence, RV
e0 and RS

e0 have finite supports.164

Our aim is to characterize the joint distribution of the bidimensional165

random variable (RV
e0, R

S
e0).166

The homogeneous mixing assumption guarantees all-to-all interactions167

with no preferences in relationship among individuals. Therefore, individu-168

als behave equally and we can then split contagions transition rates in (2),169

by distinguishing if the infection involves a susceptible or a vaccinated indi-170

vidual. That is, we partition contagion rates in the following way171

ηv,i = h

(
βi

N
+ ξ

)
v = h

β

N
v + h

(
β(i− 1)

N
+ ξ

)
v = η∗v + η̃v,i, (4)

λs,i =

(
βi

N
+ ξ

)
s =

β

N
s+

(
β(i− 1)

N
+ ξ

)
s = λ∗s + λ̃s,i, (5)

where we denote172

η∗v = h
β

N
v, (6)

η̃v,i = h

(
β(i− 1)

N
+ ξ

)
v, (7)

λ∗s =
β

N
s, (8)

λ̃s,i =

(
β(i− 1)

N
+ ξ

)
s. (9)
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To study probability mass and generating functions, and factorial mo-173

ments of the joint distribution (RV
e0, R

S
e0) conditioned to the initial state174

(v0, s0, N − v0 − s0), we rely on the following functions and moments condi-175

tioned to a specific state (v, s, i) ∈ Ŝ:176

xl,kv,s,i = P
{
RV

e0 = l, RS
e0 = k |(V (0) = v, S(0) = s, I(0) = i)

}
,

for 0 ≤ l ≤ v, 0 ≤ k ≤ s,

φV,S
v,s,i(z, w) = E

[
zR

V
e0wRS

e0 |(V (0) = v, S(0) = s, I(0) = i)
]

=
v∑

r=0

s∑

j=0

zrwjP
{
RV

e0 = r, RS
e0 = j |(V (0) = v, S(0) = s, I(0) = i)

}
,

for |z| ≤ 1, |w| ≤ 1,

ml,k
v,s,i = E

[
Πl−1

r=0(R
V
e0 − r)Πk−1

j=0(R
S
e0 − j) |(V (0) = v, S(0) = s, I(0) = i)

]

=
∂l+kφV,S

v,s,i(z, w)

∂zl∂wk

∣∣∣∣
w=1,z=1

for l, k ≥ 0,

where empty products are considered to be equal to 1 here and in what177

follows.178

We point out that

P ({RV
e0 < +∞, RS

e0 < +∞|V (0) = v, S(0) = s, I(0) = i}) = 1,

for any (v, s, i) ∈ Ŝ, due to both random variables have finite support. Con-179

sequently,
∑v

l=0

∑s
k=0 x

l,k
v,s,i = 1, for any initial state (v, s, i) ∈ Ŝ.180

A first-step argument, conditioning on the possible transitions out of181

a fixed state (v, s, i) ∈ Ŝ, shows that the joint mass function of the vari-182

able {(RV
e0, R

S
e0) |(V (0) = v, S(0) = s, I(0) = i)} satisfies the following rela-183

tionship184

qv,s,ix
l,k
v,s,i = δl,0δk,0γ + ((1− δv,0)((1− δl,0)η

∗
vx

l−1,k
v−1,s,i+1 + η̃v,ix

l,k
v−1,s,i+1)

+(1− δs,0)((1− δk,0)λ
∗
sx

l,k−1
v,s−1,i+1 + λ̃s,ix

l,k
v,s−1,i+1))

+(i− 1)γxl,kv,s,i−1, (10)

where δa,b represents the Kronecker’s delta function, which takes the value 1185

if a = b, and 0 otherwise.186
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Boundary conditions of this system of equations are given by x0,00,0,i = 1,187

for 1 ≤ i ≤ N, xl,k0,s,i = 0, for any 1 ≤ l ≤ v and xl,kv,0,i = 0, for any 1 ≤ k ≤ s.188

The loop-free structure of the transition events of the CMTC (see Figure189

1) allows us to compute joint probability mass functions in a recursive way190

from Equation (10). In particular, Algorithm 1 outlines how to carry out191

this computation in an efficient and ordered way.192
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Algorithm 1 Computation of the joint mass function of the variable
(RS

e0, R
V
e0), for a given initial state of interest (v0, s0, N − v0 − s0)

Input : N, v0, s0, i0, β, ξ and γ.
Step 1: Set k = 0
Step 2: Set l = 0, v = 0 and s = 0

Step 2b: set xl,kv,s,i = 1 for 1 ≤ i ≤ N − v − s.

Step 2c: Set s = s+1, compute xl,kv,s,i from (10) for 1 ≤ i ≤ N − v− s.
Step 2d: If s < s0, go to Step 2c.
Step 2e: Set v = v + 1. If v ≤ v0, set s = −1 and go to Step 2c.

Step 3: Set l = l + 1.
Step 3a: Set xl,kv,s,i = 0 for 0 ≤ v ≤ l − 1, 0 ≤ s ≤ s0 and

1 ≤ i ≤ N − v − s.
Step 3b: Set v = l and s = 0
Step 3c: Compute xl,kv,s,i from (10) for 1 ≤ i ≤ N − v − s.
Step 3d: If s < s0, set s = s+ 1 and go to Step 3c.
Step 3e: If v < v0, set v = v + 1, s = 0 and go to Step 3c.
Step 3f: If l < v0, go to Step 3.

Step 4: Set k = k + 1 and l = 0 and v = 0.
Step 4a: Set xl,kv,s,i = 0 for 0 ≤ s ≤ k − 1, 1 ≤ i ≤ N − v − s.
Step 4b: Set s = k
Step 4c: Compute xl,kv,s,i from (10) for 1 ≤ i ≤ N − v − s.
Step 4d: Set s = s+ 1, if s < s0 go to step 4c
Step 4e: If v < v0, set v = v + 1 and go to Step 4a.

Step 5: Set l = l + 1
Step 5a: Set xl,kv,s,i = 0 for 0 ≤ v ≤ l − 1, 0 ≤ s ≤ s0 and

1 ≤ i ≤ N − v − s.
Step 5b: Set v = l and s = k
Step 5c: Compute xl,kv,s,i from (10) for 1 ≤ i ≤ N − v − s.
Step 5d: If v < v0, set v = v + 1 and go to step 5c.
Step 5e: If l < v0, set l = l + 1 go to step 5.
Step 5f: If k < s0 go to step 4.

Output: xl,kv0,s0,i0 , for 0 ≤ k ≤ v0 and 0 ≤ l ≤ s0.

Similarly, a first-step argument conditioning on the possible transitions193

out of a fixed state (v, s, i) ∈ Ŝ, shows that the joint generating functions194

φV,S
v,s,i(z, w) of (R

V
e0, R

S
e0) satisfy the following set of linear equations:195
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qv,s,iφ
V,S
v,s,i(z, w) = γ + ((1− δv,0)(η

∗
vzφ

V,S
v−1,s,i+1(z, w) (11)

+η̃v,iφ
V,S
v−1,s,i+1(z, w)) + (1− δs,0)(λ

∗
swφ

V,S
v,s−1,i+1(z, w)

+λ̃s,iφ
V,S
v,s−1,i+1(z, w)) + (1− δi,1)γ(i− 1)φV,S

v,s,i−1(z, w).

By differentiating Eq. (11) with respect to z repeatedly l times (l ≥ 1) and196

w repeatedly k times (k ≥ 1) and evaluating at z = 1 and w = 1, we obtain197

the following system of equations involving factorial moments conditioned to198

states (v, s, i) ∈ Ŝ of (RV
e0, R

S
e0)199

qv,s,im
l,k
v,s,i = ((1− δv,0)((1− δl,0)lη

∗
vm

l−1,k
v−1,s,i+1 (12)

+ηv,im
l,k
v−1,s,i+1) + (1− δs,0)((1− δk,0)kλ

∗
sm

l,k−1
v,s−1,i+1

+λs,im
l,k
v,s−1,i+1)) + (1− δi,1)γ(i− 1)ml,k

v,s,i−1,

with boundary conditions ml,0
0,s,i = 0, for l > 0, m0,k

v,0,i = 0, for k > 0,200

ml,k
0,0,i = 0, for l, k > 0 and m0,0

v,s,i = 1.201
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Algorithm 2 Computation of the factorial moments ml,k
v,s,i of the joint vari-

able (RV
e0, R

S
e0)

Input : v0, s0, i0, β, ξ, γ, lmax and kmax.
Step 1: Set k = 0, l = 0 and ml,k

v,s,i = 1, for 0 ≤ v ≤ v0, 0 ≤ s ≤ s0,
1 ≤ i ≤ N − v − s.
Step 2: Set l = l+1, v = 0 andml,0

0,s,i = 0 for 0 ≤ s ≤ s0 and 1 ≤ i ≤ N−v−s.
Step 3: set v = v+1, s = 0 and computeml,k

v,s,i from (12) for 1 ≤ i ≤ N−v−s.
Step 3a: If s < s0, set s = s + 1 and compute ml,k

v,s,i from (12) for
1 ≤ i ≤ N − v − s and go to Step 3a.
Step 3b: If v < v0 go to Step 3.
Step 3c: If l < lmax, go to Step 2.

Step 4: Set k = k + 1 and l = 0,
Step 4a: Set v = 0,
Step 4b: Set s = 0, if l = 0 or v = 0 set m0,k

v,0,i = 0 else compute ml,k
v,s,i

from (12) for 1 ≤ i ≤ N − v − s.
Step 4c: If s < s0, set s = s + 1 and compute ml,k

v,s,i from (12) for
1 ≤ i ≤ N − v − s and go to Step 4c.
Step 4d: If v < v0, set v = v + 1 and go to Step 4b.

Step 5: If l < lmax, set l = l + 1 and go to Step 4a.
Step 6: If k < kmax go to Step 4.
Output: ml,k

v0,s0,i0
, for 0 ≤ k ≤ kmax and 0 ≤ l ≤ lmax.

4. The population transmission variable, Rp202

A supplementary measure of the transmission potential of a contagious203

disease is Rp, which provides the global spread of the disease by counting all204

the infections that take place within the population (not just those directly205

caused by a marked individual) until the first recovery occurs. Rp is a random206

variable that can be analyzed either at the beginning of the outbreak or at207

any later time (i.e.; for any initial state (v0, s0, N − v0 − s0) ∈ Ŝ).208

Here, we also propose to characterize Rp while distinguishing between209

infections involving vaccinated and susceptible individuals, so that210

Rp = RV
p +RS

p . (13)

We point out that both random variables have finite support. In particular,211

0 ≤ RpV ≤ v0 and 0 ≤ RpS ≤ s0.212
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Our aim is to characterize the joint distribution of (RV
p , R

S
p ) conditioned213

to an initial state (v0, s0, N − v0 − s0).214

To study this variable, we define the generating and probability mass215

functions of (RV
p , R

S
p ), and joint factorial moments of RV

p and RS
p , for any216

given initial state (v, s, i) ∈ Ŝ, as217

X l,k
v,s,i = P

{
RV

p = l, RS
p = k |(V (0) = v, S(0) = s, I(0) = i)

}
,

for 0 ≤ l ≤ v, 0 ≤ k ≤ s,

ϕV,S
v,s,i(z, w) = E

[
zR

V
p wRS

p |(V (0) = v, S(0) = s, I(0) = i)
]

=
v∑

r=0

s∑

j=0

wjzrP
{
RV

p = r, RS
p = j |(V (0) = v, S(0) = s, I(0) = i)

}
,

for |z| ≤ 1 and |w| ≤ 1,

M l,k
v,s,i = E[Πl−1

r=0(R
V
p − r)Πk−1

j=0(R
S
p − j) |(V (0) = v, S(0) = s, I(0) = i)] .

for l, k ≥ 0.

For a given state (v, s, i) ∈ Ŝ, the joint mass functions of the random218

vector (RV
p , R

S
p ) |(V (0) = v, S(0) = s, I(0) = i) can be obtained through a219

direct recursive scheme based on the following relationship220

qv,s,iX
l,k
v,s,i = δl,0δk,0γi+ ((1− δl,0)(1− δv,0)ηv,iX

l−1,k
v−1,s,i+1

+(1− δk,0)(1− δs,0)λs,iX
l,k−1
v,s−1,i+1). (14)

A first-step argument, conditioning on the possible transitions out of a state221

(v, s, i) ∈ Ŝ, shows that the joint generating functions ϕV,S
v,s,i(z, w) of (R

V
p , R

S
p )222

satisfy the following set of linear equations:223

qv,s,iϕ
V,S
v,s,i(z, w) = γi+ ((1− δv,0)ηv,izϕ

V,S
v−1,s,i+1(z, w)

+(1− δs,0)λs,iwϕ
V,S
v,s−1,i+1(z, w)). (15)

Given l and k, positive integers, factorial moments of order (l + k) are224

determined from Eq (15) by differentiating repeatedly l times regarding z225

and k times regarding w. Finally, evaluating the resulting expression at226

z = w = 1 we get the equations involving factorial moments conditioned to227

states (v, s, i) ∈ Ŝ of (RV
p , R

S
p ) as follows228
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qv,s,iM
l,k
v,s,i = ((1− δl,0)lηv,iM

l−1,k
v−1,s,i+1 (16)

+(1− δv,0)ηv,iM
l,k
v−1,s,i+1) + (1− δs,0)((1− δk,0)kλs,iM

l,k−1
v,s−1,i+1

+λs,iM
l,k
v,s−1,i+1)),

with boundary conditionsM l,0
0,s,i = 0 for l ≥ 1,M0,k

v,0,i = 0 for k ≥ 1,M l,k
0,0,i = 0229

for l, k > 0 and M0,0
v,s,i = 1.230

Remark 1. Mass functions and factorial moments of the bidimensional vari-231

able (RV
p , R

S
p ) can be computed from recursive schemes based on Eqs. (14)232

and (16), respectively. Their algorithmic computation are similar to Algo-233

rithm 1 and Algorithm 2 and are not explicitly reported here, but they are the234

basis for obtaining some of the numerical results in Section 5.235

5. Results236

In this section, we illustrate theoretical results and algorithmic approaches237

described in previous sections.238

We set the average infectious period length as γ−1 = 1, so that, it will239

represent the unit of time from now on. We consider a population of N = 101240

individuals and assume (V (0), S(0), I(0)) = (v0, s0, 1) as the initial situation.241

In Figure 2, we represent probability mass distribution functions of RV
e0242

and RS
e0. We consider an initial coverage of v0 = 50 vaccinated individuals243

and external contact rate ξ = 0.01. We vary the internal contact rate β ∈244

{1.2, 5, 9} and vaccine failure probability h ∈ {0.05, 0.3}. Although RV
e0 and245

RS
e0 have finite support, we only represent mass points that accumulate the246

95% of cumulative probability to avoid confusion on visual elements.247

Distributions are right-skewed for all scenarios. Mass probability functions248

of RV
e0, present a decreasing shape. Increasing the internal contact rate gives249

more chance to larger number of infections on vaccinated individuals. Notice250

that, for h = 0.05, the probability that the marked individual does not251

transmit the disease among the protected group is at least 0.8, even for252

internal contact rates as large as β = 9.0.253

RS
e0 distribution also presents a decreasing shape. Changes on the vaccine254

efficacy produce small effect on the number of susceptible individuals that255

get the infection through the index case. As could be expected, increasing256

the internal contact rate β gives distributions with longer right tails.257
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Figure 2: RS
e0 and RV

e0 probability mass functions. Scenarios correspond to a population
of N = 101 individuals with a single infectious individual, initial vaccine coverage of 50%,
γ = 1 and ξ = 0.01 when β ∈ {1.2, 5, 9} and h ∈ {0.03, 0.3}

Figure 3: Joint mass distribution function of (RS
e0, R

V
e0) for several values of h and v0.

Scenarios arise in a population of N = 101 individuals with an initial infected individual,
γ = 1, β = 1.2 and ξ = 0.01 when h ∈ {0.03, 0.3} and v0 ∈ {25, 50, 75}
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Figure 4: Joint mass distribution function of (RS
e0, R

V
e0) for several values of h and v0.

Scenarios arise in a population of N = 101 individuals with an initial infectious individual,
γ = 1, β = 9 and ξ = 0.01 when h ∈ {0.03, 0.3} and v0 ∈ {25, 50, 75}

In Figures 3 and 4, we represent the mass distribution function of the258

bidimensional variable (RS
e0, R

V
e0) for two internal contact rates β = 1.2 and259

β = 9, assuming that vaccine failure is h ∈ {0.05, 0.3} and initial vaccine260

coverage v0 ∈ {25, 50, 75}. Graphs show bidimensional distributions on the261

set of mass points that accumulate the 99% of probability.262

In general, when we increase vaccine coverage we obtain joint mass functions263

that accumulate the most part of the probability close to point (0, 0). This264

behaviour is due to the fact that there are more people protected against265

the disease and less people susceptible to be infected. Increasing the inter-266

nal contact rate β increases the dispersion of the epidemic transmission in267

relation to the mass point (0, 0).268
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Figure 5: E[RS
e0] and E[RV

e0] as function of β and h. Different scenarios arise in a
population of N = 101 individuals with an initial infected individual and γ = 1 when
v0 ∈ {25, 50, 75} and ξ ∈ {0.01, 1}

In Figure 5, we plot the expected infections caused, by the index case269

before being recovered, within the susceptible group and within the vaccine270

protected individuals. The six top graphs correspond to E[RS
e0] and the six271

in the bottom correspond to E[RV
e0]. Each graph represents the expected272

contagions as a function of internal contact rate β and vaccine failure h.273

We consider different scenarios by fixing an initial vaccination level v0 ∈274

{25, 50, 75} and an external infection rate ξ ∈ {0.01, 1}.275
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One can observe that the expected number of infections involving susceptible276

individuals is always bigger than that involving vaccinated individuals, except277

for when considering situations with large vaccine coverage (v0 = 75) and278

significant vaccine failure probability (e.g.; h = 0.3).279

As to be expected, E[RV
e0] and E[R

S
e0] increase with increasing transmission280

rates β. Large external infection rates ξ (e.g.; ξ = 1) lead to lower values281

of both random measures, since the marked individual has less opportunities282

to spread the disease. The average number of infections involving vaccinated283

individuals and caused by the index case, E[RV
e0], increases for increasing val-284

ues of the vaccine coverage and for decreasing values of the external contact285

rate. On the other hand, for low vaccine coverages the effect of the vaccine286

efficacy parameter becomes less significant. On the other hand, increasing287

values of v0 produce decreasing values of E[RS
e0].288

Table 1: Summary statistics for RS
e0 and RV

e0

β h E[RS
e0] σ[RS

e0] CV [RS
e0] E[RV

e0] σ[RV
e0] CV [RV

e0]
1.2 0.05 0.5764 0.9323 1.6175 0.0297 0.1746 5.8788
5 0.05 2.0071 2.0218 1.0073 0.1219 0.3680 3.0189
9 0.05 2.7623 2.2155 0.8020 0.2120 0.4992 2.3547
1.2 0.30 0.5746 0.9285 1.6159 0.1764 0.4532 2.5692
5 0.30 1.8783 1.8461 0.9829 0.6592 0.9701 1.4716
9 0.30 2.4644 1.9495 0.7911 0.9624 1.1531 1.1982

In Table 1, we display summary statistics: expected value, standard de-289

viation and coefficient of variation of RS
e0 and RV

e0, for β ∈ {1.2, 5, 9} and290

h ∈ {0.05, 0.3}, when ξ = 0.01, v0 = s0 = 50 and there is a single initial291

infected individual in the population.292

For all scenarios, expected values and standard deviation for RS
e0 are293

greater than their counterpart measures for RV
e0, due to the protection con-294

ferred by the vaccine. On the contrary, coefficient of variation is greater for295

the variable RV
e0 in every case. Hence, RS

e0 is more concentrated around its296

expected value E[RS
e0] than R

V
e0 on its respective mean value. The expected297

transmission and deviation, on both vaccinated and susceptible individuals,298

increase when the internal contact rate increases. When fixing the internal299

contact rate, more effective vaccines make a decrease both on E[RV
e0] and300
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σ[RV
e0].301

In Figure 6, we represent the ratio of means E[RS
e0]/E[R

V
e0] as a func-302

tion of the transmission rate β and the vaccine failure probability h, for303

initial vaccine coverage v0 ∈ {25, 50, 75}, and external rate of infection rate304

ξ ∈ {0.01, 1}. Ratios greater than 1 indicate that the expected number of in-305

fections involving susceptible individuals is bigger than the expected number306

of infections involving vaccinated individuals. The transmission rate β seems307

to affect both expected values in a similar way. Hence, changes on β have308

little effect on the ratio of these expected values. However, vaccine effective-309

ness presents a significant impact on the ratio of means, which presents a310

decreasing behavior when failure probability increases. Notice that, in sce-311

narios with vaccine coverage v0 ≤ 50, the marked individual produces, in312

mean terms, more infections among susceptible individuals that among the313

vaccine protected ones.314

Figure 6: E[RS
e0]/E[RV

e0] as a function of β and h. Different scenarios arise in a pop-
ulation of N = 101 individuals with an initial infectious individual and γ = 1 when
v0 ∈ {25, 50, 75} and ξ ∈ {0.01, 1}

Next, we derive analogous numerical analysis for the random variables315

RV
p and RS

p .316
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Figure 7: RS
p and RV

p mass functions for several values of β and h in a population of
N = 101 with S(0) = V (0) = 50 and i(0) = 1 individuals, ξ = 0.01 and γ = 1.

In Figure 7, we represent marginal mass distribution functions of RV
p317

and RS
p for several values of the internal contact rate β ∈ {1.2, 5, 9} and318

the vaccine failure probability h ∈ {0.05, 0.3}. As we made for the random319

variables, RV
e0 and R

S
e0, we only represent those points that accumulate a 95%320

of the probability.321

All distributions are right-skewed and present a decreasing shape. For all322

scenarios the effect of the internal contact rate β and the vaccine failure323

probability is similar to Figure 2.324
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Figure 8: Joint mass distribution function of (RV
p and RS

p ) for several values of h and vac-
cination levels in a population of N = 101 individuals with an initial infective individual,
β = 1.2, γ = 1 and ξ = 0.01

Figure 9: Joint mass distribution function of (RV
p and RS

p ) for several values of h and
vaccination levels in a population ofN = 101 individuals with an initial infective individual
and β = 9, γ = 1 and ξ = 0.01

Figure 8 and 9 represent joint mass distributions of (RV
p , R

S
p ) for β = 1.2325

and β = 9, respectively, for v0 ∈ {25, 50, 75} and for h ∈ {0.05, 0.3}.326

The behaviour of these distributions are similar to Figure 3 and 4. We327

point out that it is necessary more mass points to accumulate the 99% of the328
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probability distribution of (RV
p , R

S
p ) than in that of (RV

e0, R
S
e0). Also proba-329

bilities in each point are smaller. This is accorded with the logic because this330

distribution counts the infections produced by the index cause and his/her331

successor and therefore is expected more infections and in consequence we332

need more mass points to cover the accumulate probability required.333

Figure 10: E[RS
p ] and E[RV

p ] as function of β and h. Different scenarios arise in a pop-
ulation of N = 101 individuals, with an initial infectious individual and γ = 1 when
v0 ∈ {25, 50, 75} and ξ ∈ {0.01, 1}

In Figure 10, we represent the E[RS
p ] (top of the figure) and E[RV

p ] (botton334

of the figure) as a function of the internal transmission rate β and the vaccine335

failure probability h for vaccine coverage, v0 ∈ {25, 50, 75} and external336

contact rates, ξ ∈ {0.01, 1}.337

The expected number of infections to susceptible individuals caused by338

all the infective individuals prior the firs recovery is greater than those to339

vaccinated individuals, for low vaccine failure, showing the importance of the340

vaccination procedures. Vaccine failure probabilities greater than 0.3 produce341
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an opposite behavior. Also when we are dealing with large external contact342

rates (e.g.; ξ = 1), E[RS
p ] < E[RV

p ] when considering internal contact rates343

greater than 7.8 in combination with significant vaccine probability h = 0.3.344

The effect of the internal contact rate β and the vaccine failure probability345

h for E[RS
p ] and E[R

V
p ] is similar to Figure 5.346

In contrast to Figure 5 large external contact rates ξ (e.g.; ξ = 1) produce347

greater values of E[RV
p ] and E[R

S
p ]. This is a logic behaviour because with348

large external transmission rates there are more infections to susceptible and349

infected individuals and the average number of infections produced by the350

infected individuals in the population will be larger.351

For increasing vaccine coverage produces greater values of E[RV
p ] due352

to there are more vaccinated individuals in the population. For the same353

reason, when we increase the vaccine coverage we obtain smaller values of354

E[RS
p ]. The effect of the vaccine efficacy for large/small vaccines coverage is355

as stated in Figure 5.356

Table 2: Summary statistics for RV
p and RS

p

β h E[RS
p ] σ[RS

p ] CV [RS
p ] E[RV

p ] σ[RV
p ] CV [RV

p ]

1.2 0.05 0.9196 1.1860 1.2897 0.0466 0.2189 4.6974
5 0.05 2.5751 2.7818 1.0803 0.1350 0.3882 2.8756
9 0.05 4.2509 4.2596 1.0020 0.2307 0.5281 2.2891
1.2 0.30 0.8995 1.1725 1.3035 0.2727 0.5632 2.0653
5 0.30 2.5547 2.7710 1.0847 0.7935 1.1504 1.4498
9 0.30 4.2333 4.2520 1.0044 1.3482 1.7108 1.2690

In Table 2, we recompile some summary statistics of interest of the vari-357

ables RS
p and RV

p . In particular we show the mean, standard deviation and co-358

efficient of variation of these variables for β ∈ {1.2, 5, 9} and h ∈ {0.05, 0.3},359

when ξ = 0.01, v0 = s0 = 50 and there is a single initial infected individual360

in the population.361

As we expected, average values and standard deviations are greater for362

RS
p than for RV

p due to the protection that confers the vaccine. In contrast,363

we obtain greater coefficient of variations for RV
p than for RS

p for the same364

reason explained in Table 1. The effect of the internal contact rate and the365

vaccine failure probability have the same behaviour as we stated in Table 1.366
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Figure 11: E[RS
p ]/E[RV

p ] as function of β and h. Different scenarios arise in a population of
N = 101 individuals with an initial infectious individual and γ = 1, when v0 ∈ {25, 50, 75}
and ξ ∈ {0.01, 1}

In Figure 11, we represent the ratio E[RS
p ]/E[R

V
p ] as a function of β367

and h, for vaccine coverage varying in {25, 50, 75} and external contact rate368

ξ ∈ {0.01, 1}.369

When we increase vaccine failure, ratios decrease because vaccinated indi-370

viduals are more vulnerable to get the infection and the expected number of371

infection to vaccinated individuals will be larger.372

When at most the 50% is vaccinated, we obtain ratios greater than 1 and373

it means that population infect more susceptible individuals than vaccinated374

individuals.375

6. Conclusions376

This paper deals with a stochastic SIR-type model where an external377

source of infection has been considered and vaccination is implemented as a378

health control measure. The evolution of an infectious disease is modeled in379

term of a three-dimensional continuous-time Markov chain.380

Our interest is to quantify the expansion of an epidemic process by ana-381

lyzing the number of infections produced by a typical infective in the popula-382

tion prior his/her recovery (Re0) and the number of infections produced by all383
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the individuals in the population before the first recovery occurs (Rp). These384

descriptors are more appropriated than the basic and control reproduction385

numbers, when we are dealing with small-to-moderate size populations.386

The main contribution of the paper is that we have defined random vari-387

ables that are able to quantify the potential transmission of an epidemic388

distinguishing in the susceptible or vaccinates pools of individuals in the389

population. In this context, one can understand better the effect of vaccina-390

tion in the spread of a pathogen. Furthermore, we provide recursive methods391

for calculating the probabilistic behaviour of the random variables described.392

We have illustrated our methodology by carrying out a numerical analysis393

on model parameters. Numerical results are obtained through Algorithms 1,394

Algorithm 2 and Remark 1, and they will be completed by analyzing the de-395

pendency level of each marginal random variable of (RV
e0, R

S
e0) and (RV

p , R
S
p ).396

Another assumptions for the infectious disease dynamics is a latency pe-397

riod and temporal effectiveness of the vaccine can be considered and this is398

the aim of our future work.399
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Appendix A

Additional work on Chapter 2

Appendix A complements the research work described in [121].

For ease of reading, we recall that in that investigation we analyze the

stochastic SVIS model with external source of infection and imperfect vaccine

and we define the random variables, Re0 and Rp in a post-vaccination context.

Re0, is defined as the number of infective individuals that arise from conta-

gions caused directly by the index case, and Rp counts all the infections that

take place within the population, no matter who is the infectious spreader,

before the first recovery occurs.

In the above cited work, specifically in Section 2.1, we point that the sta-

tionary distribution of the CTMC exists and assigns mass to every state with

no vaccinated individuals. Thus in this Appendix we derive a complete sta-

tionary analysis of the Markov chain by providing the stationary distribution

in terms of the model parameters and we demonstrate that the expression

obtained agrees with the one provided in [270], for the stochastic SIS model

with external source of infection.
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In addition, in [121] (after Equation (16)) we point that numerical results

appearing in Section 4, were obtained trough algorithms that were not stated

in the cited work and we also provide them.

We extend the investigation in [121], by conducting a sensitivity analysis

where elasticities for the mean and standard deviation of Re0 and Rp are

derived.

Matrices and rates involved in this Chapter, have the same description and

notation as in [121].
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A.1 Stationary distribution of the SVIS model

In this section we analyze the stationary distribution of the CTMC, X, with

state space S and infinitesimal generator Q described in [121].

We denote this stationary distribution by pv,i, which is defined for any

(v, i) ∈ S as follows

pv,i = lim
t→∞

P{V (t) = v, I(t) = i].

To obtain the stationary distribution, we start analyzing the CTMC, X, and

classifying its states. As we made in [121], we organize the state space by

levels as follows

S = ∪v0
v=0L(v).

Each level L(v) with 0 ≤ v ≤ v0 corresponds to a communicating class

of states and in consequence, the CTMC X, is not an irreducible one. In

addition, L(0), is a single absorbing set of states and it is accessible from the

rest of transient levels, L(v), with 1 ≤ v ≤ v0. In that sense, the CTMC,

X, will leave the transient levels and will visit the absorbing level, L(0), in a

finite time with probability one and remains there forever. In consequence,

the stationary distribution is concentrated on the absorbing set L(0),

lim
t→∞

P [V (t) = v, I(t) = i] =





0, if (v, i) ∈ ∪N
v=1L(v),

p0,i, if (v, i) ∈ L(0).

L(0) is a closed communicating class with a finite number of states and all its

states are positive recurrent ones. Consequently, the stationary distribution

is the unique solution of the following linear system of equations

P0
TQ0,0 = 0T

N+1 (A.1)

P0
T1N+1 = 1,
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where P0 = (p0,0, ..., p0,N)
T . 0j and 1j are all-zeros and all-ones vectors,

respectively, of dimension j and in what follows have the same description.

As we are dealing with a birth and death type process, the stationary

distribution exists only if system (A.1) has unique and non-trivial solution

and it happens when
N∑

i=1

α00...α0,i−1

γ1...γi
<∞,

where for i = 0, ..., N

α0,i = α∗
0,i + α̃0,i = (N − i)(βi/N + ξ),

γi = γi,

and the stationary distribution is given by

p0i =
α00...α0,i−1

γ1...γi
p00, for 1 ≤ i ≤ N

p00 =
1

1+
∑N

i=1

α00...α0,i−1
γ1...γi

, for i = 0



 . (A.2)

In terms of the model parameters Equations (A.2) can be expressed as follows

p0i = p00
(
N
i

)∏k−1
m=0(ξ + βm/N), for 1 ≤ i ≤ N

p00 =
1

1+
∑N

i=1 (
N
i )

∏i−1
m=0(ξ+βm/N)

, for i = 0



 . (A.3)

We demonstrate that the stationary distribution (A.3), agrees with the sta-

tionary distribution of an SIS-type model with an external source of infection

provided by Stone et al. in Expressions (14) and (15), in [270].

A.2 Additional Rp−Algorithms

Next we provide efficient algorithms to compute factorial moments and prob-

ability mass functions of the population reproduction number, Rp, applying
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inverse matrix methods.

A.2.1 Rp-Factorial moments algorithm

Algorithm 1. Computation of Rp-Factorial moments. Let k be a non-

negative integer. Given an initial number of vaccinated individuals, v0, mo-

ments of order k of the random variable Rp, M
k
v, can be determined numer-

ically, according to the following scheme, for any 0 ≤ v ≤ v0:

Step 1. Set j = 0.

Set 1a. For 0 ≤ v ≤ v0, set M
0
v = ev.

Step 2. Set j = 1.

Step 2a. Set v = 0, and compute Wj
0 = −jD̃0M̃

j−1
0 .

Step 2b. Compute Mj
0 = H−1

0 Wj
0. Set v = 1. If v0 = 0, go to Step 3.

Step 2c. Compute Wj
v = −Dv

(
jM̂j−1

v−1 + M̂j
v−1

)
− jD̃vM̃

j−1
v .

Step 2d. Compute Mj
v = H−1

v Wj
v. Set v = v+1. If v ≤ v0, go to Step 2c.

Step 3. Set j = j + 1. If j ≤ k, go to Step 2a.

A.2.2 Rp-Probability mass functions algorithm

Algorithm 2. Computation of Rp-Probability mass points, zkv, given an ini-

tial number of vaccinated individuals, v0 and for any integer k ≥ 0 and

0 ≤ v ≤ v0:

Step 1. Set v = 0.

Step 1a. Set j = 0 and compute z00 = dγDQ
−1e0.

Step 1b. Set j = j + 1. While j ≤ k, compute zj0 = DQ
−1D̃vz̃

k−1
v .

Step 2. Set v = 1. If v0 = 0, stop.

Step 2a. set j = 0 and compute z0v = dγDQ
−1ev.
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Step 2b. Set j = j + 1. While j ≤ k, compute

xj
v = −D−1

Q ((1− δv,0)Dvẑ
k−1
v−1 + D̃vz̃

k−1
v ).

Step 3. Set v = v + 1. If v ≤ v0, go to Step 2a.

A.3 Sensitivity analysis for Re0 and Rp

In this section we complement the analysis of the random variables Re0 and

Rp in [121], by computing their elasticities for the mean and standard devi-

ation.

A.3.1 Sensitivity analysis of the factorial moments of

Re0

To address this study, we start computing the first derivatives of the condi-

tional Re0-Factorial moments of order k ≥ 1, mk
v,i, for any (v, i) ∈ Ŝ, with

respect to the model parameters θ = (θ1, θ2, θ3, θ4)
T = (β, ξ, γ, h)T .

The first derivative of the factorial moments of order k, respect to the pa-

rameter θr, with r ∈ {1, 2, 3, 4} and denoted by
∂mk

v,i

∂θr
, gives the exchange

rate of, mk
v,i, for changing values of θr, when the rest of the parameters are

constant. We compute them as follows.

We recall that Equation (7) in [121], involves factorial moments of order

k, mk
v,i, and has the following expression for any (v, i) ∈ Ŝ
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mk
v,i = (1− δv,0)

(
βv,i
qv,i

mk
v−1,i+1 + k

β∗
v,i

qv,i
mk−1

v−1,i+1

)
+ (1− δi,1)

γi−1

qv,i
mk

v,i−1

+(1− δi,N−v)

(
αv,i

qv,i
mk

v,i+1 + k
α∗
v,i

qv,i
mk−1

v,i+1

)
, (A.4)

where αv,i = α∗
v,i + α̃v,i, βv,i = β∗

v + β̃v,i and boundary condition m0
v,i = 1.

In what follows we omit the corresponding Dirac’s Delta terms, δa,b, to ease

notation.

Taking derivatives on (A.4), respect to a single parameter of the model,

keeping the others constant, we obtain the following expression that involves

first derivatives of factorial moments and factorial moments, conditioned to

an initial state, for any k ≥ 0 and (v, i) ∈ Ŝ

− γi−1

∂mk
v,i−1

∂θr
+ qv,i

∂mk
v,i

∂θr
− αv,i

∂mk
v,i+1

∂θr
= βv,i

∂mk
v−1,i+1

∂θr
(A.5)

+ kβ∗
v

∂mk−1
v−1,i+1

∂θr
+ kα∗

v,i

∂mk−1
v,i+1

∂θr
+
∂βv,i
∂θr

mk
v−1,i+1 + k

∂β∗
v

∂θr
mk−1

v−1,i+1

+ k
∂α∗

v,i

∂θr
mk−1

v,i+1 +
∂γi−1

∂θr
mk

v,i−1 −
∂qv,i
∂θr

mk
v,i +

∂αv,i

∂θr
mk

v,i+1.

We observe that first derivatives of moments of order k are obtained from

first derivatives of factorial moments of one order less and factorial moments

of order k and one order less.

We continue introducing the following notation for the derivatives of condi-

tional moments respect to each parameter θj, with r ∈ {1, 2, 3, 4}

∂mk
v,i

∂θr
= Ak

v,i(θr),
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and we define ρkv,i(θr) as

ρkv,i(θr) =
∂βv,i
∂θr

mk
v−1,i+1 + k

∂β∗
v

∂θr
mk−1

v−1,i+1 + k
∂α∗

v,i

∂θr
mk−1

v,i+1

+
∂γi−1

∂θr
mk

v,i−1 −
∂qv,i
∂θr

mk
v,i +

∂αv,i

∂θr
mk

v,i+1.

According the above notation Equation (A.5) can be expressed for any θr

and k ≥ 0 with (v, i) ∈ Ŝ as follows

−γi−1A
k
v,i−1(θr) + qv,iA

k
v,i(θr)− αv,iA

k
v,i+1(θr) = (A.6)

βv,iA
k
v−1,i+1(θr) + kβ∗

vA
k−1
v−1,i+1(θr) + kα∗

v,iA
k−1
v,i+1(θr) + ρkv,i(θr),

and boundary conditions, A0
v,i(θr) = 0 for any (v, i) ∈ Ŝ.

Computing derivatives of the rates α∗
v,i, αv,i, β

∗
v , βv,i, γi−1 and qv,i respect

to each model parameter, θr, we obtain the following expressions for each

ρkv,i(θr), with θr ∈ {β, ξ, γ, h}

ρkv,i(θj) =





hvi
N
mk

v−1,i+1 + k hv
N
mk−1

v−1,i+1 + kN−v−i
N

mk−1
v,i+1

−( (N−v−i)i
N

+ hvi
N
)mk

v,i +
(N−v−i)i

N
mk

v,i+1, if θj = β,

hvmk
v−1,i+1 − ((N − v − i) + hv)mk

v,i

+(N − v − i)mk
v,i+1, if θj = ξ,

(i− 1)(mk
v,i−1 −mk

v,i), if θj = γ,

v(βi
N
+ ξ)mk

v−1,i+1 + k βv
N
mk−1

v−1,i+1 − v(βi
N
+ ξ)mk

v,i, if θj = h.

Given a fixed initial number of vaccinated individuals, v0 and for each model

parameter, θr, and any k > 0, we obtain from Equation (A.6) a system of

linear equations for any 0 ≤ v ≤ v0 and 1 ≤ i ≤ N − v. This linear system
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of equations can be expressed in matrix form for any level 0 ≤ v ≤ v0 and θr

with r ∈ {1, 2, 3, 4} as follows

A0
v(θr) = 0N−v, for 0 ≤ v ≤ v0, (A.7)

RvA
k
v(θr) = (1− δv,0)(Dβ,vÂ

k
v−1(θr) + kD∗

β,vÂ
k−1
v−1(θr)) + kD∗

α,vÃ
k−1
v (θr)

+ (1− δv,0)(D
′
β,vm̂

k
v−1 + k(D∗

β,v)
′m̂k−1

v−1)

+ k(D∗
α,v)

′m̃k−1
v −Rv

′mk
v,i. (A.8)

Matrices appearing in Equations (A.7) and (A.8) are described as follows:

Rv and its gradient matrix Rv
′ are tri-diagonal square matrices of dimension

N − v with non-null entries given by

Rv(i, j) =





−γi−1, if j = i− 1 and 2 ≤ i ≤ N − v,

qv,i, if j = i and 1 ≤ i ≤ N − v,

−αv,i, if j = i+ 1 and 1 ≤ i ≤ N − v − 1,

Rv
′(i, j) =





−∂γi−1

∂θr
, if j = i− 1 y 2 ≤ i ≤ N − v,

∂qv,i
∂θr

, if j = i and 1 ≤ i ≤ N − v,

−∂αv,i

∂θr
, if j = i+ 1 and 1 ≤ i ≤ N − v − 1.

Dβ,v,D
∗
β,v D

∗
α,v and their respective gradient matricesD′

β,v,(D
∗
β,v)

′ and (D∗
α,v)

′

are diagonal matrices of dimension (N − v), with non-null diagonal elements

given by Dβ,v(i, i) = βv,i, D
∗
β,v(i, i) = β∗

v,i, D
∗
α,v(i, i) = α∗

v,i, D
′
β,v(i, i) =

∂βv,i

∂θr
,

D∗
β,v

′(i, i) =
∂β∗

v,i

∂θr
, D∗

α,v
′(i, i) =

∂α∗
v,i

∂θr
, for 1 ≤ i ≤ N − v.

The rest of vectors are defined as follows
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Ak
v = (Ak

v,1, ..., A
k
v,N−v)

T ,

Ãk
v = (Ak

v,2, ..., A
k
v,N−v, 0)

T ,

Âk
v = (Ak

v,2, ..., A
k
v,N−v)

T ,

mk
v = (mk

v,1, ...,m
k
v,N−v)

T ,

m̃k
v = (mk

v,2, ...,m
k
v,N−v, 0)

T ,

m̂k
v = (mk

v,2, ...,m
k
v,N−v)

T .

We obtain the first derivatives of the factorial moments of order k ≥ 1

of the random variable Re0, solving the system of linear equations (A.8)

applying an inverse matrix method for each parameter, θr and taking into

account the boundary condition (A.7), in a recursive way starting from k = 1

in natural order and for 0 ≤ v ≤ v0.

For a given state (v, i) ∈ Ŝ, derivatives of conditioned expected values and

standard deviations respect to any model parameter, θr, denoted by ∂E[Re0]
∂θr

and ∂Sd[Re0]
∂θr

respectively, can be computed as follows

∂E[Re0]

∂θr
=

∂m1
v,i

∂θr
= A1

v,i(θr), (A.9)

∂Sd[Re0]

∂θr
=

∂(m2
v,i +m1

v,i − (m1
v,i)

2)
1
2

∂θr

=
A2

v,i(θr) + A1
v,i(θj)− 2m1

v,iA
1
v,i(θr)

2Sd[Re0]
. (A.10)

Applying elasticity definition (1.5) appearing in Section 1.1.2 and Expressions

(A.9) and (A.10), the elasticities for the mean and standard deviation of Re0,
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conditioned to any state (v, i) ∈ Ŝ, respect to each model parameter θr are

given by

εE[Re0] =
∂E[Re0]/∂θr
E[Re0]/θr

=
A1

v,i(θr)

m1
v,i/θr

,

εSd[Re0] =
∂Sd[Re0]/∂θr
Sd[Re0]/θr

=
θr(A

2
v,i(θr) + A1

v,i(θr)− 2m1
v,iA

1
v,i(θr))

2Sd2[Re0]
.

A.3.2 Sensitivity analysis of the factorial moments of

Rp

In this section we derive a sensitivity analysis for the random variable, Rp.

We apply the same methodology as we made forRe0, so we omit the procedure

and only we give the general results obtained.

We recall that factorial moments of order k ≥ 1, satisfy the following

equation for any (v, i) ∈ Ŝ

qv,iM
k
v,i = αv,i

(
kMk−1

v,i+1 +Mk
v,i+1

)
+ βv,i

(
kMk−1

v−1,i+1 +Mk
v−1,i+1

)
,

with boundary conditions

M0
v,i = 1.

We introduce the following notation for the first derivatives of theRp-Factorial

moments order k, respect to each parameter θr,
∂Mk

v,i

∂θr
, and αk

v,i(θr):
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∂Mk
v,i

∂θr
= Ak

v,i(θr),

αk
v,i(θr) = −∂qv,i

θr
Mk

v,i +
∂αv,i

θr
[kMk−1

v,i+1 +Mk
v,i+1]

+
∂βv,i
∂θr

[kMk−1
v−1,i+1 +Mk

v−1,i+1].

Taking derivatives on Equation (A.11), respect to each parameter θr, and

applying the above notation, we obtain the following Equation for any k ≥ 0

and any (v, i) ∈ Ŝ,

qv,iAk
v,i(θr)− αv,iAk

v,i+1(θr) = αv,ikAk−1
v,i+1(θr) + βv,i[kAk−1

v−1,i+1(θr)

+ Ak
v−1,i+1(θr)] + αk

v,i(θr), (A.11)

and boundary conditions

A0
v,i(θr) = 0, (A.12)

with

ρkv,i(θr) =





−( (N−v−i)i
N

+ hvi
N
)Mk

v,i +
(N−v−i)i

N
[kMk−1

v,i+1 +Mk
v,i+1]

+hvi
N
[kMk−1

v−1,i+1 +Mk
v−1,i+1], if θr = β,

−[(N − v − i) + hv]Mk
v,i + (N − v − i)[kMk−1

v,i+1 +Mk
v,i+1]

+hv[kMk−1
v−1,i+1 +Mk

v−1,i+1], if θr = ξ,

−iMk
v,i, if θr = γ,

(βi
N
+ ξ)v[kMk−1

v−1,i+1 +Mk
v−1,i+1 −Mk

v,i], if θr = h.

At any level 0 ≤ v ≤ v0, Equations (A.11), can be expressed in matrix form
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for k ≥ 0 and 1 ≤ i ≤ N − v, as follows

A0
v(θr) = 0N−v, (A.13)

HvA
k
v(θr) = kLvÂ

k−1
v (θr) +Dv[kÃ

k−1
v−1(θr) + Ãk

v−1(θ)]−H′
v(θr)M

k
v

+ D′
v(θr)[M̃

k−1
v−1 + M̃k

v−1] + kL′
v(θr)M̂

k−1
v , (A.14)

where

Ak
v = (Ak

v,1, ...,Ak
v,N−v)

T ,

Ãk
v−1 = (Ak

v−1,2, ...,Ak
v−1,N−v)

T ,

Âk−1
v = (Ak−1

v,2 , ...,Ak−1
v,N−v, 0)

T ,

M̃k
v−1 = (Mk

v−1,2, ...,M
k
v−1,N−v+1)

T ,

M̂k−1
v = (Mk−1

v,2 , ...,M
k−1
v,N−v, 0)

T .

Hv and its gradient matrix H′
v are squared bi-diagonal matrices of dimension

(N − v), with non-null entries given by

Hv(i, j) =





qv,i, if j = i and 1 ≤ i ≤ N − v,

−αv,i, if j = i+ 1 and 1 ≤ i ≤ N − v − 1,

H′
v(i, j) =





∂qv,i
∂θr

, if j = i and 1 ≤ i ≤ N − v,

−∂αv,i

∂θr
, if j = i+ 1 and 1 ≤ i ≤ N − v − 1.

Dv, Lv and their respective gradient matrices, D′
v and L′

v are diagonal

matrices of dimension (N − v), with non-null diagonal elements given by

Dv(i, i) = βv,i, D
′
v(i, i) =

∂βv,i

∂θr
, Lv(i, i) = αv,i, L

′
v(i, i) =

∂αv,i

∂θr
.
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For a given state (v, i) ∈ Ŝ, first derivatives of conditioned expected

values and standard deviations of Rp, respect to any parameter, θr, can be

calculated as follows

∂E[Rp]

∂θr
=

∂M1
v,i

∂θr
= A1

v,i(θr),

∂Sd[Rp]

∂θr
=

∂(M2
v,i +M1

v,i − (M1
v,i)

2)
1
2

∂θr
=
A2

v,i(θr) + A1
v,i(θr)− 2M1

v,iA
1
v,i(θr)

2Sd[Rp]
.

For any 0 ≤ v ≤ v0 and 1 ≤ i ≤ N − v, elasticities for the conditioned

mean and standard deviation, for each parameter θr, are given by

εE[Rp] =
∂E[Rp]/∂θr
E[Rp]/θr

=
A1

v,i(θr)

M1
v,i/θr

,

εSd[Rp] =
∂Sd[Rp]/∂θr
Sd[Rp]/θr

=
θr(A

2
v,i(θr) + A1

v,i(θr)− 2M1
v,iA

1
v,i(θr))

2Sd2[Rp]
.
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Additional work on Chapter 3

Appendix B complements the research work described in [123].

We recall that in the mentioned article we introduce a threshold for the

number of vaccinated individuals in the population denoted by, w, and define

the random variables, Tw and Nw.

Tw analyzes the period of time that the infectious process needs to hit the

warning level and Nw quantify the epidemic transmission in the vaccinated

compartment during that period of time.

In [123], in Remark 1 we point that Equation (7) can be solved recursively

starting from the boundary condition appearing in Expression (6). In that

sense, we obtained explicit expressions for the Tw-Laplace transforms and

also for Tw−Moments and generating and probability mass functions and

factorial moments of the random variable, Nw, that they were not included

in the published work. In this Appendix we present them to complement the

investigation.

The reason for not including explicit expressions in [123], is that since we do
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not have closed form expressions for the moments of the random variables

analyzed, we prefer to take advantage of the matrix-form results to derive

recursive equations in the local sensitivity analysis, involving first derivatives

and elasticities of both random variables respect to any parameter.

We use the same notation for matrices and rates as in [123].
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B.1 Tw-Laplace transforms theorem

Next we supply with an additional theorem to obtain the Laplace transforms

of the random variable, Tw, described in [120]. In this case, we obtain explicit

expressions and this result is summarized as follows.

Theorem 1. For a fixed warning vaccination level w, with 0 ≤ w ≤ v0, and

s ∈ C, with Re(s) ≥ 0,the set of Laplace transforms {ψv,i(s) : (v, i) ∈ Ŵ}
are obtained in a recursive way from the following expressions

ψw,i(s) = 1, for 0 ≤ i ≤ N − w, (B.1)

ψv,N−v(s) =
Tv,N−v(s)

Cv,N−v(s)
, for w + 1 ≤ v ≤ v0, (B.2)

ψv,i(s) =

(
N−v−1∏

j=i

λv,jCv,j−1(s)

Cv,j(s)

)
ψv,N−v(s)

+
N−v−1∑

j=i

Tv,j(s)

Cv,j(s)

(
j−1∏

m=i

λv,mCv,m−1(s)

Cv,m(s)

)
(B.3)

for w + 1 ≤ v ≤ v0 and 0 ≤ i ≤ N − v, where

Cv,j(s) =





1, if j < 0,

(s+ qv,0), si j = 0,

(s+ qv,j)Cv,j−1(s)− γjλv,j−1Cv,j−2(s), if 1 ≤ j ≤ N − v,

Tv,j(s) =





ηv,0ψv−1,1(s), if j = 0,

γjTv,j−1(s) + ηv,jCv,j−1(s)ψv−1,j+1(s), if 1 ≤ j ≤ N − v.

Proof. Since the random variable, Tw, is defined as the time until the number

of vaccinated individuals reaches the warning level, w, Result (B.1) is trivially

true from its definition.
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For a fixed warning vaccination level w, and for a fixed s ∈ C with

Re(s) ≥ 0, the Laplace transforms appearing in Expression (7) in [123],

satisfy the following Equation for w + 1 ≤ v ≤ v0 and 0 ≤ i ≤ N − v

−γiψv,i−1(s) + (s+ qv,i)ψv,i(s)− λv,iψv,i+1(s) = ηv,iψv−1,i+1(s). (B.4)

Given a w + 1 ≤ v ≤ v0, the above Equation can be expressed for 0 ≤ i ≤
N − v − 1, as follows

−γiψv,i−1(s) + Av,i(s)ψv,i(s)− λv,iψv,i+1(s) = Bv,i(s), 0 ≤ i ≤ N − v, (B.5)

where Av,i(s) = s+ qv,i and Bv,i(s) = ηv,iψv−1,i+1(s).

Equations (B.5) can be solved in a recursive way, in the natural order for v,

starting from the boundary condition (B.1).

Applying a Forward Elimination Backward Substitution (FEBS) procedure,

Equation (B.5) can be expressed in triangular form as

Cv,i(s)ψv,i(s)− λv,iCv,i−1(s)ψv,i+1(s) = Tv,i(s), for 0 ≤ i ≤ N − v − 1, (B.6)

where constants Cv,i(s) = 1, Cv,0(s) = Av,0(s), Tv,0(s) = Bv,0 and, for 1 ≤
i ≤ N − v, Cv,i(s) = Cv,i−1(s)Av,i(s)− γiλv,i−1Cv,i−2(s), Tv,i(s) = γiTv,i−1(s)

+Cv,i−1(s)Bv,i(s).

Working on Equation (B.6), for i = N − v − 1, and on Equation (B.4) we

obtain for i = N − v

ψv,N−v(s) =
Tv,N−v(s)

Cv,N−v(s)
,
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that matches with the explicit solution appearing in Equation (B.2).

In addition, ψv,i(s) can be expressed in terms of ψv,i+1(s) for w+1 ≤ v ≤ v0

as follows

ψv,i(s) =
Tv,i(s) + λv,iCv,i−1(s)ψv,i+1(s)

Cv,i(s)
, for 0 ≤ i ≤ N − v − 1. (B.7)

Iterating Equations (B.7), we obtain Expression (B.3).

B.2 Tw-Moments theorem

The following theorem help us to obtain the Tw-Moments of order k ≥ 0, in

a recursive way.

Theorem 2. For a given k ≥ 0, the central moments of order k, {Mk
v,i, (v, i) ∈

Ŵ}, are obtained in a recursive way from the following expressions

M0
v,i = 1, for (v, i) ∈ Ŵ , (B.8)

Mk
w,i = 0, for k ≥ 1 and 0 ≤ i ≤ N − w, (B.9)

and for w + 1 ≤ w ≤ v0 moments can be obtained as

Mk
v,N−v =

T k
v,N−v

Cv,N−v

, (B.10)

Mk
v,i =

(
N−v−1∏

j=i

λv,jCv,j−1

Cv,j

)
Mk

v,N−v (B.11)

+
N−v−1∑

j=i

T k
v,j

Cv,j

(
j−1∏

m=i

λv,mCv,m−1

Cv,m

)
, for 0 ≤ i ≤ N − v − 1,
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where coefficients Cv,j and T k
v,j are determined recursively as follows

Cv,j =





1, if j < 0,

qv,0, if j = 0,

qv,jCv,j−1 − γjλv,j−1Cv,j−2, if 1 ≤ j ≤ N − v,

(B.12)

T k
v,j =





kMk−1
v,0 + ηv,0M

k
v−1,1, if j = 0,

γjT
k
v,j−1 + Cv,j−1

(
kMk−1

v,j + ηv,jM
k
v−1,j+1

)
, if 1 ≤ j ≤ N − v.

(B.13)

Proof. Equations (B.8) and (B.9) are the scalar version of the trivial results

and boundary conditions stated in Expressions (8) and (9), respectively, in

[123]. The rest of the proof is equivalent to the one of Theorem 1. Equation

(B.10) has a similar structure to Equation (B.2) in Theorem 1. In partic-

ular, Equations (B.10)-(B.11) come from substitute ψv,i(s) for Mk
v,i, Av,i(s)

for Av,i = qv,i and Bv,i(s) for Bk
v,i = kMk

v,i + ηv,iM
k
v−1,i+1, in the Forward

Elimination Backward Substitution (FEBS) procedure.

B.3 Nw-Generating functions theorem

Next, we derive a complementary theorem to obtain the Nw-Generating func-

tions described in [120]. In this case, we obtain explicit recursive expressions.

Theorem 3. For a fixed warning level, w, with 0 ≤ w ≤ v0, and any point

z, with |z| ≤ 1, the generating functions {ϕv,i : (v, i) ∈ Ŵ} are obtained as
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follows:

ϕw,i(z) = 1, for 0 ≤ i ≤ N − w, (B.14)

ϕv,N−v(z) =
Tv,N−v(z)

Cv,N−v(z)
, for w + 1 ≤ v ≤ v0, (B.15)

ϕv,i(z) =

(
N−v−1∏

j=i

λv,jCv,j−1(z)

Cv,j(z)

)
ϕv,N−v(z)

+
N−v−1∑

j=i

Tv,j(z)

Cv,j(z)

(
j−1∏

m=i

λv,mCv,m−1(z)

Cv,m(z)

)
, (B.16)

for w + 1 ≤ v ≤ v0 and 0 ≤ i ≤ N − v, where empty products in (B.16) and

in what follows, are defined as 1,

Cv,j(z) =





1, if j < 0,

qv,0, if j = 0,

qv,jCv,j−1(z)− zγjλv,j−1Cv,j−2(z), if 1 ≤ j ≤ N − v,

Tv,j(z) =





ηv,0ϕv−1,1(z), if j = 0,

γjTv,j−1(z) + ηv,jCv,j−1(z)ϕv−1,j+1(s), if 1 ≤ j ≤ N − v.

Proof. For any (v, i) ∈ Ŵ and given a point z, with |z| ≤ 1, the generating

functions are the solution of the following equations system

ϕv,i(s) =
γi
qv,i

ϕv,i−1(z) +
λv,i
qv,i

zϕv,i+1(z) +
ηv,i
qv,i

ϕv−1,i+1(z). (B.17)

For v = w and 0 ≤ i ≤ N − w, generating functions satisfy the boundary

conditions ϕw,i(z) = 1.
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Applying a Forward Elimination Backward Substitution (FEBS) proce-

dure, Equation (19) in [123], can be expressed for w+ 1 ≤ v ≤ v0, as follows

−γiϕv,i−1 + qv,iϕv,i(z)− zλv,iϕv,i+1(z) = ηv,iϕv−1,i+1(z). (B.18)

For w+1 ≤ v ≤ v0 and 0 ≤ i ≤ N −v−1, Equation (B.18) can be expressed

as

Cv,iϕv,i(z)− zCv,i−1λv,iϕv,i+1(z) = Tv,i(z).

The above Expression is similar to (B.5) in the proof of Theorem 1 so working

on Equation (B.19), we obtain the explicit expression for i = N−v presented
in (B.15) and ϕv,i(z) can be expressed in terms of ϕv,i+1(z) for 0 ≤ i ≤
N − v − 1 as follows

ϕv,i(z) =
Tv,i(z) + zCv,i−1λv,iϕv,i+1(z)

Cv,i

, (B.19)

where the constants Cv,i and Tv,i match the definition in he statement of

the Theorem 3 and iterating it we obtain Expression (B.16).

B.4 Nw-Distribution moments theorem

Following we derive explicit expressions for the factorial moments of order

k ≥ 1 of the random variable, Nw and the result is summarized in the

following theorem
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Theorem 4. For a fixed warning level, w, with 0 ≤ w ≤ v0, the factorial

moments of order k ≥ 0, {mk
v,i : (v, i) ∈ Ŵ}, are obtained as follows:

m0
v,i = 1, for any (v, i) ∈ Ŵ , (B.20)

mk
w,i = 0, for 0 ≤ i ≤ N − w, and k ≥ 1, (B.21)

mk
v,N−v =

T k
v,N−v

Cv,N−v

, for w + 1 ≤ v ≤ v0, (B.22)

mk
v,i =

(
N−v−1∏

j=i

λv,jCv,j−1

Cv,j

)
mk

v,N−v

+
N−v−1∑

j=i

T k
v,j

Cv,j

(
j−1∏

m=i

λv,mCv,m−1

Cv,m

)
, (B.23)

for w + 1 ≤ v ≤ v0 and 0 ≤ i ≤ N − v, where

Cv,j =





1, if j < 0,

qv,0, if j = 0,

qv,jCv,j−1 − γjλv,j−1Cv,j−2, if 1 ≤ j ≤ N − v,

(B.24)

T k
v,j =





kλv,0m
k−1
v,1 + ηv,0m

k
v−1,1, if j = 0,

kλv,jm
k−1
v,j+1 + ηv,jm

k
v−1,j+1 + γjT k

v,j−1, if 1 ≤ j ≤ N − v.

Proof. Expressions (B.20) and (B.20) are the scalar versions of Equations

(20) and (21), in Theorem 2 in [123]. Applying the same methodology as

in the Proof of Theorem 3 on this section, factorial moments satisfy the

following equation

Cv,imk
v,i − Cv,i−1λv,im

k
v,i+1 = T k

v,i, for 0 ≤ i ≤ N − v − 1. (B.25)

In consequence for i = N − v, factorial moments are computed from expres-

sion (B.22). To obtain the rest of factorial moments, appearing in expression
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(B.23), we work on Equation (B.25), from i = N − v − 1 to i = 0, applying

Expression (B.22), as we made in the proof of Theorem 3.

B.5 Nw-Probability mass functions theorem

Theorem 5 summarizes additional explicit expressions to compute the auxil-

iary probabilities, {xkv,i : (v, i) ∈ Ŵ} of Nw.

Theorem 5. Given a warning vaccination level, v0, an integer k ≥ 0 and a

fixed warning level w, the set of auxiliary probabilities {xkv,i : (v, i) ∈ Ŵ} are

computed by the equations

x0w,i = 1; for 0 ≤ i ≤ N − w, (B.26)

xkw,i = 0; for k ≥ 1 and 0 ≤ i ≤ N − w, (B.27)

xkv,0 =
Bk
v,0

qv,0
, for w + 1 ≤ v ≤ v0, (B.28)

xkv,i =

(
i∏

j=1

γj
qv,j

)
xkv,0 +

i∑

j=1

Bk
v,j

∏i
m=j+1 γm∏i
l=j qv,l

, (B.29)

where coefficients Bk
v,j are determined recursively as follows:

Bk
v,j =





ηv,jx
k
v−1,j+1 if j = N − v,

ηv,jx
k
v−1,j+1 + λv,jx

k−1
v,j+1, if 0 ≤ j ≤ N − v − 1.

(B.30)

Proof. we recall that wake-up time, is defined as the time point at which

the warning level for vaccination w is reached. Thus, at this time point the

CTMC enters in the set {(w, i) ∈ Ŵ : 0 ≤ i ≤ N − w}. Consequently, at
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wake-up time, the number of infected individuals is i, almost surely, whenever

the current situation is (w, i). That is, probabilities associated to the warning

level w satisfy

x0w,i = 1; for 0 ≤ i ≤ N − w, (B.31)

and

xkw,i = 0; for k ≥ 1, 0 ≤ i ≤ N − w. (B.32)

Remaining set of auxiliary probabilities will be determined by using a first-

step argument, conditioning on the exponentially distributed time to the first

transition. Given k and v, such that k ≥ 1 and w+1 ≤ v ≤ v0, we have that

xkv,i =
γi
qv,i

xkv,i−1 +
λv,i
qv,i

xk−1
v,i+1 +

ηv,i
qv,i

xkv−1,i+1, for 0 ≤ i ≤ N − v,

or equivalently

−γixkv,i−1 + qv,ix
k
v,i = λv,ix

k−1
v,i+1 + ηv,ix

k
v−1,i+1, for 0 ≤ i ≤ N − v. (B.33)

that the expression in the left-hand side of equation (B.33) depends on model

parameters and auxiliary probabilities of one order less, k − 1, and one level

of vaccination less, v − 1.

Starting from the boundary results (B.31) and (B.32), for every mass point

k ≥ 0, it is possible to solve the equations in (B.33) in a recursive way, in

the natural order starting for k = 0 and from v = w + 1 to v = v0. By

using a Forward Elimination Backward Substitution (FEBS) procedure, the

equation (B.33) can be written in triangular form as follows:

−γixkv,i−1 + qv,ix
k
v,i = Bk

v,i, for 0 ≤ i ≤ N − v. (B.34)

where the constant Bk
v,i match the definition in Expression (C.1).
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Working on equation (B.34), for 0 ≤ i ≤ N − v, we get that

xkv,i =
T k
v,i∏N−v−1

j=0 qv,j
, (B.35)

where T k
v,i is defined as

T k
v,j =





Bk
v,j, for j = 0,
∏i−1

j=0 qv,jB
k
v,j + γjT

k
v,j−1, for 1 ≤ j ≤ N − v,

(B.36)

and for k ≥ 0 and w+ 1 ≤ v ≤ v0, Equation (B.34) gives auxiliary probabil-

ities xkv,i+1 in terms of probabilities xkv,i.

Finally iterating (B.35) we obtain the relationship appearing in expression

(B.29).
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Additional work on Chapter 4

In appendix D we complement the work described in [124].

In order to facilitate the reading we recall that in this article we use the

warning level, w, to define the random variables, Sw and Rw, that give infor-

mation about the distribution of susceptible individuals, when the number

of vaccinated individuals first reaches that level and the elapsed time until

the susceptible group contains a number of eligible individuals to be vac-

cinated large enough to recover the initial mass of vaccinated individuals,

respectively.

In the mentioned article, in the Conclusions and Future work Section

we pointed that the results presented were obtained exploiting the special

structure of the system of equations involved to derive explicit recursive

expressions but, they can be derived by the matrix-analytics methodology.

Therefore, in this Appendix we provide additional Sw-Probability mass func-

tions and Rw-Laplace transforms theorems to compute them applying matrix

methods.
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Matrix and rates appearing in this Appendix have the same description and

notation as in [124].
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C.1 Sw-Probability mass functions theorem

Equations (14) appearing in [124], can be expressed in matrix form and this

result is set out in the Theorem 6.

Theorem 6. Given an integer 1 ≤ k ≤ N − w and a fixed warning level

w, the set of auxiliary probabilities {xkv,i : w ≤ v ≤ v0, 0 ≤ i ≤ N − v}, are
computed by the matrix equations:

−Qvx
k
v = Dvx̃

k
v−1,

and initial conditions, xk
w = (δk,0, δk,1, ..., δk,N−w)

T , where Qv = [Qv(i, j)] and

Dv are (N-v+1) square matrices whose non-null entries are given by

Qv(i, j) =





γi if 1 ≤ i ≤ N − v, j = i− 1,

−qv,i if 0 ≤ i = j ≤ N − v,

λv,i if 0 ≤ i ≤ N − v − 1, j = i+ 1,

xk
v and x̃k

v−1 are vectors of dimension (N − v + 1) determined as follows:

xk
v = (xkv,0, x

k
v,1, ..., x

k
v,N−v)

T ,

x̃k
v−1 = (xkv−1,1, x

k
v−1,2, ..., x

k
v−1,N−v+1)

T .

C.2 Rw-Laplace transforms theorem

Equations (55) in [124], can be expressed in matrix form and this result is

set out in Theorem 7.

Theorem 7. The Laplace transforms of the random variables Rv,i, {ψv,i(z) :

(v, i) ∈ Ŵ}, are computed in matrix form as follows
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Qv(z)ψ̃v(z) = Tv(z), (C.1)

where Qv(z) = [avi,j(z)] is a squared matrix of dimension (v0 − v) where

non-null entries are given by

avi,j(z) =





−γN−v0+i, if j = i− 1 and 2 ≤ i ≤ v0 − v,

(z + qv,N−v0+i), if j = i and 1 ≤ i ≤ v0 − v,

−λv,N−v0+i, if j = i+ 1 and 1 ≤ i ≤ v0 − v − 1,

ψ̃v(z) is vector of dimension (v0 − v) defined for 0 ≤ v ≤ w as follows

ψ̃v(z) = [ψv,N−v0+1(z), ..., ψv,N−v(z)]
T ,

Tv(z) = [Bv,z
(i) ] with 1 ≤ i ≤ v0 − v, is a vector of dimension (v0 − v) whose

elements are defined as

Bv,z
(i) = δi,1γN−v0+i + µv,N−v0+iψv−1,N−v0+i+1(z),

and T0(z) is a vector of dimension v0 defined as follows

T0(z) = (γ, 0, ..., 0)T ,

and boundary conditions

ψv,i(z) = 1, for 0 ≤ v ≤ w, 0 ≤ i ≤ N − v0. (C.2)
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Additional work on Chapter 5

In Appendix D, we extend the research work described in [120].

We recall that the underlying mathematical model is the stochastic SVIR

model with external source of infection and imperfect vaccine and we de-

scribed the random variable, W (M), that measure the time until a total M

of infections are produced in the population.

In the mentioned work, in the Conclusions section we point out that our

technique can be applied in order to study the time until the end of the

outbreak. In that sense, in this Appendix we define the random variable,

T0, that measure the time until the Markov chain reaches the absorbing

sate, (0, 0, 0), to carry out that purpose. We provide Laplace transforms

and distribution moments theorems of the mentioned measure and for the

analysis we use the same notation appearing in [120].

This random variable could not be included in [120] due to the space

restrictions of the scientific journal where it was published.
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D.1 Time until absorption, T0
We recall that X = {(V (t), S(t), I(t)); t ≥ 0} is a CTMC, with state space

(0, 0, 0) ∈ S where

S = {(v, s, i) : 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, 0 ≤ v + s+ i ≤ N},

that contains a single absorbing state: (0, 0, 0) representing the state of a

population where everybody has been recovered from the disease of interest.

We introduce the random variable, T0, representing the time until the

CTMC X reaches the absorbing state (0, 0, 0). More properly, we define

T0 = inf{t ≥ 0 : (V (t), S(t), I(t)) = (0, 0, 0)}.

We assume that at the beginning of the outbreak the population dwells v0

vaccinated individuals, s0 susceptible and a single infectious individual, sat-

isfying v0 + s0 = N − 1.

To study the probabilistic behaviour of the time until absorption we analyze

the following set of conditioned random variables for any (v, s, i) ∈ S

{T0 |(V (0) = v, S(0) = s, I(0) = i)}.

These random variables can be seen as first passage times to the state

(0, 0, 0) conditioned to the current state.

When conditioning to the initial state of the epidemic process we obtain the

following results

P (T0 = 0 |V (0) = 0, S(0) = 0, I(0) = 0) = 1, (D.1)

P (T0 < ∞|V (0) = v, S(0) = s, I(0) = i) = 1, for (v, s, i) ∈ S. (D.2)
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Result appearing in Expression (D.1) is trivially true due to the own defini-

tion of the variable T0.

Expression (D.2) is consequence of the well-known theory of absorbing CTMC

with finite space state.

D.1.1 T0-Laplace transform

We introduce appropriate notation for the Laplace transforms of the condi-

tioned random variables {(T0 |V (0) = v, S(0) = s, I(0) = i)}, for any (v, s, i) ∈
S. Given z ∈ C, with Re(z) ≥ 0, we define

ψv,s,i(z) = E[e−zT0 |V (0) = v, S(0) = s, I(0) = i ]. (D.3)

Notice that, from Expressions (D.1-D.2), we obtain the following boundary

condition

ψv,s,i(0) = 1, for (v, s, i) ∈ S, (D.4)

and from Equation (D.3), we obtain for a given z ∈ C, with Re(z) ≥ 0, the

following initial condition

ψ0,0,0(z) = 1. (D.5)

Assuming that the current state of the Markov chain is (v, s, i) ∈ S and

applying a first-step methodology, we obtain the following relationship

ψv,s,i(z) =
γi

z + qv,s,i
ψv,s,i−1(z) +

λs,i
z + qv,s,i

ψv,s−1,s,i+1(z) +
ηv,i

z + qv,s,i
ψv−1,s,i+1(z),

where λs,i = s
(
βi
N
+ ξ
)
, ηv,i = vh

(
βi
N
+ ξ
)
, γi = γi and qv,s,i = λs,i+ηv,i+γi.
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The above expression is equivalent to

−γiψv,s,i−1(z) + (z + qv,s,i)ψv,s,i(z)− λs,iψv,s−1,i+1(z) = ηv,iψv−1,s,i+1(z).(D.6)

D.1.2 T0-Distribution moments

We introduce appropriate notation for kth-order moments of T0 conditioned

to (v, s, i) ∈ S and k ≥ 0

Mk
v,s,i = E[T k

0 |V (0) = v, S(0) = s, I(0) = i ]. (D.7)

Notice that, from Expressions (D.4-D.5), we obtain the following boundary

conditions

M0
v,s,i = 1, for (v, s, i) ∈ S, (D.8)

and in consequence,

Mk
0,0,0 = 0, for k > 0. (D.9)

The loop-free structure of the transition rates of the CTMC X allows us to

obtain explicit expressions and avoid matrix structures.

This result is summarized in the following theorem

Theorem 8. Given integers k, v0 and s0, satisfying k ≥ 0 and 0 ≤ v0+s0 ≤
N , moments of order k, conditioned to states (v, s, i) ∈ S, are recursively

determined from the following equations:
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M0
v,s,i = 1,

Mk
0,0,0 = 0, for k > 0,

Mk
v,s,i =

i∑

r=0

i!γ
i−r

r!
T̂ k
v,s,r∏i

l=r qv,s,l
,

where

T̂ k
v,s,i = kMk−1

v,s,i + (1− δv,0)ηv,iM
k
v−1,s,i+1 + (1− δs,0)λs,iM

k
v,s−1,i+1. (D.10)

Proof. For any initial state (v, s, i) ∈ S, moments of order k ≥ 1 are obtained

by differentiating k times Expression (D.6) respect to z, and by evaluating

the resulting equation at z = 0.

After that, we obtain equations involving the moments of order k, which look

as follows

−γiMk
v,s,i−1 + qv,s,iM

k
v,s,i − λs,iM

k
v,s−1,i+1 = ηv,iM

k
v−1,s,i+1 + kMk−1

v,s,i . (D.11)

The right-hand side of Equation (D.11) depends on model parameters and

moments of lower levels in v and on moments of one order less. For a given

order k, we can solve Equation (D.11) in a recursive way (from v = 0 to

v = v0 and s = 0 to s = s0), for every 0 ≤ i ≤ N − v − s, starting from the

boundary condition (D.9).

Applying a Forward Elimination Backward Substitution (FEBS) procedure,

Equation (D.11) can be expressed in triangular form as

qv,s,iM
k
v,s,i = T̂ k

v,s,i + γiM
k
v,s,i−1, for 0 ≤ i ≤ N − v − s, (D.12)

where the constant T̂ k
v,s,i is described in (D.10).
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We notice that Equation (D.12) is similar to Equation (B.19) in Ap-

pendix B and in consequence, the proof of Theorem 8 is similar to Theorem

1 appearing in Appendix B. Hence, we omit it.
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Research contents: Discussion
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A significant part of the results obtained through this thesis have been

published in JCR indexed scientific journals. Hence, that part of the research

work is shown on Chapters 2-5 including the printed version of the articles

along with a description of the main aspects referring to each paper.

Chapter 6 includes a research article which is in final stages of proofread-

ing before submission to a scientific journal. It has the same structure as the

previous Chapters.

Additional results that have not been published are shown in Appendices

A-D and complement the investigation showed on Chapters 2-5, respectively.

The objective of this thesis is to study the effect of vaccination in epidemic

models with stochastic transmission.

We focus on the study of infectious diseases that are transmitted by direct

contact with infected individuals in constant and moderate size populations

under a stochastic approach.

This approach takes into account the inherent random nature of an in-

fectious process and it is preferable to the analogous deterministic one for

describing the expansion of a disease in small communities. In this sense, re-

sults obtained can be applied to the study of infectious processes in hospitals,

nursery schools and refugee camps, among others.

We have described the compartmental SVIS and SVIR mathematical

models. We have represented the evolution of the epidemic processes in

terms of Markov chains. Comparing with the existing literature the main

feature of this investigation is to consider non-isolated populations and that

prior the onset of the epidemic, individuals have been vaccinated to prevent

disease with an imperfect vaccine.
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The consequence of assuming that population is not isolated is that in-

dividuals can be infected by direct contact with non-community members.

This hypothesis seems to be more realist than considering isolated popula-

tions where individuals only contact each others.

Currently, the most of vaccines that are administered to the population

are not perfect. In that sense, considering that individuals have been vacci-

nated to prevent disease with an imperfect vaccine presents a more realistic

scenario that considering a perfect one.

Results of this study indicate that the epidemic behaviour, considering

the SVIS and SVIR models with external source of infection and imperfect

vaccine, differs from the observed in the traditional analogous models.

In particular, to consider the external source of infection and imperfect vac-

cine hypothesis plays a fundamental role in the evolution of an epidemic.

For the SVIS model described on Chapters 2-5 and their related Appen-

dices, results indicate that according to the non-isolated population hypoth-

esis, it is possible a reintroduction of the disease when there are not infected

individuals in the community. Furthermore, to administer an imperfect vac-

cine to the population to prevent disease can produce that the number of

vaccinated individuals could be descend and in consequence, the population

protection conferred by herd immunity could be lost. In that sense, in long-

term the number of vaccinated individuals will be zero and the disease could

remain in the population forever.

These findings suggested us to quantify the potential transmission of an

infectious disease and to provide a tool to alert health authorities about the

possibility of losing the community protection to the pathogen.
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The quantification of the potential transmission of the disease was carried

out by analyzing alternative measures to the basic reproduction number, R0.

In particular, we defined exact and population reproduction numbers, Re0

and Rp analogous to those in [41]. With this analysis, we obtained an exact

quantification of the spread of a pathogen in a post-vaccination context.

To alert health authorities about a decline in the number of vaccinated

individuals in the population, which could lead to a loss of herd immunity,

we introduce a threshold for the number of vaccinated individuals in the

community, w. When the number of protected individuals decreases below

this threshold, we propose triggering an alarm to warn about that risk. In

addition, we analyze the time from the beginning of the outbreak until the

alarm is activated and the incidence of the disease during that period by

defining the random variables, Tw and Nw, respectively.

We point out that the threshold, w, can be fixed in advance by health

authorities by applying well-established scientific criteria or using the ex-

act and population reproduction numbers described in this research, which

demonstrates the great applicability of the measures analyzed.

In addition, we offer appropriate tools to select the threshold in the num-

ber of vaccinated individuals in order to evaluate and organize an immediate

re-vaccination of the population. This aim is achieved by analyzing the ran-

dom variable Sw, that denotes the number of susceptible individuals in the

population at the time in which the number of individuals reaches the thresh-

old, w. If a re-vaccination can not be launched immediately, we analyze the

time until it can be executed through the random variable, Rw.

Regarding the study of the SVIR model with an external source of in-
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fection and imperfect vaccine, described on Chapters 5-6 and their related

Appendices, we observe that the hypotheses considered lead to the fact that

the disease could be reintroduced into the population even if there are not

infected individuals in the community and the number of vaccinated indi-

viduals in the population could dissipate as occurs with the analyzed SVIS

model but, presenting some differences in the long-term behavior. Due to the

permanent immunity acquired after recovery from the disease, results show

that in long-term all individuals will be recovered from the disease. This be-

havior is different from that observed in the traditional SIS and SVIR models.

These results suggested us to analyze the speed and potential transmission

of the disease.

The speed of transmission was studied by describing the random variables

W (M) and T0, that denote the time until reach a total ofM infections and the

time until all individuals have been recovered in the population, respectively.

The main difference that we observe between these random variables and

their analogous for the traditional SIR and SVIR models is that the external

source of infection and imperfect vaccine hypothesis lead to have both random

variables with finite support and therefore the expected times obtained are

also finite.

The study of the potential transmission of the disease was carried out

through the analysis of exact and population reproduction numbers but with

a different approach to the original one in [41] and Chapter 2.

In this case, we separate the contagions produced to vaccinated individuals

from those caused to susceptible individuals. This new approach has allowed

us to study the effect of vaccination on the potential transmission of the
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disease by comparing the infections produced between these two groups of

individuals.

Overall, results of this study have permit us to quantify the expansion

of an epidemic, including vaccination as a control measure to control an

epidemic process, through the analysis of reproduction numbers, incidence

and time measures. In addition, tools have been proposed, involving the

random variables studied, to help health authorities to stop the spread of

the infectious process.

The methodology applied to derive theoretical results, that it has been

detailed in Section 1.1.2 and throughout this thesis, can be extended to

the study of these and other measures and for other mathematical models

therefore, it is not limited to the described models.

One of the limitations or weaknesses that we have found during this inves-

tigation is that considering homogeneous populations where all individuals

can contact each other with equal probability may not be in line with the

reality. In this sense, we are considering future lines of investigation con-

sidering populations with heterogeneous contacts or assuming some type of

structure in the population.

Likewise, we plan to continue developing future research work considering

vaccines that confer protection that wanes over time.
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Contenido de la investigación:

Discusión
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Una gran parte de los resultados obtenidos en esta investigación han po-

dido publicarse en revistas cient́ıficas indexadas JCR. Por lo tanto, esa parte

del trabajo ha sido mostrado en los Caṕıtulos 2-5, incluyendo las versiones

impresas de las publicaciones junto con una descripción de los aspectos más

importantes referentes a cada uno de los art́ıculos.

El Caṕıtulo 6 incluye un art́ıculo de investigación que está en preparación

para poder ser enviado a una revista cient́ıfica y tiene la misma estructura

que los anteriores caṕıtulos.

Resultados adicionales que no han sido publicados se muestran en los

Apendices A-D, complementando la investigación desarrollada en los Caṕıtulos

2-5, respectivamente.

Esta tesis tiene como propósito investigar el efecto de la vacunación en la

expansión de epidemias con un enfoque estocástico.

Nos hemos centrado en estudiar la propagación de enfermedades cuya

transmisión se produce mediante contacto directo con individuos que están

infectados, considerando poblaciones de tamaño constante y moderado con

un enfoque estocástico.

Este enfoque tiene en cuenta la naturaleza aleatoria intŕınseca de un pro-

ceso epidémico y es más adecuado que su análogo determinista para describir

la evolución de una epidemia en poblaciones pequeñas. De esta forma, los

resultados obtenidos podŕıan ser bien aplicados al estudio de procesos infec-

ciosos en hospitales, guardeŕıas o campos de refugiados, entre otros.

Hemos descrito dos modelos matemáticos compartimentales de tipo SVIS

y SVIR y hemos representado la evolución de los procesos epidémicos medi-

ante cadenas de Markov, donde a diferencia de la literatura existente, hemos
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considerado que la población no está aislada y que los individuos han sido

vacunados preventivamente contra la enfermedad con una vacuna imperfecta.

Asumir que la población no está aislada tiene como consecuencia que los

individuos también podŕıan infectarse por contacto directo con otros indi-

viduos infectados que no pertenezcan a la población. Esta hipótesis parece

ajustarse mejor a la realidad que considerar poblaciones aisladas donde los

individuos que la conforman solamente contactan entre ellos.

Actualmente nos encontramos que la mayoŕıa de las vacunas admin-

istradas a la población no son perfectas. Por lo tanto, asumir que la población

ha sido inmunizada preventivamente contra la enfermedad con una vacuna

imperfecta refleja la realidad mejor que considerar vacunas perfectas.

Observamos que el comportamiento de la epidemia en los modelos estu-

diados difiere bastante respecto a si consideramos los modelos tradicionales

SVIS y SVIR.

En particular, asumir que existe una fuente externa de infección y que la vac-

una admisnistrada es imperfecta juega un papel fundamental en el transcurso

de la epidemia.

Aśı, en el modelo SVIS mostrado en los Caṕıtulos 2-5 y sus correspon-

dientes anexos, los resultados muestran que aunque el número de individuos

infectados sea cero en un determinado instante, la enfermedad podŕıa rein-

troducirse en la población a causa de la fuente externa de infección. Además

considerar que la vacuna administrada es imperfecta provoca que el número

de individuos vacunados en la población pueda descender y como consequen-

cia la proteccion de la población frente a la enfermedad podŕıa perderse. En

este sentido, a largo plazo nos encontramos que no habrá individuos vacuna-
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dos en la población y que la enfermedad podŕıa establecerse en la población

para siempre.

A partir de este comportamiento créımos que era importante cuantificar

la transmisión potencial de la enfermedad y ofrecer una herramienta que aler-

tara a las autoridades sanitarias de la posible perdida de inmunidad colectiva.

La cuantificación potencial de la enfermedad se llevó a cabo mediante la

aplicación de medidas alternativas al tradicional número reproductivo básico,

R0. En concreto definimos números reproductivos exacto, Re0 y poblacional,

Rp, análogos a los descritos en [41]. De esta forma, hemos podido obtener

una cuantificación exacta de la propagación de la enfermedad en un contexto

post-vacunación.

Para alertar a las autoridades sanitarias del descenso en el número de

individuos vacunados en la población, lo que podŕıa ocasionar una perdida

de inmunidad colectiva, introducimos un umbral en la cantidad de individuos

vacunados, w. Cuando el número de individuos protegidos decrece por debajo

de dicho umbral proponemos que se establezca una alarma para alertar sobre

este riesgo. Además, analizamos el tiempo desde el comienzo del brote hasta

que se activa la alarma y la incidencia de la enfermedad durante ese peŕıodo

definiendo las variables aleatorias, Tw y Nw, respectivamente.

Cabe destacar, que este umbral puede ser establecido de antemano por

las autoridades sanitarias aplicando criterios cient́ıficos bien establecidos o

bien emplear los números reproductivos exactos y poblacionales descritos en

esta investigación, lo que demuestra la gran aplicabilidad de estas medidas

estudiadas.

Además ofrecemos herramientas para seleccionar adecuadamente este um-
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bral de número de individuos vacunados para poder evaluar y organizar

una re-vacunación inmediata de la población. Esto se consigue mediante

el análisis de las variable aleatoria Sw que denota al número de individuos

susceptibles en la población en el intante en el que el número de individuos

alcanza el umbral, w. En el caso de que la re-vacunación no pueda ejecutarse

de forma inmediata analizamos el tiempo hasta que puede llevarse a cabo

mediante la variable, Rw.

Respecto al estudio del modelo SVIR con fuente de infeccion externa

y vacuna imperfecta, mostrado en los Caṕıtulos 5-6 y sus correspondientes

anexos, podemos decir que las hipótesis consideradas conducen a que la enfer-

medad podŕıa reintroducirse en la población aunque no hubiera individuos

infectados en la población y que el número de individuos vacunados en la

población puede disiparse, al igual que ocurre con el modelo SVIS analizado,

pero con un comportamiento a largo plazo diferente. Debido a la perma-

nente inmunidad adquirida tras la recuperación de la enfermedad, los resul-

tados muestran que a largo plazo todos los individuos estarán recuperados

de la enfermedad siendo este comportamiento bien distinto al observado en

los modelos tradicionales SIS y SVIR. Tras observar estos resultados créımos

conveniente analizar la velocidad y potencial transmisión de la enfermedad.

La velocidad de transmisión se estudió definiendo las variables aleatorias

W (M) y T0, que denotan al tiempo hasta que se han infectado un total de

M individuos y tiempo hasta que todos los individuos de la población se han

recuperado, respectivamente.

La principal diferencia que observamos en estas variables respecto a los

modelos tradicionales SIR y SVIR existentes en la literatura publicada, es
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que las hipótesis de la fuente externa de infección y vacuna imperfecta, hacen

que estas variables tenga soporte finito y por lo tanto los tiempos medios

obtenidos sean también finitos.

El estudio de la transmisión potencial de la enfermedad se llevó a cabo

mediante el análisis de números reproductivos exactos y poblacionales pero

con un enfoque diferente al propuesto en el estudio original [41] y el Caṕıtulo

2.

En este caso, creimos que era interesante separar los contagios producidos a

individuos vacunados de los provocados a individuos susceptibles. Este nuevo

planteamiento nos ha permitido poder estudiar el efecto de la vacunación en

la transmisión potencial de la enfermedad comparando los contagios produci-

dos en estos dos grupos de individuos.

En general podemos decir que esta investigación ha permitido cuantificar

la expansión de una epidemia, incluyendo la vacunación como medida de

contención de la enfermedad, mediante el análisis de números reproductivos,

medidas de incidencia y de tiempo. Además se han proporcionado herramien-

tas en las que intervienen las variables aleatorias estudiadas, para ayudar a

que las autoridades pertinentes puedan frenar la expansión del proceso infec-

cioso.

La metodoloǵıa utilizada para la obtención de los resultados y que ha sido

detallada en la Sección 1.1.2 y a lo largo de toda la tesis, puede extenderse al

estudio de estas u otras medidas y otros modelos matemáticos y por lo tanto

no está limitada a los modelos considerados.

Nos gustaŕıa mencionar que una de las limitaciones o debilidades que

hemos encontrado durante esta investigación es considerar poblaciones ho-
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mogéneas donde todos los individuos puedan contactar entre śı con igual

probabilidad. Esta asunción parece no ajustarse muy bien a la realidad y en

este sentido, se nos plantean futuras ĺıneas de trabajo considerando pobla-

ciones con contactos heterogéneos o asumir algun tipo de estructura en la

población.

De igual forma nos planteamos seguir avanzando en futuras investiga-

ciones considerando que la eficacia de la vacuna se pierde a largo plazo.
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Next we resume the general conclusions of this thesis.

For the SVIS and SVIR models with external source of infection and im-

perfect vaccine, vaccination has a big effect on the spread of an infectious

disease. This effect has been analyzed by studying the evolution of the epi-

demic in the short and long-term and describing several measures that have

led us to quantify its expansion. We obtain the following results.

For both models, the consequence of assuming an external source of in-

fection and an imperfect vaccine hypothesis is that in long-term there will

not be vaccinated individuals in the population.

Overall, we observe that large vaccination coverage control the spread of

the disease obtaining larger propagation times and lower disease incidence.

Likewise, the vaccine failure probability plays a fundamental role in the

transmission of the disease. More effective vaccines produce lower number

of contagions and lower transmission speeds than those with large vaccine

failure probability values.

The internal transmission rate has a big effect on the spread of the

pathogen. Diseases with large rates of transmission can produce severe epi-

demics. We detected for these cases, that it is necessary to administer very

effective vaccines and to achieve vaccination coverage close to 100% of the

population to control its expansion.

Regarding the methodology and algorithmic implementation of the theo-

retical results, the main conclusions are the following:

The organization by levels and sub-levels of the state space of the CTMC’s

analyzed has allowed us to simplify the study and analyze the Markov chains

involved as birth and death processes allowing their subsequent analysis using
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matrix methods.

The block bi-diagonal structure of the infinitesimal generators involved

permit us to obtain theoretical results applying iterative methods.

Numerical algorithms provide results depending strongly on the popula-

tion size . Computation times are very high when considering populations

larger than 1000 individuals. For instance, when N = 1000 and over, we ob-

tain elapsed times greater than 5 hours. In contrast for small communities,

around N = 100 individuals, we obtain elapsed times lower than one minute.
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A continuación se muestran la conclusiones generales que se han obtenido

tras el estudio de investigación realizado a lo largo de esta tesis.

En los modelos SVIS y SVIR con fuente externa de infección y vacuna

imperfecta, la vacunación tiene un gran efecto en la propagación de enfer-

medades infecciosas. Este efecto se ha analizado estudiando a corto y largo

plazo la evolución del brote epidémico y estudiando diferentes medidas que

han permitido cuantificar su expansión obteniedose los siguientes resultados.

Para ambos modelos las hipótesis de que exista una fuente externa de

infección y que la vacuna administrada sea imperfecta tienen como conse-

cuencia que a largo plazo no haya individuos vacunados en la población.

En general observamos que grandes coberturas vacunales frenan la ex-

pansión de la enfermedad obteniéndose tiempos de propagación más largos e

incidencias de la enfermedad más bajas.

De igual forma, la eficacia de la vacuna juega un papel fundamental en la

transmisión de la enfermedad. A mayor efectividad de la vacuna obtenemos

un número menor de contagios y velocidades de transmisión mucho más

lentas.

La tasa de contagio interna influye de manera considerable en la propa-

gación del patógeno. Enfermedades con elevadas tasas de contagio pueden

producir epidemias muy severas. Incluso hemos detectado que en estos casos

es necesario disponer de vacunas muy efectivas y lograr coberturas vacunales

cercanas al 100% de la población para poder controlar su expansión.

Referente a la metodoloǵıa e implementación algoŕıtmica de los resultados

teóricos, las principales conclusiones que obtenemos son las siguientes:

La organización por niveles y sub-niveles del espacio de estados, de las

272



Conclusiones

CTMC de ambos modelos, nos ha permitido simplificar el estudio y analizar

estas cadenas de Markov como procesos de nacimiento y muerte permitiendo

su posterior análisis mediante métodos matriciales.

La estructura bi-didiagonal por bloques de los generadores infinitesimales

de estas cadenas han hecho posible obtener los resultados teóricos aplicando

además métodos recursivos.

Respecto a la implementación algoŕıtmica de los resultados teóricos, hemos

obtenido que los tiempos de computación dependen mucho de los tamaños

poblacionales. En concreto, cuando consideramos poblaciones de tamaño

pequeño en torno a N=100 individuos, obtenemos tiempos de ejecución in-

feriores al minuto. En cambio, cuando trabajamos con poblaciones grandes,

N=1000 o superiores, estos tiempos son bastante más elevados incluso lle-

gando a necesitar más de 5 horas de ejecución.
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