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� Explore the effects of noise-induced heterogeneity on the emergence of drug resistance.
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a b s t r a c t

We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular
populations. We illustrate our methodology with a particular example in which we study a population with an
oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells
within the population are characterised by their age (i.e. time elapsed since they were born). The age-de-
pendent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle pro-
gression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which
dictates the time evolution of the cell population. The population is under a feedback loop which controls its
steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that
our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by
stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this
set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which
essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this
simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical
methodology. A further result is the observation that heterogeneous populations undergo an internal process of
quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as
radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the popu-
lation contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if
the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to
emergence of resistance to therapy since the rescued population is less sensitive to therapy.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Global cell traits and behaviour in response to stimuli, the so-
called phenotype, results from a complex network of interactions
r Ltd. This is an open access article
between genes and gene products which ultimately regulates gene
expression. These networks of gene regulation constitute non-
linear, high-dimensional dynamical systems whose structure has
been shaped up by evolution by natural selection, so that they
exhibit properties such as robustness (i.e. resilience of the phe-
notype against genetic alterations) and canalisation (i.e. the ability
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for phenotypes to increase their robustness as time progresses).
These properties are exploited by tumours to increase their pro-
liferative potential and resist to therapies (Kitano, 2004). In addi-
tion to complex, non-linear interactions within individual cells,
there exist intricate interactions between different components of
the biological systems at all levels: from complex signalling
pathways and gene regulatory networks to complex non-local
effects where perturbations at whole-tissue level induce changes
at the level of the intra-cellular pathways of individual cells
(Alarcón et al., 2005; Ribba et al., 2006; Macklin et al., 2009; Os-
borne et al., 2010; Deisboeck et al., 2011; Powathil et al., 2013;
Jagiella et al., 2016). These and other factors contribute towards a
highly complex dynamics in biological tissues which is an emer-
gent property of all the layers of complexity involved.

To tackle such complexity, multi-scale models of biological
systems as diverse as cardiac systems (Smith et al., 2004; McCul-
loch, 2009; Hand and Griffith, 2010; Land et al., 2013), systems of
developmental biology (Schnell et al., 2008; Oates et al., 2009;
Hester et al., 2011; Setty, 2012; Walpole et al., 2013), and tumour
growth systems (Alarcón et al., 2005; Jiang et al., 2005; Ribba et al.,
2006; Macklin et al., 2009; Owen et al., 2009; Preziosi and Tosin,
2009; Tracqui, 2009; Byrne, 2010; Lowengrub et al., 2010; Osborne
et al., 2010; Rejniak and Anderson, ; Deisboeck et al., 2011; Perfahl
et al., 2011; Travasso et al., 2011; Durrett, 2013; Powathil et al.,
2013; Szabo and Merks, 2013; Chisholm et al., 2015; Curtius et al.,
2015; Scott et al., 2016; Jagiella et al., 2016) have been developed.
In parallel to the model development, algorithms and analytic
methods are being developed to allow for more efficient analysis
and simulation of such models (Alarcón, 2014; Spill et al., 2015; de
la Cruz et al., 2015; Spill et al., 2016).

In the case of cancer biology, the multi-scale interactions of
intracellular changes at the genetic or molecular pathway level
and tissue-level heterogeneity can conspire to generate un-
fortunate effects such as resistance to therapy (Merlo et al., 2006;
Gillies et al., 2012; Greaves and Maley, 2012; Chisholm et al., 2015;
Asatryan and Komarova, 2016). Heterogeneity plays a major role in
the emergence of drug resistance within tumours and can be of
diverse types. There is heterogeneity in cell types due to increased
gene mutation rate as a consequence of genomic instability and
other factors (Merlo et al., 2006; Greaves and Maley, 2012;
Chisholm et al., 2015; Asatryan and Komarova, 2016). Hetero-
geneity can also be caused by the complexity of the tumour mi-
croenvironment (Alarcón et al., 2003; Gillies et al., 2012; Chisholm
et al., 2015), in which diverse factors such as tumoural or immune
cells (Kalluri and Zeisberg, 2006, Grivennikov et al., 2010), or the
extracellular matrix and its physical properties (Spill et al., 2016),
strongly influence cancer cell behaviour. Note that hypoxia is also
known to change the tumour microenvironment (Spill et al., 2016).
In either case, heterogeneity within the tumour creates the ne-
cessary conditions for resistant varieties to emerge and be selected
upon the administration of a given therapy.

The main aim of this paper is to analyse the properties of
heterogeneous populations under the effects of fluctuations both
within the intracellular pathways which regulate (individual) cell
behaviour and those associated to intrinsic randomness due to
finite size of the population. To this purpose, we expand upon the
stochastic multi-scale methodology developed in Guerrero and
Alarcón (2015), where it was shown that such a system can be
described by an age-structured birth-and-death process, instead of
a branching process (Danesh et al., 2012; Durrett, 2013). The
coupling between intracellular and the birth-and-death dynamics
is carried out through a novel method to obtain the birth rate from
the stochastic cell-cycle model, based on a mean-first passage time
approach. Cell proliferation is assumed to be activated when one
or more of the proteins involved in the cell-cycle regulatory
pathway hit a threshold. This view allows us to calculate the birth
rate as a function of the age of the cell and the extracellular oxygen
in terms of the associated mean-first passage time (MFPT) pro-
blem (Redner, 2001). The present approach differs from that in
Guerrero and Alarcón (2015) in that our treatment of the in-
tracellular MFPT is done in terms of a large deviations approach,
the so-called optimal path theory (Freidlin and Wentzell, 1998;
Bressloff and Newby, 2014).

This methodology allows us to explore the effects of intrinsic
fluctuations within the intracellular dynamics, in particular a
model of the oxygen-regulated G1/S which dictates when cells are
prepared to divide, as a source of heterogeneous behaviour: fluc-
tuations induce variability in the birth rate within the population
(even to the point of rendering some cells quiescent, i.e. stuck in
G0) upon which a cell-cycle dependent therapy acts as a selective
pressure.

This paper is organised as follows. Section 2 provides a sum-
mary of the structure of the multi-scale. In Section 3, we give a
detailed discussion of the intracellular dynamics, i.e. the stochastic
model of the oxygen-regulated G1/S transition, and its analysis. In
Section 4, we summarise the formulation of the age-structured
birth-and-death process, the numerical simulation technique, and
the mean-field analysis of a homogeneous population. In Section 5,
we discuss how noise within the intracellular dynamics induces
heterogeneity in the population and analyse the stochastic dy-
namics of competition for a limited resource within such hetero-
geneous populations. In Section 6 we further study the effects of
noise-induced heterogeneity on the emergence of drug resistance
upon administration of a cell cycle-specific therapy. Finally, in
Section 7 we summarise our results and discuss our conclusions as
well as avenues for future research.
2. Summary of the multi-scale model

Before proceeding with a detailed discussion of the different
elements involved in the formulation of the stochastic multi-scale
model, it is useful to provide a general overview of the overall
structure of the model, which is closely related to that of the
model proposed in Alarcón et al. (2005).

The model we present in this article integrates phenomena
characterised by different time scales, as schematically shown in
Fig. 1. This model intends to tackle the growth and competition of
cellular populations under the restriction of finite amount of
available resources (in this case, oxygen) supplied at a finite rate, S̄.

The general approach used in this model is a natural general-
isation of the standard continuous-time birth-and-death Markov
process and its description via a Master Equation (Gardiner, 2009).
As we will see, the consideration of the multi-scale character of
the system, i.e. the inclusion of the physiological structure asso-
ciated with the cell-cycle variables, introduce an age-structure
within the population: the birth rate depends on the age of cell
(i.e. time elapsed since last division) which determines, through
the corresponding cell-cycle model, the cell-cycle status of the
corresponding cells.

The evolution of the concentration of oxygen, c(t), (resource
scale, see Fig. 1) is modelled by:

∑= ¯ − ¯ ( )
( )=

dc
dt

S kc N t
1i

N

i
1

T

where NT is the number of cellular types consuming the resource c,
and Ni(t), = …i N1, , T , is the number of cells of type i at time t.
Note that, in general, Ni(t) is a stochastic process, and, therefore, in
principle Eq. (1) should be treated as a stochastic differential
equation (Oksendal, 2003).

The second sub-model considered in our multi-scale model,



Fig. 1. Schematic representation of the different elements that compose our multi-scale model. We show the different levels of biological organisation as well as associated
characteristic time scales (Guerrero and Alarcón, 2015) associated to each of these layers: resource scale, i.e. oxygenwhich is supplied at a constant rate and consumed by the
cell population, cellular scale, i.e. oxygen-regulated cell cycle progression which determines the age-dependent birth rate into the cellular layer, and, finally, the cellular scale,
which is associated to the stochastic population dynamics.
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associated with the intracellular scale (see Fig. 1), is a stochastic
model of oxygen-regulated cell-cycle progression. This sub-model
is formulated using the standard techniques of chemical kinetics
modelling (Gillespie, 1976) so that the mean-field limit of the
stochastic model corresponds to the deterministic cell-cycle model
formulated in Bedessem and Stephanou (2014). This model pro-
vides the physiological state of the cell in terms of the number of
molecules of each protein involved in the cell-cycle of a cell of a
given age, a. From such a physiological state, we derive whether
the G1/S transition has occurred. The cell-cycle status of a cell of
age a is determined in terms of whether the abundance of certain
proteins which activate the cell-cycle (cyclins) have reached a
certain threshold. In our particular case, if at age a, the cyclin levels
are below the corresponding threshold, the cell is still in G1. If, on
the contrary, the prescribed threshold level has been reached, the
cell has passed onto S, and therefore is ready to divide. This im-
plies that the probability of a cell having crossed the threshold of
cyclin levels at age a can be formulated in terms of a mean first-
passage time problem (MFTP) in which one analyses the prob-
ability of a Markov process to hit a certain boundary (Redner,
2001; Gardiner, 2009). Unlike our approach in Guerrero and
Alarcón (2015), based on approximating the full probability dis-
tribution of the stochastic cell cycle model, in the present ap-
proach, passage time is (approximately) solved in terms of an
optimal trajectory path approach (Freidlin and Wentzell, 1998;
Bressloff and Newby, 2014).

At the interface between the intracellular and cellular scales
sits our model of the (age-dependent) birth rate, which defines the
probability of birth per unit time (cellular scale) in terms of the cell
cycle variables (intracellular scale). The rate at which our cell-cycle
model hits the cyclin activation threshold, i.e. the rate at which
cells undergo G1/S transition, is taken as proportional to the birth
rate. In particular, the birth rate is taken to be a function of the age
of the cell as well as the concentration of oxygen, as the oxygen
abundance regulates the G1/S transition age, ( )a cG S1/ , i.e. the time
(age) elapsed between the birth of a cell and its G1/S transition:
τ( ) = ( − ( )) ( )−b a H a a c . 2p G S
1

1/

i.e. cell division occurs at a constant rate, τ−
p

1, provided cells un-
dergo the G1/S transition and H is the Heaviside function. In other
words, we consider that the duration of the G1 phase is regulated
by the cell cycle model, whereas the duration of the S-G2-M is a
random variable, exponentially distributed with average duration
equal to τp (see Fig. 1).

The third and last sub-model is that associated with the cellular
scale. It corresponds to the dynamics of the cell population and is
governed by the Master Equation for the probability density
function of the number of cells (Gardiner, 2009). The stochastic
process that describes the dynamics of the population of cells is an
age-dependent birth-and-death process where the birth rate is
given by Eq. (2) where ( )a cG S1/ is provided by the intracellular
model. The death rate is, for simplicity, considered constant. As a
consequence of the fact that the birth rate is age-dependent, our
Multi-Scale Master Equation (MSME) does not present the stan-
dard form for unstructured populations, rather, it is an age-de-
pendent Master Equation.

A detailed description of each sub-model and its analysis is
given in Sections 3 and 4.
3. Intracellular scale: stochastic model of the oxygen-regu-
lated G1/S transition

3.1. Biological background

Cell proliferation is orchestrated by a complex network of
protein and gene expression regulation, the so-called cell cycle,
which accounts for the timely coordination of proliferation with
growth and, by means of signalling cues such as growth factors,
tissue function (Yao, 2014). Dysregulation of such an orderly or-
ganisation of cell proliferation is one of the main contributors to
the aberrant behaviour observed in tumours (Weinberg, 2007).

The cell cycle has the purpose of regulating the successive
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Fig. 2. Schematic representation of the elements involved in the model of hypoxia-
regulated G1/S transition proposed by Bedessem and Stephanou (2014). Within the
framework of this model, the negative-feedback between CycE and SCF is the key
modelling ingredient for the system to emulate the behaviour of a cell during the
G1/S transition. The relative balance between CycE (which promotes the G1/S
transition) and SCF (G1/S transition inhibitor) is regulated by growth and hypoxia,
so that the timing of the transition depends upon these two factors.
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activation of the so-called cyclin-dependent kinases (CDKs) which
control the progression along the four phases of cycle: G1 (first
gap phase), S (DNA replication), G2 (second gap phase), and M
(mitosis) (Gerard and Goldbeter, 2009, 2011; Gerard et al., 2015).
These four phases must be supplemented with a fifth, G0, which
accounts for cells that are quiescent due to lack of stimulation (i.e.
absence of growth factors, lack of basic nutrients, etc.) to pro-
liferate. Recent models of the cell cycle organise the complex
regulatory network into CDK modules, each centred around a cy-
clin–CDK complex which is key for the transition between the cell
cycle phases (see, for example, Gerard and Goldbeter, 2009): cyclin
D/CDK4-6 and cyclin E/CDK2 regulate progression during the G1
phase and elicit the G1/S transition, cyclin A/CDK2 promote pro-
gression during S phase and orchestrates the S/G2 transition, and,
finally, cyclin B/CDK2 brings about the G2/M transition. The ac-
tivity of each of these cyclin-CDK complexes is regulated in a
timely manner, so that each phase of the cell cycle ensues at the
proper time, by means of transcriptional regulation, post-tran-
scriptional modifications (e.g. phosphorylation), and degradation
(via ubiquitination) in which a large number of other components
participate, including transcription factors, enzymes, ubiquitins,
etc.

In the present paper, we propose a coarse-grained description
of the cell cycle phases by lumping S, G2, and M into one phase, so
that we consider a two-phase model G1 and S-G2-M, as shown in
Fig. 1, Alarcón et al. (2004). In particular, we consider that cells can
only divide once they have entered the S-G2-M phase at a constant
rate. Entry in S-G2-M is regulated by a (stochastic) model of the
G1/S transition which takes into account the regulation of the
duration of the G1 phase by hypoxia (lack of oxygen).

The abundance of oxygen is known to be one of the factors that
regulates the duration of the G1 phase of the cell cycle. The issue of
the regulation of the G1/S transition by the oxygen concentration
has been the subject of several modelling studies (Alarcón et al.,
2004; Bedessem and Stephanou, 2014). These models focus on the
hypoxia-induced delay of the activation of the cyclins either
through activation of cyclin inhibitors (Alarcón et al., 2004) or via
up-regulation of the HIF-1α transcription factor (Bedessem and
Stephanou, 2014). From the modelling point of view, both of them
are mean-field models, thus neglecting fluctuations. In this sec-
tion, we formulate a stochastic version of the model of Bedessem
and Stephanou (2014), of which a schematic representation is
shown in Fig. 2.

HIF-1 mediates adaptive responses to lack of oxygen (Semenza,
2013). HIF-1 is a heterodimer consisting of two sub-units: HIF-1α
and HIF-1β. Whilst the latter is constitutively expressed, HIF-1α is
O2-regulated. In the presence of adequate oxygen availability is
negatively regulated by the von Hippel–Lindau (VHL) tumour
suppressor protein, which allows HIF-1α for degradation. VHL
loss-of-function mutations are common in many types of tumours,
which allows for de-regulated HIF-1α degradation (Semenza,
2013). HIF-1 is involved in a number of cellular responses
including switch from oxidative phosphorylation to glycolysis,
activation of angiogenic pathways, and inhibition of cell cycle
progression (Bristow and Hill, 2008; Semenza, 2013).

3.2. Mean-field model of the regulation of the G1/S transition by
hypoxia

Bedessem and Stephanou formulate a model of the effect of
hypoxia (mediated by HIF-1) on the timing of the G1/S transition
(Bedessem and Stephanou, 2014). The involvement of HIF-1 in cell
cycle regulation is complex and not completely understood. There is
evidence that HIF-1 delays entry into S(-G2-M) phase by activating
p21, a CDK inhibitor (Koshiji et al., 2004; Ortmann et al., 2014). HIF-
1 up-regulation of p21 mediates indirect down-regulation of cyclin
E (Goda, 2003). Further to HIF-1 regulation of the cell cycle, there
exists a feedback regulation of cell cycle proteins of HIF-1. Hubbia
et al. (2014) report that CDK1 and CDK2 physically and functionally
interact with HIF-1α: CDK1 down-regulates lysosomal degradation
of HIF-1α, thus consolidating its stability and promoting its tran-
scriptional activity. On the contrary, CDK2 activates lysosomal de-
gradation of HIF-1α and promotes G1/S transition. Bedessem and
Stephanou (2014) do not take into account all these issues and, for
simplicity, chose to focus on the well-documented effect of HIF-1 on
cyclin D (Wen et al., 2010; Ortmann et al., 2014).

Bedessem and Stephanou (2014) model formulation is based on
the following assumptions:

1. The G1/S is modelled by a biological switch which emerges from
the mutual inhibition between a cyclin (in this case, cyclin E)
and a ubiquitin complex (SCF complex): The latter marks the
former for degradation whereas cyclin E mediates inactivation
of the SCF complex. This mutual inhibition gives rise to a bis-
table situation in which two stable fixed points coexist, each
associated with the G1 phase (high SCF activity, low cyclin E
concentration) and the S-G2-M phase (low SCF activity, high
cyclin E concentration). Activation and inactivation of the SCF
complex are assumed to follow Michaelis–Menten kinetics.

2. As in previous models (Tyson and Novak, 2001; Novak and
Tyson, 2004; Alarcón et al., 2004), the G1/S transition is brought
about by triggering a saddle-node bifurcation, whereby the G1
phase fixed point collides with the unstable saddle, driving the
system into S-G2-M fixed point. Two factors drive the system
through this bifurcation: cell growth (logistic increase of the cell
mass, Tyson and Novak, 2001) and activation of the E2F
transcription factor. In Bedessem and Stephanou (2014), both
factors are taken to up-regulate the transcription of cyclin E.

3. Activation of E2F is modelled in terms of the E2F-Retino-
blastoma protein (RBP) switch (Lee et al., 2010). Briefly, E2F is
captured (bound) by unphosphorylated RBP. Upon phosphory-
lation, RBP releases E2F which activates transcription of G1/S-
transition promoting cyclins, such as cyclin E (Alberts et al.,
2002). Further, E2F can be in unphosphorylated (active) form
and phosphorylated (inactive) form. Following Novak and Tyson
(2004), Bedessem and Stephanou assume that fraction of active
E2F and RBP-bound E2F are in adiabatic equilibrium with
unphosphorylated RBP and total free E2F (Bedessem and



Table 1
Reaction probability per unit time, ( )≡ = …W W X r t i, , , 1, , 14i i . The mass is as-

sumed to grow following a logistic law: ( ) = =
η

η η*
−

*
− −m a m Ke a

Ke a
m

Ke a1 1
, where

= − *
( )

K 1 m
m 0

and a is the age of the cell (i.e. the time elapsed since birth). According

to Bedessem and Stephanou (2014), the level of active HIF-1 α , [ ]H , depends

exponentially on the extracellular oxygen concentration, c : [ ] = β ( − )H H e c
0 1 1 .

Furthermore, Following Novak and Tyson (2004), we assume that at each time, the
active E2F, [ ]E F2 A , is the fraction of unphosphorylated free E2F factor,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦[ ] [ ] =

( − [ ])[ ]
E F E F2 : 2 A

E F tot E FRb E F

E F tot

2 2 2

2
. The equilibrium between E2F–Rb complexes;

free E2F and free Rb is given by Novak and Tyson (2004):
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
[ ] = [ ] =

[ ]

+ [ ] + ([ ] + [ ]) − [ ]
E F Rb2 Rb

E F tot Rb

E F tot Rb E F tot Rb E F tot Rb

2 2

2 2 2 4 2
.

Variable Description

X1, X8 Number of Cyclin D and Cyclin E molecules, respectively
X2, X5 Number of inactive and active SCF molecules, respectively
X3, X6 Number of SCF-activating and SCF-inactivating enzyme molecules,

respectively
X4, X7 Number of enzyme-inactive SCF and enzyme-active SCF complexes,

respectively
X9, X10 Number of free RbP and E2F molecules, respectively

Reaction probability p.u.t. ri

= − [ ]W k k H1 1 2 (1,0,0,0,0,0,0,0,0,0)

=W k X2 3 1 ( − )1, 0, 0, 0, 0, 0, 0, 0, 0, 0

=W k X X3 4 2 3 ( − − )0, 1, 1, 1, 0, 0, 0, 0, 0, 0

=W k X4 5 4 ( − )0, 1, 1, 1, 0, 0, 0, 0, 0, 0

=W k X X5 9 8 7 ( − )0, 1, 0, 0, 0, 1, 1, 0, 0, 0

=W k X6 6 4 ( − )0, 0, 1, 1, 1, 0, 0, 0, 0, 0

=W k X X X7 7 5 8 6 ( − − )0, 0, 0, 0, 1, 1, 1, 0, 0, 0

=W k X X8 8 8 7 ( − )0, 0, 0, 0, 1, 1, 1, 0, 0, 0
⎛
⎝⎜

⎞
⎠⎟⎡⎣ ⎤⎦= [ ] = −W k m E F k m X2 1A

X

E F tot
9 10 10

9
2 10

( )0, 0, 0, 0, 0, 0, 0, 1, 0, 0

= ( + )W k k X X10 11 12 5 8 ( − )0, 0, 0, 0, 0, 0, 0, 1, 0, 0

=W k11 13 ( )0, 0, 0, 0, 0, 0, 0, 0, 1, 0

= ( + )W k k X X12 14 15 1 9 ( − )0, 0, 0, 0, 0, 0, 0, 0, 1, 0

=W k13 16 ( )0, 0, 0, 0, 0, 0, 0, 0, 0, 1

=W k X14 17 10 ( − )0, 0, 0, 0, 0, 0, 0, 0, 0, 1
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Stephanou, 2014). Furthermore, (Bedessem and Stephanou
(2014)) takes cyclin D to phosphorylate RBP.

4. Last, Bedessem and Stephanou (2014) assume that HIF-1α
inhibits synthesis of cyclin D. Following experimental evidence
reported in Wen et al. (2010), they assume that the level of HIF-
1α depends exponentially of the oxygen concentration.

These basic hypotheses are primarily based on previous models
(Tyson and Novak, 2001; Novak and Tyson, 2004; Alarcón et al.,
2004). The resulting pathway is schematically represented in
Fig. 2.

3.3. Stochastic G1/S transition model

Based on the hypotheses summarised in Section 3.2, Bedessem
and Stephanou (2014) formulated a mean-field model which is
able to reproduce such behaviours as delay of the G1/S due lo lack
of oxygen as well as hypoxia-induced quiescence. Here, we present
a stochastic model (see Fig. 3 and Table 1), whose mean field limit
is the model formulated in Bedessem and Stephanou (2014). We
analyse this model using the stochastic quasi-steady state ap-
proximation we have developed in Alarcón (2014) and de la Cruz
et al. (2015).

The deterministic model formulated in Bedessem and Stepha-
nou (2014), which we have briefly described in Section 3.2, is
based on a series of reactions shown in Fig. 3, which include Mi-
chaelis–Menten kinetics for activation and inactivation of SCF
complexes. Our stochastic model of the G1/S transition builds
upon the stochastic (Markovian) description of the same set of
reactions.

Our model is predicated on the stochastic dynamics of the state
vector being described by a Markov jump process (Grimmett and
Stirzaker, 2001; Kampen, 2007), whereby the state of the system,
X, changes by an amount ri when the elementary reaction i occurs.
The waiting time between Markovian events is exponentially
distributed, the process is characterised by the associated transi-
tion rates, i.e. ( ( + Δ ) = + | ( ) = ) = ( )Δ + (Δ )P X a a X r X a X W X a O ai i

2 .
Using law of mass action (Gillespie, 1976) as our basic modelling
Fig. 3. Reactions for the stochastic version of the model proposed by Bedessem and
Stephanou (2014). The reactions correspond (from top to bottom) to: hypoxia-in-
hibited synthesis and degradation of CycD, enzyme-catalysed, CycE-mediated in-
activation of SCF, enzyme-catalysed activation of SCF, synthesis (regulated by
growth and active E2F) and degradation (up-regulated by active SCF) of CycE,
synthesis and degradation of Rb, and, last, synthesis and degradation of E2F. The
negative feedback (mutual inhibition) between SCF and CycE mediates bistable
behaviour in this model of the G1/S transition. Some of the transition rates asso-
ciated to the reactions shown in are not constant but depend on the number of
molecules of chemical species i present at a particular time, Xi. For the definition of
the quantities Xi, we refer the reader to Table 1.
framework, the transition rates of each elementary process are
given in Table 1. Once we have determined the transition rates
associated with each elementary reaction (or channel), the dy-
namics of the system is given by the Chemical Master Equation of
a (non-structured) Markov Process, ( )X a :

( )∑∂ ( )
∂

= ( − ) ( − ) − ( ) ( )
( )=

P X a
a

W X r P X r a W X P X a
,

, ,
3i

R

i i i i
1

where ( )P X a, is the probability of the state vector of the system to
be X at age, i.e. the time reckoned from the last division, a. The
transition rates, ( )W Xi , the vectors ri (whose components are the
variation of the number of each chemical species upon occurrence
of reaction i) are given in Table 1 and determine the dynamics of
the system.

Even for moderately complex models, Eq. (3) has no solution in
closed form. Therefore, in order to study the properties of the
system one must resort to numerical simulation (Monte Carlo) or
asymptotic approximations. In the next section, we present an
asymptotic analysis based on a recently developed form of sto-
chastic quasi-steady state approximation.

3.4. Semi-classical quasi-steady state analysis of the stochastic G1/S
transition model

In Alarcón (2014), de la Cruz et al. (2015), and Sanchez-Taltavull,
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we have developed a stochastic version of the classical QSS ap-
proximation, the so-called semi-classical QSS approximation
(SCQSSA) which, within the framework of the optimal path theory,
allows us to tackle systems which exhibit separation of time scales,
such as enzyme-catalysed reactions. Since these types of reaction
feature prominently in our stochastic model of the hypoxia-regu-
lated G1/S transition (see Fig. 3), we will use the SCQSSA to analyse
the effects of intrinsic noise on the stochastic model of the hypoxia-
regulated G1/S transition (as determined by the transition rates
shown in Table 1). This approximation allows us to study noise-
induced phenomena which are relevant for the timing of the G1/S
transition and, therefore, bear upon the population dynamics.

Following the SCQSSA methodology summarised in Appendix A,
we derive the following set of equations which describe the optimal
path associated with the stochastic G1/S transition model, Table 1:

κ κ κ= − − ( )
dq
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where a is the rescaled age variable =a k ESt7 (see Appendix B,
Table B1). The oxygen dependencies enter the model though
the [ ]H dependent parameter κ2 (see Tables B.3–B.5). The reader
is referred to Appendix A for a summary of the method and
Appendix B for a detailed derivation of Eqs. (4)–(12) which
hereafter is referred to as the semi-classical quasi-steady state
approximation (SCQSSA) of the stochastic cell-cycle model and
to Alarcón (2014) and de la Cruz et al. (2015) for a full account
of the SCQSSA methodology. Note that there are other ap-
proximations which do not require the QSSA assumption, such
as the one described in Kurtz (1978) and Ball et al. (2006).
Furthermore, since we will be interested in the random effects
associated to the enzyme-regulated dynamics of SCF,
encapsulated in the parameters p3 and p6, we have taken
( ) =p a 1i for all ≠i 3, 6. This corresponds to analysing the mar-

ginal distribution integrating out all the stochastic effects as-
sociated to all Xi with ≠i 3, 6.
3.5. Stochastic behaviour of the G1/S model

We now proceed to study the behaviour of the stochastic
model of the oxygen-regulated G1/S transition. We pay special
attention to those aspects in which we observe a departure of the
stochastic system from the mean-field behaviour. In particular, we
highlight the effects of modifying the relative abundance of SCF-
activating and inactivating enzymes, including the ability of in-
ducing oxygen-independent quiescence.

3.5.1. The relative abundance of the SCF activating and inactivating
enzymes controls the timing of the G1/S transition

In references Alarcón (2014) and de la Cruz et al. (2015), we
have shown that, under SCQSSA conditions, the momenta p3 and
p6, i.e. the momenta coordinates associated with the SCF-activat-
ing and inactivating enzymes, respectively, are determined by the
probability distribution of their initial (conserved) number. In
particular, if we assume that the initial number of SCF-activating
and inactivating enzyme molecules, E1 and E2, is distributed over a
population of cells following a Poisson distribution with parameter
E, we have shown that (de la Cruz et al., 2015):

= = = =p
e
E

p p
e
E

p, .e e3
1

6
2

1 2

With this in mind, we can analyse the effect of changing the
relative concentration of SCF-activating and inactivating enzymes
on the timing of the G1/S transition. Our results are shown in
Figs. 4 and 5. Fig. 4 illustrates that, for a fixed oxygen concentra-
tion, the G1/S transition is delayed by depriving the system of SCF-
activating enzyme: as the ratio =p p e e/ /3 6 1 2 of SCF activating and
deactivating enzyme increases, the G1/S transition takes longer to
occur. Then, Fig. 5 shows that the G1/S transition age ( )a c p p, ,G S1/ 3 6

decreases when p p/3 6 increases. Furthermore, increasing the
oxygen concentration c from c¼0.1 to c¼1 shifts the curve to-
wards lower transition ages ( )a c p p, ,G S1/ 3 6 . Note that this predic-
tion is beyond the reach of the mean-field limit Bedessem and
Stephanou (2014).

3.5.2. Induction of quiescence
In view of the results of Section 3.5.1, we have proceeded to a

more thorough analysis of the effect of varying the ratio p p/3 6,
which we recall that, within the SCQSSA, is equal to the ratio
between the abundance of SCF-activating and inactivating en-
zymes, on the behaviour of the SCQSSA system Eqs. (4)–(12). In
particular, we have investigated the bifurcation diagram of Eqs.
(4)–(12) with p p/3 6 as the control parameter. Our results are
shown in Fig. 6. We observe that, regardless of the value of m,
there exists a range of values of the control parameter for which
the saddle-node bifurcation, which gives rise to the G1/S tran-
sition, does not occur (i.e. only the G1-fixed point is stable). This
result implies that depletion of SCF-activating enzyme, or,
equivalently, over-expression of SCF-inactivating enzyme can
stop cell-cycle progression by locking cells into the so-called G0
state, i.e. quiescence.

These results are confirmed by direct simulation of the sto-
chastic cell-cycle model (Table 1) using Gillespie's stochastic si-
mulation algorithm (Gillespie, 1976), see Fig. 7.



Fig. 4. Series of plots illustrating how the ratio p p/6 3, which is associated with the
ratio of the number of SCF-inactivating and SCF-activating enzymes, modulates the
timing of the G1/S transition. Parameter values as given in Table B2. Initial condi-
tions are provided in Table B4.
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3.6. Scaling theory of the G1/S transition age

We finish our analysis of the intracellular dynamics by for-
mulating a scaling theory of one of the fundamental quantities
in our multi-scale model, namely, the G1/S transition age,

( )a c p p, ,G S1/ 6 3 , which determines the age-dependent birth rate
(see Eq. (2)). In this section, we will show that, in spite of the
complexity of the SCQSSA formulation of the oxygen-depen-
dent cell-cycle progression model (see Eqs. (4)–(12)), aG S1/ ex-
hibits remarkable regularities with respect to its dependence
on the oxygen concentration and the cell-cycle parameters p6
and p3. Such regularities hugely simplify our multi-scale
methodology.

We can see this regularity in Fig. 8. Fig. 8(a) shows aG S1/ as a

function of the ratio ( )−( ) 1c
c p p/cr 6 3

, for six different values of

< r
p

p cr
6

3
, where ≃r 1.004cr is the critical value. We see that all

graphs fall together on a straight line in log–log space, indicating a

power-law dependence of aG S1/ on ( )−( ) 1c
c p p/cr 6 3

. On the other

hand, Fig. 8(c) shows the dependence of the normalized function
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between the five values p
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3
for small c, with the disagreement in-

creasing with increasing c. Thus, a good scaling approximation for
aG S1/ is given by
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Here, c0, −a , and β are constants. According to our analysis of the
data presented in Fig. 8, these constants are given by ≃c 1.10 ,

≃ ·−a 8.25 103 and β ≃ 0.2. Likewise, ( )+a p p/6 3 is obtained by fitting
to the data presented in Fig. 8(d). The critical oxygen concentration
for quiescence ccr can be estimated analytically (with parameter
values taken from Table B2):
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where a1, a3, d1, d2, ⎡⎣ ⎤⎦e f2
t
, and H0 are parameters defined in

Appendix B, Table B2. The parameter a0 can be estimated as fol-
lows. Let A(c) be defined as:
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where [ ] = β ( − )H a H e c
3 0

11 . = ( )a A cbif0 , where cbif is the critical value
of the oxygen concentration for which the saddle node bifurcation
occurs, i.e. the critical value for which the number of real, positive
solutions of the equation:

⎡⎣ ⎤⎦( − )( + )( + ) = ( ) * ( + − ) ( )e x J x b b x A c e b m e f x J x1 2 1 16t1 4 2 3 2 1 3

goes from 3 to 1. The parameters bi, ei, and Ji are defined in
Appendix B, Table B2



Fig. 5. Plot showing how the G1/S transition age, ( )a c p p, ,G S1/ 3 6 , changes as the ratio p p/3 6, which is determined by the ratio of the (conserved) amounts of SCF activating and
inactivating enzymes (Alarcón, 2014, de la Cruz et al., 2015), varies. We show ( )a c p p, ,G S1/ 3 6 for c¼1 (blue circles) and c¼0.1 (red squares). Parameter values as given in Table
B2. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

p3/p6

0 0.5 1 1.5 2

q 5

0

0.2

0.4

0.6

0.8

1

Fig. 6. This figure shows the bifurcation diagram of the SCQSSA of the stochastic
cell-cycle model for different values of the parameter m. The ratio p p/3 6 is the
control parameter. The order parameter is the steady state value of the generalised
coordinate associated with active SCF, q5. Solid line corresponds to m¼10, dash
lines to m¼8 and dotted lines to m¼6. Parameter values as give in Table B3,

= ≠p i1, 3, 6i , pc¼1 and c¼1. Blue lines indicate stable steady state and red lines
indicate unstable steady state. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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4. Cellular scale: multi-scale Master Equation and path in-
tegral formulation

We start by summarising the formulation of the multi-scale
Master Equation (MSME) for the population dynamics model in
terms of an age-structured stochastic process (Guerrero and
Alarcón, 2015). First, we consider a simple age-dependent birth-
and-death process where ( )n a t, stands for the number of cells of
age a at time t. Both a and t are dimensionless according to the
scaling prescribed in Table B1, Appendix B. The time variable is

→t k ESt7 and a is defined after Eq. (12). The offspring of such cells
with age a¼0.

δ δ δ

δ

( + + ) = ( + ) ( + )

+ ( − ( ) ) ( ) ( )

P n a a t t W n a t tP n a t

W n a t t P n a t

, , 1, , 1, ,

1 , , , , , 17

where ν( ( ) ) = ( + ( )) ( )W n a a t b a n a, , (see Table 2), μ is the (age-in-
dependent) death rate, and the age-dependent birth rate, b(a), is
given by

⎪
⎪⎧⎨
⎩ τ

( ) =
( ) <

( ) ≥ ( )
−

b a
q a

q a

0 if CycE

if CycE 18

T

p T

8

1
8

where ( )q a8 is the generalised coordinate associated with the
concentration of CycE which must exceed a threshold value, CycET
for the cell-cycle to progress beyond the G1/S transition. Before
this transition occurs, cells are not allowed to divide.

By re-arranging Eq. (17) and taking the limit δ δ= →t a 0, we
obtain:

∂ ( )
∂

+ ∂ ( )
∂

= ( + ) ( + )

− ( ) ( ( ) ) ( )

P n a t
t

P n a t
a

W n a t P n a t

W n a t P n a a t

, , , ,
1, , 1, ,

, , , , . 19

where ( ) = ( ) + ( )W n a t W n a t W n a t, , , , , ,1 2 (see Table 2). Eqs. (19)
needs to be supplemented with the appropriate boundary condi-
tion at a¼0, ( = )P n a t, 0,0 . We proceed by first considering the
number of births that occur within the age group =a aj during a
time interval of length δt . Since we are assuming that our sto-
chastic model is a Markov process where, within each age group,
birth and death occur independently and with exponentially dis-
tributed waiting times, the number of births, ( )B aj , is distributed
according to a Poisson distribution:

δ
δ

( ( ) = | ) =
( ( ) ( ) )

!
δ− ( ) ( )P B a b t e

b a n a t t

b

,
.j j

b a n a t t j j
b

,j j
j

The total number of births delivered by the whole population
during δt , B, is = ∑ ( )∈ ( )B B ai I t j . Its probability density is therefore

given by:



Fig. 7. Simulation results for the stochastic model of the oxygen-regulated G1/S transition defined by the transition rates given in Table 1. We have plotted the probability
( )P X T,5 , where T¼100, with different values of τ τ( = ) ( = )X X0 / 03 6 . 1000 realisations and m¼5.0.
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Since Eq. (20) is a convolution, using the well-known property
of the probability generating function, the generating function
associated with P(B), ( )G p t,B is given by Grimmett and Stirzaker
(2001):
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j I t

j

where ( )G p t,j is the generating function associated with ( ( ))P B aj j :

( ) = δ( ) ( ) ( − )G p t e, .j
b a n a t p 1j j

Therefore, by taking δ δ= →t a 0
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Eq. (21) determines ( = )P n a t, 0,0 since ( = )=P n a t, 0,0
( = )P B n t/2,0 and
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4.1. Numerical method

Before proceeding further, we briefly describe the numerical
methodology that we use to simulate the stochastic multi-scale
model. In essence, the numerical method is an extension of the
hybrid stochastic simulation algorithm used in Guerrero et al.
(2015) to accommodate the age structure of the cell populations
we deal with here (Guerrero and Alarcón, 2015). For simplicity, we
restrict our description of the algorithm to a homogeneous cell
population. Its generalisation to heterogeneous populations com-
posed of a variety of cellular types is straightforward.

Similarly to the procedure described in Guerrero and Alarcón
(2015), we start by defining the population vector

( ) = { ( ) ∈ ( )}t n t j t,aj
, where ( )t is the set of indexes which la-

bel all those age groups which, at time, t, are represented within
the population, i.e. all those age groups such that ( = ) >n a a t, 0j .
Having defined ( )t , we summarise the numerical algorithm:

1. Set initial conditions: ( = ) =c t c0 0, ( = )n a t, 0
= ( ) ⇒ ( ) = { ∈ ( = )}f a t f j t, 0aj

, ∫( = ) = ( )
∞

N t f a da0
0

. We also
set the value of the ratio of the SCF-regulating enzymes p p/6 3.

2. At some later time, t, the system is characterised by the
quantities c(t), ( )t , ( )t , and N(t)

3. Generate two random numbers, z1 and z2, uniformly dis-
tributed in the interval ( )0, 1

4. Use z1 to calculate the exponentially distributed waiting

time to the next event: τ = ( ) log
a t z

1 1

0 1
where

( )( ) = ∑ ( ) + ( )∈ ( )a t W n W nj t a a0 1 2j j
. The rates W1 and W2 are gi-

ven in Table 2
5. Update the oxygen concentration at τ( + )c t by solving the

associated ODE (1) between τ( + )t t, taking c(t) as initial
condition. We use a 4 stage Runge–Kutta solver

6. Update the age-dependent birth rate for each ∈j ,

i.e. ( )τ τ( ) = − ( ( + ) )−b a H a a c t p p, /p G s
1

1/ 6 3 . The quantity

τ( ( + ) )a c t p p, /G s1/ 6 3 is given by Eq. (13)
7. Use z2 to determine which event occurs (i.e. birth or death

within the jth sub-population) at time τ+t : event l occurs
with probability

∑ ∑≤ ( ) <
= = +

z a t ,
k

l

k
k l

J

k
1

2 0
1



Fig. 8. Series of plots showing the scaling analysis of the G1/S transition age. Plot (a) shows that below the critical value rcr, which corresponds to the value of the ratio p p/6 3,
above which there is no transition to quiescence (i.e. if >p p r/ cr6 3 the G1/S transition age is finite when c¼0), ( )a c p p, ,G S1/ 6 3 follows an algebraic decay with a universal
p p/6 3-independent exponent provided that the oxygen, c, is rescaled by the critical oxygen concentration, ( )c p p/cr 6 3 . Plot (c) shows that if, by contrast,

>p p r/ cr6 3 ( )a c p p, ,G S1/ 6 3 decays exponentially with the oxygen concentration with a characteristic concentration c0 which, provided p p/6 3 is larger enough than r ,cr is
p p/6 3-independent. Plot (b) shows how ccr varies as p p/6 3 is changed. Similarly, plot (d) shows how +a varies p p/6 3 changes. Parameter values as given in Table B2.

Table 2
This table summarises the elementary events involved in the age-dependent birth-
and-death process. Cells of age a produce offspring at a rate proportional to the age
dependent birth rate, ( )b a , Eq. (18). We are assuming that upon cell division both
cells are reset to =a 0. Therefore, upon proliferation, one cell is removed from the
population of age a and two cells are added to the population of age =a 0. For
simplicity, death is assumed to be age-independent and to occur at a rate
proportional to the death rate, μ.

Event Reaction Transition rate, ( )W n a t, ,k rk

Birth ( ) → ( ) −
∅ → ( = ) =
n a n a

n a
1

0 2
( ) = ( ) ( )W n a t b a n a, ,1 = −r 11

Death ( ) → ( ) −n a n a 1 μ( ) = ( )W n a t n a, ,2 = −r 12
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where = ( ( ))J tcard and = ( )( − )+ W nj a2 1 1 1 j
and

= ( )( − )+ W nj a2 1 2 2 j
8. If the randomly chosen event is = ( − ) +l j2 1 1 (i.e. cell pro-

liferation within age group j), then τ( + ) = ( ) −τ+n t n t 1a aj j
,

τ( + ) = ( )τ+n t n ta ak k
for all ≠k j, and τ( + ) = ( ) += =n t n t 2a a0 0

9. If the randomly chosen event is = ( − ) +l j2 1 2 (i.e. cell death
within age group j), then τ( + ) = ( ) −τ+n t n t 1a aj j

,
τ( + ) = ( )τ+n t n ta ak k

for all ≠k j
10. Finally, we update the set τ( + )t , i.e. the set of age groups for

which τ( + ) >τ+n t 0aj
11. Steps 3 to 10 are repeated until some stopping condition (e.g.

≥t T ) is satisfied
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Note that Step 5 does not involve the use a stochastic
method of integration of the ODE which rules the time evolu-
tion of the oxygen concentration, Eq. (1). This is due to the fact
that, within the time interval τ( + ]t t, , the population stays
constant, so that Eq. (1) can be solved by means of a non-sto-
chastic solver.

4.2. Steady-state of a homogeneous population: mean-field analysis

Before proceeding further, in order to check the numerical al-
gorithm proposed in Section 4.1, we analyse how it compares with
results regarding the steady-state of the mean-field limit of a
homogeneous (i.e. composed by one cellular type only) population
Hoppensteadt (1975). The mean-field equations associated with
the stochastic multi-scale model are:

ν

= −

∂
∂

+ ∂
∂

= − ( + ( )) ( )

dc
dt

S kNc

Q
t

Q
a

b a Q

,

23

with boundary condition:

∫( = ) = ( ) ( )Q a t b a Q a t da0, 2 , .

and birth rate given by:

( )τ( ) = − ( )−b a H a a c p p, /p G S
1

1/ 6 3

with ( )a c p p, /G S1/ 6 3 is given by Eq. (13)
According to Hoppensteadt (1975), in order to ascertain whe-

ther a steady-state solution, i.e. whether the system settles onto an
age distribution where the proportion of cells of each age does not
change, we seek for a separable solution: ( ) = ( ) ( )Q a t A a T t, . De-
fining μ ν( ) = + ( )a b a , we obtain:

⎛
⎝⎜

⎞
⎠⎟μ σ= − + ( ) =

( )T
dT
dt A

dA
da

A a
1 1

24

with σ= cnt. to be determined. ( )Q a t, is therefore given by:

⎜ ⎟⎛
⎝

⎞
⎠∫σ μ( ) = ( = ) ( − ) − ( )

( )
Q a t A a t a y dy, 0 exp
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The value of the parameter s is obtained by means of the char-
acteristic equation obtained by introducing Eq. (25) with a¼0 into
the boundary condition:

⎜ ⎟⎛
⎝

⎞
⎠∫ ∫σ μ= ( ) − − ( )

( )
∞

b a a y dy da1 2 exp
26
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0 0

After some algebra, the characteristic equation (26) reads:

τ

σ ν τ+ +
=

( )

σ ν− −( + )

−

e
2 1
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From Eq. (27) we obtain the condition for the system to be in
equilibrium, i.e. σ = 0. Substituting σ = 0 in Eq. (26):

τ

ν τ
≡

+
=

( )

ν− −

−R
e

2 1
28
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p
0

1

1

G S1/

where R0 is the average number of offspring per cell at equili-
brium: if >R 10 the system grows exponentially, <R 10 the system
dwindles, and if =R 10 the population remains constant. The
equilibrium condition =R 10 allows us to find the value of aG S1/ for
which such equilibrium exists:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ν

τ ν τ
( ) = −

( + )

( )
∞

−

a c p p, /
1

log
2 29

G S
p p

1/ 6 3

1

For this quantity to be positive τ ν < 1p must hold. This condition
states that for a steady state to be reached, the average waiting
time to division after the G1/S transition, τp, must be smaller than
the average life span of the cell, ν�1. Eq. (29) determines the
stationary value of the oxygen concentration, ∞c .

The long-time dynamics of Eq. (23) can therefore be sum-
marised as follows: given the values of τp, ν, and the cell-cycle
parameters (see Table B2 in Appendix B), the population evolves
and consumes oxygen until the oxygen concentration reaches a
steady value ∞c . At this point, the population of resident cells
has settled onto a steady state where its age structure does not
change. The total number of cells is also constant and given by (see
Eq. (23)):

=
( )∞

∞
N

S
kc 30

In order to verify the age-structured SSA proposed in Section 4.1,
we compare its results with the mean-field predictions, which
should be in agreement with the stochastic behaviour of the system
for large values of the carrying capacity, ∞N . Results are shown in
Fig. 9. We observe that, as predicted by our steady-state analysis,
the stochastic simulations show how the resident population goes
through an initial (oxygen-rich) phase of exponential growth. As the
population grows, oxygen is depleted and the resident population
eventually saturates onto a number of cells which fluctuates around
the mean-field prediction of the carrying capacity (Eq. (30)).

Further verification of the validity of our numerical metho-
dology is provided in Fig. 10. Our mean-field theory predicts that,
everything else remaining unchanged, the average steady-state
population should increase linearly with the rate of oxygen de-
livery, S (see Eq. 30). By contrast, the average equilibrium oxygen
concentration does not depend on S, as shown in Eq. (29), and,
consequently, it should stay constant upon increasing the rate of
oxygen delivery. Fig. 10 shows that our simulations agree with
these mean-field predictions.
5. Quasi-neutral competition within heterogeneous
populations

A problem of fundamental importance in several biological and
biomedical contexts is that of a population composed by a het-
erogeneous mixture of coexisting cellular types. A particularly
relevant example of such a situation is that of cancer, where het-
erogeneity within the cancer cell population is assumed to be a
major factor in the evolutionary dynamics of cancer as well as the
emergence of drug resistance (Gatenby and Vincent, 2003; Merlo
et al., 2006; Gillies et al., 2012; Greaves and Maley, 2012). Within
this context, we are interested in (i) exploring the stability of a co-
existing heterogeneous population and (ii) the effects such het-
erogeneity has on the long-term effects a cell-cycle dependent
therapy.

The origins of heterogeneity of cancer cell populations is nor-
mally attributed to genetic variability arising from chromosomal
instability and increased mutation rate (Merlo et al., 2006). Our
discussion of the model of the G1/S transition (see Section 3)
suggests a different source of heterogeneity associated with sto-
chastic effects due to intrinsic fluctuations. We have shown, by
means of both the SCQSSA analysis and stochastic simulations,
that the relative abundance of SCF-regulating enzymes, which is
quantified in our analysis by the ratio p p/6 3 (see Sections 3.5.1, 3.6
and Appendix A). In Section 3.5.1 we have shown that the timing
of the G1/S transition, and, consequently, the overall birth rate is
strongly affected by changes in this quantity. In view, of this we
associate heterogeneity to a distribution of the abundance of such



Fig. 9. Plots showing simulation results of the stochastic multi-scale dynamics of a cell population. These plots show how, in agreement with our steady-state analysis, the
population evolves until it reaches a steady-state where the population of resident cells fluctuates around its associated carrying capacity Eq. (30). Colour code: blue lines
show the total resident cell population at time t, N(t) (panels (a) and (b)). Green lines (panels (c) and (d)) show the associated oxygen concentration, c(t). The results shown in
this figure correspond to a single realisation of the process. Parameter values: ν = · −2.4 10 4 , = · −S 1.57 10 2, = · −k 1.57 10 4 , τ = ·2.4 10p

1 in panels (a) and (c), and τ = ·2.4 10p
3 in

panels (b) and (d). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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enzymes, whereby we associate cell phenotypes with different
values of the ratio p p/6 3. We further assume that this heterogeneity
is hereditary, i.e. daughter cells inherit the value of the ratio p p/6 3
from their mother.
5.1. Competition between two sub-populations

To proceed further, we consider the case of the birth-and-death
dynamics of a heterogeneous population composed by two sub-
populations, ( )n a t,1 and ( )n a t,2 , competing by a common resource,
c(t), which regulates the rate of progression of the cell-cycle of
each cell type. The stochastic dynamics of the whole population is
determined by the associated multi-scale master equation:
∂ ( )
∂

+
∂ ( )

∂
= ( + )

× ( + )

+ ( + )

× ( + )

− ( ( )

+ ( ))

× ( ) ( )
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1, , ,
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1 2 1 2
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2 1 2
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where ν( ) = ( + ( )) ( )W n n a t b a n a t, , , ,1 1 2 1 1 1 and ( )W n n a t, , ,2 1 2

ν=( + ( )) ( )b a n a t,2 2 1 , ν1 and ( )b a1 are the (age-independent) death
rate and the birth rate of the resident population, and ν2 and ( )b a2
are the (age-independent) death rate and the birth rate of the



Fig. 10. Plots showing simulation results of the stochastic multi-scale dynamics of a cell population. These plots show how, in agreement with our steady-state analysis, the
average population at equilibrium increases linearly as the rate of oxygen delivery, S, is changed (plot (a)). Also, in accordance with our mean-field theory, the average,
steady-state oxygen concentration remains unchanged as S increases. Parameter values: ν = · −2.4 10 4 , = · −k 1.57 10 4 , τ = ·2.4 10p

1 in panels (a) and (c), and τ = ·2.4 10p
3 in

panels (b) and (d). Average has been performed over 100 realisations.
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invader. The quantities ( )b a1 and ( )b a2 are determined by the
(oxygen-dependent) rate of cell-cycle progression of each sub-
population:

( )τ( ) = − ( ) ( )
−b a H a a c p p, / , 32p G S1

1
1/ 6 31 1 1

( )τ( ) = − ( ) ( )
−b a H a a c p p, / 33p G S2

1
1/ 6 32 2 2

( )a c p p, /G S1/ 6 3 is given by Eq. (13). The concentration of resource
(oxygen), c(t), is determined by the following ODE:

= − ( + ) ( )
dc
dt

S k N k N c 341 1 2 2

where ∫( ) = ( )
∞

N t n a t da,i i0
for i¼1,2. The associated initial condi-

tions are given by:

δ δ( = ) = ( ( = ) − ( )) ( ( = ) − ( ))P n n a t n a t n a n a t n a, , , 0 , 0 , 01 2 1 0 2 01 2

In the remaining part of this section we will consider two
cellular populations, resident and invader. Each of these pheno-
types are determined in terms of the values four parameters. The
resident cells are characterised by two population-dynamics
parameters, namely, the average time to division after the G1/S
transition, τp1

, and the death rate, ν1. We consider two further
parameters, p31

and p61
, associated with the cell-cycle progression

dynamics of the resident cells (see Section 3.4). Similarly, the in-
vader is characterised by the corresponding parameters: τp2

, ν2, p32
and p62

.

5.2. Mean-field coexistence versus quasi-neutral stochastic
competition

We proceed to analyse the conditions under which two po-
pulations are capable of long-term coexistence. In particular, we
analyse a scenario in which the mean-field description predicts
long -term coexistence between within a heterogeneous popula-
tion leads to mutual exclusion of all strands but one through so-
called quasi-neutral stochastic competition (Lin et al., 2012; Kogan
et al., 2014; Guerrero et al., 2015).
The starting point for our study is the mean-field analysis

carried out in Section 4.2. According to these results, (mean-field)
populations evolve until a concentration of oxygen, ∞c , is reached
so that the associated replication number ( ) =∞R c 10i

, i¼1,2. The
replication number of either population is given by:

τ

ν τ

τ

ν τ
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Therefore, our theory predicts that, provided that there exists ∞c
such that:
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is satisfied, long-term coexistence ensues, since the whole system
(oxygen, resident and invader) is able to evolve to a state where
both populations are in equilibrium (in the sense that ( ) =∞R c 10i
for both populations) with the same concentration of oxygen.
Furthermore, the number of resident cells, N1, and the number of
invaders, N2, satisfy:

+ =
( )∞

k N k N
S

c 361 1 2 2

Thus, the mean-field theory predicts that there exist a continuous
of fixed points. The eventual convergence on to a particular point
along the line of fixed points Eq. (36) depends on the initial con-
ditions. Eq. (36) can be further simplified by assuming = =k k k1 2 ,
in which case + =N N K1 2 , where ≡ ( )∞K S kc/ is the carrying
capacity.

This mean-field scenario is the basis for the study of the long-
term stochastic dynamics of two populations which satisfy Eq.
(35), which are equivalent to = =R R 10 01 2

. The reproduction
number is the average number of offspring per cell. We know from
elementary considerations (Grimmett and Stirzaker, 2001) that the
value of such quantity allows us to classify birth-death/branching
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processes. If >R 10 the population grows, on average, ex-
ponentially and has a finite probability of eventual survival. In this
case, the process is referred to as super-critical. If <R 10 the po-
pulation undergoes exponential decline (on average) and the ex-
tinction probability is equal to 1. The last case, in which =R 10 , the
so-called critical case, the population, on average, stays constant.
However, due to effects of noise, extinction occurs with probability
1, with the probability of survival up to time t asymptotically tends
to ( ) ∼ −P t tS

1 (Kimmel and Axelrod, 2002). In our case, both the
resident and the invader undergo a critical stochastic dynamics,
where, once the steady state has established itself, the population
evolves very close to the mean-field line of fixed points

+ =N N K1 2 until fixation of one of the species (and, consequently,
extinction of the other) occurs.

In order to numerically check this scenario, we could proceed
to estimate the survival probability at time t, PS(t). However, since
this quantity exhibits a fat-tail behaviour, this would be compu-
tationally costly. A more efficient method is to resort to the
asymptotic of the extinction time with system size, which in this
case can be identified with the carrying capacity, K (Hidalgo et al.,
2015). Typically, a quasi-neutral competition is associated with an
algebraic dependence of the average extinction time of either
population, TE, on the system size, in this case determined by the
carrying capacity, K (Doering et al., 2005; Lin et al., 2012; Kogan
et al., 2014). In Fig. 11 we plot simulation results for the compe-
tition between two identical populations. In particular, we study
how the average extinction time of either population, TE, varies as
the carrying capacity is changed. We observe that this quantity
exhibits a linear dependence on the carrying capacity:

∼ ( )T K , 37E

Our scenario produces the same qualitative results as Lin et al.
(2012) and Kogan et al. (2014) who studied the average extinction
time of birth-and-death processes engaged in quasi-neutral
Fig. 11. Simulation results corresponding to the competition between the
sub-populations of a heterogeneous populations. We show how the average ex-
tinction time of either population, TE, varies as the carrying capacity, K, changes. We
observe that the dependence is linear. For simplicity, the two sub-populations are
assumed to be identical (i.e. with the same characteristic parameter values for both
the intracellular dynamics (cell-cycle) and the population-level dynamics (birth

and death rates)). The carrying capacity =
∞

K S
k c1

by varying the death rates of both

populations. The values of the death rates are

ν = · · · · ·− − − − −1.0 10 , 0.83 10 , 0.73 10 , 0.625 10 , 0.417 104 4 4 4 4, which correspond to

= · · · · ·K 0.9969 10 , 1.9301 10 , 2.6956 10 , 3.4367 10 , 4.2661 103 3 3 3 3, respectively.
Averages are done over 500 realisations of the hybrid stochastic model.
competition. In both papers, the average extinction time was re-
ported to depend linearly on system size.
6. Study of the effects of cell-cycle-dependent therapy

In Section 5 we have analysed how the dependence of the cell-
cycle progression on the concentration of SCF-activating and SCF-
inactivating enzymes allows us to engineer heterogeneous popu-
lations where invasion and coexistence may occur. In this section,
we further explore the ability of inducing quiescence by varying
the ratio between SCF-activating and SCF-inactivating enzymes,
this time in connection with the ability of such populations to
withstand the effects of cell-cycle-dependent therapy (Powathil
et al., 2012; Gabriel et al., 2012; Billy and Clairambault, 2013; Po-
wathil et al., 2013).

In particular, we consider a scenario where two cellular po-
pulations coexist. Initially, one of these populations consists of a
set of cells actively progressing through the cell-cycle which have
reached a steady state characterised by the mean-field equilibrium
Eqs. (28)–(30). The second population consists of quiescent cells
whose cell-cycle is locked into the G0 phase and therefore do not
proliferate. These cells are further assumed to undergo apoptosis
at a very slow rate. More specifically, the ratio SCF-activating and
SCF-inactivating enzymes in the quiescent cell population is such
that, for the steady-state level of oxygen for the active cells (see Eq.
(29)), cells are locked into the G1-fixed point (see Fig. 6).

In this section we show that the presence of a quiescent po-
pulation within a heterogeneous population may lead to resistance
to cell-cycle-dependent therapy. In particular, we show that,
whereas such therapies effectively reduce or even eradicate the
active cell population, the feedback between the therapy-induced
decrease in cell numbers and the associated increase in oxygen
availability can yield to the quiescent population to enter the ac-
tive state and thus regrow the population. In this sense, we claim
that the quiescent population has a stem-cell-like effect whereby,
under the action of therapeutic agent, can repopulate the system
Alarcón and Jensen, 2010.

6.1. Mean-field analysis

We start our mean field analysis by considering a hetero-
geneous population composed by cells of two types: type 1 and
type 2 cells. Type 1 consists of cells with values of ≡p p3 31

and
≡p p6 61

(see Section 3.4) such that cells are actively progressing
through the cell-cycle. Type 2 cells are characterised by values of

≡p p3 32
and ≡p p6 62

so that they are locked in G0 (i.e. not cycling).
The associated mean-field dynamics are given by:

= − ( + ) ( )
dc
dt

S k N N c, 381 1 2
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+
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= − ( + ( )) ( )
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+
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Q
a
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with boundary conditions:

∫( )= = ( ) ( ) ( = ) =Q a t b a Q a t da Q a t0, 2 , , 0, 0.1 1 1 2

( )N t1 and ( )N t2 are the total cell population of type 1 and type
2 cells, respectively:
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∫ ∫( ) = ( ) ( ) = ( )N t Q a t da N t Q a t da, , , .1 1 2 2

For simplicity, we assume that both populations consume oxygen
at the same rate, k1. We further assume that ν ν⪡2 1, i.e. type 2
(quiescent) cells die at a much slower rate than type 1 (active)
cells. In Section 4.2, we have already analysed under which con-
ditions Eqs. (38)–(40) reach a steady state:

τ
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+
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where R01
is the average number of offspring per cell of type 1 at

equilibrium. The associated equilibrium value of aG S1/ 1
is then gi-

ven by:
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which determines the steady-state value of the oxygen con-
centration ∞c . At this point, the population of resident cells has
settled onto a steady state where its age structure does not change.
The total number of cells is also approximately constant and given
by:

+ ≃
( )∞

∞
N N

S
k c 431 2

1

where we have used the fact that ν ν⪡2 1. The cell-cycle parameters
p32

and p62
have been chosen so that, for = ∞c c ,

( ) → ∞∞a c p p, /G S1/ 6 32 2 2
, i.e. type 2 cells are initially locked into G0

(see Fig. 6).
Once the population reaches this therapy-free quasi-equili-

brium state, we assume that a therapy which only acts on pro-
liferating cells is administered. Examples of such therapies abound
in cancer treatment and can take the form of cell-cycle specific
drugs or radiotherapy (Powathil et al., 2012; Gabriel et al., 2012;
Billy and Clairambault, 2013; Powathil et al., 2013). We char-
acterise the efficiency of the therapy by the so-called survival
fraction, FS, i.e. the percentage of cells which survive the pre-
scribed dose. For example, in radiotherapy FS is usually taken to be
given by the linear quadratic model: ( )α β= − +F D Dlog S

2 where

D stands for the radiation dosage expressed in Grays and α and β
are cell type-specific parameters. In the present context, we do not
specify any particular form of therapy and we simply take

∈ [ )F 0, 1S . Initially, the therapy only affects type 1 cells (since type
2 are not proliferating). Therapy affects the birth and death rates of
the type 1 population, which now read:

τ( ) = ( − ( )) = ( ) ( )
−b a F H a a c p p F b a, , 44T p S G S s

1
1/ 3 6 11 1 1 1 1

ν ν( ) = + ( − ) ( ) ( )a F b a1 45T s1 11

The resulting mean-field equation is given by:
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∫( = ) = ( ) ( ) ( )Q a t F b a Q a t da0, 2 , 47S1 1 1

The action of therapeutic agent on the active population initially
induces a decline of the population, which, in turn, involves an
increase in the available oxygen concentration. The latter has the
effect of accelerating the rate of progression of type 1 cells through
the cell cycle. In the absence of the quiescent population, even-
tually both effects would find a balance and the population of
active cells would settle onto a new equilibrium characterised by:
τ

ν τ
≡

+
=

( )

ν− −

−R F
e

2 1
48

S
p

a

p
0

1

1
1T

G ST

1

1
1 1/ 1

1

or, equivalently:
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where
∞

cT 1
is the equilibrium oxygen concentration for

the type 2 population with therapy. Note that
( ) < ( )∞∞

a c p p a c p p, , , /G S T G S1/ 3 6 1/ 6 31 1 1 1 1 1 1
and therefore > ∞∞

c cT 1
since

aG S1/ is a decreasing function of the oxygen concentration. Re-
oxygenation during cell-cycle dependent therapy, in particular,
radiotherapy, has been predicted by other models (Kempf et al.,
2015).

Consider now the effect of this process on the type 2 cell po-
pulation which is initially quiescent. We know that hypoxia-in-
duced arrest of the cell cycle is reversible (Alarcón et al., 2004;
Bedessem and Stephanou, 2014), i.e. upon increase of the con-
centration of oxygen quiescent cells may re-enter the cell cycle
and become proliferating. Re-entry of quiescent cells into the cell
cycle is predicated upon a sufficient increase in the oxygen con-
traction: > ( )c c p p,H 3 62 2 2

, where the critical oxygen concentration
for type 2 cells, cH2

, depends on the momenta p32
and p62

or,
equivalently, on the concentration of SCF-activating and SCF-in-
activating enzymes. Taking this property into account, one can
devise a scenario in which > ( ) > ∞∞

c c p p c,T H 3 61 2 2 2
, i.e the initial

oxygen concentration is such that type 2 cells are quiescent, but, as
the therapy is administered and proceeds to act upon the type
1 cells, the oxygen concentration increases until it reaches its
critical re- entry concentration. At this point, type 2 cells abandon
quiescence and become active and competition between type
1 and type 2 cells ensues.

In order to assess the long-time behaviour of the system, we first
study the equilibrium of the type 2 cell population upon re-entry
into cell-cycle progression. Its mean-field dynamics is given by:
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where τ( ) = ( − ( ))−b a H a a c p p, ,p G S2
1

1/ 3 62 2 2 2
and c is determined by Eq.

(38). Recall that, upon re-entering cell-cycle progression, type
2 cells are no longer immune to the therapy. Although in general
the survival fraction is type-dependent, for simplicity we assume
that FS has the same value for both cell types. The equilibrium
condition is once again given in terms of the associated reproduc-
tion number, i.e. =R 10T2

which yields:
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Since ν ν⪡2 1, we have that ( )⪢ ( )
∞ ∞

a c p p a c p p, , , ,G S T G S T1/ 3 6 1/ 3 62 2 2 2 1 1 1 1

(see Eqs. (49) and (52)). The latter inequality implies that the
equilibrium oxygen concentration for type 2 cell,

∞
cT 2

, is such that

<
∞ ∞

c cT T2 1
. It is easy to argue that, in these conditions, the type

2 population out-competes the type 1 cells: for < <
∞ ∞

c c cT T2 1
, the

growth rate of type 1 cells is positive whereas the growth rate of
the type 2 cell population is negative (see Eq. (27)). This implies
that, upon application of therapy and provided that

> ( ) > ∞∞
c c p p c,T H 3 61 2 2 2

is satisfied, the type 1 population declines

and it is replaced by the type 2 population.
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6.2. Critical dosage

In order to gain some degree of control over the behaviour
described in the previous section, it would be useful to provide an
estimate of the critical dosage above which therapy-induced re-
oxygenation is capable of activating quiescent cells. We char-
acterise the therapy dose by means of the critical survival fraction,
FSC

. Recall that the characteristic equation for the oxygen-depen-
dent growth rate, σ ( )c1 , of the population of active cells is given by:
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In order to activate the quiescent population the oxygen con-
centration must raise above the critical value ( )c p p,H 3 62 2 2

. For the
oxygen concentration to grow above this threshold σ ( ) <c 0H1 2

so
that the active cell population continues to decline thus allowing
the oxygen concentration to keep on raising. Therefore the critical
value FSC

is such that σ ( ) =c 0H1 2
, i.e.
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If <F FS SC
, the decrease in the active cell population is enough to

provide enough oxygen for the quiescent population to become
active.

This analysis implies that in heterogeneous populations which
include quiescent sub-populations, the effect of cell-cycle-depen-
dent therapy does not eradicate the population. Rather the fol-
lowing two scenarios are possible. If ( ) >

∞
c p p c,H T3 62 2 2 1

, type 2 cells

do not become activated and become eventually extinct, and the
type 1 cells settle onto the steady state prescribed by Eq. (49). If, by
contrast, > ( ) > ∞∞

c c p p c,T H 3 61 2 2 2
is satisfied, type 2 cells out-com-

pete type 1 cells and the system, composed entirely of type 2 cells,
settles onto the steady state prescribed by Eq. (52). In this sense,
quiescent cells have stem-cell-like behaviour, in the sense that they
can repopulate the system. In this second scenario, therapy is not
completely without virtue since therapy drives the system to be
taken over by a slower-cycling (less aggressive) phenotype.

6.3. Simulation results

In order to check the accuracy of the mean-field analysis car-
ried out in Section 6.2 regarding the critical survival fraction for
rescue from quiescence. We start by showing (Fig. 12) two typical
realisations of the stochastic population dynamics which illustrate
the rescue mechanism. In these simulations, we first let the active
population settle on to its steady state. We then apply a sustained
therapy with constant survival fraction. A more aggressive treat-
ment (FS¼0.6 in Fig. 12) greatly affects the active population: the
amount of active cells killed by the therapy induces re-oxygena-
tion of the population above the critical oxygen level for activation
of the quiescent population whereupon the quiescent cells become
proliferating. In Figs. 12(a) and (c), we show that upon activation of
the quiescent population, a competition between both populations
ensues, which eventually leads to extinction of the active popu-
lation. A less aggressive therapy (FS¼0.7 in Fig. 12) also induces
death of the active population and re-oxygenation. However, in
this case, the latter is not intense enough to induce activation of
the quiescent cells (see Fig. 12(d)) and therefore the active cells
will repopulate the system as the quiescent population stays on its
course to eventual extinction, as shown in Fig. 12(b).

Fig. 13 shows simulation results for the variation of probability
of fixation of the quiescent population as the survival fraction of
the therapy, FS, changes. Our simulation results show qualitative
agreement with our mean-field theory (see Sections 6.1 and 6.2):
as the survival fraction increases (i.e. the therapy becomes less
efficient), the probability of fixation abruptly decreases from al-
most certainty of fixation to almost certainty of extinction. We
observe that our mean-field theoretical predicts a critical value for
FS slightly smaller than the observed when fluctuations due to fi-
nite size effects are present. However, we observe that, as the
carrying capacity of the system is increased, the critical value of FS
converges to the mean-field value.
7. Discussion

In this paper, we have presented and studied a stochastic multi-
scale model of a heterogeneous, resource-limited cell population.
This model accounts for a stochastic intracellular dynamics (in this
particular case, a model of the oxygen-regulated G1/S transition)
and an age-structured birth-and-death process for the cell popu-
lation dynamics. Both compartments are coupled by (i) a model for
the time variation of resource (oxygen) abundance which reg-
ulates the rate of cell-cycle progression, and (ii) a model of the
age-dependent birth rate which carries out the coupling between
the intracellular and the cellular compartments (see Fig. 1 for a
schematic representation of the model and Section 2 for a sum-
mary of the model formulation).

Our analysis of the stochastic dynamics of the oxygen-regu-
lated G1/S transition, which is a generalisation of the mean-field
model presented in Bedessem and Stephanou (2014), has revealed
a number of previously unreported properties related to the pre-
sence of fluctuations. In particular, the optimal path theory and the
quasi-steady state approximation allow us to explore the effect of
the SCF-regulating enzymes on the timing of the G1/S transition.
The relative abundance of SCF-activating and inhibiting enzymes
regulates the rate at which cells reach the G1/S transition: excess
of SCF-activating enzyme can delay the transition and even ren-
dering the cell quiescent regardless of oxygen concentration be-
yond the predictions of the mean-field model (see Sections 3.5.1
and 3.5.2). Furthermore, we have shown that the effects on timing
of the G1/S transition of the relative abundance of SCF-activating
enzyme give rise to a scaling form dependence of the age to the
transition, aG S1/ , whereby this quantity is a function of

( )a c p p, /G S1/ 6 3 which takes the form of Eq. (13) (see Section 3.6).
Taken together, these results imply that stochasticity in the in-
tracellular dynamics naturally generates variability within the
population: an otherwise homogeneous population presents a
distribution of birth rates induced by variability in the relative
abundance of SCF-activating enzyme within the population of
cells.

This variation in the duration of the cell-cycle allows us to
analyse the dynamics of a stochastic heterogeneous population
under resource limitation conditions. To this end, we consider
populations formed by sub-populations of cells characterised by
differing relative abundance of SCF-activating and inhibiting en-
zymes. We further assume that this heterogeneity is heritable (i.e.
daughter cells inherited the ratio of SCF-regulating enzymes from
their mother). In this scenario, we have shown sub-populations
within heterogeneous population engage in quasi-neutral com-
petition: sub-populations of cells get extinct in an average time
which is of the order of the carrying capacity of the system (see
Section 5.2). In the context of modelling cancer cells populations,
where heterogeneity is a main contributor to the complex dy-
namics of cancer (Anderson et al., 2006; Merlo et al., 2006; An-
derson and Quaranta, 2008; Gillies et al., 2012; Greaves and Maley,
2012), this result is of relevance since it allows us to estimate the
rate at which sub-populations or clones disappear from the



Fig. 12. Stochastic simulation results showing typical realisations associated with rescue of quiescence cells (plots (a) and (c)) and recovery of the proliferating population
(plots (b) and (d)) upon application of a cell-cycle dependent therapy. The efficiency of the therapy is characterised by the survival fraction, FS. Quiescence rescue is achieved
when the survival fraction is set to a value which falls below the critical threshold, Eq. (54). If <F FS SC

(plots (a) & (c)), the cell killing triggered by the therapy is enough to re-

oxygenate the population above the activation threshold of the quiescent cells. By contrast, if >F FS SC
(plots (b) and (d)), re-oxygenation is not enough to rescue latent cells
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tumour. The fact that this rate is proportional to the inverse of the
carrying capacity reveals a highly dynamic scenario where clones
are quickly decaying and being replaced within the tumour. This
can have a profound impact on a variety of evolutionary phe-
nomena such as emergence of drug resistant phenotypes. From
the modelling perspective, we should note that quasi-neutral
competition is a purely stochastic scenario: the mean-field limit
predicts coexistence between the corresponding cell types.

We have further explored the issue of emergence of drug re-
sistant cell types by analysing a case study in which a quiescent
population can be rescued from latency by the application of a
cell-cycle dependent therapy. Examples of such therapies are
radiotherapy or cytotoxic drugs designed to target cells in specific
stages of cell cycle progression (Powathil et al., 2012). In the par-
ticular example analysed in Section 6, we have shown that in
mixed population composed by active (proliferating) and quies-
cent cells, if the drug is not efficient enough (characterised in
terms of its associated survival fraction, FS), quiescent cells are
rescued from latency and eventually reach fixation within the
population, i.e. the activated quiescent cells out-compete the ori-
ginal active cells until the latter population becomes extinct
(Alarcón and Jensen, 2010). It is noteworthy the fact that in this
process of quiescence rescue the original cancer population is re-
placed by a much more resistant population as the activated
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quiescent cells are less sensitive to the therapy than the original
active cells.

Our results show that the methods and models presented in this
paper are of great potential importance for the analysis of the
complex dynamics of heterogeneous populations under resource
limitation, in particular for the study of emergence of drug re-
sistance in heterogeneous cancer cell populations. Several im-
portant issues have been left out of the present work. A major
contributor to heterogeneity within a cancer cell population is
spatial heterogeneity (Anderson et al., 2006; Gillies et al., 2012)
which is closely related to micro-environmental heterogeneity. A
further issue which should be analysed in depth concerns the
scaling properties of the age to the G1/S transition (see Section 3.6),
in particular whether this is a general property of the cell-cycle
dynamics or rather a specific attribute of the stochastic model
presented here. A thorough analysis of these issues falls beyond the
scope of the present paper and are left for future research.
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Appendix A. Summary of the semi-classical quasi-steady state
approximation

In this appendix, we give a summary of the semi-classical
quasi-steady state approximation (SCQSSA). For a more detailed
presentation of the method, the reader is referred to Alarcón
(2014); de la Cruz et al. (2015).

Following Alarcón, 2014, we formulate the QSS approximation
for the asymptotic solution of the CME obtained by means of large
deviations/WKB approximations (Kubo et al., 1973; Alarcón and
Page, 2007; Freidlin and Wentzell, 1998; Touchette, 2009). An al-
ternative way to analyse the dynamics of continuous-time Markov
processes on a discrete space of states is to derive an equation for
the generating function, ( … )G p p t, , ,n1 of the corresponding
probabilistic density:

∑( … ) = ⋯ ( … )
( )

G p p t p p p P X X t, , , , , ,
A.1

n
x

X X
n
X

n1 1 2 1
n1 2

where ( … )P X X t, , ,n1 is the solution of the CME Eq. (3).
( … )G p p t, , ,n1 satisfies a partial differential equation (PDE) which

can be derived from the CME. This PDE is the basic element of the
so-called momentum representation of the Master Equation (Doi,
1976; Peliti, 1985; Assaf and Meerson, 2006; Assaf et al., 2010;
Kang and Kurtz, 2013). Analytical solutions for the generating
function PDE are seldom available and one needs to resort to ap-
proximate solutions, which are commonly obtained by means of
the WKB asymptotic (Assaf et al., 2010). More specifically, the
(linear) PDE that governs the evolution of the generating function
can be written as:

( )∂
∂

= … ∂ … ∂ ( … ) ( )
G
t

H p p G p p t, , , , , , , , A.2k n p p n1 1n1

where the operator Hk is determined by the reaction rates of the
CME (3). Furthermore, the solution to this equation must satisfy
the normalisation condition ( = … = ) =G p p t1, , 1, 1n1 for all t. The
operator H is obtained by multiplying both sides of the CME by
∏ = pi

n
i
X

1
i and summing up over all the possible values of ( … )X X, , n1 .

Eq. (A.2) is a Schrödinger-like equation and, therefore, there is a
plethora of methods at our disposal in order to analyse it. In par-
ticular, when the fluctuations are (assumed to be) small, it is
common to use WKB methods (Kubo et al., 1973; Alarcón and
Page, 2007; Gonze et al., 2002). This approach is based on the
WKB-like Ansatz that ( … ) = − ( … )G p p t e, , ,n

S p p t
1

, , ,n1 . By substituting
this Ansatz in Eq. (A.2) we obtain the following Hamilton–Jacobi
equation for the function ( … )S p p t, , ,n1 :
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Instead of directly tackling Eq. (A.3), we will use the so-called
semi-classical approximation. We use the Feynman path-integral
representation which yields a solution to Eq. (A.2) of the type
(Peliti, 1985; Feynman and Hibbs, 2010; Kubo et al., 1973; Dickman
and Vidigal, 2003; Elgart and Kamenev, 2004; Tauber et al., 2005):

∫( … ) = ( ) ( ) ( )
− ( … … )G p p t e Q s p s, , , , A.4n

t
S p p Q Q

1 0

, , , , ,n n1 1

where ( ) ( )Q s p s indicates integration over the space of all
possible trajectories and ( … … )S p p Q Q, , , , ,n n1 1 is given by (Kubo
et al., 1973):
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The position operators in the momentum representation have
been defined as ≡ ∂Q i pi

with the commutation relation
δ[ ] =Q p S,i j i i j0, , . ( )S p Q,i i i0, corresponds to the action associated with

the generating function of the probability distribution function of
the initial value of each variable, ( = )X t 0i , which are assumed to
be independent random variables. The so-called semi-classical
approximation consists of approximating the path integral in
Eq. (A.4) by

( … ) = ( )− ( … )G p p t e, , , A.6n
S p p t

1
, , ,n1

where ( ) … ( )p t p t, , n1 are now the solutions of the Hamilton
equations, i.e. the orbits which maximise the action S:

= −
∂
∂ ( )

dp

dt
H
Q A.7

i k

i

=
∂
∂ ( )

dQ
dt

H
p A.8

i k

i

where the pair (Qi,pi) are the generalised coordinates corre-
sponding to chemical species = …i n1, , . These equations are
(formally) solved with boundary conditions (Elgart and Kamenev,
2004) ( ) = ( )Q x0 0i i , ( ) =p t pi i, where ( )x 0i is the initial number of
molecules of species i.

Eqs. (A.7)–(A.8) are the starting point for the formulation of the
semi-classical quasi-steady state approximation (SCQSSA) (Alar-
cón, 2014; de la Cruz et al., 2015). In order to proceed further, we
assume, as per the Briggs–Haldane treatment of the Michealis–
Menten model for enzyme kinetics (Briggs and Haldane, 1925;
Keener and Sneyd, 1998), that the species involved in the system
under scrutiny are divided into two groups according to their
characteristic scales. More specifically, we have a subset of che-
mical species whose numbers, Xi, scale as:

= ( )X Sx , A.9i i

where = ( )x O 1i , whilst the remaining species are such that their
numbers, Xj, scale as:

= ( )X Ex , A.10j j

where = ( )x O 1j . Key to our approach is the fact that S and E must
be such that:

ϵ = ⪡ ( )
E
S

1. A.11

We further assume (de la Cruz et al., 2015) that the generalised
coordinates, Qi, scale in the same fashion as the corresponding
variable Xi, i.e.

= ( )Q Sq , A.12i i

where = ( )q O 1i . We refer to the variables belonging to this subset
as slow variables. Similarly,

= ( )Q Eq , A.13j j

where = ( )q O 1j , which are referred to as fast variables. Moreover,
we assume that the moment coordinates, pi, are all independent of
S and E, and therefore remain invariant under rescaling.
Under this scaling for the generalised coordinates, we define
the following scale transformation for the Hamiltonian in Eq.
(A.5):

( … … ) = ( … … ) ( )κH p p Q Q k S E H p p q q, , , , , , , , , , A.14k n n J
k l

n n1 1 1 1

where J identifies the reaction with the largest order among all the
reactions that compose the dynamics and kJ is the corresponding
rate constant. In the case of the stochastic model of the G1/S
transition J¼7 (see Table 1), this reaction is order 3 whereas all the
others are of lower order. The exponents k and l correspond to the
number of slow and fast variables involved in the transition rate
W7, respectively. In this particular case we have k¼2 and l¼1. The
last step is to rescale the time variable so that a dimensionless
variable, a, is defined such that:

= ( )−a k S E t A.15J
k l1

It is now a trivial exercise to check that, upon rescaling, Eqs.
(A.7)–(A.8) read

= −
∂
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κdp

da
H
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,
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i

i
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κdq

da
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i

i

for the slow variables. By contrast, rescaling of the Hamilton
equations corresponding to the subset of fast variables leads to:

ϵ = −
∂
∂ ( )

κ
dp

da
H
q
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A.18

j

j
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dq

da
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where ϵ is defined in Eq. (A.11). The QSS approximation consists on

assuming that ϵ ≃ 0
dp

da
j and ϵ ≃ 0

dq

da
j in Eqs. (A.18)–(A.19),

−
∂
∂

=
( )

κH
q

0,
A.20j

∂
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=
( )

κH
p

0,
A.21j

resulting in a differential-algebraic system of equations which
provides us with the semi-classical quasi-steady state approx-
imation (SCQSSA).
Appendix B. Semi-classical quasi-steady state analysis of the
stochastic model of the G1/S transition

In this appendix we derive the equations of the SCQSSA of the
stochastic model of the G1/S transition as defined by the Master
Equation (3) and the associated transition rates shown in Table 1.
See Alarcón (2014) and de la Cruz et al. (2015) for details of the
procedure. The associated generating function satisfies the fol-
lowing PDE:

∂
∂

= ( … ∂ … ∂ ) ( … ) ( )
G
t

H p p G p p t, , , , , , , , B.1p p1 10 1 101 10

where the operator ( … … ) ≡ ( )H p p Q Q H p Q, , , , , ,1 10 1 10 , where
≡ ∂Q i pi

which satisfies the commutation relation δ[ ] =Q p S,i j i i j0, , , is
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given by:

( ) = ( ) + ( ) + ( ) + ( ) + ( )

+ ( ) ( )

H p Q H p Q H p Q H p Q H p Q H p Q

H p Q

, , , , , ,

, B.2

1 2 3 4 5

6

where the full Hamiltonian ( )H p Q, has been separated into six
parts, each corresponding to one of the reactions shown in Fig. 3.
Thus,

( ) = ( − ) + ( − ) + ( − )

( )

H p Q k p p p Q Q k p p p Q k p p p

Q
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, B.3
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+ ( − ) ( )
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k p p p p Q Q

,

, B.4
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correspond to enzymatic activation and (CycE-mediated) in-
activation of SCF (X5), respectively. ( )H p Q,3 through to ( )H p Q,6 are
given by:

( ) = ( − )( − ) + ( − ) ( )H p Q k k p k p Q, 1 1 , B.53 1 2 1 3 1 1

⎛
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tot
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( ) = ( − ) + ( − )( + ) ( )H p Q k p p k Q k p Q Q, 1 1 , B.75 13 9 9 14 9 15 1 1 9

( ) = ( − ) + ( − ) ( )H p Q k p k p Q, 1 1 , B.86 16 10 17 10 10

which are the Hamiltonians associated with synthesis and de-
gradation of CycD (X1), CycE (X8), Rb (X9), and E2F (X10),
respectively.

By re-scaling the coordinate-like variables Qi according to the
scaling shown in Table B1 (see Section 3.4 and reference de la Cruz
et al., 2015) and defining the dimensionless time as =a k ESt7 , the
associated Hamilton equations, Eqs. (A.7)–(A.8)
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( )κ κ= − ( ( − ) + ( − )) − ( − ) B.27
dp
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p p p p p p p q p p p p q q8
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p p q1
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Table B1
Dimensionless variables and parameters corresponding.

Dimensionless variables Dimensionless parameters

=a k ESt7 ϵ = E S/
=q Q S/1 1 ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦=e f e f S2 2 /

tot tot

=q Q S/2 2 κ = ( )k k ES/1 1 7
2

=q Q E/3 3 κ = ( )k k ES/2 2 7
2

=q Q E/4 4 κ = ( )k k ES/3 3 7

=q Q S/5 5 κ = ( )k k S/4 4 7

=q Q E/6 6 κ = ( )k k S/5 5 7
2

=q Q E/7 7 κ = ( )k k S/6 6 7
2

=q Q S/8 8 κ = ( )k k S/8 8 7

=q Q S/9 9 κ = ( )k k S/9 9 7

=q Q S/10 10 κ = ( )k k ES/10 10 7

κ = ( )k k ES/11 11 7

κ = ( )k k E/12 12 7

κ = ( )k k ES/13 13 7
2

κ = ( )k k ES/14 14 7

κ = ( )k k E/15 15 7

κ = ( )k k ES/16 16 7
2

κ = ( )k k ES/17 17 7

Table B2
Equivalence between the parameters of the stochastic model of the G1/S transition
(see Table 1) and the parameters of the associated mean-field model as formulated
by Bedessem and Stephanou (2014).

Parameters Parameters

= *k a S1 1 =k b11 2

= * *[ ]k a S H2 3 =k b S/12 3

=k a3 2 = *k d S13 2

= * −k J k S k5 2 4 6 =k d14 2

=k e S E/6 1 =k d S/15 1

= * −k J S k8 1 9 [ ]=k g E F S2
tot16 1

=k e E/9 2 =k g17 1

=k b10 1

Table B3
Parameters values of the mean-field model of the hypoxia regulated G1/S transition
proposed by Bedessem and Stephanou (2014).

Parameter Value Reference

a1 0.51 Bedessem and Stephanou (2014)
a2 1 Bedessem and Stephanou (2014)
a H3 0 0.0085 Bedessem and Stephanou (2014)

b1 0.018 Bedessem and Stephanou (2014)

b2 0.5 Bedessem and Stephanou (2014)

b3 1 Bedessem and Stephanou (2014)

d1 0.2 Bedessem and Stephanou (2014)

d2 0.1 Bedessem and Stephanou (2014)

e1 1 Bedessem and Stephanou (2014)
e2 14 Bedessem and Stephanou (2014)

⋆m 10 Tyson and Novak (2001)
J J,3 4 0.04 Tyson and Novak (2001)

g1 0.016 Bedessem and Stephanou (2014)

[ ]E F2
tot

1 Bedessem and Stephanou (2014)

S 10
E 1
rcr 0.04

Table B4
Initial conditions used in simulation system (4)–(12), Fig. 4.

Parameter Initial condition Reference

CycD 0.1 Bedessem and Stephanou (2014)
SCF 0.9 Bedessem and Stephanou (2014)
Rb 1.0 Bedessem and Stephanou (2014)
E2F 0.1 Bedessem and Stephanou (2014)
m 5.0 Bedessem and Stephanou (2014)
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where ϵ = ⪡E S/ 1 and the re-scaled parameters κi are given in Table
B1. Applying the QSSA to the equations for the momenta p3, p4, p6
and p7 associated with the fast variables, we obtain:
ϵ = ⇒ = ϵ = ⇒ = ( )
dp

da
p p p

dp

da
p p p0 , 0 B.31

3
4 2 3

4
4 5 3

ϵ = ⇒ = ϵ = ⇒ = ( )
dp

da
p p p

dp

da
p p p0 , 0 B.32

6
7 5 6

7
7 2 6

which implies that =p p2 5, which, in turn, yields that =p 18 (see
Eqs. (B.21) and (B.22)). Furthermore, the QSSA applied to the
equations for the generalised coordinates associated with the SCF-
activating, q3, Eq. (B.11), and the enzyme-active SCF complex, q7,
Eq. (B.15), yields:

κ κ κ

κ κ

ϵ = ⇒ − = −

ϵ = ⇒ − = − ( )

dq

da
q q q q

dq
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q q q q

0 ,

0 , B.33

3
5 4 4 2 3 6 4

6
8 7 5 6 9 7

which implies that + =q q pc2 5 . Furthermore, since + =q q pe3 4 1

and + =q q pe6 7 2
are satisfied, we obtain that:
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+
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p q

q
q

p q

q
,

B.34

e e
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2
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5 6
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1 2

Finally, using Eqs. (B.31)–(B.34), the SCQSSA equations for the
stochastic model of the G1/S transition are:

κ κ κ κ= − − + ( − ) ( )
dq
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q p q q1 B.35

1
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κ κ= − ( − ) − ( − ) ( )
dp

da
p p p q1 1 B.43

1
3 1 15 9 1 9

κ κ κ= − ( − )
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− ( − )( + )
( )
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= ( )p p B.462 5

= ( )p p p B.474 2 3

= ( )p p p B.487 2 6

If we set =p 1i in Eqs. (35)–(48), we recover the mean-field
model proposed in Bedessem and Stephanou (2014). This limit
allows us to determine the parameter values of the stochastic
model (see Alarcón, 2014; de la Cruz et al., 2015 for details). This
equivalence is shown in Table B2. The parameter values of the
mean-field model (Bedessem and Stephanou, 2014) are given in
Table B3.
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