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Abstract:We present a methodology to connect an ordinary di�erential equation (ODE) model of interacting
entities at the individual level, to an open Markov chain (OMC) model of a population of such individuals,
via a stochastic di�erential equation (SDE) intermediate model. The ODEmodel here presented is formulated
as a dynamic change between two regimes; one regime is of mean reverting type and the other is of inverse
logistic type. For the general purpose of de�ning an OMCmodel for a population of individuals, we associate
an Ito processes, in the form of SDE to ODE system of equations, by means of the addition of Gaussian noise
terms which may be thought to model non essential characteristics of the phenomena with small and undif-
ferentiated in�uences. The next step consists on discretizing the SDE and using the discretized trajectories
computed by simulation to de�ne transitions of a �nite valued Markov chain; for that, the state space of the
Ito processes is partitioned according to some rule. For the example proposed for illustration, the state space
of the ODE system referred – corresponding to a model of a viral infection – is partitioned into six infection
classes determined by some of the critical points of the ODE system; we detail the evolution of some infected
population in these infection classes.

Keywords: InfectionModeling, PopulationDynamics, OrdinaryDi�erential Equations, StochasticDi�erential
Equations, Markov Chains

MSC: 92D30, 92B99, 60J20, 60J70

1 Introduction
In this workwe have two generic goals. The �rst goal is to showhow to associate an initial ODEmodel applied
to a generic individual of a population to a Markov chain model for the evolution of an open population of
these individuals. The second goal is to illustrate the details of the procedure by considering the case of a
viral infection on a human population.We thus show how to build a �nite state Markov chain model starting
from an ordinary system of non linear di�erential equations. The method relies on an intermediary step that
associates a system of stochastic di�erential equations to the ODE system.

In [15] there is a reference to the possibility of associating a Markov chain to a stochastic di�erential
equation with the ultimate purpose of studying a model, by simulation, in a similar manner as the well
known Markov Chain Monte Carlo method. The study of the properties of a stochastic di�erential equation
of di�usion type that transfer to an associated Markov chain, by means of a discretization scheme – such
as the Euler-Maruyama – has been made almost two decades ago, see [33]. Other important references that
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study properties of an associatedMarkov chain, created from a di�usion bymeans of a discretization scheme,
are [31], [29] and [19].

There are several examples in the literature of the type ofmodels studied in thiswork, namely, identifying
particular regimes. For instance, in [4] the authors focused on themean reverting type of model for the SDE of
interest. In [35], using Kalman �lter approach for the parameters estimation the authors consider a di�usion
with constant volatility and linear drift.

In [34] coupled systems of two and three SDE with constant volatility are considered. In [9] a modi�ed
Gompertzian SDE equation, with linear volatility function and an explicit solution similar to the Ornstein-
Ulhenbeck process, is used to describe bacterial growth under bactericide. In [25] the approach is also from
anODEmodel to a SDE systemmodel in order to account for the fact that (andwe quote) process is not smooth,
subject as it is to a variety of metabolic and hormonal in�uences, which change over time. The system has only
one equation, with volatility term proportional to the product of the two processes and is coupled as the two
processes appear in the equation with null volatility.

The most used estimation methods for SDE do not apply to the model here proposed, see [5] for a com-
prehensive review on the subject. We anticipate several di�culties developing such methods and we hope
to address this issue in future works. For the moment we parametrize the SDE model to obtain illustrative
examples for which the methodology here proposed can be applied.

The importance of linking within-host dynamics and between-host dynamics has been long recognized,
see [14]. Heterogeneous population dynamics results from individual di�erences which produce the complex
epidemiological patterns observed. For virus infections, in particular viral infection, authors have considered
e.g. the connection between the two scales through the epidemiological reproduction number [3] and, using
two ODE nested models to study the evolution of virulence [10].

Let us comment on some aspects of the example of viral infection we chose to illustrate our method. It is
well known that there is an obvious relation between the number of viruses attacking leucocytes. As the viral
load increases the leucocyte count is expected to decrease; moreover we should expect a regular variation
in this coupled evolution. Being so, an ODE model for an average behavior seems appropriate. But, as there
are many other factors conditioning the evolution of the mutual in�uence process, it is also expected that,
for each individual data set variations on the average evolution pattern may appear. In [26] there is a refer-
ence to in�uences, in a particular process interfering with the interaction of viruses and leucocytes, that are
classi�ed as being stochastic in nature. Being so, a SDE version of the initial ODEmodel for the pure viruses–
leucocyte interactionmay be justi�ed. Some other work on the same lines of thought is the analysis of a three
dimensional model of virus competition that is presented in [32]; a �ve dimensional analysis, contemplating
both infected and non infected leucocyte cells is given in [6]. Let us brie�y describe the contents of this work.

• An overview of the methodology proposed in this work is presented in Section 2.
• In Section 3, the very important idea of competing regimes is presented and next we model the coupled

evolution of two competing entities in an individual – for instance, a viral load and a leucocyte count –
by a system of two ordinary di�erential equations. This ODE model is supposed to describe the average
behavior of the quantities modeled.

• Secondly, in Section 4, we consider a stochastic di�erential equation model (SDE) built upon the ODE
model by adding a noise term to each of the ODE. Each trajectory of this SDE models the evolution of
the two competing and interacting entities for a particular individual. As usual, the interpretation of a
SDE model built by adding a noise term to the equations of a ODE model is that we consider that the
evolution of the modeled quantities for an individual – which in general is described by the ODE model
- is perturbed, at the individual level, by unknown factors.

• The third step – developed in Section 5 – consists on associating a Markov chain transition matrix to the
SDEmodel, by simulating trajectories of the solution process of the the SDE and counting the transitions
between Infection Classes. These Infection Classeswere de�ned by regions in the phase space of the ODE
by means of critical points of the solutions of the ODE system.

• In the last step – presented in Section 6 – we consider an open Markov chain (OMC) model for the pop-
ulation with �ve transient states (the �rst �ve stages of infection) and an absorbing state corresponding
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to the last stage of infection, from where we assume that it is not possible to move out without treatment
or death. The OMC model is adequate since the population is open and constantly fed by the number of
newly viral infected. For general conditions on the number of newly viral infected patients, we are able
to determine the evolution of the expected numbers of patients of the subpopulations – the Poisson pa-
rameters – in each one of the Infection Classes – as done in [7]. We exploit the open Markov chain model
by considering simulated data from a yearly viral newly infected population on a 23 year period.

Remark 1. As so, this sequence ofmodels, eachonebuilt upon theprecedingone–ODE, SDEandOMCmodels
- allow to transfer information, in a coherent way, from an individual level to a whole population level.

2 From ODE to Markov chains via SDE: an overview
The general pathway from an ordinary di�erential equations model to open population Markov chain model
via a stochastic di�erential equation model is schematically described in the following. Let us suppose that
we have amodel given by the solution of a Cauchy-Lipschitz ordinary di�erential equation (ODE) – satisfying
some regularity assumptions – and an initial condition such as:

y′(t) = f (t, y(t)) , y(t0) = y0 ,

or, integrated form,

y(t) = y0 +
t∫

t0

f (s, y(s))ds . (2.1)

Now, suppose that we consider equation (2.1) as giving the evolution of the mean value of a population size
and that, aiming at having an individual randommodel, we add a noise, given by an Ito integral with respect
to a Brownian process (Bt)t∈[0,T] – de�ned on a probability space (Ω,F,P) – such that we get a stochastic
di�erential equation (SDE) given, for ω ∈ Ω, by:

ỹ(t, ω) = ỹ0(ω) +
t∫

t0

f (s, ỹ(s, ω))ds +
t∫

t0

σ(t, ỹ(t, ω))dBt(ω) , (2.2)

or in the usual di�erential form,

dỹ(t) = f (t, ỹ(t))dt + σ(t, ỹ(t))dBt , ỹ(t0) = ỹ0 .

Let us observe that under su�cient hypothesis guaranteeing that the Ito stochastic integral part of equa-
tion (2.2) is a martingale, with constant null mean, we will have,

E
[
ỹ(t, ω)

]
= E

[
ỹ0(ω)

]
+

t∫
t0

E
[
f (s, ỹ(s, ω))

]
ds ,

which, upon comparing with equation (2.1), allows the interpretation that the solution of equation (2.1) is the
mean value with respect to the probabilityP – or the average – of the solution of equation (2.2).

From this point on we will not distinguish ỹ from y. Now, for illustration purposes only ¹, suppose that
we discretize equation (2.2) with the Euler-Maruyama discretization scheme to get:

yn+1 = yn + f (tn , yn) (tn+1 − tn) + σ(tn , yn) (Btn+1 − Btn ) ,

1 Preservation of ergodic properties may require a higher order discretization scheme, but the main argument is preserved also
in this case.
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for t0 < t1 < · · · < tN = T a subdivision of [0, T]. In the unidimensional case it is known that,

Btn+1 − Btn _ N (0, (tn+1 − tn)) ,

and we have that the sequence (Un)n=0,...,N−1, de�ned by:

Un := F←n (Btn+1 − Btn ) ,

with F←n the inverse of the distribution function of a random variable distributed with the law
N (0, (tn+1 − tn)), is a sequence of independent uniformly distributed random variables. In this way, if
tn+1 − tn = h and f (t, x) = f (x), σ(t, x) = σ(x), that is, the di�usion given by (2.2) is homogeneous, with,

G(x, y) := x + f (x)h + σ(x)y ,

we may write that,
yn+1 = G(yn , Un) , n = 0, . . . , N − 1 ,

which is the functional de�nition of a Markov chain (see [28, p. 62]). As so, we could try to apply the method-
ologies used in [7] and [8] – and other references therein – with the purpose of identifying the possibility of
stable behavior in the set of transient classes. Let us observe that, in principle, we will have that the chain
(yn)n=0,...,N , for large N, may have a large number of states and so, in order to apply the referred methods of
openMarkov chainmodels, a natural situationwould be to de�ne a small number of classes Ci by considering
a partition of the state space, Si, with S = ∪di=1Si and Si ∩ Sj for i ≠ j, such that at step n,

ω ∈ Ci ⇔ yn(ω) ∈ Si .

In the context of epidemiological studies this is feasible if the state space is some set of values of some bio-
logical indicators or markers like a virus load and some cell count.

3 A non linear ODE 2–dimensional model
The competing regimes modeling we adopt in this work is rooted in homeostasis which is the maintenance
of an internal stable environment for proper functioning of the body. As a consequence, we can suppose that
body markers are subjected to variations that tend to conform to some alternating regimes, the alternation
being driven by other processes in the body. For simplicity we suppose that, for the bodymarker we are going
tomodel, the values can evolve in two di�erent regimes. For illustration purposeswe consider the usualmean
reverting model given by the ODE,

w′(t) = 1 − w(t) , w(0) = w0 , (3.1)

which supposes that themarker has a tendency to evolve towards the value 1; and the inverted logisticsmodel
given by,

y′(t) = 1
(y(t) − 1)y(t) , y(0) = y0 , (3.2)

which essentially says that the marker will evolve towards some larger value. We present some solutions of
these ODE, corresponding to di�erent initial values in Figure 3.1.

If in the homeostasis context one kind of evolution is changed in a di�erent kind of evolution by the e�ect
of external causes, we may consider that these two regimes are coupled by a regular function that shifts, in
time, the evolution from one regime to another; the coupling will be provided by a convex combination of
the two right-hand members of equations (3.1) and (3.2). For technical reasons we suppose that the coupling
function, depends on two parameters α and λ ² and is given by:

F(t, α, λ) =
(
1 − e−(1−α)λt

) 1
1−α . (3.3)

2 F is given as a solution of the ODE Φ′(t) = λΦ(t)α(1 − Φ(t)(1−α)) with Φ(0) = 0. This is important both for the qualitative study
– see section 3.1 – and for a second stage of the modeling.
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Figure 3.1: Solutions of deterministic inverse logistics and mean revertingmodels

The ODE with the two regimes, coupled by F, is given by (3.4) with additional parameters µ controlling
the intensity of the reversed logistics drive, uMin, which is a bound on the values of u and ν, which is the mean
reverting level.

u′(t) = 1 − F(t, α, λ)
µ
(
u(t)
uMin

− 1
)
u(t)

+ F(t, α, λ)(ν − u(t)) , u(t0) = u0 . (3.4)

In Figure 3.2 we show, both F, for λ = 1 and for several values of the parameter α and a solution u(t), t ∈
[0, 30] – for α = 0.82 in the coupling function f – of the ODE with the coupled regimes with some additional
parameters given in Table 1.
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Figure 3.2: Coupling function and solution of coupled inverse logistics andmean reverting models

Remark 2. Formodeling purposes wemay use this particular kind of evolution, the one described by u(t), t ∈
[0, 30] in the right-hand side of Figure 3.2, for some biological internal marker of a normalized count that
evolves with a continuous transition between a decreasing regime and an increasing one, according to the
variation of the function f . We observe that we could also have a continuous transition between an increasing
regime and a decreasing one by changing the weights f and 1 − f , in the right-hand side of the ODE.

Remark 3. We stress that further combinations of regimes are possible: either by considering other coupling
functions performing a convex combination of more than two terms or by considering a second convex com-
bination – with another coupling function – of the existing convex combination. This could be done to alter
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the asymptotic regime. Also, we observe that the parameter α de�nes, in some sort, the speed of the regime
change.

There is a natural perspective to study epidemics namely, the population dynamics angle (see, for instance,
[18] and references therein). To study the infection at the individual level and on the average, the approach
relies on the modeling of the dynamics – by means of ODE – of some body internal markers, such as viral
charges or leucocyte counts (see [1]) or leucocyte percentages or ratios.

That is the general approachwepursue in the following considering the�rst part of the proposedmethod-
ology: a non-linear ODE model for infections in which we may have two interacting entities – for instance
some viral load and for instance the leucocyte count. This model, which aims at describing an average gen-
eral behavior, has two coupled ODE, one for u – the leucocyte count – and another for z – viral load. In each
equation there are two evolution regimes and the transition in time, between these regimes, is achieved by
a coupling function. We stress that the model chosen is not of mechanistic type in the sense that it does not
explicitly model the interaction of the two populations as in [23] and [27].

u′(t) = 1 − F(t, α1, λ1)
µ1
(
z(t)
uMin

− 1
)
z(t) + ϵ1

+ F(t, α1, λ1)(ν1 − u(t)) , u(t1) = u0

z′(t) = F(t, α2, λ2)
µ2
(
z(t)
zMin

− 1
)
z(t) + ϵ2

+
(
1 − F(t, α2, λ2)

)
(ν2 − z(t)) , z(t2) = z0 .

(3.5)

Let us detail some general features of this model:

1. Both the equations have two regimes, of the same type in the two equations – inverse logistics andmean
reverting – coupled by the coupling function F(t, α, λ); this function of logistic type goes from zero – at
time zero – to values very close to one in �nite time.

2. The initial regime for u, controlled by 1− F(t, α1, λ1), for small values of t, is the inverse logistics term for
the function z, which is also the �nal regime, controlled by the values of F(t, α2, λ2) for the function z.
Being so, in this model, the viral load exerts some in�uence in the initial behavior of leucocyte count.

3.1 The qualitative study of the ODE model

In this section we state some questions related to the qualitative study of the set of ODE given in (3.5). We
observe �rst that this system can be seen as an autonomous system by considering:

u′(t) =
1 − Φα1 ,λ1 (t)

µ1
(
z(t)
uMin

− 1
)
z(t) + ϵ1

+ Φα1 ,λ1 (t)(ν1 − u(t)) , u(t1) = u0

Φ′α1 ,λ1 (t)(t) = λ1Φα1 ,λ1 (t)
α1
(
1 − Φα1 ,λ1 (t)

(1−α1)
)
, Φ(1−α1)

α1 ,λ1 (0) = 0

z′(t) =
Φα2 ,λ2 (t)

µ2
(
z(t)
zMin

− 1
)
z(t) + ϵ2

+
(
1 − Φα2 ,λ2 (t)

)
(ν2 − z(t)) , z(t2) = z0

Φ′α2 ,λ2 (t)(t) = λ2Φα2 ,λ2 (t)
α2
(
1 − Φα2 ,λ2 (t)

(1−α2)
)
, Φ(1−α2)

α2 ,λ2 (0) = 0 .

(3.6)

In fact, let us consider, for α ∈]0, 1[, the di�erential equation:

u′(t) = λu(t)α
(
1 − u(t)(1−α)

)
, u(0) = u0 . (3.7)

With the change of variable v = u(1−α) which implies dv = (1 − α)u−αdu, we have that,
du

uα(1 − u(1−α)
= dv
(1 − α)(1 − v) ,

and so the equation in (3.7) may be written as
dv

(1 − v) = λ(1 − α)dt ,
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with the immediate solution v = 1 − γe−λ(1−α)t, with γ > 0 some integration constant, which gives,

u(t) =
(
1 − γe−λ(1−α)t

) 1
1−α , γ = 1 − u(1−α)0 ,

as the general solution of equation (3.7).
The qualitative study of a system such as the one in (3.6) – a system of four non linear ODE - may require

some special delicate analysis. An alternative path could be to study directly the system (3.5) by means of
some ad-hoc procedures. Examples of such studies are [11], [17] and [2].

Remark 4. The linearized part of the ODE system (3.6) is given by:
− (1−r)(

zµ1
a +( za −1)µ1)

(ϵ1+z( za −1)µ1)2
−r −u + ν1 − 1

ϵ1+z( za −1)µ1
0

0 0 rα1−1
(
1 − r1−α1

)
α1λ1 − (1 − α1) λ1 0

− s(
zµ2
b +( zb −1)µ2)

(ϵ2+z( zb −1)µ2)2
s − 1 0 u − ν2 + 1

ϵ2+z( zb −1)µ2
0 0 0 sα2−1

(
1 − s1−α2

)
α2λ2 − (1 − α2) λ2


Remark 5. The linearized part of the ODE system (3.6) when u = z = r = s = 0 is given by:

µ1
ϵ21

0 ν1 − 1
ϵ1 0

0 0 (α1 − 1) λ1 0
0 −1 0 1

ϵ2 − ν2
0 0 0 (α2 − 1) λ2


Remark 6. The eigenvalues of the linearized part at (0, 0) of the system given in (3.6), given as function of the
parameters, are the following.{

−
√
− (α1 − 1) λ1,

√
− (α1 − 1) λ1, (α2 − 1) λ2,

µ1
ϵ21

}
The �rst and the third ones are negative and the second and the fourth ones are positive. As so, by the theorem
of Hartman-Grobman, see [24, pp. 120–127], the trajectories of the linearized system are homeomorphic im-
ages of the original system in a neighborhood of 0 and so, the point (0, 0) is not a stable point of system (3.6).
This property may have relevance for the question treated in subsection 10.

3.2 An illustrative numerical application

The system of equations (3.5) was solved numerically using the parameter values given in Table 1. These
parameters were chosen in order to provide a solution with the desired characteristics.

Remark 7. For practical application of this model, the estimation of the parameters for equation system (3.5)
should be done using the corresponding set of Ito processes in unidimensional case, in order the methodol-
ogy to be applied with a set of signi�cant data. E�cient estimating methods are being developed. Also, the
qualitative study of the system of equations (3.5) should provide an insight into the desired properties of the
model and the corresponding range of the parameters.
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Table 1: The parameters values for the solution’s computation

t1 u(t1) α1 T µ1 ν1 uMin λ1 ϵ1
0 4.1 0.94 70 17.1 1.9 2 1.8 0.1
t2 z(t2) α2 T µ2 ν2 zMin λ2 ϵ2
0 3 0.78 30 4.1 2.3 1.9 2.3 0.2

In Figure 3.3 there is a representation of the solution (u, z) of the system of equations (3.5) with parameters
given in Table 1. This solution was obtained by numerical integration ³.
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Figure 3.3: Solution of the coupled equations model for viral load and leucocyte count

Preliminary conclusions 3.1. Let us state some �rst conclusions about the presented solution of the model.

1. The general pattern of signi�cant periods in time of contra-variation, of the two functions of time of viral
load and of leucocyte count, is manifest in Figure 3.3.

2. The present report may be thought as a proof of concept exposition so, no homogeneity analysis for the
units choice has been performed. We must stress that, in principle, the values of the viral load must be
thought to be given in log scale. At this point of the exposition the time scale presented was not adjusted
to any real data; see Remark 19 for an adjusted time scale proposal.

3. The pattern of the initial decreasing of the viral load that appears in Figure 3.3 was �rst modeled in the
works of M. Novak and R. May. See, for instance, [22] where several models, with complex dynamics
explaining this pattern, are studied.

We must emphasize that the model here studied does not take into consideration the existence of some kind
of disease treatment; for such a purpose, within the approach developed in this work, we would add a third
regime describing the average response of both variables to such a treatment. One example, within a di�erent
context, of such model is presented in [16].

4 The associated SDE 2–dimensional model
We now develop the second part of the proposed methodology: to model the two entities interaction – for
instance, viral load and leucocytes count – at the individual level, by adding a Wiener process type noise to

3 For the detailed computations see �le OnTheSecondIdea-E.nb available upon request.
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the ODE model introduced in Section 3. The SDE system we consider is given by:{
dXt = F1(t, Xt , Yt)dt + σ1

√
XtdB1t , Xt0 = X0 ,

dYt = F2(t, Xt , Yt)dt + σ2
√
YtdB2t , Yt0 = Y0 ,

(4.1)

where (B1t )t≥0 and (B2t )t≥0 are two independent Wiener processes and where, for notational simplicity for the
coupled system of SDE, we have de�ned the drift functions taken from the right-hand side of the ODE system
in formulas (3.5), by:

F1(t, u(t), z(t)) =
1 − F(t, α1, λ1)

µ1
(
z(t)
uMin

− 1
)
z(t) + ϵ1

+ F(t, α1, λ1)(ν1 − u(t)) ,

F2(t, u(t), z(t)) =
F(t, α2, λ2)

µ2
(
z(t)
zMin

− 1
)
z(t) + ϵ2

+
(
1 − F(t, α2, λ2)

)
(ν2 − z(t)) .

(4.2)

Remark 8. We note that the additive noises used – having an intensity proportional to the square root of the
SDE equations unknowns – Xt (respectively Yt) , corresponding to u (respectively v) in the ODEmodel – were
chosen in order to ensure, if possible, that the solutions of the SDE system are always non negative.

Remark 9. Although it would be possible to consider some non identity �xed covariance matrix between
(B1t )t≥0 and (B2t )t≥0, in formulas (4.1), we have assumed independence by lack of an interpretation of this
possible covariance structure. This covariance structure may be added, in a real data model, upon the devel-
opment of the parameter estimation procedure.

The systemof SDEgiven by formulas (4.1)was discretized in order to obtain a simulated sample of trajectories.
The parameter values used for the simulation are shown in Table 2. The trajectories of both processes de�ned
by the SDE system (4.1), (Xt)t≥0 and (Yt)t≥0, which were obtained by the simulation procedure, can be seen in
the left-hand side of Figure 4.1.

Table 2: The parameters values for the simulation of sample trajectories

t0 ϵ1 α1 T µ1 ν1 uMin λ1 Xt0 σ1
0 0.1 0.94 30 17.1 1.9 2 1.8 4.1 0.3
t0 ϵ2 α2 T µ2 ν2 zMin λ2 Yt0 σ2
0 0.2 0.78 30 4.1 2.3 1.9 2.3 3 0.25

Remark 10. A far easier approach to the conjectured result on positivity of the kind of di�usions used in this
work is to show that the discretized sequence will only take positive values. This amounts to use properties
of Gaussian random variables and can be done by induction. The stability analysis of the ODE system (3.6),
in Subsection 3.1, has consequences for the proof of a technical result ensuring that the solutions of the SDE
system (4.1) will remain positive almost surely. The general idea for such a result is that as the processes
approach zero, with positive values, the volatility part of the equation becomes less and less important and
so the drift part of the equations – that is the part corresponding to the ODE system given by (3.5)– dominates;
as the point (0, 0) is not stable (see remark 6), by force of two positive eigenvalues of the linearized part of
the SDE system, the solution should be forced to stay on the positive values. The papers [21] and[20] contain
recent work that may be a starting point to the necessary technical proof on the positivity of trajectories of
the SDE of the model here presented.
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Figure 4.1: Simulated trajectories for Xt, the viral load (orange), and for Yt, the leucocyte count (blue), SDE model and, on the
right, the parametric plot of (u(t), z(t)) together with the images by u (respectively z) of the critical points of u, u′ (respectively
z, z′)

5 The associated Markov chain model
We now detail the procedure for the third part of the proposed methodology: associating an OMC model to
our SDE model. We follow this procedure in two steps:

Step 1 We partition the state space of the SDE in six regions, corresponding to six Infection Classes, by means of
the critical points of the solutions u and v of the ODE system (3.5) (see Figure 4.1 for a quick identi�cation
of these regions and Table 4 for the precise de�nition of these regions). The determination of a set of
critical points of u, u′ and z, z′ and the corresponding images by the functions u and z, are presented
in Table 3. These points correspond, in the right-hand side of Figure 4.1, to a vertical line – for u(ta) –

Table 3: Images of critical points for classes determination

{u(ta) : u′(ta) = 0} {z(tb) : z′(tb) = 0} {z(tc) : z′′(tc) = 0}
4.94971 2.37373 2.72319

and two horizontal lines – corresponding to z(tb) and z(tc) – allowing for the de�nition of six regions
in the phase space of (u, z) that are indicated in Table 4. These regions admit qualitative descriptions as

Table 4: Regions in the phase space of (u, v) for Infection Classes determination

Region 1 Region 2 Region 3
[u(ta), +∞[×[0, z(tb)[ [0, u(ta)[×[0, z(tb)[ [u(ta), +∞[×[z(tb), z(tc)[

Region 4 Region 4 Region 6
[0, u(ta)[×[z(tb), z(tc)[ [u(ta), +∞[×[z(tc), +∞[ [0, u(ta)[×[z(tc), +∞[

Infection Classes. Region 6 is the terminal infection state with a higher viral load and a reduced leucocyte
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count. Region 4 corresponds to the infection establishment followed by a noticeable increase of the viral
load and the corresponding immune response. Region 2 is the most reasonable initial infection state due
to its de�nition in the phase space of the SDE and so on and so forth.

Step 2 We simulate trajectories of the SDE (4.1) and we count the transitions between the di�erent regions cor-
responding to the six Infection Classes. That is, considering every pair of regions and by counting the
transitions from the �rst region of the pair to the second region of the pair, for every trajectory of a sam-
ple – of (only)16 – simulated trajectories, we get the transition matrix T presented in (5.1). Increasing the
number of trajectories does not noticeably change the accuracy of the estimation of the Markov chain
transition probabilities.

T =



0.921265 0.0189807 0.059051 0.000702988 0. 0.
0.00867303 0.952154 0.000578202 0.038595 0. 0.
0.0458584 0.00143308 0.881055 0.0171969 0.053597 0.000859845
0.000438837 0.03017 0.00680197 0.914427 0.000329128 0.0478332
0. 0. 0.0187966 0.000420036 0.971333 0.0094508
0. 0. 0.0000380105 0.00849535 0.00157744 0.989889


(5.1)

We stress some general methodological remarks for the building up of the Markov chain model associated to
the SDE extension of the ODE model:

1. The determination of the state space partition for the determination of the states of the Markov chain
model could be done, a priori, by using, �rstly, the critical points of u and v and after the in�ection
points, that is the critical points of u′ and v′. The interpretation of (u, v) as the mean value functions of
the SDE solution trajectories may give a justi�cation for this choice. The computation of these critical
points is feasible after the parameters are estimated. This is the approach in the following developments.

2. Another possible way to determine the partition of the phase space, perhaps more adequate for the
Markov chain model de�nition, could be the analysis of the two dimensional histogram of sample of
trajectories obtained by discretization of the SDE model as done in section 4. See the right-hand side of
Figure 5.1 for a �rst idea of the occupation of the phase space by the trajectories. Also, a cluster analysis
in the plane phase space could give some indications of the classes to be de�ned a posteriori.
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Figure 5.1: One trajectory and 10 superimposed trajectories in the state space of (Xt , Yt)

3. The simulated trajectories must be determined in a way that preserves the – possible – ergodicity, and
other asymptotic properties – of the di�usions discretized solutions of the SDE model.

A quick analysis over matrix T, reveals that the Markov chain corresponding to this transition matrix is
irreducible and therefore all states are recurrent. So, it may be that the initial proposition of considering the
partition of the state space using the critical points is not adequate in order to obtain a matrix with transient
states and possibly one only recurrent state. In any case, the partition of the state space should be performed
according to some justi�cation drawn from the phenomena under study.
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Remark 11. Besides the classes de�nition, there are other choices that may have an in�uence on the values
of the transition matrix; these are the discretization step – which in this case was taken as 0.01 – and the
discretization scheme chosen. As already said, the choice of the discretization scheme for the SDE has an
in�uence on the properties of the di�usion that are transmitted to the Markov chain, such as the ergodicity.

5.1 The altered Markov chain model associated to the SDE system model

In this subsection, we will justify the assumption that the sixth state – corresponding to the sixth Infection
Class – is the sole recurrent state and that all the other states are transient. This assumption, besides being
justi�ed, is also necessary for the OMC model implementation (see [12] for a full development of these prop-
erties). The assumption leads us to change the transition matrix T into T̃, in (5.2), by simply considering non
existing the transitions from class 6 to classes 5, 4 and 3; we stress that in T these transitions have small
probabilities, respectively 0.00157744, 0.00849535 and 0.0000380105.

T̃ =



0.921265 0.0189807 0.059051 0.000702988 0. 0.
0.00867303 0.952154 0.000578202 0.038595 0. 0.
0.0458584 0.00143308 0.881055 0.0171969 0.053597 0.000859845
0.000438837 0.03017 0.00680197 0.914427 0.000329128 0.0478332
0. 0. 0.0187966 0.000420036 0.971333 0.0094508
0. 0. 0. 0. 0. 1.


(5.2)

Remark 12. We again recall that we are not taking into consideration the existence of disease treatments.
However, even if we did so, there would always be a recurrent state, namely death, and so this highlights that
an OMC model would be adequate to describe viral infected populations.

Remark 13. We could, justi�ably, alter matrix T by considering that all entries smaller than a certain thresh-
old – say 0.01, for instance –would be considered zero and the corresponding probability would be summed
either to the greatest probability in the row or distributed proportionally through the non zero entries of the
row. Any of these choices should be done according to the interpretation of the classes and respective transi-
tions. An experience performed during our study did not show any appreciable changes in the conclusions.

With this altered matrix we now have a Markov chain model with the �rst 5 states being transient states and
the sixth being a recurrent state. The evolution of the proportions of the elements of some closed population
– an unique cohort – with initial distribution given by:

{0.15, 0.75, 0.05, 0.05, 0., 0.} , (5.3)

is presented left-hand side of Figure 6.1 (see [8, p. 280] for a quickmathematical justi�cation). As expected, the
proportions in the transient classes – Infection Classes 1 to 5 – decrease while the proportion in the Infection
Class 6 goes to one. This is a natural asymptotic behavior of an usual closed populationMarkov chainmodel.

Remark 14. The initial distribution (5.3) was chosen according to the following idea: in principle, in a country
with awide reaching health care system, the newly viral infectedwill bemostly detectedwhenever belonging
to Infection Class 2; the one class where there is already a shortening of leucocytes and the presence of viral
load. The results of the evolution, that we show, depend, of course on the initial distribution.

Remark 15. With the purpose of showing the quantitative e�ects of the initial distribution, on the evolution
patterns of the population, we considered a second initial distribution given by:

{0.2, 0.5, 0.15, 0.1, 0.05, 0.} . (5.4)

This corresponds to more weight in the Infection Classes 1, 3, 4 and 5 and corresponding less weight in Infec-
tion Class 2. The evolution dependence on the initial distribution highlights the need for an accurate estima-
tion of this initial distribution.
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6 Open Markov chain modeling: a review
We now detail and comment the results that will be used in this paper to get the evolution of the newly viral
infected in the di�erent Infection Classes. The study of open Markov chain models we will present next relies
on results and notations that were presented recently in [7] and that we reproduce next, for the readers con-
venience. We will suppose that, in general, the transition matrix of the Markov chain model may be written
in the following form.

P =
[

K U1
0 V

]
(6.1)

whereK is a k × k transition matrix between transient states,U1 a k × (r − k) matrix of transitions between the
transient and the recurrent states and V a (r − k) × (r − k) matrix of transitions between the recurrent states.
A straightforward computation then shows that,

P(n) =
[

K(n) Un
0 V(n)

]
, n ∈ N

with Un = Un−1V +K(n−1)U1 =
∑n−1

i=0 K(i) U1 V(n−1−i). We write the vector of the initial classi�cation, for a time
period i, as

cti =
[
tti
∣∣∣rti] , i ∈ N (6.2)

with ti the vector of the initial allocation probabilities for the transient states and ri the vector of the initial
allocation probabilities for the recurrent states. With (6.1) and (6.2), we now notice that the vector of the
Poisson parameters, for the population sizes in each state at time T, may be written as

λ++tT =
[ T∑

i=1
λittiK(T−i)

∣∣∣∣∣
T∑
i=1

λi
(
ttiUT−i + rtiV(T−i)

)]
. (6.3)

We observe that the �rst block corresponds to the transient states and the second block, the one in the right-
hand side, corresponds to the recurrent states. From now on, as a �rst restricting hypothesis, we will also
suppose that the transition matrix of the transient states, K, is diagonalizable and so,

K =
k∑
j=1

ηjαjβtj ,

with (ηj)j∈{1,...,k} the eigenvalues, (αj)j∈{1,...,k} the left eigenvectors and (βj)j∈{1,...,k} the right eigenvectors
of matrix K. We observe that j ∈ {1, . . . , k} corresponds to a transient state if and only if | ηj |< 1. We may
write,

K(n) =
k∑
j=1

ηnj αjβ
t
j , (6.4)

and so, as a consequence of (6.3), for the vector of the Poisson parameters corresponding only to the transient
states, λ+tT , we have:

λ+tT =
T∑
i=1

λi tti K(T−i) =
k∑
j=1

T∑
i=1

λi ηT−ij tti αjβ
t
j . (6.5)

The main result we will use next is the following.

Theorem 6.1. Let a Markov chain driven system have a diagonalizable transition matrix between the transient
states K =

∑k
j=1 ηjαjβ

t
j , written in its spectral decomposition form. Suppose the system to be fed by Poisson

inputs with intensities (λi)i∈N and such that the vector of initial classi�cation of the inputs in the transient states
converges to a �xed value, that is, limi→+∞ tti = tt∞ ≠ 0. Then, with λ+tn the vector of Poisson parameters of the
transient sub-populations, at date n ∈ N, we have the following:
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1. If limn→+∞ λn = λ ∈ R+ then

λ+∞ = lim
n→+∞

λ+tn =
k∑
j=1

λ
1 − ηj

tt∞αjβtj . (6.6)

2. If limn→+∞ λn = +∞ and there exists a constant C > 0 such that

max
1≤i≤n

∣∣∣∣ λi − λi+1λn

∣∣∣∣ ≤ C
then

lim
n→+∞

λ+tn
λn

=
k∑
j=1

1
1 − ηj

tt∞αjβtj . (6.7)

Remark 16. Weobserve that proportions in theMarkov chain transient classes, on both statements of the The-
orem 6.1, only depend on the eigenvalues ηj , j = 1, . . . , k. In fact, whenever using formula (6.6) to compute
proportions these proportions do not depend on the value of λ as we have that,

k∑
j=1

λ
1 − ηj

tt∞αjβtj = λ

tt∞ ·
 k∑

j=1

1
1 − ηj

αjβtj

 ,

and the term in the right-hand side multiplying λ is a vector with the dimension equal to the number of tran-
sient classes k, which is equal to the dimension of the square matrix K. As so, when computing proportions,
by normalizing this vector with the sum of its components, λ ≠ 0 disappears.

6.0.1 The main theorem formula interpretation

This subsection aims at clarifying some aspects of the implementation of the main theorem 6.1.
Let us suppose that we have three square matrices of the same order, B = [bij] C = [cij] and a diagonal

one D = [dij]. We then have that:
A = B · D · C = [aij]

which is, as D = [dij] is a diagonal matrix and so dkl = 0, for k ≠ l

aij =
∑
k

∑
l
bikdklclj =

∑
k
bikdkkckj =

∑
k
dkk

(
bikckj

)
. (6.8)

In [30, p. 111] it is shown that if x1, . . . , xm is any set of orthonormal eigenvectors corresponding, respec-
tively, to distinct eigenvalues η1, . . . , ηm of a matrix A then,

A =
m∑
i=1

ηixixti .

Also, if the eigenvectors are not an orthonormal set, see [30, pp. 169, 170], if the matrix A is diagonalizable
with eigenvalues η1, . . . , ηm and the correspondent independent eigenvectors x1, . . . , xm, then:

A = X · Λ · X−1 =
m∑
k=1

ηkxk · ytk , (6.9)

with X = (x1, . . . , xm) and (X−1)t = (y1, . . . , ym) := Y . Now, with X = [xij] and Y = [yij] we have that, for a
diagonalizable matrix A, by formula (6.8),

A =
∑
k
ηkk
(
xikykj

)
and so xk · ytk = [xikykj]. This observation is important to compute the relevant values with theorem 6.1.
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6.1 The OMC model associated to the SDE system

In an OMCmodel we consider a permanent in�ow of newmembers in the population which has an evolution
driven by a Markov transition matrix. In an OMC model the asymptotic behavior of subpopulations in the
transient classes become non trivial and may be quantitatively described. So, in order to study the evolution
of thewhole population of newly viral infected individuals spread in a long period of time – by anOMCmodel
– we will consider, as an example, simulated data of newly detected with some infection on a period of, say,
33 years, for instance from 1983 to 2016. In the right-hand side of Figure 6.1 we present the �tting of this data
with a function such as,

ga,b,c,d,k(x) := (x + k)bea−cx+dx
2

(6.10)

with a, b, c, d, k parameters. The �tted parameters give us the function:

g�tted(x) := exp
(
0.00356302x2 − 0.674046x + 13.4741 log(x + 6.2) − 23.9968

)
(6.11)
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Figure 6.1: One cohort proportions evolution and Portuguese reported infection numbers

Remark 17. The parameters a, b, c, d, k for the best �tting of the function ga,b,c,d,k given in formula (6.10),
maybe estimated– in amore rigorousway–bymaximum likelihood, as done in [7] for a sigmoid type function
or in [13] for an exponential type function.

Remark 18. The function g�tted used to �t the evolution of the newly viral diagnosed has a stationary point
xstationary ≈ 70andafter it becomes increasing. Anatural alternative choice in the absence of further information
and for illustration purposes lead us to consider the function G, which coincides with the �tted function
– see (6.10) – until this stationary point and remains constant for values of the variable greater than this
stationary point.

G(x) := ga,b,c,d,k(x)1I[0,xstationary[(x) + ga,b,c,d,k(xstationary)1I[xstationary ,+∞[(x) ,

where the relevant stationary point of ga,b,c,d,k(x) is given, for k = 6.2, by

xstationary =
0.25

(√
−8.bd + c2 + 24.8cd + 153.76d2 + c − 12.4d

)
d = 69.66579746554228 .

A �rst outcome of the approach inherent to the OMC model theorem allow us to draw Figure 6.2 which rep-
resents the expected number of patients in each of the transition infection classes over time, as well as the
proportion of patients in the Infection Classes considered as treatable.
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Remark 19. We supposed that the time units t = 30 presented in Figures 3.3, 4.1, 6.1 correspond to a period
of roughly 11 years. This is an intermediate value between approximately 6 and 18 years and is coherent with
the period 1983–2016 in the reported newly viral infected data. Being so, the time period in all the Figures
presented next, corresponds roughly to a third of a year, that is 4 months.

As an application of Theorem 6.1, namely of formula (6.6) we obtain the estimates of Table 5 and Table 6.
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Figure 6.2: Open Markov chain evolution with Portuguese viral newly diagnosed infected numbers: expected numbers of pa-
tients – the Poisson parameters – and the correspondent proportions.

Table 5: The expected numbers of patients – the Poisson parameters – and the corresponding proportions for the populations
of the Infection Classes IC1 to IC5 in case of function G at date t → +∞.

IC1 IC 2 IC3 IC4 IC5
Expected numbers 1213.62 3313.8 1091.9 1796.24 2062.05

Proportions 0.13189 0.360128 0.118662 0.195206 0.224094

Table 6: The expected numbers of patients – the Poisson parameters – and the corresponding proportions for the populations
of the Infection Classes IC1 to IC5 in case of function ga,b,c,d at date t → +∞.

IC1 IC 2 IC3 IC4 IC5
Expected numbers 11.4119 31.1603 10.2673 16.8904 19.3899

Proportions 0.13189 0.360128 0.118662 0.195206 0.224094

When the number on newly diagnosed increases without upper bound from date 70 – but under the
condition stated in the second thesis of Theorem 6.1 – formula (6.7) shows that nevertheless the mean value
of number of elements in each Infection Class, divided by mean value of the total newly diagnosed at each
date, also stabilizes as a constant value. This can be seen in Table 6 where we present the correspondent
results.

Preliminary conclusions 6.1. Let us observe the following preliminary conclusions on the application results
of the open Markov chain model that are represented in Figure 6.2 and in Tables 5 and 6.

1. As a consequence of the assumption made that the newly diagnosed viral infected come from a Poisson
distributed independent populations in each year, the populations in the di�erent Infection Classes 1 to
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5, are also Poisson distributed and the evolution of the Poisson parameters for these populations - and
so also the expected number of these populations - is what is shown in the right-hand side of Figure 6.2.

2. The�rst obvious conclusion is that the evolutionof theproportions in the transient classes corresponding
to the di�erent cohorts – dates 1983–2016 – is quite di�erent for the proportions evolution of one only
cohort as shown in Figure 6.1.

3. The evolution of population in Infection Class 2, clearly, re�ects the best the evolutionpattern of the newly
diagnosed viral infected as shown in Figure 6.1. This a direct consequence of the initial distribution in
which we assumed that 75% of the newly infected would be in this Infection Class 2.

4. As a consequence of Remark 16, the proportions of the elements in each of the Infection Classes are the
same either when the newly diagnosed are in a constant expected number from date 70 on or when the
expected number of the newly diagnosed grows without bound from date 70 on. And so, the bottom half
of both Tables 5 and 6 are equal, despite being computed by averaging di�erent vectors.

7 Conclusions
In this work we presented a method for associating an evolution model at individual level – given by an
ODE system – to a Markov chain evolution model for an open population of the aforementioned individuals.
We illustrated the methodology with an example at the individual level, we modeled a viral infection and
considered the viral load and a leucocyte count as variables of interest. We showed how to extend the study,
based on individuals measurements feeding parameter estimations, to the evolution of a varying population
of newly infected individuals divided in �ve transient Infection Classes; for that purpose we used simulated
data. We achieved a coherent link between the evolutions at individual level and at whole population level.
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