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Abstract
The focus of this thesis is the study of biological populations subject to external
changing environments exploring a number of theoretical, numerical, and experimental
approaches. We study different classes of environments, considering cases whose
evolution over time is deterministic or stochastic.

The first class of environments we consider vary deterministically. Here we focus on
the study of microbial resistance in bacterial populations subject to therapies of one or
two antibiotics. The environment specifies the drug concentration administered to the
population, so it is determined by the type of dosing schedules. We investigate how
subpopulations with higher mutation rates drive the emergence of multi-drug resistance.
We approach this problem analysing experimental data (obtained by Dr. Danna
Gifford), comparing their observations against stochastic simulations of a multi-type
branching model we design.

In separate work related to the previous one, we explore the delaying effect of
competition on the emergence of single and double resistance through theoretical
predictions of a similar stochastic model. We calculate the probability of having at
least one resistant cell for dosing schedules with constant and time-dependent drug
concentrations using a theoretical approach based on branching processes.

The second class of environments we consider vary stochastically. The first system
we study is a Moran-type model, describing a population subject to a switching
environment that determines the type of reproduction, namely sexual or asexual. The
population can exhibit several number of ‘mating types’ (analog to male/female sexes,
but not restricted to two) that depends on the rate of reproduction, as well as the
mutation rate (i.e., inclusion of new types). We investigate the stationary distribution
of the number of mating types for different switching regimes. We show that for slow
switching regimes the distribution can become bimodal, while for fast switching the
system behaves as if there was one single effective environment. Our approach exploits
properties of branching processes and integer partitions in number theory.

Lastly, we study and design an algorithm based on the so-called τ -leaping algorithm,
focusing on systems with fast fluctuating environments. Our algorithm treats the input
rates for the τ -leaping as (clipped) Gaussian random variables with first and second
moments constructed from the environmental process. Several biological examples are
explored, such as genetic circuits, birth-death processes, and genetic switches. We
consider cases with discrete and continuous environmental spaces. The algorithm can
produce results for macroscopic observables in fluctuating regimes beyond the adiabatic
limit (i.e., infinitely fast switching) that are in good agreement with measurements
from other simulation methods, but with a significantly reduced computing time.
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Chapter 1

Introduction

1.1 The classical physicist’s approach to modelling

biological systems

The last century brought a considerable increase in the interest of scientists in the

mathematical modelling of biological systems. To a great extent, this has been due to

the substantial development of experimental techniques, such as microscopic or blotting

techniques, which have enlightened us about the complexity of the world of living

organisms. Biologists, on the one hand, have realised the need to quantify the behaviour

of biological systems in order to make predictions. Physicists and mathematicians, on

the other hand, are trying to expand their self-centred circle of inquisitiveness, realising

the interesting complexity of biological problems and the usefulness of mathematical

and physical techniques to approach them.

Mathematical modelling in biology has a rich and varied history. Early examples

can be found in the 13th century when Fibonacci used his famous series to study

the growth of populations of rabbits [1]. Since then, and particularly from the 18th

century onwards, the modelling has been focused on different areas of study, such as

cell biology, genetics, population dynamics, ecology, to name a few [2–5]. Physicists’

modelling of biology often apply methods (although not exclusively) from statistical

physics [6–8] and non-linear dynamics [9]. Whichever approach used, the biological

system under study is considered as a dynamical system comprised of interacting parts,

often being individuals such as microbes or plants, that can exchange matter and

15



Chapter 1. Introduction

energy. The approach used to model the behaviour of such system will depend on

what kind of description one wants to develop. In many cases, randomness will not

play an important role and one can treat the system as deterministic, describing it

using differential equations. This is the case, for example, of prey-predator models [10],

Turing patterns in vegetation clusters [11], neural models [12], tumour growth models

[13], among many others [2, 3]. When randomness cannot be ignored, the approach to

model the system will be stochastic.

Stochastic processes are often used in biology when the dynamics of the system are

driven by randomness. Such is the case, for example, of systems with small populations

in which fluctuations cannot be neglected. Common examples from evolutionary

biology include cancer modelling [14], antibiotic resistance [15], population genetics [16],

evolutionary rescue [17], among others. In these scenarios the stochasticity is intrinsic,

i.e., it is inherent to the system. This can arise, for instance, through mutations

within a population that occur at random or the stochastic sequence of reproduction

events in small populations. In other situations, the stochasticity is present in an

extrinsic way when external sources that affect the system vary randomly, e.g., in

presence of an external fluctuating environment [18]. Independently of the nature of

the stochasticity of the system, often two methods are used to approach modelling

randomness in populations. The first consists in performing analysis of experimental

data, applying statistical methods to characterise the complexity of the system under

study. The focus on these approaches is usually of producing reliable data and gaining

useful information that can enlighten about the behaviour the system. The second

approach consists in constructing theoretical models that can capture the main features

of the system, such that they are able to predict their evolution over time. As often

is the case in physics, these models rely on simplifications and idealisations of the

interactions between the different agents within the system.

When constructing stochastic theoretical models to understand the dynamics of

a biological population, the system is treated as interacting individuals (or agents)

following certain rules determined by the conditions to which they are subject. These

models are usually termed as individual-based models (IBM) [19, 20]. In some way,

this is similar to the classical physics problem of considering interacting particles

subject to forces with given constraints. For the study of IBM, well-known tools from
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stochastic processes are often employed, such as master equations, generating functions,

Kramers–Moyal expansions, Fokker–Planck equations, [21], among others. Cases in

which the analytical tractability of the system is limited, one can resort to stochastic

numerical simulations, such as Monte Carlo methods [22]. Simulations act as virtual

realisations of experiments from which we can make observations of the system and

verify the theoretical predicts of toy models as done in classical physics. The main

difference from the classical physicist’s perspective, however, is that when studying

biology, one has to deal with a living world composed of unpredictable active agents

that do not necessarily act in the same way. Quotting words of the celebrated physicist

Erwin Schrödinger from his book What is Life? [23], when modelling biology the

classical physicist will wonder:

“How can the events in space and time which take place within the spatial

boundary of a living organism be accounted for by physics and chemistry?”.

The present thesis does not try to answer this question. This thesis, instead, is an

attempt to illustrate the usefulness of stochastic processes for understanding biological

phenomena. Our attempt is to explore different relevant biological scenarios from the

point of view of physics by applying a number of mathematical and numerical tools,

combined with experiments carried out by my collaborators to investigate them.

1.2 Changing environments in biology

The central theme of this thesis is the study of how external changing environments

affect biological populations. We understand environment as any external condition,

such as temperature, pressure, drug concentrations, resources, etc., that can affect

the dynamics of a biological system. Environments play a fundamental role in the

evolution of a population due to their coupling to different parameters of the system.

Environments can, for example, increase abundance fluctuations [24] or alter mutation

rates within a population [25]. Environments can even drive a population to extinction

and cause biological systems to adapt in order to survive, an effect called evolutionary

rescue [26].

Given the relevance of environments to biological populations, there has been an

increasing interest in proposing different mathematical schemes to approach them. In
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many cases, environments are best characterised as deterministic. Such cases include,

for example, seasonal variations in models of epidemic spread [27], periodic variations

in population dynamics [28], pulsed administration strategies in cancer therapies [29],

treatment protocols in antibiotic resistance [30], among others. It is common for

such cases to treat the environment as a dynamical system and employ methods from

non-linear dynamics to study them [31].

In other cases, the unpredictability of changes in environments makes it more

suitable to use a stochastic description. Depending on the nature of the environment,

in some situations it will be more appropriate to consider a continuous space to model

the environmental dynamics. Such cases can be studied by incorporating the effect of

fluctuating environments as extrinsic noise [32]. A continuous space may be suitable to

model environmental fluctuations in ecology and evolutionary biology when there are

changes in abundance of resources, presence of detrimental substances, variations in

temperature, etc [24, 33–35].

For many scenarios, it is more suitable to consider a discrete space to model the

environmental dynamics. Such cases are often called switching environments, as the

environmental state switches between certain collection of discrete states determined

by the biological system. This can be the case of switching between phenotypical states

in cell populations [36, 37], fitness variations in genotypes [38], binding of promoter

sites in proteins [39], abrupt changes in carrying capacities [40], among others.

A system in a fluctuating environments is not only subject to the external noisy effect

of its surroundings, but can also be driven by the intrinsic noise from the stochasticity

within the system. In such cases, it is of interest to mathematically understand the

effect of coupling on the system of these two sources of stochasticity [32, 41].

1.3 Thesis structure and format

This thesis explores systems subject to different types of environments, such that

some of them will vary deterministically, and others stochastically. Both discrete and

continuous environmental spaces are investigated, as well as different types of effects

on the individual-based model under study. The methods used include theoretical,

numerical, and experimental approaches, providing thus different perspectives of how
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changing environment
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Figure 1.1: Schematic representation of the chapters in this thesis. Each chapter considers differ-
ent types of external environments: in Chapters 3 and 4 the environment varies deterministically,
while in Chapters 5 and 6 it varies stochastically.

stochastic processes can be employed in the modelling of biological phenomena. The

experiments are performed by my co-supervisor Dr. Danna R. Gifford from the Division

of Evolution and Genomic Sciences, School of Biological Sciences, The University of

Manchester.

We proceed now to briefly explain how this thesis is structured, providing an

overview of the main contents of each chapter and the main features of the system

under study, and the role of the changing environment.

This thesis is written following the journal format of The University of Manchester,

built around 4 articles presented in Chapters 3-6. Each of these chapters encloses the

content of the papers, with typeset modifications to fit the requirements of the thesis’

format from The University of Manchester. The paper in Chapter 4 is published in

Journal of Theoretical Biology, while the papers in Chapters 3, 5, and 6 are under

review at Nature Ecology, Theoretical Population Biology, and Physical Review E,

respectively. The preface of each chapter contains a journal or preprint reference of the

respective paper.

Figure 1.1 shows a schematic representation of the structure of this thesis, illustrating

how the environment acts in the model studied in each chapter. This thesis is structured

as follows:

Chapter 1: Theoretical Background. In this chapter, we provide some theo-

retical background of stochastic processes, including definitions of concepts such as

Markov chains and master equations; we also describe birth-death processes, changing
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environments, the numerical schemes used throughout this thesis, and some methods

of number theory about partitions of integer numbers (these will be only used in

Chapter 5).

Chapter 3: Mutators drive evolution of multi-drug resistance to antibi-

otics. In this chapter, we study an experimental setup developed by Dr. Danna R.

Gifford of a bacterial population subject to antibiotic therapies of one and two antibi-

otics. The experiment consists of a number of days of growth with drug concentrations

that are doubled daily, in which the population is diluted (i.e., reduced) by a certain

factor at the end of each day. The drug concentration remains constant each day. We

investigate the role of subpopulations with higher mutation rates on the emergence

of single and double resistant cells. Our approach in this chapter is to develop a

stochastic model that incorporates growth parameters measured from experiments,

such that it can capture the evolution of the proportion of resistant cells throughout

the experiment. The growth parameters used in the model are measured by fitting

growth curves to experimental data of the bacterial populations. The bacteria exhibit

a diauxic growth (i.e., growth with two phases) that is taken into account in our model.

The model incorporates competition as well, based on the competitive Lotka–Volterra

equations [42]. The environment here determines the drug concentration applied, and

is coupled to the growth rate and carrying capacity of the bacterial population. Since

the concentration is constant in each day of the experiment, the environmental space

is discrete.

Given the large number of parameters present in the system and the complexity of

the population growth, we do not focus on trying to deduce theoretical predictions of

the evolution of resistance. Instead, we perform stochastic numerical simulations of

our model, employing a numerical scheme that we design. This scheme uses binomial

distributions to model the distribution of the number of offspring of each strain present

in the system. Using binomial distributions allows us to reduce the computational

running time to simulate the experiment, and to incorporate dilutions in a simple way.

We find that the predictions of our model are in good agreement with the experimental

observations.

Chapter 4: Competition delays multi-drug resistance evolution during

combination therapy. This chapter focuses on a model similar to that in Chapter 3.
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In contrast to the previous chapter, the work here is analytical and computational,

and does not include laboratory experiments. Here we consider a cell population

subject to a combination therapy of two drugs, in which the environment is determined

by the concentrations of the drugs applied. The environment also determines the

concentrations of the drugs applied. However, this time we allow the concentration to

vary continuously over time. The focus of this study is on calculating the probabilities

of having at least one resistant individual to one or both drugs, and compare the

evolution over time of this probability for different types of growth models and drug

treatments. The theoretical framework we employ is an extension of the work by

Michor and Foo [43]. We consider three growth models: one with exponential growth,

another with logistic growth with no competition between strains, and another with

logistic growth and competition between strains. The latter is based on the competitive

Lotka–Volterra equations [42].

We first test our predictions by allowing one growth parameter to vary while

keeping the rest as constant. We find that the inclusion of competition can considerably

delay the emergence of single resistance when resources are scarce, and can delay

the emergence of double resistance for both scarce and abundant resources. We also

test our predictions assuming time-dependent drug therapies (dosing schedules) that

incorporate some features of clinical treatments. We find again that competition delays

the emergence of resistance, and that it can alter the optimum treatment, i.e., the one

that best delays the emergence of resistance.

Chapter 5: Switching environments, synchronous sex, and the evolution

of mating types. In this chapter, we consider a finite population whose dynamics is

driven by a Moran-like model, in which its individuals are allowed to reproduce either

sexually or asexually. The environment here specifies the type of reproduction and

switches stochastically between the sexual and asexual modes of reproduction. This

model is an extension of the work done by Constable and Kokko [44]. Each individual

in the population is of a certain mating type, which is analog to the male/female sexes

but not restricted to two. The number of mating types represented in the population

of N individuals can range from one to N. In the former case, all individuals are of the

same mating type. In the latter, each member of the population represents a different

mating type. This number depends on the reproduction rate of the population, as
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well as the mutation rate (i.e., inclusion of new types). Our focus here is to study the

stationary distribution of the number of mating types for different switching regimes of

the environment.

The method we employ to calculate the distribution of the number of mating

types is based on techniques from number theory, in which we exploit properties of

partitions of integer numbers. This method allows us to obtain analytical solutions

of the distribution for cases with non-switching environments. These solutions are

then used to approximate the distribution in switching environments using methods

from branching processes. We find that when the environmental switching is fast,

the system behaves as if it was in a single effective environment. However, when the

environment switches slowly, we see some differences such as a lower number of mating

types at equilibrium and bimodality in the stationary distribution of mating types. We

also demonstrate how additional biological processes such as selective sweeps can be

accounted for in this switching-environment framework.

Chapter 6: Beyond the adiabatic limit in systems with fast environ-

ments: a τ-leaping algorithm. In this chapter, we focus on the design of an

algorithm based on the so-called τ -leaping algorithm [45] for systems subject to a fast

fluctuating environment. Our algorithm works in discrete time and treats the input

rates for the τ -leaping as (clipped) Gaussian random variables with first and second

moments constructed from a fast environmental process. Several biological scenarios

are explored, such as genetic circuits, birth-death processes, and genetic switches, in

which we explore both discrete and continuous environments. The environment is

coupled to different transition rates in each system under study.

We test our algorithm by comparing the outcome of relevant stochastic quantities,

such as stationary distribution and mean switching times, against predictions of

standard algorithms. For discrete environmental cases we compare our predictions

against the continuous-time Gillespie algorithm [46, 47]. For continuous environmental

cases we construct a number of algorithms based on well-known approaches such as

the Gillespie algorithm, and the Euler-Maruyama method [48]. We demonstrate that

our algorithm can capture features of the system for switching regimes beyond the

adiabatic limit (i.e., the limit of infinitely fast switching systems).

Chapter 7: Conclusions. Lastly, in this chapter we present final remarks, possible
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future research directions, and general conclusions of this thesis.

1.4 List of works included in this thesis

The present thesis is based on the following manuscripts:

• D. R. Gifford, E. Berríos-Caro, C. Joerres, T. Galla, and C. G. Knight, “Mutators

drive evolution of multi-resistance to antibiotics”, bioRxiv preprint, bioRxiv:

643585 (2019). [Under review at Nature Ecology and Evolution]

• E. Berríos-Caro, D. R. Gifford, and T. Galla, “Competition delays multi-drug

resistance evolution during combination therapy”, Journal of Theoretical Biology

509, 110524 (2021).

• E. Berríos-Caro, T. Galla, and George W. A. Constable, “Switching environments,

synchronous sex, and the evolution of mating types”, bioRxiv preprint, bioRxiv
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• M. Tlidi, E. Berríos-Caro, D. Pinto-Ramos, A.G. Vladimirov, and M. G. Clerc.

“Interaction between vegetation patches and gaps: A self-organized response to

water scarcity”. Physica D: Nonlinear Phenomena 414, 132708 (2020).
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Chapter 2

Theoretical Background

Abstract

In this chapter, I will present the fundamental theoretical aspects that will serve

as basis for the work presented in this thesis. Throughout the following chapters,

the study will be focused on Markov processes, i.e., stochastic processes that have

no memory of the past. One particular case that we will study are so-called

birth-death processes used to model population dynamics. After giving a general

overview of the main properties of Markov processes, I will describe different types

of birth-death processes that will play a fundamental role in the following chapters.

Then I will turn to describing basic properties of changing environments, both in

discrete and continuous space. Finally, I will present some useful mathematical

and numerical tools that will be used later.

2.1 Markov processes

2.1.1 Definition and notation

A continuous-time Markov process1 (or Markov chain) is a stochastic process Xt

that takes values from a set S over a continuous parameter space t ∈ R+ (typically

time), characterised by being memoryless. The memoryless condition means that the

transition probability from any state Xt = n depends solely on state n, and not on the
1Markov processes are named after the Russian mathematician Andrey Andreyevich Markov

(1856− 1922).
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trajectory Xt takes to reach n. Mathematically, Xt fulfils

P
(
Xtk+1 = nk+1|Xtk = nk, . . . , Xt0 = n0

)
= P

(
Xtk+1 = nk+1|Xtk = nk

)
, (2.1)

where nk ∈ S represents a trajectory of the process Xt at times tk with k ≥ 0. The

space S can be discrete or continuous; here we focus on the former case.

Any Markov process Xt is completely determined by the generator matrix Q, whose

entries are defined as

qnm = lim
∆t→0

P (Xt+∆t = m|Xt = n)
∆t (n 6= m),

qnn = −
∑
m6=n

qnm. (2.2)

In this way, the sum of the entries of each row of Q is zero. The value |qnn| represents

the rate at which the system leaves state n, whilst qnm correspond to the probability

per unit time, or transition rate, of transitioning from state n to state m. The generator

matrix Q is often called as the infinitesimal generator of the Markov chain as it fulfils

pnm = δnm + qnm∆t+ o(∆t), (2.3)

with δnm the Kronecker delta, and pnm ≡ P (Xt+∆t = m|Xt = n), the transition proba-

bilities. In other words, the matrix Q defines the dynamics of the Markov chain over

an infinitesimal time step.

As we will see below in Section 1.5.1, a time-continuous Markov process can be

numerically simulated by means of the Gillespie algorithm. Any time-continuous

Markov chain can be defined in discrete-time by constructing the so-called embedded

Markov chain.

2.1.2 Kolmogorov equations

The generator matrix characterises the time evolution of the probability of being at a

certain state at a given time. The row vector probability P (t), whose entries are given

by Pn(t) ≡ P(Xt = n), satisfies

dP
dt (t) = P (t) ·Q, (2.4)

or, in summation form,
dPn
dt (t) =

∑
m∈S

Pm(t)qmn. (2.5)
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This equation is usually referred to as the Kolmogorov or master equation. From this

equation, one can deduce P (t) given an initial condition. By using Eq. (1.2), one can

express Eq. (1.5) as

dPn
dt (t) =

∑
m6=n

Pm(t)qmn −
∑
m6=n

Pn(t)qnm, (2.6)

for m ∈ S. From this equation, it is easy to see that the first term on the right-hand

side represents the net probability flux from any state m to state n, while the second

one from state n to any state m. The master equation then describes the balance of

the flux probabilities entering and leaving the Markov chain states.

If one is interested in the long-term evolution of P (t), i.e. the stationary distribution

P st, one sets the left-hand side of Eq. (1.4) equal to zero, so that

0 = P st ·Q, (2.7)

i.e., P st is equal to the kernel of QT .

2.1.3 Generating functions

In general, Kolmogorov equations are difficult to handle analytically, and can be

considerably difficult to solve. This can be alleviated by using generating functions,

which can turn the Kolmogorov equations into a single partial differential equation.

Given a distribution Pn(t), we define the generating function

F (z, t) =
∑
n∈S

znPn(t). (2.8)

Naturally, for n /∈ S the distribution Pn vanishes. Defining functions fl(Xt) through

P(Xt+∆t = m+ l|Xt = m) = fl(Xt)∆t, (l 6= 0) (2.9)

one finds that F (z, t) satisfies [1]

∂F (z, t)
∂t

=
∑
l 6=0

(zl − 1)fl
(
z
∂

∂z

)
F (z, t). (2.10)

If the functions fl are simple, this equation may be easy to solve. Note that l can

be positive or negative. In later chapters we will provide some applications of this

equation.
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First and second moments

Knowing the generating function F (z, t) allows us to calculate some relevant quantities

through simple formulas. For instance, the kth moment defined as

〈
Xk
t

〉
= E[Xk

t ] =
∑
n∈S

nkPn(t), (2.11)

can be calculated from 〈
Xk
t

〉
= ∂kF (z, t)

∂(ln z)k

∣∣∣∣∣
z=1

. (2.12)

Often one is interested in obtaining the first two moments. The mean value of Xt

takes the form

〈Xt〉 ≡ E[Xt] = ∂F (z, t)
∂z

∣∣∣∣∣
z=1

, (2.13)

while the variance

Var[Xt] ≡
〈
X2
t

〉
− 〈Xt〉2 = ∂2F (z, t)

∂z2

∣∣∣∣∣
z=1

+ ∂F (z, t)
∂z

∣∣∣∣∣
z=1
−
(
∂F (z, t)
∂z

∣∣∣∣∣
z=1

)2

. (2.14)

2.2 Homogeneous birth-death processes

Birth-death processes are a crucial topic in this thesis. Throughout the following

chapters, we will look at different biological scenarios in which birth-death processes

appear. This section is intended to give an overview of the main homogeneous birth-

death processes that will be later explored. Homogeneous processes are those in which

the transition rates are independent of time, which means the entries of the generator

matrix Q remain constant.

2.2.1 General birth-death process

Definition

Let us consider a population in which the number individuals is given by a random

variable Xt that takes values from a state space S = N. Let us assume birth events

occur at rate λn when the system is in state n, and death events at rate µn when in

state n. The associated generator matrix then has as the following non-zero entries:

qn,n+1 = λn, qn,n−1 = µn, and qnn = −(λn + µn), (2.15)
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2.2. Homogeneous birth-death processes

which translates into the following matrix

Q =



−λ0 λ0 0 . . . . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2
. . .

... 0 . . . . . . . . .

... ... . . . . . . . . .


. (2.16)

Since the number of individuals cannot be negative, it is necessary to set µn = 0 for

n ≤ 0, i.e., the system cannot cross n = 0. State n = 0 is said to be a reflecting state.

Naturally, we also need to set λn = 0 for n < 0. If λ0 = 0, state n = 0 becomes

an absorbing state. A schematic representation of a general birth-death process is

presented in Figure 1.1.

Figure 2.1: Schematic representation of a general birth-death process with birth rates λn and

death rates µn. The states n represent the number of individuals. State n = 0 is reflecting (i.e.,

µn = 0 for n ≤ 0).

Kolmogorov equations of birth-death events

Inserting the generator matrix from Eq. (1.16) in Eq. (1.4), one obtains the respective

Kolmogorov equations

dPn
dt (t) = λn−1Pn−1(t) + µn+1Pn+1(t)− (λn + µn)Pn(t) for n ≥ 0, (2.17)

where Pn = 0 for n < 0. Depending on how the rates λn and µn vary with respect to

n, the solution of this equation may vary. However, we can still say some properties

that apply for any rates chosen. We present below a few of them.

Rate equations for first moments

Using the Kolmogorov equations one can easily construct the rate equations for the

mean values of the number of individuals. Multiplying Eq. (1.17) by n and summing

31



Chapter 2. Theoretical Background

both sides over n, one obtains

d 〈n〉
dt = 〈λn〉 − 〈µn〉 , (2.18)

where we write 〈n〉 ≡ 〈Xt〉, 〈λn〉 = ∑
n λnPn(t), and 〈µn〉 = ∑

n µnPn(t). For example,

for λn = λn and µ = µn, we have 〈λn〉 = λ 〈n〉 and 〈µn〉 = µ 〈n〉, so that d 〈n〉 /dt =

(λ− µ) 〈n〉.

Ergodicity condition

Given λn and µn, a birth-death process is said to be ergodic if satisfies the following

properties [2]
∞∑
m=1

m∏
n=1

µn
λn
→∞ and

∞∑
m=1

m∏
n=1

λn−1

µn
<∞. (2.19)

The ergodic property indicates that the process is irreducible and positive recurrent.

The former indicates that all the states communicate, i.e., there is a non-zero probability

to transit between any pair of states in a finite number of steps; the latter means that

there exists a finite expected time to return to any state.

Stationary distribution

If a birth-death process is ergodic, then it admits a unique stationary distribution P st

given by the solution of Eq. (1.7). This is [3]

P st
n = P st

0

n∏
m=1

λm−1

µm
, (2.20)

where

P st
0 =

(
1 +

∞∑
k=1

k∏
m=1

λm−1

µm

)−1

. (2.21)

This distribution is a limiting distribution, i.e., limt→∞ P (t) = P st, which is independent

of the initial condition P (0).

We describe below some processes given by different dependences on the rates λn
and µn with respect to n that will be later explored in the following chapters. For

further examples, see e.g. [1, 4].
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2.2. Homogeneous birth-death processes

2.2.2 Poisson process

The Poisson process, also called Poisson point process, is a very simple type of

continuous-time Markov process. This will play an important role in the Gillespie algo-

rithm described later in Section 1.5.1. In this process, we assume that new individuals

are added at constant rate λ, i.e.,

λn = λ and µn = 0, (2.22)

so the master equation becomes
dPn
dt (t) = λPn−1(t)− λPn(t). (2.23)

An easy way to solve this equation is by calculating first the corresponding generating

function. For that, we first note that the only transition probability permitted is

P(Xt+∆t = n+ 1|Xt = n) = λ∆t. (2.24)

Then, according to Eq. (1.9), f1 = λ, while fl = 0 for l 6= 1. Using Eq. (1.10), one finds

∂F (z, t)
∂t

= λ(z − 1)F (z, t), (2.25)

Setting an initial condition of zero individuals at time t = 0, i.e., Pn(0) = δn,0, so that

F (z, 0) = 1, we get

F (z, t) = eλt(z−1). (2.26)

Expressing this as

F (z, t) =
∞∑
n=0

zne−λt
(λt)n
n! , (2.27)

and comparing it against Eq. (1.8), it is direct that

Pn(t) = e−λt
(λt)n
n! . (2.28)

By virtue of equations (1.13) and (1.14), the mean value and variance become

〈n〉 = λt, (2.29)

and 〈
n2
〉
− 〈n〉2 = λt. (2.30)

This process does not admit a stationary distribution as the conditions in Eq. (1.19)

are not fulfilled. In fact, we have ∑∞m=1
∏m
n=1(µn/λn) = 0 and ∑∞m=1

∏m
n=1(λn−1/µn)→

∞.
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2.2.3 Pure birth process (Yule–Furry process)

This process2 will be later used in Chapter 3 as basis to develop a growth model of

multi-drug resistance whose growth rate will be determined from experimental data. In

this model, we consider a population in which each individual reproduces at a constant

rate λ, i.e.,

n
λ−→ n+ 1. (2.31)

There is no death process, so we set

λn = λn and µn = 0. (2.32)

The master equation then becomes

dPn
dt (t) = λ(n− 1)Pn−1(t)− λnPn(t). (2.33)

To solve this, we first calculate the generating function. Since the non-zero infinitesimal

transition probabilities are

P(Xt+∆t = n+ 1|Xt = n) = λn∆t, (2.34)

we have f1(Xt) = λXt, while fl = 0 for l 6= 1. From Eq. (1.10) then, we find

∂F (z, t)
∂t

= λz(z − 1)∂F (z, t)
∂z

. (2.35)

Assuming an initial condition of n0 particles at t = 0, i.e., Pn(0) = δn,n0 , so that

F (z, 0) = zn0 , the solution becomes

F (z, t) =
(

1
1− eλt (1− 1/z)

)n0

. (2.36)

Expanding in series of z, picking out the coefficient multiplying zn, and comparing it

against Eq. (1.8), one finds

Pn(t) =
(
n+ n0 − 1
n0 − 1

)
e−λn0t(1− e−λt)n, (2.37)

which is a negative binomial distribution describing the probability of having n failures

and n0 successes, out of n+ n0 independent and identically distributed Bernoulli trials

with probability of success e−λt.
2Yule [5] first studied this process in the context of evolution of species in 1924. A similar process

was later studied in 1937 by Furry [6] focused on cosmic ray phenomena.

34



2.2. Homogeneous birth-death processes

Finally, from equations (1.13) and (1.14), we have

〈n〉 = n0e
λt, (2.38)

and 〈
n2
〉
− 〈n〉2 = n0e

λt(eλt − 1). (2.39)

As with the Poisson process, the Yule–Furry process does not admit a stationary

distribution as the conditions in Eq. (1.19) are not fulfilled.

2.2.4 Simple birth-death process

In this process, we add the possibility to the Yule–Furry process that each individual

within a population dies at a constant rate µ. This model will be later explored in

Chapter 4 to construct a growth model of multi-drug resistance under constant drug

concentrations. Using the same notation as before, we have

n
λ−→ n+ 1, and n

µ−→ n− 1, (2.40)

so the rates become

λn = λn, and µn = µn. (2.41)

The master equation takes the following form

dPn
dt (t) = λ(n− 1)Pn−1(t) + µ(n+ 1)Pn+1(t)− (λ+ µ)nPn(t), (2.42)

where we set Pn = 0 for n < 0. The non-zero infinitesimal transition probabilities are

P(Xt+∆t = n+ 1|Xt = n) = λn∆t (2.43)

and

P(Xt+∆t = n− 1|Xt = n) = µn∆t, (2.44)

so that the non-zero coefficients fl become f1(Xt) = λXt and f−1(Xt) = µXt. From

Eq. (1.10) then,

∂F (z, t)
∂t

= z [λ(z − 1) + µ(1/z − 1)] ∂F (z, t)
∂z

. (2.45)
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Assuming an initial condition of n0 particles at t = 0, i.e., Pn(0) = δn,n0 , so that

F (z, 0) = zn0 , the solution becomes [1]

F (z, t) =



(
µ(z − 1)e(λ−µ)t − (λz − µ)
λ(z − 1)e(λ−µ)t − (λz − µ)

)n0

if λ 6= µ (2.46a)(
1− (λt− 1)(z − 1)

1− λt(z − 1)

)n0

if λ = µ. (2.46b)

Expanding in z and picking out the coefficient multiplying zn, one finds [1, 7]

Pn(t) =
min(n0,n)∑
m=0

(
n0

m

)(
n0 + n−m− 1

n0 − 1

)
p(t)n0−mq(t)n−m(1− p(t)− q(t))m,

(2.47)

where

p(t) =


µ(e(λ−µ)t − 1)
λe(λ−µ)t − µ

if λ 6= µ (2.48a)

λt

1 + λt
if λ = µ, (2.48b)

and

q(t) =


λ(e(λ−µ)t − 1)
λe(λ−µ)t − µ

if λ 6= µ (2.49a)

λt

1 + λt
if λ = µ. (2.49b)

Finally, from equations (1.13) and (1.14), we have

〈n〉 = n0e
(λ−µ)t, (2.50)

and

〈
n2
〉
− 〈n〉2 =

 n0

(
λ+ µ

λ− µ

)
e(λ−µ)t(e(λ−µ)t − 1) if λ 6= µ (2.51a)

2λt if λ = µ. (2.51b)

Extinction probability

Unlike the Yule–Furry process (see Section 1.2.3), in this case the population may

get extinct due to the death process involved. The probability of extinction, i.e., the

probability that there are zero individuals at time t, is given by P0(t) from Eq. (1.47).

We have

Pext(t) ≡ P0(t) =



(
µ(e(λ−µ)t − 1)
λe(λ−µ)t − µ

)n0

if λ 6= µ (2.52a)(
λt

1 + λt

)n0

if λ = µ. (2.52b)
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From this we deduce that

lim
t→∞

Pext(t) =


(
µ

λ

)n0

if λ ≥ µ (2.53a)

1 if λ < µ, (2.53b)

implying that extinction is certain only if µ ≥ λ.

Stationary distribution

To determine whether a simple birth-death process admits a stationary distribution,

we look at the ergodicity conditions from Eq. (1.19). It is easy to see that these are

fulfilled only when µ ≥ λ, in which case we have
∞∑
m=1

m∏
n=1

µn
λn

=
∞∑
m=1

(
µ

λ

)m
→∞, (2.54)

and
∞∑
m=1

m∏
n=1

λn−1

µn
=

∞∑
m=1

(
µ

λ

)m ( m∏
n=1

n− 1
n

)
︸ ︷︷ ︸

=0

= 0 <∞. (2.55)

As seen above, when µ ≥ λ, the population dies out. We conclude then that

P st
n =

 undefined if λ > µ (2.56a)

δn,0 if λ ≤ µ, (2.56b)

i.e., for λ > µ the population grows indefinitely (on average) and does not reach

stationarity, while for λ ≤ µ the population eventually gets extinct.

2.2.5 Birth-death process with non-linear growth rates

In many biological systems, we may encounter birth-death processes with non-linear

growth rates. These are, in general, difficult to handle analytically, and may not admit

closed-form expressions for relevant quantities (such as probability distributions). We

present below briefly two models that will be later explored in this thesis.

Logistic growth rates

The previous examples of birth-death processes do not consider limitations of resources

within a population. In more realistic cases, individuals may compete for a common

37



Chapter 2. Theoretical Background

resource and some non-linear effects may take place on the population growth. A

simple model that accounts for limiting resources is the so-called Verhulst3 model [8]

d 〈n〉
dt = r 〈n〉

(
1− 〈n〉

k

)
, (2.57)

where r denotes the intrinsic growth rate and k is the carrying capacity of the population.

The angular bracket represents the average over different realisations. The solution of

this equation is an S-shaped curve, with 〈n〉 approaching k as time grows (assuming

r > 0). Figure 1.2 shows a typical profile of this curve.

0 20 40 60 80
0

20
40
60
80

100

Figure 2.2: Mean logistic growth over time. The number of individuals grow following an

exponential law at early stages, but approaches the carrying capacity k as time goes by. The

profile shown is the solution of Eq. (1.57), i.e., 〈n(t)〉 = kn0/{n0 + (k − n0) exp[−r(t− t0)]},

with k = 100, n0 = 10, t0 = 10, and r = 0.1. Notice that 〈n(t0)〉 = n0.

In order to model a birth-death process whose mean behaviour follows this equa-

tion, one needs to choose appropriately the birth and death rates depending on the

requirements one desires from the model. A simple way is setting

λn = b(n)n, and, µn = d(n)n, (2.58)

with b(n) and d(n) the per capita birth and death rates, respectively. Using the

approximation 〈n2〉 = 〈n〉2 (which holds for large populations as fluctuations are lower

than the number of individuals), and following Eq. (1.18), one requires then

b(n)− d(n) = r
(

1− n

k

)
. (2.59)

3The Verhulst or logistic growth model was introduced by the Belgian mathematician Pierre
François Verhulst in 1838
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2.2. Homogeneous birth-death processes

In Chapter 3 we will study a model with logistic growth in which we will set the

growth rates equal to zero for n > k to stop the growth. In Chapter 4 we will consider

λn − µn = 0 for n ≥ k, but keeping the rates as positive to keep fluctuations around

n = k. For more examples see [4].

Moran model

This model4 is used to describe the dynamics of populations with a fixed size N

composed by two types of species that undergo birth and death events [10]. The states

of this system are given by the number of individuals of one of the species. If the

system is in state n, there will be n individuals of one type and N − n of the other.

The state space then is bounded by N , i.e., S = {n|n ∈ N, 0 ≤ n ≤ N}.

(a) (b) (c) (d)

random selection proliferation random selection death

Figure 2.3: Schematic representation of a reproductive event of the Moran model: (a) An

individual is chosen uniformly at random of either type. (b) That individual proliferates. (c) An

individual of the other type is chosen uniformly at random. (d) That individual dies.

Let us denote the species by A and B. In order to keep the total size equal to N , the

birth and death events must be coupled. Figure 1.3 shows a schematic representation

of the events in a Moran model. Whenever a birth event occurs, let us say of species A,

then one individual of species B, chosen uniformly at random, must die. The individual

from species A is also chosen uniformly at random. The opposite event can also take

place, i.e., one individual of species A dies and of B reproduces, with individuals chosen

uniformly at random. This means the rate of increasing or decreasing n is the same.

The situation in which the individuals chosen for birth and death are of the same type

can also happen. This case does not have any effect in the system. The Moran model
4The Moran model was introduced by the Australian statistician P. A. P. Moran in 1958 as an

alternative to the Wright-Fisher model [9].
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then can be interpreted as a birth-death process with rates

λn = µn = n

N

(N − n)
N

, (2.60)

where the terms n/N and (N − n)/N represent the probability of choosing randomly

an individual of each species. Note that at n = 0 and n = N both birth and death

rates vanish, i.e., in those states the system cannot undergo any transition. States

n = 0 and n = N are said to be absorbing states. It is expected then that in the long

time one of these states will be eventually reached.

Later in Chapter 3, we will use the Moran model to construct a model in which we

will allow different types of species to either reproduce sexually or asexually.

2.3 Non-homogeneous birth-death process

Let us turn now to non-homogeneous birth-death processes, i.e., birth-death processes

with time-dependent birth and death rates. These processes are suitable to model the

effect of a time-varying external parameter, such as drug concentrations, that modules

birth and death rates in time. A model of this type will be explored in Chapter 4 to

describe the effect of oscillating drug concentrations on a multi-drug resistance model.

Non-homogeneous processes can be simulated with the Lewis’ thinning algorithm

described below in Section 1.5.1.

We consider here a simple birth-death process with time-dependent rates of the

form

λn = λ(t)n, and µn = µ(t)n, (2.61)

where λ(t) and µ(t) are the time-dependent per capita birth and death rates, respectively.

These rates λn and µn leave unaltered the form of the master equation, with the only

difference that now the right-hand side contains time-dependent functions. One obtains

dPn
dt (t) = λ(t)(n− 1)Pn−1(t) + µ(t)(n+ 1)Pn+1(t)− [λ(t) + µ(t)]nPn(t). (2.62)

Similarly, for the generating function we have

∂F (z, t)
∂t

= z [λ(t)(z − 1) + µ(t)(1/z − 1)] ∂F (z, t)
∂z

. (2.63)
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Setting an initial condition of n0 individuals at time t = t0, i.e., F (z, t0) = zn0 , the

solution of this equation becomes

F (z, t) =

1 + 1
e−β(t)

(z − 1) −
∫ t

t0
λ(t′)e−β(t′)dt′


n0

, (2.64)

with

β(t) =
∫ t

t0
[λ(t′)− µ(t′)]dt′. (2.65)

As with the homogeneous case, by expanding F (z, t) in series of z, and extracting the

coefficient next to zn, we construct the probability distribution. One finds

Pn(t) =
min(n0,n)∑
m=0

(
n0

m

)(
n0 + n−m− 1

n0 − 1

)
p(t)n0−mq(t)n−m(1− p(t)− q(t))m,

(2.66)

with

p(t) = 1− 1

e−β(t) +
∫ t

t0
λ(t′)e−β(t′)dt′

, (2.67)

and

q(t) = 1− e−β(t)

e−β(t) +
∫ t

t0
λ(t′)e−β(t′)dt′

. (2.68)

All these previous expressions are valid whether λ(t) 6= µ(t) or λ(t) = µ(t).

The mean value and variance can again be obtained from equations (1.13) and

(1.14). One finds

〈n〉 = n0e
β(t), (2.69)

and 〈
n2
〉
− 〈n〉2 = n0e

2β(t)
∫ t

t0
[λ(t′) + µ(t′)]e−β(t′)dt′. (2.70)

Extinction probability

The probability distribution in Eq. (1.66) allows us to obtain the extinction probability

of a population for given rates λ(t) and µ(t), with an initial condition of n0 individuals

at t = t0. This quantity takes the following form

Pext(t) ≡ P0(t) =

1− 1

e−β(t) +
∫ t

t0
λ(t′)e−β(t′)dt′


n0

. (2.71)
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This has the form of tumour control probabilities calculated for temporal protocols of

dose delivery [11, 12]. Using Eq. (1.65), we note that de−β(t)
/

dt = [µ(t)− λ(t)]eβ(t),

so that e−β(t) = 1 +
∫ t

t0
[µ(t)− λ(t)]eβ(t′). Using this, we can write

Pext(t) =


∫ t

t0
µ(t′)e−β(t′)dt′

1 +
∫ t

t0
µ(t′)e−β(t′)dt′


n0

, (2.72)

which shows more clearly the effect of the death rate µ(t) on the population extinction.

This is useful as death events are what cause the extinction of the population. From

here, one can conclude that the extinction probability tends to unity as t→∞ if and

only if

lim
t→∞

∫ t

t0
µ(t′)e−β(t′)dt′ =∞. (2.73)

A clear example of this is the case µ(t) > λ(t) for any t ≥ t0.

2.4 Fluctuating environments

We turn now to another main aspect of this thesis: fluctuating environments. These

describe the stochastic variation of external factors that alter the reaction parameters

within a population. The cases that later will be explored are of fluctuating environments

that alter the growth rates of biological populations following a birth-death process.

In Chapters 3 and 4, we study a model of the evolution of multi-drug resistance

which assumes an environment that changes deterministically, i.e., it varies over

time following a given function of time. These cases fall into the category of non-

homogeneous birth-death processes that were described in the previous section. In

Chapters 5 and 6, we assume the environment behaves stochastically, and the previous

framework cannot be applied. In such cases, one needs to treat the environment as

a separate stochastic process, and study how its stochasticity affects the population.

Depending on how the environment varies with the population state, or on how the

typical timescale of the environment compares to the population timescale (i.e., if the

environment is slow or fast compared to the population), one may be able to deduce

analytical results of the environmental behaviour. Throughout this thesis, we assume

the environmental process is Markovian. In this section, we describe the theoretical
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framework of fluctuating environments using the tools presented above. We consider

cases in which the environmental space is discrete and cases in which it is continuous.

For the latter, we describe an environment that follows an Ornstein–Uhlenbeck process.

2.4.1 Discrete space: switching environments

When the environmental space is discrete, the environmental fluctuating process is

usually referred to as a switching environment (see e.g. [13]). This case can describe,

biological scenarios in which there is switching between a collection of discrete states

such as phenotypical states in cell populations [14] or switching of resources consumed

by bacteria [15].

Let us denote the environments by Eσ, with σ the environmental state. We assume

the number of states the environment can take is bounded, i.e., the state space of

the process is of the form S = {σ|σ ∈ N, σmin ≤ σ ≤ σmax}, for some σmin and

σmax. If the rates the environment switches are independent on the system state (e.g.,

the composition of the population), one can treat the environmental dynamics as a

separate process from the population dynamics. In such cases, one can make use of

the theoretical framework of homogeneous birth-death processes considering σ as the

states and the switching rates as the birth and death rates.

Two environments

As an illustrative example, let us consider a simple case of two environmental states

that do not depend on the system state. This case is often found in many biological

systems for periodic or random switching environments (see e.g., [14, 16, 17]). Here we

focus on the latter case. We assume the environment can be in states σ = 0 and σ = 1.

We write k+ for the rate of transitioning from σ = 0 to σ = 1, and k− for the rate of

transitioning from σ = 1 to σ = 0. This translates into the following environmental

transitions

E0
k+−→ E1 and E1

k−−→ E0, (2.74)

i.e., a telegraph process. This process is a birth-death process with rates λ0 = k+,

µ1 = k−, and λ1 = µ0 = 0. It is easy to see that the ergodicity conditions from

Eq. (1.19) are fulfilled for any k+, k− > 0, implying there exists a unique stationary
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distribution. Inserting the rates λσ and µσ in Eqs. (1.20) and (1.21), and writing ρ∗σ
for the stationary distribution of finding the environment in state σ, we find

ρ∗0 = k−
k+ + k−

and ρ∗1 = k+

k+ + k−
. (2.75)

Birth-death process in switching environments

To illustrate how to treat the effect of switching environments on population dynamics,

let us consider a simple birth-death process subjected to population-independent

switching environments. We use σ as before to represent the environmental states, and

S to represent the space of environmental states. Writing λσn and µσn for the birth and

death rates when in environment σ, we have

λσn = λσn, and µσn = µσn, (2.76)

for σ ∈ S, where λσ and µσ represent the per capita birth and death rates, respectively,

when in environment σ.

Increasing switching rate

Figure 2.4: Sample paths of a two-environmental simple birth-death process showing different
switching regimes. The colours represent the environmental states with σ = 0 as the white regions
and σ = 1 as the yellow regions. The simulations were performed using the Gillespie algorithm.
The rates are given by Eq. (1.76), with λ0 = 0.3, µ0 = 0.1, λ1 = 0.1, and µ1 = 0.2, i.e., on
average the population increases in σ = 0 and decreases in σ = 1. The switching rates are the
same in each environment, i.e., k0 = k1. From left to right panels we set them equal to 0.1, 0.01,
and 1.0.

The probability distribution Pn,σ(t) of finding n individuals in the population and

the environment in state σ at time t follows the master equation

dPn,σ
dt (t) =λσ(n− 1)Pn−1,σ(t) + µσ(n+ 1)Pn+1,σ(t)− (λσ + µσ)nPn,σ(t),

+
∑
σ′∈S
σ′ 6=σ

[kσ′→σPn,σ − kσ→σ′Pn,σ′ ] , (2.77)
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for σ ∈ S, with kσ→σ′ the rate of switching from σ to σ′. This is the same master

equation as in the simple birth-death process studied above (see Eq. (1.42)) but with

additional terms that take into account the environmental dynamics. Figure 1.4 shows

sample paths of this process in different switching regimes.

Slow and fast switching regimes

The inclusion of switching environments to a birth-death process (or to any branching

process, in general) brings considerable difficulty to the analysis. In general, it is not

possible to deduce analytical results. Depending on how fast the environment switches,

however, one may resort to useful approximations. In particular, in the limits of slow

and fast switching environments, it is possible to deduce closed-form solutions for the

stationary distribution P st
n,σ.

We say the environment is slow when it switches slower than the typical population

timescale. In this case, the environment spends enough time in each state that it

reaches its stationary state in each of them. The stationary distribution of having n

individuals can be obtained then as the weighted average of the distributions in each

environmental state, with the weights determined by the stationary distribution of the

environmental states [18]. More precisely, we have

P st(slow)
n =

∑
σ∈S

ρ∗σPn|σ, (2.78)

with Pn|σ the stationary probability of having n individuals assuming a fixed environ-

ment σ. The distribution Pn|σ is the stationary distribution of a simple birth-death

process presented in Eq. (1.56).

If the environmental switching is fast compared to the population dynamics, we

can treat the system as if it were in an effective fixed environment with growth rates

λeff and µeff. These rates can be obtained as the weighted average of the rates in each

environment, with the weights as the stationary distribution of the environmental

states (i.e., the fraction of time spent in each environment) [18]. One finds then

λeff =
∑
σ∈S

ρ∗σλσ and µeff =
∑
σ∈S

ρ∗σµσ. (2.79)

With these rates we can construct the stationary distribution of having n individuals

using Eq. (1.47) for the distribution of simple birth-death process.
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In Chapter 5 we will explore these approximations for both slow and fast regimes

in a Moran-type model that switches between sexual and asexual reproduction.

2.4.2 Continuous space

In many biological scenarios the environment changes such that it takes values from a

continuous range. This is the case of systems in which the environmental state σ models

continuous parameters that fluctuates in time, such that temperature, concentration,

density, etc. For some examples see [19–23].

In this thesis, continuous environments are only treated in Chapter 6 where we

explore scenarios in which σ follows an Ornstein–Uhlenbeck process. We briefly present

below the main properties of this process, and a simple case of a birth-death process

whose rates depend on σ.

Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process has been used in many biological areas [24], for

example, to describe phenotypic evolution [25]. It was first introduced by Ornstein

and Uhlenbeck in 1930 to model a frictional Brownian particle [26]. If σ follows this

process, then its state space is S = R, and satisfies

dσ = θ(m− σ) dt+ s dW, (2.80)

with θ,m, and s constant parameters, and W a standard Wiener process. Since σ is

unbounded, it can lead to unphysical situations depending on the system under study.

This issue has to be dealt with care when modelling using an Ornstein–Uhlenbeck

process. The previous equation can be written as a Langevin equation

dσ
dt = θ(m− σ) + s η(t), (2.81)

where η(t) is zero-average Gaussian white noise. This equation can be integrated

numerically using, for example, the Euler–Maruyama method that will later be explored

(see Section 1.5.1). To ease the notation, we introduce the variables τc and v through

the relations

θ = 1/τc and s =
√

2v2/τc, (2.82)
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2.4. Fluctuating environments

Figure 2.5: Sample paths of the Ornstein–Uhlenbeck process [see Eq. (6.26)] obtained by means
of the Euler-Maruyama method (with time step dt = 0.01) for different values of τc and v.
Parameters used: m = 0, and σt=0 = 20.

where τc controls the typical time to reach stationarity and v the fluctuations around

the mean. Different sample paths obtained using the Euler–Maruyama method are

presented in Figure 1.5.

The expected value of σ, with initial value σ0 at t0, takes the form

〈σ〉 ≡ E[σ] = σ0e
−(t−t0)/τc +m

(
1− e−(t−t0)/τc

)
, (2.83)

which shows that σ tends to m as t increases (assuming τc > 0), i.e., m is the average

in the long term. This means σ fluctuates, on average, approaching m as time goes by.

This effect is called mean reversion, commonly used in finance [27]. Using the same

initial condition for σ, the variance becomes

Var[σ] ≡
〈
σ2
〉
− 〈σ〉2 = v2

(
1− e−2(t−t0)/τc

)
, (2.84)

and tends to v2 as t→∞. The Fokker–Planck equation associated with the Ornstein–

Uhlenbeck process is
∂P

∂t
= θ

∂

∂x
(x−m)P + D

2
∂2P

∂x2 , (2.85)
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Figure 2.6: Samples paths of a birth-death process in a continuous environment with rates given
as in Eq. (1.88) with b = 1.1 and d = 1.0. The environmental state σ is given by the sample
paths from Figure 1.5.

with D = s2 = 2v2/τc. The solution of this equation is

Pσ(t) = 1√
2πVar[σ]

exp
[
−1

2
(σ − E[σ])2

Var[σ]

]
, (2.86)

with initial condition Pσ(t− t0) = δ(σ − σ0). The stationary distribution is obtained

in the limit t→∞. This results in

ρ∗σ ≡ lim
t→∞

Pσ(t) = 1
v
√

2π
exp

[
−1

2

(
σ −m
v

)2
]
. (2.87)

This is a normal distribution with mean m and variance v2.

Simple birth-death process in continuous environments

Let us consider a simple birth-death process with growth rates depending on σ, which

follows an Ornstein–Uhlenbeck process. The dependence on the rates λσn and µσn with
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respect to σ is as in Eq. (1.76), i.e., λσn = λσn and µσn = µσn, with

λσ = b|σ| and µσ = d|σ|, (2.88)

for b, d > 0. In Figure 1.6 we show sample paths of this process using the Gillespie

algorithm approach as described in Chapter 6. We consider the sample paths of σ

shown in Figure 1.5.

2.5 Further computational and mathematical tools

In this section, we present some numerical and mathematical tools that will be later

used in the following chapters. We describe standard and well-known algorithms to

simulate stochastic systems. These algorithms are suitable for systems under different

conditions (e.g., if the rates depend on time or not) as we explain below. We also

briefly present some properties of partitions of integer numbers that will be necessary

in Chapter 5.
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2.5.1 Numerical methods to simulate stochastic systems

Gillespie algorithm

The Gillespie algorithm [28, 29], often called stochastic simulation algorithm (SSA), is

a standard method to simulate continuous-time Markov processes with constant per

capita transition rates, e.g., homogeneous birth-death processes. This algorithm does

not discretise time as other algorithms but it draws the time at which the next reaction

occurs from an exponential distribution. The algorithm proceeds as follows:
Consider a system with reactions i = 1, . . . ,M with transition rates Wi.

(i) Initialise the system at t = 0 in its initial state.

(ii) Compute Wi and λ = ∑M
i=1Wi. Generate an uniformly distributed

random number r between 0 and 1, and compute

τ = −1
λ

ln r. (2.89)

Update the time to t+ τ .

(iii) Generate an uniformly distributed random number p between 0 and

1, and execute one of the possible reactions. Reaction i occurs with

probability Wi/λ, so if 0 ≤ p < W1/λ execute reaction 1, if W1/λ ≤ p <

(W1 +W2)/λ execute reaction 2, etc.

(iv) Update the state of the system accordingly and go to 2.

In the case of a birth-death process, the rates Wi are equal to λi and µi, i.e., the

birth and death rates. If they depend on the population size (e.g., a simple birth-death

process), one needs to update Wi in each iteration.

One disadvantage of the Gillespie algorithm is that it can become slow for large

populations and/or when the transition rates are high, as more events occur per unit

time. The Gillespie algorithm can be used as an approximation for systems with

time-dependent rates as long as the rates do not exceedingly vary over time.
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τ−leaping algorithm

One alternative to deal with the ineffectiveness of the Gillespie algorithm in simulating

systems with large populations or high transition rates is the so-called τ−leaping

algorithm [30]. Unlike the conventional Gillespie algorithm, this method uses a dis-

cretisation of time with time step τ . This step has to be small enough that the change

of system state in the interval [t, t+ τ ] does not drastically change the transition rates.

This condition is referred to as the leap condition [30]. The τ−leaping algorithm then

gives an approximation of the realisation of the system, but performs faster than the

Gillespie algorithm which is an exact scheme. The algorithm proceeds as follows:
Consider a system with reactions i = 1, . . . ,M and transition rates Wi. Let

us denote the state of the system by n(t) = (n1, . . . , nj, . . . , nN) and let νi,j
be the change in nj when reaction i occurs. Then,

(i) Initialise the system at t = 0 in its initial state.

(ii) Compute the Wi and update the time to t+ τ .

(iii) Generate independent Poissonian random numbers mi with parameters

τWi. This is the number of times the event i occurs within the interval

[t, t+ τ).

(iv) Update the state of system ni(t+ τ) = ni(t) +∑M
j=1 νijmj and go to 2.

In Chapter 6 we will describe an algorithm based on the τ−leaping algorithm to

simulate systems in fast fluctuating environments, both in discrete and continuous

space.
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Lewis’ method (thinning algorithm)

The Lewis’ method (often called the thinning algorithm) proposed by Lewis and Shedler

in 1979 [31] is a useful exact method for simulating non-homogeneous Poison processes,

i.e., processes with time-dependent transition rates. The algorithm proceeds as follows:

Consider a system with reactions i = 1, . . . ,M with transition rates Wi(t). To

generate a sample path in the interval [0, T ],

(i) Initialise the system at t = 0 in its initial state.

(ii) Compute W i = sup
0≤t≤T

Wi(t) and W = ∑M
i=1W i. Generate an uniformly

distributed random number r between 0 and 1, and compute the time

when the next reaction occurs

τ = − 1
W

ln r. (2.90)

Update the time to t+ τ . If t+ τ > T , stop the simulation.

(iii) Generate an uniformly distributed random number p between 0 and 1.

Reaction i occurs with probability Wi/W , so if 0 ≤ p < W1/W execute

reaction 1, if W1/W ≤ p < (W1 + W2)/W execute reaction 2, etc. If∑M
i=1Wi/W ≤ p ≤ 1, do not execute any reaction.

(iv) Update the system state accordingly and go to 2.

For a simple birth-death process the ratesWi are equal to λn = nλ(t) and µ = nµ(t).

In this case the maxima W i are computed as λn = n sup
0≤t≤T

λ(t) and µn = n sup
0≤t≤T

µ(t).
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Euler–Maruyama method

In cases in which one is interested in solving a stochastic differential equation, one

can use the Euler–Maruyama method [32] which generates an approximate solution of

equations of the form

dX(t) = f(X(t)) dt+ g(X(t)) dW (t), (2.91)

where dW (t) represents a Wiener process. The method proceeds as follows:

Consider the stochastic differential equation in Eq. (1.91) for given functions

f(X) and g(X). Set an interval [0, T ] and a time step ∆t = T/N . The points

generated will be at times tn = n∆t for 1 ≤ n ≤ N .

(i) Initialise the system at t = 0 in its initial state X(0).

(ii) Simulate the Wiener process as independent and identically distributed

normal random variables ∆W (tn) with mean 0 and variance ∆t for

1 ≤ n ≤ N .

(iii) Update the system state as

X(tn+1) = X(tn) + f(X(tn))∆t+ g(X(tn))∆W (tn). (2.92)

Repeat it until tn = T .
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2.5.2 Partitions of integer numbers

In this section, we briefly present some properties of partitions of integer numbers that

will be used in Chapter 5 to deduce stochastic quantities of a Moran-type model. We

focus on a particular type of partitions called compositions.

A partition of a positive integer number N , or an integer partition, is any of the

possible sets of positive integer numbers whose sum is equal to N [33, 34]. The elements

of these sets are called parts, and the number of possible partitions of N is given by

the so-called partition function p(N) [35].

In a partition, the order of the parts in the partition is irrelevant. Thus, for example,

the partitions of N = 5 are given by

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

These are seven as p(5) = 7. If we take into account the order of a partition, we call

the partition a composition. A composition of M parts is usually referred to as a

M-composition [33]. The number of M -compositions of N is given by
(
N−1
M−1

)
, so the

total number of compositions of N becomes ∑N
M=1

(
N−1
M−1

)
= 2N−1. Taking the previous

example, the 2-compositions of N = 5 are

5 = 4 + 1

= 1 + 4

= 3 + 2

= 2 + 3,

which are 4 as
(
N−1
M−1

)
takes this value for N = 5 and M = 2. The total number of

compositions of N = 5 is 24 = 16.
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Notice the parts of a composition are strictly positive numbers. If the parts of a

compositions are allowed to be equal to zero, we call them weak compositions [33]. We

do not study these cases here.

Sum over compositions

A sum over M-compositions is usually denoted by

∑
n1+···+nM=N

ni≥1

F (n1, . . . , nM), (2.93)

for given integers N and M . Depending on how the function F depends on the parts

ni of the M -compositions of N , it is possible to find closed-form solutions of sums of

this type. We focus on the case

F (n1, . . . , nM) =
M∏
k=1

f(nk), (2.94)

where f : N→ R is an arbitrary function. For this case, the sum in Eq. (1.93) takes

the form [36]

∑
n1+···+nM=N

ni≥1

M∏
k=1

f(nk) = [xN ]
∑
i≥1

f(i)xi
M , (2.95)

where we use the standard notation [xN ]g(x) to denote the coefficient multiplying xN

in the polynomial g(x) = ∑
i aix

i, i.e., [xN ]g(x) = aN . The sum in Eq. (1.95) then

is equal to the coefficient multiplying xN in the expansion of
(∑

i≥1 f(i)xi
)M

. This

coefficient is usually referred to as the polynomial coefficient or extended binomial

coefficient [34, 36], and is denoted by
(
M
N

)
f
. By using the Cauchy’s integral formula

[37], the right-hand side of Eq. (1.95) can be expressed as

1
N !

∂NfM

∂xN
(0) = 1

2πi

∮
γ

Φ(z)M
zN+1 dz, (2.96)

where γ is an appropriate rectifiable curve around the origin. We have defined the

generating function Φ(x) = ∑
i≥1 f(i)xi.

As an illustrative example, let us consider the case f(ni) = ni. Following Eq. (1.93),

we have ∑
n1+···+nM=N

ni≥1

M∏
k=1

nk. (2.97)
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The generating function then becomes

Φ(x) =
∞∑
i=1

ixi = x

(x− 1)2 . (2.98)

Using the identity [38] (
n

k

)
= 1

2πi

∫
|z|=ε

1
(1− z)k+1zn−k+1 dz, (2.99)

with ε� 1, we solve the integral in Eq. (1.96) and find

∑
n1+···+nM=N

ni≥1

M∏
k=1

nk =
(
N +M − 1

2M − 1

)
. (2.100)

In Chapter 5, we will explore cases with f(ni) = 1/ni and f(ni) = 1/[ni(N − ni)!].
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Chapter 3

Mutators drive evolution of

multi-resistance to antibiotics
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the remaining sections are included. The reader not concerned in the details of the

experimental setup can omit Secs. 3.6.1 to 3.6.5. Section 3.9 applies methods (Bayesian

analysis) developed by D.R.G. These are not central to the thesis, and E.B-C. was not

involved in developing or implementing these methods.
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Abstract

Combination therapy is increasingly being used in an attempt to counter the

evolution of drug-resistant infections. However, the success of this approach relies

on its ability to prevent resistance to each component antibiotic from arising

during treatment. Here we show that bacterial populations can evolve ‘multi-

resistance’ by sequentially acquiring independent resistance mutations. We exposed

experimental Escherichia coli populations to rising concentrations of single-drug

and combination antibiotics. Introducing a ‘mutator’ strain at low-to-intermediate

frequencies facilitated the evolution of multi-resistance. Crucially, mutators allowed

multi-resistance to evolve during single-drug and combination treatments alike,

meaning that direct selection for multi-resistance was not needed for it to occur. Eco-

evolutionary simulations revealed that the sweep of mutator alleles in conjunction

with single resistance alleles was key to multi-resistance evolution when it occurred,

as the resulting increase in mutation supply allowed subsequent resistance mutations

to arise in the same genetic background. Further simulations demonstrated that,

while multi-resistance could also arise in large populations without mutators, the

population size required was larger than typical of infections. Ultimately, our results

suggest that the utility of combination therapy may be limited when mutators are

present, and when achieving or maintaining therapeutic antibiotic concentrations

is difficult—scenarios that both regularly occur in clinical settings.

3.1 Introduction

The global burden of antimicrobial resistance is spurring research into how existing drugs

can be used more effectively to prevent resistance evolution. There has been sustained

interest in using ‘combination therapy’ for preventing resistance in infections and

cancer [1–4]. Where standard ‘monotherapy’ uses only one drug at a time, combination

therapy uses multiple drugs concurrently. This approach has proved successful in

clinical settings [5–7]. Combination therapy is currently used for some diseases caused

by microbes (e.g. tuberculosis [8]), but there is growing interest in deploying it more

broadly to combat antibiotic resistance [9–11]. Progress has been made in determining
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how to best combine drugs to inhibit bacteria [12–14], especially through exploiting

non-additive effects on growth (i.e. synergy and antagonism [4, 15]). Other strategies

involving more than one drug, e.g. ‘mixing’ (assigning different antibiotics to different

patients), and ‘cycling’, (using different antibiotics alternately), are also possible. Some

models suggest an advantage of combination therapy over these other approaches

[16] although this is not universal [17]. However, clinical evidence for the ability of

combination therapy to prevent resistance evolution is mixed, with some combinations

fairing no better than monotherapy for some types of infection [18]. Discovering what

governs the ability of combinations to prevent resistance is therefore a critical area of

research.

The idea that resistance to multiple antibiotics requires multiple independent re-

sistance mutations is central to the rationale behind combination therapy. Although

acquiring resistance to monotherapy (‘single resistance’) occurs regularly, acquiring

resistance to combination therapy (‘multi-resistance’) is generally more difficult. The

ability for combination therapy to prevent multi-resistance relies on two main assump-

tions. First, mutation rates to resistance are generally assumed to be small for bacteria,

on the order of 10−7 to 10−10 per generation [19]. The probability of acquiring multiple

independent resistance mutations during the same replication event is the product of

their individual mutation rates [2, 20]. For two mutations, this is on the order of 10−14

to 10−20 per generation (discounting specific combinations where resistance occurs

by ‘multi-drug resistance’ or ‘cross-resistance’ mechanisms [21]). The emergence of

multi-resistance during a single replication event is therefore exceedingly rare. Second,

inhibitory concentrations are assumed to occur rapidly after treatment. If growth of

both sensitive and single-resistant organisms is inhibited, multi-resistance cannot be

acquired over the course of several replications.

However, the assumptions of low mutation rates and rapid inhibition are capable of

being violated in bacterial populations exposed to combination therapy. For instance,

the presence of ‘mutator’ organisms (i.e. with higher mutation rates) may invalidate

the assumption of low mutation rates. Mutators emerge spontaneously and persist

at low-to-intermediate frequencies in host-associated bacterial populations [22] and

infections [23–25]. Typical mutators have mutation rates 10- to 1000-fold higher than

wild-type [26, 27]. Further, inhibitory concentrations may not be reached rapidly, or
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may vary over time, due to antibiotic dosing regimens and drug pharmacokinetics.

This can allow some degree of growth of sensitive and single-resistant strains, which

can ultimately allow selection to act on resistant lineages [28–32]. Whether violating

these assumptions can lead to multi-resistance warrants consideration. Mutators are

a particular concern for the application of combination therapy, as multi-resistance

is commonly observed in clinical mutator lineages [26, 33–36]. What direct evidence

exists for the efficacy of combinations against mutators is mixed [37, 38]. Determining

how frequently multi-resistance arises in populations where mutators are present, and

what evolutionary mechanisms are responsible, is therefore important to predicting the

success of combination therapy.

Here, we determined whether the presence of mutators could allow populations to

overcome combination antibiotic treatment by evolving multi-resistance. We challenged

mixed populations comprising wild-type (Escherichia coli K-12 BW25113) and mutator

(∆mutS) organisms with rifampicin, nalidixic acid, and combination treatments that

increased in concentration over time. Where mutators were present, multi-resistance

evolved in both the single-drug and combination treatments. In contrast, where

mutators were absent, only single-drug resistance was observed. We used stochastic

simulations to directly test the evolutionary mechanisms leading to the evolution of

resistance. This showed that differences in mutation rate were sufficient to explain

multi-resistance evolution for typical bacterial population sizes. Mutator alleles swept

from low to high frequency along with single-drug resistance, allowing resistance to

a second drug to occur subsequently. Multi-resistance did not require spontaneous

double mutants or multi-drug resistance mechanisms. Given the prevalence of mutators,

multi-resistance may therefore complicate the wider use of combination therapy against

bacterial infections.
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3.2 Results

3.2.1 Mutators facilitate double resistance evolution by se-

quential acquisition of independent mutations

We subjected populations of bacteria with different initial mutator frequencies to

antibiotic-free, single-drug or combination antibiotic treatment with rifampicin and/or

nalidixic acid. Antibiotic concentrations were doubled daily over 6 days, starting at

0.625 mg/l and ending at 20 mg/l (where 10 mg/l of either drug is sufficient to inhibit

the starting strain). Figure 3.1 shows the number of populations with detectable

resistance under each treatment as detected by selective plating (with optical density of

each population revealing a similar trend, Extended Data Figure 1). Several patterns

emerge. In the absence of selection for resistance (i.e. left column of Figure 3.1), double

resistance was not detected for any mutator frequency, although single resistance was

observed. In the absence of mutators (i.e. top row of Figure 3.1), double resistance

was not detected for any treatment, although single resistance was again observed.

However, for populations where mutators were present and antibiotic selection was

applied, both single and double resistance was observed. Strikingly, double resistance

was observed for both the single-drug treatments and the combination treatment. In

general, nalidixic acid treatment resulted in the fewest double-resistant populations,

whereas rifampicin and combination treatment produced roughly similar numbers. The

combination treatment resulted in the highest proportion of populations where no

resistance was detected. In this sense, the combination treatment was more effective

at suppressing resistance to the specific treatment applied, even in the presence of

mutators. However, a considerable proportion of populations nevertheless exhibited

double resistance when mutators were present.

The relationship between resistance at the final time point, mutator initial frequency

and antibiotic treatment was determined using a Bayesian categorical mixed-effects

model (Model M1 in the Supplementary Information). The fit of a full model incor-

porating both main effects and interactions was only marginally better than a main

effects-only model, hence we present parameter estimates from the latter (given in

full in Table 3.8 in the Supplementary Information). The main effect of mutators was

positive for all resistance types, i.e. the posterior distributions of the estimates had
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Figure 3.1: Emergence of antibiotic resistance in the presence and absence of selection
for resistance in populations with and without mutators. Multi-resistance emerged when
mutators were present (rows) under both mono- and combination antibiotic therapy (middle
and right columns, respectively), but not in the absence of antibiotics (left column). Stacked
bars show numbers of populations where each category of resistance was detected by selective
plating. ‘Rifampicin resistance’ and ‘nalidixic acid resistance’ indicate growth on either rifampicin
or nalidixic acid medium, respectively, but not on both nor in combination. ‘Mixed resistance’
indicates growth on both rifampicin and nalidixic acid medium separately but not in combination.
‘Double resistance’ indicates growth on both antibiotics separately and also in combination. For
further details, see Model M1 in the Supplementary Information.

95% C.I. (confidence interval) greater than zero, with the exception of ‘low’ mutators

and nalidixic acid resistance. While the mean effects of mutators increased with

increasing mutator frequencies (low < intermediate < high, generally), the 95% C.I.s

of their posteriors overlapped. Single antibiotic treatments had predictable effects

on single-drug resistance, i.e. rifampicin resistance was more likely to occur under

rifampicin treatment, but not nalidixic acid treatment, and vice versa. All antibiotic

treatments increased the probability of double resistance evolving.
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3.2.2 No evidence for a growth advantage of double resistance

in single-drug treatments

The occurrence of double-resistant strains in single-drug treatments is surprising. We

therefore used growth assays to test whether there could be any positive selection

for double resistant strains in the presence of single antibiotics. To determine which

treatments should result in positive selection for resistance, we assayed growth of

sensitive, single- and double-resistant clones under all conditions experienced during

experimental evolution. Growth assays were conducted on clones derived from fluc-

tuation tests (based on the Luria-Delbrück experiment [94]) using the non-mutator

wild-type BW25113, to minimise confounding effects of other mutations arising during

experimental evolution. For the combination treatment, there was a clear advantage of

double resistance over single-drug resistance for concentrations of 1.25 mg/l and above

(Figure 3.2). These concentrations correspond to time periods where double resistance

begins to be detected in the experiments. In contrast, there was no benefit of double

resistance over rifampicin resistance in the rifampicin treatment [difference in growth

= -0.07, 95% C.I.: (−0.38, 0.23)], and a disadvantage over nalidixic acid resistance in

the nalidixic acid treatment [difference in growth = -0.75, 95% C.I.: (−1.05,−0.45)].

This provides no evidence of a benefit to double resistance in single drug treatments,

suggesting that double resistance did not spread due to positive selection.
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Figure 3.2: Growth of sensitive, single-, and double-drug resistant strains at antibiotic
concentrations experienced during the resistance selection regime (AUC of OD600: area
under curve of growth curves measuring optical density at 600 nm over time). Resistant strains (5
per type) were isolated in the wild-type E. coli K-12 BW25113 genetic background by fluctuation
test(s). Vertical line indicates minimum inhibitory concentration of the wild-type. For all points,
error bars ±SE (Standard Error) are smaller than plotting symbols. See Model M2 in the
Supplementary Information.
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3.2.3 Effect of mutator frequency on growth

In addition to altering the probability of observing multi-resistance, different initial

mutator frequencies may also influence how well the resulting multi-resistant lineages

grow. A higher mutator frequency may be a benefit to populations, through increase

clonal interference between competing resistant lineages. It may also be detrimental,

due to the accumulation of of deleterious mutations [39, 40]. To assess the effect of

mutator frequency on growth, we compared the growth curves of multi-resistant clones

that arose from populations with different initial mutator frequencies. We analysed

the data using a Bayesian multivariate regression model (Figure 3.3, Table 3.9 and

Model M3 in the Supplementary Information). From each growth curve, we calculated

the area under the curve (AUC), and averaged over three replicate growth curves.

Accounting for initial mutator frequency provided a worse fit than a model with only a

global intercept (i.e. a flat line intersecting the horizontal axis at the overall average

AUC), suggesting that initial mutator frequency did not have a considerable effect

on growth overall. Thus, mutators did not seem to unduly suffer, or majorly benefit,

from secondary mutations in our selection experiment. There was nevertheless a slight

tendency toward higher AUC for intermediate and high mutator frequencies, both under

antibiotic-free conditions and at maximum selection experiment concentration (i.e. 20

mg/l). The fitness of double-resistant clones was generally positively correlated between

environments (r = 0.69, similar to single-resistant strains in single-drug environments

[41]). However, there was some variation among the evolved clones. Notably, several

clones demonstrated relatively higher growth under antibiotic-free conditions (compared

to others with the same growth at 20 mg/l). One possible explanation for this is the

acquisition of secondary mutations that are more beneficial in the antibiotic-free

environment. However, there was similar variation among double mutants arising in

the non-mutator genetic background selected via successive fluctuation tests, where

secondary mutations are much less likely to have occurred. Hence, the variation cannot

be decisively attributed to secondary beneficial mutations, and may instead reflect

variation among the resistance alleles themselves.
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Figure 3.3: Effect of mutator frequency on growth of double-resistant mutants evolved
during resistance selection. Growth under antibiotic-free conditions and the maximum combi-
nation concentration (20 mg/l) was positively correlated [residual r = 0.69, 95% C.I.: (0.56, 0.79)].
Each point represents mean±SE of area under the curve from three replicate growth curves
obtained via optical density at 600 nm. See Model M3 in the Supplementary Information.

3.2.4 Stochastic simulations reveal evolutionary mechanisms

of multi-resistance evolution

To gain insight into the drivers of resistance evolution, we used a stochastic population-

dynamic simulation model. Specifically, we tested hypotheses regarding the roles of

selection and mutation supply on the emergence of double resistance in single-drug

and combination treated populations. Further, we tested the hypothesis that multi-

resistance can arise sequentially, by disallowing the possibility of multi-drug resistance

mutations. Using models is advantageous because it allows control over confounding

factors that may also cause mutators to increase in frequency, such other beneficial

variation that does not confer resistance. Stochastic approaches have been used by others

to study resistance evolution where resistant variants have a possibility of going extinct

while rare [42–44]. Our model captured the major features of the wet-lab experiments:

mixed wild-type/mutator populations, increasing antibiotic concentrations, and periodic

bottlenecks (i.e. periodic reductions of population). Consider a sensitive wild-type

S. During growth, single mutations can occur, giving rise to rifampicin-resistant type

R and nalidixic acid resistant type N . Subsequently, R and N can each give rise to

double-resistant type D (Figure 3.4). Mutations may occur in either the wild-type or

mutator genetic background, resulting in a total of eight possible genotypes, i.e. strains
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S,R,N , and D of both wild and mutator types. Wild-type and mutator differ only in

mutation rate. Model parameters were estimated experimentally from bacterial growth

curves (see subsection 3.8.5), and from mutation rates assays performed with these

strains previously by this group [19, 45].

Figure 3.4: Population dynamics model of multi-resistance evolution. The model describes
individuals of strains i ∈ {S,R,N,D} (sensitive, rifampicin resistant, nalidixic acid resistant,
double resistant). Each individual of type i produces an offspring with probability bi in each time
step. A mutation to rifampicin resistance occurs with probability µR, or nalidixic acid resistance
with probability µN . Simultaneous acquisition of both mutations in one reproduction event is
not allowed in the model (i.e. S cannot give rise to D, refer to Methods and Supplementary
Information for further details).

Figure 3.5 shows the proportions of populations evolving resistance for 1000 repli-

cate simulations (analogous to the experimental results shown in Figure 3.1). A

Bayesian categorical model fitted to simulations produced parameter estimates that

closely matched those from the experimental data, demonstrating that the simulations

quantitatively recapitulate the experiments (Figure 3.12 and Model M4). In particular,

we reproduce the main experimental findings that double resistance was constrained

to populations treated with antibiotics, and that the presence of mutators facilitated

double resistance evolution. We found that a small fraction of purely wild-type popula-

tions evolved double resistance (between 0/1000 and 15/1000 depending on treatment);

this is consistent with our experimental results (≤ 1/60 per treatment). As the model

excludes the possibility of double resistance emerging through a single reproductive

event, this suggests that double resistance can emerge without invoking multi-drug

resistance mechanisms (e.g. efflux pumps), simultaneous acquisition of two resistance
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Figure 3.5: Emergence of antibiotic resistance in stochastic simulations of resistance
evolution. Stacked bars show the number of populations with individuals of the types shown
in Figure 3.4. ‘Detection of’ refers to the types of individuals present in a random sample of
1/200 of the population (simulating selective plating, see Methods), during each time step of
the simulation. ‘No resistance’ indicates only type S was sampled (no R, N , or D). ‘Rifampicin
resistance’ indicates at least one R (no N or D, any S), and ‘nalidixic acid resistance’ at least
one N (no R or D, any S). ‘Mixed resistance’ indicates at least one each of R and N (no D,
any S). ‘Double resistance’ indicates sampling at least one D (any S, R, or N). For further
information, see Model M4 in the Supplementary Information.

mutations, or recombination.

There are two differences between the results of the experiment and the simulation,

which may have arisen from allowing only eight possible genotypes in the simulations,

compared to a vast number of possible genotypes that could have arisen during the

experiment. First, in the ‘no antibiotic’ treatment, the number of populations with

resistance was initially higher on day 1 than on days 2 or 3, but in the simulation

it increased monotonically (compare leftmost columns of Figures 3.1 and 3.5). In

the experiment, selective sweeps of adaptive mutations may have replaced rifampicin

resistance mutations, which are generally costly for E. coli K-12 in rich medium [46].

Second, a higher proportion of mixed resistance was seen in the experiment, primarily
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in the nalidixic acid treatment (third columns of Figures 3.1 and 3.5, compared directly

in Figure 3.12). The simulation could have overestimated transitions from mixed

resistance to double resistance if there were additional costs of double resistance that

were not captured by our model (e.g. differences in lag time).

The simulation allows a closer look at the population dynamics of resistance

evolution. Figure 3.6 shows the interquartile range (25% and 75% quantiles) of the

number of bacteria of each resistance type for simulated population dynamics for the

‘intermediate’ (q = 0.1) initial mutator frequency. Examples of individual populations

are shown in Figure 3.9, and the interquartile range for other initial frequencies is

shown in Figure 3.2. In single-drug treated populations, mutators swept to high

frequency due to genetic linkage with single-drug resistance (i.e. in the same genome).

Multi-resistance then arose subsequently in a population now comprising mostly single-

resistant mutators, although reached only low relative frequency due to the absence of

selection for multi-resistance. In contrast, in combination-treated populations, multi-

resistance swept toward fixation due to direct selection for multi-resistance. Increasing

the frequency of mutators decreased variability in the number of multi-resistant bacteria

present at the end of the simulation (Figure 3.2). This reveals different evolutionary

mechanisms responsible for multi-resistance in single-drug and combination treatments:

genetic hitch-hiking of mutator alleles under single-drug treatments, and direct selection

for sequentially-evolved multi-resistance under combination treatment.

Multi-resistance evolution without mutators requires populations larger

than typical infections

In addition to the presence of mutators, other characteristics of bacterial populations

can influence their ability to acquire resistance. Along with mutation rate, population

size is the other primary contributor to mutational supply. Sufficiently large populations

may therefore evolve multi-resistance without the presence of mutators. To determine

how large such populations would need be, we simulated resistance evolution using the

same estimated parameters, except now considering a range of maximum population

sizes from 5.71 × 107 to 5.71 × 1013, i.e. 0.1 to 105 times the population size of our

experimental conditions. Figure 3.7 shows the relationship between average proportion

of each strain under different maximum population sizes after six days of simulated
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Figure 3.6: Population dynamics of simulated resistance evolution. Panels show the
interquartile range (25% and 75% quantiles) of the number of bacteria of each resistance type
(colours) for four treatments (columns) from 1000 replicate stochastic simulations. Results from
the ‘intermediate’ (q = 0.1) initial mutator frequency are shown (other frequencies are shown in
Figure 3.2).

evolution. Multi-resistance reached appreciable frequencies for maximum population

sizes between 5.71 × 1010 (combination treatment) and 5.71 × 1013 (no antibiotic

treatment). To put these numbers into context, these populations are comparable

in size to the entire human-associated microbiome (approximately 1013 bacteria for

an adult human of 70 kg [47]). In contrast, population sizes of bacteria in infections

tend to be orders of magnitude smaller, e.g. blood stream infections (∼ 107 in 5 l

of blood [48]), urinary tract infections (∼ 109 in 600 ml of urine [49]). Simulated

populations of these sizes did not evolve multi-resistance in the absence of mutators.

Bacterial meningitis is a potential counter-example, which can reach population sizes

comparable to the simulations that evolved multi-resistance in the absence of mutators

under combination therapy (∼ 1011 in 150 ml of cerebrospinal fluid [50]).

72



3.3. Discussion

none rifampicin nalidixic acid combination

109 1011 1013 109 1011 1013 109 1011 1013 109 1011 1013

0   

0.25

0.50

0.75

1.00

Simulated maximum population size

M
ea

n 
pr

op
or

tio
n

w
ith

in
 p

op
ul

at
io

ns Strain

sensitive

rifampicin resistant

nalidixic acid resistant

double resistant

Figure 3.7: Proportion of each strain type (±Standard Deviation) found within simulated
populations of different maximum size in the absence of mutators. Multi-resistance evolved
in large simulated populations (5.71× 1010–5.71× 1013), which are comparable in size to the
largest human-associated microbiome populations.

3.3 Discussion

Preventing resistance evolution is one of the key motivations behind the use of combi-

nation therapy [9]. However, our results demonstrate that the presence of mutators in

bacterial populations can facilitate multi-resistance evolution, rendering the treatment

ineffective. Mutators need only represent a fraction of the initial bacterial population for

multi-resistance to evolve during antibiotic treatment. Crucially, in our work mutators

allowed multi-resistance to evolve in both single-drug and combination treatments (Fig-

ure 3.1), in spite of providing no clear benefit in single-drug environments (Figure 3.2).

Multi-resistant clones from populations with increased mutator frequencies did not

appear to suffer growth defects in the presence or absence of the combination treatment

(Figure 3.3). Our stochastic simulation model revealed that an increase in the proba-

bility of resistance mutation through the presence of mutators was sufficient to explain

multi-resistance evolution (Figure 3.4 and Figure 3.5). Further, the simulations revealed

that genetic hitch-hiking of mutator alleles with single-drug resistance lead mutator

genotypes to sweep to high frequency whenever present (Figure 3.6). Multi-resistance

evolution was also possible in very large populations, though the sizes required exceed

those typically associated with human microbiomes (Figure 3.7). Our results uncover

a pitfall of antibiotic combination therapy. Although combination treatment was more

effective at preventing resistance overall, the populations that survived combination

treatment almost entirely consisted of multi-resistant mutators. These populations are

not only resistant to the antibiotics already seen, but also have increased potential

for evolving resistance to other antibiotics. As mutators are abundant in patients

[23–25, 33–36], particularly in chronic infections, these results suggest that combination
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therapy may not prove entirely successful at preventing antibiotic resistance evolution.

Using stochastic simulations allowed us to test specific hypotheses about the mech-

anisms of multi-resistance evolution that we observed experimentally. We simulated

evolution in mixed populations of wild-type and mutator individuals, which only dif-

fered in mutation rate to resistance. The simulations excluded multi-drug resistance

mechanisms and spontaneous double mutants. Further, only a single allele for each

resistance type was considered, and secondary mutations at other loci were excluded.

Collectively, this demonstrated that a difference in mutation supply, which allows

resistance mutations to be acquired sequentially, is sufficient to explain the observed

multi-resistance evolution. While other mechanisms may influence resistance evolution,

they need not be invoked here. These include, for example, differences in birth and

death rate [51], the acquisition of fitter resistance alleles [52], and access to compen-

satory or otherwise beneficial mutations [53, 54]. Nevertheless, we do not eliminate

the possibility that our evolved strains vary in ways not captured by this minimal

model. Whole genome sequencing may illustrate such variation–indeed, populations

with mutators are often rich in diversity that persists over prolonged periods [22, 55].

However, sequencing alone could not definitively determine whether any such variation

was required for multi-resistance to evolve. Even with the simplifications made with

respect to the underlying biology, the simulation results and experimental results were

closely matched. This demonstrates that mechanistic insight into complex evolutionary

processes can be gained even from relatively uncomplicated stochastic models.

What role mutators play in the failure of clinical combination therapy is an important

area for future research. In addition to the pair studied here, resistance to a number of

other antibiotics can be achieved through spontaneous mutation, e.g. streptomycin (in

rpsL), fosfomycin (in murA, glpT, or uhpT ), cycloserine (in cycA), trimethoprim (in

folA and its promoter), nitrofurantoin (in nfsA or nfsB) and some beta-lactams (in

penicillin binding proteins). Among clinical isolates, there is an established association

between mutator phenotypes and multi-resistance [26]. A likely explanation for this

existing association is successive rounds of monotherapy, rather than combination

therapy. However, whether mutators can also allow multi-resistance to evolve during

combination therapy needs to be established. Clinical trials of HIV combination therapy

suggest the possibility [56], albeit with a much larger mutational supply than bacterial
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populations (with or without mutators) [57]. Ultimately, however multi-resistance

evolves, multi-resistant mutators may present a challenge for infection management.

Mutators are better able to mitigate the fitness costs associated with antibiotic resistance

by acquiring compensatory mutations [53]. Mutators may also more easily overcome

other forms of bacterial control, such as vaccination [58] and phage therapy [59]. Unlike

viruses, bacterial mutators are also unlikely to suffer from ‘lethal mutagenesis’ [60, 61]

or ‘mutational meltdown’ [62] (i.e. the accumulation of deleterious mutations leading

to extinction) due to having large population sizes and smaller mutation rates than the

error threshold of these models [63]. Indeed, there is little evidence that mutators impair

fitness over either short-term [64] or longer-term evolution [65] (except in the context of

mutation accumulation experiments that keep population sizes artificially small [66]),

and we found no evidence for it here (Figure 3.3). Together, this suggests that once

multi-resistant mutator lineages become established, they will be difficult to eradicate,

either through natural selection or through alternatives to antibiotics. This raises the

possibility that screening for mutators, in addition to antibiotic susceptibility, could

be valuable in clinical practice. bo Although here we have focused on a genetically-

encoded mutator phenotype, other factors influencing mutational supply may also

contribute to multi-resistance evolution. Mutation rate appears to be a phenotypically

plastic trait across all domains of life [19], though the precise mechanisms through

which this operates has yet to be established. Recent work has shown a link between

mutation rate and efflux gene expression [67]. Environmental stress and mutagens

can also transiently elevate mutation rates, e.g. via stress-induced mutagenesis [68],

radical-induced DNA damage [69], or inhibition of DNA synthesis and activation of

error-prone polymerases [70–72]. This may explain the high rate of multi-resistance in

Mycobacterium tuberculosis, which is thought to have a relatively low mutation rate

[73]. In addition to increasing the mean, increasing the variability of mutation rates

has also been shown to increase the probability of multi-resistance [74]. Understanding

the mechanistic underpinnings of mutation rates, and the relationship with resistance,

allows for treatments that inhibit resistance evolution through decreasing the mutation

rate [75]. Our work also highlights the need to consider the effects of possible treatments

on mutation rate. Some antibiotics are themselves mutagenic [76] whereas antibiotic

adjuvants that enhance antibiotic killing via SOS repression [77] potentially reduce
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mutation rates [78]. Population size is the other major contributor to mutational supply

[79] that can vary over orders of magnitude in different bacterial populations associated

with infection [48–50]. Our simulations suggest multi-resistance can evolve without

mutators, but the population size required largely exceeds those seen in infection.

3.4 Conclusion

A vast number of possible combination treatments can be generated from existing

antibiotics [80]. However, our results suggest that the design of combination treatments

should consider the potential for increasing resistance evolvability through indirectly

selecting for high mutation rates. Recent work has demonstrated that treatments

can indeed be optimised to prevent resistance evolution [37, 38]. However, testing

all possible antibiotic combinations in this fashion is an insurmountable task [80]. A

rational, high-throughput approach for designing combination therapies is needed. Our

stochastic simulation model provides the basis for an in silico framework for predicting

resistance evolution for any combination of antibiotics. Future work will identify ways

of optimising combination therapies to prevent resistance evolution.

3.5 Data availability

Data, scripts and source code are available on GitHub:

https://github.com/dannagifford/multi-resistance/

3.6 Methods

3.6.1 Strains and media

Selection experiments involved ‘wild-type’ E. coli str. K-12 substr. BW25113 [F-,

∆(araD-araB)567, ∆lacZ4787(::rrnB-3), λ-, rph-1, ∆(rhaD-rhaB)568, hsdR514] [81],

and a ‘mutator’ strain ∆mutS (as above, but with ∆mutS738::kan, indicating ∆mutS

replacement with kanamycin resistance, which has not previously been observed affect

resistance to the antibiotics we have studied here [19, 45]). Both strains were obtained

from Dharmacon, Horizon Discovery Group, UK. Relative to the published reference
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genome [82], whole genome resequencing of our isolates revealed no mutations in

BW25113, and a single point mutation in ∆mutS (1,985,889 G>A, resulting in an

amino acid substitution in pgsAA137V), which does not have a known association with

resistance.

Routine culturing was performed in lysogeny broth [LB, 10 g/l tryptone (Fisher

Scientific, UK), 5 g/l Bacto yeast extract (BD Biosciences, UK), 10 g/l NaCl (Fisher

Scientific, UK)]. Selection experiments in the presence of antibiotic(s) were performed

in Müller-Hinton broth (MH broth, 23 g/l, Sigma-Aldrich, UK). MH is a preferred

medium for use with antibiotics [83]. Solid media were made by adding 12 g/l agar (BD

Biosciences, UK) to either broth prior to autoclaving. Stock antibiotic solutions were

prepared at 10 mg/ml. Rifampicin (Fisher Scientific, UK) was dissolved in methanol

(Fisher Scientific, UK), and nalidixic acid (Fisher Scientific, UK) was dissolved in

double distilled water, with 1N NaOH (Fisher Scientific, UK) added drop-wise until

the antibiotic was solubilised. Strains were stored in LB with 40% glycerol at −80 ◦C.

3.6.2 Selection experiment under single-drug and combina-

tion treatments

We used experimental evolution to determine the effect of mutators on multi-resistance

evolution under single and combination antibiotic treatments. Populations were founded

from a mixture of mutator and wild-type individuals. Independent overnight cultures

of wild-type and mutator were first grown separately in 5 ml MH broth. Volumetric

mixtures of the cultures were made at ratios of 0%, 10%, 25%, and 50% mutator culture.

The actual proportions of mutators were measured by plating serial dilutions of the

populations on LB agar (total population count) and LB with 100 mg/l kanamycin agar

(mutator count) on 90 mm round Petri dishes (to account for differences between volu-

metric and actual proportions arising from both variation in density and experimental

error). The initial mixtures were assayed for resistance to rifampicin or nalidixic acid by

plating on MH agar supplemented with rifampicin (50 mg/l) or nalidixic acid (30 mg/l)

on 90 mm round Petri dishes. We discarded 5 cultures for having detectable rifampicin

resistance at the beginning of the experiment. No cultures had detectable nalidixic acid

resistance. This was undertaken to observe the evolution of multi-resistance from an
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initially wild-type population (rather than single-drug resistance in an already resistant

background). Resistance to these antibiotics arise due to mutations in their ‘resistance

determining regions’, in rpoB for rifampicin [84], or in gyrA (Gram negative bacteria,

such as E. coli) or parC (Gram positive bacteria) for nalidixic acid [85]. High-level

resistance to either requires only a single base pair mutation in their target genes.

Antibiotics in the parent classes of these antibiotics, rifamycins and fluoroquinolones,

are often used in combination treatments (particularly against M. tuberculosis, where

multi-resistance is rampant globally [86]).

We used a serial transfer protocol that exposed populations to increasing concen-

trations of antibiotics over a period of 6 days. The experiment was performed in

96-well microtitre plates (Nunc, Fisher Scientific, UK) in 200 µl volumes grown at 37
◦C with 200 rpm shaking in an Innova 42R Incubator (Eppendorf, United Kingdom)

for 22 h growth periods (‘days’). Populations were initiated from the mixed cultures

by diluting 1 µl of each into 200 µl of fresh culture using a 96-pin replicator (Boekel

Scientific, Feasterville, PA, USA). At the end of each day, 1 µl of each population was

pin replicated into 200 µl of fresh growth medium. If populations were to achieve the

same size each day, a 1/200 dilution would imply log2(200) ≈ 7.64 doublings per day.

Four antibiotic treatment regimes were used: no antibiotic, rifampicin only, nalidixic

acid only, or rifampicin and nalidixic acid combined. Antibiotic concentrations were

doubled each day over the course of 6 days (0.625, 1.25, 2.5, 5, 10, 20 mg/l of each

individual antibiotic). Population density was measured each day by optical density at

600 nm using a BMG POLARstar OPTIMA (BMG Labtech, Ortenberg, Germany).

Protocols involving the increase of antibiotic concentrations over time and/or space

has been used previously [4, 87, 88]. Under this approach, populations experience each

concentration in sequence, hence resistance at higher concentrations is not independent

from resistance at lower concentrations. This differs conceptually from experiments

that use several different fixed antibiotic doses [89, 90], where resistance arising at each

concentration is independent of the other concentrations.

3.6.3 Detection and analysis of resistance

Following each daily transfer, we assayed resistance by pin replicating 1 µl of overnight

culture (equivalent to a random sample of 1/200th of the population) on MH agar
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without antibiotic, or with rifampicin (50 mg/l), nalidixic acid (30 mg/l), or rifampicin

and nalidixic acid combined (50 mg/l and 30 mg/l, respectively) in 120 mm square

Petri dishes. These concentrations are above the MIC, and resistance is indicative of

mutations in the typical resistance genes for these antibiotics in E. coli, rpoB and gyrA,

respectively. Other selective concentrations may yield different mutants [90].

After overnight growth, populations were assigned one of five categories: ‘sensitive’ if

they only grew on non-selective plates, ‘rifampicin resistant’ or ‘nalidixic acid resistant’,

if they grew on one of the two single-drug plates, ‘mixed resistant’ if they grew on both

single-drug selective plates but not combination selective plates, and ‘double resistant’

(i.e. multi-resistant to two antibiotics, the simplest form of multi-resistance) if they

grew on combination selective plates. Note these outcomes refer to establishment of

resistance, rather than fixation, i.e. the frequency of resistant individuals is > 0 and

≤ 1. Assaying resistance using this method shows good concordance with growth above

MIC concentrations in broth (Figure 3.1). After the sixth day, evolved populations

that grew on the combination plates were grown overnight in LB medium, and then

stored at −80 ◦C.

We analysed resistance using a Bayesian categorical model, implemented in the brms

package [91, 92] in R 3.5.3 [93]. Resistance was treated as a categorical response variable

(categories defined as above), with antibiotic treatment (‘no antibiotic’, ‘rifampicin’,

‘nalidixic acid’, ‘combination’) and proportion of mutators (‘none’, ‘low’, ‘medium’,

‘high’) as categorical predictors. Row and column (i.e. position in the 96-well plate)

were treated as random effects. We used Student’s t priors, with location µ and

scale σ estimated from a preliminary experiment, and degrees of freedom ν chosen

to reflect uncertainty in the location, i.e. t(ν = 7, µ = −5, σ = 2.5) for the intercept

(i.e. the fitted value of the response when predictors take the reference level values

‘no antibiotic’ and ‘zero’ mutators). Priors for the parameters for the predictors were

given as t(ν = 7, µ = 0, σ = 2.5). We analysed both the ’main effects’ of the predictors

(i.e. the effect of a predictor on the response averaged across all levels of the other

predictors), and their ’interaction effects’ (i.e. the effect of a predictor being conditional

on the value of another predictor). For an extended description of the analysis, see

Model M1 in the Supplementary Information.
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3.6.4 Growth parameters of single- and double-resistant clones

To determine the effects of single and double resistance on growth parameters, we

selected five nalidixic acid resistant and five rifampicin resistant clones arising from the

wild-type BW25113 genetic background via fluctuation tests [94], using an established

protocol [95]. Briefly, 1 ml LB cultures of E. coli K-12 BW25113 were grown overnight

in 96-well deep-well plates. The entire volume of each culture was plated on MH agar

supplemented with rifampicin (50 mg/l) or nalidixic acid (30 mg/l) in the wells of a

6-well plate (each well approximately 35 mm in diameter). These 6-well plates were

incubated for 48 h. To select double-resistant clones, we performed a second fluctuation

test using resistant strains from the first, plating on the antibiotic to which they were

not already resistant. Colonies were isolated from selective plates, grown overnight in

LB medium, and then stored at −80 ◦C.

Growth curves of single- and double-resistant clones were generated by measuring

optical density at 600 nm every 30 min for 45 h using a BMG FLUOstar OMEGA

with Microplate Stacker (BMG Labtech, Ortenberg, Germany). Each clone was grown

in duplicate at 37 ◦C under each of the antibiotic concentrations experienced during

the selection experiments (i.e. 0.625, 1.25, 2.5, 5, 10, 20 mg/l each of rifampicin and/or

nalidixic acid). Cultures were initiated by first growing clones overnight in 200 µl

MH broth, then diluted 1/200 into a total volume of 200 µl MH broth containing

one or both antibiotic(s). The growth curves were used to estimate parameters for

the stochastic simulation model, described later (and in full in the Supplementary

Information)). We used parameter estimates for resistant strains derived from the

wild-type genetic background, as obtaining consistent estimates for mutators is difficult

due to resistance occasionally emerging during the assay (a known problem [96]).

We also summarised these growth curves into a single metric, area under the

curve (AUC), as the empirical growth curves did not follow a standard logistic shape

(Figure 3.5, which we also account for in the simulations). We calculated AUC using the

SummarizeGrowth function from the R package growthcurver [97]. AUC incorporates

all of lag phase, growth rate, and density, and highly repeatable. To determine whether

double resistance conferred a benefit under single-drug treatments, we fit a Bayesian

multivariate linear regression model of AUC of different strains in the presence of

each treatment over all concentrations. Student’s t priors were used for the intercept
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(ν = 7, µ = 10, σ = 2.5) and the other effects (ν = 7, µ = 0, σ = 2.5) (see Figure 3.11

and Model M2 in the Supplementary Information). Effects of single-drug and double

resistance were compared with point hypothesis tests on the population-level effects

from this model using 95% credible intervals (C.I.s). For an extended description of

the analysis, see Model M2 in the Supplementary Information.

Using the same protocol, growth curves for the double-resistant clones that evolved

during the selection experiment (all in the mutator genetic background) were measured

in antibiotic-free medium, and in 20 mg/l of the combination treatment. The association

between AUC, initial mutator frequency and treatment was analysed using a Bayesian

multivariate regression model. Student’s t priors were used for the intercept (ν =

7, µ = 10, σ = 2.5) and the effect of mutator levels (ν = 7, µ = 0, σ = 2.5) for other

estimated parameters (see Model M3 in the Supplementary Information).

3.6.5 Mutation rate estimates

Mutation rates to rifampicin resistance (µR = 6.7× 10−9 per cell division) and nalidixic

acid resistance (µN = 7.4× 10−10 per cell division), were obtained for these strains in a

previous publication [45], as was the mutator effect of ∆mutS (80-fold increase relative

to wild type) [19]. Assuming mutations occur independently, we estimate the probability

of both rifampicin and nalixidic acid resistance mutations occurring simultaneously

during the same replication event (i.e. a ‘spontaneous double mutant’) for the wild-type

as µRµN = 5.0×10−18, and for mutators as µRµN×802 = 3.2×10−14. We can use these

probabilities to obtain a rough estimate for the probability of observing a simultaneous

double mutant by simulating a fluctuation test using rflan() from the R package

‘flan’ [98]. We performed 106 simulations using the same parameters as the selection

experiment (i.e. 60 independent populations, days 1–4 permitting wild-type growth,

maximum population size of 5.71× 108). For populations comprising only wild-type

individuals, no spontaneous double mutants were observed in 106 simulations. For

populations comprising solely mutators, a simultaneous double mutant was observed

in 4210 out of 106 simulations. Hence, the probability that our selection experiment

observed a spontaneous double mutant is very low.
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3.6.6 Stochastic population dynamics model

We numerically simulated resistance evolution using a stochastic population dynamic

model. The model is described in full in subsection 3.8.1. Briefly, the model describes

four strains of types i ∈ {S,R,N,D}, where S is the sensitive ancestor, R is rifampicin

resistant, N is nalidixic acid resistant, and D is double resistant (Figure 3.4). We denote

the number of strain-i individuals in the population by ni. Simulated populations were

initiated with 5.71× 106 individuals; this is our estimate of the starting population size

in the experiments obtained by serial dilution plating. The initial population consisted

of a fraction 1− q of wild-type individuals, and a fraction q of mutators, for q taking

a value of 0, 0.05, 0.1, or 0.3. Growth rates and carrying capacities for each strain

i (Tables 3.2–3.3) were estimated empirically from growth curves, averaged over five

independent clones of each type. We used clones derived from the wild-type BW25113

due to difficulty in getting consistent growth curves from the ∆mutS mutator strain

due to adaptation occurring during the growth curve assay (a difficulty encountered

when working with mutators [96]). Growth curves were fitted in MATLAB2016a, using

a custom script (see Data availability statement for access). Mutation rates for strains

used here were estimated by fluctuation test in a previous study using these specific

strains [19]. Other parameter values were set to match the experimental procedure

(initial frequency of mutators, dilution, duration of experiment).

Population growth is described as follows. Considering first population growth

without mutation, for each time step, each of the ni individuals of strain i produces

one offspring with probability bi = exp {∆t ri (1− nT/ki)} − 1 for nT/ki ≤ 1, where ri
is the net growth rate for strain i, and ki is the carrying capacity. When nT/ki ≥ 1,

we set bi = 0 to ensure that ni remains constant. We have written nT = ∑
i ni for

the total number of individuals in the population. Time t is measured in units of

hours. The quantity ∆t is the time step of our simulations (we use ∆t = 0.01 h, see

subsection 3.8.2 for further discussion). In each time step, the number of offspring

of strain i is binomially distributed, Binomial(ni, bi). The binomial distribution is a

good approximation, for ∆t small, of the less intuitive negative binomial function that

accounts for the probability distribution of the offspring at each time step when a pure

birth process is considered (see Supplementary Information subsection 3.8.2 for details).

In subsection 3.8.3 we show that, for growth without mutations, the mean number of
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individuals of each strain follows the deterministic Leslie-Gower competition model [99]

(a discrete-time model conceptually similar to the Lotka-Volterra competition model in

continuous time [100, 101]).

At the start of the simulation, there are no Type R, N , or D individuals. Type R

and N individuals must initially arise by mutation in new Type S individuals that are

produced, but afterward may produce new individuals of the same type, or produce

Type D individuals by mutation. Once they have arisen, Type D individuals may

also reproduce, but do not mutate. We write µR for the probability with which an

offspring acquires resistance to rifampicin by mutation, and µN for the probability that

the offspring acquires resistance to nalidixic acid. We exclude the possibility that both

resistance mutations can be newly acquired in the same reproduction event (i.e. no

double-mutation or multi-drug resistance mechanisms). The number of individuals

of type i arising by mutation in any one time step is therefore Binomial(nS, bSµi) for

i ∈ {R,N}. For i = D the number of individuals generated through mutation is the

sum of two binomial random numbers, Binomial(nR, bRµN) and Binomial(nN , bNµR).

Population growth periods were 22 h, equivalent to ’days’ of the selection experiment.

At the end of each day, a dilution occurs in which the number of individuals of type i

transferred to the next day is binomially distributed, Binomial(ni, 1/200). Simulations

were written in C++ (source code available, see the ‘Data Availability’ statement).

To compare simulations with the experimental results, we drew a random sample

equivalent to 1/200th of all individuals from the simulated population whenever data

was taken from the simulation. Detection of type i was recorded for a given population

if a draw from Binomial[nT , ni/(200 · nT )] was at least 1. This is equivalent to the

resistance detection assay for the experimental results.
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3.7 Extended data

no antibiotic rifampicin nalidixic acid combination

none
low

interm
ediate

high

0 0.
62

5
1.

25
2.

5
5 10 0 0.

62
5
1.

25
2.

5
5 10 0 0.

62
5
1.

25
2.

5
5 10

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Concentration (mg/l)

Time (days)

O
pt

ic
al

 d
en

si
ty

 (
60

0 
nm

) Initiial m
utator frequency

no resistance

rifampicin resistance

nalidixic acid resistance

mixed resistance

double resistance

Extended Data Figure 3.1: Correspondence between optical density (OD) during selec-

tion experiment and detection of resistance. OD600 was measured each day at the end

of the growth phase using a multi-mode microplate reader (BMG POLARstar OPTIMA, BMG

Labtech, Ortenberg, Germany; note that this instrument gives higher values of OD than the BMG

FLUOstar OMEGA used elsewhere to measure growth curves).

3.8 Appendix A: Stochastic population dynamics

model of resistance evolution

3.8.1 Description of the model

As described in the main text, we numerically simulated resistance evolution using

a stochastic population dynamic model. A conceptual diagram of the model can be
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Extended Data Figure 3.2: Population dynamics of simulated resistance evolution. Areas
indicate the interquartile range (25% and 75% quantiles) of the numbers of bacteria of each
resistance type from 1000 replicate stochastic simulations. Panels A–D show different initial
mutator frequencies: ‘none’, ‘low’ (q = 0.05), ‘intermediate’ (q = 0.1, as shown in Figure 3.6),
‘high’ (q = 0.3).

seen in main text Extended Data Figure 3.4. The model describes four strains of types

i ∈ {S,R,N,D}, where S is the sensitive ancestor, R is rifampicin resistant, N is

nalidixic acid resistant, and D is double resistant. Populations initially consist only

of Type S, a fraction 1− q of which are wild-type, and q of which are mutators. The

conditions of the simulation are intended to replicate the selection experiment (see

main text Methods for details). The simulated populations also experience increasing

antibiotic concentrations, which double each day. As in the experiment, populations

are allowed to grow for a fixed time period, during which mutations can arise, before

being subjected to dilution. These processes are described in the following section.
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3.8.2 Binomial approximation for stochastic growth processes

To simulate the growth of bacteria, we assume that each of the ni individuals of strain

i replicates at any time independently of the rest of the population, and regardless of

its age, with a fixed replication rate λi. Setting mutations aside for the moment, this

is described by the well-known Yule-Furry process whose master equation reads

ṗni(t) = −niλipni(t) + (ni − 1)λipni−1(t), (3.1)

where pni(t) is the probability that the number of bacteria of type i is ni at time t. The

first term on the right hand side of Eq. (3.1) accounts for the outflux of probability

(per unit time) of state ni, and the second for the influx into state ni. We denote the

solutions of Eq. (3.1) by pni(t;n0
i ) where n0

i indicates the number of bacteria at t = 0.

The master equation Eq. (3.1) admits an analytical solution; indeed, its solution

with initial condition pni(0;n0
i ) = δni,n0

i
(where δni,n0

i
is the Kronecker delta) is the

negative binomial distribution function

pni(t;n0
i ) =

(
ni − 1
ni − n0

i

)
e−λin

0
i t
(
1− e−λit

)(ni−n0
i ) =

(
ni − 1
ni − n0

i

)
p
n0
i
i q

(ni−n0
i )

i , (3.2)

where pi = e−λitand qi = 1 − pi. The expression in Eq. (3.2) is the probability that

there are ni individuals of strain i in the population at time t, given that there were n0
i

such individuals at time t = 0. The pure-birth stochastic process described by Eq. (3.1)

thus can be simulated by a discrete-time algorithm in which at every time step the

number of bacteria is sampled from the negative binomial distribution Eq. (3.2). It is

worth noting that this does not involve any approximation.

In order to incorporate mutations, it is necessary to know the number of offspring

produced in one generation. Starting with n0
i cells, we denote the number of offspring

by nR,i. We then have ni = n0
i + nR,i for the total number of individuals of type i.

Therefore, the probability PnR,i(t;n0
i ) that nR,i offspring have been produced by

time t is equal to the probability that there are ni = n0
i + nR,i individuals in the

population overall at t,

PnR,i(t;n0
i ) = pn0

i+nR,i(t;n
0
i ). (3.3)

This yields the following expression

PnR,i(t;n0
i ) =

(
n0
i + nR,i − 1

nR,i

)
p
n0
i
i q

nR,i
i . (3.4)
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In a discrete-time algorithm, the number of offspring nR,i at each time-step ∆t is

drawn from the probability distribution function PnR,i(∆t;n0
i ) Eq. (3.4) with pi = e−λi∆t,

qi = 1− pi. While Eq. (3.4) describes the number of offspring, it is not easy to develop

an intuitive interpretation of the expression on the right-hand side.

In search of a more transparent model, we explore the limit of a small time step ∆t.

Considering ∆t� 1/λi (1/λi provides the time scale of the dynamical system), we can

expand the probability of replication pi in terms of λi∆t,

pi = e−λi∆t ≈ 1− λi∆t. (3.5)

As the number of offspring produced in one generation is very small, in this limit of

small λi∆t we can also assume that n0
i is the dominant term in n0

i + nR,i − 1 for large

populations (as in our experiments where n0
i ≈ 109). Thus

n0
i + nR,i − 1 ≈ n0

i . (3.6)

Accordingly, the PDF for the number of offspring Eq. (3.4) in the limit ∆t� 1/λi can

be approximated as

PnR,i(t;n0
i ) ≈

(
n0
i

nR,i

)
(1− λi∆t)n

0
i (λi∆t)nR,i , (3.7)

which we recognise as a binomial distribution with parameters n0
i and λi∆t. The con-

vergence for ∆t� 1/λi of the binomial approximation Eq. (3.7) and the corresponding

exact distribution for the number of offspring Eq. (3.4) for ∆t� 1/λi is displayed in

Extended Data Figure 3.3.

The binomial distribution brings about a clear interpretation of the bacterial growth:

at every time step we draw the number of offspring from a binomial distribution with

number of trials equal to the number of individuals and the success probability of

each trial determined by the replication rate. Another advantage of using a binomial

distribution is that, as we will see below, it is appropriate for modelling the serial

dilutions of cultures performed in the experiments. This means that a binomial model

can conveniently account for all processes involved in the experiments.

Other techniques to simulate a continuous-time stochastic process, such as the

Yule-Furry process described by Eq. (3.1), include the well-known Gillespie algorithm

[102, 103]. However, this method can be time consuming when the simulation entails

87



Chapter 3. Mutators drive evolution of multi-resistance to antibiotics

60 80 100 120 140

nR

0.01

0.02

0.03

0.04

P
D
F

(a)

5 10 15 20

0.02

0.04

0.06

0.08

0.10

0.12

nR

P
D
F

(b)

Extended Data Figure 3.3: Comparison between Eq. (3.4) (blue) and the binomial PDF
approximation from Eq. (3.7) (red), for two values of ∆t: A. ∆t = 0.1 h, B. ∆t = 0.01 h. Other
parameter values used in both plots are λ = 1 h−1, n0

i = 1000.

a large population, such as is the case of bacterial populations, which are often on

the order of 109 individuals. Although there are approximations in discrete-time

of the Gillespie algorithm to alleviate this issue, [e.g. tau-leaping, 104], we adopt

instead the binomial approximation of the analytical solution of the master equation

Eq. (3.1) because of its simple mathematical foundation and its clear interpretation.

The binomial approximation is also useful for the implementation of mutation (see

below).

We test the binomial approximation further in Extended Data Figure 3.4. In the

figure we compare a realization of the continuous-time Yule-Furry process against the

discrete-time analogues. The lines in both panels are obtained from simulations of

the Yule-Furry process using the Gillespie algorithm. In panel A we compare this

against samples from the solution for the Yule-Furry process in Eq. (3.4), drawn at

discrete time points. Given that the solution is exact, we find very good agreement,

remaining deviations are due to the stochastic nature of either trajectory but are small

given the large size of the population. In panel B we compare against a trajectory

constructed from the binomial approximation. This is obtained by sampling nR,i from

the distribution in Eq. (3.7) at discrete points in time, the total population size is then

n0
i +nR,i. Deviations from the continuous-time trajectory can then be seen. This is due

to the approximation leading to Eq. (3.7). However, the magnitude of these deviations

reduces as the discretization step ∆t becomes smaller, in-line with the fact that the

binomial approximation is derived in the limit λi∆t� 1.
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Extended Data Figure 3.4: Comparison between the continuous-time Yule-Furry process and
discrete-time analogues. Both panels show the size of a bacterial population size as a function of
time. The continuous line in either panel is from Gillespie simulations of the Yule-Furry process
defined in Eq. (3.1). A. Comparison with a sample from the exact solution in Eq. (3.4), drawn
at discrete time points (symbols). The agreement with the continuous trajectory is excellent
irrespective of the choice of the time step ∆t, as expected. B. Comparison with the binomial
approximation (see text for details). In both panels we use λi = 1h−1, and n0

i = 104.

Based on the results of Figures 3.3 and 3.4, and given that λi ≈ 1 h−1 is a good

benchmark for the replication rates that fit the experiments (see Table 3.2), we set

∆t = 0.01 h for our simulations. This choice of ∆t results in considerably lower

simulation running times than using the Gillespie algorithm, providing thus an effective

way for modelling the experiments.

3.8.3 Growth of bacteria

In order to capture the saturation of growth found in the experiment we use

bi = exp
{

∆t ri
(

1− nT
ki

)}
− 1, (3.8)

where ri is the growth rate per unit time of strain i. We interpret the reproduction

probability bi as an effective quantity, taking into account both birth and death processes

of bacteria, i.e., a net growth rate; the quantity ∆t denotes the length of time (in

hours, h) of each time-step of the simulation. The parameter ki is the carrying capacity

for strain i, and represents the maximum value that ni can take in absence of any

other strain. The quantity nT = nS + nR + nN + nD is the total number of bacteria

in the population. Given that nT is time dependent, the reproduction rate bi is time

dependent as well. The term ri(1− nT/ki) in the exponent in Eq. (3.8) resembles the

Leslie-Gower competition model [99], a discrete-time version of the Lotka-Volterra

competition model of [100, 101]. It takes into account the interaction between the

89



Chapter 3. Mutators drive evolution of multi-resistance to antibiotics

different strains. In the above model, we have assumed that the interaction is the same

between each pair of strains (pure scramble competition, i.e. no direct interference,

cross-feeding or similar).

Table 3.1: Definitions of model variables and parameters.

Parameter Definition
t time (hours)
i strain i ∈ {S,R,N,D}
ni number of individuals (of strain i)
n̄i mean number of ni over different realisations of the experiment
ri growth rate of strain i
ki carrying capacity of strain i
µj mutation rate to resist antibiotic, j ∈ {R,N}
nT total population size, nT = ∑

i ni
n̄T mean of nT over different realisations of the experiment
∆t length of time per simulation time-step
tci time at regime switch of the diauxic growth of strain i
nci critical population size at growth regime switch of strain i, i.e. ni(tci)
q initial frequency of mutators

To make the connection between Eq. (3.8) and the well-known Lotka-Volterra

dynamics, we note that the expected value, n̄i(t), of the number of individuals of type

i in the population follows

n̄i(t+ ∆t) = n̄i(t)× (1 + b̄i(t)), (3.9)

where b̄i(t) is the same as in Eq. (3.8), but using n̄T (the expected value) instead of nT .

In writing the expression on the right of Eq. (3.9), we have factorized averages, i.e.,

ni(t)bi(t) = ni(t)× bi(t). 3.9 indicates that each individual produces b̄i offspring, on

average, between t and t+ ∆t (0 ≤ b̄i ≤ 1). The competitive Lotka-Volterra equations

are obtained from Eqs. (3.8) and (3.9) in the limit ∆t→ 0,
dn̄i
dt = rin̄i

(
1− n̄T

ki

)
. (3.10)

In performing the expansion in ∆t, we have extrapolated the process to continuous

time. In the presence of only a single strain, Eq. (3.10) reduces to the logistic dynamics

dn̄i
dt = rin̄i

(
1− n̄i

ki

)
, (3.11)

and has the analytical solution

n̄i(t) = kin̄i(t0)
n̄i(t0) + [ki − n̄i(t0)]e−ri(t−t0) . (3.12)
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This describes a sigmoidal dynamic, starting from n̄i(t0) at time t0, and approaching

an asymptotic limit at the carrying capacity ki at long times.

In our model, we set the growth rates, ri, of strain i as zero when nT crosses ki.

Hence, its population size remains constant when the total number of bacteria reaches

or exceeds its carrying capacity. Our simulations operate in discrete time steps, but

taking averages over multiple stochastic realisations we observe similar saturating

behaviour for the expected number of individuals of the different strains.

3.8.4 Mutations

The simulation model also describes mutations. These can occur from sensitive bacteria

S to either R or N , and, in turn, from R and N to D. The model excluded the

possibility of direct mutations from S (sensitive) to D (double resistance). Following

the same idea as before, we consider that any offspring of an individual of type S is of

type R with probability µR, and of type N with probability µN . With the remaining

probability 1 − µR − µN the offspring of a parent of type S is also of type S (no

mutation). Similarly, an offspring of a parent of type R is of type D with probability

µN , and an offspring of a parent of type N is of type D with probability µR.

The number of mutant offspring produced in this way will be binomially distributed.

Specifically, we have

nS(t+ ∆t) = nS(t) + Binomial[nS(t), (1− µR − µN)bS],

nR(t+ ∆t) = nR(t) + Binomial[nR(t), (1− µN)bR] + Binomial[nS(t), bSµR],

nN(t+ ∆t) = nN(t) + Binomial[nN(t), (1− µR)bN ] + Binomial[nS(t), bSµN ],

nD(t+ ∆t) = nD(t) + Binomial[nD(t), bD] + Binomial[nR(t), bRµN ]

+ Binomial[nN(t), bNµR], (3.13)

where we have written Binomial(n, p) for a binomial random number with parameters

n and p; the probability that such a random number takes value j is pj = n!
j!(n−j)!p

j(1−

p)n−j, for j = 0, 1, . . . , n.

The parameters ri and ki for each strain are obtained by fitting the logistic model

in Eq. (3.11) to growth curves resulting from experimental data, as we will describe

next.
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3.8.5 Estimating growth parameters from experimental data

To estimate growth rate and carrying capacity of strains S, R, N , and D, we carried

out growth experiments of sensitive and resistant clones in pure culture. Growth

curves were performed by measuring OD over time (Extended Data Figure 3.5), under

conditions matching the selection experiment (see Methods in the main text). For each

resistant strain (i.e. R, N , D), we isolated five independent mutant clones derived

from the wild-type S type via fluctuation tests (see Methods in the main text).
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Extended Data Figure 3.5: Growth curves of sensitive, single-, and double-drug resistant strains
in the absence of antibiotics, or in antibiotic concentrations experienced during the resistance
selection regime. Curves shown here correspond to the areas under the curve shown in Extended
Data Figure 3.2 of the main text. Note the shape of the curve is not a simple logistic shape in
either the presence of absence of antibiotics, reminiscent of diauxic growth. This necessitated
the curve fitting procedure outlined in Extended Data Figure 3.6 to give parameters detailed in
Tables 3.2–3.4.

The growth curves deviate from a typical ‘S’-shaped logistic curve, instead char-

acterised by two ‘plateaus’, reminiscent of diauxic growth. Diauxic growth has been

previously reported for MH media [105], as well as for other rich media [106, 107]. We

account for this two-stage growth by fitting the data to growth curves of the form

ni(t) = n
(1)
i (t)H(tc − t) + n

(2)
i (t)H(t− tc), (3.14)
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where

n
(1)
i (t) = k

(1)
i nci

nci + [k(1)
i − nci ]e−r

(1)
i (t−tci )

, n
(2)
i (t) = k

(2)
i nci

nci + [k(2)
i − nci ]e−r

(2)
i (t−tci )

, (3.15)

and where H(t) is the Heaviside step function, H(t) = 0 for t < 0, H(t = 0) = 1/2 and

H(t) = 1 for t > 0. k(1)
i and k(2)

i are the carrying capacities of strain i before and after

the switch. The functions n(1)
i (t) and n(2)

i (t) are logistic growth curves that represent

the two regimes of the diauxic growth. They are solutions of the one-strain logistic

equation (3.11). They model the growth of bacteria when consuming one resource first,

and then switch to another resource. The growth switches from n
(1)
i to n(2)

i at time tc,

where n(1)
i (t) describes the growth for t < tci and n

(2)
i (t) for t > tci . Using the definition

of the Heaviside function H(t = 0) = 1/2, one has ni(t) = nci at t = tci .

We illustrate the curve fitting using a single rifampicin resistant clone grown in the

presence of the rifampicin, at the same concentrations used in the selection experiment

(Extended Data Figure 3.6). For the purposes of the fit we only considered the first 25

h of the growth experiment, to eliminate potential experimental error introduced from

evaporation of the growth medium. We measure time in units of hours, and the growth

rates ri are thus expressed in units of h−1. The fits were performed using MATLAB

2016a, with Non-linear Least Squares as the fitting method. The code is available in

the supplementary data. Parameters estimated in this way are given in Tables 3.2 and

3.3. Typically, these parameters explain a very large majority of the variation in OD

(Table 3.4), except where there is effectively no growth (e.g. of S, R and N strains in

high concentrations of the antibiotic combination).

The time point tci and resulting population size nci at which the growth switches

from n
(1)
i (t) to n(2)

i (t) is different for every strain, treatment, and drug concentration

considered. Note that these parameters are obtained from growth experiments for

single strains, whereas multiple strains are present in the simulation model.

In order to include the diauxic growth behaviour in the simulation model, we

switch between the two growth regimes when the total population size nT (t) reaches a

threshold ncT . This threshold is related to the nci obtained from the fits of single-strain

growth experiments to the diauxic behaviour in Eq. (3.14) as we will explain next.

Extended Data Figure 3.7 shows the distribution of nc, the switching population

values, obtained for the different treatments. Each graph shows a histogram of the
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−
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C
oncentration

(m
g/l)

R
2R

R
2N

R
2D

R
2S

no
antibiotic

1–6
0.31250

0.99957
0.99925

0.99907
0.99957

rifam
picin

1
0.625

0.99960
0.99738

0.99966
0.99956

rifam
picin

2
1.25

0.99964
0.99625

0.99958
0.99244

rifam
picin

3
2.50

0.99958
0.98607

0.99946
0.99552

rifam
picin

4
5

0.99956
0.99822

0.99967
0.99947

rifam
picin

5
10

0.99966
0.99725

0.99969
0.94550

rifam
picin

6
20

0.99933
0.99165

0.99974
0.37149

nalidixic
acid

1
0.625

0.99959
0.99955

0.99953
0.99945

nalidixic
acid

2
1.25

0.99974
0.99953

0.99964
0.99948

nalidixic
acid

3
2.50

0.99763
0.99957

0.99944
0.99309

nalidixic
acid

4
5

0.98397
0.99958

0.99970
0.98801

nalidixic
acid

5
10

0.97461
0.99949

0.99970
0.96445

nalidixic
acid

6
20

0.96781
0.99970

0.99932
0.95763

com
bination

1
0.625

0.99948
0.99940

0.99950
0.99913

com
bination

2
1.25

0.99962
0.99939

0.99964
0.99924

com
bination

3
2.50

0.97307
0.99931

0.99963
0.95726

com
bination

4
5

0.97735
0.98672

0.99960
0.88433

com
bination

5
10

0.93615
0.98740

0.99955
0.19791

com
bination

6
20

0.97295
0.97101

0.99955
0.35897

96



3.8. Appendix A: Stochastic population dynamics model of resistance evolution

0 10 20 30 40

time (hours)

0

0.2

0.4

0.6

0.8

O
D

C=0
C=0.625
C=1.25
C=2.5
C=5
C=10
C=20

(a)

10 20 30 40

time (hours)

0

0.2

0.4

0.6

0.8

O
D Experimental data

Curve fitting

(b)

Extended Data Figure 3.6: A. Example growth curves of a rifampicin-resistant clone under
rifampicin treatment, for several drug concentrations, C (mg/l). B. Curve fitting for C = 10
mg/l of the rifampicin treatment for the rifampicin-resistant strain, resulting in estimates k(1)

R =
0.372689, r(1)

R = 0.921300, k(2)
R = 0.848618, r(2)

R = 0.110723, R2
R = 0.99966 (other estimates

and R2 shown in Tables 3.2–3.4). OD–optical density.

values, nc, obtained from the different drug concentrations and strains for the given

treatment. Since there are 6 drug concentrations as each growth experiment proceeds,

and 4 different strains, this results in 24 values for nc per treatment. Evidently, for

experiments in which no drug is given we only obtain four values of nc (one for each

strain). We do not show the corresponding histogram.
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Extended Data Figure 3.7: Histograms of nc obtained from fitting the diauxic growth curves
in the text to experimental data; rifampicin, nalidixic acid, combination treatments in panels A, B
and C, respectively. Each graph includes all the values (24 in total) of nci obtained for each drug
concentration and strain.

Each of the histograms is bimodal, with one peak close to nc = 0, and the other at

nc ≈ 0.3 on the optical-density scale . The left peak at nc ≈ 0 corresponds to strains

incapable of growing in those environments (e.g. strain S for high values of antibiotic

concentration, C). We estimate ncT as the mean value obtained from the peak on the

right in each histogram, i.e. cases where strains were capable of growing. Results
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are shown in Table 3.5. The value obtained in this way differs between the different

treatments. For the case of no treatment we use the average over the four strains as

threshold value ncT .

Table 3.5: Switching value, ncT , for the different treatments.

Treatment Switching ncT
No antibiotic 0.4108

Rifampicin 0.3417

Nalidixic acid 0.3709

Combination 0.3154

As these parameters have been estimated from OD growth curves, they have so far

been expressed in units of OD. In the next section, we will describe the relationship

between OD and the number of bacteria.

3.8.6 Relationship between optical density and bacterial pop-

ulation size

To simulate population dynamics, the parameters we have estimated need to be

expressed in terms of numbers of bacteria, rather than in units of OD. We therefore

determined the relationship between OD and the number of bacteria present. Following

growth in liquid MH (with and without antibiotics, as in the selection experiment),

serial dilutions were plated on 90 mm Petri dishes containing LB agar (without

antibiotics), and colony forming units (CFUs) were counted following overnight growth.

To determine the best relationship between OD and number of bacteria, we performed

stepwise model selection using the step() function in R. The best fitting model

indicated a uniform slope across environments and strains (Extended Data Figure 3.8A,

Table S4). We therefore converted OD into population size by multiplying OD by a

constant (5.71× 108 bacteria per unit OD). We also performed kill curves to quantify

the extent of killing that occurs when populations first experience antibiotic treatment

(Extended Data Figure 3.8B). To recapitulate the conditions experienced during the

selection experiment, this was performed by pin replicating an overnight culture (1/200

dilution) into antibiotic containing medium (0.625, 1.25, 2.5, 5, 10, 20 mg/l of each
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antibiotic treatment). Population sizes were estimated by plating dilutions on LB agar

after 2, 4, 6, 8, and 24 h of exposure.
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Extended Data Figure 3.8: A. Relationship between blank corrected optical density and number

of bacteria in antibiotic concentrations experienced during the selection experiment. Regression

lines are the best fitting linear model shown in Table 3.6. B. Time series of bacterial populations

exposed to antibiotic concentrations experienced during the selection experiment. Blanked

OD–blank corrected optical density.
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Table 3.6: ANOVA for the full model and best model for predicting population size from optical
density, chosen by stepwise model selection using AIC. N–population size, OD–blank corrected
optical density (see Extended Data Figure 3.8)

Full model: log10(N) ∼ log10(OD) ∗ (antibiotic/concentration) ∗ strain
Model term df Squared Error F -statistic p-value
log10(OD) 1 80.0 502 < 10−16

antibiotic 3 0.95 1.99 0.12
strain 4 0.32 0.50 0.74
antibiotic:concentration 3 1.27 2.66 0.05
log10(OD):antibiotic 3 0.29 0.61 0.61
log10(OD):strain 4 0.88 1.38 0.24
antibiotic:strain 3 0.06 0.13 0.94
log10(OD):antibiotic:concentration 3 0.19 0.40 0.75
antibiotic:concentration:strain 3 0.10 0.22 0.88
log10(OD):antibiotic:strain 3 0.01 0.02 >0.99
log10(OD):antibiotic:concentration:strain 3 0.08 0.16 0.92
Residuals 228 36.4

Overall model F33,238 = 16.0, p-value < 10−16, adjusted R2 = 0.655, AIC = 296

Best model: log10(N) ∼ log10(OD) + antibiotic + antibiotic:concentration
Model term df Squared Error F -statistic p-value
log10(OD) 1 80.0 534 < 10−16

antibiotic 3 0.95 2.12 0.10
antibiotic:concentration 3 1.53 3.40 0.02
residuals 254 38.1

Overall model F7,254 = 78.7, p-value < 10−16, adjusted R2 = 0.676, AIC = 256

3.8.7 Simulating the experiments

Simulation conditions are given in Table 3.7. We use the values k(1)
i , r

(1)
i , k

(2)
i , r

(2)
i of

each strain and treatment, and ncT obtained as defined above, for simulations of the

stochastic model. Simulations are started from an initial population of 5.71 × 106

sensitive bacteria (type S); a frequency q of these are mutators and the remaining

fraction (1−q) consists of wild-type bacteria. In the simulations we use µR = 6.7×10−9

and µN = 7.4×10−10, as motivated in the main text. Mutators have a 80-fold increased

mutation rates, µR and µN , compared to the wildtype.

The simulated experiment consists of six days of growth, where the concentration

of antibiotic(s) is initially 0.625 on day 1, and doubled on each of the days 2 to 6.

Recall that the length of each time-step of the simulation, ∆t, is expressed in units

of hours (h). It has to be sufficiently small so that 0 ≤ bi ≤ 1 (bi is a probability). This
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Table 3.7: Simulation conditions.

Parameter Value
Replicates 1000
Initial population size 5.71× 106

Mean proportion transferred during dilution step 0.005
Duration between bottlenecks 22 h
Length of time per time-step (∆t) 0.01 h
Mutation rate to rifampicin resistance (µR) 6.7× 10−9 mutations per

replication
Mutation rate to nalidixic acid resistance (µN) 7.4× 10−10 mutations per

replication
Mutator effect 80-fold increase

means that we require

0 ≤ ∆t ≤ ln 2
ri(1− nT/ki)

. (3.16)

The upper bound on the right-hand side of the inequality takes its minimum value,

ln 2/ri, when nT = 0. From the fits of the experimentally obtained (single-strain)

growth curves to solutions of the logistic dynamics, we find a maximum value of

ri = 2.2h−1 for nalidixic acid treatment, strain S, drug concentration 0.25 mg/l. This

in turn means that the simulations required ∆t . 0.3151 h (similar to published

estimates of E. coli minimum doubling time, e.g. [108]). For our simulations we have

set ∆t = 0.01 h as this case approximates the continuous-time approach well (see

Figures 3.3 and 3.4). For higher values of ∆t our approximation becomes less accurate,

yet we can still obtain qualitatively equivalent results (we have choices of the time step

tested up to ∆t = 0.25).

An important aspect to take into account is the dilution carried out in the laboratory

experiments at the end of each day, when 1/200 of the population is carried forward

to the next day, and the rest discarded. In simulations we cycle through all members

of the population at the end of each (simulated) day and retain each individual

with probability 1/200; otherwise the individual is removed. This represents an

independent Bernoulli event on the level of individual bacteria. The number of each

type i carried forward follows a binomial distribution with mean µ = ni/200 and

variance σ2 = ni × 1/200 × 199/200 = ni × 4.975 × 10−3, where ni is the number of

type i individuals. This allows the possibility that a strain type goes extinct if it arises

too late into the growth cycle to achieve appreciable frequency.
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An example of the growth obtained from the simulations is presented in Extended

Data Figure 3.9.

C (mg/l)

C (mg/l) C (mg/l)

C (mg/l)

Extended Data Figure 3.9: Simulated growth curves for nalidixic acid treatment. Each panel

shows 100 independent simulation runs. The data shown aggregates wildtype and mutant bacteria.

C–antibiotic concentration (mg/l). Initial condition: 5.71×106 sensitive bacteria, with a frequency

q = 0.3 of mutators. Curves for each value of C were simulated over 22 h. We have used

∆t = 0.01 h. Compare to Extended Data Extended Data Figure 3.2D (nalidixic acid column).

3.9 Appendix B: Bayesian statistical analysis of ex-

periments and simulations

3.9.1 Model M1: Detection of resistance arising during ex-

perimental evolution

Defining the model

Here we ask whether the initial mutator frequency and antibiotic treatments had

an effect on resistance evolution, and whether these effects interacted. We fitted a

categorical regression model (also called a ‘multinomial logistic’ model) to the data,

to analyse how different initial mutator frequencies and antibiotic treatments affected

which type of resistance was observed at the end of the experiment.
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To make our analysis explicit, we will briefly describe the model here. We will refer

to Yi as the value of the ith observation, xm,i as the independent variables, and βm,k as

the estimated model coefficients. It is the coefficients βm,k that are of interest as they

relate how different experimental conditions influence the probability of observing any

given outcome. Categorical regression can be formulated as an extension of logistic

regression. Let Yi be a categorical variable that takes a value k from {1, 2, ..., K}, and

the probability that Yi has outcome k be P (Yi = k). We use a linear predictor function

to compute P (Yi = k). For a model considering M explanatory variables, this takes

the form

f(k, i) = β0,k + β1,kx1,i + β2,kx2,i + ...+ βM,kxM,i, (3.17)

where βm,k is the regression coefficient associated with the mth explanatory variable

and the kth outcome, and β0,k is the intercept associated with the kth outcome. This

function can be written more compactly using vector notation and taking the dot

product, f(k, i) = ~βk · ~xi, where ~βk and ~xi each have length M + 1, and x0,i is assigned

a value of 1.

The reader may be familiar with binary logistic regression with K = 2 outcomes,

usually with k = 1 defined as ‘success’ and k = 0 as ‘failure’. The function f(i, k) is

linked to the probability of observing outcome k by taking the log of the odds-ratio of

the two outcomes, i.e. the logit function.

If pi = P (Yi = 1),

logit(pi) = log
(

pi
1− pi

)
= ~β1 · ~Xi

pi = e
~β1· ~Xi

1 + e~β1· ~Xi
,

(3.18)

where ~Xi is the vector of values taken by the explanatory variables ~xi for the observation

Yi.

For K > 2 outcomes, the multinomial logit can be thought of as computing K − 1

independent logistic regression models with respect to a consistent reference level [109].

If K is chosen as the reference level, β0,K is defined as the ‘intercept’ of the model and
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all other elements of ~βK are equal to zero. This results in

log P (Yi = 1)
P (Yi = K) = ~β1 · ~Xi

log P (Yi = 2)
P (Yi = K) = ~β2 · ~Xi

...

log P (Yi = K − 1)
P (Yi = K) = ~βK−1 · ~Xi .

(3.19)

The fact that ∑K
k=1 P (Yi = k) = 1 allows calculating P(Yi = K) = 1/

(
1 +∑K−1

k=1 e
~βk· ~Xi

)
, which can then be used to solve the other probabilities. For any outcome

c, the general form of P (Yi = c) is thus given as

P (Yi = c) = e
~βc· ~Xi

1 +∑K−1
k=1 e

~βk· ~Xi
, (3.20)

which can then be used to estimate the coefficients ~βk through various methods. The

particular method we used, Bayesian categorical regression, is described in the next

section.

Fitting the model and hypothesis testing using Bayesian categorical regres-

sion

In our particular analysis, Yi represents the type of resistance observed, with five

possible outcomes: ‘no resistance’, ‘rifampicin resistance’, ‘nalidixic acid resistance’,

‘mixed resistance’ and ‘double resistance’. For ‘mixed resistance‘, populations grew

on selective plates containing either rifampicin or nalidixic acid, but not on plates

containing both rifampicin and nalidixic acid, whereas ‘double resistant’ populations

grew on plates containing both antibiotics. We note that these outcomes refer to

detection of resistance, rather than fixation, i.e. the frequency of resistant individuals

within each population has a value between > 0 and ≤ 1.

The independent variables, ~xi, were the initial mutator frequency, the antibiotic

treatment applied, which microtitre plate the population inhabited, and position within

each microtitre plate. Initial mutator frequency was treated as a categorical predictor

(with levels ‘zero’, ‘low’, ‘medium’ or ‘high’, using ‘zero’ as the reference level), as we

have no a priori expectation of a linear relationship between the proportion of mutators

and the estimated coefficient. Antibiotic treatment was a categorical predictor (with
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levels ‘no antibiotic’, ‘rifampicin’, ‘nalidixic acid’, or ‘combination’, using ‘no antibiotic’

as the reference level). Initial mutator frequency and antibiotic were each treated as

a fixed effect (as variance estimates from random effects variables with fewer than

five levels tends to be imprecise, see [110]). Plate number and position within each

microtitre plate were treated as random effects.

Incorporating both fixed and random effects requires fitting a ‘mixed-effects model’

to the data. However, categorical mixed-effects models are not straightforward to

fit using standard frequentist inference methods. While it is possible to fit such

models in principle [111], there is not, to our knowledge, any readily-available software

implementation. However, such models can be fit using recently-developed tools based

on Bayesian inference methods [91, 92]. We provide an example below. Although

software implementation initially motivated our choice of approach, there are additional

benefits of Bayesian inference [112].

To estimate the coefficients, ~βk, we fit a mixed-effects categorical model using brm()

from the brms package [91, 92] in R [93]. To fit a categorical model, ‘family’ was set to

‘categorical’ (with the default link ‘logit’). To ensure convergence was achieved, we set

max_treedepth = 15 and adapt_delta = 0.99. We ran four chains of 2000 iterations

each, with 1000 burn-in iterations. To permit hypothesis testing on point estimates,

samples from specified priors were drawn by setting sample_prior="yes". The choice

of priors was based on preliminary data, and is described in detail in a later section.

Default values were used for other settings.

To evaluate whether the interaction between initial mutator frequency and antibiotic

treatment was important, we compared the full model (i.e. main effects and interaction)

to a model with a main-effects only using ‘Pareto-smoothed importance sampling leave-

one-out cross-validation’ (PSIS-LOO [113]). Incorporating interactions effects into the

model did not significantly improve fit (PSIS-LOO difference in fit: −2.6± 5.4 S.E.),

hence we present estimates from the main effects model.

An example of the function call is shown below (full R scripts are also available,

see ‘Data Availability’ statement in the main text).

# Control parameters and p r i o r s

p r i o r s = c ( s e t_pr i o r ( " student_t (7 , −5, 2 . 5 ) " , c l a s s = "

In t e r c ep t " ) ,
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s e t_pr i o r ( " student_t (7 , 0 , 2 . 5 ) " , c l a s s = "b " ) )

c on t r o l s = l i s t ( adapt_delta = 0 .99 , max_treedepth = 15)

# Model c a l l s

M1. f u l l = s t a t e ~ (pmutS . t ex t + a n t i b i o t i c ) ^2 + ( 1 | row ) + ( 1 |

c o l )

M1. main = s t a t e ~ (pmutS . t ex t + a n t i b i o t i c ) + ( 1 | row ) + ( 1 |

c o l )

modelM1 . f u l l = brm(M1. f u l l ,

f ami ly = c a t e g o r i c a l ( " l o g i t " ) ,

cha ins = 4 , co r e s = 4 , i t e r = 2000 , warmup = 1000 ,

p r i o r = pr i o r s , c on t r o l = cont ro l s , sample_prior = " yes

" ,

data = popnsday6 )

modelM1 . main = brm(M1. main ,

fami ly = c a t e g o r i c a l ( " l o g i t " ) ,

cha ins = 4 , co r e s = 4 , i t e r = 2000 , warmup = 1000 ,

p r i o r = pr i o r s , c on t r o l = cont ro l s , sample_prior = " yes

" ,

data = popnsday6 )

Establishing priors for the model

Priors were established through a preliminary experiment in which pure populations

of either wild-type or mutator bacteria were subjected to increasing concentrations of

single and combination antibiotic treatments, as in the experiment described in the

main text (Extended Data Figure 3.10A). In contrast to the experiment presented in

the main text, here only the optical density (OD) at 600 nm of each population was

tracked (using a BMG POLARstar OPTIMA plate reader, BMG Labtech, Ortenberg,

Germany) rather than its resistance state. A population was considered to be ‘alive’

with OD > 0.1, otherwise ‘extinct’. Note that OD is a unitless quantity that is

dependent on the equipment used to measure it. We observed that, in the absence

antibiotic treatment, all populations survived. For single antibiotic treatments, all

mutator populations survived, but some wild-type populations went extinct. For
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the combination antibiotic treatment, 39/54 mutator populations survived, but all

wild-type populations went extinct. First, we use this information to establish priors

for the intercepts (Extended Data Figure 3.10B). Recall that ‘zero’ is the reference

level for mutators, and ‘no antibiotic’ for antibiotics.
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Extended Data Figure 3.10: A. Preliminary experiment tracking the proportion of populations
‘alive’ (i.e. with OD > 0.1) under experimental treatments. B. Illustration of priors used to
conduct Bayesian categorical regression using information from preliminary experiment, indicated
by vertical dashed lines. Curves show the probability density for a Student’s t distribution with
means µ = 0 (solid) or µ = −5 (dotted), standard deviation σ = 2.5 (both curves) and degrees
of freedom ν = 7 (both curves).

Out of 54 trials, we observed no alive populations in the wild-type populations.

We have some confidence that the proportion of double resistant outcomes is then

pdouble < 1/54. Therefore, the intercept for double resistance should be less than

logit(1/54) ≈ −3.97. We therefore used a t-distribution with mean µ = −5 and broad

and heavy tails with standard deviation σ = 2.5, and degrees of freedom ν = 7, to

reflect uncertainty. This distribution covers both pdouble ≈ 0 in the left tail, and

pdouble = 39/54, i.e. the number of alive populations in pure mutator populations, in

the right tail. Given that the probability of being single-drug resistant in the absence

of antibiotic is likely greater than double resistant, intercepts for other resistance

outcomes are likely covered by this distribution, and so we use the same prior for the

other intercepts.
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Next, we use this information to establish priors for the other coefficients. We

observed that the presence of mutators increases survival in the presence of both single

and combination antibiotics, hence the effect of mutators on total resistance (i.e. the

sum of all resistance types observed) is likely to be positive. However, it is possible

that different resistance types may have a negative relationship with the proportion of

mutators, if for example, elevated mutation rates pushes double resistance to arise in

the background of single-drug resistance, single-drug resistance may have a negative

relationship with initial mutator frequency. Hence for the effects of initial proportion

of mutators, we use a t-distribution centred at µ = 0 with the same broad and heavy

tails σ = 2.5, and ν = 7 to reflect uncertainty. This covers the observed proportion of

alive populations in a purely mutator population p = 39/54; we should however expect

to observe fewer resistance events when the proportion of mutators is less than 1, as in

the main text experiment. It also allows for the extreme possibilities of (nearly) zero

or (nearly) all resistance, albeit with less weight given.

From this experiment, we have limited direct evidence for how the presence of

antibiotics should affect the probability of observing resistance. On one hand, the

presence of antibiotics decreased the number of alive populations (and an extinct

population cannot be resistant). On the other, our growth measurements of resistant

strains in the presence of antibiotics suggest a positive effect of being resistant in the

presence of antibiotics, which would allow them to spread to high frequency and thus

escape loss due to genetic drift. The effect of antibiotics is likely to be in the same range

as for mutators (which includes ‘no effect’), hence we use the same prior distribution

(i.e. a t-distribution with µ = 0, σ = 2.5, and ν = 7).

Estimated model coefficients

Estimated model coefficients for the main-effects only model are shown in Table 3.8.

These are reported as treatment contrasts (i.e. relative to the treatment of no antibiotics

and no mutators). Bayesian hypothesis tests on fitted model coefficients were performed

using hypothesis(), which calculates a Bayes factor using the Savage-Dickey density

ratio method [114]. We used 95% credible intervals (95% C.I.s) for all hypotheses tested.

Coefficients were estimated on the logit scale (i.e. log-odds, which can assume any value

between −∞ and ∞, corresponding to proportions of outcomes of presistance type = 0
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and 1 respectively). A coefficient is estimated for each possible combination of response

outcome (resistance type) and the predictors (initial mutator frequency and antibiotic),

which indicates how a specific combination of predictor levels (e.g. ‘low’ mutator

frequency and ‘rifampicin’ treatment) influences the probability that a given outcome

is observed (e.g. ‘rifampicin resistance’).

Table 3.8: Effects of initial mutator frequency and antibiotic treatment on resistance type
observed at the end of the experiment. Estimated model coefficients come from fitting a Bayesian
categorical regression model to the data (see Model M1). Treatment contrasts on the logit scale
are shown. (* denotes 95% credible intervals excluding zero).

Resistance type Coefficient Treatment
contrast

95% credible interval

rifampicin resistance intercept -2.83 (-3.58, -2.14) *
low 1.48 (0.78, 2.25) *
intermediate 1.98 (1.23, 2.74) *
high 3.36 (2.56, 4.17) *
rifampicin 3.29 (2.60, 4.02) *
nalidixic acid -1.22 (-2.28, -0.29) *
combination -2.22 (-3.16, -1.38) *

nalidixic acid resistance intercept -4.00 (-5.06, -3.08) *
low -0.88 (-2.30, 0.34)
intermediate 1.51 (0.65, 2.39) *
high 2.81 (1.90, 3.78) *
rifampicin -2.41 (-7.70, 0.75)
nalidixic acid 2.67 (1.88, 3.54) *
combination -0.88 (-2.11, 0.26)

mixed resistance intercept -6.78 (-8.46, -5.37) *
low 4.27 (3.02, 5.81) *
intermediate 4.89 (3.60, 6.45) *
high 6.51 (5.20, 8.10) *
rifampicin 3.63 (2.77, 4.52) *
nalidixic acid 2.84 (2.18, 3.53) *
combination -0.96 (-1.90, -0.10) *

double resistance intercept -10.99 (-13.91, -8.71) *
low 5.14 (3.57, 7.39) *
intermediate 5.98 (4.36, 8.26) *
high 8.01 (6.35, 10.28) *
rifampicin 7.80 (6.21, 9.97) *
nalidixic acid 5.20 (3.71, 7.36) *
combination 4.22 (2.78, 6.33) *
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Checking robustness against choice of priors

A potential consequence of using informative priors in Bayesian inference is that they

may influence the posterior distribution for estimated coefficients unduly if they are not

chosen appropriately. However, the use of non-informative priors does not necessarily

mitigate these problems (for an in-depth discussion, see [115]). To check the robustness

of our model against the originally chosen priors, we refit the model using different

priors. We set Student-t priors on the intercept with arbitrarily chosen µ of -10, -20,

-30, -40, with (as before) σ = 2.5 and ν = 7. The estimated coefficients resulting

from using these priors are quantitatively similar to our original model. As a second

approach to evaluating robustness, we also set strongly-informative priors on each

coefficient of the model. We estimated means for each coefficient using a fixed-effects

categorical model (i.e. without the random effects) by maximum likelihood using

the multinom() function from the nnet package ([116], which refers to this type of

model as ‘multinomial logistic regression’). Note that assigning priors in this fashion

is used here only as a diagnostic technique, and is not recommended as a basis for

assigning priors more generally. For the model with these strong priors, the majority

of coefficients were again similar to the original Model M1. The exception was for

coefficients associated with the ‘double resistance’ outcome. Here, because there were

zero double resistance events associated with the reference levels of the main effects of

the model (i.e. no mutators, no antibiotics), the maximum likelihood estimated the

intercept associated with this outcome to be very small (log-odds of −38.34, equivalent

to an odds ratio of approximately 4.5 × 10−16). The posterior distribution for the

intercept was dominated by this strong prior. Consequently, the estimated coefficients

for the coefficients associated with antibiotic treatment and the presence of mutators

where there were double resistant outcomes observed were much larger than those

estimated when using the original weakly-informative priors. However, we note that

in all cases, the qualitative outcomes with respect to antibiotic treatment and the

presence of mutators remain unchanged.
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3.9.2 Model M2: Growth of strains derived from fluctuation

tests

Defining the model

Here we determined under which conditions resistant strains achieved a growth advan-

tage (see main text Extended Data Figure 3.2). Recall that growth was characterised

using area under the curve (AUC) of growth curves from optical density measured

at 600 nm. We compare the wild-type (E. coli K-12 BW25113) with single- and

double-drug resistant mutants selected in the BW25113 genetic background through

fluctuation tests (see Methods in main text). The model fitted to the data in Extended

Data Figure 3.3 is a Bayesian two-way factorial model, with ‘strain’ and ‘antibiotic‘

as predictor variables. We treated AUC measured in each antibiotic treatment as a

multivariate response. This was on the basis that each strain was measured at several

different concentrations, hence may be non-independent. We used Student’s t priors, as

opposed to a Gaussian priors, because doing so is more robust against extreme values

(i.e. values that appear to be ‘outliers’, but where there is no evidence of error in data

collection, [117]).

Establishing priors for the model

The intercept of this model is the mean AUC from the growth curves of OD, which is

always greater than zero. To calculate empirical AUC, we used SummariseGrowth()

from the growthcurver, which uses the trapezoidal rule to approximate the integral

under the curve. OD values on this BMG FLUOstar OPTIMA plate reader are typically

less than 1.2 for blank-corrected values. We used the trapezoidal rule to calculate

extremes for the values of AUC, i.e.

AUC =
∫ b

a
f(x)dx ≈ (b− a)f(a) + f(b)

2 .

Since AUC was calculated over 25 h, the lower extreme is (25 − 0)(0 + 0)/2 = 0

(i.e. no growth) and the upper extreme is (25− 0)(1.2 + 1.2)/2 = 30 (i.e. essentially

instantaneous achievement of maximum density). However, previous experience from

growing wild-type E. coli suggests they exit exponential growth in the region of 10 h
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after inoculation after a 1/1000 dilution in MH broth, giving

AUC ≈ (10− 0)(0 + 1.2)
2 + (25− 10)(1.2 + 1.2)

2 = 24

as a rough approximation of what would be expected under good growth conditions.

Hence, the prior for the intercepts should give highest density between 0 and 24. This

was specified as a t-distribution with mean µ = 10 and broad and heavy tails with

standard deviation σ = 2.5, and degrees of freedom ν = 7. The presence of mutators

could either increase or decrease evolved fitness relative to the intercept. To set the

priors on the effect of mutators, we use a t-distribution centred on mean µ = 0, with

standard deviation σ = 0.5, and degrees of freedom ν = 7. If the intercept takes a

value in the region of the mean of its prior, this prior on the mutator effect allows for

the extreme possibility that the presence of mutators results in an AUC of zero (if

the coefficient takes value −10), or an AUC beyond the technical capabilities of the

equipment (for values > 10), with low probability. This is illustrated in Extended Data

Figure 3.11.
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Extended Data Figure 3.11: Illustration of priors used to conduct Bayesian multivariate
regression on the effect of mutators on growth. Curves show the probability density for a Student’s
t distribution with means µ = 0 (solid) or µ = 10 (dotted), standard deviation σ = 2.5 (both
curves) and degrees of freedom ν = 7 (both curves). Dashed vertical lines show prior information
on technical upper and lower values for AUC, used to set a prior on the intercept.

Fitting the model and hypothesis testing

As previously, model fitting was performed using brm(). To use a Student’s t model,

‘family’ was set to ‘student’ (with the default link ‘identity’). To permit hypoth-

esis testing on point estimates, samples from specified priors were drawn by set-

ting sample_prior="yes". To ensure convergence, we set max_treedepth = 15 and
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adapt_delta = 0.99. Default values were used for other settings. As before, we used

a 95% C.I. for hypotheses. As we are primarily interested in hypotheses on point

estimates, we do not present the entire table of estimated effects here, though this

can be generated with the R script provided (see the ‘Data Availability’ statement

in the main text). We calculated the difference in AUC of the single-resistant and

double-resistant strains in the two single-drug treatments. Estimated model coefficients

are reported as treatment contrasts (i.e. relative to the wildtype and antibiotic-free

treatment). For the rifampicin treatment, there was no benefit of double resistance

over rifampicin resistance [95% C.I. of the difference = -0.07, 95% C.I.: (−0.38, 0.23)].

For the nalidixic acid treatment, there was a deleterious effect of double resistance over

nalidixic acid resistance [95% C.I. of the difference = -0.75, 95% C.I.: (−1.05,−0.45)].

3.9.3 Model M3: Growth of double resistant strains from se-

lection experiment

Defining the model

Here we determine whether initial mutator frequency had an effect on the growth

of double resistant strains that evolved during selection. Decreased growth with

a higher mutator frequency may occur if deleterious variation accumulated by the

elevated mutation rate hitch-hikes to high frequency along with resistance. Alternatively,

increased growth may be realised if the elevated mutation rate allowed the accumulation

of beneficial mutations, or increased the clonal interference among resistance mutations.

We fit a Bayesian multivariate Student’s t mixed-effects model. We treated growth

(measured by AUC) in the presence (20 mg/l) and absence (0 mg/) as a bivariate

response variable, and initial mutator frequency as the sole population-level factor

(‘low’, ‘intermediate’, ‘high’, with the growth of double resistant strains derived in the

BW25113 wild-type background as the reference level). For the same reasons as in

Model M2, we used a bivariate model to account for correlations arising from measuring

the AUC of each strain multiple times in different environments. Also as in Model

M2, we used a Student’s t model to be robust to ‘outliers’ in the data. AUC at each

concentration was measured over several ‘replicate’ experiments, which was treated as

a varying factor common to both response variables.

113



Chapter 3. Mutators drive evolution of multi-resistance to antibiotics

Establishing priors for the bivariate linear model

The data collection for this analysis is the same as for the data analysed in Model M2,

hence we use the same priors (Extended Data Figure 3.11).

Fitting the model and hypothesis testing

As previously, model fitting was performed using brm(). To use a Student’s t model,

‘family’ was set to ‘student’ (with the default link ‘identity’). To permit hypoth-

esis testing on point estimates, samples from specified priors were drawn by set-

ting sample_prior="yes". To ensure convergence, we set max_treedepth = 15 and

adapt_delta = 0.99. Default values were used for other settings. As before, we used

95% C.I.s for hypotheses. Estimated coefficients are given in Table 3.9, reported as

treatment contrasts (i.e. relative to double resistance in the BW25113 strain). Growth

measured by AUC in 0 mg/l and 20 mg/l of the combination antibiotic treatment was

positively correlated [r = 0.68, 95% C.I.: (0.56, 0.79)]. The model incorporating initial

mutator frequency was a worse fit than an intercept-only model (WAIC 564.6±23.7 SE

vs. 540.0± 25.2 SE), suggesting initial mutator frequency did not have a large influence

on AUC of double resistant strains.

Table 3.9: Estimated coefficients for the population-level effect of mutators on growth (measured

by AUC) of multi-resistant clones in 0 mg/l and 20 mg/l of the combination treatment, from

the fit of a Bayesian bivariate regression model. Treatment contrasts are shown (* denotes 95%

credible intervals excluding zero).

Concentration Coefficient Estimate Error 95% credible interval

AUC in 0 mg/l intercept 8.77 0.47 (7.75, 9.65) *

low -1.93 0.59 (-2.91, -0.47) *

intermediate -0.65 0.58 (-1.59, 0.77)

high -0.67 0.57 (-1.58, 0.74)

AUC in 20 mg/l intercept 7.37 0.54 (6.31, 8.51) *

low -0.84 0.64 (-1.97, 0.62)

intermediate 0.17 0.64 (-1.02, 1.52)

high -0.06 0.61 (-1.11, 1.36)
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3.9.4 Model M4: Detection of resistance arising during sim-

ulation

Defining the model

The model is defined as it is for Model M1, except without the random effects of

position within the plate.

Establishing priors for the model

The same priors were used as for Model M1.

Fitting the model and comparing with Model M1

To determine concordance between simulations and experimental results, we fit a

Bayesian categorical model to the simulation results and compared the estimated

coefficients. We used the same approach and priors as in Model M1, with the exception

of the absence of varying factors in the model fit to the simulations. As for Model

M1, the full model did not provide a better fit than the main effects model (WAIC

1457.9 ± 50.0 SE vs. 1443.9 ± 50.7 SE). Estimated coefficient obtained from fitting

the main-effects model to the output from the simulations are given in Table 3.10.

Estimated coefficients from the simulation closely matched those from the experiment

(Extended Data Figure 3.12).
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Extended Data Figure 3.12: Comparison of coefficients from Bayesian categorical models fitted
to simulation and experimental data. Dashed diagonal line indicates 1:1 line; points falling on
this line indicate coefficients are equal in both simulation and experiment.
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Table 3.10: Effects of initial mutator frequency and antibiotic treatment on resistance type

observed at the end of the simulations. Coefficients come from fitting a Bayesian categorical

regression model to the simulations (see Model M4). Treatment contrasts on the logit scale are

shown. (* denotes 95% credible intervals excluding zero).

Resistance type Coefficient Estimate 95% credible interval

rifampicin resistance intercept -1.27 (-1.78, -0.79) *

low 1.84 (1.30, 2.42) *

intermediate 2.76 (2.10, 3.46) *

high 4.30 (3.10, 5.85) *

rifampicin 2.24 (1.55, 2.97) *

nalidixic acid -0.55 (-1.14, 0.02)

combination -1.86 (-2.58, -1.19) *

nalidixic acid resistance intercept -4.00 (-5.22, -2.95) *

low 1.42 (0.60, 2.27) *

intermediate 2.02 (1.05, 2.99) *

high 3.87 (2.35, 5.65) *

rifampicin -2.39 (-8.33, 1.07)

nalidixic acid 2.37 (1.39, 3.51) *

combination 0.63 (-0.62, 1.88)

mixed resistance intercept -3.28 (-4.86, -2.05) *

low 1.40 (-0.26, 3.23)

intermediate 4.26 (2.81, 5.94) *

high 6.36 (4.58, 8.51) *

rifampicin -3.23 (-8 .54, -0.16) *

nalidixic acid -5.39 (-11.44, -2.38) *

combination -3.50 (-5.66, -1.86) *

double resistance intercept -10.72 (-13.51, -8.61) *

low 5.81 (4.55, 7.45) *

intermediate 7.28 (5.94, 8.97) *

high 10.15 (8.42, 12.21) *

rifampicin 8.44 (6.73, 10.75) *

nalidixic acid 5.38 (3.75, 7.61) *
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combination 5.42 (3.81, 7.61) *
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Chapter 4. Competition delays multi-drug resistance evolution during combination
therapy

Abstract

Combination therapies have shown remarkable success in preventing the evolution of

resistance to multiple drugs, including HIV, tuberculosis, and cancer. Nevertheless,

the rise in drug resistance still remains an important challenge. The capability to

accurately predict the emergence of resistance, either to one or multiple drugs, may

help to improve treatment options. Existing theoretical approaches often focus on

exponential growth laws, which may not be realistic when scarce resources and

competition limit growth. In this work, we study the emergence of single and

double drug resistance in a model of combination therapy of two drugs. The model

describes a sensitive strain, two types of single-resistant strains, and a double-

resistant strain. We compare the probability that resistance emerges for three

growth laws: exponential growth, logistic growth without competition between

strains, and logistic growth with competition between strains. Using mathematical

estimates and numerical simulations, we show that between-strain competition only

affects the emergence of single resistance when resources are scarce. In contrast,

the probability of double resistance is affected by between-strain competition over

a wider space of resource availability. This indicates that competition between

different resistant strains may be pertinent to identifying strategies for suppressing

drug resistance, and that exponential models may overestimate the emergence of

resistance to multiple drugs. A by-product of our work is an efficient strategy

to evaluate probabilities of single and double resistance in models with multiple

sequential mutations. This may be useful for a range of other problems in which

the probability of resistance is of interest.

4.1 Introduction

The rise of drug resistance has triggered studies into different treatment regimes, aimed

to prevent or delay the emergence of resistance. Combination therapies have attracted

special attention, due to their effectiveness against viral, bacterial, and fungal infections,

as well in the context of cancer (see e.g. [1–4]). Combination therapies have also shown

success in managing HIV [5], malaria [6], and tuberculosis [7].
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The ability of combination therapies to counteract antibiotic resistance relies on the

idea that simultaneous acquisition of resistance to multiple antibiotics is extremely rare.

For independent resistance mutations, this occurs with a rate equal to the product

of mutation rates for resistance to each drug. For bacteria these are in the range

of approximately 10−6 to 10−10 per genome replication (see [8]). Multi-resistance is

therefore more likely to emerge via sequentially acquisition of resistance to each drug

[2]. This is what combination therapies aim to prevent. These therapies can have

limitations, however, for example due to differences between drugs in how quickly they

are absorbed (i.e. pharmacokinetics, see [9, 10]).

Having the ability to predict the emergence of single or double resistance from

mathematical or computational models may help to develop strategies to reduce

resistance. Since mutations occur as random events, one of the main aims is to compute

or estimate the probability that resistant cells are present in the population at a certain

time after the drug treatment has started. Several theoretical approaches have been

proposed, with a particular focus on drug treatments in cancer cells (see [11] for an

overview). Other modelling work has focused on resistance in viral dynamics (see e.g.

[12]). A systematic review of models of antimicrobial resistance can be found in [13].

Michor et al. [14] estimated the probability of extinction of a branching process

with multiple types of mutations, for populations consisting entirely of sensitive cells

at the start of the treatment. Their approach allows one to obtain the probability of

successful therapy, that is, the therapy that kills both sensitive and mutant cancer

strains at very long times after the treatment started. The calculations are based on the

work of Iwasa and co-authors (see [15, 16]), where extinction probabilities were derived

for an exponential growth model from a generating-function approach. Similarly, [17],

estimated the probability of single resistance at the point in time at which the total

cell population reaches a certain size. This was extended in [18] to a case with single

and double resistants. This latter approach succeeded in obtaining the probability of

having at least one double mutant before the total population has reached a particular

size.

Later, [19] proposed a simpler approach, based on using the extinction probability

of a single-type birth-death process, to estimate the emergence of single resistance

in dosing schedules that affect both birth and death rates. Recently, the effects of
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pharmacokinetics were studied by [20]. Related work can also be found in [21] for a

process with multiple types of resistance, see also [22] for an experimental approach.

The work mentioned so far focuses largely on models with exponential growth,

effectively ignoring interactions between cells. This is an approximation, but it works

well for the early stages growth when non-linear interaction effects are not relevant (see

e.g. [23]). In particular, this assumption is valid when the population size has not yet

saturated at carrying capacity.

Although exponential growth can serve as a good approximation to study the

emergence of single mutations, it may not be appropriate when multiple mutations

take place in sequence. This is because the later mutations can occur during advanced

phases of growth. At that stage interactions between cells may have become relevant, in

particular when the population approaches its carrying capacity. In order to model such

instances, one needs to go beyond simple unconstrained reproduction. The purpose

of this work is to show how the choice of growth model affects predictions for the

emergence of single and double resistance under combination therapy. We describe

the evolution of resistance by means of three stochastic models: (i) A model with no

interactions between cells, leading to exponential growth if growth rates are constant;

(ii) A model in which each strain follows a logistic growth law, but where there are

no interactions between the different strains; (iii) Logistic growth with competition

between strains for a common resource. For each of the models we consider constant

and time-dependent per capita birth and death rates. We derive analytical estimates

for the probability of single and double resistance, and compare these with numerical

simulations. The formalism to predict the emergence of resistance builds upon the

work in [19].

Our results show that the prediction of single resistance in the logistic growth models

is different from that for the model with exponential growth when the availability of

resources is low. The probability of double resistance varies across the different growth

models for a larger range of parameters (such as birth rates of sensitive or resistant

strains, or the initial cell number). This difference to the exponential model is more

pronounced in the model with competition between different strains. The growth of

source strains for double mutants may then saturate before double mutants appear.

This earlier saturation can alter the optimum treatment strategy, i.e., the therapy that
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maximises the time at which first double mutants emerge.

The remainder of this paper is set out as follows. In Section 4.2 we provide the

mathematical background definitions for our study. In particular, we describe the

different growth models and we define the model we use for the effects of treatments

on these growth laws. Section 4.3 contains our main analytical results. We derive

approximations for the probability of single and double resistance, and describe how

we evaluate the resulting numerical expressions efficiently. In Section 4.4 we then

discuss these predictions for models with constant parameters. Time-dependent dosing

protocols are studied in Section 4.5. In Section 4.6 we discuss limitations of our

approach, before we conclude in Section 6.6. Further details of our calculations, and

additional results can be found in the Supplementary Material.

4.2 Stochastic Model

4.2.1 General definitions

We focus on a cell population subjected to combination therapy of two different types

of drugs labeled A and B respectively. The drugs may act concurrently, depending

on the dosing schedule. Cells can develop resistance to one drug (single resistance)

or to both drugs (double resistance) via independent mutations. Double resistance

is acquired sequentially, that is, after acquiring first single resistance to either of the

two drugs. We will not consider the possibility of acquiring resistance to both drugs

through a single mutation, as this is sufficiently rare (see e.g. [2]). Our model excludes

back mutations as these are also very unlikely (see e.g. [24]).

To model how the strains acquire resistance, we consider a multi-strain continuous-

time birth-death process with mutations. The birth and death rates can vary over

time, making the dynamics a so-called ‘non-homogeneous’ process [25]. There are

four different strains in the population, labeled S,A,B, and D. Strain S denotes

sensitive cells, i.e., this strain does not exhibit resistance to either drug. Cells of strain

A are resistant to drug A, but not to B, and vice versa for B. Strain D consists of

double-resistant cells.

The process is described by random variables nS(t), nA(t), nB(t), and nD(t), which

represent the cell numbers (or number of individuals) for each strain at time t. We write
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Table 4.1: Summary of the different birth and death events in the population, along with the
associated rates per individual, and the total rate for any type of event in the population. The
symbol ∅ represents removal of an individual from the population (i.e., death). The change of the
state vector n(t) = (nS(t), nA(t), nB(t), nD(t)) in each of the different possible events is shown
in the last column. For completeness, we include here the exact rates of each reaction (e.g., we
do not approximate 1− µA by 1 as we do below)

Transition Rate per individual Total event rate Change of n(t)
S → S + S bS(t)(1− µA − µB) nS(t)bS(t)(1− µA − µB) (1, 0, 0, 0)
S → ∅ dS(t) nS(t)dS(t) (−1, 0, 0, 0)
S → S + A bS(t)µA nS(t)bS(t)µA (0, 1, 0, 0)
S → S +B bS(t)µB nS(t)bS(t)µB (0, 0, 1, 0)
A→ A+ A bA(t)(1− µB) nA(t)bA(t)(1− µB) (0, 1, 0, 0)
A→ ∅ dA(t) nA(t)dA(t) (0,−1, 0, 0)
A→ A+D bA(t)µB nA(t)bA(t)µB (0, 0, 0, 1)
B → B +B bB(t)(1− µA) nB(t)bB(t)(1− µA) (0, 0, 1, 0)
B → ∅ dB(t) nB(t)dB(t) (0, 0,−1, 0)
B → B +D bB(t)µA nB(t)bB(t)µA (0, 0, 0, 1)
D → D +D bD(t) nD(t)bD(t) (0, 0, 0, 1)
D → ∅ dD(t) nD(t)dD(t) (0, 0, 0,−1)

n = (nS, nA, nB, nD). Members of different strains proliferate and die with rates bi(t)

and di(t) respectively, where i ∈ {S,A,B,D}. These rates can be explicit functions of

time, reflecting time-dependent treatment strategies. In birth events a single individual

of the population reproduces, and in death events a single individual is removed from

the population.

In birth events, one of the two types of mutations can occur. For example, an

offspring of strain S will be of type A with probability µA, and of type B with probability

µB. This is described by the events S → S + A or S → S +B, respectively. With the

remaining probability, 1− µA − µB, the offspring is of type S (S → S + S). Similarly,

an offspring of a parent type A is of type D with probability µB (A→ A+D), and an

offspring of an individual of type B is of type D with probability µA (B → B + D).

The per capita birth rate bi has an explicit dependence on ni in the model with logistic

growth without competition between strains. Each bi depends on all components of n

in the model with competition between strains. This will be detailed further below.

The rates associated with the possible events are summarised in Table 4.1. The last

column of the table indicates how entries of the state vector (nS, nA, nB, nD) change in

the different types of events.
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4.2.2 Mean growth laws and production rates of mutants

The quantities nS(t), nA(t), nB(t), and nD(t) above are random variables, and differ

from realisation to realisation of the stochastic birth-death dynamics. We write n̄i(t),

i ∈ {S,A,B,D} for the average cell numbers at time t across realisations. In the limit

of infinite populations these follow the ordinary differential equations

dn̄S
dt (t) = rS(t)n̄S(t),

dn̄A
dt (t) = bS(t)µAn̄S(t) + rA(t)n̄A(t),

dn̄B
dt (t) = bS(t)µBn̄S(t) + rB(t)n̄B(t),

dn̄D
dt (t) = bA(t)µBn̄A(t) + bB(t)µAn̄B(t) + rD(t)n̄D(t).

(4.1)

The quantities
rS(t) ≡ bS (t) (1− µA − µB)− dS (t) ,

rA(t) ≡ bA (t) (1− µB)− dA (t) ,

rB(t) ≡ bB (t) (1− µA)− dB (t) ,

rD(t) ≡ bD(t)− dD(t)

(4.2)

represent the net growth rates for the different strains, and result from the balance of

birth and death. In the exponential growth model the bi(t) do not depend on n̄. In the

logistic model without competition between strains bi is of the form bi = bi(n̄i(t), t) in

the deterministic limit. In the model with competition between strains, finally, we have

bi = bi(n̄(t), t). This is obtained from factorising averages in the deterministic limit,

e.g. bini = bi ni, and using bi(ni, t) = bi(ni, t). In Eq. (4.2) we have simply written

bi = bi(t) to keep the notation compact.

To proceed we will assume that the probabilities µA and µB are small compared

to one, values below 10−2 can serve as a reference for real-world biological systems,

see e.g. [8]. We use this to approximate the terms 1− µA, 1− µB, and 1− µA − µB
in Eq. (4.2) by a value of unity. This means that we overestimate the number of

non-mutant offspring by a small fraction. In related models it has been shown that this

simplification does not significantly alter the outcome [19]. With this simplification,

the net growth rates in Eq. (4.2) become ri = bi − di. The mutation rates are still

present in Eqs. (4.1), in the terms associated with mutations from source strains (the

first term in each of the growth laws for strains A,B and D).
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The rates with which single-resistants of type A or B are produced by mutations are

given by the total rates of the events S → S+A and S → S+B, respectively. In the fully

stochastic model these are random quantities themselves, given byWA(t) = bS(t)µAnS(t)

and WB(t) = bS(t)µBnS(t) (see Table 4.1). Within the deterministic approximation we

can replace this by

WA(t) = bS(t)µAnS(t) (4.3)

and

WB(t) = bS(t)µBnS(t). (4.4)

The production rate of double mutants, resulting from mutations arising in the offspring

of either A or B, is the sum of the rates for the two events A→ A+D and B → B+D.

Focusing on mean values again, this becomes

WD(t) = bA(t)µBnA(t) + bB(t)µAnB(t). (4.5)

The deterministic approximation we have made effectively amounts to writing

W i(n(t)) ≈ Wi(n̄(t)). The resulting equations for the mean cell numbers are then

closed in the {n̄i(t)}, with no dependence on higher-order moments of ni(t). This

approximation is only necessary in the logistic growth models defined below. For the

range of parameters we explore in this paper, theoretical predictions calculated based

on this simplification are typically in good agreement with numerical simulations as we

will see below. We discuss limitations below in Section 4.6, and we show instances in

which the predictions of the theory deviate from numerical simulations in Section 4.13

of the Supplementary Material.

4.2.3 Specific growth laws

We will explore three different scenarios. The first is exponential growth, and describes,

for example, bacterial populations with unlimited resources so that growth can continue

indefinitely (e.g. as it is the case in so-called ‘continuous’ culture systems with constant

growth rates, see [26]). The second scenario entails logistic growth for each strain, but

with no competition between individuals of different strains. This describes situations

where resources are limited, but each strain exploits a different resource (such as may

occur if a resistance mutation allows a strain to occupy a new ecological or spatial niche,
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[27, 28]). The growth of any one strain is then limited by the number of individuals

of that strain, but not by individuals of other strains. The third scenario is logistic

growth with competition within and between strains. The different strains compete for

the same resources, such that the growth of any one strain is limited by the presence

of all strains. This leads to competitive Lotka-Volterra equations [29]. This model

represents a more realistic scenario as often resources are limited and organisms need

to compete for them. We provide detailed mathematical definitions for each of the

three scenarios below.

Throughout this paper and for every type of growth law, the initial population at

time t = 0 is assumed to consist of n0 sensitive cells and no resistant mutants, i.e., the

initial condition is n(t = 0) = (n0, 0, 0, 0).

Exponential growth model (EG)

In this model, the per capita birth and death rates do not depend on the cell number

of any of the strains, i.e., the bi(t) and di(t) may be time-dependent (reflecting time-

varying drug concentrations), but they are not functions of n. The differential equations

for the ni are then linear in n̄i. In the special case of constant per capita growth

and death rates, the equations admit analytical solutions in the form of elementary

exponential functions (see Section 4.9 of the Supplementary Material). When the rates

are time-dependent, the solutions can be expressed as

n̄S(t) = n0 exp
[∫ t

0
rS (t′) dt′

]
,

n̄A(t) =
∫ t

0
WA (t′) exp

[∫ t

t′
rA (t′′) dt′′

]
dt′,

n̄B(t) =
∫ t

0
WB (t′) exp

[∫ t

t′
rB (t′′) dt′′

]
dt′,

n̄D(t) =
∫ t

0
WD (t′) exp

[∫ t

t′
rD (t′′) dt′′

]
dt′.

(4.6)

Even though these are not strictly exponential functions in the case of time-dependent

rates we will nevertheless refer to this type of growth law as ‘exponential growth’, and

use the shorthand ‘EG’.

It is straightforward to interpret the first relation in Eq. (4.6). The growth of strain

S is described by a single-strain birth-death process with initial condition n0, and the

net growth rate at time t′ is rS(t′) (this may be negative, in which case the number
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of individuals of type S reduces with time). For the resistant strains (A,B and D)

the term W i(t′) represents the (mean) rate with which individuals of this strain are

produced in mutation events at time t′. The exponential term then accounts for their

replication (or removal) between times t′ and t through a birth-death process with net

reproduction rate ri(t′′) at time t′′. Thus, the integral over t′ counts all new mutations,

and the offspring the mutant produces between the time of the mutant’s appearance,

t′, and time t.

The ni are not bounded in this model, implying that the cell numbers can grow

to arbitrary values. This situation is not realistic as resources are limited in practice;

in an infection for example, cell numbers are constrained by nutrients provided by

the host [30, 31]. The two scenarios that we describe next hence account for limited

growth.

Logistic growth model without competition between strains (LG)

In this scenario each strain follows a logistic growth law, that is to say, the cell number

grows exponentially initially, but then approaches a carrying capacity at later times.

We write ki for the carrying capacity of strain i, and assume that the net growth rate ri
for strain i depends on ni, but not on the cell numbers of the remaining strains. This

describes for example microbial communities in which the different strains consume

different resources. We will use the shorthand ‘LG’ to refer to this setup (logistic

growth). In some circumstances the LG model can also approximate situations with

overlap in the resources consumed by strains A and B on the one hand, and D on the

other. For example, the resources for A and B might largely be depleted by the time

double mutants emerge. Effectively, there is then no competition of D with either A or

B.

There are several ways of choosing birth and death rates so that the resulting mean

cell number follows a logistic growth law, see e.g. [32–34]. For example, the model

could be such that the birth and death rates for strain i both become zero when the

cell number ni reaches the carrying capacity ki. In a stochastic model this would mean

that the birth-death dynamics comes to a complete halt when the carrying capacity is

reached. As a consequence ni will remain fixed at ni = ki, and no fluctuations around

the carrying capacity are observed.
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In our model, we make less restrictive assumptions. We only require that the cell

number of a strain does not grow on average when it exceeds its carrying capacity

(i.e. ri = bi − di = 0 when ni ≥ ki for i ∈ {S,A,B,D}). We make the choice ri = 0

for ni > ki for reasons of consistency with the logistic growth model with competition

between strains. This will be explained in more detail below. In order to allow

fluctuations of the cell numbers around the carrying capacity, we choose both birth

and death rates to be non-zero at and above the carrying capacity.

To specify the birth and death rates, we start from a given per capita death rate di(t),

and assume that the per capita birth rate bi(t) equals di(t) when ni(t) ≥ ki. This implies

ri(t) = bi(t)− di(t) = 0 for ni ≥ ki, i.e. zero net growth. The net growth for strain i

is chosen to be positive when ni < ki, with net growth rate ri(t) = ρi(t)[1− ni(t)/ki].

The factor in the square bracket ensures that the net growth rate reduces to zero as ni
approaches the carrying capacity ki. The quantity ρi(t) is the intrinsic growth rate of

strain i, describing the per capita net growth rate of the strain in the limit of small

cell numbers (ni � ki). A similar approach was used in [33] for a stochastic version of

the Gompertz model. Other related works of similar models with coupled birth and

death rates can be found in [35–37]. Summarising, we use

bi(t) =


di(t) + ρi(t)

(
1− ni(t)

ki

)
if ni(t) ≤ ki

di(t) if ni(t) > ki.

(4.7)

The specifics of the external influence of drug therapy are reflected in the choice of

the functions di(t) and ρi(t). This is discussed further in Sections 4.5.1 and 4.5.2.

The dynamics discussed above only describes changes in ni due to reproduction

and death of strain i, but it does not cover production of strains A,B and D due to

mutations. For example, strain A may have reached carrying capacity and hence there

is no intrinsic net growth of this strain (rA = 0), but additional individuals of type A

are still produced when mutations occur in reproduction events of strain S. This is

reflected by the first term on the right-hand side of the growth laws for n̄A, n̄B and n̄D
in Eq. (4.1). For example bS(t)µAn̄S(t) will generally be positive, even when strain A

has reached carrying capacity. In this situation, the cell number of strain A fluctuates

stochastically, with a net increase over time due to mutations from strain S. The latter

occurs with a rate proportional to µA, which is assumed to be much smaller than one.

135



Chapter 4. Competition delays multi-drug resistance evolution during combination
therapy

As a consequence mutants will be generated at a rate which is slow compared to the

reproduction rate of type-A individuals in the growth phase before saturation.

Logistic growth model with competition between strains (CLG)

This model is similar to the one in the previous section. Crucially though, the growth

of any one strain can now be affected by the total cell number of all strains in the

population. We write nT (t) = nS(t) + nA(t) + nB(t) + nD(t) for this total cell number.

The model captures scenarios in which the different strains all compete for the same

resource. We make the simplifying assumption that the interaction is the same between

any pair of strains, such as for example pure scramble competition. There is no direct

interference, cross-feeding or similar (see e.g. [38]). We will use ‘CLG’ to refer to this

class of growth law (‘competitive logistic growth’).

Similar to the previous section, we use the per capita birth rate

bi(t) =


di(t) + ρi(t)

(
1− nT (t)

ki

)
if nT (t) ≤ ki

di(t) if nT (t) > ki

(4.8)

for strain i. The net birth-death growth rates are ri = bi − di as before. The term ki is

the carrying capacity of strain i in absence of its competitors.

This model describes a scenario in which all strains have the same interaction

coefficients, but potentially different carrying capacities when grown in isolation. This

could arise, for example, when strains uptake a common resource (or a set of common

resources) at the same rate, but where the different strains convert these resources to

offspring with different efficiencies.

This choice indicates that the growth rate for strain i will reduce to zero (ri = 0)

when the total cell number nT exceeds ki. In an alternative setup with ri < 0 for

nT > ki only the strain with highest coefficient ki would survive at long times. To see

this, consider the case in which nT > ki for species i, but nT < kj for species j. The

abundance of the first species would decline, that of the second species would continue

to grow. Our approach ensures that the growth laws are such that the mean abundance

n̄i saturates when n̄T ≥ ki. The birth and death rates for strain i will nevertheless

remain non-zero, and hence the number of cells of type i will keep fluctuating in the

individual-based model.

136



4.2. Stochastic Model

This model is based on the competitive Lotka-Volterra equations [29]. In their

general form (see e.g. [39]), these equations include an interaction matrix that accounts

for the competition of any strain with any other; the interaction coefficients can – in

principle – be different for different pairs of strains. We have here focused on the simple

case, with all interaction coefficients set equal to unity. In previous work [40] we have

used a similar setup to model growth curves obtained experimentally in populations of

bacteria.

4.2.4 Effect of drug treatment on growth rates

What effects drugs have on the different strains may depend on factors such as

environmental conditions, drug interactions, type of drugs used, etc. We assume

synergistic effects of both drugs on the sensitive strain, i.e., the effect of the combination

of both drugs on S is stronger than the effect of any one drug in isolation. We also

assume that the growth of strain S will be suppressed by a larger amount in the

presence of both drugs than that of any of the single-resistant strains. Growth of the

double-resistant strain is not affected by any drugs in our model.

Net growth is described by the balance of birth and death rates. Depending on the

type of drugs used, net growth can be affected in different ways. Bactericidal drugs

(which kill bacteria) will primarily increase death rates even though birth rates may

also be affected [41]. Bacteriostatic drugs (which do not necessarily kill bacteria but

slow their reproduction) will mostly affect birth rates.

In practice, however, drugs will often affect birth and death rates simultaneously.

In our model drug A reduces the birth rates of the sensitive strain S and of the single-

mutant strain B (bS and bB, respectively). Strain A is resistant to drug A. Similarly,

drug B reduces bS and bA, but not bB. At the same time drug A will also increase

the death rate of strains S and B (dS and dB, respectively), and drug B increases dS
and dA. The birth and death rates for the double-resistant strain (bD and dD) are not

affected by either drug.

In order to capture this scenario, we write CA and CB for the (dimensionless)

concentrations of the two drugs, and introduce

fA(t) = 1 + CA(t), fB(t) = 1 + CB(t). (4.9)
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We allow drug concentrations to be a function of time to account for dosing schedules

and drug pharmacokinetics. The quantities fA(t) and fA(t) describe the relative factors

by which birth and death rates are reduced or enhanced, respectively. We note that

fA = 1 in the absence of drug A, and similarly for fB.

To model the effects of drugs in the exponential model we start from constant birth

and death rates, labelled b0
i , d

0
i . These coefficients describe the birth and death rates in

the absence of any drugs (CA = CB = 0). The reduction of growth rates and increase

of death rates is then captured as follows:

bS(t) = b0
S

fA(t)fB(t) , dS(t) = d0
SfA(t)fB(t),

bA(t) = b0
A

fB(t) , dA(t) = d0
AfB(t),

bB(t) = b0
B

fA(t) , dB(t) = d0
BfA(t),

bD(t) = b0
D, dD(t) = d0

D. (4.10)

We will refer to this as an ‘exponential growth model with time-dependent drug

concentrations’, even though the growth process is no longer strictly exponential when

CA and CB are functions of time.

Equation (4.10) defines the di(t) and bi(t) for the exponential model in the presence

of drugs. For the logistic models with drug treatment, we use the same death rate di(t) as

in the exponential model. We then define the intrinsic growth rates ρi(t) ≡ bi(t)−di(t),

with bi(t) and di(t) as in Eq. (4.10). In this definition of ρi(t) we use the birth rate

bi(t) for the exponential model. The birth rates bi(t) for the logistic models are then

constructed from di(t) and ρi(t) using Eqs. (4.7) and (4.8) respectively. This allows

one to compare the outcome of the different growth models. When cell numbers are

much smaller than the relevant carrying capacities the suppression of growth in the

logistic models does not yet set in. The three models then exhibit similar behaviour.

The relations in the first line of Eq. (4.10) represent the reduction of the birth rate

for strain S in the presence of any of the two drugs; similarly the death rate for strain

S is increased. For simplicity we assume that the factors by which bS is reduced are

the same as the those by which dS is increased. A similar approach is taken for the

remaining strains. In principle, more general choices are possible, but in the spirit of

constructing a stylised model capturing the essential effects, we proceed on the basis of
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Eq. (4.10).

The multiplicative setup in Eq. (4.10) ensures that the birth and death rates remain

non-negative, even for very high drug concentrations. This is harder to ensure in an

additive model, for example of the form bA = b0
A − CB.

4.3 Probability of single and double resistance

In this section, we present analytical approximations for the probability that the

population has developed resistance at a given time. More specifically, we calculate

the probabilities that there is at least one individual of type A or of type B in the

population at time t (P [nA(t) + nB(t) > 0]), and the probability that there is at

least one double-resistant D in the population P [nD(t) > 0]). The method to derive

these probabilities is based on [19], where the probability of having at least one single-

resistant was calculated for a linear model with exponential growth and only one type

of single-resistant strain. Our contribution consists of extending this method to the

non-linear growth models described in the previous section, and additionally, we also

obtain the probability to find double resistance. We note that double mutants D can

be generated from two parent sources (A and B) via mutations. We here only outline

the main steps and results. Further details of the calculations can be found in the

Supplementary Material (Section 4.8).

4.3.1 Extinction probability of single strains

The method of [19] makes use of the extinction probability in a single-species birth-

death process with time-dependent birth and death rates. This is the probability that

one single individual present at time t becomes extinct by time T , along with its lineage

(i.e, the cell itself and all its descendants).

For strain i, and using the previous notation bi(t′) and di(t′) for the per capita birth

and death rates at time t′, this probability is given by [25, 42]

Pext,i(t, T ) =

∫ T

t
di (t′) e−βi(t,t

′)dt′

1 +
∫ T

t
di (t′) e−βi(t,t

′)dt′
, (4.11)
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with

βi (t, t′) ≡
∫ t′

t
ri (t′′) dt′′, (4.12)

and ri(t) = bi(t)−di(t) as before. This result is exact, provided the rates bi(t) and di(t)

are deterministic functions (for example externally determined birth and death rates).

When one or both of these rates depend on the cell numbers n one can proceed based

on an approximation in which one replaces n by the mean cell numbers n̄. We will

make use of this approximation for the logistic growth models. If di = 0, the extinction

probability is zero trivially, as there is no death process. The extinction probability in

Eq. (4.23) tends to unity for T →∞ if and only if
∫ T
t di (t′) e−βi(t,t

′)dt′ →∞. This can

occur, for example, when the death rate is higher than the birth rate at all times, i.e.,

ri(t) is consistently negative and with it also βi(t, t′).

In order to calculate the probabilities of single or double resistance one needs

to evaluate Pext,i (i ∈ {A,B,D}) as defined above for each growth model, for both

constant and time-dependent rates. Although this can be done numerically for cases

which do not admit an analytical solution, the repeated evaluation of the integrals in

Eqs. (4.23) and (4.24) can become very costly. One aspect of our work is the strategy

developed to carry out these integrals efficiently. This is explained below in Section

4.3.4, after we first describe the main steps we follow to obtain the probabilities of

single and double resistance.

4.3.2 Single resistance

As described in more detail in Section 4.8.2 of the Supplementary Material, the

probability of having at least one single-resistant cell of either type A or B at time T

after the treatment has started can be expressed in the form

P single
R (T ) = 1− exp

[
−
∫ T

0
{ΦA (t, T ) + ΦB (t, T )} dt

]
, (4.13)

where

ΦA (t, T ) = bS(t)n̄S(t)µA [1− Pext,A(t, T )] , (4.14)

and

ΦB (t, T ) = bS(t)n̄S(t)µB [1− Pext,B(t, T )] . (4.15)

The term Φi (t, T ) represents the rate with which mutants of type i ∈ {A,B} are

produced at time t through mutations of strain S, requiring that the resulting mutant
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lineage survives until the later time T . We will refer to the expression in Eq. (4.13) as

the probability of single resistance.

Broadly speaking the above expressions indicate that the appearance of single

mutants is guaranteed (P single
R (T ) → 1 for T → ∞) if mutation events from the

sensitive strain continue indefinitely, and if mutants produced in this way do not all die

out in the long run. We would expect the latter to be the case when the growth rate

ri(t) remains positive throughout for either strain A or strain B (or both). Examples

of such situations are shown in Figure 4.1. In the absence of mutation (µA = µB = 0)

one has ΦA = ΦB = 0, and P single
R (T ) = 0 trivially as mutants never appear.

4.3.3 Double resistance

The procedure to obtain the probability of double resistance is analogous to that for

single resistance. The main difference is now that there are two sources, strains A and

B. The probability of having at least one double-resistant cell at time T becomes (see

Section 4.8.2 of the Supplementary Material)

P double
R (T ) = 1− exp

[
−
∫ T

0
{ΨA (t, T ) + ΨB (t, T )} dt

]
, (4.16)

with

ΨA (t, T ) = bA(t)µBn̄A(t) [1− Pext,D(t, T )] (4.17)

and

ΨB (t, T ) = bB(t)µAn̄B(t) [1− Pext,D(t, T )] . (4.18)

The terms ΨA (t, T ) and ΨB (t, T ) represent the rates with which double-resistants are

produced by mutation of strains A and B at time t, respectively, and requiring that

their lineage survives until time T . We will refer to P double
R (T ) in Eq. (4.34) as the

probability of double resistance.

We stress again that we are using the mean numbers of source cells as an input

for these expressions (n̄A and n̄B). The limitations of this approach are discussed in

Section 4.6.

4.3.4 Numerical integration of the probabilities of resistance

The previous expressions for the probabilities of resistance cannot always be reduced

further. In addition, if the birth or death rates depend on the cell number of one or
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more strains, it is necessary to make a deterministic approximation (involving the

replacement of the rates by their mean values) in order to compute the integrals in

Eqs. (4.23), (4.13), and (4.34). In many cases it is not possible to do this analytically,

and one has to resort to evaluating the integrals numerically.

Evaluating the probabilities of single or double resistance at time T requires the

calculation of the functions ΦA(t, T ), ΦB(t, T ) and ΨA(t, T ) and ΨB(t, T ) in Eqs. (4.13)

and (4.34) for all times t up to T . These objects in turn involve Pext,i(t, T ) for

i ∈ {A,B,D}, and evaluating these would require access to the objects βi(t, t′) for all

combinations of times t, t′ up to T [Eq. (4.23)]. We recall that βi (t, t′) =
∫ t′
t ri(t′′)dt′′ is

the integrated net growth rate for strain i, see Eq. (4.24). As a consequence we would

have to integrate the net growth rate ri over the intervals [t′, t] for all combinations of

t′ < t in the range up to T .

To make this process more efficient we first notice that – in absence of additional

production of strain i through mutation – one has dn̄i(t)/dt = ri(t)n̄i(t). As a

consequence n̄i(t′) = n̄i(t) exp [βi(t, t′)]. We note that the birth rate bi for strain i

depends on the number of cells ni in the LG model [Eq. (4.7)], and on the total

number of cells nT in the CLG model [Eq. (4.8)]. The net growth rate ri is then also

dependent on ni or nT . For the purposes of the current analysis we replace ni (or nT )

by their mean values n̄i (or n̄T ) in these expressions, where the mean cell numbers are

obtained from the growth laws in Eq. (4.1). The quantity ri can then be treated as

a deterministic function of time. If we set n̄i(t) = 1, then the quantity βi(t, t′) can

directly be expressed in terms of n̄i(t′),

βi (t, t′) = ln n̄i (t′) . (4.19)

Therefore, the calculation of βi (t, t′) for a fixed combination of t and t′ (t′ > t) reduces

to the problem of finding n̄i (t′) for the initial condition n̄i(t) = 1. In principle this

can be obtained from numerically integrating the growth law for strain i from the

deterministic equations for n̄i, but it would imply separate integration runs for each

initial time t due to the required initial condition n̄i(t) = 1. For the model with

competition between strains, this also involves integrating the growth laws for all other

strains.

In order to streamline this approach, our strategy consists of expressing the quantity

n̄i(t′) (with initial condition n̄i(t) = 1) in terms of the solution n̄0
i of the deterministic
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mean growth law for strain i with initial condition n̄0
i (0) = 1 at time 0. The details of

this are described in Section 4.10.2 of the Supplementary Material.

For the LG model we find (t′ > t),

n̄i (t′) =
ki

(
ki

n̄0
i (t)
− 1

)

(ki − 1)
(

ki
n̄0
i (t′) − 1

)
+
(

ki
n̄0
i (t)
− 1

) . (4.20)

We re-iterate that this is the solution of the growth law for strain i for times t′ > t,

subject to the initial condition n̄i(t) = 1. This initial condition can be verified directly

from Eq. (4.20). We stress that n0
i (t) and n0

i (t′) both feature on the right-hand side of

Eq. (4.20).

Combining Eq. (4.20) with Eq. (4.19) we can find the integrated growth rate βi(t, t′)

for all combinations t < t′ in the range up to T , provided we know the solution

n̄0
i (t′′) of the growth law for strain i with initial condition n̄0

i (0) = 1 (t′′ < T ). This

trajectory can be obtained from one single numerical integration, significantly reducing

the computational effort.

A similar approach can be taken for the model with competition between strains.

This is discussed in more detail in Section 4.11 of the Supplementary Material.

In the next section we proceed to analyse the probabilities of single and double

resistance for each growth model and compare the theoretical predictions with results

from numerical simulations. For constant growth rates, the simulations are carried out

using the Gillespie algorithm [43, 44], which generates a statistically faithful ensemble

of sample paths. For explicitly time-dependent birth and death rates simulations are

carried out using the so-called ‘ thinning algorithm’ by Lewis [45]; see also [46] for

further discussion of this method. This scheme allows us to generate sample paths

for time-dependent rates without losing precision as would happen with the Gillespie

algorithm.

We focus on studying the probabilities of single and double resistance for the three

growth models, and we study cases with constant drug and time dependent drug

concentrations, respectively. We will concentrate on the effects the choice of the growth

model has on these probabilities.

143



Chapter 4. Competition delays multi-drug resistance evolution during combination
therapy

4.4 Probability of resistance for growth with con-

stant coefficients

4.4.1 Setup, and comparison of theory and simulation

In the case of constant drug concentrations (approximating e.g. constant intravenous

infusion, [47]) the birth and death rates for the exponential growth model [bi and di
in Eq. (4.10)] are time-independent. Similarly, the quantity ρi in the logistic growth

models does not explicitly depend on time. Any dependence of bi and di on time in

the logistic models is through a functional dependence on n̄(t) [c.f. Eqs. (4.7) and

(4.8)]. To establish the baseline behaviour of the different growth models, we address

this case of constant coefficients bi and di in this section, that is coefficients without

explicit dependence on time. Specifically, we will study how the probabilities of single

and double resistance depend on the key model parameters for the three different types

of growth.

The theoretical predictions of single and double resistance are obtained from Eqs.

(4.23), (4.13) and (4.34). The extinction probability, the probability for single and

double resistance can always be expressed in terms of the trajectories n̄i(t), although

the remaining integrals in the above equations may have to be carried out numerically.

For constant coefficients, closed-form solutions can be obtained for some of the

quantities we are interested in, and in other cases we proceed numerically: (i) For the

EG model, we can find a closed-form solution for the extinction probabilities Pext,i(t, T ),

this is given in Eq. (4.37) in the Supplementary Material. Additionally, the mean

cell numbers n̄i(t) for each strain can be obtained in closed form from Eqs. (4.1), see

Eq. (4.36). With these solutions in turn, one can then derive closed-form expressions for

the functions ΦA,ΦB,ΨA and ΨB, and the probabilities of single and double resistance.

This is explained further in Section 4.9 of the Supplementary Material. (ii) For the LG

model, we can only find a closed-form solution for n̄S(t), but not for the other strains.

The probabilities of single and double resistance are calculated numerically using

Eqs. (4.13) and (4.34). For further details see also Section 4.10 of the Supplementary

Material. (iii) For the CLG model, we cannot express the mean cell number in closed

form for any of the strains. This is due to the coupling and non-linearity of the
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a b c

d e f
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T T T

Figure 4.1: Single and double resistance probabilities for the three different growth models
(EG exponential growth, LG logistic growth without competition between strains, CLG logistic
growth with competition between strains). Theoretical predictions (solid lines) were obtained
from equations (4.13) and (4.34), while numerical simulations (circles) were conducted using
the Gillespie algorithm, results are averaged over 10000 runs. Parameters used: bS = 1.1, bA =
1.2, bB = 1.3, bD = 1.4, dS = dA = dB = dD = 0.1, µA = µB = 10−4, n0 = 104. For the logistic
growth models, we have set ρi = bi−di for i ∈ {S,A,B,D}, and kS = 106, kA = 1.1×106, kB =
1.2× 106, kD = 1.3× 106.

equations for the mean cell numbers. The probabilities of single and double resistance

are again obtained numerically.

For the time-dependent dosing protocols considered in Section 4.5, we have not

been able to find closed-form solutions of Eqs. (4.1) for any of the strains and in any

of the growth models. As a consequence the extinction probabilities and probabilities

of single or double resistance cannot be found in closed form either, and have to be

evaluated numerically.

As mentioned above in Section 4.2.4, in order to be able to compare the outcome

of the different growth models, we specify fixed death rates di for each strain, and then

use these for all three types of growth. In the EG model also specify the birth rates bi.

In the two logistic growth models we then set ρi ≡ bi − di, so that the behaviour of all

three models is similar for very small cell numbers.

Figure 4.1 illustrates a typical profile of the probabilities of having at least one single-

resistant individual (either of type A or B) or at least one double-resistant individual,

respectively. In the figure we compare the theoretical predictions for the three growth

models against results from numerical simulations of the stochastic dynamics. The
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parameters used in the figure are for illustration, and do not necessarily represent

a realistic situation. They describe a scenario in which the net birth-death rates,

ri = bi − di, are positive for all strains. This ensures that cell numbers increase in

time (on average), so that single and double mutants eventually emerge. As the graphs

show, the profile of the emergence of single resistance is very similar for the three

different growth models, while double resistance tends to emerge later in the model

with competition than in the other two scenarios. Further illustrations comparing

simulation and theory for different choices of the model parameters are shown in the

Supplementary Material (Section 4.12.2).

In the following sections we discuss the behaviour of both single and double resistance

when varying different model parameters. In particular, we consider the outcome as

a function of the carrying capacities, ki. In the limit of very high carrying capacities

(very abundant resources), the logistic models reduce to the exponential model with

unlimited growth. When the carrying capacities are finite, growth becomes restricted

due to limited availability of resources.

4.4.2 Single resistance

Single resistance emerges through mutations during reproduction events of the sensitive

strain S and is subsequently maintained provided the mutant strain does not become

extinct. When the carrying capacity of sensitive cells kS and single-resistant cells

kA and kB are high compared to the initial number n0 of sensitive cells, there is no

noticeable difference between the predictions of single resistance in the three different

growth models (all three models lead to largely exponential growth); an example is

shown in the upper row of Figure 4.1. However, as we will discuss below, the relation

between kS on the one hand, and kA and kB on the other, can affect the timing of the

emergence of single-resistants in the competitive model. This is the case when these

coefficients are close to each other, and to the initial number of cells.

We show theoretical predictions for single resistance in Figure 4.2. In the figure we

focus on the model with exponential growth, and we show the probability of finding

at least one resistant cell as a function of time T , and varying a selection of model

parameters. High probabilities of resistance are indicated by light colours. As one

would expect, mutants tend to appear sooner as the birth rate bS, the initial number
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Figure 4.2: Theoretical prediction of the probability of single resistance obtained from Eq. (4.13)
for the exponential growth model when varying only one parameter while keeping the others
constant. When not varied, the parameters used are bS = 1.0, bA = 1.1, bB = 1.2, bD = 1.3, dS =
dA = dB = dD = 0.1, µA = µB = 10−4, and n0 = 104.

of sensitive cells n0 or the mutation rates µA, µB are increased. This can be seen by

the increased amount of lighter colours as one moves up along the vertical axes of

panels (a), (c) and (d) in Figure 4.2. Panel (b) shows that the probability of single

resistances decreases for increasing death rates dS of the sensitive strain. Figure 4.3

illustrates how the predictions for single resistance differs between the logistic models

with and without competition between strains (LG and CLG respectively), and when

the carrying capacity kS is varied. In the LG model single mutants tend to appear

sooner when the carrying capacity kS is high, see Figure 4.3 (a). This is as expected,

as for higher values of kS the limitations of growth of the sensitive strain only set in at

large cell numbers. The resulting higher number of sensitive individuals increases the

chance of producing single mutants.

The dependence of the probability of single resistance on kS is more intricate in the

model with competition between strains (CLG). If the carrying capacity for strain S

is close to the initial number of sensitive cells in the population, then the probability

that single mutants emerge depends on how kS compares to the carrying capacities

kA and kB of the single mutant strain. We illustrate this Figure 4.3 (b) and (d) for a

case with µA > µB and kB > kA. The former of these conditions implies that the first
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single mutants are likely to be of type A.

The curve in Figure 4.3 (d) shows interesting behaviour: We find that the probability

of single resistance decreases with increasing kS, provided kS is sufficiently small. At

an intermediate value of kS ≈ kA we observe a minimum. For higher values of kS, the

probability of single resistance then increases again with kS. A small ‘kink’ is seen at

kS ≈ kB.

We attribute these features to a combination of several counteracting effects: (i)

Generally, an increase in the carrying capacity kS leads to a less restricted and therefore

faster growth of the sensitive strain. A high carrying capacity also leads to higher

numbers of sensitive cells in the long run. Both of these effects favour the emergence of

single-resistant cells. (ii) If the carrying capacity kS is lower than kA and kB, then the

total cell number nT is lower than kA and kB when strain S saturates. The population

consists mostly of sensitive cells at this point. As first mutants emerge, they will be

able to proliferate until the total size of the population reaches the carrying capacity of

the relevant single-mutant strain. This is likely to be A because of the higher mutation

rate µA > µB. The maximum number of single mutants A that can arise is broadly

governed by the difference between kA and the number of sensitive cells. The latter in

turn is approximately given by kS. Therefore, as kS approaches kA from below there

is only little room for single-resistant cells to proliferate before saturation sets in. In

some cases only a few single-resistant cells can be produced, and these may eventually

die due to stochastic fluctuations. This effect acts to reduce the probability of single

resistance as kS approaches kA from below.

In the example of Figure 4.3 (d), the second effect dominates over the first in the

regime kS < kA, and the probability of single resistance is a decreasing function of

kS. When kA < kS < kB, the suppression of growth of mutant strain A (effect (ii)

above) is no longer relevant. Effect (i) now dominates, and the probability of single

resistance becomes an increasing function of kS. As a result a minimum is found for

the probability of single resistance at kS = kA. When kS hits kB any suppression effect

due to mutants of type B is also removed, and the probability of single resistance

increases more sharply with kS. This results in a ‘kink’ at kS = kB in Figure 4.3 (d).
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Figure 4.3: Theoretical prediction of the probability of single resistance for the logistic growth
models without competition [LG, panels (a) and (c)], and with competition [CLG, panels (b) and
(d)]. This is shown as a function of the carrying capacity kS , for parameters ρS = 0.9, ρA =
1.0, ρB = 1.1, ρD = 1.2, dS = dA = dB = dD = 0.1, µA = 10−3, µB = 10−4, n0 = 103, kA =
1.1× 103, kB = 1.2× 103, kD = 1.3× 103. Panels (c) and (d) show vertical cuts in panels (a)
and (b) respectively, indicated by the vertical dashed line in the upper graphs at T = 35.

4.4.3 Double resistance

We now compare the probability of double resistance in the three growth models.

In Figure 4.4 we show the effects of varying bS, dS, bA, and n0 in turn; for other

parameters see Section 4.12.1 of the Supplementary Material. In general, the logistic

growth model without competition between strains (LG) seems to produce largely

similar behaviour as the model with exponential growth (compare panels (a)–(d) with

(e)–(h)). However, differences between the EG and LG models become apparent where

the carrying capacities are varied. This will be discussed below in Fig. 4.5.

The logistic model with competition between strains, however, shows notably

different behaviour from the other two models [see Figure 4.4(i)-(l)]. In particular we

make the following observations:

(i) The time it takes for the probability of double resistance to reach a specified

value near one in the CLG model is a non-monotonous function of the net growth

rate rS. This can be seen from the curved shape of the contour lines in Figure 4.4

(i). It becomes more likely to observe double resistance at a given time for
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Figure 4.4: Theoretical prediction of the probability of double resistance for the three growth
models when varying one parameter (EG exponential growth, LG logistic growth without competi-
tion between strains, CLG logistic growth with competition between strains). When not varied, the
parameters used are bS = 1.0, bA = 1.1, bB = 1.2, bD = 1.3, dS = dA = dB = dD = 0.1, µA =
µB = 10−4, and n0 = 104. When varying rS = bS − dS (rA = bA − dA), only bS (bA) changes,
keeping dS (dA) constant. As described in the main text, we have used ρi = ri for the logistic
growth models. Carrying capacities used: kS = 106, kA = 1.1×106, kB = 1.2×106, kD = 1.3×106.
The lightest colour represents values of P double

R > 0.99.

increasing rS, provided rS is sufficiently small. Once rS has reached a certain

point, however, increasing rS further reduces the probability of finding double

resistance at a fixed time. We first look at the regime of small rS. The total cell

number remains low enough to avoid saturating the growth of the emerging single

mutants. Double-resistants then tend to appear sooner the larger the growth rate

rS of the sensitive strain. Hence, the probability of double resistance increases

with rS. As rS is increased further, strain S grows fast enough for the total cell

number to saturate the proliferation of emerging single-resistant strains (due to

the competition between strains). This makes the emergence of double mutants

less likely, hence the probability of double resistance decreases with rS.

(ii) For low values of the death rate of strain S, dS, double mutants tend to appear

150



4.4. Probability of resistance for growth with constant coefficients

later in the CLG model than in the other two growth models [compare the lower

right of panel (j) in Figure 4.4 with the data in the lower right of panels (b)

and (f)]. This effect is similar what was discussed in item 1. above. Lowering

the death rate dS while keeping the birth bS fixed results in faster net growth

of the sensitive strain. This means that the growth of the single-resistant strain

saturates, thus reducing the chance of emergence of double mutants.

(iii) For low values of the net growth rate rA of strain A (accounting for birth and

death), double mutants tend to appear very late in the CLG model compared to

the other growth models [compare the lower right of Figure 4.4 (k) with those

in panels (c) and (g)]. A low value of rA means that more time is required

to generate a number of A individuals which is sufficiently large to make the

appearance of double mutants likely. As the other present strains (S and B)

have more time to grow, the total population size nT becomes large enough to

saturate the growth of strains A and B before the first double-resistants emerge.

As a consequence, the chance of double mutants to emerge decreases.

(iv) For an increased number of initial cells n0, it becomes less likely to observe double

mutants at a given time [see Figure 4.4 (l)]. The delay in the emergence of

double mutants is again explained by a saturation of the growth of sensitive and

single-resistant strains. For higher initial number of sensitive cells, saturation

occurs sooner, and double-resistant cells appear later.

These observations suggest that competition can affect the emergence of double

resistance. The predictions shown in Figure 4.4 indicate that the typical time at

which the first double-resistants appear can be notably different when competition

is taken into account [compare e.g. Figure 4.4 panel (l) with panels (d) and (h)].

The difference between the competitive model and the other two models in producing

double-resistants is mainly due the saturation of the sensitive and single-resistants

before double mutants appear. This is an important factor to take into account for

modelling resistance, in particular in situations where resources are limited. Moreover,

our analysis indicates that the optimum treatment, i.e. the one that most delays

the emergence of double-resistants, can also differ across the models. This can be

illustrated using the behaviour of the probability of double resistance as dS is varied,
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see Figure 4.4 (b), (f) and (j). The model with competition between strains predicts

that a low dS would maximise the delay the emergence of double mutants, while the

other models predict that a higher dS would be best.

In addition, the carrying capacities can also affect the probability of double resistance

in both logistic growth models. An example of this is displayed in Figure 4.5, where

we vary the carrying capacity of strain S, or of only one of the single-resistant strains

(strain A), or of both (strain A and B) at the same time.
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Figure 4.5: Theoretical prediction for the probability of double resistance for the logistic models

without competition between strains (LG), and with between-strain competition (CLG) when

varying the carrying capacities. When not varied, the parameters used are the same as in Figure 4.4.

In panels (a) and (b) only kS is varied; panels (c) and (d) show the probability of double resistance

when kA is varied. In panels (e) and (f), both kA and kB are varied at the same time. Notice the

different range of times in panels (d) and (f) compared to the other panels.

The lower end of panels (a) and (b) show a situation in which the coefficient kS
is above the initial number of cells n0 = 10000, but close to it. Double mutants tend

to appear only after a relatively long time in this situation in both logistic models.
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When kS is sufficiently far above n0, its precise value does not have a pronounced

effect on double resistance in the LG model [see Figure 4.5(a)]. In the CLG model,

however, an increase in the carrying capacity kS of the sensitive strain results in a

delayed emergence of double mutants [Figure 4.5(b)].

When varying only kA [Figure 4.5 (c) and (d)], the probability of double resistance

does not show a notable change in either of the logistic models. Independently of the

dynamics of strain A, double mutants can still be produced from strain B. Notice,

however, that double mutants tend to appear at later times in the CLG model than in

the LG model. When both carrying capacities kA and kB are varied together [panels

(e) and (f)], double resistance is significantly delayed in the CLG model in comparison

to the LG model when kA and kB are high.

In summary we conclude that the carrying capacity of strain S has a stronger

effect on the emergence of double resistance than each of the single-resistant carrying

capacities.

4.5 Time-dependent drug concentrations

The analysis in the previous section focused on situations in which model parameters do

not vary in time. In many instances however, drugs are administered using time-varying

dosing schedules, giving rise to time-dependent death and growth rates. Most drug

therapies use periodic dosing schedules, resulting in periodic time-dependences of drug

concentrations (see e.g. [48, 49]). Modelling the the pharmacokinetics of different meth-

ods of repeat drug administration, we consider two different types of time-dependence

for the drug concentrations. In the first scenario, drug concentrations are continuous

in time and follow a sinusoidal profile. This approximates the pharmacokinetics for

example of repeat antibiotic dosing via an extravascular route (e.g. oral administration).

In the second scenario the drug concentration profiles consist of a periodic series of

pulses, representing, for example, intermittent intravenous boluses [47, 50].

We note that the net growth rates of the strains affected by the drugs (ri = bi − di
for i ∈ {A,B,D}) in Eq. (4.10) can become negative when the concentration of the

relevant drugs are sufficiently high. This leads to an effective reduction of the number

of cells of the affected strains. Motivated by clinical treatment protocols, the drug
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Figure 4.6: Drug concentrations CA(t) and CB(t) in the sinusoidal protocal (a) and for pulsing
profiles (b) (period P = 1 and ∆tB = 0.5). Panels (c) and (d) show the respective growth rates
(ri(t) = bi(t)− di(t), with i ∈ {S,A,B,D}) affected by the drug effect described in equations
(4.9)-(4.10). Parameters used: b0S = b0A = b0B = b0D = 1.1, d0

S = d0
A = d0

B = d0
D = 0.1.

therapies discussed below are designed such that the sensitive strain will eventually

become extinct, which is the goal of treatment (see e.g. [51]). This is achieved if∫ T
0 dS (t′) e−βS(0,t′)dt′ → ∞ as T → ∞, with βS (0, t′) ≡

∫ t′
0 rS (t′′) dt′′ as explained in

Section 4.3.1. For oscillatory drug concentrations with period P it is sufficient that

βS (0, P ) < 0, i.e., that the time-average of the net growth rate over one period is

negative (assuming that d(t′) remains above a non-zero value for all t′). Our focus is

on finding treatment protocols which minimise the probability of double resistance

within the set of protocols which eliminate sensitive cells.

4.5.1 Sinusoidal drug concentrations

We first consider a sinusoidal drug profile, with period P . The drug concentrations

take the form

CA(t) = 1− cos
[2π
P
t
]
,

CB(t) =


0 if t ≤ ∆tB

1− cos
[2π
P

(t−∆tB)
]

if t > ∆tB.

Drug A is applied starting from time t = 0, initially with concentration zero (CA(t =

0) = 0), and then following a periodic profile. The application of drug B starts at a
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later time ∆tB (CB(t) = 0 for t ≤ ∆tB). The concentration of B then also follows a

sinusoidal profile from time ∆tB onwards. The factors fA and fB range from 1 to 3

over each cycle. The drug profiles CA and CB are shifted by a time ∆tB [∆tB mod P

when ∆tB > P ] and are out of phase by a fraction ∆tB/P of a period [(∆tB mod P )/P

when ∆tB > P ].

A sample profile of the drug concentrations is shown in Figure 4.6 (a) for P = 1

and ∆tB = 0.5; the corresponding growth rates for the different strains are shown in

Figure 4.6 (c).

4.5.2 Pulsing drug concentrations

In this protocol, the concentration of drug A is assumed to be of the form

CA(t) = 2
P

[P − (t mod P )] . (4.21)

This means that the profile CA(t) starts off at CA(t = 0) = 2, and then falls linearly

with slope 2P−1, so that the drug concentration becomes zero at t = P . Then the next

pulse starts, i.e., CA is re-set to its maximum value, and then falls off linearly again.

Similar profiles have been used in [20, 48].

The concentration of drug B is assumed to be zero up to time ∆tB, and then follows

a similar sequence of pulses. This is described by

CB(t) =



0 if t ≤ ∆tB

2
P
{P − [(t−∆tB) mod P ]} if t > ∆tB.

(4.22)

The concentrations of both drugs are out phase as in the sinusoidal drug therapy, and

attain their minima at the same times as in the sinusoidal protocol. Figure 4.6 (b)

illustrates a sample profile for P = 1 and ∆tB = 0.5; we show the corresponding net

growth rates for the different strains in panel (d).

We note that the total amount of drug given over time is identical in both treatment

protocols. This can be seen for example by looking at the area under the curve CA(t)

over one time period; we have
∫ t′+P
t′ CA(t) dt = P for any t′ ≥ 0, both in sinusoidal and

pulsing therapies (this also holds for CB(t) for any t′ ≥ ∆tB, i.e., when the treatment

with drug B has started).
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4.5.3 Probability of double resistance for time-dependent dos-

ing schedules

In Figure 4.7 we show the probability of double resistance resulting from the periodic

dosing protocols. Data is presented as a function of time, and for any pairing of the

two therapy protocols and the three different growth models. We have considered the

cases where drug B is administered from times ∆tB = 0.0, 0.5 P and 1.0 P , with P = 1.

Predictions for other values of ∆tB, as well as the probability of single resistance, can

be found in Section 4.12.3 in the Supplementary Material. We have chosen parameters

such that the carrying capacities are not too far from the initial number of sensitive

cells, allowing the limitations on growth in the logistic models to set in quickly. We

observe that the double-resistant strain tends to appear later in the pulsing therapy

than in the sinusoidal therapy (to see this compare the value of P double
R for the two

protocols at a given time). This is not surprising as, for equal parameters, the growth

rate rS spends more time taking negative values in the pulsing therapy than in the

sinusoidal therapy [compare panels Figure 4.6 (c) and (d)].

In addition, we also note that, at equal times after the treatment has started,

the probability of double resistance is considerably lower in the logistic model with

competition between strains than in the other two growth models, independently

of the treatment protocol. This is due to the early saturation of the growth of the

single-resistant strains in the CLG model, inhibiting the emergence of double-resistants.

We observe that the fraction of sensitive cells in the total population is small at the

point where the growth of single-resistants saturates due to the effects of drugs. This

is because the growth of sensitive cells is heavily suppressed by the treatment. As

a consequence, the contribution of sensitive cells to the saturation of single-resistant

strains is negligible in the CLG model.

Interestingly, the data in Figure 4.7 also shows that the optimum treatment within

our model setting, i.e., the treatment with the lowest probability of double resistance

at a given time, can be different for different growth models. We describe this in the

context of the sinusoidal therapy: the optimum treatment in the exponential growth

model is obtained when both drugs are administered at the same time, i.e. when

∆tB = 0 [see Figure 4.7 (a)]. This is not the case in the other two growth models [see
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sinusoidal therapy pulsing therapy

a b

c d

e f

EG model

LG model

CLG model

Figure 4.7: Probability of double resistance as function of time for each of the three growth models
for different values of ∆tB for sinusoidal and pulsing therapies (EG exponential growth, LG logistic
growth without competition between strains, CLG logistic growth with competition between strains).
Solid lines represent the theoretical predictions, while open circles the numerical simulations.
Parameters used: b0S = b0A = b0B = b0D = 1.1, d0

S = d0
A = d0

B = d0
D = 0.1, µA = µB = 10−3,

n0 = 5× 103, kS = 104, kA = 1.1× 104, kB = 1.2× 104, and kD = 1.3× 104.

panels (c) and (e)]. In fact, for the logistic model with competition between strains

[panel (e)], the case ∆tB = 0 turns out to be the worst treatment of the ones shown

here, as double mutants would appear earliest. For the pulsing therapy, we observe

similar behaviour. For both logistic growth models, the optimum treatment in each

therapy is found when ∆tB = 0.5, i.e., when the drugs are applied alternately. This

result is consistent with the findings from [52] for synergistic drug therapies.

In Figure 4.14 of the Supplementary Material we re-plot the data of Figure 4.7,

but as function of ∆tB for a fixed time T . This further illustrates that the optimum

treatment is achieved for different choices of the time lag ∆tB in the different growth

models. Another example showing that the optimum treatment varies across the growth

models is presented in Figure 4.15 in the Supplementary Material for a scenario with
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higher carrying capacities.

4.6 Limitations of deterministic approximation and

possible extensions of the model

The method we have presented to estimate the probabilities of single and double resis-

tance can be used for constant and time-dependent drug concentrations in exponential

and logistic growth models. However, our approach relies on an approximation. While

we treat the emergence of single and double mutants and the persistence or extinction

of their lineages as stochastic processes, we disregard fluctuations in the rates with

which mutants first appear. To illustrate this, we focus on mutants of type A. They are

arise from mutations in reproduction events of sensitive cells S. The rate with which

individuals of type A emerge therefore depends on the number of sensitive cells in the

population. As a consequence, the production of A in mutation events is a stochastic

process with two levels of randomness. First, the number of sensitive cells is a random

quantity. Second, each of the sensitive cells can produce mutants of type A with a

certain probability upon reproduction, and the subsequent birth-death dynamics of

the single-mutant cells is also stochastic. Our approach consists of neglecting the first

type of randomness for the purposes of studying mutants of type A. In the production

rate of A we replace the actual stochastic number of sensitive cells by its mean (over

realisations). We do however retain the second type of randomness, and treat the

subsequent extinction or persistence of the mutants as a stochastic process. This is

captured by the extinction probabilities Pext,i(t, T ) in Eq. (4.23). In very much the

same way we treat the number of A and B cells as deterministic for the purposes of cal-

culating probability of double resistance, but retain the stochasticity of the production

of double mutants, and the subsequent evolution of their lineages.

This approximation works well for the estimation of the probability of single

resistance. Single-resistant cells are produced from sensitive cells in mutation events,

and the number of sensitive cells is large from enough from the beginning to neglect

fluctuations.

Double resistance on the other hand is produced from single-resistant cells. Single-

resistant cells are not present in the population at the beginning, and their numbers
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will initially be small. One would therefore expect that fluctuations of the number

of cells of single resistants A and B will be more pronounced than those of the

number sensitive cells. This may make the predictions for double resistance inaccurate.

In simulations we find that this tends to be the case mostly when the first double

mutant appears at long times after the start of the dynamics. This can occur for

example when the initial number of sensitive cells, the mutation rates, or the birth

rates are small. This comes from the fact that our theoretical approach takes into

account the trajectory of single resistant strains from the start of treatment. If the

time spent in phases in which fluctuations are relevant is considerably high, then the

deterministic approximation employed becomes significantly inaccurate. We compare

the predictions of our calculations against simulations for such cases in Section 4.13 of

the Supplementary Material.

Simulations confirm that the number of the single-resistant cells can be subject to

significant fluctuations under these circumstances. As a consequence, the deterministic

approximation in the production rates of double mutants becomes inaccurate, and with

it the approximation for the probability of double resistance in Eq. (4.34). Joint effects

of the random occurrence of single-mutants, and their subsequent growth are a possible

explanation for the fluctuations of the number of single-resistants. Typical cases in

which the prediction for the presence single mutants appears to be affected less by

these effects. We attribute this to the fact that single mutants arise from the sensitive

strain, which is present from the start and not generated by random mutation events.

The analytical expressions for the probabilities of single and double resistance

[Eqs. (4.13) and (4.34) respectively] are, valid for any type of growth law and type of

interaction between different strains. In order to illustrate the behaviour of the model

we have made several assumptions, which can, in principle, be relaxed. For example,

birth and death rates need not be affected symmetrically by a common factor as in

Eq. (4.10). We note that death rates mostly affect the extinction probability [Eq.

(4.23)]. We would therefore expect birth rates to have a stronger quantitative effect

on the probabilities of single and double resistance as they appear in the extinction

probabilities [Eq. (4.23)], and in the functions ΦA,B and ΨA,B [Eqs. (4.14,4.15) and

(4.17, 4.18) respectively]. Extending the model accordingly could establish how strong

such an effect is. We note that [53] find that in experiments that it seems to make
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relatively little difference for resistance selection whether a drug acts as a bacteriostatic

or bactericidal agent.

When we evaluate probabilities for single and double resistance we assume that

resistant strains are not affected by the relevant drug. One could make less stringent

assumptions and require only partial resistance. For the double mutant this would

mean a slower growth when either or both antibiotics are present than when they are

absent, (i.e. change the scenario in Eq. (4.10) to one in which bD(t) < b0
D and/or

dD(t) > d0
D). Assuming that the residual net growth is still positive, we expect that

the time to observe P double
R > 0 would be increased.

The method and analysis can be extended to more complex situations, such as models

with heterogeneous competition, and different forms of competitive or cooperative

interactions. For example, cooperative interactions can allow sensitive bacteria to

grow in the presence of antibiotics if a resistant strain is also present [54]. Conversely,

cross-feeding has been observed to slow the emergence of resistance due to reduced

effective growth rate [55]. Further, cell-cell interactions between different strains can

influence the mutation rate itself [56]. Such complex interactions are therefore a natural

topic for future work. The approach can also be generalised to combination therapies

of more than two drugs, as well as to cases with more complex interactions between

the drugs. It may also be interesting to account for heterogeneity of the mutation rate

within the population, as this can affect resistance [57]. Given that the limitations of

our approximation can be characterised, we think that the method we have developed

can be useful for these questions, and for other biological problems in which multiple

mutations occur sequentially.

4.7 Conclusions

Models for estimating the probability of drug resistance have previously been largely

based on exponential growth (some exceptions are [58, 59]). The use of exponential

growth models implies an assumption of infinite resources and the absence of competition

between strains. Here, we have shown that the choice of growth model can affect the

probability that resistant cells emerge in when resources are limited and when there is

potential competition between strains.
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4.7. Conclusions

To do this, we have investigated the evolution of single and double resistance by

mutation in a stochastic multi-strain model. Our analysis focuses on three different

growth laws: exponential growth, logistic growth without competition between strains

and logistic growth with between-strain competition. We have examined cases in

which the model parameters are not explicitly time-dependent, as well as simple time-

dependent drug therapies. We have analytically estimated the probability of having at

least one single or double-resistant cell in the population, and we have verified these

predictions in numerical simulations. Our calculations require the evaluation of a large

number of integral terms in the expressions for the probability of single and double

resistance. As a by-product of our work we have provided strategies to reduce the

number of integral terms to be evaluated, allowing us to make theoretical predictions

more efficiently.

Our results show that the choice of growth model makes a difference for the prob-

ability of double resistance, both for abundant and limited resources—a distinction

not seen for single drug resistance. Specifically, competition can considerably delay

double resistance, both for constant model parameters and for time-dependent dos-

ing schedules. This delay in double resistance occurs for a range of parameters for

the sensitive and single-resistant strains. Consequently, modelling resistance with

exponential growth laws may make combination treatments appear less effective than

they are in the presence of between-strain competition. Further, careful attention

needs to be paid to competition when planning treatments with time-dependent con-

centrations. Our results predict that the optimal dosing schedule for a combination

treatment changes depending on the growth law used. An accurate representation of

growth is therefore critical for infections where resource competition is strong. This

is particularly relevant to long-term or chronic infections and cancer [60–64]. The

exact way in which growth is modelled therefore requires careful consideration in the

design of drug therapies. Our results are most applicable to combination therapies

using drugs where multi-resistance is gained through spontaneous mutation. This is a

common modality of evolution for many antibiotic combination therapies, particularly

against Mycobacterium tuberculosis [65]. Nevertheless, future combination therapies

may more commonly involve antibiotics where resistance is conferred by horizontal gene

transfer, e.g. through the acquisition of conjugative plasmids [66]. Future work will
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investigate how community-level interactions affect these other modalities for acquiring

multi-resistance evolution.
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4.8 Appendix A: Derivation of the probabilities of

single and double resistance for general birth

and death rates

In this section, we will give further details of the calculation of the probability of

resistance, i.e., the probability of having at least one single resistant or double resistant

individual at a certain time. We do this for general birth and death rates, assuming

that these rates are given by deterministic functions. In other words, the birth and

death rates may depend on the composition of the population, but if they do then
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we ignore any stochasticity of the number of different cells in the population. The

population starts from n0 sensitive cells at time t = 0, and with no other cells.

The method we will use is based on [19], where the probability of having at least

one single resistant was calculated for an exponential growth model. We extend this

method to obtain the probability of double resistants for each of the three growth

models defined in the main text.

4.8.1 Extinction probability for single cell and its lineage

We first consider the probability that one single individual of type i present at time t

goes extinct by time T , along with its lineage. For strain i, this extinction probability

is given by (see e.g. [25, 42]).

Pext,i(t, T ) =

∫ T

t
di (t′) e−βi(t,t

′)dt′

1 +
∫ T

t
di (t′) e−βi(t,t

′)dt′
, (4.23)

with

βi (t, t′) ≡
∫ t′

t
ri (t′′) dt′′, (4.24)

where bi(t) and di(t) are the birth and death rates for cells of type i, and ri(t) =

bi(t)− di(t). This is an exact result provided that the birth and death rates are both

given by deterministic functions.

4.8.2 Probability of no resistance

The probability of having no resistant individuals of a given type i ∈ {A,B,D} at time

T is obtained by dividing the interval [0, T ] into a large number N of sub-intervals,

each of length ∆t = T/N � 1. One then requires that any resistant of type i which is

produced in a given sub-interval [tk, tk+∆t] ⊆ [0, T ] (tk = (k−1)∆t, k ∈ {1, 2, . . . , N})

goes extinct by time T , along with its lineage.

For any sub-interval there are two possibilities:

(i) No relevant mutations occur, i.e. no resistant cells of type i are produced. The

probability that this happens is

1−W i(tk)∆t, (4.25)

163



Chapter 4. Competition delays multi-drug resistance evolution during combination
therapy

asW i(tk)∆t is the probability that a relevant reproduction-mutation event occurs

in this interval. The overbar indicates that we use a deterministic approximation

for the rate Wi(tk).

(ii) A relevant mutation occurs (i.e., a resistant cell of type i is produced), but it

goes extinct along with its lineage by time T . The probability for this event is

W i(tk)∆tPext,i(tk, T ), (4.26)

with Pext,i(tk, T ) as defined above.

Next, we will describe how to use this to estimate the probability of single and double

resistance.

Single resistance

Following this idea, the probability that either no single resistant cell arises in [tk, tk+∆t],

or if one arises it goes extinct by time T along with its lineage becomes

P single
0,tk (T ) =

[
1−

(
WA(tk) +WB(tk)

)
∆t
]

+ WA(tk)∆tPext,A(tk, T ) +WB(tk)∆tPext,B(tk, T )

= 1−∆t
{
WA(tk) [1− Pext,A(tk, T )] +WB(tk) [1− Pext,B(tk, T )]

}
. (4.27)

This expression accounts for the fact that single resistants can be of type A or B, and

that we are interested in situations where neither type is present. The terms WA and

WB are the average production rates of mutants of type A and B from strain S, as

defined in Eqs. (4.3) and (4.4) of the main text. To lowest order in ∆t the above

expression turns into

P single
0,tk (T ) ≈ exp

(
−∆t

{
WA(tk) [1− Pext,A(tk, T )] +WB(tk) [1− Pext,B(tk, T )]

})
.

(4.28)

The probability that no single resistant cells (of either type A or type B) are present

at time T in turn takes the form

P single
0 (T ) ≡ P (nA(T ) = nB(T ) = 0) =

N∏
k=1

P single
0,tk (T ), (4.29)
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since we require that single resistant cells produced in any interval [tk, tk + ∆t] get

extinct along with their lineage. Inserting the expression from Eq. (6.38) and taking

the limit ∆t→ 0 (so that sums turn into integrals), we find

P single
R (T ) = 1− P single

0 (T ) = 1− exp
[
−
∫ T

0
{ΦA (t, T ) + ΦB (t, T )} dt

]
, (4.30)

with

ΦA (t, T ) = WA(t) [1− Pext,A(t, T )] ,

ΦB (t, T ) = WB(t) [1− Pext,B(t, T )] . (4.31)

The calculation can be extended to the case of several single resistant types,

i = 1, . . . ,M . One would get

P single
R (T ) = 1− exp

[
−
∫ T

0

(
M∑
i=1

Φi (t, T )
)

dt
]
, (4.32)

with Φi analogous to ΦA and ΦB above.

Double resistance

The procedure to obtain the probability of double resistance is similar to the above

line of reasoning. The main difference is that there are now two sources, the two single

resistant strains A and B. As before, we start by writing down the probability that

double resistant cells either do not arise in [tk, tk + ∆t], or, if they do, that they and

their lineage goes extinct by time T . This probability is

P double
0,tk (T ) =

[
1−WD(tk)∆t

]
+WD(tk)∆tPext,D(tk, T ), (4.33)

where WD is the average production rate of mutants type D (from strains A or B),

given in Eq. (4.5) in the main text. Following the same steps as before, the probability

of having at least one double resistant cell at time T becomes

P double
R (T ) = 1− exp

[
−
∫ T

0
{ΨA (t, T ) + ΨB (t, T )} dt

]
, (4.34)

with

ΨA (t, T ) = bA(t)µBn̄A(t) [1− Pext,D(t, T )] ,

ΨB (t, T ) = bB(t)µAn̄B(t) [1− Pext,D(t, T )] . (4.35)
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We stress again that this approach is based on a deterministic approximation for

the production rates WA,WB and WD. More specifically, these rates can – in principle

– depend on the composition of the population, n, which is a stochastic variable. In our

approximation the components ni of n are replaced with their mean values n̄i, resulting

for example in the appearance of n̄A and n̄B in Eq. (4.35). If such an approximation is

not made, then WA,WB and WD are stochastic variables.

4.9 Appendix B: Probabilities of resistance for the

exponential growth model (EG) with constant

growth coefficients

The differential equations for the mean values of cell numbers for the exponential

growth model (abbreviated ‘EG’ in the main paper) are given in Eq. (4.6) in the main

text. For constant coefficients bi and di they have the following analytical solutions

n̄S(t) = n0e
rSt,

n̄A(t) = n0bSµA
rS − rA

(
erSt − erAt

)
,

n̄B(t) = n0bSµB
rS − rB

(
erSt − erBt

)
,

n̄D(t) = n0bSµAµB× 1
rS − rD

 bA
rS − rA

+ bB
rS − rB

(erSt − erDt)+ bA
(rS − rA)(rD − rA)

(
erAt − erDt

)

+ bB
(rS − rB)(rD − rB)

(
erBt − erDt

) . (4.36)

If bA = bB = 0 (strains A and B do not replicate), then n̄D(t) = 0. Also, for

µA = µB = 0 there are no single or double mutants as there are no mutations.

Moreover, for constant birth and death rates the expression in Eq. (4.23) reduces

to

Pext,i(t, T ) = 1− ri
bi − die−ri(T−t)

. (4.37)

If di = 0, then Pext,i(t, T ) = 0. We also note that the expression for Pext,i(t, T ) shows

that as T grows, two possible types of behaviour can occur at fixed t:
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(i) If bi > di (ri > 0), then Pext,i(t, T ) tends to its maximum value di/bi. The

probability of extinction at long times is then less than one.

(ii) If bi < di (ri < 0), then Pext,i(t, T ) tends to one as T → ∞, i.e. extinction is

certain in the long run.

For the simple case of constant birth and death rates model, it is also possible to

derive analytical solutions for the probabilities of single and double resistance. For the

former we get

P single
R (T ) = 1− e−[φA(T )+φB(T )], (4.38)

with

φA(T ) = n0bSµArA
rSbA

[
erST 2F1

(
1, rS
rA

; rA + rS
rA

; dA
bA

)
− 2F1

(
1, rS
rA

; rA + rS
rA

; dAe
−rAT

bA

)]
,

(4.39)

and

φB(T ) = n0bSµBrB
rSbB

[
erST 2F1

(
1, rS
rB

; rB + rS
rB

; dB
bB

)
− 2F1

(
1, rS
rB

; rB + rS
rB

; dBe
−rBT

bB

)]
,

(4.40)

where 2F1 is the Gaussian hypergeometric function (also known as the ordinary

hypergeometric function). The terms φA and φB capture mutations from strain S to

A or B, respectively. If at least one of the functions φA and φB tends to infinity as

T →∞, then P single
R (T )→ 1. This can happen if at least one of rA or rB is positive.

We also note that P single
R (T ) is trivially zero if n0 or bS vanish (no reproduction of

sensitive cells), or if µA and µB are both zero (no mutations).

For constant birth and death rates bi and di the probability of double resistance

becomes

P double
R (T ) = 1− e−[ψA(T )+ψB(T )], (4.41)

where

ψA(T ) = n0bAµBrDbSµA
bD(rS − rA) [ψ(rS, rD)− ψ(rA, rD)] (4.42)

and

ψB(T ) = n0bBµBrDbSµA
bD(rS − rB) [ψ(rS, rD)− ψ(rB, rD)] . (4.43)

We have defined

ψ(rl, rD) = 1
r`

[
er`T 2F1

(
1, r`
rD

; r` + rD
rD

; dD
bD

)
− 2F1

(
1, r`
rD

; r` + rD
rD

; dDe
−rDT

bD

)]
,

(4.44)
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for ` = S,A,B. The terms ψA and ψB take into account contributions from strains

A and B that mutate into strain D, respectively. If n0 or bS vanish (no growth of

sensitive cells), or µA and µB are zero (no mutations), or both bA or bB are zero (no

growth of single resistant strains), then P double
R (T ) = 0, i.e., double resistance does not

emerge.

4.10 Appendix C: Probabilities of resistance for

the logistic growth model without competi-

tion between strains (LG)

4.10.1 Constant coefficients

Mean number of sensitive cells

For constant drug concentrations, the functions di(t) (death rate) and ρi(t) (intrinsic

growth rate) are constant in time. The birth rate bi(t), however, depends on ni(t), so

it is not constant [see Eq. (4.7) of the main paper].

For this model, there is no analytical solution to the differential equations for the

mean cell numbers [Eqs. (4.1) in the main paper], except for strain S, for which one

finds the logistic function

n̄S(t) = kS
1 + (kS/n0 − 1) e−ρSt . (4.45)

For the other strains, it is necessary to integrate the equations for the mean cell numbers

numerically.

Extinction probability for a single-species logistic birth-death process

In this section we derive a closed-form solution for the probability of extinction, Pext,i

of a single-species logistic birth-death process with time dependent rates. To do this,

we follow a procedure similar to the one in [33] for the Gompertz model.

We focus on strain i, and start from the birth rate

bi(t) = di + ρi

(
1− n̄i(t)

ki

)
, (4.46)
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in which we have made the deterministic approximation, i.e., we have replaced the

number of cells of type i by its mean value. This turns the birth rate into a time-

dependent external function. The death rate di is constant, as is the rate ρi. However,

the actual births and deaths are treated as stochastic events.

We label time by t′ and assume that at a certain time t′ = t there is only one

individual, n̄i(t′ = t) = 1. The function n̄i(t′) follows the differential equation

dn̄i
dt′ (t

′) = ρi

(
1− n̄i(t′)

ki

)
n̄i(t′). (4.47)

The solution of this equation, subject to the condition n̄i(t′ = t) = 1, is

n̄i(t′) = ki
1 + (ki − 1) e−ρi(t′−t) . (4.48)

Then, using Eq. (4.19), we write

βi (t, t′) = log n̄i(t′), (4.49)

so that,
∫ T

t
die
−βi(t,t′)dt′ = di

∫ T

t

1
n̄i(t′)

dt′

= di
ki

[
(T − t)− (ki − 1)

ri

(
e−ρi(T−t)−1

)]
. (4.50)

Finally, putting all together in Eq. (4.23), we obtain

Pext,i(t, T ) =

di
ki

[
(T − t)− (ki − 1)

ρi

(
e−ρi(T−t) − 1

)]
di
ki

[
(T − t)− (ki − 1)

ρi
(e−ρi(T−t) − 1)

]
+ 1

. (4.51)

This is the extinction probability for a single individual and its lineage in a single-species

logistic growth model with constant coefficients ρi and di. Trivially, Pext,i(t, T ) = 0 for

di = 0.

Single resistance

For the logistic model without competition between strains (LG), the average production

rates of strains A and B are given by

WA(t) =
[
dS + ρS

(
1− n̄S(t)

kS

)]
µAn̄S(t) (4.52)
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WB(t) =
[
dS + ρS

(
1− n̄S(t)

kS

)]
µBn̄S(t). (4.53)

We focus again on the case of constant coefficients di and ρi. Using the closed-form

solution in Eq. (4.51) for the extinction probability, we use Eq. (4.31) to write

ΦA (t, T ) =

[
dS + ρS

(
1− n̄S(t)

kS

)]
µAn̄S(t)

dA
kA

[
(T − t)− (kA − 1)

ρA
(e−ρA(T−t) − 1)

]
+ 1

, (4.54)

and

ΦB (t, T ) =

[
dS + ρS

(
1− n̄S(t)

kS

)]
µBn̄S(t)

dB
kB

[
(T − t)− (kB − 1)

ρB
(e−ρB(T−t) − 1)

]
+ 1

. (4.55)

In these expressions, n̄S is a logistic function with initial condition n̄S(t = 0) = n0 and

growth rate ρS, i.e. n̄S(t) = kS/ (1 + (kS/n0)e−ρSt).

The expressions for ΦA and ΦB are integrated with respect to t in Eq. (4.30). Even

though we can write down ΦA and ΦB in the above form, we have not been able to

find an analytical solution for these integrals. The probability of single resistance is

obtained by performing these integrals numerically.

Double resistance

For constant coefficients, the production rate of strain D in Eq. (4.5) of the main paper

takes the form

WD(t) =
[
dA + ρA

(
1− n̄A(t)

kA

)]
µBn̄A(t) +

[
dB + ρB

(
1− n̄B(t)

kB

)]
µAn̄B(t), (4.56)

for the logistic growth model with no competition between strains. Eqs. (4.17) and

(4.18) become

ΨA (t, T ) =

[
dA + ρA

(
1− n̄A(t)

kA

)]
µBn̄A(t)

dD
kD

[
(T − t)− (kD − 1)

ρD
(e−ρD(T−t) − 1)

]
+ 1

, (4.57)

and

ΨB (t, T ) =

[
dB + ρB

(
1− n̄B(t)

kB

)]
µAn̄B(t)

dD
kD

[
(T − t)− (kD − 1)

ρD
(e−ρD(T−t) − 1)

]
+ 1

. (4.58)
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While the function n̄S(t) is available in closed form [see Eq. (4.45)], no analytical

solutions were found for n̄A(t) and n̄B(t). This is because the single resistant types are

produced from S, and n̄S itself is a time-dependent quantity. The functions n̄A(t) and

n̄B(t) are therefore obtained by numerical integration of the differential equations (4.1)

in the main paper.

4.10.2 Time-dependent rates

We now assume that the rates di(t) and ρi(t) in Eq. (4.7) of the main text are functions

of time. In order to obtain the extinction probability in an effective way, we use Eq.

(4.49) to write Eq. (4.23) as

Pext,i(t, T ) =

∫ T

t

di (t′)
n̄i (t′)

dt′

1 +
∫ T

t

di (t′)
n̄i (t′)

dt′
, (4.59)

with n̄i (t′) as in Eq. (4.20), see also Sec. 4.3.4 of the main paper.

To derive Eq. (4.20), i.e. to express the solutions for n̄i (t′) (with initial condition

n̄i(t) = 1) in terms of solutions n̄0
i (t′) (with n̄0

i (0) = 0), we integrate Eq. (4.47) to

obtain

n̄i (t′) = ki

(ki − 1)e−
∫ t′
t
ρi(t′′)dt′′ + 1

. (4.60)

Similarly,

n̄0
i (t′) = ki

(ki − 1)e−
∫ t′

0 ρi(t′′)dt′′ + 1
, (4.61)

such that n̄0
i (0) = 1. From this, we get

e−
∫ t′

0 ρi(t′′)dt′′ = ki/n̄
0
i (t′)− 1
ki − 1 , (4.62)

and then

e−
∫ t′
t
ρi(t′′)dt′′ = ki/n̄

0
i (t′)− 1

ki/n̄0
i (t)− 1 . (4.63)

Inserting this result into Eq. (4.60) gives Eq. (4.20) in the main text, i.e.,

n̄i (t′ ≥ t) =
ki

(
ki

n̄0
i (t)
− 1

)

(ki − 1)
(

ki
n̄0
i (t′) − 1

)
+
(

ki
n̄0
i (t)
− 1

) . (4.64)

The probabilities of resistance are then obtained by performing the integrals in Eqs.

(4.30) and (4.34) numerically.
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4.11 Appendix D: Probabilities of resistance for

the logistic model with between-strain com-

petition (CLG)

As explained in Section 4.4.1 of the main paper, we have not been able to derive

analytical solutions of the mean cell numbers for the logistic growth model with

competition between the strains. This is due to the coupling of the equations for the

different n̄i, see Eq. (4.1) in the main paper, and the rates in Eq. (4.8). Because of the

lack of closed form expressions for the n̄i we cannot find an analytical solution for the

extinction probability Pext,i either, i.e., there is no closed-form equivalent of Eq. (4.51)

in the CLG model, even when the coefficients di and ρi are constant.

As a consequence the n̄i(t) are obtained from numerical integration of the differential

equations for the mean cell numbers [Eq. (4.1)]. The extinction probabilities are then

obtained from Eq. (4.59), where the required integral is again evaluated numerically.

The integration is carried out by applying the strategy described in Section 4.3.4 of

the main paper. We detail below how to apply it for the CLG model. This procedure

is used both for constant and time-dependent coefficients di and ρi.

In order to calculate Pext,i, we focus on a single species following a birth-death

process with birth rate

bi(t) =


di(t) + ρi(t)

(
1− n̄T (t)

ki

)
if n̄T (t) ≤ ki

di(t) if n̄T (t) > ki,

(4.65)

where di(t) is a given death rate, and ρi(t) the intrinsic birth rate of species i. As

explained in Section 4.3.4, to obtain the extinction probability in an efficient manner

we need to express solutions n̄i (t′) with initial condition n̄i(t′ = t) = 1 in terms of

solutions n̄0
i (t′) that satisfy n̄0

i (t′ = 0) = 1. Notice that, although the focus is on species

i, we cannot ignore the effect of the remaining species for the model with competition

between strains: the function n̄T (t′) in Eq. (4.65) accounts for the mean value of the

total number of cell across all species. The function n̄i(t′) follows

dn̄i
dt′ (t

′) = ρi(t′)
(

1− n̄T (t′)
ki

)
n̄i(t′). (4.66)

To proceed, we treat n̄T (t′) on the right hand-side of Eq. (4.66) as a given function.
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Formally integrating we then obtain

n̄i(t′) = exp
{∫ t′

t
ρi(t′′)

(
1− n̄T (t′′)

ki

)
dt′′

}
, (4.67)

where we note the initial condition n̄i(t′ = t) = 1 The solution n̄0
i (t′) with condition

n̄0
i (0) = 0 (see Section 4.3.4 of the main paper) is given by

n̄0
i (t′) = exp

{∫ t′

0
ρi(t′′)

(
1− n̄T (t′′)

ki

)
dt′′

}
. (4.68)

Using these one obtains

n̄i(t′ ≥ t) = n̄0
i (t′)
n̄0
i (t)

, (4.69)

with which Pext,i is obtained from Eq. (4.59) and from it, the probabilities of single

and double resistance from Eqs. (4.30) and (4.34).

4.12 Appendix E: Further supplementary results

In this section, we present additional data from simulations and from the analytical

approach. These complement the results in the main paper.

4.12.1 Probability of double resistance for constant growth

rates

Figure 4.8 complements Fig. 4.4. It shows how the probability of double resistance,

P double
R , differs across the different growth models as a function of parameters not varied

in Fig. 4.4. As in Fig. 4.4 parameters are varied in turn, i.e., all but the one shown on

the vertical axis are kept fixed.

The data in the figure shows that varying dA the emergence of double resistance

shows a noticeable delay in the CLG model compared to the other two growth models.

When only µA varies, however, all the models have similar probability of double

resistance. This is because µB is high enough that double resistance does not get affected.

This example shows that competition may not significantly affect the emergence of

double resistance in some circumstances.
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Figure 4.8: Theoretical prediction of the probability of double resistance for the three growth
models when varying one parameter. When not varied, we use the same parameters as in Figure
4.4 of the main text, i.e. bS = 1.0, bA = 1.1, bB = 1.2, bD = 1.3, dS = dA = dB = dD =
0.1, µA = µB = 10−4, n0 = 104, kS = 106, kA = 1.1× 106, kB = 1.2× 106, and kD = 1.3× 106.

a b c

d e f

EG model LG model CLG model

Figure 4.9: Probabilities of single and double resistance for the same parameters as in Figure 4.4

of the main text but with dS = 0.5.
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a b c

d e f

EG model LG model CLG model

Figure 4.10: Probabilities of single and double resistance for the same parameters as in Figure

4.4 of the main text but with n0 = 5× 105.

a b c

d e f

EG model LG model CLG model

Figure 4.11: Probabilities of single and double resistance for same parameters as in Figure 4.4

of the main text but with rA = 0.1.

4.12.2 Further tests of theoretical predictions for resistance

against numerical simulations

In Figs. 4.9–4.11 we show data similar to that in Fig. 4.1 in the main paper, but for

different choices of the model parameters. The figure shows the probabilities of single

and double resistance as a function of time, both from simulations and as predicted
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from the theory. The parameters in Figs. 4.9–4.11 are chosen such that they produce

a noticeable difference in the prediction of double resistance relative to the results in

Fig. 4.1, in particular for the model with competition between strains. We do this

based on the results presented in Fig. 4.4 of the main paper, i.e., we select parameter

values such that the delay in the emergence of double resistants is noticeably higher

than with the parameters from Fig. 4.1.
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Figure 4.12: Theoretical prediction of single resistance for sinusoidal and pulsing drug therapies

for parameters of Figure 4.7 from the main text: bS = bA = bB = bD = 1.1, dS = dA = dB =

dD = 0.1, µA = µB = 10−3, n0 = 5 × 103, kS = 104, kA = 1.1 × 104, kB = 1.2 × 104, and

kD = 1.3× 104.

4.12.3 Probability of single and double resistance for time-

dependent dosing schedules

In this section, we complement the results for the probabilities of single and double

resistance shown in Section 4.7.

In Fig. 4.12, we show the theoretical prediction for the probability of single resistance

using the same parameters and dosing schedules (sinusoidal and pulsing therapies)

as in Fig. 4.7 of the main paper. As shown, the probability of single resistance is

noticeably different in the exponential model than for the two models with logistic

growth. Therefore it is important to consider carefully the choice of growth model
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Figure 4.13: Theoretical prediction of the probability of double resistance for sinusoidal and pulsing
drug therapies for parameters of Figure 4.7 from the main text: bS = bA = bB = bD = 1.1, dS =
dA = dB = dD = 0.1, µA = µB = 10−3, n0 = 5×103, kS = 104, kA = 1.1×104, kB = 1.2×104,
and kD = 1.3× 104

to best describe a given biological system. If an exponential model is used, but the

real-world system is subject to restricted growth then the prediction for example of the

typical time at which first resistants emerge may not be accurate. Further, the value

of ∆tB that optimises the treatment (most delays the emergence of single resistance)

and the typical time at which the first single mutants emerge are both different in the

exponential growth model than in the two logistic models.

In Figures 4.13 and 4.14, we re-plot data shown in Fig. 4.7 of the main paper. We

now illustrate more clearly the effect of changing ∆tB in each growth model. Figure

4.13 demonstrates that the emergence of double resistance is considerably delayed by

competition. In Fig. 4.14 we show the probability of double resistance, P double
R (T ), as

function of ∆tB for a given time T . This is shown for each of the three growth models,

and for the sinusoidal and pulsing periodic treatments. The figure demonstrates that

the optimum treatment is different for each of the three growth models.

In Fig. 4.15 finally we show the probability of double resistance with a higher initial

sensitive cell number and higher carrying capacities values for each strain than in

Fig. 4.7. For these parameters, the prediction of the competition model shows a more
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pronounced difference than the prediction in Fig. 4.7 when varying ∆tB.
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Figure 4.14: Theoretical prediction of the probability of double resistance for each growth model

during sinusoidal (left panel) and pulsing therapy (right panel) as a function of ∆tB at time

T = 10 after the treatment started. Parameters used are the same in Figure 4.7 from the main

text: bS = bA = bB = bD = 1.1, dS = dA = dB = dD = 0.1, µA = µB = 10−3, n0 = 5 × 103,

kS = 104, kA = 1.1× 104, kB = 1.2× 104, and kD = 1.3× 104.
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Figure 4.15: Theoretical prediction of the probability of double resistance for each growth model

when varying ∆tB for sinusoidal and pulsing therapies. Parameters used: bS = bA = bB = bD =

1.1, dS = dA = dB = dD = 0.1, µA = µB = 10−3, n0 = 104, kS = 105, kA = 1.1 × 104, kB =

1.2× 104, and kD = 1.3× 104.

178



4.13. Appendix F: Limitations of the analytical approach

4.13 Appendix F: Limitations of the analytical ap-

proach

In Fig. 4.16, we show an instance in which the theoretical predictions for the probability

of double resistance deviate from results from simulations. Specifically, we have chosen

smaller birth rates for each strain in panel (a), and smaller mutation rates in panels

(b) and (c) than in Fig. 4.1 of the main paper. In either case, the overall effect is a

delay in the emergence of double resistants. As explained in Section 4.6 the theoretical

predictions then become less accurate.

time
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Figure 4.16: Theoretical prediction of double resistance for: (a) Exponential growth model
for parameters: bS = 0.5, bA = 0.8, bB = 0.9, bD = 1.0, dS = dA = dB = dD = 0.1, µA =
10−6, µB = 10−4, n0 = 104. (b) Non-competitive growth model for parameters: bS = 1.1, bA =
1.2, bB = 1.3, bD = 1.4, dS = dA = dB = dD = 0.1, µA = µB = 10−5, kS = 107, kA =
1.1× 107, kB = 1.2× 107, and kD = 1.3× 107. (c) Competitive growth model for parameters:
bS = 1.1, bA = 1.2, bB = 1.3, bD = 1.4, dS = dA = dB = dD = 0.1, µA = µB = 10−5, kS =
107, kA = 1.1× 107, kB = 1.2× 107, and kD = 1.3× 107.
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Abstract

While facultative sex is common in sexually reproducing species, for reasons of

tractability most mathematical models assume that such sex is asynchronous in the

population. In this paper, we develop a model of switching environments to instead

capture the effect of an entire population transitioning synchronously between

sexual and asexual modes of reproduction. We use this model to investigate the

evolution of the number of self-incompatible mating types in finite populations,

which empirically can range from two to thousands. When environmental switching

is fast, we recover the results of earlier studies that implicitly assumed populations

were engaged in asynchronous sexual reproduction. However when the environment

switches slowly, we see deviations from previous asynchronous theory, including

a lower number of mating types at equilibrium and bimodality in the stationary

distribution of mating types. We provide analytic approximations for both the fast

and slow switching regimes, as well as a numerical scheme based on the Kolmogorov

equations for the system to quickly evaluate the model dynamics at intermediate

parameters. Our approach exploits properties of integer partitions in number

theory. We also demonstrate how additional biological processes such as selective

sweeps can be accounted for in this switching environment framework, showing

that beneficial mutations can further erode mating type diversity in synchronous

facultatively sexual populations.

5.1 Introduction

Evolution is a fundamentally noisy affair [1]. It is therefore no surprise that over the

last century theorists have increasingly sought to mathematically understand the effects

of randomness on evolutionary models. Such noise has many distinct forms. The

foundations of mathematical population genetics are rooted in models that capture

how genetic drift (demographic noise), emerging from uncertainty in the order of birth

and death events in finite populations, can drive population dynamics [2]. Meanwhile a

more ecologically-oriented approach has been to consider the noise that might arise from

uncertainty in environmental conditions [3, 4] (environmental noise), with a particular
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emphasis in the evolutionary literature on transitions between discrete environmental

states [5, 6] (capturing, for instance, an organism’s switching behavioural responses to

the fluctuating environment). However, in the last decade in particular, there has been

an increasing interest in mathematically understanding the dynamics of populations

subject to both demographic noise and environmental switching [7–10].

Beyond simply presenting a mathematical challenge, developing analytic techniques

to attack such systems is important for understanding a host of problems in biology.

One simple yet acute example is that of a population switching between environments

in which selection is present in one environment and absent in the other [11]. Here

one must understand the interplay of quasi-deterministic dynamics on the one hand

(in the selective regime, where noise generates small fluctuations around average

trajectories) and entirely noisy dynamics in the other (where genetic drift alone governs

the population’s behaviour). In this paper we will consider just such an evolutionary

problem, demonstrating how it can be modelled and, more importantly analysed,

quantitatively.

Mating types are self-incompatible gamete classes that can be understood as

ancestral forms of the more familiar sperm-egg system [12, 13]. Unlike populations with

true sexes however (which are defined by the size dimorphism between their gametes)

the number of mating types (which are morphologically similar) is not restricted to

two [14]. Instead, mating types are expected to experience negative frequency dependent

selection, with rare types favoured due to their increased opportunities for finding a

compatible mate of a distinct, non-self mating type. This has an important dynamical

consequence; novel mutant mating types, which are initially rare, should nearly always

successfully establish within a resident population, and therefore the number of mating

types in a species is predicted to increase through time [15]. However, while species

with many mating types are possible rising to many thousands in some fungi [16],

species with more than 10 are rare and most have just two [17, 18]. This disagreement

between simple evolutionary reasoning and empirical evidence sets the stage for what

people call an evolutionary paradox [19].

Although many theories have been proposed to explain this discrepancy (reviewed

in [19]), most rely on a deterministic selective advantage for two mating types, such

as increased mating success between two types in pheromone signaling and receiving

187



Chapter 5. Switching environments, synchronous sex, and the evolution of mating
types

roles [20], or decreased cytoplasmic conflict between two types in donor-receiver organelle

inheritance roles [21]. In contrast, [15] demonstrated that under differing assumptions

about the gamete encounter rate dynamics, the strength of selection for more than two

types could be reduced. It was then verbally suggested that demographic stochasticity

may play a role in further limiting the number of mating types. However without the

analytic tools to quantify this effect, the hypothesis that genetic drift could govern

mating type number through a balance between mutations and stochastic extinctions

was somewhat neglected within the mating type literature, despite being well-established

in the related but distinct system of self-incompatibility alleles in plants [22].

More recently, simulations were used to show that in a population that switched

between sexual and asexual environments, mating type extinctions became more likely,

with negative frequency dependent selection absent in the asexual regime, and the

population dynamics entirely dominated by genetic drift [23]. Extending this logic, [24,

25] showed analytically that an increased rate of asexual to sexual reproduction would

lower the number of mating types expected under a mutation extinction balance, and

indeed that available empirical data showed a positive correlation between the rate of

sexual reproduction and the number of mating types in these species.

For mathematical simplicity these latter models [24, 25] considered sexual repro-

duction to be occurring asynchronously, i.e., with each reproductive event having

a fixed probability of sexual vs asexual reproduction. However this simplification

fails to capture a biologically relevant aspect of reproduction in these species; sexual

reproduction tends to be triggered by changing environmental conditions [26], such as

falling nutrient levels [27] or other stress cues [28], and is thus synchronized in time

across the entire population [29]. With such dynamics better captured by a switching

environment model, it is interesting to ask what quantitative differences this increased

level of biological realism might generate. More importantly, this shift in modelling

framework also enables us to explore a richer array of biological questions.

In addition to demographic stochasticity, selective sweeps have been suggested as a

mechanism that may increase mating type extinction rate and, therefore, further limit

the number of mating types [30]. However the effect of these selective sweeps on mating

type number can only be seen in asexual environments, where beneficial mutations are

linked to the mating type background on which they arise [31]. In a sexual or even
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partially sexual environment, genetic recombination breaks down associations between

beneficial mutations and mating types, allowing the mutations to spread through

the population without distorting mating type frequencies. Quantifying the effect of

selective sweeps on these dynamics therefore requires a shift in modelling approach,

away from simplified mathematical assumptions of asynchronisity and towards more

biologically realistic switching environments [30]. In this paper we focus on this problem,

describing a modelling framework and developing a mathematical analysis suitable for

the task.

This article is organized as follows: in Section 5.2, we present the switching-

environments model in which a population transition between entirely sexual and

entirely asexual reproductive modes. Section 5.3 is dedicated to studying how the

distribution of mating types changes as a function of the switching and mutation rates.

We focus in particular on the regimes of fast, slow and intermediate environmental

switching. In Section 5.4 we demonstrate how this new modelling framework allows us

to address the issue of selective sweeps. Finally, we present the conclusions in Section

5.5.

5.2 Model definitions

5.2.1 Population dynamics

We consider a population genetics model similar to that proposed in [24]. The model

describes a population of N individuals, who each are of a particular mating type. The

different mating types are labelled by the index i. The population follows a dynamics

similar to the Moran model (i.e., coupled birth-death events in continuous time) but

now allowing three possible types of events: asexual reproduction, sexual reproduction,

and mutation. Each reproduction event implies the removal of one individual so that

the size of the population remains constant. Mutation events imply the introduction of

a new mating type. We write ni for the number of individuals of mating type i, and

M for the total number of mating types in the population. These are time-dependent

quantities. The number of mating types ranges from M = 1 (all individuals are of the

same type) to M = N (each individual is of a different mating type).

In the model by Constable and Kokko in [24] both sexual and asexual reproduction
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were possible at any time, each occurring with a fixed rate. In this paper we instead

consider the more biologically realistic scenario of a population that engages in sexual

reproduction in response to changing environmental conditions. While the environment

itself may be described by a continuous quantity (such as temperature) the population’s

response to the environment is binary (whether to engage in sexual reproduction or

not). We therefore develop a model that switches stochastically between two different

states, denoted S and A, respectively. We write σ ∈ {S,A} for the environmental state.

When the environment is in state S, only sexual reproduction is possible, and when

it is in state A, only asexual reproduction is possible. We assume that the switching

between these two environmental states occurs independently of the composition of

the population, with rate λS→A from S to A, and λA→S for switches from state A to S.

The switching processes can be written as

S
λS→A−−−→ A, and A

λA→S−−−→ S. (5.1)

In the sexual environment S, we assume that any pair of individuals can reproduce,

provided they belong to two different mating types. For example, one parent may

be of mating type i, and the other parent of any other non-i mating type. The

probability that this occurs for two individuals sampled at random from the population

is ni(N − ni)/N2. The offspring inherits the mating type of either parent with equal

probability 1/2. To keep the population size fixed, another individual (type j) is

simultaneously chosen uniformly at random to die. The rate for events in which an

offspring of type i is generated and an individual of type j removed from the population

is then

T Sij = 1
2
ninj
N2 (N − ni) . (5.2)

We express time in units of generations, so that there are of the order of N events in

the population per unit time. This means that rate in Eq. (5.2) has an extra factor N

in comparison to the rate used in [24].

In the asexual environment A, reproduction follows the standard neutral Moran

model. One individual is chosen uniformly at random to reproduce, and the offspring

inherits the mating type of the parent. As above, another individual is simultaneously

chosen at random to die. The rate for events in which an individual of type i reproduces
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Mutation:
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Figure 5.1: Illustration of the full model and the events occurring in the population: sexual
reproduction, asexual reproduction, and mutation. In each of these events one individual is replaced
by another of a different mating type. Transitions between environments occur independently of
the state of the system at rate λS→A from σ = S to σ = A, and λA→S from σ = A to σ = S.

and an individual of type j is removed is then given by

T Aij = ninj
N

. (5.3)

Notice here we are ignoring any type of selection across mating types, so the dynamics

is governed entirely by neutral genetic drift. If we considered selection, we would

benefit the growth of certain mating types over the others, which can bring important

consequences as we will see below when accounting for selective sweeps.

Following [24], we describe mutations as events in which one individual changes to

a new mating type not currently present in the population. This leads to the rate

T mj = mg
nj
N

(5.4)

for mutation events from type j to a new type. The parameter mg sets the typical

number of mutations per generation in the population. The raw mutation rate is given

by m = mg/N . Defined in this way, Eq. (5.4) can also be interpreted biologically as

capturing migration events from a highly diverse mating type pool.

The dynamics of the model above are summarised in Figure 5.1. We will refer to

this as the ‘full model’ in the remainder of the paper. It describes a Markovian process.

At each point in time its state is described by the state of the environment (S or A),

and by the state vector of the population, n = (n1, n2, . . . ). The i-th entry in this

vector indicates how many individuals of mating type i are present in the population.
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We have ∑i ni = N , and the number of non-zero entries in n indicates the number of

mating types currently present in the population.

5.2.2 Environmental dynamics

Given that the environmental switching is independent of the composition of the

population, the long-time probabilities to find either environmental state can be

written down straight away,

P st
A = λS→A

λS→A + λA→S
,

P st
S = λA→S

λS→A + λA→S
. (5.5)

To ease the notation, we write pS = P st
S for the probability to find the environment in

state S. This indicates the rate of sexual reproduction.

The average time the environment spends in each of the two states between switches

is given by

τA = 1
λA→S

and τS = 1
λS→A

. (5.6)

The average time to switch from one state to the other and back, is then

τ = τA + τS. (5.7)

5.2.3 Reduced model

In order to analyse the dynamics of the population, we will focus on a reduced model,

describing only the number of mating typesM . This number changes over time through

the birth-death and mutation events in the population. In a birth-death event the

number of mating types can decrease by one (if the individual that dies is the last

individual belonging to a particular mating type). When a mutation event occurs,

the number of mating types in the population increases by one (unless the mutating

individual is the last of its type). We are interested in the stochastic process for M ,

and will describe it with effective rates

M
T+
M,σ−−−→M + 1 and M

T−M,σ−−−→M − 1. (5.8)

For example, T−M,A is the rate with which a mating type is driven to extinction when

the environment is in state A, and when there are currently M mating types present
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M

M

M

M

M + 1
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M - 1

M - 1

Environment

Environment

Figure 5.2: Schematic representation of the reduced model, where the focus is on the dynamics
of the number of mating types M instead of the individuals. This model is described by effective
birth and death rates T+

M,σ and T−M,σ, with σ ∈ {S,A}.

in the population. Figure 5.2 illustrates this approach. The reduced model focuses on

the dynamics of the number of mating types M , without regard for the numbers ni of

individuals belonging to each mating type. The stochastic process for M is of course

dependent on the composition of the vector state n in the full model, and as such, the

reduced model constitutes an approximation of the dynamics in the full model.

The analytical challenge is to derive suitable expressions for the T±M,σ. While this is

difficult for the case of switching environments, progress can be made by focusing on

the case of a fixed environmental state, σ = A or σ = S. In this case, the population

will tend to a stationary state, described by the joint distribution of the number of

mating types, M , and the vector of abundances n. This distribution can be obtained

analytically using an approach similar to that of [24].

We then proceed to use this distribution to calculate the rates T±M,σ for the dynamics

of M . To do this, we focus on marginals for specific values of M and use methods from

number theory [32, 33] to sum over partitions n of the N individuals into mating types.

Importantly, this approach accounts precisely for all possible transitions in which a

change on state n leads to an increase or decrease in the number of mating types M .

Our calculation of these rates relies on fixed environmental states A or S. To make

this clear in the notation we write T±M |σ for the rates computed in this way. Further

details of the calculation can be found in Sections 5.6 and 5.7 of the Supplementary

Material. The outcome of this approach is an analytical solution for the rates T±M |σ.
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For environment σ = A, we find

T−M |A = (N − 1)

[
N−1
M−1

]
[
N
M

] , (5.9)

and

T+
M |A = mg(N − 1)

[
N−1
M

]
[
N
M

] , (5.10)

where
[
N
M

]
is the unsigned Stirling number of the first kind [34]. For environment σ = S,

the rates become

T−M |S = 1
2BN,M

(N − 1)BN−1,M−1 −
((N − 1)!)2

N

N−M+1∑
n1=1

n1

(N − n1)
BN−1−n1,M−2

((N − 1− n1)!)2

,
(5.11)

and

T+
M |S = mg

(
1− BN−1,M−1

BN,M

)
, (5.12)

where Bk,` = Bk,`(y1, . . . , yk−`+1) is the incomplete Bell polynomial [35]. The arguments

yi are the sequence yi = (i − 1)!(N − 1)i−1, with (N − 1)i−1 the falling factorial of

(N − 1) with respect to (i − 1), given by (N − 1)i−1 = ∏i−2
j=0(N − 1 − j). Further

details can be found in Section 5.7.2 in the Supplementary Material. In Figure 5.3

we demonstrate the accuracy of the predictions for the rates T±M |σ when compared

against direct measurements of the rates from simulations of the full model with fixed

environmental state.

(b)(a)

Figure 5.3: Theoretical predictions of rates T+
M |σ and T−M |σ against numerical simulations of the

full model with fixed environments, σ = S and σ = A respectively. Parameters are N = 16 and
mg = 1.6.

We now proceed to discuss the properties of these rates as a function of M . We

first focus on the rates T+
M |σ, i.e., events in which the number of mating types increases.
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The introduction of new mating types occurs when one individual mutates from one

mating type to another. In order for M to increase in this process, the mutating

individual must not be the only representative of its type. As a consequence T+
M |σ

tends to decrease with increasing M : if a large number of mating types is present in

the population, then it is likely that some of these will only be represented by a small

number of individuals, and possibly by a single member of the population. A mutation

event involving this individual then does not lead to an increase of the number of

mating types.

In birth-death events the number of mating types can decrease, irrespective of

whether reproduction is sexual or asexual. A reduction ofM occurs when the individual

that dies in such an event is the only representative of its mating type. Given that the

size of the population is fixed, this is more likely to be the case when the number of

mating types is large, hence the rate T−M |σ increases with M .

Using these rates we can obtain the stationary distribution for the number of mating

types under fixed environmental conditions using standard results for continuous-time

Markov chains [36]. We have

P st
M |σ =

T+
M−1|σ · · ·T

+
1|σ

T−M |σ · · ·T
−
2|σ

P st
1|σ, (5.13)

with

P st
1|σ =

1 +
T+

1|σ

T−2|σ
+ . . .+

T+
N−1|σ · · ·T

+
1|σ

T−N |σ · · ·T
−
2|σ

−1

. (5.14)

Using this expression, we can write the stationary distribution in closed form for

environment σ = A,

P st
M |A =

mM−1
g

(N − 1)!

[
N
M

]
(
mg+N−1

mg

) . (5.15)

For environment σ = S, we use Eq. (5.13) with rates given by Eqs. (5.11) and (5.12).

In Section 5.7.4 of the Supplementary Material we show that these predictions for P st
M |S

and P st
M |A are in good agreement with numerical simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Sample path of the temporal evolution, and stationary distribution of the number

of mating types M . The environment switches between σ = S (entirely sexual reproduction)

and σ = A (entirely asexual reproduction). Coloured regions in (a), (c), and (e) represent the

σ = A environment. Data is shown for different switching regime. Panels (a) and (b) illustrate

the case of slow switching (λA→S = λS→A = 10−5), panels (c) and (d) of intermediate switching

(λA→S = λS→A = 10−3), and panels (e) and (f) of fast switching (λA→S = λS→A = 10−1).

Simulations have been carried out by using the Gillespie algorithm [37, 38] in the full model. The

stationary distributions shown in panels (b), (d), and (f) have been obtained by time-averaging a

long run until t = 107, with a time t = 105 left to equilibrate. Parameters used: N = 30 and

mg = 0.3.

5.3 Stationary distribution for the number of mat-

ing types under environmental switching

While in previous studies [24, 25, 30] the frequency of facultative sexual reproduction

was measured by a single parameter (the probability of a reproduction event being
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sexual), the switching environment model requires two parameters, λA→S and λS→A.

Importantly, while the probability of finding the population in a sexual state remains

constant for a fixed ratio λA→S/λS→A (see Eq. (5.5)), the population dynamics quali-

tatively changes as the values of these parameters are changed. This is illustrated in

Figure 5.4, where typical time courses of the number of mating types present in the

population are shown (left panels) along with the corresponding stationary distributions

P st
M (right panels). We next give a brief overview of the behaviour of the model.

In general we see in Figure 5.4 that while the number of mating types fluctuates, the

number is typically higher when reproduction is sexual. In the sexual environment, rare

mating types experience a reproductive advantage, with their per capita reproductive

rate proportional to (N − ni) (see Eq. (5.2)). This means that novel mutants (or

migrants) establish in the population with high probability [39]. In contrast, in

the asexual environment mutants have no particular advantage as all mating types

reproduce with the same per capita rate (see Eq. (5.3)). In this case, given sufficient

time, mating types are driven to extinction as a result of neutral genetic drift.

Figure 5.4 shows three different regimes of environmental switching. In the upper

panels the environment is slow compared to the typical time scales of the population

dynamics. The stationary distribution of the number of mating types can then be

bi-modal, as shown in panel (b). Here mating type numbers greater than M = 1 in

the asexual regime are only maintained by mutation (or migration) providing a supply

of new types. The distribution of M becomes unimodal when the typical time scale

of environmental switching becomes comparable to the time scale of the evolutionary

process in the population (panels (c) and (d)), and it remains unimodal when the

environment is much faster than the population dynamics (panels (e) and (f)).

In the following sections we seek to quantify these dynamics mathematically. We

begin by considering the limits of slow and fast environmental switching (Figure 5.4

(a,b) and (e,f), respectively), as these prove analytically tractable. We then go on to

consider the range of intermediate switching. In order to illustrate the accuracy of our

approximations as compared to simulations, we will use parameters compatible with

manageable computing time (e.g. low population sizes and high mutation rates, for

which the dynamics more rapidly approach a stationary distribution). In Section 5.3.3

we will explore more biologically reasonable parameter regimes that are prohibitively
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expensive to investigate through simulation alone.

(a) (b)

(c) (d)
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Figure 5.5: Stationary distribution P stM as function of M and pS , for slow switching regimes
(upper row) and fast switching regimes (lower row). Panels (a) and (c) show the result obtained
from numerical simulations for parameters N = 16, mg = 0.16 with λA→S = 10−6 (for (a))
and λA→S = 103 (for (c)). Panels (b) and (d) show the corresponding theoretical predictions in
Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Slow environmental switching

When the environmental switching is slow (Figure 5.4 (a) and (b)) the system spends

sufficient time in each environment for the number of mating types to reach stationarity.

One then expects the overall distribution of the number of mating types P st
M to be the

weighted average of the stationary distributions from each environment. Mathematically,

this means

P st
M = (1− pS)P st

M |A + pSP
st
M |S. (5.16)

This result can be obtained analytically from the master equation of the system (see

below in Eq. (5.22)) in the limit of slowly switching environments, see Section 5.8.4

in the Supplementary Material. This approximation was also used in [7] for a game

theory model with switching payoff matrices. The probability pS = P st
S is given in

Eq. (5.5), while the probability P st
M |S and P st

M |A are the stationary distributions for M
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Figure 5.6: Theoretical prediction for stationary distribution P stM , for slow switching (upper row),
and fast switching (lower row) as function of the number of mating types (M) and the average
fraction of time spent in the sexual environment, pS . The theoretical predictions for the two
switching regimes are calculated from Eqs. (5.16) and (5.18), respectively. Panels (a) and (d)
show the case of low mutation rate (mg = 0.5), panels (b) and (e) are for intermediate mutation
rate (mg = 5), and panels (c) and (f) for high mutation rate (mg = 50). Population size is
N = 50.

assuming that the environmental state is fixed to S or A, respectively. These are given

in Eqs. (5.13) and (5.14).

In Figure 5.5 (a) and (b), we compare this prediction for the limit of slow environ-

mental change against numerical simulations. We show the distribution P st
M as function

of the fraction of time pS spent in the sexual environment.

The upper panels in Figure 5.6 illustrate the behaviour of P st
M in the regime of

slowly varying environments. In particular we show how this stationary distribution

changes with the rate pS. We have now chosen a larger population than in Figure 5.5,

and we show results for different mutation (or migration) rates mg. As seen in the

figure, the distribution is unimodal if the environment is predominantly in one of its

two states (i.e., pS is close to zero or one). The distribution is bimodal when the

environment spends similar fractions of time in each state (pS ≈ 1/2), independent

of the rate at which new mating types are added. We also see that the mode of the
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distribution for P st
M is lower if reproduction is always asexual (pS = 0) than in the case

of obligately sexual reproduction (pS = 1). As mg increases (new mating types arrive

more frequently), the distribution gets wider around its peak, and the most probable

number of mating types is shifted to higher values. Naturally, for very high (and

biologically unrealistic) values of mg the mode of P st
M will be equal to the population

size N .

5.3.2 Fast environmental switching

The simulation data in Figure 5.4 (e) and (f) illustrates the behaviour of the population

in the limit of very fast environmental switching. Unlike in the regime of slow-switching

environments, the stationary distribution P st
M then only exhibits one peak.

To estimate the P st
M in this regime, we follow the analytical approach developed in

[7] for game theoretic models and calculate weighted averages of the transition rates

T σij for all pairs i, j,

T fast
ij = (1− pS)T Aij + pST Sij . (5.17)

This leads to

T fast
ij =


Asexual reproduction︷ ︸︸ ︷

(1− pS)ni +
pS
2
ni
N

(N − ni)︸ ︷︷ ︸
Sexual reproduction


 nj
N︸︷︷︸

Death

 , (5.18)

and one recovers the limit studied in [24] for the case of asynchronous facultative sex.

This is a model with a constant environment with an effective sex rate pS. This sex rate

determines the effective birth and death rates, T+,fast
M and T−,fastM . Further details of

the derivation of these rates are given in Sections 5.7.2 of the Supplementary Material.

We find

T−,fastM = 1
2BN,M

(2− pS)(N − 1)BN−1,M−1

− pS
N

(N − 1)!(NpS − 1)!
N−M+1∑
n1=1

n1

(NpS − n1)
BN−1−n1,M−2

((N − 1− n1)!)2

, (5.19)

and

T+,fast
M = mg

(
1− BN−1,M−1

BN,M

)
, (5.20)
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where the Bk,` = Bk,`(y1, . . . , yk−`+1) are incomplete Bell polynomials as before. How-

ever, the yi are now given by yi = (i− 1)!(NpS − 1)i−1, where NpS is

NpS = 2− pS
pS

N. (5.21)

The stationary distribution for M is then obtained using Eqs. (5.13) and (5.14), with

the replacement T±M |σ → T±,fastM .

We test these theoretical predictions in Figure 5.5 (c) and (d), and find good

agreement with simulations. The behaviour of the model is further explored in Figure

5.6 (d-f), where we show the stationary distribution for the number of mating types in

the limit of fast environments, for varying values of the facultative sex rate and for

different mutation rates. For the parameters in Figure 5.6 the distributions are not

too dissimilar from the ones in the slow switching regime (panels (a-c)). However, one

main difference is the absence of bi-modality when pS ≈ 1/2. Additionally, we find the

distribution is wider around its peak.

5.3.3 Transition between slow and fast switching regimes

In the previous sections, we studied the stationary distribution of the number of mating

types in the limits of slow and fast environmental dynamics. The differences between

these limits are most pronounced at intermediate facultative sex rates (pS ≈ 1/2). We

now focus on the regime of intermediate environmental switching. The time scale of

the environmental dynamics is set by the cycle time τ , defined in Eq. (5.7), and we

are therefore interested in situations where τ is comparable to the time scales of the

evolutionary process in the population.

Stochastic simulations

Results from simulations are shown in Figure 5.7. We focus on the case pS = 1/2.

Cases with pS close to zero and one are explored in Section 5.8.3 of the Supplementary

Material. As shown in Figure 5.7, in the intermediate switching regime the stationary

distribution P st
M does not exhibit a clearly defined peak as in the fast switching regime,

but rather it exhibits a wider distribution, with two peaks in some cases. When the

population size is low (see first row of Figure 5.7), the distribution gets wider compared

to the limiting cases (slow and fast switching regimes), and exhibits two peaks only
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Figure 5.7: Simulation results of the stationary distribution P stM as function of M and τ , the
average time of one switching period. Parameters used: upper row, N = 30; middle row, N = 100;
lower row, N = 1000. Left column, m = 0.01; middle column m = 0.1; right column, m = 0.5.
We set λS→A = λA→S throughout. Numerical simulations were conducted by time-averaging a
long run until time t = 107, with a time t = 106 left to equilibrate.

when the mutation rate is low (see Figure 5.7 (a) for high values of τ ; this is the same

distribution shown in Figure 5.4 (b)). For higher population sizes (see second row),

the distribution makes a transition from a unimodal shape (fast switching regime) to

bimodal (slow switching regime) for all values of the mutation rate used in the figure.

In between (intermediate switching regime) the distribution is wider around its peak

until it bifurcates in two. This situation is also observed for higher population sizes

(see lower row), however, each of the two peaks become more narrow.
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Generator-matrix approach

We have shown that in the single environment case, we are able to successfully reduce

the combined dynamics of the number of mating types to an approximate one-step

birth-death process for the number of mating types, M (see Section 5.2.3). We have

further shown how this can be used to predict the population behaviour in the slow-

switching limit (where the system takes on the average behaviour of the two independent

environments, see Section 5.3.1), and in the fast-switching limit (where the system

behaves as if it were in a single, effective environment, see Section 5.3.2). We now seek

to extend this approach to the intermediate regime.

We begin by supposing that the dynamics of the full model (which involves transi-

tions in the mating type abundances, n) can be approximated as a coupled birth-death

process in M and σ. The master equation for this process takes the general form

dP (t)
dt = P (t)Q, (5.22)

where the entries of the row vector P (t) are the probabilities of finding the system at

a certain state (M,σ) at time t. It is convenient to arrange the states such that this

vector takes the form

P = (P1,S, . . . , PM,S, . . . , PN,S︸ ︷︷ ︸
state σ = S

, P1,A, . . . , PM,A, . . . , PN,A︸ ︷︷ ︸
state σ = A

), (5.23)

so the first half of entries correspond to states (M,σ = S), and the second one to

states (M,σ = A). In both environments we have 1 ≤ M ≤ N , with the bounds

corresponding to the extreme cases of the whole population being of the same type

(M = 1), or each individual of a different type (M = N). The matrix Q is of size

2N × 2N , and it is convenient to write it in the following block structure,

Q =

Q(S,S) Q(S,A)

Q(A,S) Q(A,A)

 . (5.24)

The N ×N blocks Q(S,A) and Q(A,S) describe transitions between the environmental

states. Given that the model does not include events in which both the environmental

state and the number of mating types changes at the same time, these blocks are

diagonal in M . We have Q(S,A)
M,M ′ = λS→AδM,M ′ and similarly Q(A,S)

M,M ′ = λA→SδM,M ′ . We

must now find an approximation for the transitions within each environment, Q(S,S)
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and Q(A,A). Ultimately there are no correct choices for these matrices as they are

simply approximations of the full model. Below we follow one particular approach,

while alternatives are discussed in Section 5.3.3.

We begin by assuming that on transitioning to the sexual environment, the system

rapidly relaxes to quasi-stationary state in which the dynamics of mating-type number

are well-approximated by the transition rates in the sexual environment at equilibrium

(see Section 5.2.3). Thus Q(S,S) is tri-diagonal (only involving transitions that increase

or decrease the number of mating types by one) with entries

Q
(S,S)
M,M+1 = T+

M |S,

Q
(S,S)
M,M = −T+

M |S − T
−
M |A − λS→A,

Q
(S,S)
M,M−1 = T−M |S. (5.25)

We can proceed analogously to construct the matrix Q(A,A) in the asexual environment.

Next, we calculate the stationary distribution P st for this approximate system, by

setting the right hand side of Eq. (5.22) to zero,

P stQ = 0. (5.26)

The solution has to be normalised appropriately, i.e, we must impose ∑M,σ P
st
M,σ = 1.

The marginal distribution for the number of mating types is obtained as P st
M =∑

σ∈{A,S} P
st
M,σ. The block structure of Q reduces the complexity of the problem, and,

as a consequence, the stationary state can be obtained numerically relatively easily.

Compared to numerical simulations, the theoretical approach presented here brings a

considerable simplification for estimating the stationary distribution P st
M . For the cases

shown in Figure 5.7, simulations quickly become costly as both N and the switching

rates increase, because more events occur per unit time. This is not a major obstacle,

however, when solving Eq. (5.26). The matrix structure of Q allows a fast numerical

computation of P st even for large values of N . In cases in which the distributions P st
M,σ

fall off quickly with M one can truncate the range of M to values much smaller than

N , additionally accelerating the analysis.

We now proceed to define more precisely when exactly we expect this approach to

work. We know that the key assumption is that the system has sufficient time in each

environment to relax to the quasi-stationary distribution obtained in that environment
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when switching is absent. This assumption is required so that that we can approximate

the rates T±M,σ by T±M |σ (a comparison to the case in which numerically-determined rates

T±M,σ are used in the generator matrix is presented in Section 5.7.5 of the Supplementary

Material).

In the sexual environment, this assumption is valid across a large parameter range

(strong selection for even mating type frequencies very rapidly brings the system to

a quasi-stationary distribution around one of the system’s fixed points). However in

the asexual environment, relaxation to the stationary distribution takes far longer

(this relaxation is driven entirely by genetic drift, which operates on a much slower

timescale). Thus the requirement that this relaxation time is less than the typical time

spent in the asexual environment provides the key restriction for the parameter range

over which we expect the generator-matrix approximation to work. Assuming that the

system in the sexual environment reaches M (S)
o mating types before transitioning to

the asexual environment, we now calculate the mean time taken for the system to relax

from M (S)
o to M (A)

o mating types in the asexual environment, where M (S)
o and M (A)

o

are the mode number of mating types in the fixed sexual and asexual environments,

respectively. Using the results of [40] for a neutral multi-allelic Moran model, we find

that the condition that the system spends sufficient time in the asexual environment is

given by

τA � τr
(
M (S)

o ,M (A)
o

)
, (5.27)

where

τr (M ′,M) = −N
M ′−1∑

s=M ′−M
(−1)s−M ′+M

(
s− 1

M ′ −M − 1

)(
M ′

s

)
s

M ′ log
(
s

M ′

)
(5.28)

is the mean time taken for the system to transition from a state with M ′ to M mating

types in the asexual environment. Therefore, if the condition (5.27) is fulfilled, we

expect that the system will have sufficient time to relax in the asexual environment to

its quasi-stationary distribution for which T±M |A are accurate approximations for T±M,A.

In Figure 5.8, we show the predictions obtained using this approach for the same

parameters as in Figure 5.7 (middle row). The parameters used are within in the

range in which the generator-matrix approach is in good agreement with numerical

simulations (see Eq. (5.27)). We note that this does not require very slow environmental

switching per se; if the modes M (S)
o and M (A)

o are sufficiently close, then intermediate
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Increasing mutation rate m
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Figure 5.8: Theoretical prediction of P stM obtained as the solution of Eq. (5.26), i.e., the null
space of matrix QT . Parameters used are the same as in the second row of Figure 5.7.

switching rates allow the system to relax to the quasi-stationary distribution in the

asexual environment. In fact, for the parameters used in Figure 5.8 the mean time τr is

about ten times lower than τA for intermediate switching regimes. Thus if mg is large

(such that M (A)
o is large) or N low (such that M (S)

o is low) we can still expect to see a

good agreement between the generator-matrix approach and theory (see Figure 5.9).

In biological terms we can therefore view the generator-matrix approach as being most

useful when considering small populations, with migration (large mg) taking place

between spatially segregated patches.

In Section 5.8.1 of the Supplementary Material we show in more detail how the

distribution P st
M obtained from the generator-matrix approach compares against nu-

merical simulations for different values of mg and pS. We illustrate in Section 5.8.2

how P st
M,σ obtained from this approach behaves as function of pS for both σ = S and

σ = A. We also show that one can derive closed-form solutions of the stationary

distributions P st
M,σ in terms of rates T±M |σ in the limits of slow and fast environmental

dynamics (Section 5.8.4). In the slow-switching limit we obtain the result presented in

Eq. (5.16). In this limit the system spends a long time in each environmental state,

and thus, using the rates T±M |σ in the reduced model is a good approximation. For the

fast-switching limit, however, this approximation is no longer valid; the system has

insufficient time to relax to the quasi-stationary distribution in the asexual environment

under which T±M |A are accurate approximations for the transition rates, and so the

theoretical prediction of P st
M differs from the result presented in Section 5.3.2. Thus

the generator-matrix approach can be understood as providing an approximation for
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the regime of slow-to-intermediate switching that improves on the slow-switching limit

in Section 5.3.1.
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Figure 5.9: Mode of stationary distribution of the number of mating types, P st
M , as function

of mg for pS = 0.5 and population size: (a) N = 100 and (b) N = 1000. The prediction
of the fast-switching limit in the full model is the approximation in Section 5.3.2, whilst the
prediction of the generator-matrix approach in the fast-switching limit is described in Section 5.8.4
of the Supplementary Material. The predictions of single environments with pS = 0 and pS = 1
correspond to the non-switching cases in Section 5.7.

Alternatives to the generator-matrix approach

We have seen in Section 5.3.3 that while we can obtain a good approximation for

the dynamics in the sexual environment in the environmental switching model, the

approximation of the dynamics in the asexual environment is more challenging. This

is perhaps surprising as in the asexual environment the dynamics of mating type

frequencies are essentially given by a multi-allelic neutral Moran model, for which a

wealth of well-established analytic results are available [40]. In this section we discuss

two alternatives to the generator-matrix approach that leverage these results and

demonstrate how, although initially plausible, each leads to their own set of issues.

First, we consider utilising standard results for the mean extinction time of a neutral

allele. Assuming that on leaving the sexual environment with M ′ mating types the

frequency of each mating type is evenly distributed as ni ≈ N/M ′ (valid when N is

large), the mean time to transition fromM ′ toM mating types is given by Eq. (5.28) in
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the absence of mutation. Given an initial number of mating typesM ′, the mean time to

subsequently transition from M to M − 1 is then given by τr(M ′,M − 1)− τr(M ′,M).

While this expression clearly features a dependence on the initial number of mating

types in the asexual environment, M ′, we find that this dependence is weak and in

fact drops out in the limit of large M ′. Assuming then that mg is small, such that

the probability that the probability of transitioning from M to M + 1 in the asexual

environment is negligible, we can approximate the birth-death transitions in the asexual

environment as

T+
M |A ≈ 0,

T−M |A ≈
1

τr(M ′,M − 1)− τr(M ′,M)

∣∣∣∣∣
M ′→∞

. (5.29)

Here we have approximated the effective extinction rate of mating types, T−M |A, by

inverse of the mean time to transition from M to M − 1.

While this may at first seem entirely reasonable, we find in fact that this model

largely underestimates the number of mating types seen in the full model. The

central problem is that while the mean transition time implied by Eq. (5.29) does

indeed approximate the mean transition time in the full model, the full distribution of

transition times is poorly predicted. Equation (5.29) assumes that the waiting time for

a transition from M to M − 1 is exponentially distributed, with a non-zero probability

of transitioning after a very small time in the asexual environment. However, the real

distribution of transition times is peaked at a particular time, with transitions at very

small times being impossible (it takes a minimum of N/M ′ reproductive events to drive

a mating type extinct). In this way the approach suggested in Eq. (5.29) allows more

frequent extinctions than actually observed, and thus a lower number of mating types

in the stationary distribution than we see in simulations.

A second approach is to ignore the distinct asexual environment entirely, but to

instead allow arbitrary transitions from a state M ′ to all states M < M ′. Again,

we assume that mg is small, and ignore the possibility of an increase in the number

of mating types in the asexual environment. In the sexual environment, we have

contributions to the probability that the number of mating types increases or decreases

by one, as in Section 5.3.3. When the system enters the asexual environment, we now

ask what is the probability of transitioning from M ′ →M before the system reverts to
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the sexual environment. In this way we can circumvent any direct modelling of the

asexual environment while slightly increasing the complexity of the single-environment

model by adding non-local transitions.

While the above approach may at first seem analytically challenging, progress is

in fact possible. In [40], an expression was developed for the probability that exactly

M alleles remain in a population at some time t. All we need to do is integrate

this function over the probability of transitioning from the asexual to the sexual

environment at time t (i.e., the exponential distribution with parameter λA→S). We

find then that accounting for the asexual environment yields the following contribution

to the probability per unit time of transitioning from M to M ′:

λS→AΦ(M ′,M) , (5.30)

with

Φ(M ′,M) =
M ′−M∑
s=1

(−1)M ′−M−s
(

M ′ − s
M ′ −M − s

)(
M ′

s

)
F
(
s

M ′

)
,

where

F
(
s

M ′

)
= s

M ′ −
1
2

∞∑
l=0

{
(−1)l

[
Pl

(
1− 2 s

M ′

)
−

Pl+2

(
1− 2 s

M ′

)] 2NλA→S
2(1 +NλA→S) + l(3 + l)

}
(5.31)

and Pl (y) are Legendre polynomials.

The above technique provides an analytically elegant alternative to the generator-

matrix approach. Unfortunately, it turns out to be numerically impractical. Equa-

tion (5.31) involves the infinite sum over Legendre polynomials, and the slow convergence

of these terms is a known numerical issue [41]. Convergence is especially problematic

when NλA→S is large, a range (large population size) that is particularly interesting

biologically. Therefore while this second approach has the best potential for providing

an analytic approximation to the number of mating types at intermediate regimes,

its ultimate success relies on an improved analytic or numerical method for tackling

Eq. (5.31), which lies outside the scope of this paper.

Since we are unable to fully analysing the intermediate switching regime, it is hard

to exactly define when the system is found in this limit. We cannot determine, for

example, for which parameters the mode bifurcates in two as observed in Fig. 5.7, or
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which of both modes has a higher probability. The difficulty of analysing this regime

in comparison to the slow and fast switching regimes relies on the absence of any

approximation in which we can base our calculations. This means that in order to

study the stationary distribution of the number of mating types we need to take into

account every aspect of the system.
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Figure 5.10: Mode of stationary distribution of the number of mating types, P st
M , as function of

the probability of being in a sexual environment, pS , for parameters N = 104 and mg = 10−3.
The prediction of the fast-switching regime is based upon the results studied in Section 5.3.2.
For longer residency times in the sexual environment (i.e., longer τS), simulations of the full
model (dashed lines) demonstrate a lower number of mating types, in qualitative agreement with
the results of Section 5.3.3. Discrepancy between the fast-switching limit and the simulations
increases as pS increases, when the system enters the intermediate switching regime. As pS
approaches zero, the system enters the slow-intermediate regime described by the generator-matrix
approach (see Eq. (5.27)), in which only one mating type can be maintained.

Regime of small mg and large N

Having developed approximations for the intermediate regime when mg is large and N

is small, we here investigate the range and extent of the intermediate switching regime

when mg is small and N is large, reflecting a more panmictic population in which mg

can readily be interpreted as a mutation rate. In Figure 5.10 we plot the mode number

of mating types in the stationary distribution as a function of the probability of being

in a sexual environment, pS, for varying mean residency times in the sexual state,

τS. We see that for pS ≈ 1 (almost obligate sex) the number of mating types is well

described by the fast-switching theory of Section 5.3.2. However as pS is lowered, we

begin to see departures from this theory, with the number of mating types consistently

lower than that predicted by the fast-switching limit. These departures are ever more

extreme as the time spent in the sexual environment (and consequently for fixed pS,

210



5.3. Stationary distribution for the number of mating types under environmental
switching

also the time spent in the asexual environment) increases. We can therefore see that

fast-switching theory very much represents an upper-bound on the mode number of

mating types expected for a general set of parameters.
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Figure 5.11: Mode of stationary distribution of the number of mating types, P st
M , as function

of the population size N for mg = 10−3 for different values of pS and τS . The fast-switching
prediction is based upon the results studied in Section 5.3.2, whilst the generator-matrix approach
upon the prediction of the framework presented in Section 5.3.3. Simulations were run up to time
t = 108, with measurements starting t = 103 to ensure stationarity.

While it is computationally impractical to investigate population sizes much larger

than N = 104, or mutation rates much lower than 10−3 (as in Figure 5.10), we are

nevertheless interested in what general patterns we might expect to see as we go beyond

this regime. In Figure 5.11 we investigate how the mode number of mating types varies

with population size. Broadly our results fit our intuition developed thus far; when

the time spent in the asexual environment is very short (see panel (b)) the system

is well-approximated by the fast switching theory, while when the time spent in the

asexual environment is very long (see panel (c)) the generator-matrix approach works

well (in fact, τr in Eq. (5.28) is less than one percent of τA for all the values of N shown

in panel (c)). Meanwhile at intermediate switching regimes we see that the magnitude

of departure from the fast-switching theory increases as time spent in the asexual

environment increases (see panels (a) and (d)). However we also see now that as N

increases, the simulation results for intermediate switching rates begin to approach

the fast-switching limit. In the context of Eq. (5.28), this is perhaps unsurprising; the
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timescale on which extinctions occur in the asexual environment is linearly dependent

on N , and so, as this population size increases, the range of switching rates that can

still be considered fast also increases.

5.4 Selective sweeps in the switching environmen-

tal model

In the previous section we demonstrated that explicitly accounting for switching

environments led to both quantitative and qualitative changes in the model predictions.

In this section we will show how this change in modelling formalism allows us to tackle

a richer array of biological questions, without necessarily sacrificing tractability.

Suppose that mutations arise in the population at loci unlinked to the mating

type locus at an average rate µ. We will further suppose that the mutant allele is

under directional (frequency independent) selection, such that individuals carrying the

mutation have a selective advantage s over individuals carrying the resident allele. If

s < 0, the mutation will be selected against and will be rapidly lost from the population.

If s > 0 the mutation will be selected for and (in the absence of stochastic extinction

effects) will sweep to fixation. However the focus of interest for this study is the

frequency of the mating type alleles. The impact of this selective sweep will have very

different effects on the mating type frequencies depending on the environment, sexual

or asexual, in which it occurs.

If this mutation arises while the system is in the sexual environment, it quickly

spreads to all the present mating types via genetic recombination and has no effect on

the number of mating types M . For instance, say that mutation occurs in an individual

of mating type 1. While that individual experiences a selective advantage s, upon

sexual reproduction with a non-self mating type (say of mating type 2) the beneficial

mutation will have the opportunity to spread to another mating type class. Thus the

beneficial mutation will rapidly spread through the mating type populations without

appreciably distorting their frequencies.

Conversely, if this mutation arises while the system is in the asexual environment,

it is confined to the mating type on which it occurs (genetic recombination is absent)

and will cause large distortions in the mating type frequencies. Denoting by y the
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Figure 5.12: Illustration of the dynamics of mating type frequencies xi = ni/N when selective
sweeps are accounted for. In the sexual environment (0 < t < 500) mating type frequencies are
held at approximately equal values by negative frequency dependent selection. Beneficial mutations
at unlinked loci spread to each mating type subpopulation through recombination, and thus do
not affect this even mating type distribution. In the asexual environment (500 < t < 1500), in
the absence of beneficial mutations (500 < t < 1000) mating type frequencies fluctuate due
to genetic drift alone. However when beneficial mutations occur (t = 1000), the mating type
background on which they arise can hitchhike to fixation, reducing the number of mating types
to one. Data is obtained from Gillespie simulation with N = 5× 104 and s = 0.02.

frequency of individuals carrying the beneficial mutation, their dynamics in the large

N limit will be given by

dy
dt = sy(1− y) =⇒ y(t) = 1

1 + e−st(N − 1) . (5.32)

Let us suppose again that the beneficial mutation occurs in an individual of mating

type 1. Then, assuming that initially the mating types were in approximately equal

abundances, the dynamics for the mating type frequencies xi is given by

x1(t) = y(t) + 1
M

(1− y(t)) , (5.33)

xi(t) = 1
M

(1− y(t)) , ∀ i ≥ 2 . (5.34)

These dynamics are illustrated in Figure 5.12. We see that as the mutation sweeps

through the population, the total number of individuals of mating types i ≥ 2 decreases,

and thus, stochastic extinctions of these mating type classes become more likely. Over

only slightly longer timescales, fixation of a single mating type is all but guaranteed,

with the mean time until the fixation of a single mutant given approximately by

2 log(N)/s in large populations. We now leverage the results of the previous section to

provide a more simple approach using the reduced model. We explain this below.
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In addition to the effective birth-death and switching environment processes previ-

ously present in the generator-matrix approach, we now consider the possibility that

the system transitions to a state of one single mating type at constant rate ν when in

the asexual environment. The rate ν can thus be understood as a compound parameter

that captures the average rate at which a beneficial mutation occurs in an asexual

environment µ(1− pS) and has sufficient time to sweep a single mating type to fixation.

this occurs with probability
∫∞
t=2 log(N)/s(1/τA) exp(−t/τA) dt, and we therefore have

ν = µ(1− pS)N−2/(sτA) , (5.35)

where 2 log(N)/s is the conditional mean fixation time for a single mutant to fixate

in large populations. We consider the rates T±M |σ as before, first assuming a fixed

environment. For environment σ = A then, we have

M
T+
M|A−−−→M + 1, M

T−
M|A−−−→M − 1 and M

ν−→ 1, (5.36)

while for σ = S

M
T+
M|S−−−→M + 1, and M

T−
M|S−−−→M − 1.

The switching environment transitions are as in the previous sections (i.e., as in

Eq. (5.1)). The stationary distribution P st
M for this scenario can be estimated in a

similar way to the method presented in Section 5.3.3, by constructing the corresponding

generator matrix Q in which the selective sweeps process M ν−→ 1 is included (see

Section 5.9.1 of the Supplementary Material for details). Figure 5.13 shows the theo-

retical prediction of P st
M obtained from this approach for both switching environments,

considering an equal fraction of time spent in each environment (i.e., pS = 1/2).

The inclusion of selective sweeps brings interesting features in both switching

regimes. For the slow-switching case (see upper row of Figure 5.13), we observe that

the distribution still remains bimodal but with a considerably higher peak at M = 1.

As ν increases, the distribution at both modes remains constant. On the other hand,

for the fast-switching regime (see lower row of Figure 5.13), as ν increases the mode

transitions from a value M > 1 to M = 1. In both regimes, the emergence of the peak

at M = 1 occurs when ν crosses certain point determined by how high the mutation

rate mg is. As mg increases, this point will naturally be higher.

The approach employed here to predict P st
M is an approximation as it makes use

of rates T±M |σ that assume a fixed environment. We compare it against numerical
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Figure 5.13: Theoretical prediction of P st
M as function of M and ν for different values of m

in slow and fast switching environments. Population size N = 50. From left to right panels:
mg = 0.5, 5, 5.

simulations in Section 5.9.1 in the Supplementary Material. We also explore the case

of selective sweeps in a fixed asexual environment in Section 5.9.2. Our theoretical

predictions capture the main effects on the distribution of the number of mating types

when selective sweeps are included.

In the presence of selective sweeps we can then see the following biological picture

emerge. In order for the populations to maintain more than a single (essentially

non-functional) mating type, one of two scenarios must hold. In the first scenario we

see mg � ν. In this case the rate of supply of new mating types (governed by mg) far

exceeds the extinction rate generated by selective sweeps (governed by ν). This would

be appropriate if we were to consider mg as representing a migration rate between

geographically structured subpopulations. In the second scenario we see s−1 > τA. In

this case while selective sweeps can initiate in the asexual environment, switching is

sufficiently fast that the sweeps cannot complete.
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5.5 Conclusions

For reasons on tractability, most studies considering evolution in facultatively sexual

populations focus on asynchronous sex, in which individuals probabilistically engage

in sexual reproduction [29]. This is also true for models that have tried to capture

the evolution of mating type number under demographic stochasticity [24, 25, 30]. In

this paper we have released this restriction to consider the dynamics of the number of

mating types under demographic stochasticity in populations that switch synchronously

between asexual and sexual environments. In a course grained sense our model

recapitulates previous theoretical and empirical observations that the number of mating

types should be positively correlated with increasing amounts of sexual relative to

asexual reproduction. However we have shown that the additional consideration of

sexual synchrony generates both quantitative and qualitative differences from the

asynchronous model, as well as offering scope for asking a richer array of biologically

interesting questions.

With respect to quantitative differences between the asynchronous and synchronous

models, we have shown the two models are only equivalent in the limit of fast switching

between environments. However as switching becomes slower (and in particular as the

amount of time in the asexual environment becomes longer) mating type extinctions

become more likely in the synchronous model, lowering the expected number of mating

types in the stationary distribution. For instance, in Figure 5.10 with a probability

of pS = 1/2 of being in the sexual environment, we see a reduction of more than 10

mating types when the time spent in the sexual environment is large (τS = 100) relative

to the asynchronous (fast-switching) theory. This reduction may explain previous

overestimates in the expected number of mating types when compared with previous

studies where asynchronous sexual reproduction was assumed [24, 25]. In fact the

mode number of mating types can drop to just one type over a range of biologically

relevant parameters.

Qualitative differences between the asynchronous and synchronous models are most

apparent in small populations. In this scenario the parameter mg can be interpreted

as a per-generation migration rate (with mating types coming from a highly diverse

pool), which we expect biologically to be much higher than a mutation rate. When
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switching is fast, we see as before that the model tends to the limit of asynchronous

switching. However, when switching is slow, a bimodal prediction for the number

of mating types is possible. Here the population spends enough time in the asexual

and sexual environments that the stationary distribution approaches a superposition

of those in the fixed environments; just a single mating type is maintained in the

sexual environment, while in the sexual environment ingressing mating types rapidly

establish. We emphasise that this behaviour is not possible in the asynchronous model.

While local absences of particular mating types are common in samples of fungi (e.g.

Coccidioides [42]) and ciliates (e.g. Tetrahymena pyriformis [43]), obtaining empirical

distributions of the number of mating types across geographic locations is hindered

by low sample sizes. However our analysis agrees qualitatively with the observation

that the presence of more than one mating type is indicative of more recent sexual

activity [44]. Meanwhile observations of all mating types present across geographic

regions (as for instance in Dictyostelium discoideum [45]) is consistent not only with the

observation of relatively high rates of sexual reproduction, but also of a fast switching

rate between asexual and sexual reproductive modes.

From a modelling perspective, by allowing for synchronous sexual reproduction

we have also been able to tackle the issue of selective sweeps. In [30] it was shown

that selective differences between mating types (induced, for instance, by non-neutral

mutations at loci linked to the mating type locus) could rapidly reduce the number

of types observed. As the model was deterministic and assumed asynchronous sexual

reproduction, it could not quantify how selective sweeps (caused by beneficial mutations

at loci unlinked to the mating type locus) might affect the number of types observed

in isogamous species. Experimentally however, such sweeps have been shown to

be strong drivers of mating type extinctions in facultatively sexual species such as

Chlamydomonas [31] and Tetrahymena [46]. Accounting for this effect mathematically,

we have been able to show that although this effect decreases rapidly with increasing

population size, a substantial extinction risk is present when the product of the strength

of beneficial mutations and the average time spent in the asexual environment is greater

than one (sτA > 1). We stress, however, that in dealing with selective sweeps we

have made some approximations, such as including the effect of selective sweeps as

an additional reaction to a switching environment scheme, with this latter employing
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transition rates assuming a fixed environment. An exact approach would be to analyse

a switching environment system with selective sweeps altogether. This brings, however,

considerable difficulties for analytical study and is beyond the scope of this paper.

By accounting for demographic stochasticity, synchronous sex, and selective sweeps,

our model suggests that the persistence of self-incompatible mating types in facultatively

sexual populations may be even more precarious than previously believed [39]. In fact,

a range of biologically plausible parameters suggest that just a single (functionally

asexual) mating type is most probable at long times. Empirical phylogenies of isogamous

species such as within fungi [47] and ciliates [48] show that such scenarios are relatively

common. And yet despite this, species with distinct mating types have remained stable

over long evolutionary periods, with highly conserved mating type loci [49]. In light

of this it is possible to reframe the evolutionary question away from asking “Why do

most isogamous species have just two mating types?” and towards “How do so many

facultatively sexual species maintain even two in the face of genetic drift and selective

sweeps?”. Our bimodal results for small population sizes with an effective migration

rate point to a possible solution, suggesting a role for spatial structure. If sex is not

synchronised in time across a whole population, but rather synchronised across a finite

set of spatial regions, mating type diversity may be maintained. However, further work,

perhaps involving metapopulation models [50], would be needed to fully uncover how

geographic population structure might affect the evolution of mating type number.

More broadly, our results also point to some important considerations in the general

literature on the evolution of sexual reproduction. While the facultative nature of

sexual reproduction in models that assume asynchronous sex is captured by just a single

parameter (the probability of a sexual rather than asexual event), models of synchronous

sex require the specification of two parameters (the mean time spent in sexual and

asexual environments). For species in which sexual reproductive phases are induced in

a seasonal or regular manner (such as Tetrahymena [51]), these parameters may be

relatively straightforward to estimate. However for species in which sexual reproduction

is irregular or very rare, such as (Chlamydomonas [52] or Saccharomyces [53]) estimating

these parameters independently may pose a far greater challenge. Here ‘rates of sexual

reproduction’ are often estimated using genomic methods that can be used to infer

the long-time average number of sexual to asexual reproductive events (equivalent to
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pS in our model), but the of duration time spent in each state is left unspecified [53,

54]. While difficult to obtain, we suggest that obtaining estimates of these parameters

is a worthwhile endeavour, as we have shown specifying their precise values can have

important evolutionary consequences.

One example, with a direct relation to the current study, is the evolution of ‘mating

type switching’, the ability of individuals to change their expressed mating type between

asexual reproductive events. This has been previously explored using simulations of

populations with synchronous sexual reproduction [23], with the number of asexual

generations between single sexual generations varied. It was found that mating-type

switching was more likely to evolve as the number of concurrent asexual generations

increased (which distorted the relative frequencies of non-switching mating types

through drift, and placed them at a selective disadvantage). While we also see strong

distortions in mating type frequencies here when periods of asexual reproduction are

long (large τA), it should be noted that we also observe distorted frequencies when the

probability of being in the sexual environment is very small (pS = τS/(τS + τA)). Thus,

long periods of asexual reproduction may not be needed for the evolution of mating

type switching.

A second example is the enigma of the evolution of sexual reproduction and genetic

recombination itself [55]. It has been suggested that facultative sex provides the best of

both worlds [56], engendering species with the benefits of sexual reproduction (increased

genetic diversity and evolvability [57]) while minimising the costs (for instance finding a

suitable mate or the ubiquitous the costs of recombination [58]). In this sense it has been

further suggested that in maximising the possibilities of finding a mate, synchronous

sexual reproduction may be better still [29]. However, as we have shown, asynchronous

sex can lead to its own costs at the population level in terms of an increased extinction

probability of partners with which to mate. Thus, in the absence of a mechanism

to provide assured sexual reproductive opportunities in later generations (such as

mating type switching), some level of asynchronous sex may in fact be beneficial for

maintaining the diversity of compatible partners at the population level.

In evolutionary modelling there is always a natural tension between analytic tractabil-

ity and biological realism. The optimal point between these two extremes is ultimately

subjective, however, an increased level of biological realism is arguably warranted if
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it: (i) generates qualitative differences; (ii) generates quantitative differences or (iii)

allows the exploration of more interesting biological questions. Under these metrics,

we have shown that accounting for the synchrony of sex is an important modelling

consideration for investigating the evolutionary dynamics of the number of mating

types in finite populations. We have demonstrated that while analytic results can be

derived in a relatively straightforward manner in the fast and slow switching regimes,

intermediate switching rates pose more of an analytic challenge. While improvements

on the slow-switching approximation through the generator-matrix approach are pos-

sible under certain conditions, a more generally applicable approximation is difficult

to obtain. This is, as we have discussed, despite the relative simplicity of the neutral

dynamics in the asexual environment. Developing further analytic methods for dealing

with systems featuring both demographic stochasticity and switching environments

presents an interesting mathematical challenge, but also one that is ultimately required

for a full understanding evolution in facultatively sexual species. It is our hope that in

the coming years this challenge will be taken up to yield new evolutionary insight on a

host of problems involving facultative sex.

5.6 Appendix A: Effective rates T−M |σ and T+
M |σ as

function of P st
n|σ

In this section, we provide details for the first step of the calculation of the rates T−M |σ
and T−M |σ in the reduced model. These are defined in the main paper. Throughout the

calculation we assume that the environmental state is fixed in time. This means that

the birth and death rates in the full model do not vary with the environment. The

result of this section is expressed in terms of the stationary distribution of states n of

the full model, P st
n|σ. Further evaluation then follows in the subsequent section of this

Supplementary Material.

To derive results for the effective rates in the reduced model we start from the

transition rates from the full model. The rates for birth-death events are given by

T Sij = 1
2
ninj
N2 (N − ni) ,

T Aij = ninj
N

(5.37)
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in the two environmental states (S and A). This describes rate of events in which one

individual of mating type i reproduces and an individual of type j is removed, i.e.,

events in which ni → ni + 1 and nj → nj − 1.

Mutation events occur with rates

T mj = mg
nj
N
, (5.38)

independent of the state of the environment.

We carry out the calculation at a more general level than needed for the system

with two environmental states. Following [24], we allow for an arbitrary rate of sexual

reproduction, 0 ≤ pS ≤ 1, and use

T pSij =
[
(1− pS)ni

N
+ pS

2
ni
N

(
N − ni
N

)]
nj, (5.39)

instead of the rates given in Eq. (5.37). We note that time is measured in units of

generations in our model, so that the transition rates T pSij carry an extra factor N in

comparison to [24].

The specific cases of fully sexual or fully asexual reproduction (σ = S,A) can be

obtained by setting pS = 1 or pS = 0 respectively. We then recover the transition

matrices defined in Eqs. (5.2) and (5.3) of the main paper as

T pS=1
ij = T Sij and T pS=0

ij = T Aij . (5.40)

We write T−M |pS and T+
M |pS for the effective rates of the reduced model, when the

full model is such that birth-death events occur with the rates given in Eq. (5.37). Our

aim is to calculate the T±M |pS , when pS is fixed in time in the full model.

5.6.1 Calculation of the effective rate T−M |pS

For small ∆t, the quantity ∆t T−M |pS can be obtained from the probability that the

number of mating types decreases by one in the next ∆t units of time, given that there

are currently M mating types. More precisely,

P−M |pS(∆t) ≡ P ({M →M − 1}|M mating types in the population )

= ∆t T−M |pS +O(∆t2). (5.41)
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In this expression we have written {M →M − 1} for the event in which the number

of mating types reduces from M to M − 1 in the next ∆t units of time. We always

assume a fixed value of pS in the full model.

When M different mating types are present in the population, the system can be

found in any state n that has M non-zero entries. We write Cn for the event that

the population is in state n. Since the population size is fixed at N , the sum of the

entries of n is always N . The vectors n of this type are known ‘compositions’ (or

‘M−compositions’) of the integer N [33]. We write SM for the set of these compositions,

i.e., SM is the set of vectors n with precisely M non-zero entries, and with ∑i ni = N .

To ease the notation we introduce the following events (in the sense of probability

theory):

A = the event in which the number of mating types reduces from M to M − 1

in the next ∆t units of time.

BM = the event to find the population in a state with M mating types

Cn = the event to find the population in state n. (5.42)

In this notation, P−M |pS(∆t) = P (A|BM). We note that BM = ∪n∈SMCn, and that the

Cn are pairwise disjoint. The conditional probability in Eq. (5.41) can then be written

as

P−M |pS(∆t) =
∑

n∈SM
P (A ∩ Cn|BM)

=
∑

n∈SM

P (A ∩ Cn ∩BM)
P (BM) . (5.43)

Noting that Cn is a subset ofBM for n ∈ SM , we have P (A ∩ Cn ∩BM) = P (A ∩ Cn) =

P (A|Cn)P (Cn). Using this, we find

P−M |pS(∆t) =
∑

n∈SM
P (A|Cn) P (Cn)

P (BM) . (5.44)

This formula has a straightforward interpretation. We are interested in the probability

that the event A occurs (extinction of a mating type in the next ∆t), given that there

are currently M mating types in the population (condition BM ). If there are exactly M

mating types in the population, then the population is in state n ∈ SM with probability

P (Cn|BM) = P (Cn)/P (BM) (where we note Cn ⊂ BM). This is the second factor on
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the right-hand side of Eq. (5.44). The first factor, P (A|Cn), is the probability that A

occurs given that the population is in state n.

In the stationary state, the distribution P (Cn) is then given by the stationary

distribution of the full model for a fixed value of pS. Results for this distribution

were obtained by Constable and Kokko in [24] for general values of pS (pS maps to

the parameter c in [24] via c = 1 − pS). Using P (Cn) we can express P (BM) =∑
n∈SM P (Cn).

The rate T−M |pS is obtained from P−M |pS(∆t) as

T−M |pS = lim
∆t→0

P−M |pS(∆t)
∆t . (5.45)

The problem then reduces to calculating P (A|Cn), for n ∈ SM , i.e. the probability

that a mating type becomes extinct in the next time interval ∆t, if the composition of

the population is currently n.

As a first step, we find the overall rate with which nj → nj − 1 for a fixed j (and

always assuming fixed pS). This takes the form

∑
i 6=j
T pSij = nj

2N

[
(2− pS)(N − nj)−

pS
N

(
M∑
k=1

n2
k − n2

j

)]
. (5.46)

We write FpSM (n) for overall rate of the event in which any entry nj = 1 is reduced to

zero. Summing over j in Eq. (5.46) and taking into account only contributions with

nj = 1, this is obtained as

FpSM (n) = 1
2N

[
(2− pS)(N − 1) + pS

N

(
M∑
k=1

n2
k − 1

)] M∑
j=1

δnj ,1

 . (5.47)

In this expression δnj ,1 denotes the Kronecker delta, i.e. δn,1 = 1 if n = 1 and δn,1 = 0

otherwise. The sum ∑M
j=1 δnj ,1 is therefore the number of entries of n that are equal to

one. With this, we obtain

P (A|Cn) = FpSM (n)∆t. (5.48)

Putting everything together, we have

T−M |pS =

∑
n∈SM

FpSM (n)P st
n|pS∑

n∈SM
P st

n|pS
. (5.49)

We stress again that this is for a fixed sex rate pS in the full model. The result is exact

as long as we focus on long times (such that the population is in its stationary state).
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The denominator on the right-hand-side in Eq. (5.49) is the stationary distribution of

finding M mating types for a given pS, P st
M |pS .

The sums in Eq. (5.49) run over all M−compositions of N , n ∈ SM . Using

properties of sums over compositions it is possible to obtain a closed-form solution for

T−M |pS . We will describe this in detail below in Section 5.7.

5.6.2 Calculation of the effective rate T+
M |pS

To estimate T+
M |pS , we proceed in a similar way. We introduce

D = the event in which the number of mating types increases from M

to M + 1 in the next ∆t, (5.50)

and obtain

P+
M |pS(∆t) =

∑
n∈SM

P (D|Cn) P (Cn)
P (BM) . (5.51)

The probability P (D|Cn) can be derived from the rate T mj in Eq. (5.38). Assuming

a fixed value of pS, one gets

P (D|Cn) = ∆t
∑

j:nj>1
T mj

= ∆t mg

N

(
N −

M∑
i=1

δni,1

)
. (5.52)

The factor N −∑M
i=1 δni,1 on the right-hand side is the number of individuals in the

population for which there is at least one other individual in the population with

the same mating type (i.e, the sum excludes individuals who are ‘singletons’ in the

population). Only mutation events of such individuals lead to an increase of the number

of mating types. Introducing

GM(n) = mg

N

(
N −

M∑
i=1

δni,1

)
, (5.53)

we obtain

T+
M |pS =

∑
n∈SM

GM(n)P st
n|pS∑

n∈SM
P st

n|pS
. (5.54)

As for calculation of T−M |pS , it is now necessary to carry out the sum overM−compositions

of the integer N . We will describe in Section 5.7 how we do this.
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5.7 Appendix B: Closed-form solutions of T−M |pS, T
+
M |pS,

and P st
M |pS

In this section, we present closed-form solutions of rates T−M |pS , T
+
M |pS , and stationary

distribution P st
M |pS using the results derived in the previous section. The method we

use is based on the number theory of partitions of integer numbers [32, 33].

As a first step we expand the terms inside the sums in Eqs. (5.49) and (5.54). We

have

T−M |pS = 1
2N

[
(2− pS)(N − 1) + pS

N

] ∑
n∈SM

(
M∑
i=1

δni,1

)
P st

n|σ∑
n∈SM

P st
n|σ

− pS
2N2

∑
n∈SM

(
M∑
i=1

n2
i

)(
M∑
i=1

δni,1

)
P st

n|pS∑
n∈SM

P st
n|pS

, (5.55)

and

T+
M |pS = mg

N

N −
∑

n∈SM

(
M∑
i=1

δni,1

)
P st

n|pS∑
n∈SM

P st
n|σ

 . (5.56)

We notice that there are three sums involved:

S1 ≡
∑

n∈SM
P st

n|pS ,

S2 ≡
∑

n∈SM

(
M∑
i=1

δni,1

)
P st

n|pS ,

S3 ≡
∑

n∈SM

(
M∑
i=1

n2
i

)(
M∑
i=1

δni,1

)
P st

n|pS . (5.57)

Each of these depends on the value of pS. For pS = 0, it is not necessary to calculate

the last sum as the term including it in Eq. (5.55) vanishes. In what follows, we will

analyse the relevant sums for general values of pS. We do this first for the asexual

environment (pS = 0), and then for general 0 < pS ≤ 1.
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5.7.1 Asexual environment (pS = 0)

The stationary distribution of the full model for pS = 0 (σ = A) was obtained in [24]

as

P st
n|A = α×

M∏
k=1

1
nk
, (5.58)

where α represents a suitable normalisation constant. We write P st
n|A = P st

n|pS=0. This

constant plays no role in the evaluation of the expressions on the right-hand sides of

Eqs. (5.49) and (5.54), as P st
n|A appears in the numerator and in the denominator.

Calculation of S1 = ∑
n∈SM P

st
n|A

The sum S1 = ∑
n∈SM P

st
n|A takes the following form as a sum over compositions

S1 = α
∑

n1+···+nM=N
ni≥1

M∏
k=1

1
nk
. (5.59)

This sum has the form ∑
n1+···+nM=N, ni≥1

∏M
k=1 f(nk), with f(nk) = 1/nk. For sums of

this form there exists a closed-form solution. It is given by (see e.g. [59])

∑
n1+···+nM=N

ni≥1

M∏
k=1

f(nk) = 1
N !

dN

dxN

∣∣∣∣∣
x=0

∑
i≥1

f(i)xi
M , (5.60)

i.e., the sum is equal to the coefficient multiplying xN in the power-series expansion of(∑
i≥1 f(i)xi

)M
.

To simplify matters we introduce the generating function p(x) = ∑
i≥1 f(i)xi, where

the sum extends over all values of i for which the function f(i) is defined. In the

present case, f(i) = 1/i, and i can take arbitrarily large integer values. We find

p(x) = − log(1− x).

Using Cauchy’s integral formula [60] the coefficient multiplying xN in the expression

in Eq. (5.60) is given by
1
N !

dN

dxN

∣∣∣∣∣
x=0

p(x)M = 1
2πi

∮
γ

p(z)M
zN+1 dz, (5.61)

with γ an appropriate rectifiable curve around the origin. We find a solution to this

integral by virtue of the integral representation of the Stirling numbers [61]. One

obtains ∑
n1+···+nM=N

ni≥1

M∏
k=1

1
nk

= M !
N !

[
N

M

]
, (5.62)

where
[
N
M

]
is the unsigned Stirling number of the first kind [34].
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Calculation of S2 = ∑
n∈SM

(∑M
i=1 δni,1

)
P st

n|A

The sum ∑
n∈SM

(∑M
i=1 δni,1

)
P st

n|A becomes

S2 = α
∑

n1+···+nM=N
ni≥1

(
M∑
i=1

δni,1

)
M∏
k=1

1
nk
. (5.63)

Expanding the sum over the terms δni,1, we find

S2 =α
 ∑
n1+···+nM=N

ni≥1

δn1,1

M∏
k=1

1
nk

+
∑

n1+···+nM=N
ni≥1

δn2,1

M∏
k=1

1
nk

+ · · ·+
∑

n1+···+nM=N
ni≥1

δnM ,1
M∏
k=1

1
nk



=α
 ∑
n2+···+nM=N−1

ni≥1

M∏
k=2

1
nk

+
∑

n1+n3+···+nM=N−1
ni≥1

1
n1

M∏
k=3

1
nk

+ · · ·+
∑

n1+···+nM−1=N−1
ni≥1

M−1∏
k=1

1
nk



=αM
 ∑
n1+···+nM−1=N−1

ni≥1

M−1∏
k=1

1
nk

. (5.64)

In the first line, we have applied the Kronecker delta functions δni,1. In the second line,

we have relabelled the ni so that each term takes the same form.

The resulting sum over compositions in the last line of Eq. (5.64) is the same as

the one in Eq. (5.62), but with N and M replaced by N − 1 and M − 1, respectively.

Therefore, ∑
n1+···+nM=N

ni≥1

(
M∑
i=1

δni,1

)
M∏
k=1

1
nk

= M !
(N − 1)!

[
N − 1
M − 1

]
. (5.65)

Rates T−M |A and T+
M |A, and stationary distribution P st

M |A

Substituting these results into Eqs. (5.55) and (5.56), we find

T−M |A = (N − 1)

[
N−1
M−1

]
[
N
M

] , (5.66)

and

T+
M |A = mg(N − 1)

[
N−1
M

]
[
N
M

] . (5.67)

227



Chapter 5. Switching environments, synchronous sex, and the evolution of mating
types

We stress again that
[
N−1
M−1

]
and

[
N
M

]
are not binomial coefficients, but instead unsigned

Stirling numbers of the first kind.

Using the standard expression for the stationary distribution of two-species one-step

birth-death processes (see Eq. (5.13) from the main text]), and after further algebra,

we finally find

P st
M |A =

mM−1
g

(N − 1)!

[
N
M

]
(
mg+N−1

mg

) . (5.68)

5.7.2 Facultative sex (0 < pS < 1) and sexual environment

(pS = 1)

We now consider values of pS > 0. In this case the stationary distribution of the full

model is given by (see [24] for details)

P st
n|pS = α

M∏
k=1

1
nk (NpS − nk)!

, (5.69)

with

NpS = N

(
2− pS
pS

)
. (5.70)

In the case of purely sexual reproduction, NpS reduces to NpS=1 = N .

The constant α in Eq. (5.69) again ensures normalisation, and is not important for

the quantities we seek to calculate. The constant does not necessarily take the same

value as the analogous constant in the previous section.

Calculation of S1 = ∑
n∈SM P

st
n|pS

The sum ∑
n∈SM P

st
n|pS can be written as sum over compositions

∑
n∈SM

P st
n|pS = α

∑
n1+···+nM=N

ni≥1

M∏
k=1

1
nk(NpS − nk)!

. (5.71)

As with the asexual environment, this sum has the form ∑
n1+···+nM=N, ni≥1

∏M
k=1 f(nk),

where we now have f(nk) = 1/[nk(NpS − nk)!]. Therefore,

∑
n∈SM

P st
n|pS = α

1
N !

dN

dxN

∣∣∣∣∣
x=0

p(x)M (5.72)

with p(x) = ∑
i≥1 f(i)xi. The index i in the sum in p(x) extends up to the maximum

integer number for which f(i) is defined. In the present case this maximum value is
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given by bNpSc with b·c the floor function (bxc is the largest integer lower than or

equal to x). Thus p(x) is a a finite sum. Defining L = bNpSc, we have

p(x)M =
 L∑
i≥1

xi

i(NpS − i)!

M . (5.73)

Applying the multinomial theorem, i.e.,

(x1 + x2 + · · ·+ xm)n =
∑

k1≥0,...,km≥0
k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
m∏
i=1

xkii , (5.74)

the M -th power of the function p(x) becomes

p(x)M =
∑

k1≥0,...,kL≥0
k1+k2+···+kL=M

(
M

k1, k2, . . . , kL

)
L∏
i=1

(
x

i(NpS − i)!

)ki

=
∑

k1≥0,...,kL≥0
k1+k2+···+kL=M

(
M

k1, k2, . . . , kL

)
L∏
i=1

(
1

i(NpS − i)!

)ki
xk1+2k2+···+LkL , (5.75)

where the sum extends over all the partitions of M , i.e., to all the possible ways of

expressing M as a sum of non-positive integers (i.e., we allow them also to take zero

values). This means we allow the number of parts, i.e., the positive summands in a

partition, to vary in the sum evaluation.

Based on Eq. (5.72), we now need to extract the coefficient multiplying xN in the

expression in Eq. (5.75). We therefore need to identify all terms xk1+2k2+···+LkL in

Eq. (5.75) such that ki ≥ 0, k1 + 2k2 + · · · + LkL = N and k1 + · · · + kL = M . The

sequences k1, . . . , kL that satisfy these two conditions represent compositions of N

into M positive parts (i.e., with a fixed number M of summands) [35]. For fixed M ,

there can be no parts greater than N −M + 1, so necessarily kN−M+2 = · · · = kL = 0.

Therefore,

1
N !

dN

dxN

∣∣∣∣∣
x=0

p(x)M

=
∑

k1+k2+···+kN−M+1=M
k1+2k2+···+(N−M+1)kN−M+1=N

(
M

k1, k2, . . . , kN−M+1

)
N−M+1∏
i=1

(
1

i(NpS − i)!

)ki

= M !
N !

∑
k1+k2+···+kN−M+1=M

k1+2k2+···+(N−M+1)kN−M+1=N

(
N

k1, k2, . . . , kN−M+1

)
N−M+1∏
i=1

(
1

i(NpS − i)!

)ki

= M !
N !BN,M(x1, . . . , xN−M+1),
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where Bk,`(x1, . . . , xk−`+1) is the incomplete Bell polynomial [35] evaluated at xi =

(i − 1)!/(NpS − i)! for i ∈ {1, 2, . . . , k − ` + 1}. It is convenient to express xi in the

form

xi = (i− 1)!(NpS − 1)i−1x1, (5.76)

with (NpS − 1)i−1 the falling factorial of (NpS − 1) with respect to (i− 1). Next, we

use the following relation [35]

Bk,`(ax1, . . . , axk−`+1) = a`Bk,`(x1, . . . , xk−`+1). (5.77)

We arrive at

∑
n1+···+nM=N

ni≥1

M∏
k=1

1
nk(NpS − nk)!

= M !
N !(NpS − 1)!MBN,M(y1, . . . , yN−M+1), (5.78)

with yi = (i− 1)!(NpS − 1)i−1.

Calculation of S2 = ∑
n∈SM

(∑M
i=1 δni,1

)
P st

n|pS

To calculate ∑n∈SM
(∑M

i=1 δni,1
)
P st

n|pS , we proceed in the same way as we did for the

asexual environment (see Section 5.7.1). This sum has the form

S2 = α
∑

n1+···+nM=N
ni≥1

(
M∑
i=1

δni,1

)
M∏
k=1

1
nk(NpS − nk)!

. (5.79)

Expanding the sum over i this yields

∑
n1+···+nM=N

ni≥1

δn1,1

M∏
k=1

1
nk(NpS − nk)!

+ · · ·+
∑

n1+···+nM=N
ni≥1

δnM ,1
M∏
k=1

1
nk(NpS − nk)!

=
∑

n2+···+nM=N−1
ni≥1

1
(NpS − 1)!

M∏
k=2

1
nk(NpS − nk)!

+ · · ·+
∑

n1+···+nM−1=N−1
ni≥1

1
(NpS − 1)!

M−1∏
k=1

1
nk(NpS − nk)!

= M

(NpS − 1)!
∑

n1+···+nM−1=N−1
ni≥1

M−1∏
k=1

1
nk(NpS − nk)!

. (5.80)

As before, in the first equality we have applied the functions δni,1, while in the second

step, we have relabelled the terms ni so that each sum takes the same form. The
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resulting sum is nothing but Eq. (5.78) using N − 1 and M − 1 instead of N and M

(without affecting NpS), respectively. Therefore,∑
n1+···+nM=N

ni≥1

(
M∑
i=1

δni,1

)
M∏
k=1

1
nk(NpS − nk)!

=

M !
(N − 1)!(NpS − 1)!MBN−1,M−1(y1, . . . , yN−M+1), (5.81)

with yi = (i− 1)!(NpS − 1)i−1.

Calculation of S3 = ∑
n∈SM

(∑M
i=1 n

2
i

) (∑M
i=1 δni,1

)
P st

n|pS

This sum takes the form

S3 =
∑

n1+···+nM=N
ni≥1

(
M∑
i=1

δni,1

)
n2

1 + · · ·+ n2
M

n1(NpS − n1)! · · ·nM(NpS − nM)! . (5.82)

Expanding the sum over index i, and relabelling ni appropriately, yields

S3 = M

(NpS − 1)!

 ∑
n1+···+nM−1=N−1

ni≥1

M−1∏
k=1

1
nk(NpS − nk)!

+
∑

n1+···+nM−1=N−1
ni≥1

n2
1 + · · ·+ n2

M−1∏M−1
k=1 nk(NpS − nk)!

. (5.83)

The first sum inside the brackets is of the same form as the expression in Eq. (5.78),

but with N and M replaced by N − 1 and M − 1, respectively, without affecting NpS .

Therefore we have
∑

n1+···+nM−1=N−1
ni≥1

M−1∏
k=1

1
nk(NpS − nk)!

=

(M − 1)!
(N − 1)!(NpS − 1)!M−1BN−1,M−1(y1, . . . , yN−M+1). (5.84)

To calculate the second sum inside the brackets on the right-hand side of Eq. (5.83),

we note that by symmetry the M − 1 terms resulting when expanding the numerator

n2
1 + · · ·+ n2

M−1 are all equal after the sum over compositions is carried out. In other

words
∑

n1+···+nM−1=N−1
ni≥1

n2
1 + · · ·+ n2

M−1∏M−1
k=1 nk(NpS − nk)!

=

(M − 1)
∑

n1+···+nM−1=N−1
ni≥1

n1

(NpS − n1)!
1∏M−1

k=2 nk(NpS − nk)!
. (5.85)
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This leads to

∑
n1+···+nM−1=N−1

ni≥1

n2
1 + · · ·+ n2

M−1∏M−1
k=1 nk(NpS − nk)!

=

(M − 1)
N−M+1∑
n1=1

n1

(NpS − n1)!

 ∑
n2+···+nM−1=N−1−n1

ni≥1

1∏M−1
k=2 nk(NpS − nk)!

 . (5.86)

The sum over n1 ranges from the minimum to the maximum value n1 can take in the

compositions. The sum inside the brackets is of the same form as the expression in

Eq. (5.78) ,with N and M replaced by N − 1− n1 and M − 2, respectively, without

affecting NpS . We therefore have

∑
n1+···+nM−1=N−1

ni≥1

n2
1 + · · ·+ n2

M−1∏M−1
k=1 nk(NpS − nk)!

=

N−M+1∑
n1=1

n1

(NpS − n1)!
(M − 1)!

(N − 1− n1)!(NpS − 1)!M−2 ×BN−1−n1,M−2(y1, . . . , yN−n1−M+2),

(5.87)

with yi = (i− 1)!(NpS − 1)i−1.

Putting everything together, we finally arrive at

∑
n1+···+nM=N

ni≥1

(
M∑
i=1

δni,1

)
n2

1 + · · ·+ n2
M

n1(NpS − n1)! · · ·nM(NpS − nM)! =

M !
(NpS − 1)!M−1

 1
(N − 1)!(NpS − 1)!BN−1,M−1(y1, . . . , yN−M+1)+

N−M+1∑
n1=1

n1

(NpS − n1)!
1

(N − 1− n1)!BN−1−n1,M−2(y1, . . . , yN−n1−M+2)
, (5.88)

with yi = (i− 1)!(NpS − 1)i−1.

Rates T−M |pS and T+
M |pS , and stationary distribution P st

M |pS

Putting the different results together, we find for fixed rate of sexual reproduction

pS > 0:

T−M |pS =1
2(2− pS)(N − 1)BN−1,M−1(y1, . . . , yN−M+1)

BN,M(y1, . . . , yN−M+1) − pS
2N

(N − 1)!(NpS − 1)!
BN,M(y1, . . . , yN−M+1)

×
N−M+1∑
n1=1

n1

(NpS − n1)!
BN−1−n1,M−2(y1, . . . , yN−n1−M+2)

(N − 1− n1)! , (5.89)
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and

T+
M |pS = mg

(
1− BN−1,M−1(y1, . . . , yN−M+1)

BN,M(y1, . . . , yN−M+1)

)
. (5.90)

Recall we have Bk,` = Bk,`(y1, . . . , yk−`+1) with yi = (i− 1)!(NpS − 1)i−1. From these

rates we can construct the stationary distribution P st
M |pS using the standard formula

for birth-death processes (see Eq. (5.13)).

We recall from Section 5.3.2 in the main paper that the rates T−M |pS and T+
M |pS from

Eqs. (5.89) and (5.90) correspond to the rates in the fast switching limit, i.e., T−,fastM

and T−,slowM . As explained in there, in this limit the system behaves as if there was a

fixed environment with sex rate pS.

5.7.3 Alternative expressions of rates T−M |pS
and T+

M |pS
for cases

0 < pS ≤ 1

In Section 5.7.2 we derived analytical closed-form expressions of rates T−M |pS and T+
M |pS

for 0 < pS ≤ 1. The results are exact in the stationary state, but the evaluation of these

expressions may be computationally costly for large population sizes N . We therefore

proceed to derive equivalent expressions which are easier to evaluate numerically.

For that, we start from Eqs. (5.55) and (5.56) and express the sums over compositions

as standard non-partition sums, i.e., as sums of indexed numbers with defined lower

and upper bounds of summation. Denoting by P the number of entries higher than

1 of a given state n, we first express each sum over compositions in Eqs. (5.55) and

(5.56) as sums over P . The sum S1 (see Eq. (5.57)) can be written in the form

∑
n∈SM

P st
n|pS =

Pmax∑
P=0

SPM,pS
(N −M), (5.91)

with a suitable SPM,pS
(N −M) (see below), and where Pmax is the maximum number of

mating types with strictly more than one individual. For a given N and M this is

Pmax =



0 if N = M

N −M if N/2 ≤M < N

M if M < N/2.

(5.92)

Notice that when N = M then there will necessarily be exactly one individual of each

mating type, so Pmax = 0.
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The term SPM,pS
(N −M) in Eq. (6.67) represents the sum of P st

n|pS over compositions

with P elements higher than one for a given N and M , i.e.,

SPM,pS
≡

∑
n1+···+nM=N
|G|=P

G={ni>1:1≤i≤M}

P st
n|pS , (5.93)

This can be expressed as a recursive sum of the form

SPM,pS
(Q) = (NpS − 1)!

(
M − P + 1

P

)Q−P+2∑
kP=2

1
kP (NpS − kP )!S

P−1
M,pS

(Q+ 1− kP ), (5.94)

with base cases

S1
M,pS

(Q) = M

(NpS − 1)!M−1
1

(Q+ 1)(NpS −Q− 1)! , (5.95)

and

S0
M,pS

(Q) = 1
(NpS − 1)!M δQ,0. (5.96)

The procedure to derive the previous expressions is laborious but straightforward.

The strategy for this is to sort the M−compositions n in ∑n∈SM P
st
n|pS such that we

sum them starting from those compositions which contain entries with the lowest values

to those with the highest values. Then we identify which compositions contain the

same elements and regroup them.

Following with the rest of the sums over compositions in Eqs. (5.55) and (5.56),

one finds hat the sum S2 takes the form

∑
n∈SM

(
M∑
i=1

δni,1

)
P st

n|pS =
Pmax∑
P=0

(M − P )× SPM,pS
(N −M), (5.97)

as M − P is the number of entries equal to one for state n. Following the same logic

as with SPM,pS
, the sum S3 becomes

∑
n∈SM

(
M∑
i=1

n2
i

)(
M∑
i=1

δni,1

)
P st

n|pS =
Pmax∑
P=0

(M − P )× ΓPM,pS
(N −M), (5.98)

where the term ΓPM,pS
(N −M) represents the sum of

(∑M
i=1 n

2
i

)
P st

n|pS over compositions

with P elements higher than one. This is

ΓPM,pS
(Q) =

(
M

P

)
1

(NpS − 1)!M−P

×
Q−P+2∑
kP=2

1
kP (NpS − kP )!Λ

P−1
pS

(M − 1 + k2
P , N −M + 1− kP ), (5.99)
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with

ΛP
pS

(L,Q) =
Q+2−P∑
kP=2

1
kP (NpS − kP )!Λ

P−1
pS

(L− 1 + k2
P , Q+ 1− kP ), (5.100)

with base cases

Γ1
M,pS

(Q) = M

(NpS − 1)!M−1 Λ1
pS

(M,Q), Λ1
pS

(L,Q) = L− 1 + (Q+ 1)2

(Q+ 1)(NpS −Q− 1)! ,

(5.101)

and

Γ0
M,pS

(Q) = M

(NpS − 1)!M Λ0
pS

(M,Q), Λ0
pS

(L,Q) = δQ,0. (5.102)

Putting everything together in Eqs. (5.55) and (5.56), we finally find

T−M |pS = 1
2N

[
(2− pS)(N − 1) + pS

N

] Pmax∑
P=0

(M − P )× SPM,pS
(N −M)

Pmax∑
P=0

SPM,pS
(N −M)

− pS
2N2

Pmax∑
P=0

(M − P )× ΓPM,pS
(N −M)

Pmax∑
P=0

SPM,pS
(N −M)

, (5.103)

and

T+
M |pS = mg

N

N −
Pmax∑
P=0

(M − P )× SPM,pS
(N −M)

Pmax∑
P=0

SPM,pS
(N −M)

 . (5.104)

5.7.4 Comparison against numerical simulations with fixed

environment

In Figure 5.14 we compare the predictions for the rates T−M |pS and T+
M |pS in Eqs. (5.89)

and (5.90) against numerical simulations for different values of pS with 0 < pS < 1.

Cases with pS = 0 and pS = 1 are displayed in Figure 5.3 in the main paper. A

comparison of theory and numerical simulations for the stationary distribution at fixed

pS is shown in Figure 5.15.

5.7.5 Comparison against numerical simulations with switch-

ing environments

The previous results assume a fixed environment with sex rate pS. When introducing

switching between environments σ = S and σ = A, our predictions then may differ
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T
+ M
|p

S

T
− M
|p

S

Figure 5.14: Rates T−M |pS and T+
M |pS obtained from theory (solid lines) and numerical simulations

of the full model (dotted lines) with fixed rate of sexual reproduction pS . Parameters: N = 30,
mg = 3.0. Simulations were run up to time t = 107, with measurements starting t = 106 to
ensure stationarity.

pS = 1 (σ = S)pS = 0.25 pS = 0.50 pS = 0.75

Figure 5.15: Stationary distribution P st
M |pS for fixed rate of sexual reproduction pS for population

size N = 30 with mg = 3 (upper row) and mg = 15 (lower row). The theoretical predictions are
given by the results presented in Sections 5.7.1 and 5.7.2. Numerical simulations are of the full
model. Simulations were run up to time t = 107, with measurements starting t = 106 to ensure
stationarity.

in certain circumstances. This discrepancy comes from the fact that rates T±M |σ are

calculated from the distribution of vector states P st
n|σ from the full model for a fixed

environment (as shown in Section 5.6). In the case of switching environments the

effective birth and death rates become T±M,σ, which specify the rate of transitions

(M,σ)→ (M ± 1, σ). In this case σ is not fixed as in rates T±M |σ. Following the same

idea presented in Section 5.6, rates T±M,σ would need to be obtained from P st
n,σ, i.e., the

stationary distribution of states (n, σ) in the full model with switching environments.

Obtaining P st
n,σ, however, is beyond the scope of the present work.

In this section we explore this difference when varying the fraction of time spent in

the sexual environment, pS. As explained in Section 5.3.3, the fact of using rates T±M |σ
in the generator-matrix approach has consequences in the prediction of the stationary

distribution P st
M when using this approach for intermediate and fast-switching regimes.
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We provide more details of this in the next section.

In Figure 5.16, we illustrate a comparison of T±M,S (obtained from simulations)

against the theoretical prediction of T±M |S. As shown, the prediction gets better as the

fraction time spent in environment σ = S is higher (i.e., as pS increases). Conversely,

we compare T±M,A and T±M |A in Figure 5.17, showing that the prediction gets worse

when increasing pS.

T−
M,S

T−
M |S

T+
M,S

T+
M |S

Increasing

Figure 5.16: Comparison between T±M,S (simulations) and T±M |S (theory). We fix the average time
cycle τ = 2 generations throughout and vary the fraction of time spent in the sexual environment,
pS . From right to left panels, we set for each column pS = 0.01, 0.25, 0.50, 0.75, 0.99. Remaining
parameters: N = 50, mg = 5.

T−
M,A

T−
M |A

T+
M,A

T+
M |A

Increasing

Figure 5.17: Comparison between T±M,A (simulations) and T±M |A (theory). We fix the average time
cycle τ = 2 generations throughout and vary the fraction of time spent in the sexual environment,
pS . From right to left panels, we set for each column pS = 0.01, 0.25, 0.50, 0.75, 0.99. Remaining
parameters: N = 50, mg = 5.

5.8 Appendix C: Markov chain generator matrix

approach

As explained in Section 5.3.3, the rates T+
M,σ and T−M,σ used to construct the generator

matrix Q are those derived for situations in which the environment does not switch
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between states. In other words, we use the rates T+
M |σ and T−M |σ (σ = A, S) obtained

in Sections 5.6.1 and 5.6.2 of this Supplement (σ = A corresponds to setting pS = 0,

and σ = S to pS = 1). Assuming a fixed value of pS is an approximation for the model

in which the environment switches between the states with purely sexual and purely

asexual reproduction. In this section, we explore the implications of this approximation.

5.8.1 Comparison against simulations

Figure 5.18 shows how the stationary distribution P st
M obtained from the generator-

matrix approach compares against numerical simulations. For the graphs shown, we

have fixed the average period of one environmental switching cycle, τ , while varying the

average fraction spent in each environment. We show how the distribution compares

to simulations for different values of mg for which, based on Figure 5.9, we expect

to see a good or bad agreement. As shown, as mg increases the prediction from the

generator-matrix approach becomes better. In Section III C 2 we discuss the reasons

of this.

Increasing

In
cr

ea
sin

g

Figure 5.18: Stationary distribution P st
M for N = 100 from numerical simulations of the full model

with switching environment (open circles) and from the generator-matrix approach (asterisks). We
fix the average cycle time to τ = 2 generations throughout, and vary the fraction of time spent
in the sexual environment, pS , and the mutation rate, mg. The values used (from left to right
columns) are pS = 0.01, 0.25, 0.50, 0.75, 0.99, and (from lower to upper rows) mg = 0.01, 1, 10.
Numerical simulations were conducted by time-averaging one single run up to time t = 105

generations, where the first 102 units of time are ignored to ensure stationarity
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5.8.2 Theoretical prediction of P st
M,σ for each environment

Using the generator-matrix approach we can derive the stationary distribution P st
M,σ.

We point out that this is not the same as P st
M |σ, instead P st

M,σ is the joint distribution of

finding the environment in state σ and M mating types in the population in a model

with switching environment. The distribution P st
M,σ cannot be calculated using the

approaches for the slow switching and fast switching limits presented in Sections 5.3.1

and 5.3.2.

As explained in Section 5.3.3, the first N elements of P st are the P st
M,S, for M =

1, . . . , N , while the second N entries are P st
M,A (see Eq. (5.23)). In Figure 5.19, we

illustrate how the theoretical predictions for both distributions obtained from the

generator-matrix approach behave for different values of pS, i.e, when varying the

fraction of time spent in each environment. These quantities cannot be obtained using

the fast and slow switching approximations presented in Sections 5.3.1 and 5.3.2. As

shown, the amplitude of P st
M,S increases with pS, while the opposite occurs to P st

M,A.

When pS = 0 or pS = 1 we see the distribution of only one environment, while when

pS = 0.5 the amplitude is similar in both distributions.

0 10 20 30 40 50
0.00

0.04

0.08

0.12

0 10 20 30 40 50
0.00
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0.04
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0.08

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0 10 20 30 40 50
0.00

0.04

0.08

0.12

0 10 20 30 40 50
0.00

0.04

0.08

0.12

P st
M,A

P st
M,S

Increasing

Figure 5.19: Predictions for the distributions P st
M,S and P st

M,A from the generator-matrix approach.
Parameters N = 50,mg = 5, and λA→S = 0.5. The value for pS in the different panels is
0, 0.1, 0.5, 0.66, 1 from left to right.

5.8.3 Transition between slow and fast switching regimes for

low and high pS

In Figure 5.7 of the main text, we showed how P st
M behaves when varying the average

time cycle τ for pS = 0.5, i.e. when the environment spends equal fractions of time in

each of the two states A and S. The stationary distribution for M the differs in the

fast and slow switching regimes (for example the distribution can be bimodal for slow

switching, but unimodal for fast switching). In Figure 5.20 we show how P st
M behaves

when the environment spends most of the time in either one of the two states. As
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Figure 5.20: Stationary distribution P st
M as a function of the cycle time τ obtained from the

generator-matrix theoretical approach and simulations of the full model. The upper and lower
rows represent cases of high and low pS with values pS = 0.999 and pS = 0.001, respectively.
Parameters: N = 30,mg = 0.3 and λA→S = 1. Numerical simulations were conducted by
time-averaging one single run up to time t = 107 generations, where the first 106 units of time
are ignored to ensure stationarity.

shown, there is then no noticeable difference between the distributions in the slow and

fast regimes. This is because one of the environments dominates, irrespective of the

speed of environmental switching.

5.8.4 Analytical results from the generator-matrix approach

The theoretical approach in Section 5.3.3 of the main paper makes use of the generator

matrix Q to calculate the stationary distribution P st. The evaluation of this is mostly

numerical. We now show how analytical results can be derived from the generator-

matrix approach in the slow and fast switching regimes. As we will see, this reproduces

the results for the slow-switching limit in Section 5.3.1 of the main paper, while the

prediction from the generator matrix in the fast-switching limit is different from the

result presented in Section 5.3.2 for the full model. This disagreement originates from

the use of the rates T−M |σ and T+
M |σ in the generator-matrix approach. These rates are

derived for fixed environments, and assuming a stationary state of the population in

those environments, see Sections 5.6 and 5.6.2 of this Supplement. These assumptions
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are not valid when the switching of the environment is fast, as the population can then

not reach a stationary state between switches of the environmental state. However, as

explained in Section 5.3.3, there are situations in which the fast-switching limit derived

from the the generator-matrix approach approximates the predictions of the full model

well (i.e., the limit presented in Section 5.3.2).

The analysis starts from the equation defining the stationary state of the reduced

model,

P stQ = 0. (5.105)

This is a linear 2N ×2N system, and can be written out explicitly. For the components

describing environmental state σ = A we have

0 = T−M−1|AP
st
M−1,A + T−M+1|AP

st
M+1,A − (T−M |A + T+

M |A)P st
M,A + λS→AP

st
M,S − λA→SP st

M,A,

(5.106)

while for σ = S

0 = T−M−1|SP
st
M−1,S + T−M+1|SP

st
M+1,S − (T−M |S + T+

M |S)P st
M,S + λA→SP

st
M,A − λS→AP st

M,S.

(5.107)

In these equations, M takes values 1, . . . , N . At the boundaries we have T−1|σ = 0 and

T+
N |σ = 0 both for σ = A and σ = S.

Subtracting Eq. (5.107) from Eq. (5.106) we find

T−M |AP
st
M,A + T−M |SP

st
M,S = T+

M−1|AP
st
M−1,A + T+

M−1|SP
st
M−1,S. (5.108)

Within the reduced model this relation holds for any combination of the environmental

switching rates λA→S and λS→A.

Before analysing the slow-switching and fast-switching regimes, we make further

preparations. First, we recall that

N∑
M=1

P st
M,A = 1− pS, and

N∑
M=1

P st
M,S = pS, (5.109)

see Section 5.2.2 of the main paper.

Secondly, by summing the first M instances of Eqs. (5.106) and (5.107) we obtain

P st
M,A =

T+
M−1|A

T−M |A
P st
M−1,A + λS→A

T−M |A

M−1∑
M ′=1

P st
M ′,A −

λA→S
T−M |A

M−1∑
M ′=1

P st
M ′,S (5.110)
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and

P st
M,S =

T+
M−1|S

T−M |S
P st
M−1,S + λA→S

T−M |S

M−1∑
M ′=1

P st
M ′,S −

λS→A
T−M |S

M−1∑
M ′=1

P st
M ′,A, (5.111)

respectively. In these relations we have expressed P st
M,σ in terms of P st

M ′,σ up to

M ′ = M − 1.

Limit of slow environmental switching

In the limit of slow switching, i.e., when λA→S, λS→A � 1, the dominant terms in

Eqs. (5.110) and (5.111) are those not proportional to any of the switching rates, so

that

P st
M,σ ≈

T+
M−1|σ

T−M |σ
P st
M−1,σ (5.112)

both for σ = A and σ = S. The rates T±M |σ satisfy the following relation (see Eq. (5.13)

in the main paper)

P st
M |σ =

T+
M−1|σ

T−M |σ
P st
M−1|σ. (5.113)

From this we conclude

P st
M,σ ≈

P st
M |σ

P st
M−1|σ

P st
M−1,σ (5.114)

By applying this relation successively, one then sees that

P st
M,σ ≈

P st
M |σ

P st
1|σ

P st
1,σ. (5.115)

Summing on both sides over M from 1 to N , and using ∑N
M=1 PM |σ = 1, one finds

N∑
M=1

P st
M,σ ≈

P st
1,σ

P st
1|σ
. (5.116)

This holds for σ = A and σ = S. Using Eqs. (5.109), these relations then become

(1− pS) ≈
P st

1,A

P st
1|A
, and pS ≈

P st
1,S

P st
1|S
. (5.117)

for σ = A and σ = S, respectively. Finally, using this in Eq. (5.115), we find

P st
M,A ≈ (1− pS)P st

M |A, and P st
M,S ≈ pSP

st
M |S, (5.118)

which leads to

P st
M ≈ (1− pS)P st

M |A + pSP
st
M |S, (5.119)

which is the result in Section 5.3.1 of the main paper.
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Limit of fast environmental switching

In the limit of fast switching, the switching rates λA→S and λS→A take very large values

(λA→S, λS→A � 1). The terms proportional to these rates in Eqs. (5.106) and (5.107)

then dominate all other contributions in these equations. This leads to

λA→SP
st
M,A ≈ λS→AP

st
M,S. (5.120)

Using pS = λA→S/(λA→S + λS→A) this can be written as

P st
M,A ≈

(1− pS)
pS

P st
M,S. (5.121)

This implies that the distributions PM,A and PM,S share the same mode for M in the

limit of fast environments.

Using Eq. (5.121) in Eq. (5.108) yields(
T−M |A

(1− pS)
pS

+ T−M |S

)
P st
M,S ≈

(
T+
M−1|A

(1− pS)
pS

+ T+
M−1|S

)
P st
M−1,S, (5.122)

and therefore,

P st
M,S ≈

(1− pS)T+
M−1|A + pST

+
M−1|S

(1− pS)T−M |A + pST
−
M |S

P st
M−1,S,

=
T+
M−1,eff

T−M,eff
P st
M−1,S. (5.123)

This resembles the stationary distribution solution for fixed environments (see Eq. (5.13)

in the main paper) with rates

T±M,eff = (1− pS)T±M |A + pST
±
M |S. (5.124)

This means that in the limit of fast environments the population behaves as if it were

in an effective fixed environment with rates T±M,eff.

By applying Eq. (5.123) successively one sees that

P st
M,S ≈

T+
M−1,eff · · ·T+

1,eff

T−M,eff · · ·T2,eff
P st

1,S, (5.125)

and, by using Eq. (5.121), that

P st
M,A ≈

(1− pS)
pS

T+
M−1,eff · · ·T+

1,eff

T−M,eff · · ·T2,eff
P st

1,S. (5.126)
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Finally, we obtain

P st
M ≈

1
pS

T+
M−1,eff · · ·T+

1,eff

T−M,eff · · ·T2,eff
P st

1,S. (5.127)

The term P st
1,S is a normalisation factor which is determined from normalisation

(∑N
M=1 P

st
M = 1). We find

P st
1,S =

[
1
pS

(
1 +

N∑
M=2

M∏
i=2

T+
i−1,eff

T−i,eff

)]−1

. (5.128)

We remark that this prediction for the limit of fast environments is different from

the result in Section 5.3.2 in the main paper. In the main paper, the transition rates

in the full model were approximated by the weighted average of the rates in each

environment, with the weights given by the fraction spent in each environment, i.e.,

T fast
ij = (1− pS)T Aij + pST Sij . (5.129)

This approximation translates into

T±,fastM = (1− pS)T±M,A + pST
±
M,S (5.130)

in the reduced model. Since we do not know how to calculate T±M,S and T±M,A, we use

T±M |S and T±M |A instead as input in the generator matrix Q. This leads to what we

obtained above in Eq. (5.124). Figure 5.9 in the manuscript explores the validity of

this approximation. Nevertheless, we remark that although we do not calculate T±M,S

and T±M,A, we still are able to compute T±,fastM (as explained in Section 5.3.2) by using

the results from Section 5.7.2.

5.9 Appendix D: Selective sweeps

In this section, we explore a model with additional selective sweeps, as described

in Section 5.4 of the main text. We present the theoretical formalism to derive the

stationary distribution P st
M for this model, and compare the resulting predictions against

numerical simulations. We consider situations with switching environments (so that

reproduction switches between sexual and asexual), and the case of a fixed environment

in which reproduction is only asexual. In the case of switching environments, selective

sweeps can only occur in the asexual environment.
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5.9.1 Switching environments

To estimate the distribution P st
M in the presence of selective sweeps we proceed using

the method explained in Section 5.3.3 of the main text. We construct the generator

matrix Q and calculate the corresponding stationary state. Throughout this section

the rates T±M |σ are always those of the model without selective sweeps. Sweeps are

accounted for separately in the analysis.

As in the main text, we write the matrix Q in block form

Q =

Q(A,A) Q(A,S)

Q(S,A) Q(S,S)

 . (5.131)

Since selective sweeps occur only in the asexual environment, the block Q(A,A) is the

only one affected by selective sweeps. Taking into account the process M ν−→ 1, the

block Q(A,A) becomes

Q(A,A) =

−(T+
1|A + λA→S) T+

1|A 0 . . . . . . 0

T−2|A + ν −(T+
2|A + T−2|A + λA→S + ν) T+

2|A 0 . . .
...

ν T−3|A
. . . . . . . . . ...

... 0 . . . . . . . . . 0

... ... . . . . . . . . . T+
N−1|A

ν . . . . . . 0 T−N |A −(T−N |A + λA→S + ν)


,

i.e., compared to the model without selective sweeps, we have added ν to the entries

Q
(A,A)
M,1 and Q(A,A)

M,M for 2 < M ≤ N .

The stationary distribution P st
M resulting from this generator matrix is an approx-

imative result as the rates T±M |σ are for fixed environments and do not account for

selective sweeps. To take into account the effect of the selective sweeps on T±M |σ it would

be necessary to calculate first the stationary distribution P st
n,σ from the full model,

including selective sweeps. With this distribution one could then construct T±M |σ in a

similar way as explained in Section 5.6. It is difficult however to obtain P st
n,σ for the

full model with selective sweeps.

The generator-matrix approach still allows to capture important features that

emerge from the inclusion of selective sweeps. In Figures 5.21 and 5.22, we illustrate
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the behaviour of P st
M for slow switching and fast switching environments, respectively,

as the parameters mg and ν are varied. Each of the graphs shows a horizontal cut in

Figure 5.13 in the main text. We compare this against numerical simulations of the

full model. In the simulations, the effect of selective sweeps is implemented by adding

an extra transition M ν−→ 1 in the asexual environment, independent of the state of

the population. When such an event occurs, the population jumps to the state M = 1,

and n1 = N .

slow switching environments
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Figure 5.21: Stationary distribution of number of mating types in the model with selective
sweeps and fast-switching environments. Theoretical prediction of P st

M with selective sweeps as
function of M for slow switching environments, population size N = 50, for different values of
mg and ν. From upper to lower rows: mg = 0.5, 5, 50. From left to right columns: ν = 0, 0.5, 5.
Switching rates used: λS→A = λA→S = 5× 10−4.

Figures 5.21 and 5.22 both show that, in general, the theoretical prediction is in

good agreement with numerical simulations. As shown, the effect of selective sweeps is

to increase the chance to find the system at M = 1, while mutations, on the contrary,

have the effect of driving the population to higher numbers of mating types, reducing

the probability of finding M = 1. When one of these effects dominates, our prediction

shows good agreement with simulations. In such cases, the distribution P st
M exhibits a

well-defined peak given by the dominant effect (at M = 1 when ν � mg, and at M � 1
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when mg � ν). In situations like this, the assumption of ignoring selective sweeps on

the calculation of rates T±M |σ may become less relevant: if ν � mg, selective sweeps are

dominant in the generator matrix and the rates T±M |σ (this includes mutations) have

a small effect on P st
M ; if mg � ν, selective sweeps have small effect on P st

M and the

stationary distribution for M is mainly determined by rates T±M |σ. When both effects

are relevant, the prediction becomes less accurate (see central panels of Figures 5.21

and 5.22). In cases like this we cannot ignore the effect of selective sweeps on rates

T±M |σ, neither we can ignore the effect of mutations on the stationary distribution.

As discussed in Section 5.4, for slow switching environments the distribution P st
M

is in general bimodal, with the lowest peak approaching M = 1 and increasing its

probability as ν increases. This is also shown in Figure 5.21. The data in Figure 5.21

also show more clearly than in Figure 5.13 that the probability of the highest peak

is not affected by ν. For fast switching environments (see Figure 5.22), P st
M is always

unimodal with its mode approaching M = 1 as ν increases.
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Figure 5.22: Stationary distribution of number of mating types in the model with selective
sweeps and slowly switching environments. Theoretical prediction of P st

M with selective sweeps as
function of M for fast switching environments, population size N = 50, for different values of
mg and ν. From upper to lower rows: mg = 0.5, 5, 50. From left to right columns: ν = 0, 0.5, 5.
Switching rates used: λS→A = λA→S = 5.
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5.9.2 Fixed asexual environment

We now focus on a fixed environment with asexual reproduction, and explore how

stationary distribution P st
M behaves as parameters mg and ν are varied. This can be

done by calculating the eigenvector with eigenvalue zero of a generator matrix given

solely by the block Q(A,A) in Eq. (5.131). The theoretical predictions and how they

compare to numerical simulations in the full model are presented in Figure 5.23. As

shown, the distribution is always unimodal for any value of mg and ν, with the mode

approaching M = 1 as ν increases. The fact there is only one peak is not surprising as

the system has only one environment.

As stated in Section 5.4 of the main paper, the mean time until fixation of a single

mutant is approximately given by T = 2 log(N)/s, where s the selective advantage of

the mutant. Then, for a system that includes switching environments if we assume

that 1/λA→S � T , i.e., that the time spent in the asexual environment is long enough

so that the beneficial mutation sweeps through the population, and that pS ≈ 0, i.e.,

that the fraction of time spent in the sexual environment is negligible (so we can ignore

any effect of the sexual environment), we can estimate the corresponding stationary

distribution P st
M using only the block Q(A,A) as the generator matrix.
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Chapter 6. Beyond the adiabatic limit in systems with fast environments:
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Abstract

We propose a τ -leaping simulation algorithm for stochastic systems subject to fast

environmental changes. Similar to conventional τ -leaping the algorithm proceeds

in discrete time steps, but as a principal addition it captures environmental noise

beyond the adiabatic limit. The key idea is to treat the input rates for the τ -

leaping as (clipped) Gaussian random variables with first and second moments

constructed from the environmental process. In this way, each step of the algorithm

retains environmental stochasticity to sub-leading order in the time scale separation

between system and environment. We test the algorithm on several toy examples

with discrete and continuous environmental states, and find good performance

in the regime of fast environmental dynamics. At the same time, the algorithm

requires significantly less computing time than full simulations of the combined

system and environment. In this context we also discuss several methods for the

simulation of stochastic population dynamics in time-varying environments with

continuous states.

The modelling of dynamical systems in biology and other disciplines necessarily

requires simplifying assumptions and a level of coarse graining. If all processes we

know about are included, then the model becomes so complicated that it cannot be

simulated or analysed. Even if simulation or analysis is possible further study of such

a model will rarely be enlightening. Excessive detail makes hard to identify the key

mechanisms at work and to understand what model components are responsible for

these mechanisms. At the same time, some element of realism must be maintained.

The model must not be so stylised to miss the key ingredients and behaviour it is

meant to capture. The principal challenge, therefore, is to find the right level of detail,

given the intended purpose.

The choice between stochastic and deterministic modelling approaches is one aspect

of this discussion. If more detailed stochastic models mark one end of the spectrum,

then many traditional models in mathematical biology or chemistry sit at the opposite

end. These models are often built on a small number of ordinary or partial differential

equations (e.g. [1, 2]). This deterministic approach is valid if one can assume that the

same initial conditions will always lead to the same outcome. For many applications
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involving very large systems this is a perfectly sensible approach.

However, it is now also universally recognised that stochasticity in the time-evolution

of many systems is key in shaping the outcome, see e.g. [3–5]. Consequently a number

of analytical and computational methods has been developed for the study of stochastic

systems. One focus is on systems with discrete interacting individuals. What these

individuals represent depends on the context, they could be members of different species

in population dynamics, individual animals or humans in models of an epidemic, or

molecules in chemical reaction systems [3, 6–8].

One particular point of interest within this class of individual-based systems are

models operating in a time-dependent environment. This environment is not part of

the system proper, but its state has an effect on what happens in the system. In a

model of a population of bacteria for example, the reproduction or death rates could

depend on external conditions such as the availability of nutrients or the presence of

toxins [9, 10]. In population dynamics, the carrying capacity could vary in time [11–13],

and in epidemics the infection rate is subject to seasonal changes [14]. The focus of

our paper is on such individual-based models in time-varying external environments.

Analytical approaches to stochastic systems with discrete individuals usually start

from the chemical master equation. In limited cases direct solution is possible, for

example using generating functions. However, this is the exception, and a number of ap-

proximation schemes have consequently been developed. These include Kramers–Moyal

and system-size expansions, leading to Fokker–Planck equations and descriptions in

terms of stochastic differential equations [8, 15]. These schemes sacrifice the granularity

of a discrete-agent system, and instead describe the dynamics in terms of continuous

densities. This approach can be successful in particular for large populations. Any

particular event then only results in a small change in the composition of the population

relative to its size. Individual-based approaches and descriptions based on deterministic

differential equations have been extended to models of population dynamics in switching

environments, for a selection of work see [11, 16–26].

There are however situations in which one would rather avoid giving up the discrete

nature of the population. For example, granularity is crucial for extinction processes

(the number of individuals of the species about to go extinct is small by definition). In

other situations the population may not be large enough to warrant a description in
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terms of continuous densities. For example, copy numbers in genetic circuits can be of

the order of tens to hundreds (see e.g. [27]), and it is difficult to justify a continuum

limit. It then becomes necessary to carry out numerical simulations of the discrete

individual-based process. The method of choice is the Gillespie algorithm [28, 29],

generating a statistically accurate ensemble of sample paths of the continuous-time

dynamics.

In most applications the rate of events scales with the size of the population so

that each individual experiences an O(1) number of reactions per unit time. The

Gillespie method then runs into difficulties when the population is large, and with it

the number of reactions per unit time. The computational cost of generating sample

paths to up the desirable end point can then become very high. Similarly, a time scale

separation between the dynamics in the population and the environment may make

simulations challenging. If the environment is very fast compared to the population,

a significant number of environmental events needs to be executed between events

in the population. This aggravates the above limitations for large populations, and

simulations can become problematic even for intermediate population sizes. One

possible approach to this consists of assuming that the environment is ‘infinitely’ fast

compared to the population. This is known as quasi steady state approximation [30,

31], or the ‘adiabatic limit’ [26, 32]. For related work see also [23, 33–36]. If this limit

is taken then the environmental dynamics can be ‘averaged out’, and effective reaction

rates can be used for the population. While computationally convenient, this approach

discards any stochasticity from the environmental process. This sets another limitation,

in particular when it is not valid to assume that the environment is infinitely fast

compared to the population.

The objective of this work is therefore to design and test an algorithm for systems

with fast environmental dynamics, but which also captures some elements of the

environmental noise. We call this discrete-time algorithm τFE – τ -leaping for fast

environments. It is built on the ideas of the conventional τ -leaping algorithm [37], but

with modifications such as to preserve elements of the stochasticity of the environmental

process. To do this, we assume that the environment is fast compared to the population,

but not infinitely fast. More precisely, in each step of the algorithm we take into account

sub-leading contributions in the time-scale separation.
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The key new element of our algorithm is how we deal with the environment. We

do not take the adiabatic limit, instead we treat the reaction rates in the population

as random variables during each step. The rates are drawn from a distribution at the

beginning of each step, and then remain fixed during the time step. The distribution

of rates can change from one step to the next, and is constructed to reflect statistical

features of the original environmental dynamics.

Each step of the τFE algorithm consists of two parts: First a realisation of reaction

rates is drawn from the appropriate distribution. Then a conventional τ -leaping step

is carried out with these rates. The core of our paper consists of the construction

of the ‘appropriate distribution’ for the reaction rates. These ideas were introduced

in a previous work [38] for a simple case of a two-species birth-death process in an

environment which can take two discrete states. In the present paper we develop this

further. We develop and test a more general algorithm for environments with more

than two discrete states. As we will show, the algorithm can also be extended to

continuous environmental dynamics.

The remainder of the paper is organised as follows. In Sec. 6.1 we describe the

general setup of the type of system we simulate. We also outline the general principles

of the τFE algorithm. In Sec. 6.2 we then make the necessary preparations for the

introduction of the algorithm. In particular, we compute the statistics of reaction rates

which are fed into the conventional τ -leaping step. We then describe the algorithm

in detail. In Sec. 6.3, we test the τFE algorithm in different models with discrete

environmental states. In Sec. 6.4, we then describe how the τFE algorithm can be used

when the environment takes continuous states. Specifically, we consider an Ornstein-

Uhlenbeck process. In this context we also describe how known algorithms can be

adapted to simulate continuous environments. Finally, we provide a discussion of our

results and overall conclusions in Sec. 6.6.
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6.1 Model setup and general principles of the algo-

rithm

6.1.1 Model definitions and notation

We look at systems composed of discrete individuals. We will refer to this synonymously

as the ‘system proper’, or ‘the population’. Each of the individuals is of one of S

species (or types), labelled i = 1, . . . , S. We write ni for the number of individuals of

species i in the population, and n = (n1, . . . , nS). The system evolves in an external

environment, whose state we write as σ. These states are time dependent, and can

either take discrete values or be continuous.

The dynamics in the population proceeds through reactions r = 1, . . . , R. Each of

these reactions converts a number of individuals from one type into another. Time in

the model is continuous, and we assume that the dynamics is Markovian. We then write

Rr,σ(n) for the rate of reaction r if the environment is in state σ and the population

in state n. The stoichiometric coefficient νr,i indicates how the number of individuals

of type i changes when a reaction of type r occurs. Each νr,i is an integer, which can

be negative, zero, or positive. We write νr = (νr,1, . . . , νr,S). The rates Rr,σ(n) and

the stoichiometric coefficients fully specify the dynamics of the population when the

environment is in state σ.

The state of the environment undergoes a Markovian stochastic process, governed

by a master equation if states are discrete or by a stochastic differential equation in

the case of continuous environmental states. These dynamics can depend on the state

of the population n. If the environmental states are discrete we write qσ→σ′(τ) for the

probability of finding the environment in state σ′ at a particular point in time, given

that τ units of time earlier it was in state σ. If the environment is continuos then

qσ→σ′(τ) is a probability density for σ′ (at given σ). We call qσ→σ′(τ) the transition

kernel of the environmental process. We write ρ∗ for the stationary distribution of the

environmental dynamics. For discrete environmental states the entries ρ∗σ denote the

probability of finding the system in state σ in the stationary state. For continuous

environments ρ∗σ is the stationary probability density for σ.

258



6.1. Model setup and general principles of the algorithm

6.1.2 General principles of the τ-leaping algorithm for sys-

tems in fast environments

A conventional reaction system (without external environment) is governed by a

chemical master equation of the form

d
dtP (n, t) =

∑
r

[
Rr(n− νr)P (n− νr, t)−Rr(n)P (n, t)

]
. (6.1)

The notation is as in Sec. 6.1.1, the only difference is that there is no subscript σ, as

there is no environment. Sample paths entail events (reactions) which can occur at any

point in continuous time, separated by exponentially distributed random waiting times.

In each such event the state of the system n changes, and accordingly the reaction

rates Rr(n) can also change. Sample paths can be generated for example using the

celebrated Gillespie algorithm [28, 29]. This scheme, however, can become ineffective

when the number of reactions per unit time is high. In those cases, in order to speed

up the simulations one can work with an approximated method usually termed as the

τ -leaping algorithm.

The τ -leaping algorithm for such conventional reaction systems is built around the

idea of keeping reaction rates constant over finite time steps of length τ [37]. That is

to say, if the state of the population is n at time t, then the assumption is made that

this state n and the rates Rr(n) do not change until the end of the time step. The

algorithm does not account for potential changes of the rates as individual reactions

occur, and instead directly ‘leaps’ to time t+ τ . This is justified provided the so-called

‘leap condition’ is fulfilled [37]: broadly speaking the time step τ must be sufficiently

small so that the state n in the continuous-time system does not change significantly in

a time interval of length τ . For discrete environments, using conventional exact schemes

(such as the Gillespie algorithm [28, 29]) can be used as a benchmark to choose τ . For

continuous environments, however, this is no longer possible as only approximated

methods can be used to simulate them. We discuss this below.

Making the approximation of constant n in the time interval from t to t+ τ , the

number of reactions of type r that fire in this interval follows a Poissonian distribution

with parameter τRr(n). Accordingly, realisations of Poissonian random variables

m1, . . . ,mR are drawn, and the corresponding numbers of each reactions are executed

simultaneously. This generates a new state n′ at time t + τ , with entries n′i =
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ni +∑R
r=1mrνi,r. The process then repeats with updated rates Rr(n′).

The idea of the τ -leaping algorithm we introduce for systems in external environ-

ments is similar. As in the conventional algorithm we discretise time, and keep the

composition of the population n fixed during each iteration. It is only updated at the

end of each step. From now on we use ∆t for the duration of a step instead of τ .

The difference to the conventional case is the external environment. If the envi-

ronmental state space is discrete then switches of the environment can in principle be

simulated in continuous time along with the other reactions (using Gillespie algorithm

[28, 29]). They can also be dealt with by means of the conventional τ -leaping algorithm,

again along with the other reactions. These are natural simulation approaches when

the environment operates on a similar time scale as the reactions in the population.

Not much can then be gained by distinguishing between environmental processes and

the dynamics in the system proper.

If the environment is infinitely fast compared to the reactions in the population,

then the environment reaches stationarity on very short time scales. One can average

over environmental states, see for example [26, 30, 31, 33, 38, 39]. If the environment

is discrete, for example, we can use average rates

R∗r(n) ≡
∑
σ

ρ∗σRr,σ(n). (6.2)

In the case of continuous environments the sum is to be replaced with an integral.

These rates are functions of n only, the environmental process has been averaged out.

Noise from the environmental process plays no role in the dynamics if these average

rates are used. This corresponds to making a quasi-stationary state approximation for

the fast-moving environment [30, 31].

The aim of this paper is to go beyond this adiabatic limit, and to construct a

τ -leaping algorithm which captures some elements of extrinsic noise. We focus on the

limit of a fast, but not infinitely fast environmental dynamics.

Broadly speaking the τFE algorithm is constructed around the idea of treating the

reaction rates Rr(n) as stochastic variables in each discrete time step. These random

variables represent the rates one obtains when averaging the environmental process

over the time step ∆t. Assuming that the rate of change of the environment is finite

these average rates will remain stochastic. In the limit of infinitely fast environments
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the deterministic limit in Eq. (6.2) is recovered, and there is no stochasticity from the

environment.

To construct the random reaction rates for each step, we make an approximation:

we use a Gaussian distribution for the rates, with means as in Eq. (6.2) and with

variances and correlations derived from the original combined process of the population

and environment. We describe this in detail in the next section.

6.2 Construction of the τFE algorithm for systems

with discrete environments

6.2.1 Preliminary analysis of the environmental process

Here we assume the environmental states are discrete, σ ∈ {1, . . . ,M}. The dynamics

of the environment is governed by the rates λAσ→σ′(n) for transitions from σ to σ′.

The factor λ is introduced to control the time-scale separation between reactions in the

population and the switching of the environment. We use the notation A(n) for the

M ×M matrix with elements Aσ→σ′(n). We also set Aσ→σ(n) = −∑σ′ 6=σ Aσ→σ′(n).

The combined dynamics of population and environment are then described by the

master equation

d
dtP (n, σ, t) =

∑
r

[
Rr,σ(n− νr)P (n− νr, σ, t)−Rr,σ(n)P (n, σ, t)

]
+ λ

∑
σ′

[
Aσ′→σ(n)P (n, σ′, t)− Aσ→σ′(n)P (n, σ, t)

]
. (6.3)

The rates λAσ→σ′(n) can depend on the state of the population, n. This means

that n and σ do not necessarily evolve in time independently. However, as mentioned

above the state n of the system is kept constant during each τ -leaping step. This in

turn means that the transition rates for the environment also remain constant during

each step.

We now focus on one such time step, starting at time t and ending at t + ∆t.

We assume that n remains constant during this time interval. For the remainder

of Sec. 6.2.1 we suppress the potential dependence of A on n, although it is always

implied. We write ρσ(t′) for the probability that the environment is in state σ at time
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t ∈ [t, t+ ∆t]. We then have the master equation

dρ

dt′ = λAρ (6.4)

for the environmental dynamics. The stationary distribution ρ∗ for the environment

is the solution of Aρ∗ = 0. If A depends on n, then ρ∗ will also be a function of n.

Assuming that the environmental process is irreducible this stationary distribution is

unique for any one n.

The stochastic matrix A has one zero eigenvalue, which we write as µ1 = 0. The

remaining eigenvalues are denoted by µ2, . . . , µM . We then have µ2, . . . , µM < 0. The

corresponding (right) eigenvalues are written as v1 = ρ∗ (the eigenvector corresponding

to eigenvalue 0), and v2, . . . ,vM respectively for the remaining eigenvectors. These are

all understood to be column vectors of length M .

We note that the general solution of Eq. (6.4) can be written in the form

ρ(t′) = ρ∗ +
M∑
`=2

c`e
λµ`(t′−t)v`, (6.5)

with coefficients c` determined by the initial condition at the beginning of the time

step t′ = t. More precisely these coefficients can be obtained from the linear system
M∑
`=2

c`v` = ρ(t)− ρ∗. (6.6)

We remark that there are M − 1 coefficients, c` (` = 2, . . . ,M). The system in Eq. (6.6)

technically consists ofM equations, but these are not independent due to normalisation

of the probabilities on the right-hand side.

Calculating the probability qσ→σ′(∆t) to find the environment in state σ′ at the end

of the time step if it was in σ at the beginning of the step is now mainly a matter of

computing the coefficients c`. We write c`,σ for the value the coefficient c` takes when

ρσ′(t) = δσ′,σ (i.e., when the system starts in state σ at the beginning of the step).

We then have

qσ→σ′(∆t) = ρ∗σ′ +
M∑
`=2

c`,σe
λµ`∆tv`,σ′ , (6.7)

where v`,σ′ is the σ′-entry of the eigenvector v` of A.

If the matrix A depends on the population state n, the parameters µ`, v`,σ′ , and c`,σ
can also depend on n. For simplicity of notation we have not included this potential

dependence in the above equations.
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6.2.2 Time-averaged reaction rates as random variables

The τ -leaping algorithm proceeds in discrete time intervals of length ∆t. We continue

to focus on one such interval [t, t+ ∆t]. The state of the population at the beginning

of the step is n and we assume that this state does not change until the end of the

interval. We do however take into account the fact that the state of environment σ can

undergo changes in the interval from t to t+ ∆t. As a consequence, Rr,σ(n) (at fixed

n) is also a function of time.

We then introduce the time-averaged quantities

Rr(n) ≡ 1
∆t

∫ t+∆t

t
dt Rr,σ(t)(n), (6.8)

noting that the time average is over the duration of the time step only as opposed to a

long-term asymptotic time average. Given that the time step ∆t is finite (∆t <∞) and

assuming that the environment fluctuates with finite rates (λ <∞), the quantity Rr(n)

is a stochastic variable as it depends on the realisation of the environmental process.

In one given time interval, the rates Rr(n) for different r will be correlated as they all

derive from the same path of the environment. As we will show below, the fluctuations

of the random variables Rr(n) in any one time step are inversely proportional to λ∆t

to leading order. In the limit λ∆t→∞ the Rr(n) become deterministic.

We assume that the distribution for σ at the beginning of the time step is the

stationary distribution ρ∗. This is the case for example, if then environmental state

is drawn from the stationary distribution at the beginning of the simulation. The

distribution for σ(t′) is then also the stationary distribution at each time t′ ∈ [t, t+ ∆t].

Writing 〈. . .〉 for the average over realisations of the environmental process, we then

have 〈
Rr(n)

〉
= R∗r(n), (6.9)

with R∗r(n) as in Eq. (6.2).

However, σ(t′) (t′ ∈ [t, t+ ∆t]) will generally be correlated with σ(t). Neglecting

these means to operate in the adiabatic limit. We would like to retain some of these

correlations. In order to compute second moments
〈
Rr(n)Rs(n)

〉
we first use Eq. (6.8).

This leads to averages of the type
〈
Rr,σ(t1)(n)Rs,σ(t2)(n)

〉
, where t1 and t2 are two times

in the interval from t to t+ ∆t. The second moments can then be expressed in terms
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of qσ→σ′(·) as follows

〈
Rr(n)Rs(n)

〉
= 1

∆t2
∑
σσ′

∫ t+∆t

t
dt1

∫ t1+∆t

t1
dt2
{
ρ∗σqσ→σ′(t2 − t1)

×
[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

]}
. (6.10)

Further details are given in Appendix 6.7. Using Eq. (6.7) we find

〈
Rr(n)Rs(n)

〉
−R∗r(n)R∗s(n) = 1

∆t2
∑
σσ′

M∑
`=2

{
ρ∗σc`,σv`,σ′

×
[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

] ∫ t+∆t

t
dt1

∫ t1+∆t

t1
dt2 eλµ`(t2−t1)

}
. (6.11)

For fixed ` ∈ {2, . . . ,M} the integral in the last expression evaluates to
∫ t+∆t

t
dt1

∫ t1+∆t

t1
dt2 eλµ`(t2−t1) = − ∆t

λµ`
+ 1

(λµ`)2

[
eλµ`∆t − 1

]
. (6.12)

For λ∆t� 1 the first term dominates after inserting into Eq. (6.11), as also observed

in [40]. We are then left with

〈
Rr(n)Rs(n)

〉
−R∗r(n)R∗s(n) =

− 1
λ∆t

∑
σσ′

M∑
`=2

{
1
µ`
Rr,σ(n)Rs,σ′(n)

[
ρ∗σc`,σv`,σ′ + ρ∗σ′c`,σ′v`,σ

]}
. (6.13)

The main challenge in implementing the τFE algorithm is then to find the average

rates from Eq. (6.9) for all r, and the second moments from Eq. (6.13) for any pair r, s

of reactions affected by the environment. We stress that our algorithm relies on knowing

the stationary distribution ρ∗ and the rates qσ→σ′ of the environmental dynamics.

6.2.3 Description of the algorithm

Without loss of generality, we assume that only the rates for the reactions r = 1, . . . , L

(L ≤ R) depend on the environmental state σ.

The τFE algorithm with time step ∆t proceeds as follows:

1. Initiate the population in state n(0). Set time to t = 0.

2. Compute R∗r(n) for r = 1, . . . , L using Eq. (6.2), and the covariances Ξrs(n) ≡〈
Rr(n)Rs(n)

〉
−R∗r(n)R∗s(n) using Eq. (6.13) for every pair r, s ∈ {1, . . . , L}.
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3. (i) First consider the reactions with rates dependent on the environment: Draw

correlated Gaussian random numbers `1, . . . , `L such that 〈`r〉 = R∗r(n), and

〈`r`s〉 − 〈`r〉 〈`s〉 = Ξrs(n). If `r < 0 for any r ∈ {1, . . . , L} set `r = 0.

(ii) For the remaining reactions r ∈ {L + 1, . . . , R} set `r = Rr(n). These

are the reactions with rates independent of the environment.

5. Draw independent Poissonians random numbers mr, r = 1, . . . , R, each with

parameter `r∆t.

6. Update the state of the population, n(t+ ∆t) = n(t) +∑
rmrνr.

7. Increment time by ∆t and go to 2.

We note that the mean of the `r in step 3(i) is of order (λ∆t)0, and their variance

of order (λ∆t)−1. Truncation of the `r will therefore only be required very rarely when

λ∆t� 1.

Evaluating the expressions in Eqs. (6.2) and (6.13) in step 2 requires eigenvalues µ`
of the transition matrix A(n) for the environment, the eigenvectors, v` (including the

stationary distribution v1 = ρ∗), and the coefficients c`,σ for all σ. If the environmental

process is independent of the state of the population (the Aσ→σ′ are not functions of

n), then these quantities do not depend on n, and only need to be calculated once at

the beginning.

In Sec. 6.3 we first test the τFE algorithm on different models with discrete

environments. However, we stress that the algorithm can also be extended to the case

of environmental dynamics with continuous states. This will be discussed in Sec. 6.4.

6.3 Application of the τFE algorithm to models

with discrete environmental states

We now consider three examples of systems with discrete environmental states.

The first example (Sec. 6.3.1) is a genetic circuit. The role of the environment is here

played by a process of binding and unbinding to promoters of the genes described by

the model. Gene regulatory systems can exhibit time scale separation as discussed for
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example in [41–43]. Mathematically the model describes a population with two types of

individuals and an environment with two states (bound/unbound). The environmental

dynamics depends on the state of the population.

The second example (Sec. 6.3.2) is a toy model with two species in the population and

three environmental states. The environmental process in this example is independent

of the state of the population.

Sec. 6.3.3 finally focuses on a bimodal genetic switch with two species in the

population, and an environmental process with three states, and with rates which

depend on the state of the population.

6.3.1 Genetic circuit: two system-independent environments,

two species

This system models the dynamics of two genes, which produce two different regulatory

proteins: X (a transcription factor) and Y (an inhibitor that titrates X into an inactive

complex). Specifically, we use the activator-titration circuit described in [32]. The

reactions are as follows:

∅ ΩβX−−→ X, ∅ ΩβY,σ−−−→ Y, (σ = 0, 1)

X
δX−→ ∅, Y

δY−→ ∅,

X + Y
α/Ω−−→ ∅,

E0
λnXκY /Ω−−−−−−→ E1, and, E1

λθY−−→ E0, (6.14)

where the Eσ denote states of the environment (σ = 0, 1). These two environmental

states represent situations in which a transcription factor X is bound to the promoter

of gene Y (state E1), or no transcription factor is bound (E0), respectively. The first

two reactions in Eq. (6.14) describe the production of the two proteins (X and Y ).

The production rates are βX and βY,σ. The former is independent of the environmental

state, the latter explicitly depends on σ (i.e., on the presence or absence of a bound

transcription factor). The reactions in the second line of Eq. (6.14) describe degradation

of X and Y , and the reaction in the third line captures titration. The binding and

unbinding processes of the transcription factor are described by the reactions in the

last line. The parameter Ω in the reaction rates determines the typical number of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Simulation output for the model of the genetic-circuit in Eq. (6.14). Panel (a)
shows a sample path obtained from Gillespie simulations of the full model. Panel (b) is a sample
path from the τFE algorithm [λ = 103 in panels (a) and (b)]. Panels (c) and (d) show the
stationary distributions of nX + nY and nX − nY , respectively, for λ = 103, while (e) and (f)
are for λ = 104. In each panel (c)–(f) we report the Jensen-Shannon divergence (JSD) between
the distributions obtained using the two different simulation methods. Remaining parameters:
Ω = 103, βX = 2, βY,0 = 0, βY,1 = 10, δX = δY = 1, κY = 1, θY = 0.5, and α = 10. For the τFE
we have used a time step ∆t = 0.1.

particles in the system, for further details see [32]. We write nX for the number of

X-particles in the system, and similarly nY is the number of Y -particles. One finds

nX , nY = O(Ω) in the stationary state.

Mathematically, the model consists of two species in the population (with numbers

of particles nX , nY ), and two environmental states, σ = 0, 1. We therefore have

S = 2,M = 2. Eqs. (6.9) and (6.13) can be evaluated explicitly for this case, see also

[38]. The only process affected by the state of the environment is the production of Y ,

with rate βY,σ. This rate becomes a (clipped) Gaussian random variable in the τFE

algorithm, with first moment

〈
βY
〉

= β∗Y = θY βY,0 + nXκY βY,1/Ω
θY + nXκY /Ω

, (6.15)
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and with variance

σ2
βY βY

≡ 〈β̄2
Y 〉 − β∗Y

2

= 2nXκY θY /Ω
λ∆t(nXκY /Ω + θY ) (βY,0 − βY,1)2 . (6.16)

Further details of the derivation can be found in Appendix 6.8.

Simulation results for this model are shown in Fig. 6.1. In panels (a) and (b) we

illustrate typical sample paths obtained from Gillespie simulations of the full model

(population and environment), and from the τFE algorithm, respectively. We also show

the stationary distributions for the quantities nX + nY and nX − nY as obtained from

both simulation algorithms. The distributions in panels (c) and (d) are for λ = 103

(i.e., moderately fast environmental dynamics), there are then remaining discrepancies

between the τFE algorithm and simulations of the full model. In panels (e) and (f) the

time-scale separation is larger (λ = 104). The agreement improves as indicated by the

Jensen-Shannon divergence (JSD) [44, 45] given in the figure.

We note at this point that the average CPU time to run a sample path up to time

t = 103 with parameters as in Fig. 6.1 (e) and (f) is 2.94 seconds for the Gillespie

algorithm, and 0.03 seconds for the τFE algorithm (with a time step ∆t = 0.1). These

average simulation times are obtained from ten runs. They indicate that the τFE

algorithm can significantly increase efficiency while producing results of the quality

shown in Fig. 6.1. We stress that our primary interest is the relative comparison of

computing times, and not on absolute simulation times 4.

6.3.2 Birth-death process: three environments, two species

Next, we consider a two-species birth-death process subject to an external environment

which can be in one of three different states. This is a toy model chosen for illustration

and does not represent any specific natural system. However, it captures elements of

models of population dynamics.

The species in the population are labeled A and B, and the environmental states

σ = 0, 1, 2. Particles of type A are produced with rate Ωασ, and particles of type B with

rate Ωβσ. The subscript σ indicates explicit dependence on the state of the environment.
4For completeness, we add that simulations were performed on a MacBook Pro (Mid 2014), with

processor 2.6 GHz Dual-Core Inter Core i5, and memory 8 GB 1600 MHz DDR3.
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Particles are removed with constant per capita rates dA and dB respectively. The

parameter Ω again sets the typical size of the population. We write nA and nB for the

number of individuals of either species. The environmental states cycle stochastically

through the sequence σ = 0, 1, 2, 0, . . . , with rate constants λk1, λk2 and λk0 for the

three transitions. Mathematically, the reactions in this model are

∅ Ωασ−−→ A, ∅ Ωβσ−−→ B, (σ = 0, 1, 2)

A
dA−→ ∅, B

dB−→ ∅,

E0
λk1−−→ E1, E1

λk2−−→ E2, E2
λk0−−→ E0, (6.17)

where as before Eσ denotes the environment. The rates k0, k1, and k2 are constant

parameters, independent of the population state.

269



Chapter 6. Beyond the adiabatic limit in systems with fast environments:
a τ -leaping algorithm

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Simulation output of the two-species birth-death process in an environment with

three states [Eq. (6.17)]. Panels (a), (c), and (e) show the stationary distribution of nA + nB

obtained using the Gillespie algorithm for the full model, and the τFE algorithm. Data is shown

for different values of λ. Panels (b), (d), and (f) show the stationary distribution of nA − nB.

Parameters used: k0 = k1 = k2 = 1,Ω = 20, dA = dB = 0.1, α0 = β0 = β1 = α2 = 0, and

α1 = β2 = 1. In each panel (a)–(f) we report the Jensen-Shannon divergence (JSD) between

the two distributions obtained from Gillespie simulations of the full model and from the τFE

algorithm. Panels (g) and (h): Spectral densities SAA(ω) and SAB(ω) [Eq. (6.21)] obtained from

simulations using the Gillespie algorithm (full line), the τFE algorithm (open circles), and from

conventional τ -leaping simulations of the model in the adiabatic limit (asterisks). Parameters in

(g) and (h) are as in panels (e) and (f), i.e., λ = 150. The time step for the τFE algorithm and

for conventional τ -leaping in the adiabatic limit is ∆t = 0.1.

Details of the calculation of the average rates and their second moments can be
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found in Appendix 6.9. The average production rates for the two types of particles are

α∗ = k0α0 + k1α1 + k2α2

k0 + k1 + k2
,

β∗ = k0β0 + k1β1 + k2β2

k0 + k1 + k2
, (6.18)

while the covariance σαβ = σβα ≡ 〈ᾱβ̄〉 − α∗β∗ takes the form

σαβ = θ2

λ∆t

{
(α0 − α1)(β0 − β1)

(
3k2

0 − k0,1k0,2
)

+ (α1 − α2)(β1 − β2)
(
3k2

1 − k1,0k1,2
)

+ (α0 − α2)(β0 − β2)
(
3k2

2 − k2,0k2,1
)}

, (6.19)

with

θ2 ≡ k0k1k2

(k0k1 + k1k2 + k2k0)3 , (6.20)

and kσ,σ′ = kσ − kσ′ , for σ, σ′ ∈ {0, 1, 2}. The variance σαα ≡ 〈ᾱᾱ〉 − (α∗)2, is obtained

by replacing all instances of βσ on the right-hand side of Eq. (6.19) with ασ. The

analog σββ is obtained similarly by replacing ασ with βσ.

In Fig. 6.2 we report results from numerical simulations for this model, both from

conventional Gillespie algorithm of the full systems of environment and population, and

using the τFE algorithm. Panels (a)–(f) show the stationary distributions of nA + nB

and nA−nB. As seen from the data for example in panel (a) the τFE algorithm displays

deviations from Gillespie simulations of the full model when the environmental process

is not sufficiently fast. We quantify these deviations again through the Jensen–Shannon

divergence between the two distributions. The deviations reduce as the time scale

separation λ is increased, i.e., when the environmental process becomes faster relative

to the dynamics within the population.

In order to examine if the τFE algorithm accurately reproduces dynamical features

(i.e., properties of the system beyond the stationary distribution), we show spectral

densities of the time series for nA and nB in Fig. 6.2(g) and (h). The spectral densities

are defined as

SAA(ω) = 〈|n̂A(ω)|2〉,

SAB(ω) = 〈n̂†A(ω)n̂B(ω)〉, (6.21)

where n̂A(ω) and n̂B(ω) are the Fourier transforms of nA(t) and nB(t), respectively.

The dagger denotes complex conjugation. The data from the τFE algorithm (open
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symbols) in Fig. 6.2(g) and (h) compares well with spectra obtained from direct

Gillespie simulations of the full model (solid lines). This shows the τFE method indeed

captures the dynamics of nA and nB. We also provide a comparison against the spectral

densities obtained from conventional τ−leaping simulations in the adiabatic limit, i.e.,

simulations with constant rates α∗ and β∗ for the production events [Eq. (6.18)]. These

are shown as full markers in Fig. 6.2(g) and (h). One then finds more substantial

systematic deviations. This is because environmental fluctuations are discarded in the

adiabatic limit. The τFE algorithm on the other hand captures the stochasticity of

the environment to sub-leading order in λ−1 in each iteration step.

6.3.3 Bimodal genetic switch: three system-state dependent

environments, two species

We now consider a model studied in [26, 46], describing a single gene G with a promoter

site which can bind to a total of up to N molecules of protein. The number of protein

molecules bound, σ, plays the role of the environment in this setting. The rate for

transitions from σ to σ + 1 depends on the number of protein molecules. The reactions

in this model can be summarised as follows,

Gσ + P
λk+/Ω−−−−⇀↽−−−−
λk−

Gσ+1, for σ < N,

Gσ
Ωbσ−−→ Gσ +M,

M
d−→ ∅, M

β−→M + P, P
δ−→ ∅, (6.22)

where M and P refer to molecules of mRNA and protein, respectively. The production

rate bσ for mRNA depends on the number of protein molecules bound to the promoter.

We refer to [26, 46] for further details. In the following we write nM and nP for the

numbers of particles of either type. One interesting feature of this model is that the

distribution of the protein and mRNA populations can become bimodal, as illustrated

in Fig. 6.3. This leads to bistability, with trajectories transitioning between the two

modes of the joint distribution of nP and nM . Hence, the model describes a genetic

switch.

In this model only the production rate of mRNA molecules is affected by the state
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Gillespie
algorithm

(a) (b) (c)

(d) (e) (f)

algorithm

Figure 6.3: Stationary distribution for the numbers of mRNA and protein molecules (nM and
nP , respectively) in the model of a genetic switch [Eq. 6.17]. Data is shown for different values of
λ and for simulations of the full model by means of the Gillespie algorithm, and the τFE algorithm.
Parameters: N = 2,Ω = 50, b0 = b1 = 1, b2 = 20, d = 9.2, β = 50, δ = 1, k+ = 0.025, k− = 1.
The stationary distribution is obtained from a long run up to time t = 105. For the τFE algorithm
we use ∆t = 100/λ. For each of the three values of λ we report the Jensen-Shannon divergence
(JSD) between the distributions obtained from the two simulation methods.

of the environment. The average mRNA-production rate is found as

b∗ = k2
−b0 + k−k̃+b1 + k̃2

+b2

k2
− + k−k̃+ + k̃2

+
, (6.23)

with k̃+ = k+nP/Ω. The second moment of the production rate takes the form

σ2
bb ≡ 〈b̄2〉 − b∗2

= θ2

λ∆t

{
(b0 − b1)2k−

(
k2
− + k̃+k− − k̃2

+

)
+ (b0 − b2)22k−k̃+

(
k− + k̃+

)
+ (b1 − b2)2k̃+

(
k̃2

+ + k̃+k− − k2
−

)}
, (6.24)

with

θ2 = 2k−k̃+(
k2
− + k−k̃+ + k̃2

+

)3 . (6.25)

Details of the calculation leading to Eqs. (6.23) and (6.24) can be found in Ap-

pendix 6.10.

Figure 6.3 shows the stationary joint distribution of the number of mRNA and

protein molecules for different values of the time-scale separation parameter λ. The

figure shows data from Gillespie simulations of the full model [panels (a)–(c)], and data
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(a) (b)

(c) (d)

Figure 6.4: Sojourn times t` and th near the two modes of the bistable genetic switch (see also
Fig. 6.3). Panels (a) and (b) show the distribution of the time spent in the vicinity of each mode
(see text for details); data obtained from τFE algorithm is shown along with results from exact
Gillespie simulations of the full model (λ = 2000). In each panel we report the Jensen–Shannon
distance between the two distributions. Panels (c) and (d) show the mean sojourn times as a
function of the time-scale parameter λ. The parameters are as in Fig. 6.3, the lower mode is
(nM , nP ) = (10, 500), and the upper mode (nM , nP ) = (30, 1800). For the τFE algorithm we
use a time step of ∆t = 100/λ.

from the τFE algorithm [panels (d)–(f)]. The τFE algorithm captures the distribution

profile with two local maxima. For low values of λ (i.e., a relatively slow environmental

process) the distribution obtained from τFE tends to be wider than those from the

Gillespie algorithm. The agreement improves for faster environments, as indicated

again by the Jensen–Shannon distances in Fig. 6.3.

In Fig. 6.4, we show the distribution and means of the sojourn times t` and th near

the lower and higher modes of the stationary distribution. More precisely this is the

time between entering and leaving a designated region around each of the modes. The

lower maximum of the stationary distribution is sharper than the upper maximum

(Fig. 6.3). Accordingly, we have chosen a smaller region at the lower mode than at

the upper mode. For the lower mode, we use the region 0 ≤ nM ≤ 20, 0 ≤ nP ≤ 1100

which encloses the mode at (nM , nP ) = (10, 500). For the higher mode we use the

region 20 ≤ nM ≤ 80, 1100 ≤ nP ≤ 2700 enclosing the mode at (nM , nP ) = (30, 1800).

The data shown in the figure is constructed from one long sample path (run until

t = 106), recording the points in time at which the system enters or leaves either
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region. Gillespie simulations operate in continuous time and the τFE algorithm in

discrete time. In order to remove any artefacts resulting from this difference, the same

time resolution (0.05) is used in both algorithms for the measurement of arrival and

departure times. Because the lower mode is sharper than the upper maximum and

because the sizes of the two detection regions are different the sojourn time t` at the

lower mode is found to be smaller than that at the higher mode, th.

The distributions of sojourn times in Figs. 6.4 (a) and (b) indicate that the τFE

algorithm captures this dynamic quantity, provided the environmental process is

sufficiently fast. This is confirmed in panels (c) and (d), where we show the mean

sojourn times as a function of the relative speed λ of the environment compared to the

population dynamics. As seen in both panels, the τFE algorithm generates accurate

measurements of the mean sojourn times 〈t`〉 and 〈th〉 in the limit λ� 1.

At the same time, stochastic effects due to the random environmental process are

captured for large but finite λ. This can be seen in Fig. 6.4 (d): the mean sojourn

time 〈th〉 drops significantly as the environmental process becomes slower, and hence

additional noise is injected into the population (there is no environmental noise in the

adiabatic limit). While there are quantitative differences compared to exact simulations,

the τFE algorithm captures this reduction of 〈th〉. Panel (c) reveals that there are

also limitations to the precision of the τFE algorithm. The mean sojourn time 〈t`〉

near the lower mode is affected much less by a reduction of the time-scale separation

parameter λ than the mean sojourn time at the upper mode. This indicates that the

escape from this region is driven mostly by intrinsic noise rather than by environmental

stochasticity. While the data from the two algorithms remains within approximately

10% for sufficiently fast environmental dynamics (λ & 104) the τFE algorithm is unable

to capture the small rise of 〈t`〉 observed in Gillespie simulations for intermediate values

of λ.

In Table 6.1 we compare the the computing time required for both the Gillespie

algorithm and the τFE method for different values of λ. The data in the table is the

CPU time required to generate one sample path up to time t = 103, averaged over ten

runs. The model parameters are as in Figs. 6.3 and 6.4.

The full model comprises the reactions in the population and the environmental

switching. The rates for the former reactions are independent of λ, the rates for the
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latter scale linearly in λ. Accordingly, one expects the computing time for Gillespie

simulations of the full model to be linear in λ, with a non-zero intercept. The data in

the table is consistent with this. We note that Gillespie algorithm does not require any

time discretisation.

The running time for the τFE algorithm depends on the choice of the time step.

The time step in turn affects the accuracy of the outcome. If ∆t is large, then τFE

simulations are fast, but the approximation to the continuous-time full model becomes

less good. On the other hand the time step must not be too small, as the construction

of the algorithm requires sufficient averaging of the environmental process in each step

[Eqs. (6.11)–(6.13)]. The time step for the τFE algorithm in Figs. 6.3 and 6.4, and

in Table 6.1 is chosen inversely proportional to λ. This is to ensure that each time

step captures a sufficient number of switches of the environmental state. Accordingly,

we expect the computing time for the τFE algorithm to scale linearly in λ, with no

intercept. Again, the running times we measured in our simulations are consistent

with this expectation. Overall, Table 6.1 shows that the τFE algorithm is able to

generate data of the accuracy as in Figs. 6.3 and 6.4 while reducing the computing

effort approximately ten fold compared to full Gillespie simulations.

λ Gillespie τFE
1250 1.35 0.04
2500 1.89 0.08
5000 2.62 0.17
10000 4.30 0.31
20000 7.77 0.57

Table 6.1: Mean computation time (in seconds) required to simulate one sample path up to
t = 103 of the bimodal genetic-switch system defined in Eq. (6.22). Measurements are from ten
independent sample runs, using Gillespie simulations of the full model, and the τFE algorithm
respectively. Parameters are as in Fig. 6.3. For the τFE algorithm we set ∆t = 100/λ. The
values of λ used here are in the range of fast switching environments in which there is a good
agreement between both algorithms. The data shown in this table shows how faster the τFE
algorithm can be in comparison to the Gillespie algorithm.
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6.4 Numerical simulation of continuous-environ-

mental systems

6.4.1 Setup

We turn now to systems which are subject to an environment with continuous states.

Specifically, we follow [20] and assume that the environmental state σ follows an

Ornstein–Uhlenbeck process (see also [22, 47]),

dσ
dt = λ(m− σ) +

√
2λv2 η(t), (6.26)

where η(t) is Gaussian white noise of unit amplitude, in particular 〈η(t)η(t′)〉 = δ(t− t′).

The parameter m is the average value of σ in the long run, whilst v controls the

magnitude of noise. As before, the parameter λ > 0 indicates how quickly the

environment changes relative to the dynamics in the population; λ is the equivalent of

1/τc in the notation of [20].

The probability distribution of finding the environment in state σ at time t, given

that was in state σ′ at time t′, can be obtained from the Fokker–Planck equation for

the Ornstein–Uhlenbeck process, and is given by (see e.g. [48, 49])

qσ′→σ(t− t′) =√
1

2πv2(1− e−2λ(t−t′)) exp

−
(
σ − σ′e−λ(t−t′) −m

(
1− e−λ(t−t′)

))2

2v2 (1− e−2λ(t−t′))

 . (6.27)

For t→∞ (and t′ fixed) this quantity tends to the stationary distribution

ρ∗σ =
√

1
2πv2 exp

[
−(σ −m)2

2v2

]
. (6.28)

We note that it is not a requirement for the τFE algorithm that the environment

follows an Ornstein–Uhlenbeck process. However, both functions qσ′→σ(t− t′) and ρ∗σ
are required, as discussed in more detail below.

We proceed to describe how the τFE algorithm can be implemented for models

with continuous environments (Sec. 6.4.2).

In the case of discrete environments, continuous-time sample paths of the full model

can be generated using the conventional Gillespie algorithm. This is an exact procedure:

the ensemble of these sample paths faithfully describes the statistics of the full model.
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In Sec. 6.3 we have used this as a benchmark to test the τFE algorithm and choose the

time discretisation ∆t. We are not aware of any analogous exact simulation method

for models of discrete populations in a stochastic environment with continuous states.

In order to test the τFE algorithm we therefore compare outcomes against those from

approximation methods to generate paths of the combined set of the population and the

environment. Several such methods exist, we describe these in Sec. 6.4.3. The tests of

the τFE algorithm against the baseline of these methods are described in Sec. 6.5. We

stress that since the schemes employed for continuous environments are approximations,

using them as benchmark to choose ∆t requires careful attention depending on the

system under study. We explore below this in more detail.

6.4.2 Implementation of the τFE algorithm for continuous

environments

We proceed similar to discrete case in Sec. 6.2, replacing the sums over σ in Eqs. (6.2)

and (6.10) with integrals. We then have

R∗r(n) =
∫ ∞
−∞

dσρ∗σRr,σ(n), (6.29)

and the relation for the second moments turns into〈
Rr(n)Rs(n)

〉
= 1

∆t2
∫ ∞
−∞

dσ
∫ ∞
−∞

dσ′
∫ t+∆t

t
dt1

∫ t+∆t

t1
dt2

×
{
ρ∗σqσ→σ′(t2 − t1)

[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

]}
. (6.30)

Depending on the form of the stationary distribution ρ∗σ, the kernel qσ→σ′(t2 − t1)

and the rates Rr,σ(n) the integrals in Eqs. (6.29) and (6.30) can be carried out, and

closed-form analytical expressions can be obtained. In Sec. 6.5 we explore a number of

different examples, further scenarios are also discussed Appendix 6.12. Once the average

rates and the second moments are calculated, the τFE algorithm is implemented as

described in Sec. 6.2.3.

6.4.3 Conventional simulation approaches for discrete popu-

lations in continuous environments

In this section we summarise ‘conventional’ approaches to simulating discrete Markovian

systems subject to environmental dynamics with continuous states. By ‘conventional’ we
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mean methods which produce explicit (approximate) sample paths of the environmental

process. This is in contrast to the τFE algorithm, which generates paths only of the

system proper.

Gillespie algorithm with discretised environmental states (GADE)

This approach is based on a discretisation of the space of environmental states, time

remains continuous. Once such a discretisation for the environmental states is carried

out, the combined states of the population and environment are also discrete. Simula-

tions can be carried out using the conventional Gillespie method. We will refer to this

method as GADE (Gillespie approach with discretised environment).

The key step in this approach is to find an appropriate dynamics in the space

of discretised environmental states. We describe this in the context of the Ornstein–

Uhlenbeck process in Eq. (6.26). We discretise the environmental state into integer

multiples of ∆σ, i.e., the environment takes states . . . ,−2∆σ,−∆σ, 0,∆σ, 2∆σ, . . . .

Transitions from one state k∆σ can only occur to states (k ± 1)∆σ. The transition

rates are constructed such that this discrete process recovers the continuous Ornstein–

Uhlenbeck dynamics in the limit ∆σ → 0. The details of the construction are described

in Appendix 6.11, we here only report the main outcome. Specifically, the rates to

transition from state k∆σ to (k ± 1)∆σ can be chosen as

T±k = λ

2∆σ

[
±(m− k∆σ) + 2v2

∆σ

]
. (6.31)

This process can then be simulated using the standard Gillespie algorithm, along with

the events in the population. We note that the rates T±k need to be non-negative,

i.e., we require |m − k∆σ| < 2v2/∆σ, for all k. In practice, this can be achieved

by truncating the set of possible states k∆σ. More precisely, we disallow transitions

out of the region {k : |m − k∆σ| ≤ K}, with a given cutoff K. Provided that K is

sufficiently large truncations will only be required rarely. Once a cutoff K is chosen we

must require ∆σ ≤ 2v2/K to guarantee non-negativity of the T±k . The variance of the

Ornstein–Uhlenbeck process for σ is given by v2 in the long run [Eq. (6.28)], so K ∝ v

is a sensible choice. This results in maximum value for ∆σ which is also proportional

to v.
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Discrete-time simulation with explicit environmental dynamics (DEED)

Approximate sample paths of the combined system of population and environment can

also be generated in a discrete-time simulation. We refer to this as DEED (discrete-

time simulation with explicit environmental dynamics). The time step ∆t needs to be

sufficiently small to capture the details of the environmental process with characteristic

time scale τc = λ−1. We therefore require ∆t . λ−1. One possible implementation is

as follows:

1. Suppose we have arrived at time t, and the state of the population is n(t)

and that of the environment σ(t). Obtain σ(t+ ∆t) from Eq. (6.26) using the

Euler-Maruyama method [50].

2. Use σ(t) and n(t) to calculate the rates pr(t) = ∆t×Rr,σ(t)[n(t)] for r = 1, . . . , R.

3. Provided ∆t is small enough, the pr(t) are all less than one. To lowest order

in ∆t they are the probabilities that a reaction of type r occurs in the next ∆t.

For each r = 1, . . . , R implement one reaction of this type with probability pr(t).

With probability 1− pr(t) no reaction of type r occurs. Executing all reactions

that fire, one obtains n(t+ ∆t).

4. Increment time by ∆t, and go to step 1.

Step 3 disregards the possibility that a particular reaction fires multiple times during

one time step. This is a valid approximation, provided that the pr(t) = ∆t×Rr,σ(t) are

much smaller than one. As an alternative step 3 could be replaced by a conventional

τ -leaping step. The number of reactions of type r that fire is then a Poissonian random

variable with parameter pr(t).

Thinning algorithm by Lewis

A population subject to a dynamic external environment with continuous state space

can also be simulated using the so-called thinning algorithm by Lewis [51]. This

algorithm generates a statistically faithful ensemble of sample paths for Markovian

systems with discrete states and transition rates with explicit external time dependence.

In the context of our model the population is such a system. If the environmental

dynamics is independent of the population then realisations σ(t) for the environment
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can be generated in advance independently from the population. For instance, sample

solutions of the Ornstein-Uhlenbeck process in Eq. (6.26) could be generated. Each

such realisation σ(t) then determines a realisation of time-dependent rates Rr(n, t) ≡

Rr,σ(t)(n) for the population. The Lewis algorithm can then be used to produce sample

paths for the population dynamics.

In practice, numerical approximation schemes are required to generate realisations

for the environment. For example, Eq. (6.26) can be solved numerically using the Euler–

Maruyama method, with time step ∆t. As discussed above this time step needs to be

sufficiently small (∆t . λ−1) to resolve the short-time features of the environmental

process. The Lewis algorithm then uses this as an input and generates sample paths

for the population in continuous time.

6.5 Application of the τFE to continuous-environ-

mental models

In this section we test the τFE algorithm on a number of different examples of models

with continuous environmental states. Simulation outcomes are compared against those

from the algorithms described in Sec. 6.4.3.

6.5.1 Toy model: Population dynamics with production and

removal rates proportional to σ2

We first consider a production-removal process for a single species. The environmental

state σ(t) follows the Ornstein–Uhlenbeck process in Eq. (6.26). The corresponding

transition kernel qσ→σ′(τ) is given in Eq. (6.27), and the stationary distribution ρ∗σ

in Eq. (6.28). The production rate in the population is assumed to be Rb,σ = βσ2,

and the removal rate Rd,σ = δσ2. These are not chosen with any particular natural

system in mind, instead this example serves as an illustration (see also Appendix 6.12

for similar calculations for two related examples).

From (6.29) we obtain

R∗b = β(m2 + v2),

R∗d = δ(m2 + v2). (6.32)
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(a) (b)

(c) (d)

Figure 6.5: Simulation results for a production-removal process with rates b = βσ2 and d = δσ2

(Sec. 6.5.1), for the different algorithms described in Sec. 6.4. Parameters used: β = 1.1 and
δ = 1.0, m = 1, λ = 103, and v2 = 5× 10−4. Panel (a): mean value of the number of individuals
as function of time, obtained from 103 runs. Panel (b): stationary distribution of the environmental
state, ρ∗σ, for the GADE method and the DEED approach (the τFE algorithm does not simulate
the environment). The solid line in panel (b) is the analytical solution from Eq. (6.28). Panel (c):
distribution of the number of particles n in the population at time t = 10. Panel (d): spectral
density [Eq. (6.21)] obtained from 103 runs. We use ∆σ = 10−3 for the GADE simulations, and
∆t = 1/(100λ) = 10−5 for DEED. For the τFE algorithm, we set ∆t = 10/λ = 10−2.

The second moments of the rates Rb(n) and Rd(n) can be calculated from Eq. (6.30).

We find

〈
Rb(n)Rd(n)

〉
−R∗b(n)R∗d(n) =

βδv2e−2λ∆t

λ2∆t2
[
8m2eλ∆t + e2λ∆t

(
8m2(λ∆t− 1) + v2(2λ∆t− 1)

)
+ v2

]
. (6.33)

for the covariance. The expressions for the variances are similar, with suitable replace-

ments βδ → β2 and βδ → δ2 in the prefactor in Eq. (6.33). This covariance matrix

and the means in Eq. (6.32) are then used in the τFE algorithm.

Figure 6.5 shows simulation results from the τFE algorithm, as well as from the

GADE and DEED schemes (Secs. 6.4.3 and 6.4.3 respectively). Panel (a) shows that

all simulation methods result in linear growth (parameters are such that β > δ, i.e.,

the growth rate is always larger than the death rate). Panel (b) confirms that GADE

and DEED both generate the correct statistics for the stationary distribution of the

environmental process [the solid line is the Gaussian distribution in Eq. (6.28)]. In
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panel (c) we focus on a fixed time t = 10, and show that all three simulation methods

results in very similar distributions for the number of individuals in the population n

at that time. Panel (d) finally shows a dynamic quantity, the Fourier spectrum S(ω)

of the time series n(t), or equivalently the Fourier transform of the correlation function

of n. Again, all three simulation methods produce very similar results.

In Table 6.2 we compare the average computing time required by the different

algorithms to generate a trajectory up to time t = 103. We show data for varying

values of the typical time scale λ−1 of the environmental process. GADE does not

require any discretisation of time. For the DEED approach we use ∆t = 1/(100λ). For

the τFE method we choose ∆t = 10/λ. This is in-line with the requirements ∆t . λ−1

for DEED, and ∆t & λ−1 for τFE. The choice of time steps will be discussed in further

detail below.

The data in the table indicates that the simulation time scales approximately

linearly with λ for all three algorithms tested, provided λ is sufficiently large. This

is to be expected: The rates for the environmental events in the GADE simulations

(Sec. 6.4.3) scale as λ, and therefore dominate the events in the population for λ� 1.

Each typical Gillespie step then advances time by an amount proportional to λ−1, and

O(λ) such steps are required to reach the designated end time. A similar argument

applies to the DEED algorithm (Sec. 6.4.3) and for the τFE algorithm: For both of

these we use time steps ∆t ∝ λ−1, so again the number of iteration steps required

scales as λ.

The key message from Table 6.2 is that, for the choice of time steps made in the

λ−1 GADE DEED τFE
1× 10−2 28.47 3.84 0.79 ×10−2

5× 10−3 53.20 7.88 0.16 ×10−1

1× 10−3 288.30 40.91 0.08
5× 10−4 576.69 82.78 0.15
1× 10−4 3022.47 397.63 0.79

Table 6.2: Mean computing time (in seconds) required for one simulation run of the model
described in Sec. 6.5.1 until t = 103. Data is from ten independent runs, parameters are as in
Figure 6.5, i.e., β = 1.1, δ = 1.0,m = 1, and v2 = 5× 10−4. For GADE we set ∆σ = 10−3; for
the DEED approach we set λ∆t = 1/100; for the τFE algorithm we set λ∆t = 10. The values of
λ used here are in the range of fast switching environments in which there is a good agreement
between all the algorithms. The data shown in this table shows how faster the τFE algorithm can
be in comparison to the others schemes.
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table, the computing time required by the τFE algorithm is substantially lower than

that for the other two simulation methods. Given the linear dependence on λ, this

increase in efficiency can be extrapolated to environments operating on time scales

faster than the smallest time scale shown in the table (i.e., to the range λ > 104). We

note that, due to the smaller time step, DEED produces a finer resolution of sample

paths in time than τFE. When we make our comparison we have average macroscopic

quantities in mind (such as those in Fig. 6.5), and not necessarily the generation of

individual paths with the highest possible resolution in time.

We now briefly discuss the choice of time steps for the τFE method and for DEED.

In principle, we could have increased or decreased the step for either method. This

would then reduce or increase the computing time required to reach the designated end

point. It might also affect the accuracy of the outcome. Our choice of ∆t = 10/λ for

τFE is motivated by the good agreement with GADE in Fig. 6.5, noting that GADE

does not require any discretisation of time. Similarly, for the example discussed below

in Sec. 6.5.2 good agreement with analytical predictions is found for this choice, see the

regime of small λ−1 in Fig. 6.6. Our conclusion is therefore that the τFE algorithm is

able to produce results of the accuracy as in Fig. 6.5 with computing times as reported

in Table 6.2.

The DEED algorithm requires ∆t . λ−1 to be able to resolve the environmental

dynamics. Our choice ∆t = 1/(100λ) in Table 6.2 is well below this requirement,

and the algorithm can in principle be speed up by choosing a larger time step. If we

were to exhaust the limit and used ∆t = λ−1 for DEED then this would reduce the

computing time by about a factor of one hundred in Table 6.2. For for λ−1 = 10−3

this would mean a reduction from approximately 40 seconds to 0.4 seconds per sample

path. Using this larger time step also results in noticeable deviations in measurements

of the quantities in Fig. 6.5 from continuous-time GADE simulations. But even if we

accept this and use the hundred fold larger time step for DEED the τFE algorithm

would remain approximately five times faster, requiring 0.08 seconds per sample path

at λ−1 = 10−3, see Table 6.2.

We have also conducted tests with Lewis’ thinning algorithm. To do this we have

first generated sample paths of the Ornstein–Uhlenbeck process for the environment

[Eq. (6.26)] using an Euler–Maruyama scheme. This is then fed into the Lewis’
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algorithm for systems with time dependent rates. Given that the typical time scale of

the environment is λ−1, the largest sensible time step for the Euler–Maruyama scheme

is ∆t = λ−1, similar to DEED. This choice minimises the computing time for the

Lewis’ approach. We therefore use this time step to compare the efficiency of the Lewis’

approach with that of τFE. We find that the thinning algorithm is considerably slower

than the τFE approach. For λ−1 = 10−3, for example, we obtain a simulation time of

approximately 13 seconds per run up to t = 103 compared to 0.08 seconds for τFE (see

Table 6.2).

6.5.2 Genetic switch with Hill-like regulatory function

As a final example we consider a model of protein production subject to a continuous

environment discussed in [20]. The model entails positive feedback, in that the presence

of protein has the potential to increase production of protein. There is one single

species in the model (protein), we write the number of protein molecules as n. We also

define x = n/Ω, where Ω is again a model parameter setting the typical size of the

system. The production rate of protein is given by

f(x, σ) = α0 + (1− α0 + σ)Θ(x− x0), (6.34)

where 0 < α0 < 1 and x0 > 0 are constants, and where Θ(x) is the Heaviside function.

Protein molecules also decay with unit rate. In the absence of environmental influence

(σ ≡ 0), the production rate is thus unity when x > x0, and α0 < 1 when x < x0. For

σ ≡ 0 the mean re-scaled number of protein follows the rate equation

˙̄x = f(x̄)− x̄, (6.35)

where time is measured in units of generations. We choose α0 < x0 < 1. Eq. (6.35)

has three fixed points x∗1 < x∗2 < x∗3, where x∗1 = α0 and x∗3 = 1 are attractors, and

x∗2 = x0 is a repeller. Similar to [20], we refer to x∗1 and x∗3 as the ‘low’ and ‘high’ states,

respectively.

The environmental process σ(t) modulates the production rate when x > x0. As

in [20] we asssume that σ follows an Ornstein-Uhlenbeck process of the form given in

Eq. (6.26). The noisy system has the potential to switch between the ‘high’ and ‘low’

states. To test the performance of the τFE algorithm, we focus on the mean switching
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Figure 6.6: Mean switching time (MST) from the high to the low state in the model described
in Sec. 6.5.2. For the τFE algorithm we used ∆t = 10/λ, for GADE ∆σ = 0.01, and for DEED
∆t = 10−4. Theory curves are from Eqs. (8) and (10) in [20]. Model parameters are as in the
top right panel of Fig. 2 in [20] (Ω = 5000, v = 0.1, α0 = 0.01, x0 = 0.93).

time (MST) to transit from the high state to the low state. This time is studied and

calculated in [20], we denote it by 〈τhigh→low〉. In simulations we start the system in

the high state, and measure the first time the system reaches the low state.

Only the production of protein is affected by the state σ of the environment, we

write Rprod,σ(n) = f(x, σ), with f as in Eq. (6.34). Inserting this in Eqs. (6.29) and

(6.30), and after straightforward calculations, we obtain

R∗prod(n) = α0 + (1− α0)Θ(n/Ω− x0), (6.36)

and the second moment

〈
(Rprod(n))2

〉
− [R∗prod(n)]2 = 2v2

λ2∆t2
[
λ∆t+ (e−λ∆t − 1)

]
Θ(n/Ω− x0). (6.37)

In Fig. 6.6 we show the MST measured in simulations using the different approaches

described in in Sec. 6.4. Assaf et al. [20] report non-monotonous behaviour of the

MST as a function of τc = λ−1. As seen in Fig. 6.6 the τFE algorithm reproduces

this behaviour. For fast environmental dynamics (low λ−1) the MST obtained from

the τFE algorithm is in good agreement with measurements obtained from the other

simulation methods, and with the analytical approximations from [20]. The agreement

extends over several decades of values of τc = λ−1.

At the same time we observe that the τFE algorithm requires significantly less

computing time than the GADE or DEED approaches. For λ−1 = 10−1 for example,

we measured an average computing time of 2× 10−3 seconds to generate one run of
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the system up to time 103 with the τFE algorithm (∆t = 10/λ). GADE required 0.674

seconds, and DEED 4.2 seconds (for a time step ∆t = 10−4).

We note that we have implemented DEED as described in Sec. 6.4.3. In particular

at most one reaction of each type can fire in each time step (step 3 of the algorithm).

This requires a sufficiently small time step ∆t to ensure pr(t) < 1 for all r. This is

achieved by our choice ∆t = 10−4. Alternatively step 3 of the DEED algorithm could

be replaced by a (conventional) τ -leaping step. Larger choices of the time step ∆t are

then possible, up to the limit of ∆t ≈ λ−1 to ensure that the environmental dynamics

are captured appropriately. Focusing on λ−1 = 10−1 we expect that increasing the

time step by a factor of a thousand (from 10−4 to 10−1) would reduce the simulation

time by at most a factor of a thousand for a τ -leaping version of DEED. This would

result in a computing time of approximately 4 × 10−3 for one simulation run up to

t = 103 instead of the 4.2 seconds reported for DEED in the previous paragraph. This

is comparable with the CPU time required by the τFE algorithm (2× 10−3 seconds),

but would resolve environmental fluctuations with lower accuracy. For example one

observes systematic deviations for the stationary distribution of the environment in

Fig. 6.5(b).

6.6 Discussion and conclusions

In summary, we have presented τFE, a variant of the τ -leaping stochastic simulation

algorithm for systems subject to fast environmental dynamics. Just like conventional

τ -leaping the algorithm operates in discrete time. The rates of the reactions in the

system proper are treated as constant during each time step, and the numbers of

different reactions firing in one step have Poissonian statistics.

The key difference compared to conventional τ -leaping is the external environment.

In the full continuous-time model reaction rates which depend on the environmental

state fluctuate in time even when the state of the population does not change. An

adiabatic approximation would consist of assuming an infinitely fast environment and of

replacing the reaction rates by their means with respect to the stationary distribution

of the environmental process. This is justified if the relaxation time scale of the

environmental process is infinitely shorter than the time step of the simulation.
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The τFE algorithm goes beyond this approximation, and is based on time averages

of reaction rates over the finite time step. For finite speeds of the environment these

average rates are random variables. If the environmental dynamics is fast we can

make a Gaussian approximation. The rates feeding into the τ -leaping step are clipped

Gaussian random numbers designed to retain the first and second moments of the

actual environmental dynamics. It is important to note that this not the same as

drawing an environmental state σ from the stationary distribution ρ∗σ, and then using

the rates Rr,σ(n) for the next τ -leaping step. Instead, the covariance matrix of the rates

Rr(n) in Eq. (6.8) is calculated as described in Eqs. (6.10) for discrete environments,

and in Eq. (6.30) for continuous environmental states.

The choice of time step for the τFE algorithm requires careful consideration. On

the one hand the time step must be long enough to justify the averaging procedure

over the environmental dynamics and the Gaussian assumption for the reaction rates

in the τ -leaping step. Broadly speaking λ∆t must be sufficiently large (λ∆t� 1). At

the same time the so-called leap condition for the τ -leaping part of the algorithm must

be fulfilled [37]. This means that the state of the system must not change significantly

in each iteration step, as a constant state n of the population is an assumption made in

setting up the τ -leaping. Mathematically, this means that the change of the number of

particles in the system in a time step must be much smaller than the typical number of

particles in the system. Assuming that the stoichiometric coefficients do not scale with

the system size Ω this means that ∆t×Rr,σ(n) must be much smaller than Ω. Noting

that Rr,σ(n) is of order Ω in many applications we thus require that ∆t is much smaller

than one. For λ� 1 and ∆t proportional to λ−1 this condition is often relatively easy

to meet in practice.

We have tested the τFE algorithm on a number of systems with discrete and

continuous environments. This includes examples of systems which can be addressed

analytically and models motivated by applications in biology. Our tests focus on

stationary distributions, but also dynamic features such as Fourier spectra of fluctuations

or first-passage time distributions. In all cases we have tested the τFE method produces

good agreement with results from conventional simulation methods in the regime of

fast environmental dynamics. This is the regime for which τFE is designed. Naturally,

quantitative deviations are found when the time scales of the environmental dynamics
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and system proper are insufficiently separated.

We stress that τFE goes beyond simulations in the adiabatic limit, and is able

to capture the dependence of macroscopic observables on the time scale separation,

provided this dependence is sufficiently strong [see e.g. Figs. 6.4(d) and 6.6)]. At the

same time our analysis also reveals limitations of the algorithm. If the dependence

of observables on the time scale separation is weak such as in Fig. 6.4(c), then τFE

may not be able to fully resolve these dependencies. When the environment is fast

the quantitative agreement with simulations of the full system is however still within

approximately 10% in the example in Fig. 6.4(c).

The computing time required for the τFE algorithm to generate sample paths up to a

designated end time is proportional to the inverse time step. The time step on the other

hand is typically a multiple of the characteristic time scale λ−1 of the environmental

dynamics. This means that the computational effort scales approximately linearly in the

time scale separation λ. In all cases we have tested we found that τFE is considerably

more efficient for the measurement of macroscopic quantities than alternative simulation

algorithms.

In summary, we think the τFE algorithm has passed the initial selection of tests

presented in this paper. It provides an promising approach to probing the regime of fast

environmental dynamics, and captures effects induced by extrinsic noise beyond the

adiabatic limit. The algorithm is particularly valuable for systems in which the regime

of intermediate time scale separation can be accessed with conventional simulation

methods. The accuracy of the τFE algorithm can then be assessed in this regime (an

example can be found in Fig. 6.6). If the comparison is favourable, then it is justified

to use τFE in the regime of increasing time scale separation.
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6.7 Appendix A: Second moments of rates

In this Appendix we calculate the second moments of the quantities Rr(n) (r = 1, . . . , R)

defined in Eq. (6.8). Without loss of generality we assume that the time interval in

question starts at t = 0, the end point is then ∆t. Assuming the space of environmental

states is discrete, we have

〈
Rr(n)Rs(n)

〉
= 1

∆t2
∫ ∆t

0
dt1

∫ ∆t

0
dt2

〈
Rr,σ(t1)(n)Rs,σ(t2)(n)

〉
= 1

∆t2
∫ ∆t

0
dt1

∫ ∆t

t1
dt2

〈
Rr,σ(t1)(n)Rs,σ(t2)(n)

〉
+ 1

∆t2
∫ ∆t

0
dt2

∫ ∆t

t2
dt1

〈
Rr,σ(t1)(n)Rs,σ(t2)(n)

〉
= 1

∆t2
∑
σσ′

∫ ∆t

0
dt1

∫ ∆t

t1
dt2 ρ∗σqσ→σ′(t2 − t1)Rr,σ(n)Rs,σ′(n)

+ 1
∆t2

∑
σσ′

∫ ∆t

0
dt2

∫ ∆t

t2
dt1 ρ∗σ′qσ′→σ(t1 − t2)Rr,σ(n)Rs,σ′(n)

= 1
∆t2

∑
σσ′

∫ ∆t

0
dt1

∫ ∆t

t1
dt2 ρ∗σqσ→σ′(t2 − t1)Rr,σ(n)Rs,σ′(n)

+ 1
∆t2

∑
σσ′

∫ ∆t

0
dt1

∫ ∆t

t1
dt2 ρ∗σqσ→σ′(t2 − t1)Rr,σ′(n)Rs,σ(n). (6.38)

In the first step we have applied the definition of the over-bar average [Eq. (6.8)]. In

the third step we have carried out the average over realisations of the environmental

process. In the last step we have renamed t1 ↔ t2 and σ ↔ σ′ in the second term.

Therefore

〈
Rr(n)Rs(n)

〉
= 1

∆t2
∑
σσ′

∫ ∆t

0
dt1

∫ ∆t

t1
dt2 ρ∗σqσ→σ′(t2 − t1)

×
[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

]
. (6.39)

Up to a shift of the start point of the time step, this is identical to Eq. (6.10).

As explained in Section 6.4.2, the sums over σ become integrals when the environ-

ment takes continuous states. We then find Eq. (6.30).
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When the environmental space is discrete, we can use Eq. (6.7) and find

〈
Rr(n)Rs(n)

〉
= 1

∆t2
∑
σσ′

∫ ∆t

0
dt1

∫ ∆t

t1
dt2 ρ∗σρ∗σ′

[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

]

+ 1
∆t2

∑
σσ′

M∑
`=2

∫ ∆t

0
dt1

∫ ∆t

t1
dt2 ρ∗σc`,σv`,σ′e−λµ`(t2−t1)

×
[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

]
=Rr,avg(n)Rs,avg(n)

+ 1
∆t2

∑
σσ′

M∑
`=2

ρ∗σc`,σv`,σ′
[
Rr,σ(n)Rs,σ′(n) +Rr,σ′(n)Rs,σ(n)

]
×
∫ ∆t

0
dt1

∫ ∆t

t1
dt2 eλµ`(t2−t1). (6.40)

6.8 Appendix B: Further details for systems with

two species and two environmental states

The case of two species and two environmental states (S = 2,M = 2) was studied in

[38], and a simple version of the τFE algorithm was presented for this restricted case.

We assume σ switches from state 0 to state 1 with rate λk1, and from 1 to 0 with rate

λk0. The environmental transition matrix then becomes

A =

 −k1 k0

k1 −k0

 , (6.41)

whose eigenvalues are µ1 = 0 and µ2 = −(k0 + k1). The respective eigenvectors take

the form

v1 = ρ∗ = 1
k0 + k1

 k0

k1

 and v2 =

 1

−1

 , (6.42)

where ρ∗ has been normalised to represent the stationary distribution for σ. The

coefficients c2,0 and c2,1 are obtained from Eq. (6.6), for the initial conditions ρ(0) =

(1, 0) and ρ(0) = (0, 1). We find

c2,0 = k1

k0 + k1
and c2,1 = −k0

k0 + k1
. (6.43)

Putting all together in Eq. (6.13), and after straightforward calculations we arrive at

Ξrs ≡
〈
Rr(n)Rs(n)

〉
−R∗r(n)R∗s(n) = θ2

λ∆t [Rr,1(n)−Rr,0(n)] [Rs,1(n)−Rs,0(n)] ,(6.44)
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where θ2 = 2k0k1/(k0 + k1)3. The indices r and s stand for reactions affected by the

environment. As explained in Section 6.2.3, to simulate the τFE algorithm we need to

draw correlated Gaussian random numbers Rr with means

R∗r(n) = k0Rr,0 + k1Rr,0

k0 + k1
, (6.45)

for r = 1, 2, and covariance matrix

Σ =

 Ξ11 Ξ12

Ξ21 Ξ22

 . (6.46)

One way to do this is by drawing independent Gaussian random numbers z1 and z2

with mean zero and unit variance, and then to set R1(n)

R2(n)

 =

 R∗1(n)

R∗2(n)

+ C

 z1

z2

 , (6.47)

with a matrix C that fulfils CCT = Σ, where T denotes the transpose. This matrix is

not unique. We use

C = Σ√
θ2/(λ∆t)

{
[R1,1(n)−R1,0(n)]2 + [R2,1(n)−R2,0(n)]2

} . (6.48)

6.9 Appendix C: Birth-death process with two species

and three environmental states

In the example in Sec. 6.3.2 we have the following transition matrix for the environmental

process

A =


−k1 0 k0

k1 −k2 0

0 k2 −k0

 . (6.49)

The eigenvalues of this matrix are

µ1 = 0, µ2 = −1
2 (k0 + k1 + k2 + Γ) , and, µ3 = −1

2 (k0 + k1 + k2 − Γ) , (6.50)

with Γ =
√
k2

0 + k2
1 + k2

2 − 2(k0k1 + k1k2 + k2k0). The associated eigenvectors take the

form

v1 = ρ∗ = 1
k0k1 + k1k2 + k2k0


k2k0

k0k1

k1k2

 , (6.51)
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and

v2 =


(−k0 + k1 − k2 + Γ)/(2k2)

(k0 − k1 − k2 − Γ)/(2k2)

1

 , v3 =


(−k0 + k1 − k2 − Γ)/(2k2)

(k0 − k1 − k2 + Γ)/(2k2)

1

 .
(6.52)

Using Eq. (6.6) and three sets of initial conditions (each concentrated on one environ-

mental state) we find

c2,0 = k1k2 (k0 + k1 + k2 − Γ)
2Γ(k0k1 + k1k2 + k2k0) , c3,0 = −k1k2 (k0 + k1 + k2 + Γ)

2Γ(k0k1 + k1k2 + k2k0) , (6.53)

as well as

c2,1 = −k2 (k0(k1 + 2k2) + k1 (−k1 + k2 + Γ))
2Γ(k0k1 + k1k2 + k2k0) , (6.54)

c3,1 = k2 (k0(k1 + 2k2) + k1 (−k1 + k2 − Γ))
2Γ(k0k1 + k1k2 + k2k0) , (6.55)

and finally

c2,2 = k0 (−k2
1 − k2

2 + k0(k1 + k2) + k1Γ + k2Γ)
2Γ(k0k1 + k1k2 + k2k0) , (6.56)

c3,2 = k0 (k2
1 + k2

2 − k0(k1 + k2) + k1Γ + k2Γ)
2Γ(k0k1 + k1k2 + k2k0) . (6.57)

Putting all together in Eqs. (6.2) and (6.13) and after further tedious but straightforward

calculations, we arrive at the expressions in Eqs. (6.18) and (6.19).

In order to draw the correlated Gaussian random numbers ᾱ and β̄ required for the

τ -leaping step, we proceed as in Appendix 6.8. We construct the covariance matrix Σ

[Eq. (6.46)] and then find a matrix C such that CCT = Σ. We then draw independent

Gaussian random numbers z1 and z2 with mean zero and unit variance, and use an

expresion analogous to that in Eq. (6.47) to obtain ᾱ and β̄. The matrix C we use is

C = A


σαα +B

σαβ
1

1 σββ +B

σαβ

 , (6.58)

with σαα and σαβ as given in Eq. (6.19), and

A = σαβ√
σαα + σββ +B

, (6.59)

and

B =
√

3k0k1k2

λ∆t(k0k1 + k1k2 + k2k0)2 × |α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0)|. (6.60)
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6.10 Appendix D: Bimodal genetic switch

For the model in Sec. 6.3.3 the rates of the environmental transitions depend on the

number of proteins nP in the population. We assume that nP remains constant during

each τ -leaping step. The environmental transition matrix then becomes

A =


−k̃+ k− 0

k̃+ −k̃+ − k− k−

0 k̃+ −k−

 , (6.61)

with k̃+ = k+nP/Ω. The eigenvalues of this matrix are

µ1 = 0, µ2 = −k− − k̃+ −
√
k−k̃+, µ3 = −k− − k̃+ +

√
k−k̃+, (6.62)

while the associated eigenvectors take the form

v1 = ρ∗ = 1
k2
− + k−k̃+ + k̃2

+


k2
−

k−k̃+

k̃2
+

 ,

v2 =



√
k−/k̃+(

−
√
k− −

√
k̃+

)
/
√
k̃+

1

 , and, v3 =


−
√
k−/k̃+(√

k− −
√
k̃+

)
/
√
k̃+

1

 . (6.63)

Applying Eq. (6.6) for different initial conditions as above, we obtain

c2,0 = k̃
3/2
+

2
√
k−

(
k− +

√
k−k̃+ + k̃+

) , c3,0 = − k̃
3/2
+

2
√
k−

(
k− −

√
k−k̃+ + k̃+

) , (6.64)

as well as

c2,1 = −
k̃+ +

√
k−k̃+

2
(
k− +

√
k−k̃+ + k̃+

) , c3,1 = −
k̃+ −

√
k−k̃+

2
(
k− −

√
k−k̃+ + k̃+

) , (6.65)

and finally

c2,2 = k−

2
(
k− +

√
k−k̃+ + k̃+

) , c3,2 = k−

2
(
k− −

√
k−k̃+ + k̃+

) . (6.66)

Putting this together in Eqs. (6.2) and (6.13) and after straightforward calculations,

we arrive at the expressions in Eqs. (6.23) and (6.24).

Since only one reaction is affected by the environmental state, it is only necessary

to drawn one Gaussian random number with mean b∗ and variance σbb in each step of

the τFE algorithm, with b∗ and σbb given in Eqs. (6.23) and (6.24) respectively.
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6.11 Appendix E: Gillespie algorithm with discre-

tised environmental dynamics (GADE)

In this Appendix we briefly describe the constructions of the rates given in Eq. (6.31).

They define a continuous-time dynamics on a discrete state space approximating the

Ornstein–Uhlenbeck process in Eq. (6.26).

Matching the first moments of movements. We first look at the mean drift of σ, i.e.,

the mean change of σ per unit time. Suppose the environment is in a given state σ.

The mean drift in the Ornstein–Uhlenbeck process [Eq. (6.26)] is then λ(m− σ).

Suppose now the above discrete-σ process is in state σ = k∆σ. Then σ increases to

σ + ∆σ with rate T+
k and decreases to σ −∆σ with rate T−k . The expected change

(per unit time) is therefore ∆σ × (T+
k − T−k ).

We conclude that we need to impose

∆σ × (T+
k − T−k ) = λ(m− k∆σ). (6.67)

Matching the variance of movements. Next we look at the variance of movements of σ.

For the Ornstein–Uhlenbeck process in Eq. (6.26) the second moment of movements

(per unit time) is given by 2λv2. In the discrete-σ process, the second moment of

movements is (∆σ)2 × (T+
k + T−k ). To match the Ornstein–Uhlenbeck process, we then

need to impose

(∆σ)2 × (T+
k + T−k ) = 2λv2. (6.68)

Overall solution. Simultaneously solving Eqs. (6.67) and (6.68) for T+
k and T−k we

arrive at Eq. (6.31).

6.12 Appendix F: Additional examples of production-

removal processes in continuous environments

In this Appendix we include results for the variances and covariances
〈
Rr(n)Rs(n)

〉
−

R∗r(n)R∗s(n) for two further exemplar systems in which the environment follows the

Ornstein–Uhlenbeck process in Eq. (6.26). We set m = 0 for both examples. Both

systems describe production and removal dynamics of a single species. In the first
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example, production and removal rates are proportional to σ when σ > 0 and zero

otherwise. In the second example the rates are each proportional to |σ|. These examples

are not used in the main paper, we report them here for completeness, as they may

prove useful for future applications of the τFE algorithm.

6.12.1 Rates Rr,σ(n) = αrσΘ(σ)

We look at the example Rr,σ(n) = αrσΘ(σ), where Θ(σ) is the Heaviside function,

Θ(σ) = 1 for σ > 0 and Θ(σ) = 0 otherwise. For m = 0, we find

R∗r(n) = αr
v√
π
, (6.69)

and

〈
Rr(n)Rs(n)

〉
−R∗r(n)R∗s(n) =

αrαsv
2

24π∆t2

 1
λ2

[
24π (λ∆t− 1)− π2 + 12 log2(2)

]
+ 4e−λ∆t

λ2

[
3
(

6
√
e2λ∆t − 1 + π

)

− 4eλ∆t log
(√

e2λ∆t − 1 + eλ∆t
)

+ 6 tan−1
(

1√
e2λ∆t − 1

) ]
− 32
λ2Re

(
i sin−1

(
eλ∆t

))
− 6

[
1
λ2 log2

(√
1− e−2λ∆t + 1

)
+ 4∆t

λ
log

(√
1− e−2λ∆t + 1

)
− 4∆t log(2)

λ

− log(4)
λ2 log

(√
1− e−2λ∆t + 1

)
− 4∆t

λ
tanh−1

(
e−λ∆t

√
e2λ∆t − 1

)

− 2
λ2Li2

(1
2

(
1−

√
1− e−2λ∆t

))
+ log2(2)

λ2 + 2∆t2
]
− 24

, (6.70)

where Re(·) denotes the real part, and Li2(·) is the polylogarithm of order 2.

6.12.2 Rates Rr,σ(n) = αr|σ|

For this case (and setting again m = 0), we find

R∗r(n) = αr
2v√
π
, (6.71)
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and

〈
Rr(n)Rs(n)

〉
−R∗r(n)R∗s(n) =

αrαsv
2

6π∆t2

12∆t
λ

[
−2 log

(√
1− e−2λ∆t + 1

)
+ 2 tanh−1

(√
1− e−2λ∆t

)
+ π + log(4)

]

+ 1
λ2

72e−λ∆t
√
e2λ∆t − 1− 6 log2

(1
2

(√
1− e−2λ∆t + 1

))

+ 24e−λ∆t tan−1
(

1√
e2λ∆t − 1

)
− 48 tanh−1

(
e−λ∆t

√
e2λ∆t − 1

)

+ 12Li2
(1
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(
1−

√
1− e−2λ∆t

))
− π2 − 12π + 12 log2(2)

− 12
(
∆t2 + 2

).
(6.72)
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Chapter 7

Conclusions

7.1 Overview of the thesis

Throughout this thesis, we have explored several biological scenarios subject to different

types of changing environments. We have studied these systems using methods from

stochastic processes, applying tools from mathematics and physics by using a number

of theoretical, numerical and experimental frameworks.

Broadly speaking, the study carried out in this thesis can be divided into two main

groups: the first one, composed of Chapters 3 and 4, focused on the study of the

evolution of resistance in cell populations subject to drug therapies of one or two drugs.

The environment in these systems (which specified the drug concentrations applied)

varied deterministically. The second group, composed of Chapters 5 and 6, focused

on the study of fluctuating environments in different biological contexts. We explored

both discrete and continuous environments.

Although the focus on each chapter was similar, i.e., the study of the effect of

environments on biological systems, the approach used in each of them was different. In

Chapter 3, we analysed experimental data by comparing it against numerical simulations

of a stochastic model we developed. In Chapters 4 and 5, we adopted a more theoretical

point of view, focussing on developing methods to formulate theoretical predictions. In

Chapter 6, the focus was on the optimisation of simulations of stochastic systems.

All in all, the stochastic methods we developed allowed us to deduce relevant

features of the different contexts we studied. The results from Chapters 3 and 4,

for example, are of potential interest in clinical treatments to prevent the spread
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of resistance. The findings from Chapter 5 are pertinent in evolutionary biology to

understand the evolution of mating types in isogamous species with synchronous sex.

Lastly, the results from Chapter 6 allow a more effective numerical studies of biological

systems in fast fluctuating environments.

We present below a summary of the results of each Chapter, focusing on achievements

obtained with the different methods we employed, the challenges each system presented,

and the relevance of our findings.

7.2 Summary of results

Chapter 3: Mutators drive evolution of multi-resistance to antibiotics

In this chapter, the approach employed was to develop a stochastic model that could

capture the main features of an experimental setup of bacterial populations in single-

drug and combination therapies. The experiments included several properties that

were relevant in the emergence of resistance, such as diauxic growth, dilutions, and

competition. Our model incorporated these through a framework based on the com-

petitive Lotka-Volterra equations and individual-based variants representing these

equations. Since the bacterial populations in the experiments could become large, the

numerical simulations of our model became considerably slow when using standard

continuous-time algorithms (e.g., Gillespie algorithm) for these cases. This occurs given

the large number of events per unit time when populations are large. To deal with this

problem, we developed a discrete-time numerical scheme using binomial distributions

that sped up the simulations without losing significant precision.

Overall, the predictions of our approach showed a good agreement with experimental

observations. The proportion of resistant bacteria, for example, was qualitatively similar

to experiments. Both experiments and simulations showed that the presence of mutators

allows multi-drug resistance to evolve during single-drug and combination therapies,

suggesting that direct selection is not necessary for multi-drug resistance to occur

during both therapies. These results are of potential clinical relevance as they suggest

that combination therapy may not necessarily prevent the emergence of resistance in

infections with higher mutation rates, which are fairly common in real-life situations.

The implementation of stochastic modelling in this study brought an additional
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perspective of the behaviour of the system in terms of interactions between individuals.

Our model, for example, does not consider the possibility of mutating directly from

sensitive to double resistant strains, showing that sequential acquisition of multi-drug

resistance can be a valid mechanism of resistance evolution. Besides, the numerical

scheme developed here may allow us to design additional experimental setups by

previously exploring the system evolution for different parameters in a fast way.

Chapter 4: Competition delays multi-drug resistance evolution during com-

bination therapy

In this chapter, the approach we employed was to develop a theoretical framework to

calculate the probability of resistance of a population in combination therapy of two

drugs assuming three growth models: exponential, logistic, and competitive logistic.

Our approach was based on multi-branching non-homogeneous processes, using as

starting point the work by Foo and Michor for an exponential growth model [1]. In our

analysis, we achieved to deduce analytical results for exponential growth models that

had not been previously reported. We adapted Foo and Michor’s framework for the

logistic models, which required the calculation of their extinction probabilities of simple

birth-death processes. The computation of the probabilities of resistance required the

developing of strategies to calculate numerically the integrals involved in a fast way.

The predictions of our model were tested against numerical simulations carried out

using the Gillespie algorithm for constant drug treatments, and the Lewis’ thinning

algorithm for time-dependent drug treatments.

Our theoretical/numerical framework allowed us to show the delaying effect of

competition on the emergence of resistance. We were able to not only to explore a

wide range of parameters of the system, but also to explore the effect of clinical-based

dosing schedules. Our results showed that the optimum treatment, i.e., the one that

maximises the typical time of emergence of resistance, depends on the type of the

growth model chosen. In particular, we showed that when competition is present, the

optimum treatment is found when both drugs are completely out of phase. This result

has been reported in similar contexts (see e.g., [2]). These results suggest that how a

particular infection grows and competes with others could have important implications

for designing clinical treatments aimed at combatting resistance evolution
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Chapter 5: Switching environments, synchronous sex, and the evolution of

mating types

In this chapter, we adopted a theoretical approach that combined calculations from

branching processes and methods from number theory in the estimation of the stationary

distribution of the number of mating types in different environmental switching regimes.

As a starting point, we used a model developed by Constable and Kokko [3]. The first

focus of this study was the case of non-switching environments in which we exploited

properties of partitions of integer numbers for the estimation of the production and

removal rates of the number of mating types. Our method allowed us to deduce

exact analytical solutions by assuming the system was in its stationary state. These

results had not been previously reported. The production and annihilation rates were

then inserted in a switching environmental framework of two environments: sexual

and asexual reproduction. For the different switching regimes we studied, we found

that our approach was appropriate for slow and fast switching environments. For the

former regime, the distribution of mating types was estimated as the weighted average

of the non-switching distributions in each environment; for the latter, we found the

system behaves as if it was in an effective non-switching environment. For intermediate

switching environments, however, we found limitations in our approach due to the slow

relaxation to the stationary state in the asexual environment. This meant we could

not assume an stationary regime for this environment.

Our findings are of relevance for the study of mating types in evolutionary biology.

Our results show that the consideration of synchronous sex can show significant

differences in the expected number of mating types with respect to asynchronous sexual

cases which most of studies assume. In particular, we proved that both cases are

only equivalent in the fast switching regime. Our model, on the other hand, allows

the accounting of other scenarios such as the inclusion of selective sweeps, which are

pertinent in the mating type extinction of some facultatively sexual species (i.e., species

that are able to reproduce both sexually and asexually).
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Chapter 6: Beyond the adiabatic limit in systems with fast environments:

a τ-leaping algorithm

In this chapter, we focused on the design of a numerical scheme to simulate systems

in fast fluctuating environments in regimes beyond the adiabatic limit. Both discrete

and continuous environments were studied. We based our scheme on the well-known

τ−leaping algorithm [4], using as starting point the approach developed in [5] for a

simple case of two environments. In our study, we extended this approach to a general

case of an arbitrary number of environments and reactions. Our algorithm requires the

calculation of first and second moments of Gaussian random variables that work as

input rates for the reactions coupled to the environmental process. Analytical solutions

were found for these quantities in all the models we studied, both for discrete and

continuous environmental spaces. For the latter case, we assumed the environment

followed an Ornstein–Uhlenbeck process. This is not a requirement for our algorithm,

but we chose it given the usefulness of this process in biological systems. We tested

our algorithm against standard algorithms. For discrete environments we used the

Gillespie algorithm. For continuous environments, we designed a number of algorithms

based on well-known approaches. These algorithms required special attention on the

discretisation used for the environmental states and time in order to find a balance

between simulation speed and precision. In all the cases we studied, our algorithm

proved to be faster.

Having an algorithm to simulate systems in fast fluctuating environments in a

fast way is a useful tool for the study of biological systems. Our algorithm can be

implemented in an easy way, only requiring to previously have calculated the first and

second moments for the input rates which does not suppose in itself a major challenge.

In fact, the cases we studied could be adapted to other similar biological scenarios

without having to calculate the rates again.

7.3 Future research and final remarks

In this thesis we have characterised several biological systems using stochastic processes.

Our findings open new interesting possible research directions in the different scenarios

we have studied. Our study of multi-drug resistance in Chapters 3 and 4, for example,
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has shown the relevance of accounting high mutation rates within a population as well

as competition between strains, two factors that are relevant in common infections [6–9].

This study could improve the design of combination treatment strategies to effectively

suppress the emergence of resistance. The study of the probability of resistance in

Chapter 4 also opens the question about the role of more realistic situations in the

emergence of resistance, e.g., heterogeneous competition [10] or heterogeneity of the

mutation rate [11], or the effect of therapies with more than two drugs. Other possible

direction of this study is the accounting for other mechanisms of resistance such as

plasmids [12]. On a related subject, the modelling of the experimental setup used in

Chapter 3 leaves some interesting questions about the effect of dilutions (i.e., population

bottlenecks) on the growth of populations. Dilutions are commonly used in experiments

and also occur due to natural effects [13]. Progress has been done in this direction [14]

in simple models, which could serve as a starting point for the types of models we have

studied.

The results from Chapter 5 left some unanswered questions about the characterisa-

tion of systems in intermediate switching environments. Our study puts in evidence the

challenge of studying these regimes and the need of developing a theoretical framework

to fully understanding evolution of facultatively sexual species. On the other hand,

the methods developed using number theory in this Chapter could contribute to the

study of other similar systems. Such is the case of the voter model whose structure

resembles our model of mating types evolution [15]. Our methods provide a useful way

to calculate the reduced transition rates of between its states in more complex cases,

for example, that include mutations (i.e., new types added). The alternative methods

presented in Sec. 5.3.3 could contribute to the developing of strategies for the studying

of similar systems in switching environments.

The different algorithms for continuous environments in fluctuating environments

we constructed in Chapter 6 (see GADE and DEED in Sec. 6.4.3) could serve as a

starting point of the design of other algorithms in more complicated systems. Our

algorithms do not necessarily require the fluctuating environment to be fast so they

could be adapted to diverse situations.

On the whole, this thesis illustrates the utility of stochastic processes for studying

biological populations in changing environments. Generally speaking, developing
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strategies for studying the effect of environments is not restricted to a particular

collection of methods but rather depends on the system under study and the type of

description we want to make about it. Normally one does not approach a problem

of changing environments using a standard procedure but uses methods from diverse

disciplines, sometimes being able to obtain analytical results, or requiring to perform

experiments, or being able to characterise a system only through simulations. This

thesis promotes the utility of diverse tools in the study of biological systems. We

have approached this by not limiting ourselves to one particular type of methods but

have exploited tools from mathematics, physics, experimental biology, and computer

simulations.

The study of the effect of deterministic and stochastic environments carried out

in this thesis has resulted in a better understanding of the effect of surroundings in

biological populations. Changing environments are complex but must be taken into

account when trying to understand the behaviour of a biological population. Whether

they vary deterministically or stochastically, or whether they are better described using

discrete or continuous spaces, their effect is not something we can ignore. Given the

complexity of changing environments and the diversity of their effect on biological

populations, much of the mathematical modelling of them is a work in progress. It

is my hope that the methods and approaches developed here will contribute to this

progress and prove useful in applications of systems in changing environments.
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