107,712 research outputs found

    Exploring Constrained Type-2 fuzzy sets

    Get PDF
    Fuzzy logic has been widely used to model human reasoning thanks to its inherent capability of handling uncertainty. In particular, the introduction of Type-2 fuzzy sets added the possibility of expressing uncertainty even on the definition of the membership functions. Type-2 sets, however, don’t pose any restrictions on the continuity or convexity of their embedded sets while these properties may be desirable in certain contexts. To overcome this problem, Constrained Type-2 fuzzy sets have been proposed. In this paper, we focus on Interval Constrained Type-2 sets to see how their unique structure can be exploited to build a new inference process. This will set some ground work for future developments, such as the design of a new defuzzification process for Constrained Type-2 fuzzy systems

    A new perspective on traffic control management using triangular interval type-2 fuzzy sets and interval neutrosophic sets

    Get PDF
    Controlling traffic flow on roads is an important traffic management task necessary to ensure a peaceful and safe environment for people. The number of cars on roads at any given time is always unknown. Type-2 fuzzy sets and neutrosophic sets play a vital role in dealing efficiently with such uncertainty. In this paper, a triangular interval type-2 Schweizer and Sklar weighted arithmetic (TIT2SSWA) operator and a triangular interval type-2 Schweizer and Sklar weighted geometric (TIT2SSWG) operator based on Schweizer and Sklar triangular norms have been studied, and the validity of these operators has been checked using a numerical example and extended to an interval neutrosophic environment by proposing interval neutrosophic Schweizer and Sklar weighted arithmetic (INSSWA) and interval neutrosophic Schweizer and Sklar weighted geometric (INSSWG) operators. Furthermore, their properties have been examined; some of the more important properties are examined in detail. Moreover, we proposed an improved score function for interval neutrosophic numbers (INNs) to control traffic flow that has been analyzed by identifying the junction that has more vehicles. This improved score function uses score values of triangular interval type-2 fuzzy numbers (TIT2FNs) and interval neutrosophic numbers

    Operations on Concavoconvex Type-2 Fuzzy Sets

    Get PDF
    Concavoconvex fuzzy set is the result of the com-bination of the concepts of convex and concave fuzzy sets. This paper investigates concavoconvex type-2 fuzzy sets. Basic operations, union, intersection and complement on concavoconvex type-2 fuzzy sets us-ing min and product t-norm and max t-conorm are studied and some of their algebraic properties are explored

    On the Choice of Similarity Measures for Type-2 Fuzzy Sets

    Get PDF
    Similarity measures are among the most common methods of comparing type-2 fuzzy sets and have been used in numerous applications. However, deciding how to measure similarity and choosing which existing measure to use can be difficult. Whilst some measures give results that highly correlate with each other, others give considerably different results. We evaluate all of the current similarity measures on type-2 fuzzy sets to discover which measures have common properties of similarity and, for those that do not, we discuss why the properties are different, demonstrate whether and what effect this has in applications, and discuss how a measure can avoid missing a property that is required. We analyse existing measures in the context of computing with words using a comprehensive collection of data-driven fuzzy sets. Specifically, we highlight and demonstrate how each method performs at clustering words of similar meaning

    Extended Generalization of Fuzzy Rough Sets

    Get PDF
    This paper extends and generalizes the approximations of fuzzy rough sets dealing with fuzzy coverings of the universe induced by a weak fuzzy similarity relation. The weak fuzzy similarity relation is considered as a generalization of fuzzy similarity relation in representing a more realistic relationship between two objects in which it has weaker symmetric and transitive properties. Since the conditional symmetry in the weak fuzzy similarity relation is an asymmetric property, there are two distinct fuzzy similarity classes that provide two different fuzzy coverings. The generalization of fuzzy rough sets approximations is discussed based on two interpretations: object-oriented generalization and class-oriented generalization. More concepts of generalized fuzzy rough set approximations are introduced and defined, representing more alternatives to provide level-2 interval-valued fuzzy sets. Moreover, through combining several pairs of proposed approximations of the generalized fuzzy rough sets, it is possible to provide the level-2 type-2 fuzzy sets as an extension of the level-2 interval valued fuzzy sets. Some properties of the concepts are examined

    A construction of a fuzzy topology from a strong fuzzy metric

    Get PDF
    [EN] After the inception of the concept of a fuzzy metric by I. Kramosil and J. Michalek, and especially after its revision by A. George and G. Veeramani, the attention of many researches was attracted to the topology induced by a fuzzy metric. In most of the works devoted to this subject the resulting topology is an ordinary, that is a crisp one. Recently some researchers showed interest in the fuzzy-type topologies induced by fuzzy metrics. In particular, in the paper  (J.J. Mi\~{n}ana, A. \v{S}ostak, {\it Fuzzifying topology induced by a strong fuzzy metric}, Fuzzy Sets and Systems,  6938 DOI information: 10.1016/j.fss.2015.11.005.) a fuzzifying topology T:2X→[0,1]{\mathcal T}:2^X \to [0,1] induced by a fuzzy metric  m:X×X×[0,∞)m: X\times X \times [0,\infty) was constructed. In this paper we extend  this construction to get the fuzzy topology T:[0,1]X→[0,1]{\mathcal T}: [0,1]^X \to [0,1] and study some properties of this fuzzy topology.54AGrecova, S.; Sostak, A.; Uljane, I. (2016). A construction of a fuzzy topology from a strong fuzzy metric. Applied General Topology. 17(2):105-116. doi:10.4995/agt.2016.4495.SWORD105116172Chang, C. . (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182-190. doi:10.1016/0022-247x(68)90057-7Goguen, J. . (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1), 145-174. doi:10.1016/0022-247x(67)90189-8Goguen, J. . (1973). The fuzzy tychonoff theorem. Journal of Mathematical Analysis and Applications, 43(3), 734-742. doi:10.1016/0022-247x(73)90288-6George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2V. Gregori, A. López-Crevillén and S. Morillas, On continuity and uniform continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'09 (2009), 85-91.Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043V. Gregori and J. Mi-ana, Some concepts related to continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'13 (2013), 85-91.Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Höhle, U. (1980). Upper semicontinuous fuzzy sets and applications. Journal of Mathematical Analysis and Applications, 78(2), 659-673. doi:10.1016/0022-247x(80)90173-0I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344.Kubiak, T., & Sostak, A. P. (2004). A fuzzification of the category of M-valued L-topological spaces. Applied General Topology, 5(2), 137. doi:10.4995/agt.2004.1965Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysis and Applications, 56(3), 621-633. doi:10.1016/0022-247x(76)90029-9Lowen, R. (1977). Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. Journal of Mathematical Analysis and Applications, 58(1), 11-21. doi:10.1016/0022-247x(77)90223-2Mardones-Pérez, I., & de Prada Vicente, M. A. (2015). Fuzzy pseudometric spaces vs fuzzifying structures. Fuzzy Sets and Systems, 267, 117-132. doi:10.1016/j.fss.2014.06.003Mardones-Pérez, I., & de Prada Vicente, M. A. (2012). A representation theorem for fuzzy pseudometrics. Fuzzy Sets and Systems, 195, 90-99. doi:10.1016/j.fss.2011.11.008Menger, K. (1951). Probabilistic Geometry. Proceedings of the National Academy of Sciences, 37(4), 226-229. doi:10.1073/pnas.37.4.226Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Miñana, J.-J., & Šostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric. Fuzzy Sets and Systems, 300, 24-39. doi:10.1016/j.fss.2015.11.005Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016A. Sapena and S. Morillas, On strong fuzzy metrics, Proc. Workshop Appl. Topology WiAT'09 (2009), 135-141.Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser II 11 (1985), 125-186.Shostak, A. P. (1989). Two decades of fuzzy topology: basic ideas, notions, and results. Russian Mathematical Surveys, 44(6), 125-186. doi:10.1070/rm1989v044n06abeh002295Šostak, A. P. (1996). Basic structures of fuzzy topology. Journal of Mathematical Sciences, 78(6), 662-701. doi:10.1007/bf02363065Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5Ying, M. (1992). A new approach for fuzzy topology (II). Fuzzy Sets and Systems, 47(2), 221-232. doi:10.1016/0165-0114(92)90181-3Ying, M. (1993). A new approach for fuzzy topology (III). Fuzzy Sets and Systems, 55(2), 193-207. doi:10.1016/0165-0114(93)90132-2Ying, M. (1993). Compactness in fuzzifying topology. Fuzzy Sets and Systems, 55(1), 79-92. doi:10.1016/0165-0114(93)90303-yYue, Y., & Shi, F.-G. (2010). On fuzzy pseudo-metric spaces. Fuzzy Sets and Systems, 161(8), 1105-1116. doi:10.1016/j.fss.2009.10.00

    Extended hesitant fuzzy sets

    Get PDF
    Hesitant fuzzy sets (HFSs) are a useful tool to manage situations in which the decision makers (DMs) hesitate about several possible values for the membership to assess a variable, alternative, etc. However, HFSs have the information loss problem and cannot identify different DMs, which interferes with the application of HFSs in decision making. To overcome these limitations, we develop the extended hesitant fuzzy sets (EHFSs) in this paper. As an extension of HFSs, EHFSs have close relationships with existing fuzzy sets including intuitionistic fuzzy sets (IFSs), fuzzy multisets (FMSs), type-2 fuzzy sets (T2FSs), dual hesitant fuzzy sets (DHFSs), and especially HFSs. We propose a concept of extended hesitant fuzzy elements (EHFEs), then study the basic operations and the desirable properties of EHFEs in detail. Some extended hesitant distance measures are developed to illustrate their advantages comparing with the existing hesitant distance measures. To extend EHFSs to decision making, we combine the proposed distance measures with the Dempster-Shafer belief structure. First published online: 15 Jun 201

    A Characterization of Strong Completeness in Fuzzy Metric Spaces

    Full text link
    [EN] Here, we deal with the concept of fuzzy metric space(X,M,*), due to George and Veeramani. Based on the fuzzy diameter for a subset ofX, we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work was also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements Nos. 779776 and 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2020). A Characterization of Strong Completeness in Fuzzy Metric Spaces. Mathematics. 8(6):1-11. https://doi.org/10.3390/math8060861S11186Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-xAtanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Gregori, V., Romaguera, S., & Veeramani, P. (2006). A note on intuitionistic fuzzy metric spaces☆. Chaos, Solitons & Fractals, 28(4), 902-905. doi:10.1016/j.chaos.2005.08.113Gregori, V., & Sapena, A. (2018). Remarks to «on strong intuitionistic fuzzy metrics». Journal of Nonlinear Sciences and Applications, 11(02), 316-322. doi:10.22436/jnsa.011.02.12Abu-Donia, H. M., Atia, H. A., & Khater, O. M. A. (2020). Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (ϕ,ψ)-contractive mappings. Journal of Nonlinear Sciences and Applications, 13(06), 323-329. doi:10.22436/jnsa.013.06.03Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, 108-114. doi:10.1016/j.fss.2013.01.012Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gregori, V., & Miñana, J.-J. (2017). Strong convergence in fuzzy metric spaces. Filomat, 31(6), 1619-1625. doi:10.2298/fil1706619gGrabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. doi:10.1016/s0165-0114(02)00132-xGregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Ricarte, L. A., & Romaguera, S. (2014). A domain-theoretic approach to fuzzy metric spaces. Topology and its Applications, 163, 149-159. doi:10.1016/j.topol.2013.10.014Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809Shukla, S., Gopal, D., & Sintunavarat, W. (2018). A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems, 350, 85-94. doi:10.1016/j.fss.2018.02.010Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Rakić, D., Došenović, T., Mitrović, Z. D., de la Sen, M., & Radenović, S. (2020). Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics, 8(2), 297. doi:10.3390/math802029

    Novel techniques for modelling uncertain human reasoning in explainable artificial intelligence

    Get PDF
    In recent years, there has been a growing need for intelligent systems that not only are able to provide reliable predictions but can also produce explanations for their outputs. The demand for increased explainability has led to the emergence of explainable artificial intelligence (XAI) as a specific research field. In this context, fuzzy logic systems represent a promising tool thanks to their inherently interpretable structure. The use of a rule-base and linguistic terms, in fact, have allowed researchers to design models with a transparent decision process, from which it is possible to extract human-understandable explanations. The use of interval type-2 fuzzy logic in the XAI field, however, is limited: the improved performances of interval type-2 fuzzy systems and their ability to handle a higher degree of uncertainty comes at the cost of increased complexity that makes the semantic mapping between the input and outputs harder to understand intuitively. The presence of type-reduction, in some contexts fail to preserve the semantic value of the fuzzy sets and rules involved in the decision process. By semantic value, we specifically refer to the capacity of interpreting the output of the fuzzy system in respect to the pre-defined and thus understood linguistic variables used for the antecedents and consequents of the system. An attempt at increasing the explainability of interval type-2 fuzzy logic was first established by Garibaldi and Guadarrama in 2011, with the introduction of constrained type-2 fuzzy sets. However, extensive work needs to be carried out to develop the algorithms necessary for their practical use in fuzzy systems. The aim of this thesis is to extend the initial work on constrained interval type-2 fuzzy sets to develop a framework that preserves the semantic value throughout the modelling and decision process. Achieving this goal would allow the creation of a new class of fuzzy systems that show additional interpretable properties, and could further encourage the use of interval type-2 fuzzy logic in XAI. After the formal definition of the required components and theorems, different approaches are explored to develop inference algorithms that preserve the semantic value of the sets during the input-output mapping, while keeping reasonable run-times on modern computer hardware. The novel frameworks are then tested in a series of practical applications from the real world, in order to assess both their prediction performances and show the quality of the explanations these models can generate. Finally, the original definitions of constrained intervals type-2 fuzzy sets are refined to produce a novel approach which combines uncertain data and represents them using intuitive constrained interval type-2 fuzzy sets. Overall, as a result of the work presented here, it is now possible to design constrained interval type-2 fuzzy systems that preserve the enhanced semantic value provided by constrained interval-type-2 fuzzy sets throughout the inference, type-reduction and defuzzification stages. This characteristic is then used to improve the semantic interpretability of the system outputs, making constrained interval type-2 fuzzy systems a valuable alternative to interval type-2 fuzzy systems in XAI. The research presented here has resulted in three journal articles, two of which have already been published in IEEE Transactions on Fuzzy Systems, and four papers presented at the FUZZ-IEEE international conference between 2018 and 2020

    Novel techniques for modelling uncertain human reasoning in explainable artificial intelligence

    Get PDF
    In recent years, there has been a growing need for intelligent systems that not only are able to provide reliable predictions but can also produce explanations for their outputs. The demand for increased explainability has led to the emergence of explainable artificial intelligence (XAI) as a specific research field. In this context, fuzzy logic systems represent a promising tool thanks to their inherently interpretable structure. The use of a rule-base and linguistic terms, in fact, have allowed researchers to design models with a transparent decision process, from which it is possible to extract human-understandable explanations. The use of interval type-2 fuzzy logic in the XAI field, however, is limited: the improved performances of interval type-2 fuzzy systems and their ability to handle a higher degree of uncertainty comes at the cost of increased complexity that makes the semantic mapping between the input and outputs harder to understand intuitively. The presence of type-reduction, in some contexts fail to preserve the semantic value of the fuzzy sets and rules involved in the decision process. By semantic value, we specifically refer to the capacity of interpreting the output of the fuzzy system in respect to the pre-defined and thus understood linguistic variables used for the antecedents and consequents of the system. An attempt at increasing the explainability of interval type-2 fuzzy logic was first established by Garibaldi and Guadarrama in 2011, with the introduction of constrained type-2 fuzzy sets. However, extensive work needs to be carried out to develop the algorithms necessary for their practical use in fuzzy systems. The aim of this thesis is to extend the initial work on constrained interval type-2 fuzzy sets to develop a framework that preserves the semantic value throughout the modelling and decision process. Achieving this goal would allow the creation of a new class of fuzzy systems that show additional interpretable properties, and could further encourage the use of interval type-2 fuzzy logic in XAI. After the formal definition of the required components and theorems, different approaches are explored to develop inference algorithms that preserve the semantic value of the sets during the input-output mapping, while keeping reasonable run-times on modern computer hardware. The novel frameworks are then tested in a series of practical applications from the real world, in order to assess both their prediction performances and show the quality of the explanations these models can generate. Finally, the original definitions of constrained intervals type-2 fuzzy sets are refined to produce a novel approach which combines uncertain data and represents them using intuitive constrained interval type-2 fuzzy sets. Overall, as a result of the work presented here, it is now possible to design constrained interval type-2 fuzzy systems that preserve the enhanced semantic value provided by constrained interval-type-2 fuzzy sets throughout the inference, type-reduction and defuzzification stages. This characteristic is then used to improve the semantic interpretability of the system outputs, making constrained interval type-2 fuzzy systems a valuable alternative to interval type-2 fuzzy systems in XAI. The research presented here has resulted in three journal articles, two of which have already been published in IEEE Transactions on Fuzzy Systems, and four papers presented at the FUZZ-IEEE international conference between 2018 and 2020
    • …
    corecore