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Abstract

Similarity measures are among the most common methods of comparing type-2
fuzzy sets and have been used in numerous applications. However, deciding how
to measure similarity and choosing which existing measure to use can be diffi-
cult. Whilst some measures give results that highly correlate with each other,
others give considerably different results. We evaluate all of the current simi-
larity measures on type-2 fuzzy sets to discover which measures have common
properties of similarity and, for those that do not, we discuss why the proper-
ties are different, demonstrate whether and what effect this has in applications,
and discuss how a measure can avoid missing a property that is required. We
analyse existing measures in the context of computing with words using a com-
prehensive collection of data-driven fuzzy sets. Specifically, we highlight and
demonstrate how each method performs at clustering words of similar meaning.

Keywords: type-2 fuzzy sets; similarity measures

1. Introduction

Similarity measures are among the most common methods of comparing
fuzzy sets to determine if they are closely related. Their utility has led to their
use in numerous applications. Similarity is often used to solve classification and
clustering problems [20, 37, 44], such as pattern recognition [30]. Similarity has
also been used extensively in decision making to find preferences by comparing
the similarity between solutions and the ideal outcome [21]. Further, similarity
is often utilised in both basic and advanced Computing with Words (CW) -
where the former uses fuzzy if-then rules and the latter uses natural language
statements containing a mixture of numbers, intervals and words. In basic CW,
similarity is commonly used to test the firing strength of a rule by calculating
the similarity between the input and the rule antecedent [1, 10], and matching
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words to concepts described using fuzzy sets [36]. In advanced CW, similarity
is often used to choose the most appropriate linguistic approximation for the
output of the CW system. This is achieved by finding which word (modelled
as a fuzzy set) is most similar to the fuzzy output [28]. Similarity measures are
also used to group similar words [40], for example, to ensure that each word has
a distinct meaning.

General type-2 fuzzy sets have gained popularity due to their ability to
provide higher accuracy in applications that rely on data that are often noisy [4],
and due to recent advances that simplify modelling the secondary membership
function [26, 35]. As a result, there has been an increase in similarity measures
developed for general type-2 fuzzy sets [13, 12, 24, 30, 37, 44, 48, 23] as well as
for interval-valued type-2 fuzzy sets [1, 32, 39, 46, 49].

Among the many different similarity measures developed for type-2 fuzzy
sets, some give results that highly correlate with each other, while others give
notably different results for the same fuzzy sets. This may be desired in respect
to the intended application (different applications may focus on different aspects
of the fuzzy sets), or it may be the result of underlying challenges with the
specific method. For example, some existing methods are unable to identify
if fuzzy sets are disjoint or identical, and some give unexpectedly high or low
results of similarity in specific cases, as discussed later in the paper.

To illustrate differences in measures, consider the two interval type-2 fuzzy
sets in Fig. 1 and two measures of similarity sIT2

j (see eq. (19)) and sIT2
zl (see

eq. (23)) which take different approaches to comparing fuzzy sets and therefore
give different results (detailed later in section 4). The results of applying these
measures to the given fuzzy sets are sIT2

j = 0.006 and sIT2
zl = 0.750. The

measure sIT2
j gives a low value of similarity, whilst sIT2

zl = 0.750 gives a much

higher result. This is because sIT2
j has properties commonly found in a similarity

measure, whereas sIT2
zl does not, and therefore its results may be unexpected.

This demonstrates that it is important to understand the properties of similarity
measures; that is, what properties they have and how they affect what results
the measure gives. For example, it is useful to be aware that sIT2

zl will give much
larger values than sIT2

j - an improved knowledge of a measure will enhance its
use.

The variety of existing measures makes the choice of the best a difficult one.
We analyse all of the known similarity measures developed for interval or general
type-2 fuzzy sets to:

1. develop an understanding of how the properties of a measure affect its
results

2. discover which measures have common properties of similarity and are
therefore versatile in many applications

3. illustrate when a measure may be useful despite not having all common
properties

Using data-driven fuzzy sets, we individually analyse the results of similarity
measures and provide pairwise comparisons to highlight when the properties
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Figure 1: Two interval type-2 fuzzy sets where sIT2
zl = 0.750 and sIT2

j = 0.006.

of measures differ and show what affect it has on the results. Using these
comparisons, we recommend choosing a measure that has all of the properties
listed in section 2.

Further, we analyse the measures that do not have the common properties
and demonstrate why this is the case. From this, we suggest what alternative
approach should be used in a new measure when a missing property of an
existing one is required.

Note that we only focus on measures for type-2 fuzzy sets as studies of
similarity on crisp and type-1 fuzzy sets are available in the literature [18, 50].
These studies highlight key different approaches to compare type-1 fuzzy sets,
many of which have been used as the basis for measuring type-2 fuzzy sets; we
introduce two of the most common type-1 methods in the next section. The
literature also highlights type-1 measures that are equivalent (i.e., provide the
same rank order of results), in which case the choice of a measure is simplified
to the choice of a class of measures [18]. In this paper, we highlight equivalent
similarity measures on type-2 fuzzy sets.

Studies on similarity measures for interval type-2 fuzzy sets can also be found
in the literature [19, 40]. These provide an overview of different approaches and
compare their results using fuzzy sets constructed from real data [40]. However,
although a large set of results is given, their numerical values are difficult to
compare, and the reasons behind the methods giving different results are not
discussed.

Wu and Mendel provide an analysis of similarity on general type-2 fuzzy
sets, as well as introducing a new method [41]. A review of existing methods
is given on fuzzy sets constructed from a subset of the real data used in the
interval type-2 analysis [40]. However, only a small set of numerical results are
given. Counter-intuitive results are highlighted, but the reasons underpinning
these results are not explored.

In this paper, we compare the results of interval and general type-2 simi-
larity measures applied to a collection of fuzzy sets constructed from real data,
as provided in [40]. We visualise the results to facilitate interpretation. The
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resulting figures help to highlight the properties of measures and provide a clear
comparison between methods. We also discuss why methods provide results
that may feel counter-intuitive, and offer advice on avoiding such results when
developing a new measure.

Finally, note, that the ultimate choice of a measure is data/application de-
pendent and general recommendations are notoriously difficult. In this paper,
we focus on providing generic insights to support researchers to make appropri-
ate choices for their applications. We also provide demonstrations for specific
examples - such as the grouping of fuzzy sets capturing linguistic terms in Com-
puting with Words contexts.

In the remainder of the paper, section 2 presents a background on fuzzy sets,
similarity measures, and the data used to test the measures. Then, sections
4 and 5 analyse and compare methods of measuring the similarity between
interval and general type-2 fuzzy sets, respectively. Finally, section 6 presents
a discussion of the results.

2. Background

In this section, we introduce different representations of type-2 fuzzy sets
used in the literature, followed by a general overview of similarity measures.
We then proceed to introduce similarity measures in the literature for interval
and general type-2 fuzzy sets.

2.1. Type-2 Fuzzy Sets

In this paper, we analyse methods of measuring similarity between interval
and general type-2 fuzzy sets. These methods rely on different equations of
modelling fuzzy sets; these are the vertical slice [29], zSlice/alpha-plane [26, 35]
and embedded set representations [25, 30]. In this section, we briefly introduce
these equations.

Definition 1. The vertical slice representation of a general type-2 fuzzy set F̃
is expressed as [29]

F̃ = {((x, u), µF̃ (x, u)) | x ∈ X,u ∈ [uF̃ (x), uF̃ (x)]}, (1)

where x is a variable in X, u is the primary membership of x, µF̃ (x, u) is the
secondary degree of membership for x and u, and

uF̃ (x) = min{u | u ∈ [0, 1], µF̃ (x, u) > 0} (2)

uF̃ (x) = max{u | u ∈ [0, 1], µF̃ (x, u) > 0}. (3)

We refer to uF̃ and uF̃ as the lower and upper membership functions of F̃ ,
respectively. In this representation, the fuzzy set is modelled by slices along the
x-axis where each value of x is mapped to a type-1 fuzzy set.

Definition 2. The footprint of uncertainty of a type-2 fuzzy set F̃ is

FOU(F̃ ) = {(x, u) | x ∈ X, u ∈ [uF̃ (x), uF̃ (x)]} (4)
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A closed interval type-2 fuzzy set is a special case of a general type-2 fuzzy set
in which the secondary grade µÃ(x, u) equals 1 for x ∈ X and u ∈ [uF̃ (x), uF̃ (x)].
Note that, for the remainder of this paper, when we use the term interval type-2
fuzzy set, this is understood to be a closed interval type-2 fuzzy set.

Definition 3. An interval type-2 fuzzy set F̃ can be expressed as [29]

F̃ = {((x, u), µF̃ (x, u) = 1) | x ∈ X,u ∈ [uF̃ (x), uF̃ (x)]}. (5)

The zSlices representation [35] (also developed as the alpha-plane represen-
tation [27]) is an alternative to the vertical slice representation for type-2 fuzzy
sets. Using this, a fuzzy set is represented by a collection of quasi interval type-2
fuzzy sets (referred to as zSlices).

Definition 4. The zSlice of a fuzzy set F̃ at z ∈ (0, 1] is

F̃z = {((x, u), µF̃z
(x, u) = z) | x ∈ X,u ∈ [µ

F̃z
(x), µF̃z

(x)]}. (6)

where

µ
F̃z

(x) = min{u | u ∈ [0, 1], µF̃ (x, u) ≥ z} (7)

µF̃z
(x) = max{u | u ∈ [0, 1], µF̃ (x, u) ≥ z} (8)

Note that the zSlice at z = 0 is ignored because this is the set in which all
secondary membership values are 0 and, therefore, it does not contribute to the
fuzzy set.

Definition 5. A fuzzy set F̃ can be represented by the collection of its zSlices
as follows [35]:

F̃ = {F̃z | z ∈ (0, 1]} (9)

As an alternative to the vertical slices and zSlices representations, a fuzzy
set can be represented as a collection of its embedded fuzzy sets. It may be rep-
resented through type-2 or type-1 embedded sets [25], where secondary mem-
bership values are not included in the latter.

Definition 6. For a type-2 fuzzy set F̃ , a given embedded type-1 fuzzy set Fm
is defined much like a type-1 fuzzy set as

Fm = {(x, u) | x ∈ X,u ∈ [uF̃ (x), uF̃ (x)]}, (10)

where X is discretised into N elements, only one value of u is assigned to each
x, and the secondary membership values of F̃ are not included.

In this paper, we discuss a similarity measure that is based on a special-case
of embedded fuzzy sets [30] (see eq. (34)). This uses a discrete weighted form,
in which a type-2 fuzzy set F̃ is represented by M type-1 embedded fuzzy sets,
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(i.e., F̃ = {F1, F2, ..., FM}), and a weight is assigned to each embedded fuzzy
set. In this representation, a given type-1 embedded fuzzy set θm

F̃
is defined as

θm
F̃

= rm(xl)
(
µF̃ (xl)− µF̃ (xl)

)
+ µ

F̃
(xl) | l ∈ {1, 2, ..., L} , (11)

where rm(xl) is any arbitrary number chosen within the interval [0, 1], m ∈
{1, 2, ...,M}, and the universe of discourse X is discretised into L points, i.e.
X = {x1, x2, ..., xL}. The use of rm(xl) ensures that the primary member-
ship value of θm

F̃
at xl is any arbitrary value constrained within the interval

[µ
F̃

(xl), µF̃ (xl)].

The fuzzy set θm
F̃

only accounts for the primary membership values of F̃ . To
account for the secondary membership values, each embedded fuzzy set θm

F̃
has

a weight associated with it, labelled as λmF . This is defined by the t-norm of the
secondary membership grades of F̃ as

λmF = t
(
µF̃
(
x1, θ

m
F̃

(x1)
)
, µF̃

(
x2, θ

m
F̃

(x2)
)
, ..., µF̃

(
xL, θ

m
F̃

(xL)
))
. (12)

where t is a t-norm, θm
F̃

(xl) is the primary membership grade of θm
F̃

at xl (given

in (11)), and µF̃ (xl, θ
m
F̃

(xl)) is the secondary membership grade of F̃ at xl and
θm
F̃

(xl).
Although a fuzzy set is only fully represented by an infinite number of em-

bedded fuzzy sets, Greenfield et al. [11] show that a small number of embedded
fuzzy sets is sufficient to adequately model a fuzzy set. In this paper, we use 10
embedded fuzzy sets represented by eq. (11) and eq. (12).

This concludes the overview of type-2 fuzzy sets and their representations.

2.2. Similarity Measures: A General Overview

A similarity measure is a function s : Ã × B̃ → [0, 1]; or s : Ã × B̃ →
[[0, 1], [0, 1]]; or s : Ã× B̃ → F , where Ã and B̃ are type-2 fuzzy sets, and F is
a type-1 fuzzy set. That is, the result may be a single-value within the interval
[0, 1] (as is most often the case), or the result may be an interval where the
lower and upper bound are restricted within the interval [0, 1] (e.g. [1]) or the
result may be a type-1 fuzzy set [13, 48]. The result of the measure represents
how well two fuzzy sets match by comparing how close the membership degrees
are of each fuzzy set.

Distance is often viewed as a non-increasing function of similarity [34, 50].
A distance function is a metric if it has the properties

D1 d(Ã, B̃) > 0

D2 d(Ã, Ã) = 0

D3 d(Ã, B̃) = d(B̃, Ã)

D4 d(Ã, B̃) + d(B̃, C̃) ≥ d(B̃, C̃)

6



The properties of a similarity measure are often based on the negation of a
metric. In this paper, we define a similarity measure as a function that may
have the following properties:

S1 Reflexivity: s(Ã, B̃) = 1⇐⇒ Ã = B̃

S2 Symmetry: s(Ã, B̃) = s(B̃, Ã)

S3 Transitivity: If Ã ⊆ B̃ ⊆ C̃, then s(Ã, B̃) ≥ s(Ã, C̃)

S4 Overlapping: If Ã ∩ B̃ 6= ∅, then s(Ã, B̃) > 0; otherwise, s(Ã, B̃) = 0

S5 Minimum similarity s(D,Dc) = 0 ∀D ∈P(U)

where P(U) is the set of all crisp subsets in the universe U [34, 43]. As transitiv-
ity is defined in respect to the subsethood of the fuzzy sets, we review definitions
of subsethood for type-2 sets:

Definition 7. For interval type-2 fuzzy sets Ã B̃, Ã ⊆ B̃ if uÃ(x) ≤ uB̃(x) and
uÃ(x) ≤ uB̃(x), ∀x ∈ X [47].

Definition 8. For general type-2 fuzzy sets Ã and B̃, Ã ⊆ B̃ if Ãz ⊆ B̃z,∀z ∈
(0, 1] and the subsethood of the zSlices Ãz and B̃z is the same as given in Defi-
nition 7 [13].

It is important to note that as the term similarity is loosely defined, it is not
necessary for a similarity measure to have all of these properties. The property of
overlapping (S4) may be considered too strict, and while many existing measures
have this property, this is not true for all measures. A common alternative is S5.
In this paper, we include overlapping (S4), as defined above, as an important
property of similarity. Of course, the properties that are desired are dependent
on the context in which the measure will be used.

Definition 9. Where a measure has properties S1-S4, we describe it as property
complete.

Similarity measures are related to restricted equivalence functions [2], which
are binary operations on the unit interval built upon the theory of equivalence
functions [7]. A function e : [0, 1]2 → [0, 1] is called a restricted equivalence
function if it satisfies the following conditions [2]:

E1 e(x, y) = e(y, x) for all x, y ∈ [0, 1]

E2 e(x, y) = 1 if and only if x = y

E3 e(x, y) = 0 if and only if x = 1 and y = 0, or x = 0 and y = 1

E4 e(x, y) = e(c(x), c(y)) for all x, y ∈ [0, 1], c being a strong negation

E5 For all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then e(x, y) ≥ e(x, z) and e(y, z) ≥
e(x, z),
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where c(x) is a strong negation, such that c(0) = 1, c(1) = 0, c(c(x)) = c and c is
monotonic and continuous. Note that the properties of a restricted equivalence
function are strictly defined by conditions E1–E5. By contrast, the properties
of a similarity measure given above are general and they do not (and in fact,
cannot) all apply to a given measure of similarity.

The two main approaches for measuring similarity between type-2 fuzzy sets
are 1) proximity-based measures; and 2) set-theoretic measures. In proximity-
based approaches, the membership degree of each x ∈ X is compared between
the two fuzzy sets, typically by calculating the difference in membership. Using
this, a comparison of the fuzzy sets as a whole can be obtained by calculating
the difference for every membership degree. Set-theoretic approaches are de-
veloped from methods of measuring the binary (presence / absence) similarity
coefficients [6]. Set-theoretic approaches involve the measurement of how much
one set is included within another, how much they intersect or measuring partial
overlap. This is measured through calculations on the cardinality of the sets
[50].

Similarity measures for type-2 fuzzy sets are often built as extensions of
measures for type-1 fuzzy sets. It is therefore useful to introduce two common
type-1 measures (proximity based and set-theoretic) which many of the measures
discussed in this paper extend. A common proximity based method for type-1
fuzzy sets is [34]

sT1
p (A,B) = 1−

∫
x∈X(|µA(x)− µB(x)|)dx∫
x∈X(µA(x) + µB(x))dx

. (13)

Note that we label equations as sta where t is the type of fuzzy set (T1, IT2 or
GT2) and a is the authors’ initials.

A common measure of similarity based on set-theoretic comparisons is Jac-
card’s ratio, written as [15]

sT1
j (A,B) =

∫
x∈X min(µA(x), µB(x))dx∫
x∈X max(µA(x), µB(x))dx

. (14)

We discuss type-2 measures of similarity that are extensions of eq. (13) and eq.
(14).

Another method of building similarity measures is to construct them from
subsethood measures [1, 5, 16], enabling an even wider variety of type-2 sim-
ilarity measures. Let c : A × B → [0, 1] be a subsethood measure on type-1
fuzzy sets A and B. The most common method of measuring similarity based
on subsethood where s : Ã× B̃ → [0, 1] is [16]

sT1(A,B) = t(c(A,B), c(B,A)) (15)

where t is a t-norm. Another method, where s : Ã× B̃ → [[0, 1], [0, 1]], is

sT1(A,B) = [(c(A,B), c(B,A)] (16)
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However, other methods of inducing similarity from subsethood are also in the
literature [5]. An example of a proximity-based subsethood measure c(A,B)
(denoting how much the type-1 fuzzy set A belongs to B) can be measured as
[9]

cT1
g (A,B) =

∫
x∈X

min{1, 1− µA(x) + µB(x)} dx (17)

and a common set-theoretic subsethood measure is [45]

cT1
y (A,B) =

∫
x∈X min(µA(x), µB(x)) dx∫

x∈X µA(x) dx
. (18)

Note that the result of a similarity measure on type-2 fuzzy sets is most com-
monly a single value. However, there do exist methods that represent similarity
as an interval [1] and as a type-1 fuzzy set [13, 48]. We focus on methods that
give a single-valued or interval-valued result as these are the most common in
the literature. We also discuss two methods that give a type-1 fuzzy set result
when this is reduced to a single value.

The literature on similarity measures for type-2 fuzzy sets is vast. In this
paper, we cover measures specifically designed for interval and general type-2
fuzzy sets. However, further measures can be extracted from the literature.
For example, a general method of building similarity measures is by aggregat-
ing restricted equivalence functions [3]. In addition, similarity measures on
intuitionistic fuzzy sets have been applied to interval type-2 fuzzy sets [8] and
measures on the former may be transferable to the latter. However, as it is
not essential to cover all possible constructions and generalisations of similarity
measures for type-2 fuzzy sets, we focus only on functions designed specifically
for type-2 fuzzy sets.

In the remainder of this section, we introduce similarity measures on interval
and general type-2 fuzzy sets. We label the sets compared by each measure as
Ã and B̃.

2.3. Similarity measures for Interval Type-2 Fuzzy Sets

Wu & Mendel [40] and Nguyen & Kreinovich [32] extended the type-1, set-
theoretic Jaccard measure (14) to interval type-2 fuzzy sets as

sIT2
j (Ã, B̃) =

∫
x∈X min(uÃ(x), uB̃(x))dx+

∫
x∈X min(uÃ(x), uB̃(x))dx∫

x∈X max(uÃ(x), uB̃(x))dx+
∫
x∈X max(uÃ(x), uB̃(x))dx

. (19)

Also, akin to sIT2
j , Zheng et al. [49] proposed the following:

sIT2
zwzz(Ã, B̃) =

1

2

( ∫
x∈X min(uÃ(x), uB̃(x))dx∫
x∈X max(uÃ(x), uB̃(x))dx

+

∫
x∈X min(uÃ(x), uB̃(x))dx∫
x∈X max(uÃ(x), uB̃(x))dx

)
.

(20)
Both sIT2

j and sIT2
zwzz are property-complete.
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Wu and Mendel proposed a measure for linguistic approximation that uses
both set theoretic and proximity based approaches to calculate similarity [39].
This is given as

sIT2
wm (Ã, B̃) = sIT2

j (Ã, B̃)swmd
(Ã, B̃), (21)

where sIT2
j is the Jaccard measure (19), and swmd

is based on the distance
between fuzzy sets as

swmd
(Ã, B) ≡ h(d(Ã, B̃)), (22)

where d(Ã, B) = |c(Ã) − c(B̃)|, c(A) refers to the centroid of set Ã, and h can
be any function that satisfies 1) limx→∞ h(x) = 0; 2) h(x) = 1⇐⇒ x = 0; and
3) h(x) decreases monotonically as x increases. Details on the chosen function
of h are in [38].

Zeng and Li [46] developed a proximity-based measure of similarity based on
the concept of entropy (that is, a measure of how much a fuzzy set is fuzzy [22]).
Their method calculates the difference between the upper and lower membership
functions of the sets, taking the average of the two results as

sIT2
zl (Ã, B̃) = 1− 1

2(b− a)

∫ b

a

(|uÃ(x)− uB̃(x)|+ |uÃ(x)− uB̃(x)|)dx, (23)

where a and b denote the boundaries of the finite universe of discourse X; i.e.
X = [a, b].

Bustince [1] proposed a proximity-based measure that represents similarity
as an interval as follows:

sIT2
b (Ã, B̃) = [sbL(Ã, B̃), sbU (Ã, B̃)] (24a)

sbL(Ã, B̃) = t(ΥL(Ã, B̃),ΥL(B̃, Ã)) (24b)

sbU (Ã, B̃) = t(ΥU (Ã, B̃),ΥU (B̃, Ã)) (24c)

ΥL(Ã, B̃) = inf
x∈X
{1,min(1− uÃ(x) + uB̃(x), 1− uÃ(x) + uB̃(x))} (24d)

ΥU (Ã, B̃) = inf
x∈X
{1,max(1− uÃ(x) + uB̃(x), 1− uÃ(x) + uB̃(x))} (24e)

where t is any t-norm (we use the minimum t-norm throughout this paper).
Note that the result of eq. (24) is an interval. Fig. 2 helps to visualise the
method of sIT2

b .
Fig. 2a shows two interval type-2 fuzzy sets, Fig. 2b shows the results of

ΥL(Ã, B̃) and ΥL(B̃, Ã) (used in eq. (24b)), and Fig. 2c shows the results of
ΥU (Ã, B̃) and ΥU (B̃, Ã) (used in eq. (24c)). Note that ΥL and ΥU return a
single value, not a set, but we show the calculations at all values of x used to
compute ΥL and ΥU (in Figs. 2b and 2c) to highlight the methods.

The equation ΥL(Ã, B̃) calculates the smallest amount by which the lower
(or upper) membership value of B̃ is greater than the lower (or upper) mem-
bership value of Ã for each value of x in X. Both ΥL(Ã, B̃) and ΥL(B̃, Ã)
are calculated in (24b), meaning we also calculate how much Ã has a greater
membership than B̃. Fig. 2b shows the minimum difference for each x when
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Figure 2: (a) Two interval type-2 fuzzy sets and (b) the calculations from ΥL(Ã, B̃) and
ΥL(B̃, Ã) (see eq. (24b)) and (c) the calculations from ΥU (Ã, B̃) and ΥU (B̃, Ã) (see eq.
(24c)).

calculating ΥL(Ã, B̃) and ΥL(B̃, Ã). Note that the figure shows the calculation
at each x, but the final result of ΥL(Ã, B̃) is the smallest of these differences
across X.

The equation ΥU (Ã, B̃) calculates the largest amount by which the lower (or
upper) membership value of B̃ is greater than the lower (or upper) membership
value of Ã for each value of x in X. As before, both ΥU (Ã, B̃) and ΥU (B̃, Ã)
are calculated in (24c). Fig. 2c shows the maximum difference for each x
when calculating both ΥU (Ã, B̃) and ΥU (B̃, Ã). Though the figure shows the
calculations at each x, the result of ΥU (Ã, B̃) is actually the smallest of these
differences across X.

Finally, the lower bound of sIT2
b is the smallest value in Fig. 2b, and the

upper bound is the smallest value in Fig. 2c. In this example, the lower bound
of sIT2

b (Ã, B̃) is 0 because at x = 6, the difference in upper membership between

Ã and B̃ is 1.
This concludes similarity measures on interval type-2 fuzzy sets.

2.4. Similarity Measures for General Type-2 Fuzzy Sets

Zhao et al.[48], Hao and Mendel [13], and McCulloch and Wagner [23]
take alike approaches in measuring similarity using the zSlices approach. Each
method is based on the set-theoretic Jaccard measure for interval type-2 fuzzy
sets (see eq. (19)). Their equations are given next.

Zhao et al. [48] proposed two new measures of similarity on zSlices-based
fuzzy sets. The first measure represents similarity as a type-1 fuzzy set [48],
while the second presents similarity as a single value as

sGT2
zxld(A,B) =

∫ 1

0
sIT2
j (Ãz, B̃z) dz. (25)

where sIT2
j is the Jaccard approach for interval type-2 fuzzy sets (see eq. (19)).

This is also akin to the method given by Hamrawi and Coupland [12]. However,
they do not specify using the Jaccard measure and instead propose using any
interval type-2 similarity measure.
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Hao and Mendel [13] represent similarity as a fuzzy set and compute its
centroid to acquire a crisp result. The fuzzy set representing similarity is given
as

sGT2−F
hm (Ã, B̃) = {(z, sIT2

j (Ãz, B̃z)) | z ∈ (0, 1]}. (26)

In this paper, we refer to the centroid of sGT2−F
hm as sGT2

hm . This differs from sGT2
zxld

(eq. (25)) by weighting the similarities of the zSlices by their zLevels, whereas
sGT2
zxld takes an unweighted average.

Previously [23], we proposed a similarity measure using the zSlices-representation
as follows

sGT2
mw (Ã, B̃) =

∫ p
0
zsIT2(Ãz, B̃z) dz∫ p

0
z dz

, (27)

where p = max{z | µÃ(x, u) ≥ z ∧ µB̃(x, u) ≥ z, z ∈ (0, 1]} is the highest non-
empty zLevel. Like eq. (26), this method (eq. (27)) also weights the similarities
of the zSlices by their zLevels (the value z), such that the similarity between
higher zSlices contributes more to the overall similarity than those at lower
zSlices.

The methods eq. (25), eq. (26), eq. (27) are all restricted to the zSlices
notation of type-2 fuzzy sets. However, fuzzy sets can be represented through
different notations including vertical slices [29] or embedded slices [25] (see Sec-
tion 2.1). As such, Wu and Mendel [41] proposed a geometric approach which
calculates the Jaccard similarity eq. (19) based on the volume of the fuzzy sets.
Their measure can be applied to either the zSlices or vertical slices representa-
tion. The similarity is computed as follows:

sGT2
wm (Ã, B̃) =

(Ã ∩ B̃)v + (Ã ∩ B̃)v

(Ã ∪ B̃)v + (Ã ∪ B̃)v
, (28)

In terms of the vertical slice representation Ã and Ã represent the lower and
upper surfaces spanned by the portion of the vertical slices that have smaller
or larger u than their corresponding apexes [41]. In terms of the zSlices repre-

sentation Ã and Ã represent the lower and upper surfaces defined by the lower
and upper membership functions of different zSlices. The value (Ã∩ B̃)v is the
volume of the intersection of Ã and B̃, and (Ã∪ B̃)v is the volume of the union.
The volume of the fuzzy sets (and their intersection or union) can be calculated
using either the vertical slice or zSlice representation by measuring the volume
between each slice. Using the zSlices representation, the similarity between Ã
and B̃ is given as∫

z∈[0,1]

[ ∫
x∈X min(Ãz(x), B̃z(x))dx+

∫
x∈X min(Ãz(x), B̃z(x))dx

]
dz∫

z∈[0,1]

[ ∫
x∈X max(Ãz(x), B̃z(x))dx+

∫
x∈X max(Ãz(x), B̃z(x))dx

]
dz
, (29)

where Ãz(x) = [Ãz(x), Ãz(x)] is the vertical slice of the zSlice Ãz at x. Using
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the vertical slice representation instead, similarity is calculated as∫
x∈X

[ ∫
z∈[0,1] min(Ãz(x), B̃z(x))dx+

∫
x∈X min(Ãz(x), B̃z(x))dz

]
dx∫

x∈X

[ ∫
z∈[0,1] max(Ãz(x), B̃z(x))dx+

∫
x∈X max(Ãz(x), B̃z(x))dz

]
dx
. (30)

Taking either the zslices (eq. (29)) or the vertical slices approach (eq. (30))
yields the same results [41].

The methods sGT2
mw , sGT2

hm and sGT2
zxld measure the Jaccard interval type-2 sim-

ilarity between the zSlices of fuzzy sets and calculate the average. By contrast,
Yang and Lin [20, 44] proposed measuring the Jaccard type-1 similarity between
vertical slices of fuzzy sets and calculating the average. This is given as:

sGT2
yl (Ã, B̃) =

∫
x∈X

∫ 1

0
min{u · µÃ(x, u), u · µB̃(x, u)} du∫ 1

0
max{u · µÃ(x, u), u · µB̃(x, u)} du

dx. (31)

Alternatively, Hung and Yang [37] use the inverse of the Hausdorff distance
to measure the proximity between secondary membership functions as

sGT2
hy (Ã, B̃) = 1− dN (Ã, B̃) (32a)

dN (Ã, B̃) =

∫
x∈X

Hf (Ã(x), B̃(x)) dx (32b)

Hf (A,B) =

∫ 1

0

αiH(Aα, Bα) dα (32c)

H(Aα, Bα) = max{L(Aα, Bα), L(Bα, Aα)} (32d)

L(Aα, Bα) = inf
{
λ ∈ [0,∞]|Aλα ⊃ Bα

}
(32e)

Within (32), Ã and B̃ are the type-2 fuzzy sets being compared. Their similarity
is measured by comparing their vertical slices Ã(x) and B̃(x) (in eq. (32b)),
which are abbreviated as A and B (in eq. (32c)) since the vertical slices are
type-1 fuzzy sets. Next, the similarity of A and B is measured by calculating
the Hausdorff distance between their alpha-cuts (in eq. (32c)). The Hausdorff
distance (as written in [37]) is given in eq. (32d) and (32e). However, as the α-
cuts are closed intervals (assuming convexity), the Hausdorff distance between
α-cuts can be rewritten in a simplified form as

H(Aα, Bα) = max{| Aα −Bα |, | Aα −Bα |} (33)

where Aα = [Aα, Aα]. Finally, in eq. (32a) the average distance (averaged over

α-cuts of the vertical slices of Ã and B̃) is used as the negation of similarity.
Mitchell [30] proposed measuring the similarity between two general type-2

fuzzy sets by comparing their embedded fuzzy sets with any type-1 similarity
measure. Let Ã and B̃ be two type-2 fuzzy sets represented by a total of M
and N embedded fuzzy sets, respectively. The similarity between Ã and B̃ is

13



the weighted sum of the similarity between each pair of embedded fuzzy sets as
[30]

sGT2
m (Ã, B̃) =

M∑
m=1

N∑
n=1

s
(
θm
Ã

(x), θn
B̃

(x)
)

Λ
(
θm
Ã

(x), θn
B̃

(x)
)
, (34)

where θm
Ã

(x) is the mth embedded fuzzy set of Ã (see eq. (11)), s can be any
type-1 similarity measure, and Λ is the normalised weight

Λ(θm
Ã

(x), θn
B̃

(x)) =
t(λmA , λ

n
B)∑M

i=1

∑N
j=1 t(λ

i
A, λ

j
B)
, (35)

where t is a t-norm (we use minimum) and λmA is the weight associated with the
embedded fuzzy set θm

Ã
(see eq. (12)).

We have chosen the Jaccard ratio sT1
j (see eq. (14)) for s in eq. (34) as this

provides the most accurate comparison of sGT2
m against other general type-2

measures that are, in most cases, based on the same ratio.
This concludes the background on similarity measures for type-2 fuzzy sets.

In the next section, we introduce the methods used to evaluate these measures.

3. Methods

In this section, we introduce the data used in this paper, and two methods
of using this data to evaluate the similarity measures.

We construct fuzzy sets from interval-valued data that have previously been
used to demonstrate similarity measures on type-2 fuzzy sets [40, 41] and are
available online [17]. The data consist of 32 words to which 174 participants
assigned interval-values on the scale [0, 10]. Interval type-2 fuzzy sets are con-
structed from the interval-valued data using the HM approach [14]. Table 1
lists these words; for consistency, they are presented in the same order as given
in [40] where further details on the method of data collection can be found. In
Table 1, each word is assigned an ID number for ease of reference within this
paper.

For each word, we use the HM approach [14] to convert interval-valued data
to an interval type-2 fuzzy set. Each fuzzy set has a trapezoidal upper and
lower membership function. Let the membership function µA be defined as
µA = trapmf(x; [a, b, c, d]) such that

µA(x) =


(x− a)/(b− a) a ≤ x ≤ b
1 b ≤ x ≤ c
(d− x)/(d− c) c ≤ x ≤ d
0 otherwise.

(36)

The HM approach produces interval type-2 fuzzy sets. From these, we con-
struct secondary membership functions to produce general type-2 fuzzy sets.
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Table 1: Words to which survey participants assigned intervals (taken from [17]).

ID word ID word

1 none to very little 17 modest amount
2 teeny-weeny 18 good amount
3 a smidgen 19 sizeable
4 tiny 20 quite a bit
5 very small 21 considerable amount
6 very little 22 substantial amount
7 a bit 23 a lot
8 little 24 high amount
9 low amount 25 very sizeable
10 small 26 large
11 somewhat small 27 very large
12 some 28 humongous amount
13 some to moderate 29 huge amount
14 moderate amount 30 very high amount
15 fair amount 31 extreme amount
16 medium 32 maximum amount

Let Ã be a zSlices-based fuzzy set with a finite number of zSlices and trape-

zoidal upper and lower membership functions for each zSlice (denoted Ãz and
Ãz, respectively) defined as

Ãz = trapmf(x, [az, bz, cz, dz])

Ãz = trapmf(x, [az, bz, cz, dz]). (37)

We assign the maximum secondary membership in Ã (i.e., µÃ(x, u) = 1)
where x and u are at the centre of the footprint of uncertainty. The secondary
membership values decrease linearly towards the edge of the footprint of uncer-
tainty. For example, Fig. 3 shows the general type-2 fuzzy set of word-17 in
a two-dimensional figure and a three-dimensional figure, where darker shades
indicate higher degrees of membership. The upper and lower membership func-
tions of each zLevel are calculated as follows: For any given zLevel z ∈ (0, 1],
the upper membership function of Ãz is

Ãz = trapmf(x, [az, bz, cz, dz]), (38)

where

az = a+
(

(a− a)
( z

I − 1

))
bz = b+

(
(b− b)

( z

I − 1

))
... (39)
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Figure 3: (a) A two-dimensional and (b) top-down three-dimensional view of word 17. Darker
shades indicate a higher secondary membership.

where a and b define the lowest zSlice (in eq. (36)), z is the zLevel (i.e. the
secondary membership value), and I is the total number of zSlices. Likewise,
the lower membership function of Ãz is

Ãz = trapmf(x, [az, bz, cz, dz]), (40)

where

az = a−
(

(a− a)
( z

I − 1

))
bz = b−

(
(b− b)

( z

I − 1

))
... (41)

Throughout the paper, we use a total of 10 zLevels.
To analyse the measures, we compare every fuzzy set with every other fuzzy

set for a total of 528 comparisons. Of those, 32 comparisons are of identical
fuzzy sets. In addition, 204 pairs of fuzzy sets are disjoint as a result of using
the HM approach to construct type-2 fuzzy sets with the given data. We use
a heatmap to visualise the results of each measure. In addition, we use scatter
plots to show pairwise comparisons of the results of the measures. To illustrate
these two methods, we demonstrate them with type-1 fuzzy sets here. We
construct type-1 fuzzy sets based on the type-2 fuzzy set word models. For each
word, the membership function of the type-1 fuzzy set is the same as the upper
membership function of the interval type-2 fuzzy set.

Fig. 4 shows an example of three type-1 fuzzy sets representing words 7, 17
and 23. Fig. 5 shows a heatmap of the results of sT1

j (eq. (14)) on all pairs
of words, where white indicates s = 1 and black indicates s = 0. The plot is
symmetrical because the measure has the property of symmetry. Clusters of
similar words can be seen in light coloured sections. Word 20 stands out among
neighbouring words, suggesting it should be ranked lower because it is more
similar to lower ranked words that to its neighbours.
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Figure 4: Examples of three type-1 fuzzy sets representing words 7, 17 and 23. Their member-
ship functions are the same as the upper membership function of the HM Approach interval
type-2 fuzzy sets for the same words.
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Figure 5: Heatmap showing results of sT1
j comparing every word (listed in Table 1) with every

other word.
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Figure 6: Results of sT1
j and sT1

p comparing every word with every other word. Each point
on the plot shows the results for one pair of fuzzy sets according to the two measures.
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Fig. 6 shows a pairwise comparison of the results of sT1
j (eq. (14)) and sT1

p

(eq. (13)) as a scatter plot. Each point on the plot represents the similarity
between one pair of fuzzy sets; therefore there are a total of 528 points. The
axes represent the results from the given similarity measures. There is a perfect
rank correlation between the two measures, meaning if only the rank order of
similarity is important then the measures give the same results. In such cases,
we say the measure are equivalent - even if the values from the measures are
different. Such equivalences of type-1 fuzzy sets have been discussed in [33].

To ensure consistency in our analysis, when making pairwise comparisons,
we choose one similarity measure and compare all other measures against this
one. Specifically, we always compare against the same Jaccard-based property-
complete measure. Note that we do not advocate in any way that Jaccard is the
universally best measure, however, it being both the most popular measure in
the literature, and a key example of a property-complete measure, it provides
a valuable basis to observe the effects of missing properties in other measures.
Finally, we note that we do not only explore measures’ behaviours in respect to
Jaccard, but also examine measures individually to ensure a fair analysis.

Using these data and the methods described, in the next two sections we
evaluate interval and general type-2 similarity measures, respectively. We assess
what approach should be taken to ensure a property-complete comparison of
fuzzy sets, and which are the best similarity measures to choose from.

4. Similarity of Interval Type-2 Fuzzy Sets

In this section, we analyse each interval type-2 similarity measure on data-
driven fuzzy sets that describe words. We measure the similarity of each word
with each other word. Fig. 7 shows pairwise comparisons of each measure
compared against the Jaccard measure (eq. 19). We choose the Jaccard measure
eq. (19) as the base for these pairwise comparisons because it is property-
complete and therefore helps to highlight how non-property complete measures
differ. Fig. 8 shows the similarity of each word compared with each other word
for each measure. Results are shown as a heatmap, where s = 0 is shown as
black and s = 1 is shown as white. Each figure is symmetrical, demonstrating
that each similarity measure is symmetrical.

Fig. 7a shows a comparison of sIT2
zwzz against sIT2

j across all combinations
of sets. Each point in the figure represents the similarity between a pair of
interval type-2 fuzzy sets according to sIT2

j and sIT2
zwzz. While the rank orders of

sIT2
zwzz and sIT2

j are slightly different, they share a high correlation. In addition,
their results in Fig. 8 are almost equal. Clusters of words with similar meaning
can be seen, and dark regions indicate words that do not have any similarity
in meaning. Both methods also show a discontinuity in similarity for word 20,
suggesting it should be ranked lower in the list of words.

Fig. 7b compares sIT2
wm with sIT2

j , showing there is some correlation between

the results, but the values from sIT2
wm vary from sIT2

j . The measure sIT2
wm does

not have the property of overlapping and instead will always give a low value of
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similarity for two disjoint fuzzy sets. However, this value is small enough that
it would intuitively be considered an insignificant degree of similarity. In Fig.
8, the results of sIT2

wm are like that of sIT2
j and sIT2

zwzz, finding the same clusters
of similar words.

Fig. 7c compares sIT2
zl with sIT2

j . It is clear that sIT2
zl produces higher values

of similarity than sIT2
j . This is because it does not weight similarity according

to membership degrees. For example, consider two fuzzy sets Ã and B̃, where at
x1 µÃ(x1) = 0.1 and µB̃(x1) = 0.12, and at x2 µÃ(x2) = 0.9 and µB̃(x2) = 0.92.

At x1, the difference in upper membership values between Ã and B̃ is 0.02 (they
are similar) but the membership values are low. By contrast, at x2 the difference
in upper membership values is the same but the membership values themselves
are high. Giving equal weight to the similarity at x1 and at x2 produces an
inflated result.

This also leads to sIT2
zl not having the property of overlapping. It instead

gives a non-zero similarity for disjoint fuzzy sets. For example, consider two
fuzzy sets where, for a given x, both have a membership degree of zero. The
result of sIT2

zl will increase because the fuzzy sets become more similar in the
sense that they both have zero membership at x. Measuring empty vertical
slices artificially increases the similarity for this approach.

These inflated results of sIT2
zl can be seen in Fig. 8. The clusters of similar

words are less well defined by sIT2
zl than by the other methods in the same

figure. Additionally, it is clear that words at the opposite ends of the scale
(e.g. words 1 and 32) have resulted in a high similarity, demonstrating that the
measure is unreliable. It is because sIT2

zl gives low and high membership degrees
equal weighting that the average similarity is much higher than with sIT2

j . If
the difference in membership degrees is weighted by the degrees themselves,
the similarity result will be lower. Therefore, we recommend weighting the
proximity of membership by the membership values themselves.

sIT2
b provides an interval-valued measure of similarity instead of crisp values,

providing a degree of uncertainty about the similarity. Fig. 7d represents this
by vertical lines compared against sIT2

j . A circular point is drawn where the

lower and upper bounds of sIT2
b are the same. The figure shows the results

of sIT2
b have some correlation with sIT2

j . However, there are many cases in

which sIT2
j > 0 but sIT2

b = [0, 0]. This occurs when there is a value x1 where
µA(x1) = 1 and µB(x1) = 0, and a value x2 where µ

A
(x2) = 1 and µ

B
(x2) = 0,

for which Ã and B̃ are interchangeable and x1 and x2 may be be equal. In such
cases, the similarity according to sIT2

b is [0, 0] even if the intersection of the fuzzy
sets is not empty. Zero similarity of non-disjoint fuzzy sets was also observed in
[40]. This can be seen in the results in Fig. 8. Some adjacently ranked words
(e,.g. words 11 and 12) have zero similarity according to sIT2

b . This can be seen
as a strict form of similarity where the value with the highest membership in
Ã must have a non-zero membership in B̃ to be considered similar. Otherwise,
even if the fuzzy sets overlap, their similarity is considered to be 0.

Another characteristic of sIT2
b (not shown in Fig. 7d) is that the upper

bound of the result is greater than 0 if the fuzzy sets are disjoint but the height
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Figure 7: Results of sIT2
j compared against other interval type-2 similarity measures.

of the lower or upper membership function of at least one of the sets is less
than 1. This is demonstrated in [39]. The fuzzy sets used to generate Fig. 7
do not have this characteristic and so this result is not shown. Therefore, sIT2

b

is best restricted to data where the heights of the lower and upper membership
functions are both always 1.

Note that sIT2
b finds the same clusters of similar words in Fig. 8. It may

therefore still be useful in the context of CW.
This section has presented an analysis of similarity measures for interval

type-2 fuzzy sets; Table 2 provides an overview of the properties of the mea-
sures considered. sIT2

j and sIT2
zwzz are property complete and therefore the most

reliable measures. Their comparison in Fig. 7a shows a very high correlation,
making both measures an equally good choice. The measure sIT2

b shows good
interval-valued results but cannot determine if two non-normal fuzzy sets are
disjoint. Likewise for sIT2

w , which gives a single-valued result. Finally, sIT2
zl

is not property-complete and is likely to be unsuitable because it gives a high
result for disjoint and barely overlapping fuzzy sets.

The next section presents an overview of measures for general type-2 fuzzy
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Method Reflex. Symm. Trans. Overlap. Min.–sim.

sIT2
j [32] 3 3 3 3 3

sIT2
zwzz [49] 3 3 3 3 3
sIT2
w [39] 3 3 3
sIT2
zl [46] 3 3
sIT2
b [1] 3 3 3

Table 2: Properties of the interval type-2 similarity measures detailed in Section 2.
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Figure 8: Results of interval type-2 similarity measures comparing each word (listed in Table
1) against each other word.
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sets.

5. Similarity of General Type-2 Fuzzy Sets

In this section, we analyse each general type-2 similarity measure on data-
driven fuzzy sets that describe words. We provide pairwise comparisons (see
Fig. 9) as well as an individual analysis of each measure (see Fig. 12). We use
the property-complete Jaccard based approach sGT2

mw as a base for all pairwise
comparisons. Note that using sGT2

zh , sGT2
hm or sGT2

wm as base measure instead of
sGT2
mw would be equally useful as these three are almost equivalent as shown next.

Each sub figure in Fig. 12 is symmetrical, demonstrating that each similarity
measure is symmetrical.

Figures 9a, 9b and 9c show sGT2
hm , sGT2

zxld and sGT2
wm , respectively, compared

against sGT2
mw . These measures are not equivalent to each other (that is, they do

not give the same rank order of similarity for the sets). However, the differences
between the methods are small such that they have a very high correlation
(r > 0.9) and are almost equivalent. Such closeness between the results of these
measures has been demonstrated in previous literature [23, 41]. In addition,
these three measures along with sGT2

mw and sGT2
m show almost equal results in Fig.

12. While some differences are present (for example at words 28-31 compared
with each other) the differences are small. Each method clusters the same groups
of similar words and each method highlights that word 20 is too high in the rank
order.

The measure sGT2
yl gives (perhaps unexpectedly) low results. Fig. 9d shows

the results of sGT2
yl compared against sGT2

mw . Except for identical and near-

identical sets, sGT2
yl only gives comparatively low results of similarity. This is

because sGT2
yl finds zero similarity if the footprints of uncertainty of the fuzzy

sets do not overlap, even if they are close. An extreme example of such fuzzy
sets (where one is a complete subset of the other) is given in Fig. 10. Although
the fuzzy sets share many of the same x values, their footprints of uncertainty
do not overlap. Note that this extreme example is not found in our test fuzzy
sets but many pairs are affected by this characteristic of the measure. Gen-
erally, measures of similarity between type-1 fuzzy sets measure the proximity
of membership functions or their intersection. It is only if fuzzy sets do not
intersect that they have no similarity. Likewise, for type-2 fuzzy sets like those
in Fig. 10, even though the footprints of uncertainty do not overlap, the fuzzy
sets do intersect so their similarity should be greater than zero. Based on this,
we propose similarity should consider intersection between fuzzy sets.

In Fig. 12, sGT2
yl has found some of the clusters of words that the previ-

ous three measures found, however, the values of similarity are not as high and
so the clusters are not as clear as with other methods. Therefore, in the con-
text of classification and clustering sGT2

yl is unlikely to be useful. However, the

rank order of results from sGT2
yl does not differ much from sGT2

mw (shown in Fig.
9d). Therefore, it may still be useful where rank order of similarity is more im-
portant than the value itself (for example, in document retrieval where similar
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documents are listed in order of relevance).
Fig. 9e compares sGT2

hy with sGT2
mw . The results of sGT2

hy are (unexpectedly)
high because the distance between disjoint sets at any vertical slice is calculated
from the membership degrees of the non-empty set. For example, consider the
fuzzy sets in Fig. 11 and their vertical slices at x = 0.3; one fuzzy set is empty at
this vertical slice and the other is not. The distance between these vertical slices
according to eq. (32d) is 0.678 and therefore their similarity (the complement
of their distance) is 0.322. However, intuitively, their similarity should be zero
because there is no overlap between the vertical slices. Unless the non-empty
set has a crisp membership of 1 at u = 1, the distance is always less than 1
and therefore the similarity is always greater than zero. This is like sIT2

zl eq.
(23), with which similarity is also higher than expected because the measure of
proximity between vertical slices is absolute instead of relative to the primary
membership values. In Fig. 12, sGT2

hy gives high values than the previous four
measures. The clusters of similar words are present and larger. However, it
also clusters words that are disjoint. For example, words 1-7 are very similar to
words 31-32 according to sGT2

hy . The measure’s inability to detect when fuzzy
set are disjoint makes it an unsuitable similarity measure.

Fig. 9f compares sGT2
m with sGT2

mw . As pointed out in [39], Mitchell’s method
does not necessarily give 1 where Ã and B̃ are identical because the embedded
type-1 fuzzy sets are randomly generated and so will not necessarily be the
same. Additionally, because each embedded set is randomly chosen, the result
of (34) is non-deterministic and will not always be the same when comparing
two fuzzy sets more than once because the selected embedded fuzzy sets will be
different each time. However, although identical sets do not get the result of
1, they do always result in a high value (generally above 0.8) and non-identical
sets generally do not result in such a high value. Fig. 9f shows the results of
sGT2
m have a high correlation (r > 0.9) with sGT2

mw . Fig. 12 also shows that sGT2
m

finds the same clusters of similar words as the property-complete methods.
This section has presented an analysis of similarity measures for general

type-2 fuzzy sets. Table 3 provides an overview of the properties of these mea-
sures. The functions sGT2

zxld , sGT2
hm , sGT2

mw and sGT2
wm are all property complete and

recommended as useful measures. The functions sGT2
yl and sGT2

hy do not have all

of the properties and may be unsuitable. Although sGT2
yl found some clusters

of similar words, the boundaries of these clusters are less clear than with other
measures. The measure sGT2

hy correctly found clusters of similar words but also
incorrectly clusters words that should have no similarity, and therefore it is not
a suitable measure. Finally, sGT2

m does not have all of the properties, but it does
have a high correlation with sGT2

mw and finds the same cluster of similar words as
property-complete measures. Therefore, we suggest it is a useful measure when
detecting identical fuzzy sets is not crucial.

The next section provides a discussion and conclusions on which measures
we suggest are best, and what methods should be considered or avoided in new
measures on type-2 fuzzy sets.
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Figure 9: Results of sGT2
mw compared against other general type-2 similarity measures.
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(a) (b)

Figure 10: Non-overlapping footprints of uncertainty in general type-2 fuzzy sets show from
two viewpoints.
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Figure 11: Disjoint general type-2 fuzzy sets (a) and their vertical slices at x = 0.3 (b). Note
that the right-hand (red) fuzzy set is an empty set at this vertical slice.

Method Reflex. Symm. Trans. Overlap. Min.–sim.

sGT2
zxld [48] 3 3 3 3 3
sGT2
hm [13] 3 3 3 3 3
sGT2
mw [23] 3 3 3 3 3
sGT2
yl [20] 3 3 3 3

sGT2
hy [37] 3 3

sGT2
m [30] 3 3

Table 3: Properties of the general type-2 similarity measures detailed in Section 2.
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Figure 12: Results of general type-2 similarity measures comparing each word (listed in Table
1) against each other word.
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6. Limitations, Discussion and Conclusions

Similarity measures are vital in many applications to compare fuzzy sets.
In recent years, several measures have been developed to compare type-2 fuzzy
sets, but it is not always clear if and how the properties of these measures
differ and, therefore, which of the existing measures is the best choice. We
evaluate all of the known similarity measures developed for type-2 fuzzy sets to
aid in the decision of which measure to choose. We highlight which measures
are equivalent or near-equivalent and why/how the properties of key measures
differ, which can lead to unexpected results.

We conducted our analysis on type-2 fuzzy sets that are constructed using
the HM approach [14], with which the lower and upper bounds of the footprint
of uncertainty of the fuzzy sets have a height of 1. However, differences in results
may be found if using a different method, for example the Enhanced Interval
Approach [42], which results in non-normal membership functions. In addition,
we note that the measures discussed in this paper are restricted to continuous
fuzzy sets, but there may be cases in which discrete fuzzy sets with non-convex
secondary membership functions require an appropriate similarity measure [31].
Therefore, in future work, we will explore the practice of applying similarity
measures to fuzzy sets where data restrict the fuzzy sets to discrete forms. We
also note that this paper only includes what has been published up to now and,
of course, new measures constantly arise in future work.

Among existing measures in the literature, several are near-equivalent - shar-
ing a high correlation in practice and giving only slightly different rank orders
of results – when ranking is used to summarise levels of similarity of fuzzy
sets. To compare the similarity between interval type-2 fuzzy sets, sIT2

j eq.

(19) and sIT2
zwzz eq. (20) are the most reliable; that is, they are the best choice

when the preferred properties of a similarity measure are not known. For an
interval-valued result, sIT2

b eq. (24) gives results that correlate well with the
aforementioned numeric measures sIT2

j and sIT2
zwzz, while also providing a mea-

sure of uncertainty in respect to the similarity – through the interval-valued
output.

To compare (general) type-2 fuzzy sets, sGT2
zxld eq. (25), sGT2

hm eq. (26), sGT2
mw

eq. (27) and sGT2
wm eq. (28) are all property-complete and are near-equivalent;

each is a useful measure on type-2 fuzzy sets. The function sGT2
m eq. (34) also

provides good results, but is non-deterministic and does not identify identical
fuzzy sets. Other measures that are not property-complete (sIT2

zl eq. (23), sGT2
yl

eq. (31) and sGT2
hy eq. (32)) will be unsuitable for most applications because

they give alike results for highly overlapping and disjoint pairs of fuzzy sets.
In addition to evaluating the state of current measures in the literature,

we highlight through empirical tests why some methods may give unexpected
results and advise on how this can be avoided in new methods of similarity.

Firstly, we show that measures underestimate similarity if they compare
how much the footprints of uncertainty of type-2 fuzzy sets overlap instead of
measuring the proximity of their membership functions (see the analysis of eq.
(31) in Section 5). For example, if we have two fuzzy sets where one is a subset
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of the other but their footprints of uncertainty do not overlap (see Fig. 10),
methods that only measure overlap of footprints of uncertainty will falsely state
the sets are entirely dissimilar even if their primary membership degrees are
close to each other. A similarity measure should evaluate the fuzzy sets based
on their intersection or relative proximity instead of whether their footprints of
uncertainty overlap.

Secondly, we show that methods overestimate similarity if they do not weight
the proximity of fuzzy set membership degrees according to the degree of mem-
bership (that is, if they calculate absolute difference instead of relative differ-
ence) (see the analysis of eq. (23) in Section 4). For example, if for a given
value on the domain x1, two fuzzy sets both have a low degree of membership,
their similarity at x1 is high. Likewise, if at x2 both sets have a high degree of
membership, their similarity is also high at x2. However, giving the same degree
of importance and similarity at both x1 and x2 leads to an overall result that
overestimates the similarity of the sets (see section 4). To avoid this, the similar-
ity at x1 should be given a smaller weight than at x2 when aggregating results.
If the above two points are taken into consideration, a new property-complete
similarity measure on type-2 fuzzy sets will be easier to develop.

We demonstrate measures in the context of CW, where we group words with
similar meanings. We highlight which measures successfully group similar words
and highlight which methods are unsuitable. Through these results, we show
that measures do not need to be property-complete to be useful; several methods
that are missing a property were able to find the same groups of similar words
as methods that have all of the properties. However, this was not the case for
all non-property-complete measures. Therefore, when the desired properties of
a similarity measure are not known, we recommend using one of the property
complete measures. If the desired properties are known then we recommend
choosing a measure that best fits the application.
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