524,553 research outputs found

    Self calibration of a road stereo color vision system using a similarity criterion

    Full text link
    International audienceIn this article, we address the problem of self calibrating an embedded stereoscopic color vision system, by matching interest points, and computing the related fundamental matrix. We propose a new method based on similarity of image areas surrounding automatically detected interest points. We provide some experimental results, and compare these to those obtained with a classical method

    DeshuffleGAN: A Self-Supervised GAN to Improve Structure Learning

    Full text link
    Generative Adversarial Networks (GANs) triggered an increased interest in problem of image generation due to their improved output image quality and versatility for expansion towards new methods. Numerous GAN-based works attempt to improve generation by architectural and loss-based extensions. We argue that one of the crucial points to improve the GAN performance in terms of realism and similarity to the original data distribution is to be able to provide the model with a capability to learn the spatial structure in data. To that end, we propose the DeshuffleGAN to enhance the learning of the discriminator and the generator, via a self-supervision approach. Specifically, we introduce a deshuffling task that solves a puzzle of randomly shuffled image tiles, which in turn helps the DeshuffleGAN learn to increase its expressive capacity for spatial structure and realistic appearance. We provide experimental evidence for the performance improvement in generated images, compared to the baseline methods, which is consistently observed over two different datasets.Comment: Accepted at ICIP 202

    A Multicamera System for Gesture Tracking With Three Dimensional Hand Pose Estimation

    Get PDF
    The goal of any visual tracking system is to successfully detect then follow an object of interest through a sequence of images. The difficulty of tracking an object depends on the dynamics, the motion and the characteristics of the object as well as on the environ ment. For example, tracking an articulated, self-occluding object such as a signing hand has proven to be a very difficult problem. The focus of this work is on tracking and pose estimation with applications to hand gesture interpretation. An approach that attempts to integrate the simplicity of a region tracker with single hand 3D pose estimation methods is presented. Additionally, this work delves into the pose estimation problem. This is ac complished by both analyzing hand templates composed of their morphological skeleton, and addressing the skeleton\u27s inherent instability. Ligature points along the skeleton are flagged in order to determine their effect on skeletal instabilities. Tested on real data, the analysis finds the flagging of ligature points to proportionally increase the match strength of high similarity image-template pairs by about 6%. The effectiveness of this approach is further demonstrated in a real-time multicamera hand tracking system that tracks hand gestures through three-dimensional space as well as estimate the three-dimensional pose of the hand

    Self-Similarity in General Relativity \endtitle

    Full text link
    The different kinds of self-similarity in general relativity are discussed, with special emphasis on similarity of the ``first'' kind, corresponding to spacetimes admitting a homothetic vector. We then survey the various classes of self-similar solutions to Einstein's field equations and the different mathematical approaches used in studying them. We focus mainly on spatially homogenous and spherically symmetric self-similar solutions, emphasizing their possible roles as asymptotic states for more general models. Perfect fluid spherically symmetric similarity solutions have recently been completely classified, and we discuss various astrophysical and cosmological applications of such solutions. Finally we consider more general types of self-similar models.Comment: TeX document, 53 page

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes

    Get PDF
    BACKGROUND: Investigating and understanding drug-drug interactions (DDIs) is important in improving the effectiveness of clinical care. DDIs can occur when two or more drugs are administered together. Experimentally based DDI detection methods require a large cost and time. Hence, there is a great interest in developing efficient and useful computational methods for inferring potential DDIs. Standard binary classifiers require both positives and negatives for training. In a DDI context, drug pairs that are known to interact can serve as positives for predictive methods. But, the negatives or drug pairs that have been confirmed to have no interaction are scarce. To address this lack of negatives, we introduce a Positive-Unlabeled Learning method for inferring potential DDIs. RESULTS: The proposed method consists of three steps: i) application of Growing Self Organizing Maps to infer negatives from the unlabeled dataset; ii) using a pairwise similarity function to quantify the overlap between individual features of drugs and iii) using support vector machine classifier for inferring DDIs. We obtained 6036 DDIs from DrugBank database. Using the proposed approach, we inferred 589 drug pairs that are likely to not interact with each other; these drug pairs are used as representative data for the negative class in binary classification for DDI prediction. Moreover, we classify the predicted DDIs as Cytochrome P450 (CYP) enzyme-Dependent and CYP-Independent interactions invoking their locations on the Growing Self Organizing Map, due to the particular importance of these enzymes in clinically significant interaction effects. Further, we provide a case study on three predicted CYP-Dependent DDIs to evaluate the clinical relevance of this study. CONCLUSION: Our proposed approach showed an absolute improvement in F1-score of 14 and 38% in comparison to the method that randomly selects unlabeled data points as likely negatives, depending on the choice of similarity function. We inferred 5300 possible CYP-Dependent DDIs and 592 CYP-Independent DDIs with the highest posterior probabilities. Our discoveries can be used to improve clinical care as well as the research outcomes of drug development

    Infinite Kinematic Self-Similarity and Perfect Fluid Spacetimes

    Full text link
    Perfect fluid spacetimes admitting a kinematic self-similarity of infinite type are investigated. In the case of plane, spherically or hyperbolically symmetric space-times the field equations reduce to a system of autonomous ordinary differential equations. The qualitative properties of solutions of this system of equations, and in particular their asymptotic behavior, are studied. Special cases, including some of the invariant sets and the geodesic case, are examined in detail and the exact solutions are provided. The class of solutions exhibiting physical self-similarity are found to play an important role in describing the asymptotic behavior of the infinite kinematic self-similar models.Comment: 38 pages, 6 figures. Accepted for publication in General Relativity & Gravitatio

    Self-similar approach to market analysis

    Full text link
    A novel approach to analyzing time series generated by complex systems, such as markets, is presented. The basic idea of the approach is the {\it Law of Self-Similar Evolution}, according to which any complex system develops self-similarly. There always exist some internal laws governing the evolution of a system, say of a market, so that each of such systems possesses its own character regulating its behaviour. The problem is how to discover these hidden internal laws defining the system character. This problem can be solved by employing the {\it Self-Similar Approximation Theory}, which supplies the mathematical foundation for the Law of Self-Similar Evolution. In this report, the theoretical basis of the new approach to analyzing time series is formulated, with an accurate explanation of its principal points.Comment: Latex file, 17 pages, no figure
    • …
    corecore