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For the areas of low textured in image pairs, there is nearly no point that can be detected by traditional methods.The information in
these areas will not be extracted by classical interest-point detectors. In this paper, a novel weakly textured point detectionmethod is
presented.The points with weakly textured characteristic are detected by the symmetry concept.The proposed approach considers
the gray variability of theweakly textured local regions.Thedetectionmechanismcanbe separated into three steps: region-similarity
computation, candidate point searching, and refinement of weakly textured point set. The mechanism of radius scale selection
and texture strength conception are used in the second step and the third step, respectively. The matching algorithm based on
sparse representation (SRM) is used for matching the detected points in different images. The results obtained on image sets with
different objects show high robustness of themethod to background and intraclass variations as well as to different photometric and
geometric transformations; the points detected by thismethod are also the complement of points detected by classical detectors from
the literature. And we also verify the efficacy of SRM by comparing with classical algorithms under the occlusion and corruption
situations for matching the weakly textured points. Experiments demonstrate the effectiveness of the proposed weakly textured
point detection algorithm.

1. Introduction

Local interest points can be used for many applications, such
as video analyzing, object detection, localization, and iden-
tification. Techniques which only use images to reconstruct
3D scenes are now the most popular of its applications.
Since many algorithms based on the diversity of concepts
such as graph cuts [1] and minimal path search [2] can only
handle short-baseline stereo matching, that is, they cannot
be used at the wide-baseline situation, on the other hand,
gradient detectors can be used for wide-baseline matching
well; in general, the process for matching the discrete image
points can be divided into three main steps. First, extracting
the “interest points” from each image, such as T-junctions,
corners, and the point detector should have the property
of repeatability, which guarantee finding the same physical
interest points under different viewing conditions. Next,
each interest point can be represented by a feature vector

through the descriptor, which should also be distinctive,
finally, matching the descriptor vectors between different
images.

Almost all of detectors are based on the gradient map of
image; for example, the Harris corner detector [3] is based
on the second moment matrix, which describes the gradient
distribution in a local neighborhood of a point in image,
but corners detected by this method are not scale invariant.
Mikolajczyk and Schmid [4] proposed two scale-invariant
methods, that is, Harris-Laplace and Hessian-Laplace, which
are based on the concept of automatic scale selection [5], and
the location is selected by Harris measure or the determinant
of the Hessian matrix; scale is selected by Laplacian; Lowe
[6] speeds up the above methods by using the difference of
Gaussians (DoG) to approximate the Laplacian of Gaussians
(LoG). There are lots of different detectors which have been
proposed in the literature [7–10]. However, problems of
methods based on interest point still remain, such as image
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blurring, magnification, and illumination; one of the most
seriousweaknesses between these is that thesemethods could
not get point on the low texture areas. Since these areas can be
defined by its gradient below some constant thresholds, it is
difficult to extract points on them by classical interest-point
detectors.

As a guiding principle for describing shapes this char-
acteristic has a rich history. Animals, man-made objects,
and plants are usually with symmetry characteristic. Many
techniques have been proposed to analyze this characteristic.
For example [11] describes an algorithm to segment objects
into terms of points, line segments, and circles. Loy and
Zelinsky [12] use the local radial symmetry to highlight
points of interest within a scene, which need not consider the
contribution of a local neighborhood to a central pixel. In this
paper we focus on the characteristic of strong self-similarity.
The approach proposed in [13] inspires us that the region
of weakly textured area has the characteristic of strong self-
similarity; hence the weakly textured points can be located
by this characteristic;moreover the locationswith self-similar
structure of local pattern are also distinguishable in different
images. Our goal is to develop both a detector and matching
algorithm for getting corresponding-point inweakly textured
regions underwide-baseline situation.Ourwork in this paper
can be divided into three parts, namely, candidates of weakly
textured point detection, refining the set of candidates, and
weakly textured point matching algorithm based on sparse
representation.

In the detecting part, the proposed detector is based
on the entities: circumferences and radii; it sums the value
on circumferences and radii; the information from image
is very first level of data processing, which is contrary to
gradient-based methods; hence, for giving the scale invariant
as the gradient-basedmethods we introduce amechanism for
automatic radial selection.The following two approaches can
be identified; the first one is used to obtain the symmetry
maps for each pixel in different radius scales, which is also
used in [14]. The second approach selects the radius scale for
each pixel.

In the refinement part, the set of weakly textured points
can be refined by computing the gradient magnitude in
scale-space [15], which is widely used in image processing
community, such as feature description, point detection, and
image structure analysis. Here we use this theory to measure
the texture strength and for reducing the points which do not
belong to weakly textured point; we also propose a threshold
selection mechanism.

In the point matching part, the correspondence relation-
ship of points which contain the same scene in two images
will be determined. The matching between two points set
is a one-to-one mapping between the points in these two
sets. There are many algorithms for computing the similarity
between two point features, such as zero-mean normalized
cross correlation (ZNCC) [16] and Hausdorff distance [17],
which many algorithms have been suggested for. We here
introduced the sparse representation concept [18] for weakly
textured point matching, which has been used for human
face recognition in [19]. This approach considers all possible
supports (here is the set of weakly textured points in the
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Figure 1: Example of a weakly textured region in human model.

second image) and can automatically choose the minimal
number of samples needed to represent each feature of point
in the first image.

The approach proposed in this work gives a new detector
for extracting theweakly textured points from image inwhich
the objects have weakly textured characteristic. Moreover,
since the detector is based on radial symmetry, it is not
sensitive to variations in image illumination. In the exper-
iment for detectors, the results obtained on image sets of
different image sets under different types of geometric and
photometric transformations show that the extracted points
by this detector are the complement of classical detectors
and high robustness with intraclass variations. In the point
matching algorithms test experiment, the method based on
sparse representation outperforms other algorithms under
the pixel corruption and block occlusion situations, respec-
tively, and the results also show that the extracted weakly
textured points are also distinguishable from locations; finally
we use our algorithm to promote the quasi-dense matching
algorithm which was proposed in [20] to verify the proposed
approach under wide-baseline situation.

This paper is organized as follows: in Section 2 the
method is proposed to detect the candidate of weakly
textured regions. In Section 3, we sketch out a mechanism
for points refinement via scale-space selection theory. In
Section 4, the sparse representation theory is used for match-
ing weakly textured point. In Section 5, the proposedmethod
is tested in accordance with two protocols [21, 22] for
evaluation of local region detectors and matching algorithm.
Section 6 provides concluding remarks and possible exten-
sions of the proposed method.

2. Weakly Textured Feature Points Detection

Given an image 𝐼 with the weakly textured region ΩWT and
texture regionΩ

𝑇
, it is clear that there has no corner-point or

have few edge-points in the neighbor region of the points in
ΩWT (see Figure 1). Let 𝐼(𝑥, 𝑦) denote the gray value of image;
then the points’ characteristic in the region ΩWT can be
represented by its first- and second-order partial derivatives
as

𝐼
𝑥
, 𝐼
𝑦
, 𝐼
𝑥𝑥
, 𝐼
𝑦𝑦
, 𝐼
𝑥𝑦
, 𝐼
𝑦𝑥

≈ 0, {(𝑥, 𝑦) ∈ ΩWT} . (1)

For the above mentioned, the detectors based on the
gradient feature such as the Hessian, Harris, and SIFT
detectors could not be used for detecting these points. So
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these points should be detected in different ways. As shown
in Figure 1, the region formed by weakly textured pixel and
its neighborhoods can be segmented in many fragments and
the pixel’s gray value distribution in each fragment is similar.

Let 𝐼(𝑥) be the intensity value at location; Ω
𝑝
denotes

the reference fragment in the image; then the self-similar
fragmentΩ

𝑝
can be measured by the normalized correlation

coefficient as follows:

ncc (𝑃, 𝑇) =
∑
𝑖
(𝐼 (𝑥
𝑖
) − 𝐼) (𝐼 (𝑇 (𝑥

𝑖
)) − 𝐼)

√(∑
𝑖
(𝐼 (𝑥
𝑖
) − 𝐼)

2

) (∑
𝑖
(𝐼 (𝑇 (𝑥

𝑖
)) − 𝐼)

2

)

,

{𝑝 ̸= 𝑞 | 𝑞 = 1, 2, . . . , 𝑁} ,

(2)

where 𝐼(𝑇(𝑥)) = 𝑎 + 𝑏𝐼(𝑥) ∀𝑥 ∈ Ω
𝑝
.

𝐼 denotes the average intensity value of fragment Ω
𝑝
.

The purpose of the formula 𝐼(𝑥
𝑖
) − 𝐼 is to reduce the

influence caused by intensity; 𝑇(⋅) denotes a geometrical
transformation.

From Figure 1, it is clear that the weakly textured region
has strong mirror symmetry; let point 𝑝 = (𝑟, 𝜃) be
represented in polar coordinates, let 𝜑 ∈ [0, 𝜋) denote the
mirror line orientation, and then the symmetric point of 𝑝
about the mirror line can be represented as 𝑝󸀠 = (𝑟, 2𝜑 − 𝜃).
For measuring the mirror symmetry about the region Ω

𝑝
, it

should fulfill all mirror line orientation 𝜑 ∈ [0, 𝜋); here the
symmetry of regionΩ

𝑝
can be obtained as follows [23]:

𝑆
𝑤 texture (Ω𝑝) =

1

𝑁

𝑁−1

∑

𝑖=0

ncc (Ω
𝑝
, 𝑇 (Ω

𝑝
, 𝜑
𝑖
)) , (3)

where 𝑇(⋅) denotes the symmetry transformation function,
and it transforms the Ω

𝑝
to its symmetric region about

the mirror line orientation 𝜑
𝑖
∈ {𝜑
0
, 𝜑
1
, . . . , 𝜑

𝑁−1
}, Δ𝜑 =

𝜋/𝑁, and 𝜑
𝑖

= 𝑖 × Δ𝜑. It is easy to prove that the
max(𝑆

𝑤-texture(Ω𝑝)) = 1 and min(𝑆
𝑤-texture(Ω𝑝)) = 0, Ω

𝑝
∈ 𝐼.

2.1. Same Radial for 𝑆
𝑤-texture. In the example shown in

Figure 2 the strength of 𝑆
𝑤-texture with the same radial in

different images is affected by the similarity of its region, as
we can see that the strong texture region has small value of
𝑆
𝑤-texture; in contrast, the value of 𝑆

𝑤-texture in weakly textured
region is close to 1. So 𝑆

𝑤-texture can be used for detecting
the weakly textured region. However the middle-down part
of Figure 2 shows that the region with strong similarity but
not weakly textured region has high value of 𝑆

𝑤-texture; this
case indicates that the weak texture cannot be detected by
𝑆
𝑤-texture only. And in Section 3, we will solve this problem by
the differential expressions at the center point of regionΩ

𝑝
.

2.2. Radial Selection for 𝑆
𝑤-texture. According to the above

discussion, we use 𝑆
𝑤-texture as our weakly textured detector

(WTD); however, there are many factors which can affect
the performance ofWTD, including the structure complexity
distributed within the local region, variety illumination for
the local region, and radials chosen by WTD. Here we

Sw-texture = 0.0776 Sw-texture = 0.0642 Sw-texture = 0.0982

Sw-texture = 0.0825Sw-texture = 0.9548 Sw-texture = 0.8244

Figure 2: 𝑆
𝑤-texture in different image structureswith the same radius.

investigate the performance at whichWTDmeasures region’s
texture strength with different radials.

As shown in Figure 3, the texture strength is reflected by
the intensity of the pixel in the similarity map; that is, the
pixel with lower texture strength has higher intensity. When
the radial change from small to large the intensity of the
pixelwith low texture strengthwill become lower, whereas the
intensity of the pixel with high texture strength will become
higher.

The points detect by WTD with different radials are
shown in Figure 4. Obviously, the result is largely affected by
the radials of the operator.

Here we proposed a mechanism for automatic radial
selection. The radial selection mechanism should follow
heuristic principles: first, the radial must be large enough to
contain the weakly textured region; that is, the radial should
extend the weakly textured region until the region bound
close to the texture feature. Second, the points chosen by this
mechanism should have themaxima value of 𝑆

𝑤-texture with its
radial.Third, themechanism should have robustness to small
variations caused by fragments; that is, the radial can ignore
small fragments in the weakly textured region.

As shown in Figure 5, 𝑆
𝑤-texture varies with the radius, and

let 𝑆
𝑅
be the derivative of 𝑆

𝑤-texture with radius. In differential
geometric terms, the fine-radius for each weakly textured
points should simply satisfy 𝑆

𝑅𝑅
= 0, which is the second-

order derivative of 𝑆
𝑤-texture. On the other hand, when con-

sidering the influence caused by neighboring fragments, we
here use the following 𝛾-parameterized normalized derivative:
𝜕
𝑅𝑅
(𝑅
𝛾
𝑆
𝑤-texture) = 0. According to this formula the influence

caused by the fragments can be eliminated under the fitted
parameterized 𝛾, with 𝛾 = 0.5. Figure 6 shows the results with
this radius selection method.

3. Weakly Textured Points Filter for
Fine Positioning

In Section 2 we have analyzed the weakly textured feature
and use WTD with proposed adaptive radial mechanism to
position the weakly textured point. However the problem
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Original R = 4 R = 32

Figure 3: Similarity maps under radii 𝑅 = 4 and 𝑅 = 32.

R = 4

R = 32

Figure 4: Extracted points under radii 𝑅 = 4 and 𝑅 = 32.
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Figure 5: 𝑆
𝑤-texture varies on a scale from 𝑅 = 2 to 𝑅 = 60.

Figure 6: Radius selected for weakly textured points.
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Figure 7: 𝐿grad varies on scale-space from 𝑡 = 10 to 𝑡 = 80.

in the middle-down part of Figure 2 shows that the point
has large value of 𝑆

𝑤-texture which is not the weakly textured
point. On the other hand, the state-of-the-art edge detector
corresponds to detecting points with the maximum gradient
magnitude in the gradient direction, so edges can be detected
in scale-space; here we extend these ideas to remove these
points which do not have the weakly textured property.

3.1. ImproveWTD in Scale-Space. When giving a 2D signal𝑓,
the definition of the scale-space representation 𝐿 : 𝑅

2
×𝑅
+
→

𝑅 is the solution of the diffusion equation [24]:

𝜕
𝑡
𝐿 =

1

2
∇
2
𝐿 =

1

2
(𝜕
𝑥𝑥

+ 𝜕
𝑦𝑦
) 𝐿. (4)

It can be proved 𝐿(⋅, 𝑡) = 𝑔(⋅, 𝑡)∗𝑓(⋅), where 𝑔 : 𝑅
2
×𝑅
+
→ 𝑅

is the Gaussian kernel; that is,

𝑔 (𝑥, 𝑦; 𝑡) =
1

2𝜋𝑡
𝑒
−(𝑥
2
+𝑦
2
)/(2𝑡)

. (5)

For removing the point with strong texture feature, we should
detect its texture strength in its neighbor region; here we
use the gradient magnitude to represent it. Based on the
𝛾-𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 normalized derivative concept in the scale-
space, we will consider the following differential expression:

𝐿grad (⋅; √𝑡) = 𝑡
𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝜕𝐿 (⋅; 𝑡)

𝜕𝑥
)

2

+ (
𝜕𝐿 (⋅; 𝑡)

𝜕𝑦
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (6)

As shown in Figure 7 when using this operator to measure
the points’ texture strength, it is clear that 𝐿grad will change
along with the scale 𝑡. Moreover the more close the point is to
the edge the bigger the change to 𝐿grad magnitude it has (the
cross-point “+” in each picture denotes the one more close to
the edge).

3.2. Point Texture Strength Based on Local Maximum over
Scales of Derivative. As above mentioned, the point texture
strength can be reflected by 𝐿grad magnitude over scales;
hence we can define it by the local maximum over scales of
derivative, and here we use following step function which is
the close-form theoretical analysis for edgemodels, and it also
can be convenient for further analysis to instead the actual
edges. Consider

𝑓 (𝑥) = {
0 for 𝑥 < 𝑥

0

1 for 𝑥 ≥ 𝑥
0
.

(7)

On the other hand, Gaussian kernel is a local kernel which
responds to near neighbor of the input variables; hence,
we here restrict the kernel size to the interval [−3√𝑡, 3√𝑡].
Consider

𝑔 (𝑥; 𝑡) =

{

{

{

1

2𝜋𝑡
𝑒
−𝑥
2
/(2𝑡)

𝑥 ∈ [−3√𝑡, 3√𝑡]

0 otherwise.
(8)

By substitution from (7) and (8) in (6), we obtain the 𝐿grad
magnitude of 𝑓(𝑥) with the following equation:

𝐿 (𝑥, 𝑡) =

{{{{{{{

{{{{{{{

{

0 𝑥 − 𝑥
0
≤ −3√𝑡

∫

𝑥−𝑥
0

−3√𝑡

𝑔 (𝑥
󸀠
; 𝑡) 𝑑𝑥

󸀠
−3√𝑡 < 𝑥 − 𝑥

0
< 3√𝑡

∫

3√𝑡

−3√𝑡

𝑔 (𝑥
󸀠
; 𝑡) 𝑑𝑥

󸀠
𝑥 − 𝑥
0
≥ 3√𝑡.

(9)
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According to above equation, magnitude 𝐿grad of 𝑓(𝑥) can be
represented as the following expression:

𝐿
𝑥 (𝑥, 𝑡) = {

𝑔 (𝑥 − 𝑥
0
, 𝑡)

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨 < 3√𝑡

0 otherwise,
(10)

where |𝑥 − 𝑥
0
| represents the distance between 𝑥 and the

discontinuous point 𝑥
0
which is the point on the edge, and

we use the symbol Δ𝑙 instead of it. This formula shows that
when Δ𝑙 < 3√𝑡, 𝐿grad ̸= 0, and as mentioned above, the
local maximum over scales of derivative will be used as the
point’s texture strength. But from Figure 7 it can be shown
that there is no guarantee for getting the local maximum of
the derivative over scales. And the derivative of 𝐿

𝑥
(𝑥, 𝑡) can

be gotten from formula (10) as follows:

𝜕𝐿
𝑥

𝜕𝑡
=

{

{

{

1

2√2𝜋

𝑡
−5/2

𝑒
−Δ𝑙
2
/2𝑡

(Δ𝑙
2
− 𝑡) Δ𝑙 < 3√𝑡

0 otherwise.
(11)

It is clear that the local maximum of 𝐿
𝑥
depends on scale 𝑡;

that is, if 𝑡
0
= Δ𝑙
2, then 𝜕𝐿

𝑥
/𝜕𝑡|
𝑡=𝑡
0

= 0. Hence the range of
scale [1, 𝑡max] is difficult to select; for example, when Δ𝑙 = 20,
then 𝑡max must satisfy 𝑡max ≥ 400, and when 𝑡max is set too
large, it will increase in computation complexity for finding
the local maximum of 𝐿

𝑥
. Obviously, we want to find the

way to ignore the influence caused by Δ𝑙; that is, 𝑡
0
is not

proportional to Δ𝑙
2.

For this reason we need to transform 𝐿
𝑥
(𝑥, 𝑡) to the

function in which local maximum does not depend on Δ𝑙
2;

let 𝐿󸀠
𝑥
= 𝑝(𝑡)⋅𝐿

𝑥
; then 𝜕𝐿

󸀠

𝑥
/𝜕𝑡 = (𝜕𝑝(𝑡)/𝜕𝑡)𝐿

𝑥
+𝑝(𝑡)(𝜕𝐿

𝑥
/𝜕𝑡);

that is, the derivative of 𝜕𝐿󸀠
𝑥
/𝜕𝑡 is

𝜕𝐿
󸀠

𝑥

𝜕𝑡
=

{{{

{{{

{

1

2√2𝜋

𝑡
−5/2

𝑒
−Δ𝑙
2
/2𝑡

(2𝑝 (𝑡) 𝑡
2
+ 𝑝 (𝑡) (Δ𝑙

2
− 𝑡))

Δ𝑙 < 3√𝑡

0 otherwise.
(12)

For the purpose of reducing the incremental of 𝑡max when Δ𝑙

increases, hence 𝑝(𝑡) here should be the decreasing function
of scale 𝑡. On the other hand, despite the fact that 𝑡max should
not be proportional to Δ𝑙

2, it has to guarantee that the local
maximum position 𝑡

0
increases with increasing Δ𝑙; that is, it

should satisfy

𝜕𝐿
󸀠

𝑥
(Δ𝑙
1
, 𝑡)

𝜕𝑡
= 0, (𝑡 = 𝑡

1
)

𝜕𝐿
󸀠

𝑥
(Δ𝑙
2
, 𝑡)

𝜕𝑡
= 0, (𝑡 = 𝑡

2
)

}}}}

}}}}

}

󳨐⇒ 𝑡
1
> 𝑡
2
. (13)

For the constraint to 𝑝(𝑡), it can be assumed that 𝑝(𝑡) = 𝛼 −

𝑡
𝛾
/𝛽, where 𝛼, 𝛽 > 0, and it also should satisfy log𝛼𝛽 > 𝛾 log 𝑡

(this constraint can guarantee that if 𝑡 ≥ 1, then 𝐿
󸀠

𝑥
> 0);

hence, for the above mentioned when 𝑡 ≥ 1, then 𝑝(𝑡),

𝑝
󸀠
(𝑡) ̸= 0; if we insert 𝑝(𝑡) into (13) and give 𝛾 = 1, then

the local maximum position 𝑡
0
is given by

𝜕𝐿
󸀠

𝑥

𝜕𝑡
= 0 󳨐⇒ 𝑡

0
=

− (Δ𝑙
2
+ 𝛼𝛽) + √(Δ𝑙2 + 𝛼𝛽)

2
+ 4𝛼𝛽Δ𝑙2

2

=
2𝛼𝛽Δ𝑙

2

(Δ𝑙2 + 𝛼𝛽) + √(Δ𝑙2 + 𝛼𝛽)
2
+ 4𝛼𝛽Δ𝑙2

=
2𝛼𝛽

(1 + 𝛼𝛽/Δ𝑙2) + √(1 + 𝛼𝛽/Δ𝑙2)
2
+ 4 (𝛼𝛽/Δ𝑙2)

.

(14)

It is clear that when 𝛼𝛽/Δ𝑙
2
→ 0, then 𝑡

0
→ 𝛼𝛽; moreover

it is an increasing function ofΔ𝑙; that is, it has the samemono-
tonicity property with one in original function 𝜕𝐿

𝑥
/𝜕𝑡|
𝑡=𝑡
0

=

0. Figure 8 shows the result improved by 𝐿󸀠
𝑥
(𝑥, 𝑡).

3.3.Threshold Selection forWeakly Textured Points. Amethod
for threshold selection to remove points which are not weakly
textured points is needed, if their local maximum of texture
strength is beyond this threshold.

On the other hand, there is no a priori information that
can be used for removing the point which has no weakly
textured property, and to illustrate the method for threshold
selection, here, let us consider the distribution of weakly
textured points detected by the method in Section 2.

Figure 9 shows the weak points detected by WTD and
the 3D histogram of their distribution in the image. Here, the
image is divided into𝑀×𝑁 fragments; that is, if 𝐼 is the image,
then 𝐼 = {𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑀×𝑁
}; according to this distributionwe

find that regions have more concentrated distribution than
otherswhich areweakly textured regions. It also indicates that
the local maximum texture strength of points distributed in
these regions can be used to detect the threshold.

Through the above result, the properties of weakly tex-
tured region can be assumed as follows.

(i) The points which are detected by WTD in the region
with weakly textured feature have more concentrated
distribution than other regions.

(ii) The mean of local maximum texture strength in the
weakly textured region is lower than that in other
regions.

An important consequence of these properties is that it allows
the threshold to vary with different images. We here use the
Otsu threshold algorithm to segment the point sets detected
byWTD into two classes, that is, the sets belonging to weakly
textured region and the sets belonging to other regions. Let
𝑇
𝑂
be the threshold defined by Otsu threshold algorithm;

𝑁(𝑅
𝑖
) is the number of the points in fragment 𝑅

𝑖
(as shown

above, the image is divided into 𝑀 × 𝑁 fragments), and
according to property (i), if 𝑁(𝑅

𝑖
) ≥ 𝑇

𝑂
, then fragment 𝑅

𝑖

is selected as the part of weakly textured region which will
be used for determining the threshold of texture strength
later. On the other hand, when the weakly textured region is
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Figure 8: Results from improved texture measure method under different images.

determined, then according to property (ii), the threshold 𝑇
𝑠

can be defined as follows:

𝑇
𝑠
= min
𝑖

(max
𝑗

{𝑡 (𝑥
𝑗
) | 𝑥
𝑗
∈ 𝑅
𝑖
}) ,

{𝑅
𝑖
∈ 𝐼 | 𝑁 (𝑅

𝑖
) ≥ 𝑇
𝑂
} ,

(15)

where 𝑡(𝑥) is texture strength which is detected by the local
maximum of the derivative over scales at point 𝑥 ∈ 𝑅

𝑖
. Since

the points in the weakly textured region should be retained
as much as possible, we here use max

𝑗
{𝑡(𝑥
𝑗
) | 𝑥
𝑗
∈ 𝑅
𝑖
} as

the subthreshold detected in region 𝑅
𝑖
; on the other hand,

there also exist points which are not weakly textured points
in some parts of the weakly textured region, so for removing

these points the global threshold here can be obtained as
min
𝑖
(max
𝑗
{𝑡(𝑥
𝑗
) | 𝑥
𝑗
∈ 𝑅
𝑖
}).

3.4. Composed Algorithm. The mechanisms for weakly tex-
tured point detection and fine positioning were proposed,
respectively. And they can be used in various ways in point
detection and point removing. For the purpose of exper-
iments and validation, we have here integrated these two
modules into a composed algorithm, which can be expressed
in the following four-step procedure.

Stage 1. Given a constant integer 𝑀, which is the number of
points needed to be detected by WTD, 𝑀 can be adjusted
according to the size of image. Formulas (2) and (3) are then
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Figure 9: 3D histogram of weakly textured points distribution.

used to compute the vector in the radial-space {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑁
}

for each point 𝑝
𝑖
of image:

V
𝑆
(𝑝
𝑖
) = {𝑆

𝑤-texture (𝑝𝑖, 𝑟1) , 𝑆𝑤-texture (𝑝𝑖, 𝑟2) , . . . ,

𝑆
𝑤-texture (𝑝𝑖, 𝑟𝑁)} .

(16)

Stage 2. Use the mechanism proposed in Section 2 to select
the suitable radial 𝑟fit for each point 𝑝

𝑖
of image 𝐼. Take

𝑆
𝑤-texture(𝑝𝑖, 𝑟fit) as the similarity strength of 𝑝

𝑖
. And arrange

𝑝
𝑖
of image 𝐼 in order of decreasing 𝑆

𝑤-texture(𝑝𝑖, 𝑟fit). Then
choose the first 𝑀 points as the candidates of the weakly
textured points.

Stage 3. Given a constant integer 𝑇, then scale 𝑡 varies within
[1, 2, . . . , 𝑇]. Use 𝐿

󸀠

𝑥
= 𝑝(𝑡) ⋅ 𝐿

𝑥
defined in formula (12) for

computing the vector of each point which is obtained from
Stage 2:

V
𝑡
(𝑝
𝑖
) = {𝐿grad (𝑝𝑖, 𝑡1) , 𝐿grad (𝑝𝑖, 𝑡2) , . . . , 𝐿grad (𝑝𝑖, 𝑡𝑇)} ,

𝑡
𝑖
∈ [1, 2, . . . , 𝑇] .

(17)

Choose the biggest element from V
𝑡
(𝑝
𝑖
) as the texture strength

of point 𝑝
𝑖
; that is,

V
𝑡 max (𝑝𝑖) = max

𝑡
𝑖
∈[1,2,...,𝑇]

𝐿grad (𝑝𝑖, 𝑡𝑖) . (18)

Stage 4. Using the threshold selection mechanism to detect
the threshold 𝑇

𝑠
of texture strength and remove the points by

𝑇
𝑠
, that is, if V

𝑡 max(𝑝𝑖) < 𝑇
𝑠
, then 𝑝

𝑖
is the weakly textured

point.

Figure 10 shows the performance of above composed
algorithm; it is clear that this algorithm can efficiently extract
the weakly textured points, and through the scale-space
texture strength concept, the points have strong textureness
which can be removed completely.

4. Sparse Representation for
Point Correspondence

In this section, we study the feature matching problem
of the weakly textured points detected by the proposed
mechanism in the above two sections. Since the resulting
feature matches can be used in wide-baseline stereo match-
ing problem, it is important to find a matching algorithm
for weakly textured points correspondence. On the other
hand, since the point has the feature of weak texture, it
is difficult to choose features for distinguishing different
weakly textured points. Traditionally, methods of point-
matching are based on the Euclidean distance; namely, if the
distance between the candidate point and the object point is
minimum, then those points are correspondence; moreover,
the algorithms such as support vector machine (SVM) [25]
and nearest neighbor algorithm [26] are largely dependent
on the choice of features. Hence, we here match the feature
via sparse representation, within the proposed framework;
the precise choice of feature space is no longer critical.
In [19], the algorithm used for human face recognition is
similar to our method. And the efficacy of sparse repre-
sentation in solving classification problems has been demo-
nstrated.

4.1. Analyze the Feature of Weakly Textured Points. Since
features of the same point in two different images are almost
equal, the feature of the point in the first image can be thought
as lying on the linear subspace composed by all features of
weakly textured points in the second image. As proposed in
[19], we here use the same hypothesis; that is, the feature from
one point lies on a subspace.This is the only prior knowledge
about our feature matching algorithm.

Given the feature set of points 𝑆
2
= [𝑠
2,1
, 𝑠
2,2
, . . . , 𝑠

2,𝑛
2

] ∈

R𝑚×𝑛2 in the second image, where 𝑠
2,𝑗

denotes feature of point
𝑝
𝑗
, if 𝑝
𝑗
exists in the first image, then its feature 𝑠

1,𝑗
will be

approximately in the linear span of 𝑆
2
associated with object

𝑗:

𝑠
1,𝑗

= 𝛼
1
𝑠
2,1

+ 𝛼
2
𝑠
2,2

+ ⋅ ⋅ ⋅ + 𝛼
𝑛
2

𝑠
2,𝑛
2

, (19)
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(a) (b) (c)

Figure 10: Results from threshold mechanism for different images. (a) Points detected by WTD. (b) Points detected by WTD + threshold
mechanism. (c) Regions belong to detected points.

where 𝛼
𝑖
∈ R, 𝑗 = 1, 2, . . . , 𝑛

2
. The linear representation 𝑠

1,𝑗

also can be rewritten in terms of 𝑆
2
as

𝑠
1,𝑗

= 𝑆
2
𝑥 ∈ R

𝑚
. (20)

Since the point 𝑝
𝑗
existed in the two images, its feature

in these two images should be closed enough. Hence, the
coefficient vector 𝑥 could be assumed as 𝑥 = [0, . . . , 0,

𝛼
𝑗
, 0, . . . , 0]

𝑇
∈ R𝑛2 where its entries are zero except those

associated with 𝑗th point. And here we should solve the linear
equation 𝑠

1,𝑗
= 𝑆
2
𝑥; here 𝑆

2
∈ R𝑚×𝑛2 , and 𝑛

2
is the number

of the weakly textured points in the second image, and 𝑚 is
the dimension of the features. Here in order to reduce the
computational complexity, the dimension of features should
be chosen as small as possible; that is, it has 𝑛

2
≫ 𝑚, so the

equation 𝑠
1,𝑗

= 𝑆
2
𝑥 is underdetermined, and its solution is

not unique. On the other hand, since the ideal solution 𝑥
0
of

𝑠
1,𝑗

= 𝑆
2
𝑥 should be dense, as assumed above. So the denser

𝑥
0
is, the easier will it be to determine point 𝑝

𝑗
in the first

image.
Through the above analysis, we here seek the sparsest

solution to 𝑠
1,𝑗

= 𝑆
2
𝑥, that is, solving the following optimi-

zation problem:

𝑥
0
= arg min ‖𝑥‖0 subject to 𝑠

1,𝑗
= 𝑆
2
𝑥, (21)

where ‖ ⋅ ‖
0
denotes the ℓ

0
-norm, which counts the number

of nonzero entries in a vector. However, this problem is NP-
hard and even difficult to approximate [27]: there are no
more efficient procedures for finding the sparest solution
than exhausting all subsets of the entries for 𝑥. But in the
theory of sparse representation and compressed sensing [28],
it is proved that if the solution of ℓ

0
-minimization is sparse

enough, then it is equal to the solution of the ℓ
1
-minimization

problem:

𝑥
0
= arg min ‖𝑥‖1 subject to 𝑠

1,𝑗
= 𝑆
2
𝑥. (22)

We here use a simple example for interpretation of the
reason why should we use the ℓ

1
-minimization rather than

ℓ
2
-minimization to get the sparest solution. As shown in

Figure 11, the left and right images show the geometry of ℓ
2
-

minimization algorithm and ℓ
1
-minimization algorithm to

solve 𝑠
1,𝑗

= 𝑆
2
𝑥
0
under two-dimensional situation, respec-

tively. According to Figure 11 the solution of ℓ
1
-minimization

is also the solution of ℓ
0
-minimization; however, the one got-

ten from ℓ
2
-minimization does not satisfy ℓ

0
-minimization.

4.2. Feature Matching Based on Sparse Representation. So far,
we have used the simple example for interpreting the sparse
representation theory and before we give the algorithm, all
the symbols used latter should be defined as follows.

𝐼
1
: the image having the points which should be

matched.
𝐼
2
: the image having the reference points for those in

image 𝐼
1
.

{𝑞
𝑖
}
𝐼
1

, {𝑝
𝑖
}
𝐼
2

: theweakly textured points sets, which are
detected in the 𝐼

1
, 𝐼
2
, respectively.

𝐹(⋅) : R2 → R𝑚: feature extraction function as
the position of point; that is, it can extract the 𝑚-
dimension feature for the point.
𝛿
𝑖
(⋅): R𝑛 → R𝑛: the function that can get a new

vector from the vector 𝑥 ∈ R𝑛, and the new one
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Figure 11: Geometry of sparse representation with ℓ
2
-minimization and ℓ

1
-minimization.

has the only nonzero entries in 𝑥 ∈ R𝑛 which are
associated with index 𝑖; moreover because the point
in image 𝐼

1
can only have one corresponding point,

so here the new vector gotten from 𝛿
𝑖
(⋅) should have

only one nonzero entry.

Sparse Representation-Based Feature Matching Algorithm

(1) Input the feature set of reference points in image 𝐼
2
.

That is, 𝑆
2

= {𝐹(𝑝
1
), 𝐹(𝑝

2
), . . . , 𝐹(𝑝

𝑛
)} ∈ R𝑚×𝑛2

which is regarded as the matrix for ℓ
1
-minimization

problem. And the feature of test point 𝐹(𝑞)𝑞 ∈ 𝐼
1
,

which can be regarded as a test sample.
(2) Normalize the columns of 𝑆

2
and 𝐹(𝑞) to have unit

ℓ
2-norm; here 𝑆

2
and 𝐹(𝑞) are the normalized 𝑆

2
and

𝐹(𝑞), respectively.
(3) Solve the following ℓ

1
-minimization problems:

𝑥
0
= arg min ‖𝑥‖1 subject to 𝐹 (𝑞) = 𝑆

2
𝑥 (23)

or

𝑥
0
= arg min ‖𝑥‖1 subject to 󵄩󵄩󵄩󵄩󵄩

𝑆
2
𝑥 − 𝐹 (𝑞)

󵄩󵄩󵄩󵄩󵄩2
≤ 𝜀, (24)

where if 𝐹(𝑞) have noise term, and the bounded
energy of this noise is less than 𝜀, then we will use the
extended ℓ

1
-minimization problem [19].

(4) Compute the residuals 𝑟
𝑖
(𝐹(𝑞)) = ‖𝐹(𝑞) − 𝑆

2
𝛿
𝑖
(𝑥
0
)‖
2

for 𝑖 = 1, . . . , 𝑛.
(5) Output identity (𝐹(𝑞)) = argmin

𝑖
𝑟
𝑖
(𝐹(𝑞)), then the

position of corresponding point can be determined by
this result.

4.3. Feature Extraction for Weakly Textured Point. As above
shown, we have proposed the feature matching algorithm for
the weakly textured points based on the sparse representation
classifier, but there still remains a problem, that is, what
feature should be extracted. As assumed above the point
feature in image 𝐼

1
should have the sparest solution in the

feature space of image 𝐼
2
; this means that if the feature

satisfies this sparsity condition then it can be used for

matchingweakly textured points, that is, as in [19]: “the choice
of features is no longer critical.” On the other hand, this
condition is satisfied by the feature of texture points, because
these points have their own structure in their neighbor
regions, and this feature cannot be represented by other
points. However, the weakly textured points might not satisfy
this condition, for the reason that these points usually have
no obvious characteristics. So, in the experiment part we
will use the different descriptors including LBP, random, and
downsampled features to investigate their performance to the
proposed matching algorithm. Here the random feature can
be expressed as [29]

𝑥
0
= arg min ‖𝑥‖1 subject to 𝑦 = 𝑅𝑆𝑥, (25)

where 𝑅 ∈ R𝑑×𝑚 is a random matrix independently sampled
from zero-mean normal distribution; moreover each row of
𝑅 is normalized to unit length, and 𝑦 = 𝑅𝑦 ∈ R𝑑, when
𝑑 ≪ 𝑚; then using this feature can reduce the computation
complex, and the polytope geometry as the analysis indicates
the following: if the solution 𝑥

0
is sparse enough, then it

can be correctly recovered by ℓ
1
-minimization from any

sufficiently large number 𝑑 of linear measurements 𝑦 = 𝑅𝑆𝑥

with the probability:

𝑑 ≥ 2𝑡 log(𝑛
𝑑
) , (26)

where 𝑡 is the number of nonzero entries in vector 𝑥.
For ending this section, we will give the method to decide

the validation of the sample. In the real-world situation, when
a point is detected in image 𝐼

1
might not be detected in

image 𝐼
2
it means that the feature of this point could not be

described by using only one point feature in image 𝐼
2
; that

is, the nonzero entries of its sparse representation in image
𝐼
2
are not concentrated on one subject; in contrary, it has

widely spread sparse coefficients among multiple points in
image 𝐼

2
; hence, the sparsity concentration index (SCI) [19]

to determine the validation of the sample is as follows:

SCI (𝑥) =
𝑘 ⋅max 󵄩󵄩󵄩󵄩𝛿𝑖 (𝑥)

󵄩󵄩󵄩󵄩1
/‖𝑥‖1 − 1

𝑘 − 1
∈ [0, 1] . (27)

And according to this index then the valid point 𝑝 can be
decided if SCI(𝑝) ≥ 𝜏, where 𝜏 ∈ (0, 1) is a threshold.
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WTD

SIFT

SURF

Harris-affine

Figure 12: Examples of detected points distributed on different objects with different detectors.

Table 1: Performance under different objects.

Test images Harris-affine SIFT SURF WTD
OP/TP OP OP/TP OP OP/TP OP OP/TP OP

Human face 0.1187 28.0000 0.05464 32.1429 0.1255 46.4286 0.5841 85.2857
Flower 0.1837 28.2857 0.0983 26.1428 0.2387 50.5714 0.7253 107.1429
Human model 0.1315 22.8571 0.0122 5.0000 0.1629 36.2857 0.8240 113.0000
Average 0.1446 26.38 0.05504 21.09523 0.1757 44.4285 0.7111 101.8095

5. Experiment Results

In this section, we present experiments on publicly available
databases for weakly textured points detecting and the feature
matching algorithm based on sparse representation, and
the efficacy of these two algorithms can be demonstrated
by these experiments. The experiments can be divided
into three parts, that is, points detection, feature matching,
and promoting the quasi-dense matching algorithm [20];
in the first part we will examine the performance of the
detection algorithm, comparing with different images in
various situations and comparing to several popular feature
detectors (as shown in Sections 5.1 and 5.2). In the second
part we will examine feature matching algorithm, compar-
ing performance across various features spaces and feature
dimensions and comparing to several popular classifiers
in Section 5.3. Finally, we will demonstrate the proposed

method for improving the quasi-dense matching algorithm
in Section 5.4.

5.1. WTD with Image Perturbations. We here measure the
WTD efficiency for weakly textured points detection under
images with different objects and the robustness across
with the same object has different backgrounds. The data
we choose here include 200 images from Caltech human
faces set, 102 images from category flower dataset, and 100
images from human model. And first we will compare our
detector with three classical detectors in weakly textured
points detection, namely, Harris-affine, SIFT, and SURF. For
measuring the performance here we use the proportion
between the number of detected points (Figure 12) on the
objects (OP) and total number of detected points (TP) and set
the radial of WTD from 𝑅 = 2 to 𝑅 = 32. Table 1 compares
WTD to the other three detectors.
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Table 2: Performance under different objects with different backgrounds.

Test images Human face Flower Human body Average

Harris-affine
RB 0.1242 0.0758 0.0380 0.0794
FB 0.1111 0.0765 0.0234 0.0703
TB 0.1228 0.0556 0.0208 0.0664

SIFT
RB 0.0778 0.0059 0.0009 0.0282
FB 0.0281 0.002 0.0042 0.0114
TB 0.4242 0.0136 0.0167 0.1516

SURF
RB 0.1925 0.1843 0.2135 0.1968
FB 0.2131 0.1808 0.1566 0.1835
TB 0.2157 0.1767 0.0948 0.1624

WTF
RB 0.8750 1 1 0.9583
FB 0.9123 1 1 0.9708
TB 0.8361 1 1 0.9454

Figure 13: Performance of WTD on different backgrounds.

Based on the results on the data, we draw the following
conclusion.

(1) For all data, the performances of WTD consistently
exceed the other three detectors in weakly textured
detection. It means that if the object has large region
of weak texture, thenWTD can detect more points in
this object than other detectors.

(2) The results obtained by WTD and classical detectors
are complementary; namely, the points which are not
detected by classical detectors can be detected by
WTD, so if points detected by those classical detectors
are not enough for the stereo reconstruction, then
WTD can be used as a complement.

As a second set of this experiment, the robustness
of WTD for the same object with three different texture
backgrounds is tested. In order to demonstrate the perfor-
mance of WTD, we here use artificial backgrounds as the
extreme situations, namely, random background (RB), forest
background (FB), and texture background (TB), respectively.
And the parameters of WTD are the same as in the above
experiment. Table 2 and Figure 13 show the performance of
WTD comparing to classical detectors.

It is clear that the points detected by WTD are almost
concentrated on the object with weak texture (humanmodel)
no matter what texture background takes (the WTP/TP
close to 1). On the other hand, this property of WTD is
contrary to classical detectors, whose detected points are
almost concentrated on the texture objects, and it is once
again demonstrating the relationship between WTD and
classical detectors as the above experiment.

5.2. Performance under Varying Blur, Lighting Change, Rotat-
ing, and Viewpoint Change. For this experiment, we test the
repeatability of four detectors under different photometric
and geometric transformations, as the protocol suggested
in [13]. Test images sets and results are shown in Figures
14–17 and each set changes in 6 levels. Because of space
constraints, we here only give three of the six images in
each type of transformation, that is, first, third, and sixth.
Each figure presents the repetition rate which includes three
parts, namely, total number ofmatched points, the number of
matched points on the objects, and thematching score on the
objects. The range of radius scale is set from 𝑅 = 2 to 𝑅 = 30,
and the repetition rate here we just use the region matches,
and the matching conditions follow as recommended in [22].
The matching score 𝑆

𝑖
, here, is given by the proportion of
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Figure 14: Blur for image. (a) Total number of matched points for image blurs. (b) Number of matched points on the objects. (c) Matching
score on the objects.

correspondences with detected regions on the objects for all
correspondences in the test image; that is,

𝑆
𝑖
=

Total number of matches
Total number of detected regions

=
𝑁
𝑖

𝑁
,

(𝑖 = 1, 2, . . . ,𝑀) .

(28)

5.2.1. Blur. Figure 14 shows the results detected by four
detectors undergoing increasing amounts of image blur, and
we here use the Gaussian kernel to blur the image, and the
scale parameter 𝑡 (scale selection) is set as 𝑡 = 0, 10, . . . , 60;
according to the results of all detectors, the number ofmatch-
ing points declined with the blur increasing; on the one hand,
the reason for classical detectors is the image texture reduced
by image blur. On the other hand, the number ofmatch points
detectors by our detector should increase with the blur, but
in fact the threshold selection mechanism discussed in the
previous section would get the small threshold because the
blur causes the number of candidate regions increasing, so
according to formula (15), the threshold will become smaller
than before; hence the number of points detected by WTD
will decline.

5.2.2. Lighting Changes. Figure 15 shows the results for light-
ing changes with four different detectors. From this result we
can find the following: (a) the total number of match points
gotten by WTD is lowest and (b) the match points on the
object (human face) are higher than other detectors. This is
caused by following reasons.

(1) The background of image chosen by us is clatter, so
the total number of match points chosen by classical
detectors is higher than WTD.

(2) When the intensity decreases, then the texture of
backgroundwill increase, and the texture in the object
is also increased with light intensity decreasing, but it
is slower than the increase in the background; hence,
the number of match points on the object by WTD is
staying close to its mean value.

(3) The points detected byWTD are almost concentrated
on the object, so its match score is large than others.

5.2.3. Rotation. Figure 16 shows the performance for image
rotation; the number of match points on the object detected
byWTD is not stable with the image rotation.This is because
the object scale here will vary with the rotating process. And
the same radial (see Section 2) used to measure the same
weakly textured point in these images will get the different
values. On the other hand, the backgrounds of these images
are also textureless, and if the scale changed the threshold
for reducing the texture points will also change; hence,
points detected byWTDwill concentrate on the background.
Although being in such serious situation, the match score of
WTD is also higher than other detectors.

5.2.4. Viewpoint Changes. Figure 17 shows the performance
for viewpoint changes. It is clear that when viewpoint changes
the matching score of WTD is always close to 1. This impli-
cates that the matching points gotten from WTD are almost
concentrating on the object with the viewpoint changes in 15

∘

degree limitation.

5.3. Feature Matching Algorithm Experiment. In this part,
we will test the performance of matching algorithm based
on sparse representation with the detected weakly textured
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Figure 15: Lighting changes for image. (a) Total number of matched points for lighting change. (b) Number of matched points on the objects.
(c) Matching score on the objects.
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Figure 16: Rotation for image. (a) Total number of matched points for rotation. (b) Number of matched points on the objects. (c) Matching
score on the objects.

points. We here compare performance across various feature
spaces and feature dimensions with two popular classifiers,
namely, linear SVM and ℓ

2-min. Moreover, we will also test
our matching algorithm under random pixel corruption and
random block occlusion, respectively.

5.3.1. Sparse Representation Based Weakly Textured Point
Matching. We match 150 weakly textured points detected by

WTD in each image as shown in Figure 18. Here we only
test the matching algorithm under the WTD, and we use
conventional features LBP (local binary pattern) and two
unconventional features: random and downsampled region
features. The window size of LBP is set to be 30 × 30 pixels,
and we compute the matching rate with the feature space
dimensions 10, 20, . . . , 60. The dimension of random feature
space discussed in the previous section is set the same as
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Figure 17: Viewpoint change for image. (a) Total number of matched points for viewpoint change. (b) Number of matched points on the
objects. (c) Matching score on the objects.

Table 3: Variances of matching rate.

Algorithm LBP Downsample Random
SRM 1.15 × 10

−2
9.8 × 10

−3
7.9540 × 10

−4

ℓ
2-min 2.47 × 10

−2
7.2 × 10

−3
5.6 × 10

−3

SVM 2.63 × 10
−2

4.29 × 10
−2

2.63 × 10
−2

LBP, namely, the random matrix 𝑅
𝑑×60

(𝑑 = 10, 20, . . . , 60);
finally the window size of downsampled feature is set to be
30 × 30 with dimensions 60, 45, 30, and 12. Those numbers
correspond to downsampling ratios of 1/15, 1/20, 1/30, and
1/75, respectively. Figure 18 shows the match performance
for the various features, in conjunction with three different
algorithms: SRM, ℓ2-min, and SVM.

Figure 18 also shows results under LBP descriptor with 40
dimensions. The algorithm returns enough matched points
on the low texture region that lets us getmore sufficient points
than traditional sparse matching on these area.

Based on the results on different feature spaces, the
following conclusion can be drawn.

(1) Here we use the variance of feature dimensions to
measure the stability ofmatching rate on different fea-
ture spaces. Table 3 shows the variances of matching
rate for SRM, ℓ2-min, and SVM. It is clear that SRM
is more stable than others for feature dimensions on
the LBP and random spaces.

(2) The biggest matching rate of SRM exceeds the best
performances of others on the LBP and downsample
spaces. More specifically, the best performance for
SRM on the LBP is 80.86%, compared to 71.35% for
ℓ
2-min and 69.70% for SVM. The best rate for SRM

on the downsample is 80.38%, compared to 59.64%
for ℓ2-min and 55.97% for SVM.

(3) The results on the LBP and random spaces suggest
that when the feature dimension is 40, it is sufficed
for sparse recovery. Moreover when the dimensions
are beyond 40, the performances on these two feature
spaces will converge.

5.3.2. Matching despite Random Pixel Corruption. In this
experiment, we test the robustness of SRM under the pixel
of description region occluded by random noise. We use
the extended ℓ

1
-minimization problem [19] at the third step

of SRM for solving this occlusion problem. Here the error
tolerance 𝜀 is set to be the bounded energy of the random
noise. In order to eliminate the influence caused by WTD,
we use the random noise to corrupt the located region in
which the feature is extracted (see Figure 19). On the other
hand, since there are no efficient descriptions for weakly
textured point, the description we used is LBP, because it
has the best performance as shown above. For demonstrating
the performance of SRM, we compare it to the following
algorithms: ℓ2min+PCA, ℓ

2

min+LNMF, and ℓ2min+ICA, respec-
tively. Here PCA, LNMP, and ICA are principal component
analysis, local nonnegativematrix factorization (LNMF), and
independent component analysis (ICA), respectively. These
algorithm are used for feature preprocessing and the ℓ2-min
we used here because it has the second highest matching rate
in the above experiment. According to the experiment result,
it can be seen that when the corruption is up to 25 percent the
number of matching points with each algorithm will drop to
zero. So, here we only show the result with corruption from
0 percent to 25 percent. According to the performance of
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Figure 18: Matching rate for various feature transformations.
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Figure 20: Recognition under varying level of contiguous occlusion.

SRM and its three competitors, we see that SRM outperforms
others; namely, from 5 percent up to 20 percent occlusion,
the number of matching weakly textured points are higher
than others. At 10 percent corruption, the highest matching
number of others is 40 points, while the one gotten by SRM
80 points. Even at 15 percent occlusion, thematching number
is still 60 points. Clearly, the SRMcan ensure to tolerate under
the corruption less than 25 percent for matching the weakly
textured points. On the other hand, the matching points
numbers gotten by ℓ2min+LNMF and ℓ2min+ICA are obviously
less than SRM and ℓ

2

min + PCA; it has been suggested that
both LNMF and ICA are not suitable for the preprocessing
of weakly textured feature.

5.3.3. Matching despite Random Block Occlusion. The final
part of the expe riment here is to simulate various levels
of contiguous occlusion, from 0 percent to 40 percent, by
replacing a randomly located square block of each feature
region with the gray-lever at zero, and the reason why we
choose zero gray-lever block is that the matching points are
weakly textured point, so if we choose the texture block
here, the characteristic of these points will be replaced by the
features in this texture block. And the region here is the same
as the discussion in the above experiment (see Figure 20).
The location of occlusion is randomly chosen for each image
and is unknown to the computer. The results got from SRM
and ℓ
2

min + PCA are still better than others. Again, the above
implication is also true for this case. Despite the fact that
the performances of SRM and ℓ

2

min + PCA are closed, it is
clear that SRM outperforms ℓ2min + PCA. For example, at 20
percent occlusion, SRM achieves 109 points; it is higher than
ℓ
2

min + PCA’s 98 points. On the other hand, the reason why
the number of matching points is not decreased to zero when
occlusion increases to 40 percent is that the located square
block we used here is the zero gray-lever images. And the
matching points also have weakly textured characteristic, so
it will not be much affected by this square block.

5.4. Improved Quasi-Dense Matching. In this section, we
use WTD to promote the quasi-dense matching algorithm

Table 4: Comparison between original dense matching and
improved one under different circumstances.

Change Algorithm #corresponding-point on untex

Lighting Quasi + ours 845
Quasi 414

Image scale Quasi + ours 490
Quasi 210

Camera angle Quasi + ours 676
Quasi 351

[20]. The quasi-dense matching algorithm starts from a
set of sparse seed matches which were usually obtained
by classical detectors, then propagates to the neighboring
pixels by the best-first strategy, and finally produces a quasi-
dense disparity map. Since most initial sparse seed matches
distribute in the strong texture regions, it nearly has no seed
matches in the textureless areas; furthermore if the matches
got from propagating step in these areas are wrong, gross
reconstruction errors will occur, so here we use the proposed
approach to get the initial sparse seed matches in the large
textureless areas.

The original algorithm is independently implemented for
comparison on the same image pairs. The corresponding-
point sets obtained by WTD and traditional quasi-dense
matching algorithm are shown in Figure 21. One can verify
the effectiveness of our implementation by corresponding
quality measures which are given in Table 4.

Our algorithm is evaluated on the changes of lighting,
scale, and camera angle, respectively, and the results demon-
strate that the algorithm performs particularly better on the
large textureless object surface than the original one (as
shown in Figure 21).

6. Conclusion

In this paper, we proposed an efficient detector for weakly
textured points and used sparse representation for matching
the detected weakly textured points in two different images.
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(a) (b)

Figure 21: Results from improved dense matching and original one under different circumstances. Top row: corresponding-points matched
with lighting changes. Middle row: corresponding-points matched with scale changes. Bottom row: corresponding-points matched with
camera angle changes. (a) Corresponding results from improved quasi-dense matching algorithm. (b) Corresponding results from original
quasi-dense matching algorithm.

We have contended both theoretically and experimentally
that the proposed algorithms outperform others in weakly
textured points detecting and matching. The performance of
the newdetectorwas demonstrated on awide variety of image
sets in which the weakly textured objects were included.
The proposed detector gives a way of detecting the weakly
textured points which would be useful for 3D reconstruction
of the object with weak texture at the dense matching
step. On the other hand, the proposed matching algorithm
SRM has the higher performance than others on the LBP
feature space; moreover, to a certain extent, SRM can handle
occlusion and corruption on the feature of weakly textured
points.

Intriguing questions for future work are whether this
method is appropriate for wide-based stereo and what
description can be used for these weakly textured points.
The first problem can be solved by replacing circumferences
with ellipses; the second one might be solved by using the
information of the surround points which are detected by
classical detectors, such as SIFT, GOLH, and SURF, and it is
a most challenging one as well. These are two directions for
our future work.
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